ETSI TS 124229 v7.14.0 (2009-01)

Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Internet Protocol (IP) multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP);

Stage 3
(3GPP TS 24.229 version 7.14.0 Release 7)

Reference
RTS/TSGC-0124229v7e0
Keywords
ETSI UMTS
F-06921 Sophia Antipolis Cedex- FRANCE
Tel.: +33 492944200 Fax: +33 4936547 16

Siret No 34862356200017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) $N^{\circ} 7803 / 88$
\qquad
Important notice
Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.
© European Telecommunications Standards Institute 2009.
All rights reserved.
DECT $^{\text {TM }}$, PLUGTESTS ${ }^{\text {TM }}$, UMTS ${ }^{\text {TM }}$, TIPHON ${ }^{\text {TM }}$, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPP ${ }^{\text {TM }}$ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE $^{\text {TM }}$ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).
The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intellectual Property Rights 2
Foreword 2
Foreword 16
1 Scope 17
2 References 17
3 Definitions and abbreviations. 25
3.1 Definitions 25
3.2 Abbreviations 29
3A Interoperability with different IP-CAN 31
4 General 31
4.1 Conformance of IM CN subsystem entities to SIP, SDP and other protocols. 31
4.2 URI and address assignments 33
4.2A Transport mechanisms 34
4.3 Routeing principles of IM CN subsystem entities 34
4.4 Trust domain 34
4.4.1 General. 34
4.4.2 P-Asserted-Identity35
4.4.3 P-Access-Network-Info 35
4.4.4 History-Info 35
4.4.5 P-Asserted-Service. 35
4.4.6 Void 35
4.4.7 \quad Reason (in a response) 35
4.5 Charging correlation principles for IM CN subsystems 35
4.5.1 Overview 35
4.5.2 \quad IM CN subsystem charging identifier (ICID) 36
4.5.3 Access network charging information 36
4.5.3.1 General 36
4.5.3.2 Access network charging information. 36
4.5.4 Inter operator identifier (IOI) 36
4.5.5 Charging function addresses. 37
4.6 Support of local service numbers 37
4.7 Emergency service 38
5 Application usage of SIP 38
5.1 Procedures at the UE 38
5.1.1 Registration and authentication. 38
5.1.1.1 General 38
5.1.1.1A Parameters contained in the ISIM 38
5.1.1.2 Initial registration. 39
5.1.1.3 Subscription to the registration-state event package 41
5.1.1.4 User-initiated reregistration and registration of an additional public user identity 42
5.1.1.5 Authentication. 44
5.1.1.5.1 General 44
5.1.1.5.2 Network-initiated re-authentication. 45
5.1.1.5.3 Abnormal cases 46
5.1.1.5A Change of Ipv6 address due to privacy 46
5.1.1.6 User-initiated deregistration 47
5.1.1.7 Network-initiated deregistration 48
5.1.2 Subscription and notification 48
5.1.2.1 Notification about multiple registered public user identities. 48
5.1.2.2 General SUBSCRIBE requirements. 49
5.1.2A Generic procedures applicable to all methods excluding the REGISTER method 49
5.1.2A. 1 UE-originating case. 49
5.1.2A. 2 UE-terminating case 52
5.1.3 Call initiation - UE-originating case 53
5.1.3.1 Initial INVITE request 53
5.1.4 Call initiation - UE-terminating case 555.1.4.1
Initial INVITE request 555.1.6Call release56
Emergency service 565.1.6.1
General 56
5.1.6.2 Initial emergency registration. 56
1.6.2A New initial emergency registration 575.1.6.3
5.1.6.4Initial subscription to the registration-state event package57
Authentication. 575.1.6.55.1.6.65.1.6.7
5.1.6.8
5.1.6.8.1
5.1.6.8.25.1.6.8.3
5.1.6.8.45.1.6.9User-initiated emergency reregistration.57
User-initiated emergency deregistration 57
Network-initiated emergency deregistration 57
Emergency session setup. 57
General 57
Emergency session set-up in case of no registration 58
Emergency session set-up within an emergency registration 59
Emergency session setup within a non-emergency registration 60
Emergency session release 62
Void 62
Procedures at the P-CSCF 62
General. 62
Registration 63
Subscription to the user's registration-state event package 67
Registration of multiple public user identities68
Deregistration 5.2.5 695.2.5.1
User-initiated deregistration. 69
Network-initiated deregistration 69
General treatment for all dialogs and standalone transactions excluding the REGISTER method. 70
Introduction 70
Determination of UE-originated or UE-terminated case 70
Requests initiated by the UE 70
Requests terminated by the UE 73
5.2.7 Initial INVITE 775.2.7.15.2.7.2Introduction77
5.2.7.3UE-originating case775.2.7.4UE-terminating case785.2.85.2.8.15.2.8.1.1Access n
Call release.78
P-CSCF-initiated call release 78785.2.8.1.2Cancellation of a session currently being established.Release of an existing session79
5.2.8.1.3 5.2.8.1.3 Abnormal cases 80
Release of the existing dialogs due to registration expiration and deletion of the security association 80
5.2.8.2 Call release initiated by any other entity 80
5.2.8.3 Session expiration81
5.2.9 Subsequent requests 815.2.9.15.2.9.2UE-originating case81UE-terminating case81
5.2.10
5.2.10.1
Emergency service 81
General 81
5.2.10.2 General treatment for all dialogs and standalone transactions excluding the REGISTER method from an unregistered user 82
5.2.10.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method after emergency registration. 83
5.2.10.4 General treatment for all dialogs and standalone transactions excluding the REGISTER method non-emergency registration. 84
5.2.10.5 Abnormal cases 85
5.2.11 Void 86
5.3 Procedures at the I-CSCF 86
5.3.1 Registration procedure 86
5.3.1.1 General 86
5.3.1.2 Normal procedures 86
5.3.1.3 Abnormal cases 87
5.3.2 Initial requests 87
5.3.2.1 Normal procedures 87
5.3.2.1A Originating procedures for requests containing the "orig" parameter 90
5.3.2.2 Abnormal cases 91
5.3.3 Void 925.3.3.1
Void. 92
5.3.3.2 Void. 92
5.3.3.3 Void. 92
5.3.4 Void 92
5.4 Procedures at the S-CSCF 92
5.4.1 Registration and authentication. 92
5.4.1. Introduction 92
5.4.1.2 Initial registration and user-initiated reregistration 92
Unprotected REGISTER 92
5.4.1.2.1
Protected REGISTER 94
Abnormal cases 96
5.4.1.2.3
Authentication and reauthentication 97
5.4.1.3
User-initiated deregistration. 97
5.4.1.5 Network-initiated deregistration 98
5.4.1.6 Network-initiated reauthentication. 100
5.4.1.7 Notification of Application Servers about registration status 101
5.4.1.8 Service profile updates 102
5.4.2 Subscription and notification 102
5.4.2.1 Subscriptions to S-CSCF events 102
5.4.2.1.1 Subscription to the event providing registration state. 102
5.4.2.1.2 Notification about registration state 103
5.4.3 General treatment for all dialogs and standalone transactions excluding requests terminated by the S - CSCF 105
5.4.3.1 Determination of UE-originated or UE-terminated case 105
5.4.3.2 Requests initiated by the served user 106
5.4.3.3 Requests terminated at the served user 110
5.4.3.4 Original dialog identifier 116
5.4.3.5 Void. 116
5.4.4 Call initiation 1165.4.4.1
Initial INVITE. 116
5.4.4.2 Subsequent requests 1175.4.4.2.1
UE-originating case 1175.4.55.4.5.1Call release117
Cancellation of a session currently being established
Release of an existing session 117S-CSCF-initiated session release1175.4.5.1.2117
5.4.5.1.2A Release of the existing dialogs due to registration expiration 118117
Abnormal cases 1185.4.5.1.3
5.4.5.2 Session release initiated by any other entity 118
5.4.5.3 Session expiration 119
5.4.6 Call-related requests 119
5.4.6.1 ReINVITE 1195.4.6.1.15.4.6.1.2Determination of served user119
5.4.6.1.3 119UE-originating case119
5.4.7 Void 119
5.4.7A GRUU management 119
5.4.7A. 1 Overview of GRUU operation 119
5.4.7A. 2 Representation of public GRUUs 1205.4.7A. 3 Representation of temporary GRUUs
5.4.7A. 4 GRUU recognition and validity 120 120
5.4.8 Emergency service 120
5.4.8.1 General 120
5.4.8.2 Initial emergency registration or user-initiated emergency reregistration 121
5.4.8.3 User-initiated emergency deregistration 121
5.4.8.4 Network-initiated emergency deregistration 122
5.4.8.5 Network-initiated emergency reauthentication 122
5.4.8.6 Subscription to the event providing registration state 122
5.4.8.7 Notification of the registration state 122
5.5
Procedures at the MGCF 122
5.5.1 1225.5.2 Subscription and notification
122
5.5.3 Call initiation 1225.5.3.15.5.3.1.15.5.3.1.25.5.3.25.5.3.2.1
5.5.3.2.25.5.4
5.5.4.15.5.4.25.5.4.35.5.55.5.5.15.5.5.1.15.7.1.3 Access-Network-Info and Visited-Network-ID
Initial INVITE. 122
Calls originated from circuit-switched networks 122
Calls terminating in circuit-switched networks 123
Subsequent requests 123
Calls originating in circuit-switched networks 123
Calls terminating in circuit-switched networks 124
Call release 124
Call release initiated by a circuit-switched network 124
IM CN subsystem initiated call release 124
MGW-initiated call release 124
Call-related requests 124
ReINVITE 124
Calls originating from circuit-switched networks 124
Calls terminating in circuit-switched networks 124
Further initial requests 124
Procedures at the BGCF 125
General. 125
Common BGCF procedures 125
Procedures at the Application Server (AS) 125
Common Application Server (AS) procedures 125
Notification about registration status 1251265.7.1.4 User identify verification at the AS1275.7.1.5Request authorization127
5.7.1.6 Event notification throttling 129129
5.7.1.7 Local numbering 129
5.7.1.7.1 Interpretation of the numbers in a non-international format 129
5.7.1.7.2 Translation of the numbers in a non-international format 129
5.7.1.8 GRUU assignment and usage 30
5.7.1.9 Use of ICSI and IARI values
5.7.2 Application Server (AS) acting as terminating UA, or redirect server 131
5.7.3 Application Server (AS) acting as originating UA 132
5.7.4 Application Server (AS) acting as a SIP proxy 133
5.7.5 Application Server (AS) performing 3rd party call control 134
5.7.5.1 General 134
5.7.5.2 Call initiation 135
Initial INVITE 135
5.7.5.2.1
Subsequent requests 135
5.7.5.3 Call release 135
5.7.5.4 Call-related requests 135
Further initial requests 136
5.7.5.5 Void 136
5.8 Procedures at the MRFC 136
5.8.1 General 136
5.8.2 Call initiation 136
5.8.2.1 Initial INVITE 1365.8.2.1.1MRFC-terminating case136
5.8.2.1.1.1
Introduction
Introduction 136
5.8.2.1.2 MRFC-originating case 137
5.8.2.2 Subsequent requests 137
5.8.2.2.1 Tones and announcements 137
5.8.3 Call release 138
5.8.3.1 S-CSCF-initiated call release 138
Tones and announcements 138
5.8.3.1.15.8.3.2
5.8.3.2.1MRFC-initiated call release1385.8.2.2.2Tones and announcements138
5.8.4
5.8.4.15.8.4.1.1
5.8.4.1.2Transcoding138
MRFC-originating case 1385.8.4.25.8.4.2.15.8.4.2.2Call-related requests138
ReINVITE 138
MRFC-terminating case 138REFER138
MRFC-terminating case 138
5.8.4.2.3 REFER initiating a new session 139MRFC-originating case139
5.8.4.2.4 REFER replacing an existing session 139
5.8.4.3 INFO 139
5.8.5 Further initial requests 139
5.9 Void. 139
5.9.1 Void 139
5.10 Procedures at the IBCF. 139
5.10.1 General 139
5.10.2 IBCF as an exit point 139
5.10.2.1 Registration 139
5.10.2.2 Initial requests 140
5.10.2.3 Subsequent requests 141
5.10.2.4 IBCF-initiated call release 141
5.10.3 IBCF as an entry point 141
5.10.3.1 Registration 141
5.10.3.2 Initial requests 142
5.10.3.3 Subsequent requests 143
5.10.3.4 IBCF-initiated call release. 143
5.10.4 THIG functionality in the IBCF 143
5.10.4.1 General 143
5.10.4.2 Encryption for network topology hiding 144
5.10.4.3 Decryption for network topology hiding 144
5.10.5 IMS-ALG functionality in the IBCF 145
5.10.6 Screening of SIP signalling 145
5.10.6.1 General 145
5.10.6.2 IBCF procedures for SIP headers 146
5.10.6.3 IBCF procedures for SIP message bodies 146
5.11 Procedures at the E-CSCF 147
5.11.1 General 147
5.11.2 UE originating case 147
6 Application usage of SDP 149
6.1 Procedures at the UE 149
6.1.1 General 149
6.1.2 Handling of SDP at the originating UE 150
6.1.3 Handling of SDP at the terminating UE 150
6.2 Procedures at the P-CSCF 151
6.3 Procedures at the S-CSCF 152
6.4 Procedures at the MGCF 152
6.4.1 Calls originating from circuit-switched networks 152
6.4.2 Calls terminating in circuit-switched networks. 153
6.5 Procedures at the MRFC 153
6.6 Procedures at the AS 153
6.7 Procedures at the IMS-ALG functionality 153
7 Extensions within the present document 154
7.1 SIP methods defined within the present document. 154
7.2 SIP headers defined within the present document 154
7.2.0 General 154
7.2.1 Void 154
7.2.2 Void 154
7.2.3 Void 154
7.2.4 Void 154
7.2.5 Void 154
7.2.6 Void 154
7.2.7 Void 154
7.2.8 Void 154
7.2.9 Void 154
7.2.10 Void 154
7.2A Extensions to SIP headers defined within the present document 154
7.2A. 1 Extension to WWW-authenticate header 154
7.2A.1.1
7.2A.1. Introduction 154
7.2A.1.2 Syntax 154
7.2A.1.3 Operation 155
7.2A. 2 Extension to Authorization header. 155
7.2A.2.1 Introduction 155
7.2A.2.2 Syntax 155
7.2A.2.3 Operation. 155
7.2A. 3 Tokenized-by parameter definition (various headers) 155
7.2A.3.1 Introduction 155
7.2A.3.2 Syntax 155
7.2A.3.3 Operation. 156
7.2A. 4 P-Access-Network-Info header 156
7.2A.4.1 Introduction 156
7.2A.4.2 Syntax 156
7.2A.4.3 Additional coding rules for P-Access-Network-Info header 156
7.2A. 5 P-Charging-Vector header 158
7.2A.5.1 Introduction 158
7.2A.5.2 Syntax 158
7.2A.5.2.1 General 158
7.2A.5.2.2 GPRS as IP-CAN 159
7.2A.5.2.3 I-WLAN as IP-CAN 159
7.2A.5.2.4 xDSL as IP-CAN 159
7.2A.5.2.5 DOCSIS as IP-CAN 160
7.2A.5.3 Operation 160
7.2A. 6 Orig parameter definition 160
7.2A.6.1 Introduction 160
7.2A.6.2 Syntax 160
7.2A.6.3 Operation 161
7.2A. 7 Extension to Security-Client, Security-Server and Security-Verify headers 161
7.2A.7.1 Introduction 161
7.2A.7.2 Syntax 161
7.2A.7.3 Operation 161
7.2A. 8 IMS Communication Service Identifier (ICSI) 161
7.2A.8.1 Introduction 161
7.2A.8.2 Coding of the ICSI 161
7.2A. 9 IMS Application Reference Identifier (IARI) 162
7.2A.9.1 Introduction 162
7.2A.9.2 Coding of the IARI. 162
7.2A. 10 Phone-context parameter 162
7.2A.10.1 Introduction 162
7.2A.10.2 Syntax 162
7.2A.10.3 Additional coding rules for phone-context parameter. 162
7.3 Option-tags defined within the present document 163
7.4 Status-codes defined within the present document 163
7.5 Session description types defined within the present document. 163
7.6 3GPP IM CN subsystem XML body 163
7.6.1 General 163
7.6.2 Document Type Definition 163
7.6.3 XML Schema description 164
7.7 SIP timers 165
7.8 IM CN subsystem timers 166
7.9 Media feature tags defined within the current document 166
7.9.1 General. 166
7.9.2 Definition of media feature tag g.3gpp.icsi-ref. 166
7.9.3 Definition of media feature tag g.3gpp.iari-ref 167
8 SIP compression 167
8.1 SIP compression procedures at the UE. 167
8.1.1 SIP compression 167
8.1.2 Compression of SIP requests and responses transmitted to the P-CSCF 168
8.1.3 Decompression of SIP requests and responses received from the P-CSCF 168
8.2 SIP compression procedures at the P-CSCF 168
8.2.1 SIP compression 168
8.2.2 Compression of SIP requests and responses transmitted to the UE 169
8.2.3 Decompression of SIP requests and responses received from the UE 169
9 IP-Connectivity Access Network aspects when connected to the IM CN subsystem 169
9.1 Introduction 169
9.2 Procedures at the UE 169
9.2.1 Connecting to the IP-CAN and P-CSCF discovery 169
9.2.2 Handling of the IP-CAN 170
9.2.3 Special requirements applying to forked responses 170
Annex A (normative): Profiles of IETF RFCs for 3GPP usage 171
A. 1 Profiles 171
A.1.1 Relationship to other specifications 171
A.1.2 Introduction to methodology within this profile. 171
A.1.3 Roles. 172
A. 2 Profile definition for the Session Initiation Protocol as used in the present document 175
A.2.1 User agent role 175
A.2.1.1 Introduction. 175
A.2.1.2 Major capabilities 176
A.2.1.3 PDUs 182
A.2.1.4 PDU parameters 183
A.2.1.4.1 Status-codes 183
A.2.1.4.2 ACK method 186
A.2.1.4.3 BYE method. 187
A.2.1.4.4 CANCEL method 192
A.2.1.4.5 COMET method 195
A.2.1.4.6 INFO method 195
A.2.1.4.7 INVITE method 195
A.2.1.4.7A MESSAGE method 204
A.2.1.4.8 NOTIFY method 211
A.2.1.4.9 OPTIONS method 218
A.2.1.4.10 PRACK method 225
A.2.1.4.10A PUBLISH method 230
A.2.1.4.11 REFER method 237
A.2.1.4.12 REGISTER method. 243
A.2.1.4.13 SUBSCRIBE method 250
A.2.1.4.14 UPDATE method. 256
A.2.2 Proxy role 261
A.2.2.1 Introduction 261
A.2.2.2 Major capabilities 262
A.2.2.3 PDUs 268
A.2.2.4 PDU parameters 269
A.2.2.4.1 Status-codes 269
A.2.2.4.2 ACK method 272
A.2.2.4.3 BYE method. 273
A.2.2.4.4 CANCEL method. 280
A.2.2.4.5 COMET method 283
A.2.2.4.6 INFO method 283
A.2.2.4.7 INVITE method 283
A.2.2.4.7A MESSAGE method 292
A.2.2.4.8 NOTIFY method 300
A.2.2.4.9 OPTIONS method 307
A.2.2.4.10 PRACK method 314
A.2.2.4.10A PUBLISH method 320
A.2.2.4.11 REFER method 328
A.2.2.4.12 REGISTER method 335
A.2.2.4.13 SUBSCRIBE method 342
A.2.2.4.14 UPDATE method 349
A. 3 Profile definition for the Session Description Protocol as used in the present document 355
A.3.1 Introduction 355
A.3.2 User agent role 355
A.3.2.1 Major capabilities 356
A.3.2.2 SDP types 357
A.3.2.3 Void 359
A.3.2.4 Void 359
A.3.3 Proxy role 359
A.3.3.1 Major capabilities 360
A.3.3.2 SDP types 361
A.3.3.3 Void 363
A.3.3.4 Void 363
A. 4 Profile definition for other message bodies as used in the present document 363
Annex B (normative): IP-Connectivity Access Network specific concepts when using GPRS to access IM CN subsystem 364
B. 1 Scope 364
B. 2 GPRS aspects when connected to the IM CN subsystem. 364
B.2.1 Introduction 364
B.2.2 Procedures at the UE 364
B.2.2.1 PDP context activation and P-CSCF discovery 364
B.2.2.1A Modification of a PDP context used for SIP signalling 366
B.2.2.1B Re-establishment of the PDP context for SIP signalling 366
B.2.2.2 Session management procedures 366
B.2.2.3 Mobility management procedures 366
B.2.2.4 Cell selection and lack of coverage. 366
B.2.2.5 PDP contexts for media 366
B.2.2.5.1 General requirements 366
B.2.2.5.1A Activation or modification of PDP contexts for media by the UE 366
B.2.2.5.1B Activation or modification of PDP contexts for media by the GGSN 368
B.2.2.5.2 Special requirements applying to forked responses 368
B.2.2.5.3 Unsuccessful situations 368
B.2.2.6 Emergency service 368
B.2A Usage of SDP 369
B.2A. 1 Impact on SDP offer / answer of activation or modification of PDP contexts for media by the network 369
B.2A. 2 Handling of SDP at the terminating UE when originating UE has resources available and IP-CAN performs network-initiated resource reservation for terminating UE 369
B. 3 Application usage of SIP 369
B.3.1 Procedures at the UE 369
B.3.1.1 P-Access-Network-Info header. 369
B.3.2 Procedures at the P-CSCF 370
B.3.2.1 Detecting requests destined for a PSAP 370
B.3.2.2 Location information handling 370
B. 4 3GPP specific encoding for SIP header extensions. 370
B.4.1 Void 370
Annex C (normative): UICC and USIM Aspects for access to the IM CN subsystem 371
C. 1 Scope 371
C. 2 Derivation of IMS parameters from USIM 371
C. 3 ISIM Location in 3GPP Systems 371
Annex D (normative): IP-Connectivity Access Network specific concepts when using I- WLAN to access IM CN subsystem 372
D. 1 Scope 372
D. 2 I-WLAN aspects when connected to the IM CN subsystem 372
D.2.1 Introduction 372
D.2.2 Procedures at the WLAN UE 372
D.2.2.1 I-WLAN tunnel activation and P-CSCF discovery 372
D.2.2.1A Modification of a I-WLAN tunnel used for SIP signalling. 373
D.2.2.1B Re-establishment of the I-WLAN tunnel used for SIP signalling 373
D.2.2.2 Void 373
D.2.2.3 Void 373
D.2.2.4 Void 373
D.2.2.5 I-WLAN tunnel procedures for media 373
D.2.2.5.1 General requirements 373
D.2.2.5.1A Activation or modification of I-WLAN tunnel for media by the UE 373
D.2.2.5.1B Activation or modification of I-WLAN tunnel for media by the network 373
D.2.2.5.2 Special requirements applying to forked responses 373
D.2.2.5.3 Unsuccessful situations 373
D.2.2.6 Emergency service 374
D. 3 Application usage of SIP 374
D.3.1 Procedures at the UE 374
D.3.1.1 P-Access-Network-Info header 374
D.3.2 Procedures at the P-CSCF 374
D.3.2.1 Detecting requests destined for a PSAP. 374
D.3.2.2 Location information handling 374
D. 4 3GPP specific encoding for SIP header extensions. 374
Annex E (normative): IP-Connectivity Access Network specific concepts when using xDSL to access IM CN subsystem 375
E. 1 Scope 375
E. 2 xDSL aspects when connected to the IM CN subsystem 375
E.2.1 Introduction 375
E.2.2 Procedures at the UE 375
E.2.2.1 Activation and P-CSCF discovery 375
E.2.2.1A Modification of xDSL used for SIP signalling 376
E.2.2.1B Re-establishment of the xDSL used for SIP signalling 376
E.2.2.2 Void 376
E.2.2.3 Void 376
E.2.2.4 Void 376
E.2.2.5 xDSL bearer(s) for media 376
E.2.2.5.1 General requirements 376
E.2.2.5.1A Activation or modification of xDSL bearers for media by the UE. 376
E.2.2.5.1B Activation or modification of xDSL bearers for media by the network 376
E.2.2.5.2 Special requirements applying to forked responses 376
E.2.2.5.3 Unsuccessful situations 376
E.2.2.6 Emergency service 376
E. 3 Application usage of SIP 377
E.3.1 Procedures at the UE 377
E.3.1.1 P-Access-Network-Info header 377
E.3.2 Procedures at the P-CSCF 377
E.3.2.1 Detecting requests destined for a PSAP 377
E.3.2.2 Location information handling 377
E. 4 3GPP specific encoding for SIP header extensions. 377
Annex F (normative): Additional procedures in support for hosted NAT 378
F. 1 Scope 378
F. 2 Application usage of SIP 378
F.2.1 UE usage of SIP 378
F.2.1.1 General 378
F.2.1.2 Registration and authentication 378
F.2.1.2.1 General 378
F.2.1.2.1A Parameters contained in the ISIM 378
F.2.1.2.2 Initial registration. 379
F.2.1.2.3 Initial subscription to the registration-state event package 380
F.2.1.2.4 User-initiated re-registration 380
F.2.1.2.5 Authentication 380
F.2.1.2.5.1 General 380
F.2.1.2.5.2 Network initiated re-authentication 381
F.2.1.2.5.3 Abnormal cases 381
F.2.1.2.5A Change of IPv6 address due to privacy 381
F.2.1.2.6 User-initiated deregistration 381
F.2.1.2.7 Network-initiated deregistration 382
F.2.1.3 Subscription and notification 382
F.2.1.4 Generic procedures applicable to all methods excluding the REGISTER method 382
F.2.1.4.1 UE originating case 382
F.2.1.4.2 UE terminating case 383
F.2.2 P-CSCF usage of SIP 383
F.2.2.1 Introduction 383
F.2.2.2 Registration 383
F.2.3 S-CSCF usage of SIP 386
F.2.3.1 Protected REGISTER with IMS AKA as a security mechanism. 386
F. 3 Application usage of SDP 386
F.3.1 UE usage of SDP 386
F.3.2 P-CSCF usage of SDP 386
F.3.2.1 Introduction 386
F.3.2.2 Receipt of an SDP offer 386
F.3.2.3 Receipt of an SDP answer 386
F.3.2.4 Change of media connection data 386
F. 4 P-CSCF usage of SIP in case UDP encapsulated IPsec is not employed. 387
F.4.1 Introduction 387
F.4.2 Registration 387
F.4.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method 387
F.4.3.1 Introduction 387
F.4.3.2 Request initiated by the UE 387
F.4.3.3 Request terminated by the UE 388
Annex G (normative): Additional procedures in support of NA(P)T and NA(P)T-PT controlled by the P-CSCF 389
G. 1 Scope 389
G. 2 P-CSCF usage of SDP 389
G.2.1 Introduction 389
G.2.2 Receipt of an SDP offer 389
G.2.3 Receipt of an SDP answer 389
G.2.4 Change of media connection data. 389
Annex H (normative): IP-Connectivity Access Network specific concepts when using DOCSIS to access IM CN subsystem 391
H. 1 Scope 391
H. 2 DOCSIS aspects when connected to the IM CN subsystem 391
H.2.1 Introduction 391
H.2.2 Procedures at the UE 391
H.2.2.1 Activation and P-CSCF discovery 391
H.2.2.1A Modification of IP-CAN used for SIP signalling. 391
H.2.2.1B Re-establishment of the IP-CAN used for SIP signalling 391
H.2.2.2 Void 392
H.2.2.3 Void 392
H.2.2.4 Void 392
H.2.2.5 Handling of the IP-CAN for media. 392
H.2.2.5.1 General requirements 392
H.2.2.5.1A Activation or modification of IP-CAN for media by the UE 392
H.2.2.5.1B Activation or modification of IP-CAN for media by the network. 392
H.2.2.5.2 Special requirements applying to forked responses 392
H.2.2.5.3 Unsuccessful situations 392
H.2.2.6 Emergency service 392
H. 3 Application usage of SIP 392
H.3.1 Procedures at the UE 392
H.3.1.1 P-Access-Network-Info header. 392
H.3.2 Procedures at the P-CSCF 393
H.3.2.1 Detecting requests destined for a PSAP. 393
H.3.2.2 Location information handling 393
H. 4 3GPP specific encoding for SIP header extensions. 393
Annex I (normative): Additional routeing capabilities in support of transit traffic in IM CN subsystem 394
I. 1 Scope 394
I. 2 Procedures 394
Annex J (normative): CPC parameter definition 395
J. 1 Introduction 395
J. 2 Trust domain 395
J. 3 Procedures at the originating UE 395
J. 4 Procedures at the originating P-CSCF 396
J. 5 Procedures at the originating S-CSCF 396
J. 6 Procedures at the I-CSCF 396
J. 7 Procedures at the IBCF. 396
J. 8 Procedures at the terminating P-CSCF. 396
J. 9 Procedures at the AS at the originating network 396
Annex K (normative): Additional procedures in support of UE managed NAT traversal 397
K. 1 Scope 397
K. 2 Application usage of SIP 397
K.2.1 Procedures at the UE 397
K.2.1.1 General 397
K.2.1.2 Registration and authentication. 397
K.2.1.2.1 General 397
K.2.1.2.1A Parameters contained in the ISIM 397
K.2.1.2.2 Initial registration 397
K.2.1.2.3 Initial subscription to the registration-state event package 399
K.2.1.2.4 User-initiated re-registration 399
K.2.1.2.5 Authentication. 400
K.2.1.2.5.1 General 400
K.2.1.2.5.2 Network initiated re-authentication 400
K.2.1.2.5.3 Abnormal cases 400
K.2.1.2.6 Change of IPv6 address due to privacy 400
K.2.1.2.7 User-initiated deregistration. 400
K.2.1.2.8 Network-initiated deregistration 401
K.2.1.3 Subscription and notification 401
K.2.1.4 Generic procedures applicable to all methods excluding the REGISTER method 401
K.2.1.4.1 UE originating case 401
K.2.1.4.2 UE terminating case 402
K.2.1.5 Maintaining flows and detecting flow failures 402
K.2.1.6 Emergency services 402
K.2.1.6.1 General 402
K.2.1.6.2 Initial emergency registration. 403
K.2.1.6.2A New initial emergency registration 403
K.2.1.6.3 Initial subscription to the registration-state event package 403
K.2.1.6.4 User-initiated emergency reregistration 403
K.2.1.6.5 Authentication. 403
K.2.1.6.6 User-initiated emergency deregistration 403
K.2.1.6.7 Network-initiated emergency deregistration 403
K.2.1.6.8 Emergency session setup 403
K.2.1.6.8.1 General 403
K.2.1.6.8.2 Emergency session set-up in case of no registration 403
K.2.1.6.8.3 Emergency session set-up with an emergency registration 404
K.2.1.6.8.4 Emergency session set-up within a non-emergency registration 404
K.2.1.6.9 Emergency session release 404
K.2.2 Procedures at the P-CSCF 404
K.2.2.1 Introduction 404
K.2.2.2 Registration 404
K.2.2.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method. 406
K.2.2.3.1 Requests initiated by the UE 406
K.2.2.3.2 Requests terminated by the UE 407
K.2.2.4 STUN server support 407
K.2.2.5 Emergency services 407
K.2.2.5.1 General 407
K.2.2.5.2 General treatment for all dialogs and standalone transactions excluding the REGISTER method - from an unregistered user. 407
K.2.2.5.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method after emergency registration. 408
K.2.2.5.4 General treatment for all dialogs and standalone transactions excluding the REGISTER method - non-emergency registration 408
K.2.2.5.5 Abnormal cases 408
K.2.3 Procedures at the S-CSCF 409
K.2.3.1 Registration and authentication. 409
K.2.3.1.1 Introduction 409
K.2.3.2 Initial registration and user-initiated re-registration 409
K.2.3.2.1 Unprotected REGISTER. 409
K.2.3.2.2 Protected REGISTER. 409
K.2.3.3 General treatment for all dialogs and standalone transactions excluding requests terminated by the S- CSCF 409
K.2.3.3.1 Determination of mobile-originated or mobile terminated case 409
K.2.3.3.2 Requests initiated by the served user 409
K.2.3.3.3 Requests terminated by the served user 409
K. 3 Application usage of SDP 410
K.3.1 UE usage of SDP. 410
K.3.2 P-CSCF usage of SDP 410
K.3.2.1 Introduction 410
K.3.2.2 Receipt of an SDP offer 410
K.3.2.3 Receipt of an SDP answer 410
K.3.2.4 Change of media connection data 411
K. 4 P-CSCF usage of SIP in case UDP encapsulated IPsec is not employed 411
K.4.1 Introduction 411
K. 5 Application usage of ICE 411
K.5.1 Introduction 411
K.5.2 UE usage of ICE. 411
K.5.2.1 General 411
K.5.2.2 Call initiation - UE-origination case 412
K.5.2.3 Call termination - UE-termination case. 412
Annex L (informative): Change history 414
History 447

Foreword

This Technical Specification has been produced by the $3^{\text {rd }}$ Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z
the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document defines a call control protocol for use in the IP Multimedia (IM) Core Network (CN) subsystem based on the Session Initiation Protocol (SIP), and the associated Session Description Protocol (SDP).

The present document is applicable to:

- the interface between the User Equipment (UE) and the Call Session Control Function (CSCF);
- the interface between the CSCF and any other CSCF;
- the interface between the CSCF and an Application Server (AS);
- the interface between the CSCF and the Media Gateway Control Function (MGCF);
- the interface between the S-CSCF and the Multimedia Resource Function Controller (MRFC)
- the interface between the CSCF and the Breakout Gateway Control Function (BGCF);
- the interface between the BGCF and the MGCF;
- the interface between the CSCF and an IBCF;
- the interface between the BGCF and any other BGCF; and
- the interface between the CSCF and an external Multimedia IP network.

Where possible the present document specifies the requirements for this protocol by reference to specifications produced by the IETF within the scope of SIP and SDP. Where this is not possible, extensions to SIP and SDP are defined within the present document. The document has therefore been structured in order to allow both forms of specification.

As the IM CN subsystem is designed to interwork with different IP-Connectivity Access Networks (IP-CANs), the IPCAN independent aspects of the IM CN subsystem are described in the main body and annex A of this specification. Aspects for connecting a UE to the IM CN subsystem through specific types of IP-CANs are documented separately in the annexes or in separate documents.

NOTE: The present document covers only the usage of SIP and SDP to communicate with the enitities of the IM CN subsystem. It is possible, and not precluded, to use the capabilities of IP-CAN to allow a terminal containing a SIP UA to communicate with SIP servers or SIP UAs outside the IM CN subsystem, and therefore utilise the services provided by those SIP servers. The usage of SIP and SDP for communicating with SIP servers or SIP UAs outside the IM CN subsystem is outside the scope of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

3GPP TS 23.003: "Numbering, addressing and identification".
[4] 3GPP TS 23.060: "General Packet Radio Service (GPRS); Service description; Stage 2".
[4A] 3GPP TS 23.107: "Quality of Service (QoS) concept and architecture".
[11] 3GPP TS 29.061: "Interworking between the Public Land Mobile Network (PLMN) supporting Packet Based Services and Packet Data Networks (PDN)".
[11A] 3GPP TS 29.162: "Interworking between the IM CN subsystem and IP networks".
[11B] 3GPP TS 29.163: "Interworking between the IP Multimedia (IM) Core Network (CN) subsystem and Circuit Switched (CS) networks".
[11C] 3GPP TS 29.161: "Interworking between the Public Land Mobile Network (PLMN) supporting Packet Based Services with Wireless Local Access and Packet Data Networks (PDN)"

3GPP TS 29.207 Release 6: "Policy control over Go interface".

RFC 2462 (November 1998): "IPv6 Address Autoconfiguration".
RFC 2132 (March 1997): "DHCP Options and BOOTP Vendor Extensions".
RFC 2617 (June 1999): "HTTP Authentication: Basic and Digest Access Authentication".
RFC 3966 (December 2004): "The tel URI for Telephone Numbers".
RFC 2833 (May 2000): "RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals".

RFC 3761 (April 2004): "The E. 164 to Uniform Resource Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application (ENUM)".

RFC 2976 (October 2000): "The SIP INFO method".
RFC 3041 (January 2001): "Privacy Extensions for Stateless Address Autoconfiguration in IPv6".
RFC 3261 (June 2002): "SIP: Session Initiation Protocol".
RFC 3262 (June 2002): "Reliability of provisional responses in Session Initiation Protocol (SIP)".
[27A] RFC 3263 (June 2002): " Session Initiation Protocol (SIP): Locating SIP Servers".
[27B]

RFC 3264 (June 2002): "An Offer/Answer Model with Session Description Protocol (SDP)". RFC 3265 (June 2002): "Session Initiation Protocol (SIP) Specific Event Notification". Void.

RFC 3311 (September 2002): "The Session Initiation Protocol (SIP) UPDATE method".
RFC 3312 (October 2002): "Integration of resource management and Session Initiation Protocol (SIP)".

RFC 3313 (January 2003): "Private Session Initiation Protocol (SIP) Extensions for Media Authorization".

RFC 3320 (March 2002): "Signaling Compression (SigComp)".
RFC 3323 (November 2002): "A Privacy Mechanism for the Session Initiation Protocol (SIP)".
RFC 3325 (November 2002): "Private Extensions to the Session Initiation Protocol (SIP) for Network Asserted Identity within Trusted Networks".

RFC 3326 (December 2002): "The Reason Header Field for the Session Initiation Protocol (SIP)".
RFC 3327 (December 2002): "Session Initiation Protocol Extension Header Field for Registering Non-Adjacent Contacts".

RFC 3361 (August 2002): "Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for Session Initiation Protocol (SIP) Servers".

RFC 3515 (April 2003): "The Session Initiation Protocol (SIP) REFER method".
RFC 3420 (November 2002): "Internet Media Type message/sipfrag".
RFC 3608 (October 2003): "Session Initiation Protocol (SIP) Extension Header Field for Service Route Discovery During Registration".

RFC 4566 (June 2006): "SDP: Session Description Protocol".
RFC 3315 (July 2003): "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".
RFC 2131 (March 1997): "Dynamic host configuration protocol".
RFC 3319 (July 2003): "Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol (SIP) Servers".

RFC 3485 (February 2003): "The Session Initiation Protocol (SIP) and Session Description Protocol (SDP) static dictionary for Signaling Compression (SigComp)".

RFC 3680 (March 2004): "A Session Initiation Protocol (SIP) Event Package for Registrations".
Void.
Void.
Void.
Void.
RFC 3329 (January 2003): "Security Mechanism Agreement for the Session Initiation Protocol (SIP)".

RFC 3310 (September 2002): "Hypertext Transfer Protocol (HTTP) Digest Authentication Using Authentication and Key Agreement (AKA)".

RFC 3428 (December 2002): "Session Initiation Protocol (SIP) Extension for Instant Messaging".
[51] Void.

RFC 3455 (January 2003): "Private Header (P-Header) Extensions to the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project (3GPP)".

RFC 3388 (December 2002): "Grouping of Media Lines in Session Description Protocol". RFC 3524 (April 2003): "Mapping of Media Streams to Resource Reservation Flows".

RFC 3486 (February 2003): "Compressing the Session Initiation Protocol (SIP)".
RFC 3551 (July 2003): "RTP Profile for Audio and Video Conferences with Minimal Control".
RFC 3556 (July 2003): "Session Description Protocol (SDP) Bandwidth Modifiers for RTP Control Protocol (RTCP) Bandwidth".

RFC 3581 (August 2003): "An Extension to the Session Initiation Protocol (SIP) for Symmetric Response Routing".

RFC 3841 (August 2004): "Caller Preferences for the Session Initiation Protocol (SIP)".
RFC 3646 (December 2003): "DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)".

ITU-T Recommendation E.164: "The international public telecommunication numbering plan".
RFC 4028 (April 2005): "Session Timers in the Session Initiation Protocol (SIP)".
RFC 3892 (September 2004): "The Session Initiation Protocol (SIP) Referred-By Mechanism".
RFC 3891 (September 2004): "The Session Inititation Protocol (SIP) "Replaces" Header".
RFC 3911 (October 2004): "The Session Inititation Protocol (SIP) "Join" Header".
RFC 3840 (August 2004): "Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)"

RFC 3861 (August 2004): "Address Resolution for Instant Messaging and Presence".
RFC 3948 (January 2005): "UDP Encapsulation of IPsec ESP Packets".
RFC 4032 (March 2005): "Update to the Session Initiation Protocol (SIP) Preconditions Framework".

RFC 3842 (August 2004) "A Message Summary and Message Waiting Indication Event Package for the Session Initiation Protocol (SIP)"

RFC 4077 (May 2005): "A Negative Acknowledgement Mechanism for Signaling Compression".
RFC 4244 (November 2005): "An Extension to the Session Initiation Protocol (SIP) for Request History Information".

RFC 5079 (December 2007): "Rejecting Anonymous Requests in the Session Initiation Protocol (SIP)".

RFC 4458 (January 2006): "Session Initiation Protocol (SIP) URIs for Applications such as Voicemail and Interactive Voice Response (IVR)".

RFC 5031 (January 2008): "A Uniform Resource Name (URN) for Services".
RFC 3903 (October 2004): "An Event State Publication Extension to the Session Initiation Protocol (SIP)".

Void.
RFC 3857 (August 2004): "A Watcher Information Event Template Package for the Session Initiation Protocol (SIP)".
[74] RFC 3856 (August 2004): "A Presence Event Package for the Session Initiation Protocol (SIP)".
[74A] RFC 3603 (October 2003): "Private Session Initiation Protocol (SIP) Proxy-to-Proxy Extensions for Supporting the PacketCable Distributed Call Signaling Architecture".
[75] RFC 4662 (August 2006): "A Session Initiation Protocol (SIP) Event Notification Extension for Resource Lists".
[76]
[77]
Void.
draft-ietf-sipping-config-framework-15 (February 2008): "A Framework for Session Initiation Protocol User Agent Profile Delivery".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[78] RFC 4575 (August 2006): "A Session Initiation Protocol (SIP) Event Package for Conference State".
[79] RFC 5049 (December 2007): "Applying Signaling Compression (SigComp) to the Session Initiation Protocol (SIP)".
[80] RFC 3825 (July 2004): "Dynamic Host Configuration Protocol Option for Coordinate-based Location Configuration Information".
[81] Void.
[82] RFC 4457 (April 2006): "The Session Initiation Protocol (SIP) P-User-Database Private-Header (P-header)".
[83] RFC 4145 (September 2005): "TCP-Based Media Transport in the Session Description Protocol (SDP)".
[84] RFC 4320 (January 2006): "Actions Addressing Identified Issues with the Session Initiation Protocol's (SIP) Non-INVITE Transaction".
[85] 3GPP2 C.S0005-D (March 2004): "Upper Layer (Layer 3) Signaling Standard for cdma2000 Standards for Spread Spectrum Systems".
[86] 3GPP2 C.S0024-A v1.0 (April 2004): "cdma2000 High Rate Packet Data Air Interface Standard".
[86A] 3GPP2 C.S0084-000 (April 2007): "Overview for Ultra Mobile Broadband (UMB) Air Interface Specification".
[87] ITU-T Recommendation J.112, "Transmission Systems for Interactive Cable Television Services"
[88] PacketCable Release 2 Technical Report, PacketCable ${ }^{\text {TM }}$ Architecture Framework Technical Report, PKT-TR-ARCH-FRM.
[89] draft-ietf-sip-location-conveyance-11 (October 2008): "Location Conveyance for the Session Initiation Protocol".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[90] RFC 4119 (December 2005) "A Presence-based GEOPRIV Location Object Format".
[91] RFC 5012 (January 2008): "Requirements for Emergency Context Resolution with Internet Technologies".
[91A] draft-patel-ecrit-sos-parameter-01 (November 2008): "SOS Uniform Resource Identifier (URI) parameter for marking of Session Initiation Protocol (SIP) requests related to emergency services".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[92] draft-ietf-sip-outbound-16 (October 2008): "Managing Client Initiated Connections in the Session Initiation Protocol (SIP)".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[93] draft-ietf-sip-gruu-15 (October 2007): "Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in the Session Initiation Protocol (SIP)".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[94] draft-ietf-sipping-gruu-reg-event-09 (July 2007): "Registration Event Package Extension for Session Initiation Protocol (SIP) Globally Routable User Agent URIs (GRUUs)".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[95] draft-mahy-iptel-cpc-04 (August 2006): "The Calling Party's Category tel URI Parameter ".
Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[96] RFC 4168 (October 2005): "The Stream Control Transmission Protocol (SCTP) as a Transport for the Session Initiation Protocol (SIP)".
[97] RFC 5002 (August 2007): "The Session Initiation Protocol (SIP) P-Profile-Key Private Header (PHeader)".
[98] ETSI ES 283 035: "Telecommunications and Internet Converged Services and Protocols for Advanced Networks (TISPAN); Network Attachment Sub-System (NASS); e2 interface based on the DIAMETER protocol".
[99] draft-ietf-mmusic-ice-19 (October 2007): "Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[100] RFC 5389 (October 2008): "Session Traversal Utilities for NAT (STUN)".
[101] draft-ietf-behave-turn-11 (October 2008): "Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[102] draft-ietf-sip-ice-option-tag-02 (June 2007): "Indicating Support for Interactive Connectivity Establishment (ICE) in the Session Initiation Protocol (SIP)".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[103] RFC 4967 (July 2007): "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier".
[104] RFC 5365 (October 2008): "Multiple-Recipient MESSAGE Requests in the Session Initiation Protocol (SIP)".
[105] RFC 5368 (October 2008): "Referring to Multiple Resources in the Session Initiation Protocol (SIP)".
[106] RFC 5366 (October 2008): "Conference Establishment Using Request-Contained Lists in the Session Initiation Protocol (SIP)".
[107] RFC 5367 (October 2008): "Subscriptions to Request-Contained Resource Lists in the Session Initiation Protocol (SIP)".
[108] RFC 4583 (November 2006): "Session Description Protocol (SDP) Format for Binary Floor Control Protocol (BFCP) Streams".
[109] RFC 5009 (September 2007): "Private Header (P-Header) Extension to the Session Initiation Protocol (SIP) for Authorization of Early Media".
[110] RFC 4354 (January 2006): "A Session Initiation Protocol (SIP) Event Package and Data Format for Various Settings in Support for the Push-to-Talk over Cellular (PoC) Service".
[111] RFC 4964 (September 2007): "The P-Answer-State Header Extension to the Session Initiation Protocol for the Open Mobile Alliance Push to Talk over Cellular".
[112] Void.
[113] Void.
[114] Void.
[115] Void.
[116] Void.
[117] draft-ietf-sip-fork-loop-fix-08 (October 2008): "Addressing an Amplification Vulnerability in Session Initiation Protocol (SIP) Forking Proxies".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[118] RFC 4896 (June 2007): "Signaling Compression (SigComp) Corrections and Clarifications".
[119] RFC 5112 (January 2008): "The Presence-Specific Static Dictionary for Signaling Compression (Sigcomp)".
[120] draft-rosenberg-sip-app-media-tag-02 (November 2007): "A Session Initiation Protocol (SIP) Media Feature Tag for MIME Application Sub-Types".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[121] draft-drage-sipping-service-identification-02 (October 2008): "A Session Initiation Protocol (SIP) Extension for the Identification of Services".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[123] RFC 4867 (April 2007): "RTP Payload Format and File Storage Format for the Adaptive MultiRate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs".
[124] RFC 3986 (January 2005): "Uniform Resource Identifiers (URI): Generic Syntax".
[125] Void.
[126] Void.
[127] Void.
[128] Void.
[129] Void.
[130] draft-jesske-sipping-etsi-ngn-reason-04 (October 2008): "Use of the Reason header field in Session Initiation Protocol (SIP) responses".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[131] Void.
[132] Void.
[133] Void.
[134] Void.
[135] RFC 4585 (July 2006): "Extended RTP Profile for Real-time Transport Control Protocol (RTCP)Based Feedback (RTP/AVPF)".
[136] RFC 5104 (February 2008): "Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)".
[137] draft-ietf-mmusic-sdp-capability-negotiation-09 (July 2008): "SDP Capability Negotiation".
Editor's note: The above document cannot be formally referenced until it is published as an RFC.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply.
Entry point: In the case that "border control concepts", as specified in 3GPP TS 23.228 [7], are to be applied in an IM CN subsystem, then these are to be provided by capabilities within the IBCF, and the IBCF acts as an entry point for this network (instead of the I-CSCF). In this case the IBCF and the I-CSCF can be co-located as a single physical node. If "border control concepts" are not applied, then the I-CSCF is considered as an entry point of a network. If the PCSCF is in the home network, then the I-CSCF is considered as an entry point for this document.

Exit point: If operator preference requires the application of "border control concepts" as specified in 3GPP TS 23.228 [7], then these are to be provided by capabilities within the IBCF, and requests sent towards another network are routed via a local network exit point (IBCF), which will then forward the request to the other network (discovering the entry point if necessary).

Geo-local number: Either a geo-local service number as specified in 3GPP TS 23.228 [7] or a number in noninternational format according to an addressing plan used at the current physical location of the user.

Home-local number: Either a home local service number as specified in 3GPP TS 23.228 [7] or a number in noninternational format according to an addressing plan used in the home network of the user.

Newly established set of security associations: Two pairs of IPsec security associations that have been created at the UE and/or the P-CSCF after the 200 (OK) response to a REGISTER request was received.

Old set of security associations: Two pairs of IPsec security associations still in existence after another set of security associations has been established due to a successful authentication procedure.

Temporary set of security associations: Two pairs of IPsec security associations that have been created at the UE and/or the P-CSCF, after an authentication challenge within a 401 (Unauthorized) response to a REGISTER request was received. The SIP level lifetime of such created security associations will be equal to the value of reg-await-auth timer.

Integrity protected: See 3GPP TS 33.203 [19]. Where a requirement exists to send information "integrity protected" the mechanisms specified in 3GPP TS 33.203 [19] are used for sending the information. Where a requirement exists to check that information was received "integrity protected", then the information received is checked for compliance with the procedures as specified in 3GPP TS 33.203 [19].

Instance ID: An URN generated by the device that uniquely identifies a specific device amongst all other devices, and does not contain any information pertaining to the user (e.g., in GPRS instance ID applies to the Mobile Equipment rather than the UICC). The public user identity together with the instance ID uniquely identifies a specific UA instance.

Resource reservation: Mechanism for reserving bearer resources that is required for certain access technologies.
Local preconditions: The indication of segmented status preconditions for the local reservation of resources as specified in RFC 3312 [30].

> Alias SIP URI: A URI is an alias of another URI if the treatment of both URIs is identical, i.e. both URIs belong to the same set of implicitly registered public user identities, and are linked to the same service profile, and are considered to have the exact same service configuration for each and every service.
> Initial registration: The registration procedure for a public user identity initiated by the UE in the absence of any valid registration.

Re-registration: The registration procedure initiated by the UE to refresh or update an already existing registration for a public user identity.

Registration of an additional public user identity: The registration procedure initiated by the UE to explicitly register an additional public user identity during the life time of the registration of another registered public user identity, where both public user identities have the same contact address and P-CSCF.

Emergency registration: A special registration that relates to binding of a public user identity to a contact address used for emergency service.

Initial emergency registration: An emergency registration that is also an initial registration.
Emergency reregistration: An emergency registration that is also a reregistration.
Back-to-Back User Agent (B2BUA): As given in RFC 3261 [26]. In addition, for the usage in the IM CN subsystem, a SIP element being able to handle a collection of " n " User Agents (behaving each one as UAC and UAS, according to SIP rules), which are linked by some application logic that is fully independent of the SIP rules.

UE private IP address: It is assumed that the NAT device performs network address translation between a private and a public network with the UE located in the private network and the IM CN subsystem in the public network. The UE is assumed to be configured with a private IP address. This address will be denoted as UE private IP address.

UE public IP address: The NAT device is assumed to be configured with one (or perhaps more) public address(es). When the UE sends a request towards the public network, the NAT replaces the source address in the IP header of the packet, which contains the UE private IP address, with a public IP addressed assigned to the NAT. This address will be denoted as UE public IP address.

Encapsulating UDP header: For the purpose of performing UDP encapsulation according to RFC 3948 [63A] each IPsec ESP packet is wrapped into an additional UDP header. This header is denoted as Encapsulating UDP header.

Port_Uenc: In most residential scenarios, when the NAT device performs address translation, it also performs translation of the source port found in the transport layer (TCP/UDP) headers. Following RFC 3948 [63A], the UE will use port 4500 as source port in the encapsulating UDP header when sending a packet. This port is translated by the NAT into an arbitrarily chosen port number which is denoted as port_Uenc.

IMS flow set: An IMS flow set is a set of four flows as defined in draft-ietf-outbound [92]. The flows in an IMS flow set are determined by a combination of transport protocol, IP addresses, protected client ports and protected server ports as defined in 3GPP TS 33.203 [19]. An IMS flow set is established by a successful IMS registration procedure.

NOTE 1: The four flows in an IMS flow set are set up as follows:

- Flow 1: (IP address UE, port_uc) <--> (IP address P-CSCF, port_ps) over TCP;
- Flow 2: (IP address UE, port_uc) <--> (IP address P-CSCF, port_ps) over UDP;
- Flow 3: (IP address UE, port_us) <--> (IP address P-CSCF, port_pc) over TCP; and
- Flow 4: (IP address UE, port_us) <--> (IP address P-CSCF, port_pc) over UDP.

NOTE 2: According to 3GPP TS 33.203 [19], the P-CSCF can only select among flows 1, 3, or 4 when forwarding requests towards the UE, where flow 1 is only possible in case of TCP connection re-use. According to 3GPP TS 33.203 [19], flow 2 is only used for UE originated requests and corresponding responses. The P-CSCF uses flow 2 to identify the correct IMS flow set.

NOTE 3: An IMS flow set can be considered as a realisation of a logical flow as used in draft-ietf-sipoutbound [92]. But this definition does not depend on any particular definition of a logical flow.

IMS flow token: A IMS flow token is uniquely associated with a IMS flow set. When forwarding a request destined towards the UE, the P-CSCF selects the flow from the IMS flow set denoted by the IMS flow token as appropriate according to 3GPP TS 33.203 [19] and RFC 3261 [26].

Network-initiated resource reservation: A mechanism of resource reservation where the IP-CAN on the behalf of network initiates the resources to the UE.

For the purposes of the present document, the following terms and definitions given in RFC 1594 [20B] apply.

Fully-Qualified Domain Name (FQDN)

For the purposes of the present document, the following terms and definitions given in RFC 3261 [26] apply (unless otherwise specified see clause 6).

```
Client
Dialog
Final response
Header
Header field
```

Loose routeing
Method
Option-tag (see RFC 3261 [26] subclause 19.2)
Provisional response
Proxy, proxy server
Recursion
Redirect server
Registrar
Request
Response
Server
Session
(SIP) transaction
Stateful proxy
Stateless proxy
Status-code (see RFC 3261 [26] subclause 7.2)
Tag (see RFC 3261 [26] subclause 19.3)
Target Refresh Request
User agent client (UAC)
User agent server (UAS)
User agent (UA)
For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.002 [2] subclause 4.1.1.1 and subclause 4a. 7 apply:

Breakout Gateway Control Function (BGCF)
Call Session Control Function (CSCF)
Home Subscriber Server (HSS)
Media Gateway Control Function (MGCF)
Multimedia Resource Function Controller (MRFC)
Multimedia Resource Function Processor (MRFP)
Subscription Locator Function (SLF)
For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.122 [4C] apply:

Home PLMN (HPLMN)
 Visited PLMN (VPLMN)

For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.218 [5] subclause 3.1 apply:

Filter criteria
Initial filter criteria
Initial request
Standalone transaction
Subsequent request
For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.228 [7] subclauses $3.1,4.3 .3 .1,4.3 .6,4.6,4.13,5.2,5.4 .12 .1$ and 5.10 apply:

Border control concepts
Geo-local service number
Home local service number
Implicit registration set
Interconnection Border Control Function (IBCF)
Interrogating-CSCF (I-CSCF)
IMS Application Level Gateway (IMS-ALG)
IMS application reference
IMS application reference identifier (IARI)
IMS communication service
IMS Communication Service Identifier (ICSI)
Local service number
IP-Connectivity Access Network (IP-CAN)

```
Policy and Charging Rule Function (PCRF)
Private user identity
Proxy-CSCF (P-CSCF)
Public Service Identity (PSI)
Public user identity
Serving-CSCF (S-CSCF)
Statically pre-configured PSI
```

For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.167 [4B]apply:

```
Emergency-CSCF (E-CSCF)
Geographical location information
Location identifier
Location information
```

For the purposes of the present document, the following terms and definitions given in 3GPP TR 33.203 [19] apply:

```
IM Subscriber Identity Module (ISIM)
Port_pc
Port_ps
Port_uc
Port_us
Protected server port
Protected client port
```

For the purposes of the present document, the following terms and definitions given in 3GPP TR 21.905 [1] apply:

Universal Integrated Circuit Card (UICC)

Universal Subscriber Identity Module (USIM)
User Equipment (UE)
For the purposes of the present document, the following terms and definitions given in RFC 2401 [20A] Appendix A apply:

Security association

A number of different security associations exist within the IM CN subsystem and within the underlying access transport. Within this document this term specifically applies to either:
i) the security association that exists between the UE and the P-CSCF. This is the only security association that has direct impact on SIP; or
ii) the security association that exists between the WLAN UE and the PDG. This is the security association that is relevant to the discussion of Interworking WLAN as the underlying IP-CAN.

For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.002 [1B] apply:

```
WLAN UE
3GPP AAA proxy
3GPP AAA server
Packet Data Gateway (PDG)
```

For the purposes of the present document, the following terms and definitions given in 3GPP TS 23.234 [7A] apply.

Interworking WLAN

For the purposes of the present document, the following terms and definitions given in ITU-T E. 164 [57] apply:

International public telecommunication number

For the purposes of the present document, the following terms and definitions given in RFC 5012 [91] apply:

```
Emergency service identifier
Emergency service URN
Public Safety Answering Point (PSAP)
PSAP URI
```

For the purposes of the present document, the following terms and definitions given in draft-ietf-sip-gruu [93] apply:

Globally Routable User Agent URI (GRUU)

For the purposes of the present document, the following terms and definitions given in draft-ietf-sip-outbound [92] apply:

Flow

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

1xx	A status-code in the range 101 through 199, and excluding 100
2xx	A status-code in the range 200 through 299
AAA	Authentication, Authorization and Accounting
AS	Application Server
APN	Access Point Name
AUTN	Authentication TokeN
B2BUA	Back-to-Back User Agent
BGCF	Breakout Gateway Control Function
c	conditional
BRAS	Broadband Remote Access Server
CCF	Charging Collection Function
CDF	Charging Data Function
CDR	Charging Data Record
CK	Ciphering Key
CN	Core Network
CPC	Calling Party Category
CSCF	Call Session Control Function
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name System
DOCSIS	Data Over Cable Service Interface Specification
DTD	Document Type Definition
EC	Emergency Centre
ECF	Event Charging Function
E-CSCF	Emergency CSCF
FQDN	Fully Qualified Domain Name
GCID	GPRS Charging Identifier
GGSN	Gateway GPRS Support Node
GPRS	General Packet Radio Service
GRUU	Globally Routable User agent URI
HPLMN	Home PLMN
HSS	Home Subscriber Server
i	irrelevant
IARI	IMS Application Reference Identifier
IBCF	Interconnection Border Control Function
I-CSCF	Interrogating CSCF
ICID	IM CN subsystem Charging Identifier
ICSI	IMS Communication Service Identifier
IK	Integrity Key
IM	IP Multimedia
IMS	IP Multimedia core network Subsystem
IMS-ALG	IMS Application Level Gateway
IMSI	International Mobile Subscriber Identity
IOI	Inter Operator Identifier
IP	Internet Protocol
IP-CAN	IP-Connectivity Access Network
IPsec	IP security
IPv4	Internet Protocol version 4
ISC	Internet Protocol version 6
	IP Multimedia Subsystem Service Control

ISIM	IM Subscriber Identity Module
I-WLAN	Interworking - WLAN
IWF	Interworking Function
LRF	Location Retrieval Function
m	mandatory
MAC	Message Authentication Code
MCC	Mobile Country Code
MGCF	Media Gateway Control Function
MGW	Media Gateway
MNC	Mobile Network Code
MRFC	Multimedia Resource Function Controller
MRFP	Multimedia Resource Function Processor
n / a	not applicable
NAI	Network Access Identifier
NA(P) T	Network Address (and Port) Translation
NASS	Network Attachement Subsystem
NAT	Network Address Translation
o	optional
OCF	Online Charging Function
PCRF	Policy and Charging Rules Function
P-CSCF	Proxy CSCF
PDG	Packet Data Gateway
PDP	Packet Data Protocol
PDU	Protocol Data Unit
PIDF-LO	Presence Information Data Format Location Object
PLMN	Public Land Mobile Network
PSAP	Public Safety Answering Point
PSI	Public Service Identity
PSTN	Public Switched Telephone Network
QoS	Quality of Service
RAND	RANDom challenge
RES	RESponse
RTCP	Real-time Transport Control Protocol
RTP	Real-time Transport Protocol
S-CSCF	Serving CSCF
SCTP	Stream Control Transmission Protocol
SDP	Session Description Protocol
SIP	Session Initiation Protocol
SLF	Subscription Locator Function
SQN	SeQuence Number
STUN	Session Traversal Utilities for NAT
TURN	Traversal Using Relay NAT
UA	User Agent
UAC	User Agent Client
UAS	User Agent Server
UDVM	Universal Decompressor Virtual Machine
UE	User Equipment
UICC	Universal Integrated Circuit Card
URI	Uniform Resource Identifier
URL	Uniform Resource Locator
URN	Uniform Resource Name
UDVM	Universal Decompressor Virtual Machine
USIM	Universal Subscriber Identity Module
VPLMN	Visited PLMN
WLAN	Wireless Local Area Network
X	prohibited
xDSL	Digital Subscriber Line (all types)
XMAC	expected MAC
XML	eXtensible Markup Language

3A Interoperability with different IP-CAN

The IM CN subsystem can be accessed by UEs resident in different types of IP-CAN. The main body of this document, and annex A, are general to UEs and IM CN subsystems that are accessed using any type of IP-CAN. Requirements that are dependent on the type of IP-CAN are covered in annexes B, D, E and H, or in separate specifications.

4 General

4.1 Conformance of IM CN subsystem entities to SIP, SDP and other protocols

SIP defines a number of roles which entities can implement in order to support capabilities. These roles are defined in annex A.

Each IM CN subsystem functional entity using an interface at the Gm reference point, the Ma reference point, the Mg reference point, the Mi reference point, the Mj reference point, the Mk reference point, the Mm reference point, the Mr reference point and the Mw reference point, and also using the IP multimedia Subsystem Service Control (ISC) Interface, shall implement SIP, as defined by the referenced specifications in Annex A, and in accordance with the constraints and provisions specified in annex A , according to the following roles.

The Gm reference point, the Ma reference point, the Mg reference point, the Mi reference point, the Mj reference point, the Mk reference point, the Mm reference point, the Mr reference point, the Mw reference point and the ISC reference point are defined in 3GPP TS 23.002 [2].

- The User Equipment (UE) shall provide the User Agent (UA) role, with the exceptions and additional capabilities to SIP as described in subclause 5.1, with the exceptions and additional capabilities to SDP as described in subclause 6.1, and with the exceptions and additional capabilities to SigComp as described in subclause 8.1. The UE shall also provide the access technology specific procedures described in the appropriate access technology specific annex (see subclause 3A and subclause 9.2.2).
- The P-CSCF shall provide the proxy role, with the exceptions and additional capabilities to SIP as described in subclause 5.2, with the exceptions and additional capabilities to SDP as described in subclause 6.2, and with the exceptions and additional capabilities to SigComp as described in subclause 8.2. Under certain circumstances as described in subclause 5.2, the P-CSCF shall provide the UA role with the additional capabilities, as follows:
a) when acting as a subscriber to or the recipient of event information; and
b) when performing P-CSCF initiated dialog-release, even when acting as a proxy for the remainder of the dialog.

The P-CSCF shall also provide the access technology specific procedures described in the appropriate access technology specific annex (see subclause 3A and subclause 9.2.2).

- The I-CSCF shall provide the proxy role, with the exceptions and additional capabilities as described in subclause 5.3.
- The S-CSCF shall provide the proxy role, with the exceptions and additional capabilities as described in subclause 5.4, and with the exceptions and additional capabilities to SDP as described in subclause 6.3. Under certain circumstances as described in subclause 5.4 , the S-CSCF shall provide the UA role with the additional capabilities, as follows:
a) the S-CSCF shall also act as a registrar. When acting as a registrar, or for the purposes of executing a thirdparty registration, the S-CSCF shall provide the UA role;
b) as the notifier of event information the S-CSCF shall provide the UA role;
c) when providing a messaging mechanism by sending the MESSAGE method, the S-CSCF shall provide the UA role; and
d) when performing S-CSCF initiated dialog release the S-CSCF shall provide the UA role, even when acting as a proxy for the remainder of the dialog.
- The MGCF shall provide the UA role, with the exceptions and additional capabilities as described in subclause 5.5, and with the exceptions and additional capabilities to SDP as described in subclause 6.4.
- The BGCF shall provide the proxy role, with the exceptions and additional capabilities as described in subclause 5.6.
- The AS, acting as terminating UA, or redirect server (as defined in 3GPP TS 23.218 [5] subclause 9.1.1.1), shall provide the UA role, with the exceptions and additional capabilities as described in subclause 5.7.2, and with the exceptions and additional capabilities to SDP as described in subclause 6.6.
- The AS, acting as originating UA (as defined in 3GPP TS 23.218 [5] subclause 9.1.1.2), shall provide the UA role, with the exceptions and additional capabilities as described in subclause 5.7.3, and with the exceptions and additional capabilities to SDP as described in subclause 6.6.
- The AS, acting as a SIP proxy (as defined in 3GPP TS 23.218 [5] subclause 9.1.1.3), shall provided the proxy role, with the exceptions and additional capabilities as described in subclause 5.7.4.
- The AS, performing 3rd party call control (as defined in 3GPP TS 23.218 [5] subclause 9.1.1.4), shall provide the UA role, with the exceptions and additional capabilities as described in subclause 5.7.5, and with the exceptions and additional capabilities to SDP as described in subclause 6.6.

NOTE 1: Subclause 5.7 and its subclauses define only the requirements on the AS that relate to SIP. Other requirements are defined in 3GPP TS 23.218 [5].

- The AS, receiving third-party registration requests, shall provide the UA role, with the exceptions and additional capabilities as described in subclause 5.7.
- The MRFC shall provide the UA role, with the exceptions and additional capabilities as described in subclause 5.8, and with the exceptions and additional capabilities to SDP as described in subclause 6.5.
- The IBCF shall provide the proxy role, with the exceptions and additional capabilities to SIP as described in subclause 5.10. If the IBCF provides an application level gateway functionality (IMS-ALG), then the IBCF shall provide the UA role, with the exceptions and additional capabilities to SIP as described in subclause 5.10, and with the exceptions and additional capabilities to SDP as described in subclause 6.7. If the IBCF provides screening functionality, then the IBCF may provide the UA role, with the exceptions and additional capabilities to SIP as described in subclause 5.10.
- The E-CSCF shall provide the proxy role, with the exceptions and additional capabilities as described in subclause 5.11.

In addition to the roles specified above, the P-CSCF, the I-CSCF, the IBCF, the S-CSCF, the BGCF and the E-CSCF can act as a UA when providing server functionality to return a final response for any of the reasons specified in RFC 3261 [26].

NOTE 2: Annex A can change the status of requirements in referenced specifications. Particular attention is drawn to table A. 4 and table A. 162 for capabilities within referenced SIP specifications, and to table A. 317 and table A. 328 for capabilities within referenced SDP specifications. The remaining tables build on these initial tables.

NOTE 3: The allocated roles defined in this clause are the starting point of the requirements from the IETF SIP specifications, and are then the basis for the description of further requirements. Some of these extra requirements formally change the proxy role into a B2BUA. In all other respects other than those more completely described in subclause 5.2 the P-CSCF implements proxy requirements. Despite being a B2BUA a P-CSCF does not implement UA requirements from the IETF RFCs, except as indicated in this specification, e.g., relating to registration event subscription.

NOTE 4: Except as specified in clause 5 or otherwise permitted in RFC 3261, the functional entities providing the proxy role are intended to be transparent to data within received requests and responses. Therefore these entities do not modify message bodies. If local policy applies to restrict such data being passed on, the functional entity has to assume the UA role and reject a request, or if in a response and where such procedures apply, to pass the response on and then clear the session using the BYE method.

All the above entities are functional entities that could be implemented in a number of different physical platforms coexisting with a number of other functional entities. The implementation shall give priority to transactions at one functional entity, e.g. that of the the E-CSCF, over non-emergency transactions at other entities on the same physical implementation. Such priority is similar to the priority within the functional entities themselves specified elsewhere in this document.

Additional routeing functionality can be provided to support the ability for the IM CN subsystem to provide transit functionality as specified in Annex I. The additional routeing functionality shall assume the proxy role.

4.2 URI and address assignments

In order for SIP and SDP to operate, the following prerequisite conditions apply:

1) I-CSCFs used in registration are allocated SIP URIs. Other IM CN subsystem entities may be allocated SIP URIs. For example sip:pcscf.home1.net and sip:<impl-specific-info>@ pcscf.home1.net are valid SIP URIs. If the user part exists, it is an essential part of the address and shall not be omitted when copying or moving the address. How these addresses are assigned to the logical entities is up to the network operator. For example, a single SIP URI may be assigned to all I-CSCFs, and the load shared between various physical boxes by underlying IP capabilities, or separate SIP URIs may be assigned to each I-CSCF, and the load shared between various physical boxes using DNS SRV capabilities.
2) All IM CN subsystem entities are allocated IP addresses. For systems providing access to IMS using a fixed broadband network, any IM CN subsystem entities can be allocated IPv4 only, IPv6 only or both IPv4 and IPv6 addresses. Otherwise, systems shall support IP addresses as specified in 3GPP TS 23.221 [6] subclause 5.1.
3) The subscriber is allocated a private user identity by the home network operator, and this is contained within the ISIM application, if present. Where no ISIM application is present but USIM is present, the private user identity is derived (see subclause 5.1 .1 .1 A). This private user identity is available to the SIP application within the UE.

NOTE 1: The SIP URIs can be resolved by using any of public DNSs, private DNSs, or peer-to-peer agreements.
4) The subscriber is allocated one or more public user identities by the home network operator. The public user identity shall take the form of SIP URI as specified in RFC 3261 [26] or tel URI as specified in RFC 3966 [22]. At least one of the public user identities is a SIP URI and it is stored within the ISIM application, if ISIM application is present. Where no ISIM application is present but USIM is present, the UE derives a temporary public user identity (see subclause 5.1.1.1A). All registered public user identities are available to the SIP application within the UE, after registration.
5) If the UE supports GRUU (see table A.4, item A.4/53), then it shall have an Instance ID, in conformance with the mandatory requirements for Instance IDs specified in draft-ietf-sip-gruu [93] and draft-ietf-sipoutbound [92].
6) For each tel URI, there is at least one alias SIP URI in the set of implicitly registered public user identities that is used to implicitly register the associated tel URI.
7) The public user identities may be shared across multiple UEs. A particular public user identity may be simultaneously registered from multiple UEs that use different private user identities and different contact addresses. When reregistering and deregistering a given public user identity and associated contact address, the UE will use the same private user identity that it had used during the initial registration of the respective public user identity and associated contact address. If the tel URI is a shared public user identity, then the associated alias SIP URI is also a shared public user identity. Likewise, if the alias SIP URI is a shared public user identity, then the associated tel URI is also a shared public user identity.
8) For the purpose of access to the IM CN subsystem, UEs are assigned IPv6 prefixes in accordance with the constraints specified in 3GPP TS 23.221 [6] subclause 5.1 (see subclause 9.2 .1 for the assignment procedures). In the particular case of UEs accessing the IMS using a fixed broadband interconnection, UEs can be allocated IPv4 only, IPv6 only or both IPv4 and IPv6 addresses.
9) For the purpose of indicating an IMS communication service to the network, UEs are assigned ICSI values appropriate to the IMS communication service supported by the UE, coded as URN as specified in subclause 7.2A.8.2.

4.2A Transport mechanisms

This document makes no requirement on the transport protocol used to transfer signalling information over and above that specified in RFC 3261 [26] clause 18. However, the UE and IM CN subsystem entities shall transport SIP messages longer than 1300 bytes according to the procedures of RFC 3261 [26] subclause 18.1.1, even if a mechanism exists of discovering a maximum transmission unit size longer than 1500 bytes.

NOTE: Support of SCTP as specified in RFC 4168 [96] is optional for IM CN subsystem entities implementing the role of a UA or proxy. SCTP transport between the UE and P-CSCF is not supported in the present document. Support of the SCTP transport is currently not described in 3GPP TS 33.203 [19].

For initial REGISTER requests, the UE and the P-CSCF shall apply port handling according to subclause 5.1.1.2 and subclause 5.2.2.

The UE and the P-CSCF shall send and receive request and responses other than initial REGISTER requests on the protected ports as described in 3GPP TS 33.203 [19].

In case of an emergency session if the UE does not have sufficient credentials to authenticate with the IM CN subsystem and regulations allow, the UE and P-CSCF shall send request and responses other than initial REGISTER requests on non protected ports.

4.3 Routeing principles of IM CN subsystem entities

Each IM CN subsystem functional entity shall apply loose routeing policy as described in RFC 3261 [26], when processing a SIP request. In cases where the I-CSCF, IBCF, S-CSCF and the E-CSCF may interact with strict routers in non IM CN subsystem networks, the routeing procedures defined in RFC 3261 [26] that ensure interoperability with strict routers shall be used by the I-CSCF, IBCF, S-CSCF and E-CSCF.

4.4 Trust domain

4.4.1 General

RFC 3325 [34] provides for the existence and trust of an asserted identity within a trust domain. For the IM CN subsystem, this trust domain consists of the functional entities that belong to the same operator's network (P-CSCF, the E-CSCF, the I-CSCF, the IBCF, the S-CSCF, the BGCF. the MGCF, the MRFC, and all ASs that are included in the trust domain). Additionally, other IMS nodes that are not part of the same operator's domain may or may not be part of the trust domain, depending on whether an interconnect agreement exists with the remote network. SIP functional entities that belong to a network for which there is an interconnect agreement are part of the trust domain. ASs outside the operator's network can also belong to the trust domain if they have a trusted relationship with the home network.

NOTE 1: Whether any peer functional entity is regarded as part of the same operator's domain, and therefore part of the same trust domain, is dependent on operator policy which is preconfigured into each functional entity.

NOTE 2: For the purpose of this document, the PSAP is automatically regarded as being within the trust domain. This means that e.g. the handling of the P-Access-Network-Info header, P-Asserted-Identity header and the History-Info header will be as if the PSAP is within the trust domain, and these header fields will not be removed for trust domain issues.

Within the IM CN subsystem trust domains will be applied to a number of header fields. These trust domains do not necessarily contain the same functional entities or cover the same operator domains. The procedures in this subclause apply to the functional entities in clause 5 in the case where a trust domain boundary exists at that functional entity.

A trust domain applies for the purpose of the following header fields: P-Asserted-Identity, P-Access-Network-Info, History-Info, P-Asserted-Service, Reason (only in a response). Clause 5 defines additional procedures concerning these header fields.

4.4.2 P-Asserted-Identity

A functional entity at the boundary of the trust domain will need to determine whether to remove the P-AssertedIdentity header according to RFC 3325 [34] when SIP signalling crosses the boundary of the trust domain. Subclause 5.4 identifies additional cases for the removal of the P-Asserted-Identity header.

4.4.3 P-Access-Network-Info

A functional entity at the boundary of the trust domain shall remove the P-Access-Network-Info header.

4.4.4 History-Info

A functional entity at the boundary of the trust domain will need to determine whether to remove the History-Info header according to RFC 4244 [66] subclause 3.3 when SIP signalling crosses the boundary of the trust domain. Subclause 5.4 identifies additional cases for the removal of the History-Info header.

4.4.5 P-Asserted-Service

A functional entity at the boundary of the trust domain will need to determine whether to remove the P-AssertedService header according to draft-drage-sipping-service-identification [121] when SIP signalling crosses the boundary of the trust domain.

4.4.6 Void

4.4.7 Reason (in a response)

A functional entity shall only include a Reason header in a response forwarded to another entity within the trust domain (as specified in draft-jesske-sipping-etsi-ngn-reason [130]). If a response is forwarded to an entity outside the trust domain, the functional entity shall remove the Reason header from the forwarded response.

NOTE: A Reason header can be received in a response from outside the trust domain and will not be removed.

4.5 Charging correlation principles for IM CN subsystems

4.5.1 Overview

This subclause describes charging correlation principles to aid with the readability of charging related procedures in clause 5. See 3GPP TS 32.240 [16] and 3GPP TS 32.260 [17] for further information on charging.

The IM CN subsystem generates and retrieves the following charging correlation information for later use with offline and online charging:

1. IM CN subsystem Charging Identifier (ICID);
2. Access network charging information;
3. Inter Operator Identifier (IOI);
4. Charging function addresses:
a. Charging Data Function (CDF);
b. Online Charging Function (OCF).

How to use and where to generate the parameters in IM CN subsystems are described further in the subclauses that follow. The charging correlation information is encoded in the P-Charging-Vector header as defined in subclause 7.2A.5. The P-Charging-Vector header contains the following parameters: icid, access network charging information and ioi.

The offline and online charging function addresses are encoded in the P-Charging-Function-Addresses as defined in RFC 3455 [52]. The P-Charging-Function-Addresses header contains the following parameters: "ccf" for CDF and "ecf" for OCF.

NOTE: P-Charging-Function-Addresses parameters were defined using previous terminology.

4.5.2 IM CN subsystem charging identifier (ICID)

The ICID is the session level data shared among the IM CN subsystem entities including ASs in both the calling and called IM CN subsystems. The ICID is used also for session unrelated messages (e.g. SUBSCRIBE request, NOTIFY request, MESSAGE request) for the correlation with CDRs generated among the IM CN subsystem entities.

The first IM CN subsystem entity involved in a SIP transaction will generate the ICID and include it in the icid parameter of the P-Charging-Vector header in the SIP request. For a dialog relating to a session, this will be performed only on the INVITE request, for all other transactions, it will occur on each SIP request. See 3GPP TS 32.260 [17] for requirements on the format of ICID. The P-CSCF will generate an ICID for UE-originated calls. The I-CSCF will generate an ICID for UE-terminated calls if there is no ICID received in the initial request (e.g. the calling party network does not behave as an IM CN subsystem). The AS will generate an ICID when acting as an originating UA. The MGCF will generate an ICID for PSTN/PLMN originated calls. Each entity that processes the SIP request will extract the ICID for possible later use in a CDR. The I-CSCF and S-CSCF are also allowed to generate a new ICID for UE-terminated calls received from another network.

There is also an ICID generated by the P-CSCF with a REGISTER request that is passed in a unique instance of P -Charging-Vector header. The valid duration of the ICID is specified in 3GPP TS 32.260 [17].

The icid parameter is included in any request that includes the P-Charging-Vector header. However, the P-ChargingVector (and ICID) is not passed to the UE.

The ICID is also passed from the P-CSCF to the IP-CAN via PCRF. The interface supporting this operation is outside the scope of this document.

4.5.3 Access network charging information

4.5.3.1 General

The access network charging information are the media flow level data shared among the IM CN subsystem entities for one side of the session (either the calling or called side). GPRS charging information (GGSN identifier and PDP context information) is an example of access network charging information.

4.5.3.2 Access network charging information

The IP-CAN provides the access network charging information to the IM CN subsystem. This information is used to correlate IP-CAN CDRs with IM CN subsystem CDRs, i.e. the access network charging information is used to correlate the bearer level with the session level.

The access network charging information is generated at the first opportunity after the resources are allocated at the IPCAN. The access network charging information is passed from IP-CAN to P-CSCF via PCRF, over the Rx and Gx interfaces. Access network charging information will be updated with new information during the session as media flows are added or removed. The P-CSCF provides the access network charging information to the S-CSCF. The SCSCF may also pass the information to an AS, which may be needed for online pre-pay applications. The access network charging information for the originating network is used only within that network, and similarly the access network charging information for the terminating network is used only within that network. Thus the access network charging information are not shared between the calling and called networks. The access network charging information is not passed towards the external ASs from its own network.

The access network charging information is populated in the P-Charging-Vector header.

4.5.4 Inter operator identifier (IOI)

The Inter Operator Identifier (IOI) is a globally unique identifier to share between sending and receiving networks, service providers or content providers.

The sending network populates the orig-ioi parameter of the P-Charging-Vector header in a request and thereby identifies the operator network from which the request originated. The term-ioi parameter is left out of the P-ChargingVector header in this request. The sending network retrieves the term-ioi parameter from the P-Charging-Vector header within the message sent in response, which identifies the operator network from which the response was sent.

The receiving network retrieves the orig-ioi parameter from the P-Charging-Vector header in the request, which identifies the operator network from which the request originated. The receiving network populates the term-ioi parameter of the P-Charging-Vector header in the response to the request, which identifies the operator network from which the response was sent.

There are three types of IOI:

- Type 1 IOI, between the P-CSCF (possibly in the visited network) and the S-CSCF in the home network. This is exchanged in REGISTER requests and responses.
- Type 2 IOI, between the S-CSCF of the home originating network and the S-CSCF of the home terminating network or between the S-CSCF of the home originating network and the MGCF when a call/session is terminated at the PSTN/PLMN or between the MGCF and the S-CSCF of the home terminating network when a call/session is originated from the PSTN/PLMN or with a PSI AS when accessed across I-CSCF. This is exchanged in all session-related and session-unrelated requests and responses. For compatibility issues related to CS charging system behaviour simulation, the S-CSCF in the terminating network shall forward the orig-ioi parameter from the P-Charging-Vector header in the initial request, which identifies the operator network from which the request originated.
- Type 3 IOI, between the S-CSCF or I-CSCF of the home operator network and any AS. This is exchanged in all session-related and session-unrelated requests and responses.

NOTE: The overloading of the IOI parameter to the AS adds additional complexity to the billing system in identifying the required IOI pair. This has not been resolved because an additional problem also exists with repeating IOI parameters.

Each entity that processes the SIP request will extract the IOI for possible later use in a CDR. The valid duration of the IOI is specified in 3GPP TS 32.240 [16].

4.5.5 Charging function addresses

Charging function addresses are distributed to each of the IM CN subsystem entities in the home network for one side of the session (either the calling or called side) and provide a common location for each entity to send charging information. Charging Data Function (CDF) addresses are used for offline billing. Online Charging Function (OCF) addresses are used for online billing.

There may be multiple addresses for CDF and OCF addresses populated into the P-Charging-Function-Addresses header of the SIP request or response. The parameters are ccf and ecf for CDF and OCF, respectively. At least one instance of either ccf or ecf is required. If ccf address is included for offline charging, then a secondary ccf address may be included by each network for redundancy purposes, but the first instance of ccf is the primary address. If ecf address is included for online charging, then a secondary instance may also be included for redundancy.

The CDF and/or OCF addresses are retrieved from an Home Subscriber Server (HSS) via the Cx interface and passed by the S-CSCF to subsequent entities. The charging function addresses are passed from the S-CSCF to the IM CN subsystem entities in its home network, but are not passed to the visited network or the UE. When the P-CSCF is allocated in the visited network, then the charging function addresses are obtained by means outside the scope of this document. The AS receives the charging function addresses from the S-CSCF via the ISC interface. CDF and/or OCF addresses may be allocated as locally preconfigured addresses. The AS can also retrieve the charging function address from the HSS via Sh interface.

4.6 Support of local service numbers

For the IM CN subsystem, the support of local service numbers is provided by an AS in the subscriber's home network as described in subclause 5.7.1.7.

4.7 Emergency service

The need for support of emergency calls in the IM CN subsystem is determined by national regulatory requirements.
If the UE cannot detect the emergency call attempt, the UE initiates the request as per normal procedures as described in subclause 5.1 .2 A . Depending on network policies, for a non-roaming UE an emergency call attempt can succeed even if the UE did not detect that an emergency session is being requested, otherwise the network rejects the request indicating to the UE that the attempt was for an emergency service.

The UE procedures for UE detectable emergency calls are defined in subclause 5.1.6.
The P CSCF, S-CSCF and E-CSCF procedures for emergency service are described in subclauses 5.2.10, 5.4.8 and 5.11, respectively.

Access dependent aspects of emergency service (e.g. emergency registration support and location provision) are defined in the access technology specific annexes for each access technology.

5 Application usage of SIP

5.1 Procedures at the UE

5.1.1 Registration and authentication

5.1.1.1 General

The UE shall register public user identities (see table A.4/1 and dependencies on that major capability).
The UE shall use one IP address for all SIP signalling, i.e. simultaneous registration using different IP addresses from the same UE is not supported in this release of this document. The only exception is a possible parallel emergency registration as described in subclause 5.1.6.

NOTE: The UE can use multiple Contact header parameter values simultanously, provided they all contain the same IP address and port number.

In case a UE registers several public user identities at different points in time, the procedures to re-register, deregister and subscribe to the registration-state event package for these public user identities can remain uncoordinated in time.

In case a device performing address and/or port number conversions is provided by a $\mathrm{NA}(\mathrm{P}) \mathrm{T}$ or $\mathrm{NA}(\mathrm{P}) \mathrm{T}-\mathrm{PT}$, the UE may need to modify the SIP contents according to the procedures described in either annex F or annex K .

5.1.1.1A Parameters contained in the ISIM

The ISIM application shall always be used for IMS authentication, if it is present, as described in 3GPP TS 33.203 [19].
The ISIM is preconfigured with all the necessary parameters to initiate the registration to the IM CN subsystem. These parameters include:

- the private user identity;
- one or more public user identities; and
- the home network domain name used to address the SIP REGISTER request

In case the UE is loaded with a UICC that does not contain the ISIM application, the UE shall:

- generate a private user identity;
- generate a temporary public user identity; and
- generate a home network domain name to address the SIP REGISTER request to;
in accordance with the procedures in clause C.2.
The temporary public user identity is only used in REGISTER requests, i.e. initial registration, re-registration, UEinitiated deregistration.

The UE shall not reveal to the user the temporary public user identity if the temporary public user identity is barred. The temporary public user identity is not barred if received by the UE in the P-Associated-URI header.

If the UE is unable to derive the parameters in this subclause for any reason, then the UE shall not proceed with the request associated with the use of these parameters and will not be able to register to the IM CN subsystem.

5.1.1.2 Initial registration

The initial registration procedure consists of the UE sending an unprotected REGISTER request and, upon being challenged, sending the integrity protected REGISTER request. The UE can register a public user identity with its contact address at any time after it has acquired an IP address, discovered a P-CSCF, and established an IP-CAN bearer that can be used for SIP signalling. However, the UE shall only initiate a new registration procedure when it has received a final response from the registrar for the ongoing registration, or the previous REGISTER request has timed out.

When registering any public user identity and the registration is not triggered by the re-authentication procedure as specified in subclauses 5.1.1.5.1 and 5.4.1.6, if the UE has an already active pair of security associations, then it shall use them to protect the REGISTER requests.

If the UE detects that the existing security associations are no longer active (e.g., after receiving no response to several protected messages), the UE shall:

- consider all previously registered public user identities as deregistered; and
- stop processing all associated ongoing dialogs and transactions, if any (i.e. no further SIP signalling will be sent by the UE on behalf of these transactions or dialogs).

The UE shall send only the unprotected REGISTER requests to the port advertised to the UE during the P-CSCF discovery procedure. If the UE does not receive any specific port information during the P-CSCF discovery procedure, the UE shall send the unprotected REGISTER request to the SIP default port values as specified in RFC 3261 [26].

The UE shall extract or derive a public user identity, the private user identity, and the domain name to be used in the Request-URI in the registration, according to the procedures described in subclause 5.1.1.1A. A public user identity may be input by the end user.

On sending a REGISTER request, the UE shall populate the header fields as follows:
a) an Authorization header, with:

- the username directive, set to the value of the private user identity;
- the realm directive, set to the domain name of the home network;
- the uri directive, set to the SIP URI of the domain name of the home network;
- the nonce directive, set to an empty value; and
- the response directive, set to an empty value;
b) a From header set to the SIP URI that contains the public user identity to be registered;
c) a To header set to the SIP URI that contains the public user identity to be registered;
d) a Contact header set to include SIP URI(s) containing the IP address of the UE in the hostport parameter or FQDN. If the UE supports GRUU (see table A.4, item A.4/53), it shall include a +sip.instance parameter containing the instance ID. The UE shall include all supported ICSI values (coded as specified in subclause 7.2A.8.2) in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 and RFC 3840 [62] for the IMS communication services it intends to use, and IARI values (coded as specified in subclause 7.2A.9.2), for the IMS applications it intends to use in a g.3gpp.iari-ref feature tag as defined in subcaluse 7.9.3 and

RFC 3840 [62]. If the REGISTER request is protected by a security association, the UE shall also include the protected server port value in the hostport parameter;
e) a Via header set to include the IP address or FQDN of the UE in the sent-by field. For the UDP, if the REGISTER request is protected by a security association, the UE shall also include the protected server port value in the sent-by field, while for the TCP, the response is received on the TCP connection on which the request was sent;

NOTE 1: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, then it has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association.

NOTE 2: The UE associates two ports, a protected client port and a protected server port, with each pair of security association. For details on the selection of the port values see 3GPP TS 33.203 [19].
f) an Expires header, or the expires parameter within the Contact header, set to the value of 600000 seconds as the value desired for the duration of the registration;

NOTE 3: The registrar (S-CSCF) might decrease the duration of the registration in accordance with network policy. Registration attempts with a registration period of less than a predefined minimum value defined in the registrar will be rejected with a 423 (Interval Too Brief) response.
g) a Request-URI set to the SIP URI of the domain name of the home network;
h) the Security-Client header field set to specify the security mechanism the UE supports, the IPsec layer algorithms the UE supports and the parameters needed for the security association setup. The UE shall support the setup of two pairs of security associations as defined in 3GPP TS 33.203 [19]. The syntax of the parameters needed for the security association setup is specified in Annex H of 3GPP TS 33.203 [19]. The UE shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The UE shall support the IPsec layer algorithms for integrity and confidentiality protection as defined in 3GPP TS 33.203 [19], and shall announce support for them according to the procedures defined in RFC 3329 [48];
i) the Supported header containing the option tag "path", and if GRUU is supported, the option tag "gruu"; and
j) if a security association exists, and if available to the UE (as defined in the access technology specific annexes for each access technology), a P-Access-Network-Info header set as specified for the access network technology (see subclause 7.2A.4).

On receiving the 200 (OK) response to the REGISTER request, the UE shall:
a) store the expiration time of the registration for the public user identities found in the To header value;
b) store as the default public user identity the first URI on the list of URIs present in the P-Associated-URI header;

NOTE 4: The UE can utilize additional URIs contained in the P-Associated-URI header, e.g. for application purposes.
c) treat the identity under registration as a barred public user identity, if it is not included in the P-Associated-URI header;
d) store the list of Service-Route headers contained in the Service-Route header, in order to build a proper preloaded Route header value for new dialogs and standalone transactions;
e) set the security association lifetime to the longest of either the previously existing security association lifetime (if available), or the lifetime of the just completed registration plus 30 seconds; and

NOTE 5: If the UE receives Authentication-Info, it will proceed as described in RFC 3310 [49].
f) find the Contact header within the response that matches the one included in the REGISTER request. If this contains a "pub-gruu" parameter or a "temp-gruu" parameter or both, and the UE supports GRUU (see table A.4, item A.4/53), then store the value of those parameters as the GRUUs for the UE in association with the public user identity that was registered.

When a 401 (Unauthorized) response to a REGISTER is received the UE shall behave as described in subclause 5.1.1.5.1.

On receiving a 305 (Use Proxy) response to the unprotected REGISTER request, the UE shall:
a) release all IP-CAN bearers used for the transport of media according to the procedures in subclause 9.2.2;
b) initiate a new P-CSCF discovery procedure as described in subclause 9.2.1;
c) select a P-CSCF address, which is different from the previously used address, from the address list; and
d) perform the procedures for initial registration as described in subclause 5.1.1.2.

On receiving a 423 (Interval Too Brief) response to the REGISTER request, the UE shall:

- send another REGISTER request populating the Expires header or the expires parameter with an expiration timer of at least the value received in the Min-Expires header of the 423 (Interval Too Brief) response.

On receiving a 408 (Request Timeout) response or 500 (Server Internal Error) response or 504 (Server Time-Out) or 600 (Busy Everywhere) response for an initial registration, the UE may attempt to perform initial registration again.

When the timer F expires at the UE, the UE may:
a) select a different P-CSCF address from the list of P-CSCF addresses discovered during the procedures described in subclause 9.2.1;
b) if no response has been received when attempting to contact all P-CSCFs known by the UE, the UE may get a new set of P-CSCF-addresses as described in subclause 9.2.1; and
c) perform the procedures for initial registration as described in subclause 5.1.1.2.

NOTE 6: It is an implementation option whether these actions are also triggered by other means than expiration of timer F, e.g. based on ICMP messages.

After a maximum of 5 consecutive unsuccessful initial registration attempts, the UE shall not automatically attempt any further initial registration via the same network and the same P-CSCF, for an implementation dependant time of at least:
a) the amount of time indicated in the Retry-After header of the $4 \mathrm{xx}, 5 \mathrm{xx}$, or 6 xx response received in response to the most recent registration request, if that header was present; or
b) 30 minutes, if the header was not present and the initial registration was automatically performed as a consequence of a failed reregistration; or
c) 5 minutes, if the header was not present and the initial registration was not performed as a consequence of a failed reregistration.

These limits do not apply if the UE is power cycled.

5.1.1.3 Subscription to the registration-state event package

Upon receipt of a 2 xx response to the initial registration, the UE shall subscribe to the reg event package for the public user identity registered at the user's registrar (S-CSCF) as described in RFC 3680 [43].

The UE shall use the default public user identity for subscription to the registration-state event package, if the public user identity that was used for initial registration is a barred public user identity. The UE may use either the default public user identity or the public user identity used for initial registration for the subscription to the registration-state event package, if the initial public user identity that was used for initial registration is not barred.

On sending a SUBSCRIBE request, the UE shall populate the header fields as follows:
a) a Request URI set to the resource to which the UE wants to be subscribed to, i.e. to a SIP URI that contains the public user identity used for subscription;
b) a From header set to a SIP URI that contains the public user identity used for subscription;
c) a To header set to a SIP URI that contains the public user identity used for subscription;
d) an Event header set to the "reg" event package;
e) an Expires header set to 600000 seconds as the value desired for the duration of the subscription
f) if available to the UE (as defined in the access technology specific annexes for each access technology), a P-Access-Network-Info header set as specified for the access network technology (see subclause 7.2A.4); and
g) a Contact header set to contain the same IP address or FQDN, and with the protected server port value as in the initial registration.

Upon receipt of a 2 xx response to the SUBSCRIBE request, the UE shall store the information for the established dialog and the expiration time as indicated in the Expires header of the received response.

If continued subscription is required, the UE shall automatically refresh the subscription by the reg event package, for a previously registered public user identity, either 600 seconds before the expiration time if the initial subscription was for greater than 1200 seconds, or when half of the time has expired if the initial subscription was for 1200 seconds or less. If a SUBSCRIBE request to refresh a subscription fails with a non-481 response, the UE shall still consider the original subscription valid for the duration of the most recently known "Expires" value according to RFC 3265 [28]. Otherwise, the UE shall consider the subscription invalid and start a new initial subscription according to
RFC 3265 [28].

5.1.1.4 User-initiated reregistration and registration of an additional public user identity

The UE can perform the reregistration of a previously registered public user identity with its contact address at any time after the initial registration has been completed. The UE shall perform the reregistration over the existing set of security associations that is associated with the related contact address.

The UE can perform registration of additional public user identities at any time after the initial registration has been completed. The UE shall perform the registration of additional public user identities over the existing set of security associations that is associated with the related contact address.

Unless either the user or the application within the UE has determined that a continued registration is not required the UE shall reregister an already registered public user identity either 600 seconds before the expiration time if the previous registration was for greater than 1200 seconds, or when half of the time has expired if the previous registration was for 1200 seconds or less, or when the UE intends to update its capabilities according to RFC 3840 [62] or when the UE needs to modify the ICSI values that the UE intends to use in a g.3gpp.icsi-ref feature tag or IARI values that the UE intends to use in the g.3gpp.app_iari feature tag.

The UE shall protect the REGISTER request using a security association, see 3GPP TS 33.203 [19], established as a result of an earlier registration, if one is available.

The UE shall extract or derive a public user identity, the private user identity, and the domain name to be used in the Request-URI in the registration, according to the procedures described in subclause 5.1.1.1A.

On sending a REGISTER request that does not contain a challenge response, the UE shall populate the header fields as follows:
a) an Authorization header, with:

- the username directive set to the value of the private user identity;
- the realm directive, set to the value as received in the realm directive in the WWW Authenticate header;
- the uri directive, set to the SIP URI of the domain name of the home network;
- the nonce directive, set to last received nonce value; and
- the response directive, set to the last calculated response value;
b) a From header set to the SIP URI that contains the public user identity to be registered;
c) a To header set to the SIP URI that contains the public user identity to be registered;
d) a Contact header set to include SIP URI(s) that contain(s) in the hostport parameter the IP address of the UE or FQDN and protected server port value bound to the security association, and containing the instance ID of the UE in the + sip.instance parameter, if the UE supports GRUU (see table A.4, item A.4/53). The UE shall include all supported ICSI values (coded as specified in subclause 7.2A.8.2) in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 for the IMS communication services it intends to use, and IARI values (coded as specified in
subclause 7.2A.9.2), for the IMS applications it intends to use in a g.3gpp.iari-ref feature tag as defined in subclause 7.9.3 and RFC 3840 [62];
e) a Via header set to include the IP address or FQDN of the UE in the sent-by field and for the UDP the protected server port value bound to the security association, while for the TCP, the response is received on the TCP connection on which the request was sent;

NOTE 1: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, then it has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association.

NOTE 2: The UE associates two ports, a protected client port and a protected server port, with each pair of security associations. For details on the selection of the protected port value see 3GPP TS 33.203 [19].
f) an Expires header, or an expires parameter within the Contact header, set to 600000 seconds as the value desired for the duration of the registration;

NOTE 3: The registrar (S-CSCF) might decrease the duration of the registration in accordance with network policy. Registration attempts with a registration period of less than a predefined minimum value defined in the registrar will be rejected with a 423 (Interval Too Brief) response.
g) a Request-URI set to the SIP URI of the domain name of the home network;
h) a Security-Client header field, set to specify the security mechanism it supports, the IPsec layer algorithms for security and confidentiality protection it supports and the new parameter values needed for the setup of two new pairs of security associations. For further details see 3GPP TS 33.203 [19] and RFC 3329 [48];
i) a Security-Verify header that contains the content of the Security-Server header received in the 401 (Unauthorized) response of the last successful authentication;
j) the Supported header containing the option tag "path", and if GRUU is supported, the option tag "gruu"; and
k) if available to the UE (as defined in the access technology specific annexes for each access technology), a P-Access-Network-Info header set as specified for the access network technology (see subclause 7.2A.4).

On receiving the $200(\mathrm{OK})$ response to the REGISTER request, the UE shall:
a) store the new expiration time of the registration for this public user identity found in the To header value;
b) store the list of Service-Route headers contained in the Service-Route header, in order to build a proper preloaded Route header value for new dialogs and standalone transactions;

NOTE 4: The UE can utilize additional URIs contained in the P-Associated-URI header, e.g. for application purposes.
c) set the security association lifetime to the longest of either the previously existing security association lifetime, or the lifetime of the just completed registration plus 30 seconds; and

NOTE 5: If the UE receives Authentication-Info, it will proceed as described in RFC 3310 [49].
d) find the Contact header within the response that matches the one included in the REGISTER request. If this contains a "pub-gruu" parameter or a "temp-gruu" parameter or both, and the UE supports GRUU (see table A.4, item A.4/53), then store the value of those parameters as the GRUUs for the UE in association with the public user identity that was registered.

When a 401 (Unauthorized) response to a REGISTER is received the UE shall behave as described in subclause 5.1.1.5.1.

On receiving a 423 (Interval Too Brief) response to the REGISTER request, the UE shall:

- send another REGISTER request populating the Expires header or the expires parameter with an expiration timer of at least the value received in the Min-Expires header of the 423 (Interval Too Brief) response.

On receiving a 408 (Request Timeout) response or 500 (Server Internal Error) response or 504 (Server Time-Out) response for a reregistration, the UE shall perform the procedures for initial registration as described in subclause 5.1.1.2.

On receiving a 305 (Use Proxy) response to the REGISTER request, the UE shall:
a) release all IP-CAN bearers used for the transport of media according to the procedures in subclause 9.2.2;
b) initiate a new P-CSCF discovery procedure as described in subclause 9.2.1;
c) select a P-CSCF address, which is different from the previously used address, from the address list; and
d) perform the procedures for initial registration as described in subclause 5.1.1.2.

When the timer F expires at the UE, the UE shall:

1) stop processing of all ongoing dialogs and transactions, if any (i.e. no further SIP signalling will be sent by the UE on behalf of these transactions or dialogs); and
2) after releasing all IP-CAN bearers used for the transport of media according to the procedures in subclause 9.2.2, the UE may:
a) select a different P-CSCF address from the list of P-CSCF addresses discovered during the procedures described in subclause 9.2.1;
b) if no response has been received when attempting to contact all P-CSCFs known by the UE, the UE may get a new set of P-CSCF-addresses as described in subclause 9.2.1; and
c) perform the procedures for initial registration as described in subclause 5.1.1.2.

NOTE 6: It is an implementation option whether these actions are also triggered by other means than expiration of timer F, e.g. based on ICMP messages.

5.1.1.5 Authentication

5.1.1.5.1 General

Authentication is performed during initial registration. A UE can be re-authenticated during subsequent reregistrations, deregistrations or registrations of additional public user identities. When the network requires authentication or reauthentication of the UE, the UE will receive a 401 (Unauthorized) response to the REGISTER request.

On receiving a 401 (Unauthorized) response to the REGISTER request, the UE shall:

1) extract the RAND and AUTN parameters;
2) check the validity of a received authentication challenge, as described in 3GPP TS 33.203 [19] i.e. the locally calculated XMAC must match the MAC parameter derived from the AUTN part of the challenge; and the SQN parameter derived from the AUTN part of the challenge must be within the correct range; and
3) check the existence of the Security-Server header as described in RFC 3329 [48]. If the header is not present or it does not contain the parameters required for the setup of the set of security associations (see annex H of 3GPP TS 33.203 [19]), the UE shall abandon the authentication procedure and send a new REGISTER request with a new Call-ID.

In the case that the 401 (Unauthorized) response to the REGISTER request is deemed to be valid the UE shall:

1) calculate the RES parameter and derive the keys CK and IK from RAND as described in 3GPP TS 33.203 [19];
2) set up a temporary set of security associations based on the static list and parameters it received in the 401 (Unauthorized) response and its capabilities sent in the Security-Client header in the REGISTER request. The UE sets up the temporary set of security associations using the most preferred mechanism and algorithm returned by the P-CSCF and supported by the UE and using IK and CK (only if encryption enabled) as the shared key. The UE shall use the parameters received in the Security-Server header to setup the temporary set of security associations. The UE shall set a temporary SIP level lifetime for the temporary set of security associations to the value of reg-await-auth timer; and
3) send another REGISTER request using the temporary set of security associations to protect the message. The header fields are populated as defined for the initial request, with the addition that the UE shall include an Authorization header containing:

- the realm directive set to the value as received in the realm directive in the WWW Authenticate header;
- the username directive, set to the value of the private user identity;
- the response directive that contains the RES parameter, as described in RFC 3310 [49];
- the uri directive, set to the SIP URI of the domain name of the home network;
- the algorithm directive, set to the value received in the 401 (Unauthorized) response; and
- the nonce directive, set to the value received in the 401 (Unauthorized) response.

The UE shall also insert the Security-Client header that is identical to the Security-Client header that was included in the previous REGISTER request (i.e. the REGISTER request that was challenged with the received 401 (Unauthorized) response). The UE shall also insert the Security-Verify header into the request, by mirroring in it the content of the Security-Server header received in the 401 (Unauthorized) response. The UE shall set the Call-ID of the security association protected REGISTER request which carries the authentication challenge response to the same value as the Call-ID of the 401 (Unauthorized) response which carried the challenge.

On receiving the 200 (OK) response for the security association protected REGISTER request, the UE shall:

- change the temporary set of security associations to a newly established set of security associations, i.e. set its SIP level lifetime to the longest of either the previously existing set of security associations SIP level lifetime, or the lifetime of the just completed registration plus 30 seconds;and
- use the newly established set of security associations for further messages sent towards the P-CSCF as appropriate.

NOTE 1: In this case, the UE will send requests towards the P-CSCF over the newly established set of security associations. Responses towards the P-CSCF that are sent via UDP will be sent over the newly established set of security associations. Responses towards the P-CSCF that are sent via TCP will be sent over the same set of security associations that the related request was received on.

When the first request or response protected with the newly established set of security associations is received from the P-CSCF, the UE shall delete the old set of security associations and related keys it may have with the P-CSCF after all SIP transactions that use the old set of security associations are completed.

Whenever the 200 (OK) response is not received before the temporary SIP level lifetime of the temporary set of security associations expires or a 403 (Forbidden) response is received, the UE shall consider the registration to have failed. The UE shall delete the temporary set of security associations it was trying to establish, and use the old set of security associations. The UE should send an unprotected REGISTER message according to the procedure specified in subclause 5.1.1.2 if the UE considers the old set of security associations to be no longer active at the P-CSCF.

In the case that the 401 (Unauthorized) response is deemed to be invalid then the UE shall behave as defined in subclause 5.1.1.5.3.

5.1.1.5.2 Network-initiated re-authentication

At any time, the UE can receive a NOTIFY request carrying information related to the reg event package (as described in subclause 5.1.1.3). If:

- the state attribute in any of the <registration> elements is set to "active";
- the value of the <uri> sub-element inside the <contact> sub-element is set to the Contact address that the UE registered; and
- the event attribute of that <contact> sub-element(s) is set to "shortened";
the UE shall:

1) use the expiry attribute within the <contact> sub-element that the UE registered to adjust the expiration time for that public user identity; and
2) start the re-authentication procedures at the appropriate time (as a result of the S-CSCF procedure described in subclause 5.4.1.6) by initiating a reregistration as described in subclause 5.1.1.4, if required.

NOTE: When authenticating a given private user identity, the S-CSCF will only shorten the expiry time within the <contact> sub-element that the UE registered using its private user identity. The <contact> elements for the same public user identity, if registered by another UE using different private user identities remain unchanged. The UE will not initiate a reregistration procedure, if none of its <contact> sub-elements was modified.

5.1.1.5.3 Abnormal cases

If, in a 401 (Unauthorized) response, either the MAC or SQN is incorrect the UE shall respond with a further REGISTER indicating to the S-CSCF that the challenge has been deemed invalid as follows:

- in the case where the UE deems the MAC parameter to be invalid the subsequent REGISTER request shall contain no AUTS directive and an empty response directive, i.e. no authentication challenge response;
- in the case where the UE deems the SQN to be out of range, the subsequent REGISTER request shall contain the AUTS directive (see 3GPP TS 33.102 [18]).

NOTE: In the case of the SQN being out of range, a response directive can be included by the UE, based on the procedures described in RFC 3310 [49].

Whenever the UE detects any of the above cases, the UE shall:

- send the REGISTER request using an existing set of security associations, if available (see 3GPP TS 33.203 [19]);
- populate a new Security-Client header within the REGISTER request, set to specify the security mechanism it supports, the IPsec layer algorithms for integrity and confidentiality protection it supports and the parameters needed for the new security association setup; and
- not create a temporary set of security associations.

A UE shall only respond to two consecutive invalid challenges and shall not automatically attempt authentication after two consecutive failed attempts to authenticate. The UE may attempt to register with the network again after an implementation specific time.

5.1.1.5A Change of lpv6 address due to privacy

Stateless address autoconfiguration as described in RFC 2462 [20E] defines how an IPv6 prefix and an interface identifier is used by the UE to construct a complete IPv6 address.

If the UE receives an IPv6 prefix, the UE may change the interface identity of the IPv6 address as described in RFC 3041 [25A] due to privacy but this will result in service discontinuity for IMS services.

NOTE: The procedure described below will terminate all established dialogs and transactions and temporarily disconnect the UE from the IM CN subsystem until the new registration is performed. Due to this, the UE is recommended to provide a limited use of the procedure to ensure a maximum degree of continuous service to the end user.

In order to change the IPv6 address due to privacy, the UE shall:

1) terminate all ongoing dialogs (e.g., sessions) and transactions (e.g., subscription to the reg event);
2) deregister all registered public user identities as described in subclause 5.1.1.4;
3) construct a new IPv6 address according to the procedures specified in RFC 3041 [25A];
4) register the public user identities that were deregistered in step 2 above, as follows:
a) by performing an initial registration as described in subclause 5.1.1.2; and
b) by performing a subscription to the reg event package as described in subsclause 5.1.1.3; and
5) subscribe to other event packages it was subscribed to before the change of IPv6 address procedure started.

5.1.1.6 User-initiated deregistration

The UE can deregister a public user identity that it has previously registered with its contact address at any time.
The UE shall protect the REGISTER request using a security association, see 3GPP TS 33.203 [19], established as a result of an earlier registration, if one is available.

The UE shall extract or derive a public user identity, the private user identity, and the domain name to be used in the Request-URI in the registration, according to the procedures described in subclause 5.1.1.1A.

Prior to sending a REGISTER request for deregistration, the UE shall release all dialogs related to the public user identity that is going to be deregistered or to one of the implicitly registered public user identities. However:

- if the dialog that was established by the UE subscribing to the reg event package used the public user identity that is going to be deregistered; and
- this dialog is the only remaining dialog used for subscription to reg event package;
then the UE shall not release this dialog.
On sending a REGISTER request, the UE shall populate the header fields as follows:
a) an Authorization header, with:
- the username directive, set to the value of the private user identity;
- the realm directive, set to the value as received in the realm directive in the WWW-Authenticate header;
- the uri directive, set to the SIP URI of the domain name of the home network;
- the nonce directive, set to last received nonce value; and
- the response directive, set to the last calculated response value;
b) a From header set to the SIP URI that contains the public user identity to be deregistered;
c) a To header set to the SIP URI that contains the public user identity to be deregistered;
d) a Contact header set to either the value of "*" or SIP URI(s) that contain(s) in the hostport parameter the IP address of the UE or FQDN and the protected server port value bound to the security association, and containing the Instance ID of the UE in the +sip.instance parameter, if the UE supports GRUU (see table A.4, item A.4/53);
e) a Via header set to include the IP address or FQDN of the UE in the sent-by field and the protected server port value bound to the security association;

NOTE 1: If the UE specifies its FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, then it has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address that is bound to the security association.
f) an Expires header, or the expires parameter of the Contact header, set to the value of zero, appropriate to the deregistration requirements of the user;
g) a Request-URI set to the SIP URI of the domain name of the home network;
h) a Security-Client header field, set to specify the security mechanism it supports, the IPsec layer algorithms for integrity and confidentiality protection it supports and the new parameter values needed for the setup of two new pairs of security associations. For further details see 3GPP TS 33.203 [19] and RFC 3329 [48];
i) a Security-Verify header that contains the content of the Security-Server header received in the 401 (Unauthorized) response of the last successful authentication; and
j) if available to the UE (as defined in the access technology specific annexes for each access technology), a P-Access-Network-Info header set as specified for the access network technology (see subclause 7.2A.4).

When a 401 (Unauthorized) response to a REGISTER request is received the UE shall behave as described in subclause 5.1.1.5.1.

On receiving the $200(\mathrm{OK})$ response to the REGISTER request, the UE shall remove all registration details relating to this public user identity.

If there are no more public user identities registered, the UE shall delete the security associations and related keys it may have towards the IM CN subsystem.

If all public user identities are deregistered and the security association is removed, then the UE shall consider subscription to the reg event package cancelled (i.e. as if the UE had sent a SUBSCRIBE request with an Expires header containing a value of zero).

NOTE 2: When the UE has received the 200 (OK) response for the REGISTER request of the only public user identity currently registered with its associated set of implicitly registered public user identities (i.e. no other is registered), the UE removes the security association established between the P-CSCF and the UE. Therefore further SIP signalling (e.g. the NOTIFY request containing the deregistration event) will not reach the UE.

5.1.1.7 Network-initiated deregistration

Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package as described in subclause 5.1.1.3, including one or more <registration> element(s) which were registered by this UE with:

- the state attribute set to "terminated" and the event attribute within the <contact> element belonging to this UE set to "rejected" or "deactivated"; or
- the state attribute set to "active" and within the <contact> element belonging to this UE, the state attribute set to "terminated" and the associated event attribute set to "rejected" or "deactivated";
the UE shall remove all registration details relating to these public user identities. In case of a "deactivated" event attribute, the UE shall start the initial registration procedure as described in subclause 5.1.1.2. In case of a "rejected" event attribute, the UE shall release all dialogs related to those public user identities.

Upon receipt of a NOTIFY request, the UE shall delete the security associations towards the P-CSCF either:

- if all <registration> element(s) have their state attribute set to "terminated" (i.e. all public user identities are deregistered) and the Subscription-State header contains the value of "terminated"; or
- if each <registration> element that was registered by this UE has either the state attribute set to "terminated", or the state attribute set to "active" and the state attribute within the <contact> element belonging to this UE set to "terminated".

The UE shall delete these security associations towards the P-CSCF after the server transaction (as defined in RFC 3261 [26]) pertaining to the received NOTIFY request terminates.

NOTE 1: Deleting a security association is an internal procedure of the UE and does not involve any SIP procedures.

NOTE 2: If all the public user identities (i.e. Vcontact> elements) registered by this UE are deregistered and the security association is removed, the UE considers the subscription to the reg event package terminated since the NOTIFY request was received with Subscription-State header containing the value of "terminated".

5.1.2 Subscription and notification

5.1.2.1 Notification about multiple registered public user identities

Upon receipt of a 2 xx response to the SUBSCRIBE request the UE shall maintain the generated dialog (identified by the values of the Call-ID header, and the value of the tags in To and From headers).

Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package the UE shall perform the following actions:

- if a state attribute "active", i.e. registered is received for one or more public user identities, the UE shall store the indicated public user identities as registered;
- if a state attribute "active" is received, and the UE supports GRUU (see table A.4, item A.4/53), then for each public user identity indicated in the notification that contains a <pub-gruu> element or a <temp-gruu> element or both (as defined in draft-ietf-sipping-gruu-reg-event [94]) then the UE shall store the value of those elements in association with the public user identity;
- if a state attribute "terminated", i.e. deregistered is received for one or more public user identities, the UE shall store the indicated public user identities as deregistered and shall remove any associated GRUUs.

NOTE 1: There may be public user identities which are automatically registered within the registrar (S-CSCF) of the user upon registration of one public user identity or when S-CSCF receives a Push-Profile-Request (PPR) from the HSS (as described in 3GPP TS 29.228 [14]) changing the status of a public user identity associated with a registered implicit set from barred to non-barred. Usually these automatically or implicitly registered public user identities belong to the same service profile of the user and they might not be available within the UE. The implicitly registered public user identities may also belong to different service profiles. The here-described procedures provide a different mechanism (to the 200 (OK) response to the REGISTER request) to inform the UE about these automatically registered public user identities.

NOTE 2: draft-ietf-sipping-gruu-reg-event [94] provides guidance on the management of temporary GRUUs, utilizing information provided in the reg event notification.

5.1.2.2 General SUBSCRIBE requirements

If the UA receives a 503 (Service Unavailable) response to an initial SUBSCRIBE request containing a Retry-After header, then the UE shall not automatically reattempt the request until after the period indicated by the Retry-After header contents.

5.1.2A Generic procedures applicable to all methods excluding the REGISTER method

5.1.2A.1 UE-originating case

The procedures of this subclause are general to all requests and responses, except those for the REGISTER method.
When the UE sends any request, the UE shall:

- include the protected server port in the Via header entry relating to the UE.

The UE shall discard any SIP response that is not protected by the security association and is received from the P-CSCF outside of the registration and authentication procedures. The requirements on the UE within the registration and authentication procedures are defined in subclause 5.1.1.

In accordance with RFC 3325 [34] the UE may insert a P-Preferred-Identity header in any initial request for a dialog or request for a standalone transaction as a hint for creation of an asserted identity (contained in the P-Asserted-Identity header) within the IM CN subsystem.

NOTE 1: Since the S-CSCF uses the P-Asserted-Identity header when checking whether the UE originating request matches the initial filter criteria, the P-Preferred-Identity header inserted by the UE determines which services and applications are invoked.

The UE may include any of the following in the P-Preferred-Identity header:

- a public user identity which has been registered by the user;
- a public user identity returned in a registration-state event package of a NOTIFY request as a result of an implicit registration that was not subsequently deregistered or has expired; or
- any other public user identity which the user has assumed by mechanisms outside the scope of this specification to have a current registration.

NOTE 2: The temporary public user identity specified in subclause 5.1.1.1 is not a public user identity suitable for use in the P-Preferred-Identity header.

NOTE 3: Procedures in the network require international public telecommunication numbers when telephone numbers are used in P-Preferred-Identity header.

NOTE 4: A number of headers can reveal information about the identity of the user. Where privacy is required, implementers should also give consideration to other headers that can reveal identity information. RFC 3323 [33] subclause 4.1 gives considerations relating to a number of headers.

Where privacy is required, in any initial request for a dialog or request for a standalone transaction, the UE shall set the From header to "Anonymous" as specified in RFC 3261 [26].

NOTE 5: The contents of the From header should not be relied upon to be modified by the network based on any privacy specified by the user either within the UE indication of privacy or by network subscription or network policy. Therefore the user should include the value "Anonymous" whenever privacy is explicitly required. As the user may well have privacy requirements, terminal manufacturers should not automatically derive and include values in this header from the public user identity or other values stored in or derived from the UICC. Where the user has not expressed a preference in the configuration of the terminal implementation, the implementation should assume that privacy is required. Users that require to identify themselves, and are making calls to SIP destinations beyond the IM CN subsystem, where the destination does not implement RFC 3325 [34], will need to include a value in the From header other than Anonymous.

The UE shall determine the public user identity to be used for this request as follows:

1) if a P-Preferred-Identity was included, then use that as the public user identity for this request; or
2) if no P-Preferred-Identity was included, then use the default public user identity for the security association as the public user identity for this request;

If this is a request for a new dialog, and the request includes a Contact header, the Contact header is populated as follows:

1) if a public GRUU value (pub-gruu) has been saved associated with the public user identity to be used for this request, and the UE does not indicate privacy of the P-Asserted-Identity, then the UE should insert the public GRUU (pub-gruu) value as specified in draft-ietf-sip-gruu [93];
2) if a temporary GRUU value (temp-gruu) has been saved associated with the public user identity to be used for this request, and the UE does indicate privacy of the P-Asserted-Identity, then the UE should insert the temporary GRUU (temp-gruu) value as specified in draft-ietf-sip-gruu [93];

NOTE 6: The above items 1 and 2 are mutually exclusive.
3) if the request is related to an IMS communication service that requires the use of an ICSI then the UE shall include in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 and RFC 3841 [56B]the ICSI value (coded as specified in subclause 7.2A.8.2), for the IMS communication service. The UE may also include other ICSI values that the UE is prepared to use for all dialogs with the terminating UE(s); and
4) if the request is related to an IMS application that is supported by the UE then the UE may include the IARI values (coded as specified in subclause 7.2A.9.2), that is related to any IMS applications and that applies for the dialog, in a g.3gpp.iari-ref feature tag as defined in subclause 7.9.3 and RFC 3841 [56B].

NOTE 7: The above items 3 and 4 are mutually exclusive.
If this is a request within an existing dialog, and the request includes a Contact header, and the Contact address previously used in the dialog was a GRUU, then the UE should insert the previously used GRUU value in the Contact header as specified in draft-ietf-sip-gruu [93].

If the UE did not insert a GRUU in the Contact header, then the UE shall include the protected server port in the address in the Contact header.

If this is a request for a new dialog or standalone transaction and the request is related to an IMS communication service that requires the use of an ICSI then the UE:

1) shall include the ICSI value (coded as specified in subclause 7.2A.8.2), for the IMS communication service that is related to the request in a P-Preferred-Service header field according to draft-drage-sipping-service-
identification [121]. If a list of network supported ICSI values was received as specified in 3GPP TS 24.167 [8G], the UE shall only include an ICSI value that is in the received list;

NOTE 8: The UE only receives those ICSI values correponding to the IMS communication services that the network provides to the user.
2) may include an Accept-Contact header field containing an ICSI value (coded as specified in subclause 7.2A.8.2) that is related to the request in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 and RFC 3841 [56B] if the ICSI for the IMS communication service is known.

NOTE 9: If the UE includes the same ICSI values into the Accept-Contact header and the P-Preferred-Service header, there is a possibility that one of the involved S-CSCFs or an AS changes the ICSI value in the P-Asserted-Service header, which results in the message including two different ICSI values (one in the P-Asserted-Service header, changed in the network and one in the Accept-Contact header).

If an IMS application indicates that an IARI is to be included in a request for a new dialog or standalone transaction, the UE shall include an Accept-Contact header field containing an IARI value (coded as specified in subclause 7.2A.9.2) that is related to the request in a g.3gpp.iari-ref feature tag as defined in subclause 7.9.3 and RFC 3841 [56B].

NOTE 10:RFC 3841 [56B] allows multiple Accept-Contact header fields along with multiple Reject-Contact header fields in a SIP request, and within those header fields, expressions that include one or more logical operations based on combinations of feature tags. Which registered UE will be contacted depends on the Accept-Contact header field and Reject-Contact header field combinations included that evaluate to a logical expression and the relative qvalues of the registered contacts for the targeted registered public user identity. There is therefore no guarantee that when multiple Accept-Contact header fields or additional Reject-Contact header field(s) along with the Accept-Contact header field containing the ICSI value or IARI value are included in a request that the request will be routed to a contact that registered the same ICSI value or IARI value. Charging and accounting is based upon the contents of the P-AssertedService header field and the actual media related contents of the SIP request and not the Accept-Contact header field contents or the contact reached.

NOTE 11:The UE only includes the parameters require and explicit in the Accept-Contact header field containing the ICSI value or IARI value if the IMS communication service absolutely requires that the terminating UE understand the IMS communication service in order to be able to accept the session. Including the parameters require and explicit in Accept-Contact header fields in requests which don"t absolutely require that the terminating UE understand the IMS communication service in order to accept the session creates an interoperability problem for sessions which otherwise would interoperate and violates the interoperability requirements for the ICSI in 3GPP TS 23.228 [7].

After the dialog is established the UE may change the dialog capabilities (e.g. add a media or request a supplementary service) if defined for the IMS communication service as identified by the ICSI value using the same dialog. Otherwise, the UE shall initiate a new initial request to the other user.

The UE can indicate privacy of the P-Asserted-Identity that will be generated by the P-CSCF in accordance with RFC 3323 [33], and the additional requirements contained within RFC 3325 [34].

If available to the UE (as defined in the access technology specific annexes for each access technology), the UE shall insert a P-Access-Network-Info header into any request for a dialog, any subsequent request (except ACK requests and CANCEL requests) or response (except CANCEL responses) within a dialog or any request for a standalone method (see subclause 7.2A.4).

NOTE 12: During the dialog, the points of attachment to the IP-CAN of the UE may change (e.g. UE connects to different cells). The UE will populate the P-Access-Network-Info header in any request or response within a dialog with the current point of attachment to the IP-CAN (e.g. the current cell information).

The UE shall build a proper preloaded Route header value for all new dialogs and standalone transactions. The UE shall build a list of Route header values made out of, in this order, the P-CSCF URI (containing the IP address or the FQDN learnt through the P-CSCF discovery procedures, and the protected server port learnt during the registration procedure), and the values received in the Service-Route header saved from the 200 (OK) response to the last registration or reregistration.

The UE may indicate that proxies should not fork the request by including a "no-fork" directive within the RequestDisposition header in the request as described in RFC 3841 [56B].

When a SIP transaction times out, i.e. timer B, timer F or timer H expires at the UE, the UE may behave as if timer F expired, as described in subclause 5.1.1.4.

NOTE 13:It is an implementation option whether these actions are also triggered by other means.
The UE may use non-international formats of E. 164 addresses, including geo-local numbers and home-local numbers, in the Request-URI.

NOTE 14:The way how the UE defines the default network for the numbers in a non-international format is implementation specific.

NOTE 15 The way how the UE process the dial-string and handles special characters (e.g. pause) in order to produce a conformant SIP URI or tel URI according to RFC 3966 [22] is implementation specific.

NOTE 16:Home operator's local policy can define a prefix string(s) to enable subscribers to differentiate dialling a geo-local number and/or a home-local number.

When the UE uses home-local number, the UE shall include in the "phone-context" parameter the home domain name in accordance with RFC 3966 [22].

When the UE uses geo-local number, the UE shall:

- if access technology information available to the UE (i.e., the UE can insert P-Access-Network-Info header into the request), include the access technology information in the "phone-context" parameter according to RFC 3966 [22] as defined in subclause 7.2A.10; and
- if access technology information is not available to the UE (i.e., the UE cannot insert P-Access-Network-Info header into the request), include in the "phone-context" parameter the home domain name prefixed by the "geolocal." string according to RFC 3966 [22]as defined in subclause 7.2A.10.

NOTE 17:The "phone-context" parameter value can be entered by the subscriber, or can be inserted by the UE, based on implementation.

5.1.2A. 2 UE-terminating case

The procedures of this subclause are general to all requests and responses, except those for the REGISTER method.
The UE shall discard any SIP request that is not protected by the security association and is received from the P-CSCF outside of the registration and authentication procedures. The requirements on the UE within the registration and authentication procedures are defined in subclause 5.1.1.

If an initial request contains an Accept-Contact header field containing the g.3gpp.icsi-ref feature tag with an ICSI value the UE should invoke the IMS application that is the best match for the ICSI value.

If an initial request contains an Accept-Contact header field containing the g.3gpp.iari-ref feature tag with an IARI value the UE should invoke the IMS application that is the best match for the IARI value.

The UE can receive multiple ICSI values, IARI values or both in an Accept-Contact header field. In this case it is up to the implementation which of the multiple ICSI values or IARI values the UE takes action on.

NOTE 1: The application verifies that the contents of the request (e.g. SDP media capabilities, Content-Type header field) are consistent with the the ICSI value in the g.3gpp.icsi-ref feature tag and IARI value contained in the g.3gpp.iari-ref feature tag.

If an initial request does not contain an Accept-Contact header field containing a g.3gpp.icsi-ref feature tag or a g.3gpp.iari-ref feature tag the UE shall invoke the application that is the best match based on the contents of the request (e.g. SDP media capabilities, Content-Type header field, feature tag).

The UE can indicate privacy of the P-Asserted-Identity that will be generated by the P-CSCF in accordance with RFC 3323 [33], and the additional requirements contained within RFC 3325 [34].

NOTE 2: In the UE-terminating case, this version of the document makes no provision for the UE to provide a P-Preferred-Identity in the form of a hint.

NOTE 3: A number of headers can reveal information about the identity of the user. Where, privacy is required, implementers should also give consideration to other headers that can reveal identity information. RFC 3323 [33] subclause 4.1 gives considerations relating to a number of headers.

If the response includes a Contact header, and the response is sent within an existing dialog, and the Contact address previously used in the dialog was a GRUU, then the UE should insert the previously used GRUU value in the Contact header as specified in draft-ietf-sip-gruu [93].

If the response includes a Contact header, and the response is not sent within an existing dialog, the Contact header is populated as follows:

1) if a public GRUU value (pub-gruu) has been saved associated with the public user identity from the P-Called-Party-ID header, and the UE does not indicate privacy of the P-Asserted-Identity, then the UE should insert the public GRUU (pub-gruu) value as specified in draft-ietf-sip-gruu [93];
2) if a temporary GRUU value (temp-gruu) has been saved associated with the public user identity from the P-Called-Party-ID header, and the UE does indicate privacy of the P-Asserted-Identity, then should insert the temporary GRUU (temp-gruu) value in the Contact header as specified in draft-ietf-sip-gruu [93];

NOTE 4: The above items 1 and 2 are mutually exclusive.
3) if the request is related to an IMS communication service that requires the use of an ICSI then the UE shall include in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 and RFC 3841 [56B] the ICSI value (coded as specified in subclause 7.2A.8.2), for the IMS communication service. The UE may also include other ICSI values that the UE is prepared to use for all dialogs with the originating UE(s); and
4) if the request is related to an IMS application that is supported by the UE, then the UE may include the IARI value (coded as specified in subclause 7.2A.9.2), that is related to any IMS application that applies for the dialog, in a g.3gpp.iari-ref feature tag as defined in subclause 7.9.3 and RFC 3841 [56B].

After the dialog is established the UE may change the dialog capabilities (e.g. add a media or request a supplementary service) if defined for the IMS communication service as identified by the ICSI value using the same dialog. Otherwise, the UE shall initiate a new initial request to the other user.

If the UE did not insert a GRUU in the Contact header, then the UE shall include the protected server port in the address in the Contact header.

If available to the UE (as defined in the access technology specific annexes for each access technology), the UE shall insert a P-Access-Network-Info header into any response to a request for a dialog, any subsequent request (except CANCEL requests) or response (except CANCEL responses) within a dialog or any response to a standalone method (see subclause 7.2A.4).

5.1.3 Call initiation - UE-originating case

5.1.3.1 Initial INVITE request

Upon generating an initial INVITE request, the UE shall include the Accept header with "application/sdp", the MIME type associated with the 3GPP IMS XML body (see subclause 7.6.1) and any other MIME type the UE is willing and capable to accept.

The "integration of resource management and SIP" extension is hereafter in this subclause referred to as "the precondition mechanism" and is defined in RFC 3312 [30] as updated by RFC 4032 [64].

The preconditions mechanism should be supported by the originating UE.
The UE may initiate a session without the precondition mechanism if the originating UE does not require local resource reservation.

NOTE 1: The originating UE can decide if local resource reservation is required based on e.g. application requirements, current access network capabilities, local configuration, etc.

In order to allow the peer entity to reserve its required resources, an originating UE supporting the precondition mechanism should make use of the precondition mechanism, even if it does not require local resource reservation.

Upon generating an initial INVITE request using the precondition mechanism, the UE shall:

- indicate the support for reliable provisional responses and specify it using the Supported header mechanism;and
- indicate the support for the preconditions mechanism and specify it using the Supported header mechanism.

Upon generating an initial INVITE request using the precondition mechanism, the UE should not indicate the requirement for the precondition mechanism by using the Require header mechanism.

NOTE 2: If an UE chooses to require the precondition mechanism, i.e. if it indicates the "precondition" option tag within the Require header, the interworking with a remote UE, that does not support the precondition mechanism, is not described in this specification.

NOTE 3: Table A. 4 specifies that UE support of forking is required in accordance with RFC 3261 [26]. The UE can accept or reject any of the forked responses, for example, if the UE is capable of supporting a limited number of simultaneous transactions or early dialogs.

Upon successful reservation of local resources the UE shall confirm the successful resource reservation (see subclause 6.1.2) within the next SIP request.

NOTE 4: In case of the precondition mechanism being used on both sides, this confirmation will be sent in either a PRACK request or an UPDATE request. In case of the precondition mechanism not being supported on one or both sides, alternatively a reINVITE request can be used for this confirmation, in case the terminating UE does not support the PRACK request (as described in RFC 3262 [27]) and does not support the UPDATE request (as described in RFC 3311 [29]).

NOTE 5: If the UE supports the P-Early-Media header, upon receiving a 18x provisional response with a P-EarlyMedia header indicating authorized early media, as described in RFC 5009 [109], if the preconditions are met, the UE should, based on local configuration, present received early media to the user.

NOTE 6: If the UE supports the P-Early-Media header, upon receiving a 180 (Ringing) provisional response with a P-Early-Media header indicating authorized early media, as described in RFC 5009 [109], if the preconditions are met, and the UE presents the received early media to the user based on local configuration, the UE will not provide an indication that the invited user is being alerted.

NOTE 7: If the UE supports the P-Early-Media header and if the most recently received P-Early-Media header within the dialog includes a parameter applicable to media stream with value "inactive", then based on local configuration, the UE will provide an indication that the invited user is being alerted and stop presenting received early media to the user if requested by any previous receipt of P-Early-Media header within the dialog.

If the UE wishes to receive early media authorization indications, as described in RFC 5009 [109], it shall add the P-Early-Media header with the "supported" parameter to the INVITE request.

When a final answer is received for one of the early dialogues, the UE proceeds to set up the SIP session. The UE shall not progress any remaining early dialogues to established dialogs. Therefore, upon the reception of a subsequent final $200(\mathrm{OK})$ response for an INVITE request (e.g., due to forking), the UE shall:

1) acknowledge the response with an ACK request; and
2) send a BYE request to this dialog in order to terminate it.

Upon receiving a 488 (Not Acceptable Here) response to an initial INVITE request, the originating UE should send a new INVITE request containing SDP according to the procedures defined in subclause 6.1.

NOTE 8: An example of where a new request would not be sent is where knowledge exists within the UE, or interaction occurs with the user, such that it is known that the resulting SDP would describe a session that did not meet the user requirements.

Upon receiving a 421 (Extension Required) response to an initial INVITE request in which the precondition mechanism was not used, including the "precondition" option tag in the Require header, the originating UE shall:

- send a new INVITE request using the precondition mechanism, if the originating UE supports the precondition mechanism; and
- send an UPDATE request as soon as the necessary resources are available and a $200(\mathrm{OK})$ response for the first PRACK request has been received.

Upon receiving a 503 (Service Unavailable) response to an initial INVITE request containing a Retry-After header, then the originating UE shall not automatically reattempt the request until after the period indicated by the Retry-After header contents.

In the event the UE receives a 380 (Alternative Service) response to an INVITE request the response containing a XML body that includes an <alternative service> element with the <type> child element set to "emergency", the UE shall attempt an emergency call as described in subclause 5.1.6.

5.1.4 Call initiation - UE-terminating case

5.1.4.1 Initial INVITE request

The preconditions mechanism should be supported by the terminating UE.
The handling of incoming initial INVITE requests at the terminating UE is mainly dependent on the following conditions:

- the specific service requirements for "integration of resource management and SIP" extension (hereafter in this subclause known as the precondition mechanism and defined in RFC 3312 [30] as updated by RFC 4032 [64], and with the request for such a mechanism known as a precondition); and
- the UEs configuration for the case when the specific service does not require the precondition mechanism.

If an initial INVITE request is received the terminating UE shall check whether the terminating UE requires local resource reservation.

NOTE 1: The terminating UE can decide if local resource reservation is required based on e.g. application requirements, current access network capabilities, local configuration, etc.

If local resource reservation is required at the terminating UE and the terminating UE supports the precondition mechanism, and:
a) the received INVITE request includes the "precondition" option-tag in the Supported header or Require header, the terminating UE shall make use of the precondition mechanism and shall indicate a Require header with the "precondition" option-tag in any response or subsequent request it sends towards to the originating UE; or
b) the received INVITE request does not include the "precondition" option-tag in the Supported header or Require header, the terminating UE shall not make use of the precondition mechanism.

If local resource reservation is not required by the terminating UE andthe terminating UE supports the precondition mechanism and:
a) the received INVITE request includes the "precondition" option-tag in the Supported header and:

- the required resources at the originating UE are not reserved, the terminating UE shall use the precondition mechanism; or
- the required local resources at the originating UE and the terminating UE are available, the terminating UE may use the precondition mechanism;
b) the received INVITE request does not include the "precondition" option-tag in the Supported header or Require header, the terminating UE shall not make use of the precondition mechanism; or
c) the received INVITE request includes the "precondition" option-tag in the Require header, the terminating UE shall use the precondition mechanism.

NOTE 2: Table A. 4 specifies that UE support of forking is required in accordance with RFC 3261 [26].
NOTE 3: If the terminating UE does not support the precondition mechanism it will apply regular SIP session initiation procedures.

If the terminating UE requires a reliable alerting indication at the originating side, it shall send the 180 (Ringing) response reliably. If the received INVITE indicated support for reliable provisionable responses, but did not require their use, the terminating UE shall send provisional responses reliably only if the provisional response carries SDP or for other application related purposes that requires its reliable transport.

5.1.5 Call release

Void.

5.1.6 Emergency service

5.1.6.1 General

A CS and IM CN subsystem capable UE shall follow the conventions and rules specified in 3GPP TS 22.101 [1A] and 3GPP TS 23.167 [4B] to select the domain for the emergency call attempt. If the CS domain is selected, the UE shall attempt an emergency call setup according to the procedures described in 3GPP TS 24.008 [8].

The UE shall determine, whether it is currently attached to its home operator's network (e.g. HPLMN) or to a different network than its home operator's network (e.g. VPLMN) by applying access technology specific procedures described in the access technology specific annexes.

If the IM CN subsystem is selected and the UE is currently attached to its home operator's network (e.g. HPLMN) and the UE is currently registered, the UE shall attempt an emergency call as described in subclause 5.1.6.8.4.

If the IM CN subsystem is selected and the UE is currently attached to its home operator's network (e.g. HPLMN) and the UE is not currently registered, the UE shall:

1) perform an initial emergency registration, as described in subclause 5.1.6.2; and
2) attempt an emergency call as described in subclause 5.1.6.8.3.

If the IM CN subsystem is selected and the UE is attached to a different network than its home operator's network (e.g. VPLMN) and the assigned P-CSCF is located in its home operator's network (e.g. in the HPLMN), the UE shall:

1) perform an initial emergency registration, as described in subclause 5.1.6.2; and
2) attempt an emergency call as described in subclause 5.1.6.8.3.

If the IM CN subsystem is selected and the UE has no credentials the UE can make an emergency call without being registered. The UE shall attempt an emergency call as described in subclause 5.1.6.8.2.

The IP-CAN can, dependant on the IP-CAN capabilities, provide local emergency numbers to the UE which has that capability, in order for the UE to recognize these numbers as emergency call.

5.1.6.2 Initial emergency registration

When the user initiates an emergency call, if emergency registration is needed, the UE shall perform an emergency registration prior to sending the SIP request related to the emergency call.

> Editor's note: It is FFS how the UE is informed about whether the S-CSCF does not support and recognize emergency registrations, in which case the emergency registration overwrites an existing normal registration.

The UE shall have only one valid emergency registration at any given time. If the UE initiates a new emergency registration using different contact address, and the previous emergency registration has not expired, the UE shall consider the previous emergency registration as expired.

IP-CAN procedures for emergency registration are defined in 3GPP TS 23.167 [4B] and in each access technology specific annex.

When a UE performs an initial emergency registration the UE shall perform the actions as specified in subclause 5.1.1.2 with the following additions:

- the UE shall include a "sos" URI parameter in the Contact header field as described in draft-patel-ecrit-sosparameter [91A], indicating that this is an emergency registration and that the associated contact address shall be used only for emergency service.

When the UE performs an initial emergency registration and whilst this emergency registration is active, the UE shall:

- handle the emergency registration independently from any other ongoing registration to the IM CN subsystem;
- handle any signalling or media related IP-CAN for the purpose of emergency calls independently from any other established IP-CAN for IM CN subsystem related signalling or media; and
- handle all SIP signalling and all media related to the emergency call independently from any other ongoing IM CN subsystem signalling and media.

5.1.6.2A New initial emergency registration

The UE shall perform a new initial emergency registration, as specified in subclause 5.1.6.2, if the UE determines that:

- it has previously performed an emergency registration which has not yet expired; and
- it has obtained an IP address from the serving IP-CAN, as specified in subclause 9.2.1, different than the IP address used for the emergency registration.

5.1.6.3 Initial subscription to the registration-state event package

Upon receiving the 200 (OK) response to the REGISTER request that completes the emergency registration, the UE shall not subscribe to the reg event package of the public user identity specified in the REGISTER request.

5.1.6.4 User-initiated emergency reregistration

The UE shall perform user-initiated emergency reregistration as specified in subclause 5.1.1.4 if:

- half of the time for the emergency registration has expired and the UE has emergency related ongoing dialog or if standalone transactions exist; or
- the user initiates an emergency call.

The UE shall not perform user-initiated emergency reregistration in any other cases.

5.1.6.5 Authentication

When a UE performs authentication a UE shall perform the procedures as specified in subclause 5.1.1.5.

5.1.6.6 User-initiated emergency deregistration

Once the UE registers a public user identity and an associated contact address via emergency registration, the UE shall not perform user-initiated deregistration of the respective public user identity and the associated contact address.

NOTE: The UE will be deregistered when the emergency registration expires.

5.1.6.7 Network-initiated emergency deregistration

An emergency registration will not be deregistered by the network (see subclause 5.4.8.4).

5.1.6.8 Emergency session setup

5.1.6.8.1 General

The UE shall translate any user indicated emergency number as specified in 3GPP TS 22.101 [1A] to an emergency service URN, i.e. a service URN with a top-level service type of "sos" service type as specified in RFC 5031 [69]. An additional sub-service type can be added if information on the type of emergency service is known.

In the event the UE receives a 380 (Alternative Service) response to an INVITE request the response containing a XML body that includes an <alternative service> element with the <type> child element set to "emergency", the UE shall automatically send an ACK request to the P-CSCF as per normal SIP procedures and terminate the session.

NOTE 1: The UE can attempt an emergency call setup according to the procedures described in 3GPP TS 24.008 [8].

NOTE 2: Emergency numbers which the UE does not detect, will be treated as a normal call.

5.1.6.8.2 Emergency session set-up in case of no registration

When establishing an emergency session for an unregistered user, the UE shall be allowed to receive responses to emergency requests and requests inside an established emergency session on the unprotected ports. All other messages not arriving on a protected port shall be rejected or silently discarded by the UE.

Prior to establishing an emergency session for an unregistered user, the UE shall acquire a local IP address, discover a P-CSCF, and establish an IP-CAN bearer that can be used for SIP signalling. The UE shall send only the initial INVITE requests to the port advertised to the UE during the P-CSCF discovery procedure. If the UE does not receive any specific port information during the P-CSCF discovery procedure, the UE shall send the initial INVITE request to the SIP default port values as specified in RFC 3261 [26].

The UE shall apply the procedures as specified in subclause 5.1.2A.1 and subclause 5.1.3 with the following additions:

1) the UE shall set the From header field of the INVITE request to "Anonymous" as specified in RFC 3261 [26];
2) the UE shall include a Request-URI in the initial INVITE request that contains an emergency service URN, i.e. a service URN with a top-level service type of "sos" as specified in RFC 5031 [69]. An additional sub-service type can be added if information on the type of emergency service is known;

NOTE 1: Other specifications make provision for emergency service identifiers, that are not specifically the emergency service URN, to be recognised in the UE. Emergency service identifiers which the UE does not detect will be treated as a normal call by the UE.
3) the UE shall insert in the INVITE request, a To header with:

- the same emergency service URN as in the Request URI; or
- if the UE cannot perform local dialstring interpretation for the dialled digits, a dialstring URI representing the dialled digits in accordance with RFC 4967 [103] or a tel URL representing the dialled digits;

NOTE 2: This version of this document does not provide any specified handling of a URI with the dialled digits in accordance with RFC 4967 [103] at an entity within the IM CN susbsystem. Behaviour when this is used is therefore not defined.
4) if available to the UE (as defined in the access technology specific annexes for each access technology), the UE shall include in the P-Access-Network-Info header in any request for a dialog, any subsequent request (except ACK requests and CANCEL requests) or response (except CANCEL responses) within a dialog or any request. The UE shall populate the P-Access-Network-Info header with the current point of attachment to the IP-CAN as specified for the access network technology (see subclause 7.2A.4). The P-Access-Network-Info header contains the location identifier such as the cell id, the line id or the identity of the I-WLAN access node, which is relevant for routeing the IMS emergency call;
5) the UE shall populate the P-Preferred-Identity header in the INVITE request with an equipment identifier as a SIP URI. The special details of the equipment identifier to use depends on the IP-CAN;
6) a Contact header set to include SIP URI that contains in the hostport parameter the IP address of the UE and an unprotected port where the UE will receive incoming requests belonging to this dialog. The UE shall not include either the public or temporary GRUU in the Contact header. In the Contact header, the UE shall also include the "sos" URI parameter that indicates that this contact information pertains to the emergency session, as described in draft-patel-ecrit-sos-parameter [91A];
7) a Via header set to include the IP address of the UE in the sent-by field and for the UDP the unprotected server port value where the UE will receive response to the emergency request, while for the TCP, the response is received on the TCP connection on which the emergency request was sent;
8) if the UE has its location information available, it shall include the location information in the INVITE request in the following way:

- if the UE is aware of the URI that points to where the UE's location is stored, include the URI in the Geolocation header in accordance with draft-ietf-sip-location-conveyance [89]; or
- if the geographical location information of the UE is available to the UE, include its geographical location information as PIDF location object in accordance with RFC 4119 [90] and include the location object in a message body with the content type application/pidf+xml in accordance with draft-ietf-sip-locationconveyance [89]. The Geolocation header is set to a Content ID in accordance with draft-ietf-sip-locationconveyance [89]; and

9) if the UE has no geographical location information available, the UE shall not include any geographical location information as specified in draft-ietf-sip-location-conveyance [89] in the INVITE request.

NOTE 3: It is suggested that UE's only use the option of providing a URI when the domain part belongs to the current P-CSCF or S-CSCF provider. This is an issue on which the network operator needs to provide guidance to the end user. A URI that is only resolvable to the UE which is making the emergency call is not desirable.

NOTE 4: During the dialog, the points of attachment to the IP-CAN of the UE can change (e.g. UE connects to different cells). The UE will populate the P-Access-Network-Info header in any request or response within a dialog with the current point of attachment to the IP-CAN (e.g. the current cell information).

The UE shall build a proper preloaded Route header value for all new dialogs. The UE shall build a Route header value containing only the P-CSCF URI (containing the unprotected port number and the IP address or the FQDN learnt through the P-CSCF discovery procedures).

When a SIP transaction times out, i.e. timer B, timer F or timer H expires at the UE, the UE may behave as if timer F expired, as described in subclause 5.1.1.4.

NOTE 5: It is an implementation option whether these actions are also triggered by other means.
NOTE 6: A number of headers can reveal information about the identity of the user. Where privacy is required, implementers should also give consideration to other headers that can reveal identity information. RFC 3323 [33] subclause 4.1 gives considerations relating to a number of headers.

NOTE 7: RFC 3261 [26] provides for the use of the Priority header field with a suggested value of "emergency". It is not precluded that emergency sessions contain this value, but such usage will have no impact on the processing within the IM CN subsystem.

5.1.6.8.3 Emergency session set-up within an emergency registration

After a successful initial emergency registration, the UE shall apply the procedures as specified in subclauses 5.1.2A, 5.1.3 and 5.1.4 with the following additions:

1) the UE shall insert in the INVITE request, a From header that includes the public user identity registered via emergency registration or the tel URI associated with the public user identity registered via emergency registration, as described in subclause 4.2;
2) the UE shall include a Request URI in the INVITE request that contains an emergency service URN, i.e. a service URN with a top-level service type of "sos" as specified in RFC 5031 [69]. An additional sub-service type can be added if information on the type of emergency service is known;
3) the UE shall insert in the INVITE request, a To header with:

- the same emergency service URN as in the Request URI; or
- if the UE cannot perform local dialstring interpretation for the dialled digits, a dialstring URI representing the dialled digits in accordance with RFC 4967 [103] or a tel URL representing the dialled digits;

NOTE 1: This version of this document does not provide any specified handling of a URI with the dialled digits in accordance with RFC 4967 [103] at an entity within the IM CN susbsystem. Behaviour when this is used is therefore not defined.
4) if available to the UE, and if defined for the access type as specified in subclause 7.2A.4, the P-Access-NetworkInfo header shall contain a location identifier such as the cell id, line id or the identity of the I-WLAN access node, which is relevant for routeing the IMS emergency call;

NOTE 2: The IMS emergency specification in 3GPP TS 23.167 [4B] describes several methods how the UE can get its location information from the access network or from a server. Such methods are not in the scope of this specification.
5) the UE shall insert in the INVITE request, a P-Preferred-Identity header that includes the public user identity registered via emergency registration or the tel URI associated with the public user identity registered via emergency registration as described in subclause 4.2;
6) the UE shall include a Contact header in the INVITE request that contains a "sos" URI parameter that indicates that this is an emergency session, as described in draft-patel-ecrit-sos-parameter [91A];

Editor's note: It is FFS whether the URI parameter is added when the contact address is a GRUU.
7) if the UE has its location information available, it shall include it in the INVITE request in the following way:

- if the UE is aware of the URI that points to where the UE's location is stored, include the URI in the Geolocation header in accordance with draft-ietf-sip-location-conveyance [89]; or
- if the geographical location information of the UE is available to the UE, include its geographical location information as PIDF location object in accordance with RFC 4119 [90] and include the location object in a message body with the content type application/pidf +xml in accordance with draft-ietf-sip-locationconveyance [89]. The Geolocation header is set to a Content ID in accordance with draft-ietf-sip-locationconveyance [89]; and

NOTE 3: It is suggested that UE's only use the option of providing a URI when the domain part belongs to the current P-CSCF or S-CSCF provider. This is an issue on which the network operator needs to provide guidance to the end user. A URI that is only resolvable to the UE which is making the emergency call is not desirable.
8) if the UE has no geographical location information available, the UE shall not include any geographical location information as specified in draft-ietf-sip-location-conveyance [89] in the INVITE request.

NOTE 4: RFC 3261 [26] provides for the use of the Priority header field with a suggested value of "emergency". It is not precluded that emergency sessions contain this value, but such usage will have no impact on the processing within the IM CN subsystem.

Upon receiving a 380 (Alternative Service) response to the INVITE request, with the 380 (Alternative Service) response including a IM CN subsystem XML body, with the type element set to "emergency" and the action element set to "emergency-registration" the UE shall:

- perform an initial emergency registration using a different VPLMN if available, as described in subclause 5.1.6.2 and if the new emergency registration succeeded, attempt an emergency call as described in this subclause;
- attempt emergency call via CS domain according to the procedures described in 3GPP TS 24.008 [8], if available and not already tried; or
- perform implementation specific actions to establish the emergency call.

5.1.6.8.4 Emergency session setup within a non-emergency registration

The UE shall apply the procedures as specified in subclauses 5.1.2A, 5.1.3 and 5.1.4 with the following additions:

1) the UE shall include a Request URI in the INVITE request that contains an emergency service URN, i.e. a service URN with a top-level service type of "sos" as specified in RFC 5031 [69]. An additional sub-service type can be added if information on the type of emergency service is known;
2) the UE shall insert in the INVITE request, a To header with:

- the same emergency service URN as in the Request URI; or
- if the UE cannot perform local dialstring interpretation for the dialled digits, a dialstring URI representing the dialled digits in accordance with RFC 4967 [103] or a tel URL representing the dialled digits;

NOTE 1: This version of this document does not provide any specified handling of a URI with the dialled digits in accordance with RFC 4967 [103] at an entity within the IM CN susbsystem. Behaviour when this is used is therefore not defined.
3) the UE shall insert in the INVITE request, a From header that includes the public user identity or the tel URI associated with the public user identity, as described in subclause 4.2;
4) if available to the UE, and if defined for the access type as specified in subclause 7.2A.4, the P-Access-NetworkInfo header shall contain a location identifier such as the cell id, line id or the identity of the I-WLAN access node, which is relevant for routeing the IMS emergency call;

NOTE 2: 3GPP TS 23.167 [4B] describes several methods how the UE can get its location information from the access network or from a server. Such methods are not in the scope of this specification.
5) the UE shall insert in the INVITE request a P-Preferred-Identity that includes the public user identity or the tel URI associated with the public user identity as described in subclause 4.2;
6) if the UE has its location information available, it shall include it in the INVITE request in the following way:

- if the UE is aware of the URI that points to where the UE's location is stored, include the URI in the Geolocation header in accordance with draft-ietf-sip-location-conveyance [89]; or
- if the geographical location information of the UE is available to the UE, include its geographical location information as PIDF location object in accordance with RFC 4119 [90] and include the location object in a message body with the content type application/pidf+xml in accordance with draft-ietf-sip-locationconveyance [89]. The Geolocation header is set to a Content ID in accordance with draft-ietf-sip-locationconveyance [89]; and

7) if the UE has no geographical location information available, the UE shall not include any geographical location information as specified in draft-ietf-sip-location-conveyance [89] in the INVITE request; and

NOTE 3: It is suggested that UE's only use the option of providing a URI when the domain part belongs to the current P-CSCF or S-CSCF provider. This is an issue on which the network operator needs to provide guidance to the end user. A URI that is only resolvable to the UE which is making the emergency call is not desirable.
8) if a public GRUU value (pub-gruu) has been saved associated with the public user identity to be used for this request, and the UE does not indicate privacy of the P-Asserted-Identity, then insert the public GRUU (pubgruu) value in the Contact header as specified in draft-ietf-sip-gruu [93]; otherwise the UE shall include the protected server port in the address in the Contact header; and
9) the UE shall insert in the Contact header the "sos" URI parameter that indicates that this contact information pertains to the emergency session, as described in draft-patel-ecrit-sos-parameter [91A].

Editor's note: It is FFS whether the URI parameter is added when the contact address is a GRUU.
Upon receiving a 380 (Alternative Service) response to the INVITE request, with the 380 (Alternative Service) response include a IM CN subsystem XML body, with the type element set to "emergency" and the action element set to "emergency-registration" the UE shall:

- perform an initial emergency registration, as described in subclause 5.1.6.2 and attempt an emergency call as described in subclause 5.1.6.8.3;
- attempt emergency call via CS domain according to the procedures described in 3GPP TS 24.008 [8], if available and not already tried; or
- perform implementation specific actions to establish the emergency call.

NOTE 4: How the UE indicates that no location is available when the UE does not support draft-ietf-sip-locationconveyance [89] is not specified in this version of the specification.

NOTE 5: RFC 3261 [26] provides for the use of the Priority header field with a suggested value of "emergency". It is not precluded that emergency sessions contain this value, but such usage will have no impact on the processing within the IM CN subsystem.

5.1.6.9 Emergency session release

Normal call release procedure shall apply, as specified in the subclause 5.1.5.

5.1.7 Void

5.2 Procedures at the P-CSCF

5.2.1 General

Subclause 5.2.2 through subclause 5.2.9 define P-CSCF procedures for SIP that do not relate to emergency. All SIP requests are first screened according to the procedures of subclause 5.2.10 to see if they do relate to an emergency.

The P-CSCF shall support the Path and Service-Route headers.
NOTE 1: The Path header is only applicable to the REGISTER request and its 200 (OK) response. The ServiceRoute header is only applicable to the 200 (OK) response of REGISTER request.

When the P-CSCF sends any request or response to the UE, before sending the message the P-CSCF shall:

- remove the P-Charging-Function-Addresses and P-Charging-Vector headers, if present.

When the P-CSCF receives any request or response from the UE, the P-CSCF shall:

- remove the P-Charging-Function-Addresses and P-Charging-Vector headers, if present. Also, the P-CSCF shall ignore any data received in the P-Charging-Function-Addresses and P-Charging-Vector headers; and
- may insert previously saved values into the P-Charging-Function-Addresses and P-Charging-Vector headers before forwarding the message.

NOTE 2: When the P-CSCF is located in the visited network, then it will not receive the P-Charging-FunctionAddresses header from the S-CSCF, IBCF, or I-CSCF. Instead, the P-CSCF discovers charging function addresses by other means not specified in this document.

When the P-CSCF receives any request or response containing the P-Media-Authorization header, the P-CSCF shall remove the header.

NOTE 3: The P-CSCF will integrity protect all SIP messages sent to the UE outside of the registration and authentication procedures by using a security association. The P-CSCF will discard any SIP message that is not protected by using a security association and is received outside of the registration and authentication procedures. The integrity and confidentiality protection and checking requirements on the P-CSCF within the registration and authentication procedures are defined in subclause 5.2.2.

In case IPsec is employed as security mechanism and an IPsec security association is established and the UE has requested symmetric response routing via an "rport" parameter in the topmost Via header field, in accordance with RFC 3581 [56A], the P-CSCF shall use the ports used for establishing the IPsec security associaton to forward responses, i.e. the P-CSCF shall ignore the request for symmetric response routeing.

With the exception of 305 (Use Proxy) responses, the P-CSCF shall not recurse on 3xx responses.
NOTE 4: If the P-CSCF is connected to a PDF the requirements for this interconnection is specified in the Release 6 version of this specification.

The P-CSCF may add, remove, or modify, the P-Early-Media header within forwarded SIP requests and responses according to procedures in RFC 5009 [109].

NOTE 5: The P-CSCF can use the header for the gate control procedures, as described in 3GPP TS 29.214 [13D]. In the presence of early media for multiple dialogs due to forking, if the P-CSCF is able to identify the media associated with a dialog, (i.e., if symmetric RTP is used by the UE and and the P-CSCF can use the remote SDP information to determine the source of the media) the P-CSCF can selectively open the gate corresponding to an authorized early media flow for the selected media.

In case a device performing address and/or port number conversions is provided by a $\mathrm{NA}(\mathrm{P}) \mathrm{T}$ or $\mathrm{NA}(\mathrm{P}) \mathrm{T}-\mathrm{PT}$ controlled by the P-CSCF, the P-CSCF may need to modify the SIP contents according to the procedures described in annex F. In case a device performing address and/or port number conversions is provided by a NA(P)T or NA(P)T-PT not controlled by the P-CSCF, the P-CSCF may need to modify the SIP contents according to the procedures described in annex K if both a reg-id and instance ID parameter are present in the received contact header as described in draft-ieftoutbound [92].

5.2.2 Registration

The P-CSCF shall be prepared to receive only the unprotected REGISTER requests on the SIP default port values as specified in RFC 3261 [26]. The P-CSCF shall also be prepared to receive only the unprotected REGISTER requests on the port advertised to the UE during the P-CSCF discovery procedure.

When the P-CSCF receives a REGISTER request from the UE, the P-CSCF shall:

1) insert a Path header in the request including an entry containing:

- the SIP URI identifying the P-CSCF;
- an indication that requests routed in this direction of the path (i.e. from the S-CSCF towards the P-CSCF) are expected to be treated as for the UE-terminating case. This indication may e.g. be in a parameter in the URI, a character string in the user part of the URI, or be a port number in the URI;

2) insert a Require header containing the option tag "path";
3) insert a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17] and a type 1 orig-ioi parameter. The P-CSCF shall set the type 1 orig-ioi parameter to a value that identifies the sending network of the request. The P-CSCF shall not include the type 1 term-ioi parameter;
4) insert the parameter "integrity-protected" (described in subclause 7.2A.2) with a value "yes" into the Authorization header field in case the REGISTER request was either received protected with the security association created during an ongoing authentication procedure and includes an authentication challenge response (i.e. RES parameter), or it was received on the security association created during the last successful authentication procedure, otherwise insert the parameter with the value "no";
5) in case the REGISTER request was received without protection, then check the existence of the Security-Client header. If the header is present, then remove and store it. If the header is not present, then the P-CSCF shall return a suitable 4 xx response;
6) in case the REGISTER request was received protected, then the P-CSCF shall:
a) check the security association which protected the request. If the security association is a temporary one, then the request is expected to contain a Security-Verify header in addition to a Security-Client header. If there are no such headers, then the P-CSCF shall return a suitable 4 xx response. If there are such headers, then the P CSCF shall compare the content of the Security-Verify header with the content of the Security-Server header sent earlier and the content of the Security-Client header with the content of the Security-Client header received in the challenged REGISTER. If those do not match, then there is a potential man-in-the-middle attack. The request should be rejected by sending a suitable 4 xx response. If the contents match, the P-CSCF shall remove the Security-Verify and the Security-Client header;
b) if the security association the REGISTER request was received on, is an already established one, then:

- the P-CSCF shall remove the Security-Verify header if it is present;
- a Security-Client header containing new parameter values is expected. If this header or any required parameter is missing, then the P-CSCF shall return a suitable 4xx response;
- the P-CSCF shall remove and store the Security-Client header before forwarding the request to the SCSCF; and
c) check if the private user identity conveyed in the Authorization header of the protected REGISTER request is the same as the private user identity which was previously challenged or authenticated. If the private user identities are different, the P-CSCF shall reject the REGISTER request by returning a 403 (Forbidden) response;

7) insert a P-Visited-Network-ID header field, with the value of a pre-provisioned string that identifies the visited network at the home network;
8) if the P-CSCF is located in the visited network, and local policy requires the application of IBCF capabilities in the visited network towards the home network, forward the request to an IBCF in the visited network

If the selected exit point:

- does not respond to the REGISTER request and its retransmissions by the P-CSCF; or
- sends back a 3xx response or 480 (Temporarily Unavailable) response to a REGISTER request;
the P-CSCF shall select a new exit point and forward the original REGISTER request.
NOTE 1: The list of the exit points can be either obtained as specified in RFC 3263 [27A] or provisioned in the PCSCF.

If the P-CSCF fails to forward the REGISTER request to any exit point, the P-CSCF shall send back a 504 (Server Time-Out) response to the user, in accordance with the procedures in RFC 3261 [26] unless local policy allows omitting the exit point; and

NOTE 2: If the P-CSCF forwards the request to an IBCF in the visited network, the IBCF can determine the entry point of the home network, using the same mechanisms as described in NOTE 1 above. In that case the P CSCF does not need to determine the entry point of the home network.
9) determine the entry point of the home network and forward the request to that entry point.

If the selected entry point:

- does not respond to the REGISTER request and its retransmissions by the P-CSCF; or
- sends back a $3 x x$ response or 480 (Temporarily Unavailable) response to a REGISTER request;
the P-CSCF shall select a new entry point and forward the original REGISTER request.
NOTE 3: The list of the entry points can be either obtained as specified in RFC 3263 [27A] or provisioned in the PCSCF.

If the P-CSCF fails to forward the REGISTER request to any entry point, the P-CSCF shall send back a 504 (Server Time-Out) response to the user, in accordance with the procedures in RFC 3261 [26].

When the P-CSCF receives a 401 (Unauthorized) response to a REGISTER request, the P-CSCF shall:

1) delete any temporary set of security associations established towards the UE;
2) remove the CK and IK values contained in the 401 (Unauthorized) response and bind them to the proper private user identity and to the temporary set of security associations which will be setup as a result of this challenge. The P-CSCF shall forward the 401 (Unauthorized) response to the UE if and only if the CK and IK have been removed;
3) insert a Security-Server header in the response, containing the P-CSCF static security list and the parameters needed for the security association setup, as specified in Annex H of 3GPP TS 33.203 [19]. The P-CSCF shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The P-CSCF shall support the IPsec layer algorithms for integrity and confidentiality protection as defined in 3GPP TS 33.203 [19] and shall announce support for them according to the procedures defined in RFC 3329 [48];
4) set up the temporary set of security associations with a temporary SIP level lifetime between the UE and the PCSCF for the user identified with the private user identity. For further details see 3GPP TS 33.203 [19] and

RFC 3329 [48]. The P-CSCF shall set the temporary SIP level lifetime for the temporary set of security associations to the value of reg-await-auth timer; and
5) send the 401 (Unauthorized) response to the UE using the security association with which the associated REGISTER request was protected, or unprotected in case the REGISTER request was received unprotected.

NOTE 4: The challenge in the 401 (Unauthorized) response sent back by the S-CSCF to the UE as a response to the REGISTER request is piggybacked by the P-CSCF to insert the Security-Server header field in it. The SCSCF authenticates the UE, while the P-CSCF negotiates and sets up two pairs of security associations with the UE during the same registration procedure. For further details see 3GPP TS 33.203 [19].

When the P-CSCF receives a $200(\mathrm{OK})$ response to a REGISTER request, the P-CSCF shall check the value of the Expires header field and/or Expires parameter in the Contact header. When the value of the Expires header field and/or expires parameter in the Contact header is different than zero, then the P-CSCF shall:

1) save the list of Service-Route headers preserving the order. The P-CSCF shall store this list during the entire registration period of the respective public user identity. The P-CSCF shall use this list to validate the routeing information in the requests originated by the UE. If this registration is a reregistration, the P-CSCF shall replace the already existing list of Service-Route headers with the new list;
2) associate the Service-Route header list with the registered public user identity;
3) store the public user identities found in the P-Associated-URI header value, including any associated display names, and associate them to the registered public user identity, i.e. the registered public user identity and its associated set of implicitly registered public user identities;
4) store the default public user identity, including its associated display name, if provided, for use with procedures for the P-Asserted-Identity header. The default public user identity is the first on the list of URIs present in the P-Associated-URI header;

NOTE 5: There can be more than one default public user identity stored in the P-CSCF, as the result of the multiple registrations of public user identities.
5) store the values received in the P-Charging-Function-Addresses header;
6) if a term-ioi parameter is received in the P-Charging-Vector header, store the value of the received term-ioi parameter;

NOTE 6: Any received term-ioi parameter will be a type 1 term-ioi. The type 1 term-ioi identifies the home network of the registered user.
7) if an existing set of security association is available, set the SIP level lifetime of the security association to the longest of either the previously existing security association lifetime, or the lifetime of the just completed registration plus 30 seconds;
8) if a temporary set of security associations exists, change the temporary set of security associations to a newly established set of security associations, i.e. set its SIP level lifetime to the longest of either the previously existing set of security associations SIP level lifetime, or the lifetime of the just completed registration plus 30 seconds; and
9) protect the $200(\mathrm{OK})$ response to the REGISTER request within the same security association to that in which the request was protected.

When receiving a SIP message (including REGISTER requests) from the UE over the newly established set of security associations that have not yet been taken into use, the P-CSCF shall:

1) reduce the SIP level lifetime of the old set of security associations towards the same UE to $64 * \mathrm{~T} 1$ (if currently longer than $64 * \mathrm{~T} 1$); and
2) use the newly established set of security associations for further messages sent towards the UE as appropriate (i.e. take the newly established set of security associations into use).

NOTE 7: In this case, the P-CSCF will send requests towards the UE over the newly established set of security associations. Responses towards the UE that are sent via UDP will be sent over the newly established set of security associations. Responses towards the UE that are sent via TCP will be sent over the same set of security associations that the related request was received on.

NOTE 8: When receiving a SIP message (including REGISTER requests) from the UE over a set of security associations that is different from the newly established set of security associations, the P-CSCF will not take any action on any set of security associations.

When the SIP level lifetime of an old set of security associations is about to expire, i.e. their SIP level lifetime is shorter than $64 * \mathrm{~T} 1$ and a newly established set of security associations has not been taken into use, the P-CSCF shall use the newly established set of security associations for further messages towards the UE as appropriate (see NOTE 5).

When sending the 200 (OK) response for a REGISTER request that concludes a re-authentication, the P-CSCF shall:

1) keep the set of security associations that was used for the REGISTER request that initiated the re-authentication;
2) keep the newly established set of security associations created during this authentication;
3) delete, if existing, any other set of security associations towards this UE immediately; and
4) go on using for further requests sent towards the UE the set of security associations that was used to protect the REGISTER request that initiated the re-authentication.

When sending the 200 (OK) respone for a REGISTER request that concludes an initial authentication, i.e. the REGISTER request that initiated the authentication was received unprotected, the P-CSCF shall:

1) keep the newly established set of security associations created during this authentication;
2) delete, if existing, any other set of security associations towards this UE immediately; and
3) use the kept newly established set of security associations for further messages sent towards the UE.

NOTE 9: The P-CSCF will maintain two Route header lists. The first Route header list - created during the registration procedure - is used only to validate the routeing information in the initial requests that originate from the UE. This list is valid during the entire registration of the respective public user identity. The second Route list - constructed from the Record Route headers in the initial INVITE and associated response - is used during the duration of the call. Once the call is terminated, the second Route list is discarded.

The P-CSCF shall delete any security association from the IPsec database when their SIP level lifetime expires.
The handling of the security associations at the P-CSCF is summarized in table 5.2.2-1.

Table 5.2.2-1: Handling of security associations at the P-CSCF

	Temporary set of security associations	Newly established set of security associations	Old set of security associations
SIP message received over newly established set of security associations that have not yet been taken into use	No action	Take into use	Reduce SIP level lifetime to 64^{*} T1, if lifetime is larger than 64*T1
SIP message received over old set of security associations	No action	No action	No action
Old set of security associations currently in use will expire in 64*T1	No action	Take into use	No action
Sending an authorization challenge within a 401 (Unauthorized) response for a REGISTER request	Create Remove any previously existing temporary set of security associations	No action	No action
Sending 200 (OK) response for REGISTER request that concludes re-authentication	Change to a newly established set of security associations	Convert to and treat as old set of security associations (see next column)	Continue using the old set of security associations over which the REGISTER request, that initiated the re- authentication was received. Delete all other old sets of security associations immediately
Sending 200 (OK) response for REGISTER request that concludes initial authentication	Change to a newly established set of security associations and take into use immediately	Convert to old set of security associations, i.e. delete	Delete

5.2.3 Subscription to the user's registration-state event package

Upon receipt of a $200(\mathrm{OK})$ response to the initial REGISTER request, the P-CSCF shall:

1) generate a SUBSCRIBE request in accordance with RFC 3680 [43], with the following elements:

- a Request-URI set to the resource to which the P-CSCF wants to be subscribed to, i.e. to a SIP URI that contains the default public user identity of the user;
- a From header set to the P-CSCF's SIP URI;
- a To header, set to a SIP URI that contains the default public user identity of the user;
- an Event header set to the "reg" event package;
- an Expires header set to a value higher then the Expires header indicated in the 200 (OK) response to the REGISTER request;
- a P-Asserted-Identity header set to the SIP URI of the P-CSCF, which was inserted into the Path header during the registration of the user to whose registration state the P-CSCF subscribes to; and
- a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17];

2) if the P-CSCF is located in the visited network, and local policy requires the application of IBCF capabilities in the visited network towards the home network, then the P-CSCF shall forward the request to an IBCF in the visited network; and
3) determine the entry point of the home network (e.g., by using DNS services) and send the SUBSCRIBE request to that entry point, according to the procedures of RFC 3261 [26].

NOTE: The subscription to reg event package is done once per private user identity.
Upon receipt of a 2 xx response to the SUBSCRIBE request, the P-CSCF shall store the information for the so established dialog and the expiration time as indicated in the Expires header of the received response.

If continued subscription is required the P-CSCF shall automatically refresh the subscription by the reg event package 600 seconds before the expiration time for a previously registered public user identity, either 600 seconds before the expiration time if the initial subscription was for greater than 1200 seconds, or when half of the time has expired if the initial subscription was for 1200 seconds or less. If a SUBSCRIBE request to refresh a subscription fails with a non-481 response, the P-CSCF shall still consider the original subscription valid for the duration of the most recently known "Expires" value according to RFC 3265 [28]. Otherwise, the P-CSCF shall consider the subscription invalid and start a new initial subscription according to RFC 3265 [28].

5.2.4 Registration of multiple public user identities

Upon receipt of a 2 xx response to the SUBSCRIBE request the P-CSCF shall maintain the generated dialog (identified by the values of the Call-ID header, and the value of the tags in To and From headers).

Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package of the user, the P-CSCF shall perform the following actions:

1) for each public user identity whose state attribute in the <registration> element is set to "active", i.e. registered; and

- the state attribute within the <contact> sub-element is set to "active"; and
- the value of the <uri> sub-element inside the <contact> sub-element is set to the contact address of the user's UE; and
- the event attribute of that <contact> sub-element(s) is set to "registered" or "created";
the P-CSCF shall:
- bind the indicated public user identity as registered to the contact information of the respective user; and
- add the public user identity to the list of the public user identities that are registered for the user;

2) for each public user identity whose state attribute in the <registration> element is set to "active", i.e. registered: and

- the state attribute within the <contact> sub-element is set to "terminated";
- the value of the <uri> sub-element inside the <contact> sub-element is set to the contact address of the user's UE; and
- the event attribute of that <contact> sub-element(s) is set to "deactivated", "expired", "probation", "unregistered", or "rejected";
the P-CSCF shall consider the indicated public user identity as deregistered for this user, and shall release all stored information for the public user identity bound to the respective user; and

3) for each public user identity whose state attribute in the <registration> element is set to "terminated", i.e. deregistered; and

- the value of the <uri> sub-element inside the <contact> sub-element is set to the contact address of the user's UE; and
- the event attribute of that <contact> sub-element(s) is set to "deactivated", "expired", "probation", "unregistered", or "rejected";
the P-CSCF shall consider the indicated public user identity as deregistered for this UE, and shall release all stored information for these public user identity bound to the respective user and remove the public user identity from the list of the public user identities that are registered for the user.

If all public user identities, that were registered by the user using its private user identity, have been deregistered, the P CSCF, will receive from the S-CSCF a NOTIFY request that may include the Subscription-State header set to "terminated", as described in subclause 5.4.2.1.2. If the Subscription-State header was not set to "terminated", the PCSCF may either unsubscribe to the reg event package of the user or let the subscription expire.

NOTE 1: Upon receipt of a NOTIFY request with the Subscription-State header set to "terminated", the P-CSCF considers the subscription to the reg event package terminated (i.e. as if the P-CSCF had sent a SUBSCRIBE request with an Expires header containing a value of zero).

NOTE 2: There may be public user identities which are implicitly registered within the registrar (S-CSCF) of the user upon registration of one public user identity. The procedures in this subclause provide a mechanism to inform the P-CSCF about these implicitly registered public user identities.

5.2.5 Deregistration

5.2.5.1 User-initiated deregistration

When the P-CSCF receives a 200 (OK) response to a REGISTER request (sent according to subclause 5.2.2) sent by this UE, it shall check the value of the Expires header field and/or expires parameter in the Contact header field. When the value of the Expires header field or expires parameter equals zero, then the P-CSCF shall:

1) remove the public user identity found in the To header field, and all the associated public user identities, from the registered public user identities list belonging to this UE and all related stored information; and
2) check if the UE has left any other registered public user identity. When all of the public user identities that were registered by this UE are deregistered, the P-CSCF shall delete the security associations towards the UE, after the server transaction (as defined in RFC 3261 [26]) pertaining to this deregistration terminates.

NOTE 1: Upon receipt of a NOTIFY request with all <registration> element(s) having their state attribute set to "terminated" (i.e. all public user identities are deregistered) and the Subscription-State header set to "terminated", the P-CSCF considers the subscription to the reg event package terminated (i.e. as if the PCSCF had sent a SUBSCRIBE request with an Expires header containing a value of zero).

NOTE 2: There is no requirement to distinguish a REGISTER request relating to a registration from that relating to a deregistration. For administration reasons the P-CSCF may distinguish such requests, however this has no impact on the SIP procedures.

NOTE 3: When the P-CSCF has sent the 200 (OK) response for the REGISTER request of the only public user identity currently registered with its associated set of implicitly registered public user identities (i.e. no other is registered), the P-CSCF removes the security association established between the P-CSCF and the UE. Therefore further SIP signalling (e.g. the NOTIFY request containing the deregistration event) will not reach the UE.

5.2.5.2 Network-initiated deregistration

Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package of the UE, as described in subclause 5.2.3, including one or more <registration> element(s) which were registered by the UE with either:

- the state attribute set to "terminated"; or
- the state attribute set to "active" and the state attribute within the <contact> sub-element belonging to this UE set to "terminated", and the event attribute within the <contact> sub-element belonging to this UE set to "rejected" or "deactivated";
the P-CSCF shall remove all stored information for these public user identities for this UE and remove these public user identities from the list of the public user identities that are registered for the user.

Upon receipt of a NOTIFY request with all <registration> element(s) having their state attribute set to "terminated" (i.e. all public user identities are deregistered) and the Subscription-State header set to "terminated" or when all public user identities of the UE have been deregistered, the P-CSCF shall shorten the security associations towards the UE.

NOTE 1: The security association between the P-CSCF and the UEis shortened to a value that will allow the NOTIFY request containing the deregistration event to reach the UE.

NOTE 2: When the P-CSCF receives the NOTIFY request with Subscription-State header containing the value of "terminated", the P-CSCF considers the subscription to the reg event package terminated (i.e. as if the PCSCF had sent a SUBSCRIBE request to the S-CSCF with an Expires header containing a value of zero).

5.2.6 General treatment for all dialogs and standalone transactions excluding the REGISTER method

5.2.6.1 Introduction

The procedures of subclause 5.2.6 and its subclauses are general to all requests and responses, except those for the REGISTER method.

5.2.6.2 Determination of UE-originated or UE-terminated case

Upon receipt of an initial request or a target refresh request or a stand-alone transaction, the P-CSCF shall:

- perform the procedures for the UE-terminating case as described in subclause 5.2.6.4 if the request makes use of the information for UE-terminating calls, which was added to the Path header entry of the P-CSCF during registration (see subclause 5.2.2), e.g. the message is received at a certain port or the topmost Route header contains a specific user part or parameter;
- perform the procedures for the UE-originating case as described in subclause 5.2.6.3 if this information is not used by the request.

5.2.6.3 Requests initiated by the UE

When the P-CSCF receives from the UE an initial request for a dialog or a request for a standalone transaction, and the request contains a P-Preferred-Identity header that matches one of the registered public user identities, the P-CSCF shall identify the initiator of the request by that public user identity.

When the P-CSCF receives from the UE an initial request for a dialog or a request for a standalone transaction, and the request contains a P-Preferred-Identity header that does not match one of the registered public user identities, or does not contain a P-Preferred-Identity header, the P-CSCF shall identify the initiator of the request by a default public user identity. If there is more than one default public user identity available, the P-CSCF shall randomly select one of them.

NOTE 1: The contents of the From header do not form any part of this decision process.
NOTE 2: The display-name portion of the P-Preferred-Identity header and the registered public user identities is not included in the comparison to determine a match.

When the P-CSCF receives from the UE an initial request for a dialog, and a Service-Route header list exists for the initiator of the request, the P-CSCF shall:

0A) remove its own SIP URI from the top of the list of Route headers;

1) verify that the resulting list of Route headers matches the list of URIs received in the Service-Route header (during the last successful registration or re-registration). This verification is done on a per URI basis, not as a whole string. If the verification fails, then the P-CSCFshall either:
a) return a 400 (Bad Request) response; the P-CSCF shall not forward the request, and shall not continue with the execution of steps 2 onwards; or
b) replace the preloaded Route header value in the request with the value of the Service-Route header received during the last $200(\mathrm{OK})$ response for the last successful registration or reregistration;
2) if the P-CSCF is located in the visited network, and local policy requires the application of IBCF capabilities in the visited network towards the home network, select an IBCF in the visited network and add the URI of the selected IBCF to the topmost Route header;

NOTE 3: It is implementation dependent as to how the P-CSCF obtains the address of the IBCF exit point.
3) add its own address to the Via header. The P-CSCF Via header entry is built in a format that contains the port number of the P-CSCF in accordance with the procedures of RFC 3261 [26], and either:
a) the P-CSCF FQDN that resolves to the IP address, or
b) the P-CSCF IP address;
4) when adding its own SIP URI to the Record-Route header, build the P-CSCF SIP URI in a format that contains the port number of the P-CSCF where it awaits subsequent requests from the called party, and either:
a) the P-CSCF FQDN that resolves to the IP address; or
b) the P-CSCF IP address;
5) remove the P-Preferred-Identity header, if present, and insert a P-Asserted-Identity header with a value, including the display name if previously stored during registration representing the initiator of the request;
6) add a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17]; and
7) if the request is an INVITE request, save the Contact, CSeq and Record-Route header field values received in the request such that the P-CSCF is able to release the session if needed;
before forwarding the request, based on the topmost Route header, in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives any 1 xx or 2 xx response to the above request, the $\mathrm{P}-\mathrm{CSCF}$ shall:

1) store the values received in the P-Charging-Function-Addresses header;
2) store the list of Record-Route headers from the received response;
3) store the dialog ID and associate it with the private user identity and public user identity involved in the session;
4) in the response rewrite its own Record Route entry to its own SIP URI that contains the protected server port number of the security association established from the UE to the P-CSCF and either:
a) the P-CSCF FQDN that resolves to the IP address of the security association established from the UE to the P-CSCF; or
b) the P-CSCF IP address of the security association established from the UE to the P-CSCF; and

NOTE 4: The P-CSCF associates two ports, a protected client port and a protected server port, with each pair of security associations. For details on the selection of the protected port values see 3GPP TS 33.203 [19].
5) if the response corresponds to an INVITE request, save the Contact, From, To and Record-Route header field values received in the response such that the P-CSCF is able to release the session if needed;
before forwarding the response to the UE in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives from the UE a target refresh request for a dialog, the P-CSCF shall:

1) verify if the request relates to a dialog in which the originator of the request is involved:
a) if the request does not relates to an existing dialog in which the originator is involved, then the P-CSCF shall answer the request by sending a 403 (Forbidden) response back to the originator. The P-CSCF will not forward the request. No other actions are required; or
b) if the request relates to an existing dialog in which the originator is involved, then the P-CSCF shall continue with the following steps;

1A) remove its own SIP URI from the top of the list of Route headers;
2) verify that the resulting list of Route headers matches the list of Record-Route headers constructed by inverting the order of the stored list of Record-Route headers and removing its Record-Route header from the list. This verification is done on a per URI basis, not as a whole string. If the verification fails, then the P-CSCF shall either:
a) return a 400 (Bad Request) response; the P-CSCF shall not forward the request, and shall not continue with the execution of steps 3 onwards; or
b) replace the Route header value in the request with the list of Record-Route headers constructed by inverting the order of the stored list of Record-Route headers and removing its Record-Route header from the list;
3) add its own address to the Via header. The P-CSCF Via header entry is built in a format that contains the port number of the P-CSCF where it awaits the responses to come, and either:
a) the P-CSCF FQDN that resolves to the IP address, or
b) the P-CSCF IP address;
4) when adding its own SIP URI to the Record-Route header, build the P-CSCF SIP URI in a format that contains the port number of the P-CSCF where it awaits subsequent requests from the called party, and either:
a) the P-CSCF FQDN that resolves to the IP address; or
b) the P-CSCF IP address; and
5) for INVITE dialogs (i.e. dialogs initiated by an INVITE request), replace the saved Contact and Cseq header filed values received in the request such that the P-CSCF is able to release the session if needed;

NOTE 5: The replaced Contact header field value is valid only if a 1 xx or 2 xx response will be received for the request. In other cases the old value is still valid.
before forwarding the request, based on the topmost Route header, in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives a 1xx or 2xx response to the above request, the P-CSCF shall:

1) rewrite the the address and port number of its own Record Route entry to the same value as for the response to the initial request for the dialog; and
2) replace the saved Contact header value received in the response such that the P-CSCF is able to release the session if needed;
before forwarding the response to the UE in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives from the UE the request for a standalone transaction, and a Service-Route header list exists for the initiator of the request, the P-CSCF shall:

0A) remove its own SIP URI from the top of the list of Route headers;

1) verify that the resulting list of Route headers matches the list of URIs received in the Service-Route header (during the last successful registration or re-registration). This verification is done on a per URI basis, not as a whole string. If the verification fails, then the P-CSCF shall either:
a) return a 400 (Bad Request) response; the P-CSCF shall not forward the request, and shall not continue with the execution of steps 3 onwards; or
b) replace the preloaded Route header value in the request with the one received during the last registration in the Service-Route header of the 200 (OK) response;
2) if the P-CSCF is located in the visited network, and local policy requires the application of IBCF capabilities in the visited network towards the home network, select an IBCF in the visited network and add the URI of the selected IBCF to the topmost Route header;

NOTE 6: It is implementation dependent as to how the P-CSCF obtains the address of the IBCF exit point.
3) remove the P-Preferred-Identity header, if present, and insert a P-Asserted-Identity header with a value, including the display name if previously stored during registration, representing the initiator of the request; and
4) add a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17];
before forwarding the request, based on the topmost Route header, in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives any response to the above request, the P-CSCF shall:

1) store the values received in the P-Charging-Function-Addresses header;
before forwarding the response to the UE in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives from the UE subsequent requests other than a target refresh request (including requests relating to an existing dialog where the method is unknown), the P-CSCF shall:
2) verify if the request relates to a dialog in which the originator of the request is involved:
a) if the request does not relates to an existing dialog in which the originator is involved, then the P-CSCF shall answer the request by sending a 403 (Forbidden) response back to the originator. The P-CSCF will not forward the request. No other actions are required; or
b) if the request relates to an existing dialog in which the originator is involved, then the P-CSCF shall continue with the following steps;

1A) remove its own SIP URI from the top of the list of Route headers;
2) verify that the resulting list of Route headers matches the list of Record-Route headers constructed by inverting the order of the stored list of Record-Route headers and removing its Record-Route header from the list. This verification is done on a per URI basis, not as a whole string. If the verification fails, then the P-CSCF shall either:
a) return a 400 (Bad Request) response; the P-CSCF shall not forward the request, and shall not continue with the execution of steps 3 onwards; or
b) replace the Route header value in the request with the list of Record-Route headers constructed by inverting the order of the stored list of Record-Route headers and removing its Record-Route header from the list;
3) for dialogs that are not INVITE dialogs, add a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17]; and
4) for INVITE dialogs, replace the saved Cseq header value received in the request such that the P-CSCF is able to release the session if needed;
before forwarding the request, (based on the topmost Route header,) in accordance with the procedures of RFC 3261 [26].

When the P-CSCF receives from the UE the request for an unknown method (that does not relate to an existing dialog), and a Service-Route header list exists for the initiator of the request, the P-CSCF shall:

1) verify that the list of URIs received in the Service-Route header (during the last successful registration or reregistration) is included, preserving the same order, as a subset of the preloaded Route headers in the received request. This verification is done on a per URI basis, not as a whole string. If the verification fails, then the P CSCF shall either:
a) return a 400 (Bad Request) response; the P-CSCF shall not forward the request, and shall not continue with the execution of steps 2 onwards; or
b) replace the Route header value in the request with the one received during the last registration in the ServiceRoute header of the 200 (OK) response;
2) if the P-CSCF is located in the visited network, and local policy requires the application of IBCF capabilities in the visited network towards the home network, then the P-CSCF shall select an IBCF in the visited network and add the URI of the selected IBCF to the topmost Route header; and

NOTE 7: It is implementation dependent as to how the P-CSCF obtains the address of the IBCF exit point.
3) remove the P-Preferred-Identity header, if present, and insert a P-Asserted-Identity header with a value, including the display name if previously stored during registration, representing the initiator of the request;
before forwarding the request, based on the topmost Route header, in accordance with the procedures of RFC 3261 [26].

5.2.6.4 Requests terminated by the UE

When the P-CSCF receives, destined for the UE, an initial request for a dialog, prior to forwarding the request, the PCSCF shall:

0) if an indication has been received from the PCRF that the signalling bearer to the UE is lost, and has not recovered, reject the request by sending 503 (Service Unavailable) response;

NOTE 1: The signalling bearer can be considered as recovered by the P-CSCF when the registration timer expires in P-CSCF and the user is de-registered from IMS, a new REGISTER request from the UE is received providing an indication to the P-CSCF that the signalling bearer to that user has become available or a P CSCF implementation dependent function which discovers that the signalling bearer is available to the UE.

1) convert the list of Record-Route header values into a list of Route header values and save this list of Route headers;
2) if the request is an INVITE request, save a copy of the Contact, CSeq and Record-Route header field values received in the request such that the P-CSCF is able to release the session if needed;
3) when adding its own SIP URI to the top of the list of Record-Route headers and save the list, build the P-CSCF SIP URI in a format that contains the protected server port number of the security association established from the UE to the P-CSCF and either:
a) the P-CSCF FQDN that resolves to the IP address of the security association established from the UE to the P-CSCF; or
b) the P-CSCF IP address of the security association established from the UE to the P-CSCF;
4) when adding its own address to the top of the received list of Via header and save the list, build the P-CSCF Via header entry in a format that contains the protected server port number of the security association established from the UE to the P-CSCF and either:
a) the P-CSCF FQDN that resolves to the IP address of the security association established from the UE to the P-CSCF; or
b) the P-CSCF IP address of the security association established from the UE to the P-CSCF;

NOTE 2: The P-CSCF associates two ports, a protected client port and a protected server port, with each pair of security associations. For details of the usage of the two ports see 3GPP TS 33.203 [19].
5) remove and store the values received in the P-Charging-Function-Addresses header;
6) remove and store the icid parameter received in the P-Charging-Vector header; and
7) save a copy of the P-Called-Party-ID header;
before forwarding the request to the UE in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives any 1 xx or 2 xx response to the above request, the P-CSCF shall:

1) remove the P-Preferred-Identity header, if present, and insert a P-Asserted-Identity header with the saved public user identity from the P-Called-Party-ID header that was received in the request, plus the display name if previously stored during registration, representing the initiator of the response;
2) verify that the list of Via headers matches the saved list of Via headers received in the request corresponding to the same dialog, including the P-CSCF via header value. This verification is done on a per Via header value basis, not as a whole string. If the verification fails, then the P-CSCF shall either:
a) discard the response; or
b) replace the Via header values with those received in the request;
3) verify that the list of URIs received in the Record-Route header of the request corresponding to the same dialog is included, preserving the same order, as a subset of the Record-Route header list of this response. This verification is done on a per URI basis, not as a whole string. If the verification fails, then the P-CSCF shall either:
a) discard the response; or
b) replace the Record-Route header values with those received in the request, and add its own Record-Route entry with its own SIP URI with the port number where it awaits subsequent requests from the calling party and either:

- the P-CSCF FQDN that resolves to its IP address; or
- the P-CSCF IP address; and
- remove the comp parameter.

If the verification is successful, the P-CSCF shall rewrite its own Record-Route entry to its SIP URI in a format that contains the port number where it awaits subsequent requests from the calling party and either:

- the P-CSCF FQDN that resolves to its IP address; or
- the P-CSCF IP address; and
- remove the comp parameter;

4) store the dialog ID and associate it with the private user identity and public user identity involved in the session; and
5) if the response corresponds to an INVITE request, save the Contact, To, From and Record-Route header field value received in the response such that the P-CSCF is able to release the session if needed;
before forwarding the response in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives any other response to the above request, the P-CSCF shall:
6) verify that the list of Via headers matches the saved list of Via headers received in the request corresponding to the same dialog, including the P-CSCF via header value. This verification is done on a per Via header value basis, not as a whole string. If these lists do not match, then the P-CSCF shall either:
a) discard the response; or
b) replace the Via header values with those received in the request;
before forwarding the response in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives, destined for the UE, a target refresh request for a dialog, prior to forwarding the request, the P-CSCF shall:
7) add its own address to the top of the received list of Via header and save the list. The P-CSCF Via header entry is built in a format that contains the protected server port number of the security association established from the UE to the P-CSCF and either:
a) the P-CSCF FQDN that resolves to the IP address of the security association established from the UE to the P-CSCF; or
b) the P-CSCF IP address of the security association established from the UE to the P-CSCF;

NOTE 3: The P-CSCF associates two ports, a protected client port and a protected server port, with each pair of security associations. For details of the usage of the two ports see 3GPP TS 33.203 [19].
2) when adding its own SIP URI to the top of the list of Record-Route headers and save the list, build the P-CSCF SIP URI in a format that contains the protected server port number of the security association established from the UE to the P-CSCF and either:
a) the P-CSCF FQDN that resolves to the IP address of the security association established from the UE to the P-CSCF; or
b) the P-CSCF IP address of the security association established from the UE to the P-CSCF; and
3) for INVITE dialogs, replace the saved Contact and Cseq header field values received in the request such that the $\mathrm{P}-\mathrm{CSCF}$ is able to release the session if needed;

NOTE 4: The replaced Contact header field value is valid only if a 1 xx or 2 xx response will be received for the request. In other cases the old value is still valid.
before forwarding the request to the UE in accordance with the procedures of RFC 3261 [26].

When the P-CSCF receives a 1 xx or 2 xx response to the above request, the P-CSCF shall:

1) verify that the list of Via headers matches the saved list of Via headers received in the request corresponding to the same dialog, including the P-CSCF via header value. This verification is done on a per Via header value basis, not as a whole string. If the verification fails, then the P-CSCF shall either:
a) discard the response; or
b) replace the Via header values with those received in the request;
2) rewrite the address and port number of its own Record-Route entry to the same value as for the response to the initial request for the dialog and remove the comp parameter; and
3) replace the saved Contact header field value received in the response such that the P-CSCF is able to release the session if needed;
before forwarding the response in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives any other response to the above request, the P-CSCF shall:
4) verify that the list of Via headers matches the saved list of Via headers received in the request corresponding to the same dialog, including the P-CSCF via header value. This verification is done on a per Via header value basis, not as a whole string. If the verification fails, then the P-CSCF shall either:
a) discard the response; or
b) replace the Via header values with those received in the request; and
5) rewrite the IP address and the port number of its own Record-Route entry to the IP address and the port number where it awaits subsequent requests from the calling party and remove the comp parameter;
before forwarding the response in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives, destined for the UE, a request for a standalone transaction, or a request for an unknown method (that does not relate to an existing dialog), prior to forwarding the request, the P-CSCF shall:

0) if an indication has been received from the PCRF that the signalling bearer to the UE is lost, and has not recovered, reject the request by sending 503 (Service Unavailable) response);

NOTE 5: The signalling bearer can be considered as recovered by the P-CSCF when the registration timer expires in P-CSCF and the user is de-registered from IMS, a new REGISTER request from the UE is received providing an indication to the P CSCF that the signalling bearer to that user has become available or a PCSCF implementation dependent function which discovers that the signalling bearer is available to the UE.

1) add its own address to the top of the received list of Via header and save the list. The P-CSCF Via header entry is built in a format that contains the protected server port number of the security association established from the UE to the P-CSCF and either:
a) the P-CSCF FQDN that resolves to the IP address of the security association established from the UE to the P-CSCF; or
b) the P-CSCF IP address of the security association established from the UE to the P-CSCF;

NOTE 6: The P-CSCF associates two ports, a protected client port and a protected server port, with each pair of security associations. For details of the usage of the two ports see 3GPP TS 33.203 [19].
2) store the values received in the P-Charging-Function-Addresses header;
3) remove and store the icid parameter received in the P-Charging-Vector header; and
4) save a copy of the P-Called-Party-ID header;
before forwarding the request to the UE in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives any response to the above request, the P-CSCF shall:

1) verify that the list of Via headers matches the saved list of Via headers received in the request corresponding to the same dialog, including the P-CSCF via header value. This verification is done on a per Via header value basis, not as a whole string. If these lists do not match, then the P-CSCF shall either:
a) discard the response; or
b) replace the Via header values with those received in the request; and
2) remove the P-Preferred-Identity header, if present, and insert an P-Asserted-Identity header with the saved public user identity from the P-Called-Party-ID header of the request, plus the display name if previously stored during registration, representing the initiator of the response;
before forwarding the response in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives, destined for the UE, a subsequent request for a dialog that is not a target refresh request (including requests relating to an existing dialog where the method is unknown), prior to forwarding the request, the P CSCF shall:
3) add its own address to the top of the received list of Via header and save the list The P-CSCF Via header entry is built in a format that contains the protected server port number of the security association established from the UE to the P-CSCF and either:
a) the P-CSCF FQDN that resolves to the IP address of the security association established from the UE to the P-CSCF; or
b) the P-CSCF IP address of the security association established from the UE to the P-CSCF;

NOTE 7: The P-CSCF associates two ports, a protected client port and a protected server port, with each pair of security associations. For details of the usage of the two ports see 3GPP TS 33.203 [19].
2) remove and store the icid parameter from P-Charging-Vector header, and
3) for INVITE dialogs, replace the saved Cseq header value received in the request such that the P-CSCF is able to release the session if needed;
before forwarding the request to the UE in accordance with the procedures of RFC 3261 [26].
When the P-CSCF receives any response to the above request, the P-CSCF shall:

1) verify that the list of Via headers matches the saved list of Via headers received in the request corresponding to the same dialog, including the P-CSCF via header value. This verification is done on a per Via header value basis, not as a whole string. If these lists do not match, then the P-CSCF shall either:
a) discard the response; or
b) replace the Via header values with those received in the request;
before forwarding the response in accordance with the procedures of RFC 3261 [26].

5.2.7 Initial INVITE

5.2.7.1 Introduction

In addition to following the procedures for initial requests defined in subclause 5.2.6, initial INVITE requests also follow the procedures of this subclause.

5.2.7.2 UE-originating case

When the P-CSCF receives from the UE an INVITE request, the P-CSCF may require the periodic refreshment of the session to avoid hung states in the P-CSCF. If the P-CSCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

The P-CSCF shall respond to all INVITE requests with a 100 (Trying) provisional response.
The P-CSCF shall also include the access-network-charging-info parameter (if received via the PCRF, over the Rx or Gx interfaces) in the P-Charging-Vector header in the first request originated by the UE that traverses the P-CSCF, as soon as the charging information is available in the P-CSCF, e.g., after the local resource reservation is complete. Typically, this first request is an UPDATE request if the remote UA supports the "integration of resource management in SIP" extension or a re-INVITE request if the remote UA does not support the "integration of resource management in SIP" extension. See subclause 5.2.7.4 for further information on the access network charging information.

5.2.7.3 UE-terminating case

When the P-CSCF receives an INVITE request destined for the UE the P-CSCF may require the periodic refreshment of the session to avoid hung states in the P-CSCF. If the P-CSCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it in order to make it work.

When the P-CSCF receives an initial INVITE request destined for the UE, it will contain the Contact URI of the UE in the Request-URI, and a single preloaded Route header. The received initial INVITE request will also have a list of Record-Route headers. Prior to forwarding the initial INVITE to the URI found in the Request-URI, the P-CSCF shall respond to all INVITE requests with a 100 (Trying) provisional response.

The P-CSCF shall also include the access-network-charging-info parameter (if received via the PCRF, over the Rx or Gx interfaces) in the P-Charging-Vector header in the first request or response originated by the UE that traverses the P CSCF, as soon as the charging information is available in the P-CSCF e.g., after the local resource reservation is complete. Typically, this first response is a 180 (Ringing) or 200 (OK) response if the remote UA supports the "integration of resource management in SIP" extension, or a re-INVITE request if the remote UA does not support the "integration of resource management in SIP" extension. See subclause 5.2.7.4 for further information on the access network charging information.

5.2.7.4 Access network charging information

The P-CSCF shall include the access-network-charging-info parameter within the P-Charging-Vector header as described in subclause 7.2A.5.

5.2.8 Call release

5.2.8.1 P-CSCF-initiated call release

5.2.8.1.1 Cancellation of a session currently being established

Upon receipt of an indication that radio coverage is no longer available for a multimedia session currently being established (e.g. abort session request from PCRF), the P-CSCF shall cancel that dialog by applying the following steps:

1) if the P-CSCF serves the calling user of the session, send out a CANCEL request to cancel the INVITE request towards the terminating UE that includes a Reason header containing a 503 (Service Unavailable) status code according to the procedures described in RFC 3261 [26] and RFC 3326 [34A]; and
2) if the P-CSCF serves the called user of the session, send out a 503 (Service Unavailable) response to the received INVITE request.

Upon receipt of an indication that QoS resources are no longer available for a multimedia session currently being established (e.g. abort session request from PCRF), the P-CSCF shall cancel that dialog by responding to the original INVITE request with a 503 (Servi ce Unavailable) response, and by sending out a CANCEL request to the INVITE request towards the terminating UE that includes a Reason header containing a 503 (Service Unavailable) status code according to the procedures described in RFC 3261 [26] and RFC 3326 [34A].

5.2.8.1.2 Release of an existing session

Upon receipt of an indication that the radio/bearer interface resources are no longer available or the signalling bearer as indicated by the PCRF is lost to the UE for a session (e.g. abort session request from PCRF) or upon detecting that the SDP offer conveyed in a SIP response contained parameters which are not allowed according to the local policy (as specified in the subclause 6.2), the P-CSCF shall release the respective dialog by applying the following steps:

1) if the P-CSCF serves the calling user of the session it shall generate a BYE request based on the information saved for the related dialog, including:

- a Request-URI, set to the stored Contact header provided by the called user;
- a To header, set to the To header value as received in the $200(\mathrm{OK})$ response for the initial INVITE request;
- a From header, set to the From header value as received in the initial INVITE request;
- a Call-ID header, set to the Call-Id header value as received in the initial INVITE request;
- a CSeq header, set to the current CSeq value stored for the direction from the calling to the called user, incremented by one;
- a Route header, set to the routeing information towards the called user as stored for the dialog;
- a Reason header that contains:
- a 503 (Service Unavailable) response code, if radio/bearer interface resources are no longer available, the signalling bearer as indicated by the PCRF is lost to the UE; or
- a 488 (Not Acceptable Here) response code, if a SDP offer conveyed in a SIP response contained parameters which are not allowed according to the local policy; and
- further headers, based on local policy;

2) if the P-CSCF serves the calling user of the session and upon detecting that the SDP offer conveyed in a SIP response contained parameters which are not allowed according to the local policy (as specified in the subclause 6.2), then the P-CSCF shall generate an additional BYE request based on the information saved for the related dialog, including:

- a Request-URI, set to the stored Contact header provided by the calling user;
- a To header, set to the From header value as received in the initial INVITE request;
- a From header, set to the To header value as received in the 200 (OK) response for the initial INVITE request;
- a Call-ID header, set to the Call-Id header value as received in the initial INVITE request;
- a CSeq header, set to the current CSeq value stored for the direction from the called to the calling user, incremented by one;
- a Route header, set to the routeing information towards the calling user as stored for the dialog;
- a Reason header that contains a 488 (Not Acceptable Here) response code; and
- further headers, based on local policy;

3) If the P-CSCF serves the called user of the session it shall generate a BYE request based on the information saved for the related dialog, including:

- a Request-URI, set to the stored Contact header provided by the calling user;
- a To header, set to the From header value as received in the initial INVITE request;
- a From header, set to the To header value as received in the $200(\mathrm{OK})$ response for the initial INVITE request;
- a Call-ID header, set to the Call-Id header value as received in the initial INVITE request;
- a CSeq header, set to the current CSeq value stored for the direction from the called to the calling user, incremented by one;
- a Route header, set to the routeing information towards the calling user as stored for the dialog;
- a Reason header that contains:
- a 503 (Service Unavailable) response code, if radio/bearer interface resources are no longer available; or
- a 488 (Not Acceptable Here) response code, if SDP payload contained parameters which are not allowed according to the local policy; and
- further headers, based on local policy;

4) if the P-CSCF serves the called user of the session and upon detecting that the SDP offer conveyed in a SIP response contained parameters which are not allowed according to the local policy (as specified in the subclause 6.2), then the P-CSCF shall generate an additional BYE request based on the information saved for the related dialog, including:

- a Request-URI, set to the stored Contact header provided by the called user;
- a To header, set to the To header value as received in the $200(\mathrm{OK})$ response for the initial INVITE request;
- a From header, set to the From header value as received in the initial INVITE request;
- a Call-ID header, set to the Call-Id header value as received in the initial INVITE request;
- a CSeq header, set to the current CSeq value stored for the direction from the calling to the called user, incremented by one;
- a Route header, set to the routeing information towards the called user as stored for the dialog;
- a Reason header that contains a 488 (Not Acceptable Here) response code; and
- further headers, based on local policy;

5) send the so generated BYE requests towards the indicated users; and
6) upon receipt of the $2 x x$ responses for the BYE requests, shall delete all information related to the dialog and the related multimedia session.

5.2.8.1.3 Abnormal cases

Upon receipt of a request on a dialog for which the P-CSCF initiated session release, the P-CSCF shall terminate this received request and answer it with a 481 (Call/Transaction Does Not Exist) response.

5.2.8.1.4 Release of the existing dialogs due to registration expiration and deletion of the security association

If there are still active dialogs associated with the user after the security associations were deleted, the P-CSCF shall discard all information pertaining to these dialogs without performing any further SIP transactions with the peer entities of the P-CSCF.

NOTE: At the same time, the P-CSCF will also indicate via the Rx or Gx interface that the session has been terminated.

5.2.8.2 Call release initiated by any other entity

When the P-CSCF receives a 2 xx response for a BYE request matching an existing dialog, it shall delete all the stored information related to the dialog.

5.2.8.3 Session expiration

If the P-CSCF requested the session to be refreshed periodically, and the P-CSCF got the indication that the session will be refreshed, when the session timer expires, the P-CSCF shall delete all the stored information related to the dialog.

NOTE: The P-CSCF will also indicate to the IP-CAN, via the Rx or Gx interface, that the session has terminated.

5.2.9 Subsequent requests

5.2.9.1 UE-originating case

The P-CSCF shall respond to all reINVITE requests with a 100 (Trying) provisional response.
For a reINVITE request or UPDATE request from the UE within the same dialog, the P-CSCF shall include the updated access-network-charging-info parameter from P-Charging-Vector header when sending the SIP request to the S-CSCF. See subclause 5.2.7.4 for further information on the access network charging information.

5.2.9.2 UE-terminating case

The P-CSCF shall respond to all reINVITE requests with a 100 (Trying) provisional response.
For a reINVITE request or UPDATE request destined towards the UE within the same dialog, when the P-CSCF sends 200 (OK) response (to the INVITE request or UPDATE request) towards the S-CSCF, the P-CSCF shall include the updated access-network-charging-info parameter in the P-Charging-Vector header. See subclause 5.2.7.4 for further information on the access network charging information.

5.2.10 Emergency service

5.2.10.1 General

If the P-CSCF belongs to a network where the registration is not required to obtain emergency service, the P-CSCF shall accept any unprotected request on the IP address and port advertised to the UE during the P-CSCF discovery procedure. The P-CSCF shall also accept any unprotected request on the same IP address and the default port as specified in RFC 3261 [26].

The P-CSCF can handle emergency session and other requests from both a registered user as well as an unregistered user. Certain networks only allow emergency session from registered users.

NOTE 1: If only emergency setup from registered users is allowed, a request from an unregistered user is ignored since it is received outside of the security association.

The P-CSCF can handle emergency session establishment within a non-emergency registration.
Upon receiving the 200 (OK) response to the REGISTER request that completes the emergency registration, the PCSCF shall not subscribe to the registration event package of the emergency public user identity specified in the REGISTER request.

The P-CSCF shall store a configurable list of local emergency service identifiers, i.e. emergency numbers and the emergency service URN, which are valid for the operator to which the P-CSCF belongs to. In addition to that, the PCSCF shall store a configurable list of roaming partners' emergency service identifiers.

NOTE 2: The emergency service URN are common to all networks, although subtypes may either not necessarily be in use, or a different set of subtypes is in use. The above requirements do not apply to subtypes of the emergency service URN.

Access technology specific procedures are described in each access technology specific annex to determine whether the initial request for a dialog or standalone transaction or an unknown method is destined for a PSAP.

NOTE 3: Depending on local operator policy, the P-CSCF has the capability to reject requests relating to specific methods in accordance with RFC 3261 [26], as an alternative to the functionality described above.

For all SIP transactions identified as relating to an emergency, the P-CSCF shall give priority over other transactions or dialogs. This allows special treatment of such transactions or dialogs.

NOTE 4: This special treatment can include filtering, higher priority processing, routeing, call gapping. The exact meaning of priority is not defined further in this document, but is left to national regulation and network configuration.

5.2.10.2 General treatment for all dialogs and standalone transactions excluding the REGISTER method - from an unregistered user

If the P-CSCF receives an initial request for a dialog or standalone transaction, or an unknown method for an unregistered user on the IP address and the unprotected port advertised to the UE during the P-CSCF discovery or the SIP default port, the P-CSCF shall inspect the Request URI independent of values of possible entries in the received Route headers for known emergency service identifiers, i.e. emergency numbers and the emergency service URN from the configurable lists.

If the P-CSCF detects that the Request-URI of the initial request for a dialog or standalone transaction, or unknown method matches one of the emergency service identifiers in any of these lists, the P-CSCF shall:

1) include in the Request-URI an emergency service URN, i.e. a service URN with a top-level service type of "sos" in accordance with RFC 5031 [69]. An additional sub-service type can be added if information on the type of emergency service is known. The entry in the Request-URI that the P-CSCF includes may either be:

- as received in the Request URI from the UE in accordance with RFC 5031 [69]; or
- as deduced from the Request-URI received from the UE;

1A) include the "sos" URI parameter in the Contact header field that indicates that this is an emergency session, as described in draft-patel-ecrit-sos-parameter [91A], if not already present;2) select an E-CSCF and add the URI of the selected E-CSCF to the topmost Route header; and

NOTE 1: How the list of E-CSCF is obtained by the P-CSCF is implementation dependent.
3) execute the procedure described in subclause 5.2.6.3 dealing with the procedure when the P-CSCF receives an initial request from the UE and subclause 5.2.7.2 except for:

- verifying the preloaded route against the received Service-Route header;
- removing the P-Preferred-Identity header; and
- inserting a P-Asserted-Identity header.

When the P-CSCF receives any 1 xx or 2 xx response to the above requests, the P-CSCF shall execute the appropriate procedure for the type of request described in subclause 5.2.6.3, except that the P-CSCF may rewrite the port number of its own Record-Route entry to an unprotected port where the P-CSCF wants to receive the subsequent incoming requests from the UE belonging to this dialog.

If the P-CSCF does not receive any response to the initial request for a dialog or standalone transaction or unknown method (including its retransmissions); or receives a 3xx response or 480 (Temporarily Unavailable) response to an INVITE request, the P-CSCF shall select a new IBCF or E-CSCF and forward the request.

When the P-CSCF receives a target refresh request from the UE for a dialog, the P-CSCF shall execute the procedure described in step 1) to 5), in paragraph of subclause 5.2.6.3 describing the procedure when the P-CSCF receives a target refresh request.

When the P-CSCF receives from the UE subsequent requests other than a target refresh request (including requests relating to an existing dialog where the method is unknown), the P-CSCF shall execute the procedure described in step 1) to 4), in the paragraph of subclause 5.2.6.3 describing the procedure when the P-CSCF receives a subsequent request.

When the P-CSCF receives any 1 xx or 2 xx response to the above requests, the P-CSCF shall execute the appropriate procedure for the type of request described in subclause 5.2.6.3.

When the P-CSCF receives, destined for the UE, a target refresh request for a dialog, prior to forwarding the request, the P-CSCF shall execute the procedure described in step 3, the paragraph of subclause 5.2.6.4 describing when the PCSCF receives a target refresh request.

When the P-CSCF receives a 1xx or 2xx response to the above request the P-CSCF shall execute the procedure described in step 1) to 3) in the paragraph of subclause 5.2.6.4 describing when the P-CSCF receives 1 xx or 2 xx response to a target request.

When the P-CSCF receives any other response to the above request the P-CSCF shall execute the procedure described in step 1) to 2) in the paragraph of subclause 5.2.6.4 describing when the P-CSCF receives any other response to a target request.

When the P-CSCF receives, destined for the UE, a subsequent request for a dialog that is not a target refresh request (including requests relating to an existing dialog where the method is unknown), prior to forwarding the request, the P CSCF shall execute the procedure described in steps 2 and 3 of subclause 5.2.6.4 describing when a P-CSCF receives a subsequent request.

When the P-CSCF receives any other response to the above request the P-CSCF shall execute the procedure described in step 1 in the paragraph of subclause 5.2.6.4 describing when the P-CSCF receives any other response to a subsequent request.

5.2.10.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method after emergency registration

If the P-CSCF receives an initial request for a dialog, or a standalone transaction, or an unknown method, for a registered user over the security association that was created during the emergency registration, the P-CSCF shall inspect the Request URI independent of values of possible entries in the received Route headers for known emergency service identifiers, i.e. emergency numbers and the emergency service URN from these configurable lists.

If the P-CSCF detects that the Request-URI of the initial request for a dialog, or a standalone transaction, or an unknown method does not match any one of the emergency service identifiers in any of these lists, the P-CSCF shall reject the request by returning a 403 (Forbidden) response to the UE.

If the P-CSCF detects that the Request-URI of the initial request for a dialog, or a standalone transaction, or an unknown method matches one of the emergency service identifiers in any of these lists, the P-CSCF shall:

1) include in the Request-URI an emergency service URN, i.e. a service URN with a top-level service type of "sos" as specified in RFC 5031 [69], if necessary, and execute the procedure described in step 3, 4, 5, and 6 , in subclause 5.2.6.3 dealing with the procedure when the P-CSCF receives an initial request from the UE. An additional sub-service type can be added if information on the type of emergency service is known. The entry in the Request-URI that the P-CSCF includes may either be:

- as received from the UE in the Request URI in accordance with RFC 5031 [69]; or
- as deduced from the Request-URI received from the UE.

1A) include the "sos" URI parameter in the Contact header field that indicates that this is an emergency session, as described in draft-patel-ecrit-sos-parameter [91A], if not already present;
2) if the request contains a Contact header field containing a GRUU the P-CSCF shall save the GRUU received in the Contact header field of the request and associate it with the UE IP address and UE protected server port, for the security association on which the request was received such that the P-CSCF is able to route target refresh request containing that GRUU in the Request-URI; and

In addition the P-CSCF shall execute the procedures as specified in subclause 5.2 with the following additions:
3) the P-CSCF shall select an E-CSCF and add the URI of the selected E-CSCF to the topmost Route header.

NOTE: It is implementation dependant as to how the P-CSCF obtains the list of E-CSCFs.
If the P-CSCF does not receive any response to the INVITE request (including its retransmissions); or receives a 3 xx response or 480 (Temporarily Unavailable) response to an INVITE request, the P-CSCF shall select a new E-CSCF and forward the INVITE request.

When the P-CSCF receives a target refresh request for a dialog with the Request-URI containing a GRUU the P-CSCF shall:

- obtain the UE IP address and UE protected server port related to the GRUU contained in the Request-URI and rewrite the Request-URI with that UE IP address and UE protected server port; and
- perform the steps in subclause 5.2.6.4 for when the P-CSCF receives, destined for the UE, a target refresh request for a dialog.

5.2.10.4 General treatment for all dialogs and standalone transactions excluding the REGISTER method - non-emergency registration

If the P-CSCF receives an initial request for a dialog, or a standalone transaction, or an unknown method, for a registered user the P-CSCF shall inspect the Request URI independent of values of possible entries in the received Route headers for known emergency service identifiers, i.e. emergency numbers and the emergency service URN from these configurable lists. If the P-CSCF detects that the Request-URI of the initial request for a dialog, or a standalone transaction, or an unknown method matches one of the emergency service identifiers in any of these lists, the P-CSCF shall:

0A) determine the geographic location of the UE. Access technology specific procedures are described in each access technology specific annex. If the UE is roaming or the P-CSCF is in a different network than the UE's home operator's network, then the P-CSCF:

- shall reject the request by returning a 380 (Alternative Service) response to the UE;
- shall assume that the UE supports version 1 of the XML Schema for the IM CN subsystem XML body if: support for the 3GPP IMS XML body in the Accept header is not indicated; and
- shall include in the 380 (Alternative Service) response:
- a Content-Type header field with the value set to associated MIME type of the 3GPP IMS XML body as described in subclause 7.6.1.

The body shall contain:
NOTE 1: Roaming is when a UE is in a geographic area that is outside the serving geographic area of the home IM CN subsystem.
a) an <alternative-service> element, set to the parameters of the alternative service;
b) a <type> child element, set to "emergency" to indicate that it was an emergency call;
c) a <reason> child element, set to an operator configurable reason; and
d) an <action> child element, set to "emergency-registration" if the request included an emergency service URN in the Request-URI.

NOTE 2: Emergency service URN in the request-URI indicates for the network that the emergency call attempt is recognized by the UE.

1) include in the Request-URI an emergency service URN, i.e. a service URN with a top-level service type of "sos" as specified in RFC 5031 [69], if necessary, and execute the procedure described in step 2, 3, 4, 5, and 6, in subclause 5.2.6.3 dealing with the procedure when the P-CSCF receives an initial request from the UE. An additional sub-service type can be added if information on the type of emergency service is known. The entry in the Request-URI that the P-CSCF includes may either be:

- as received from the UE in the Request URI in accordance with RFC 5031 [69]; or
- as deduced from the Request-URI received from the UE; and

1A) include the "sos" URI parameter in the Contact header field that indicates that this is an emergency session, as described in draft-patel-ecrit-sos-parameter [91A], if not already present;
2) if the request contains a Contact header field containing a GRUU the P-CSCF shall save the GRUU received in the Contact header field of the request and associate it with the UE IP address and UE protected server port, for the security association on which the request was received such that the P-CSCF is able to route target refresh request containing that GRUU in the Request-URI.

In addition the P-CSCF shall execute the procedures as specified in subclause 5.2 with the following additions:
3) the P-CSCF shall:

- if the public user identity included in the P-Preferred-Identity header matches one of the registered public user identities, remove the P-Preferred-Identity header from the received request and insert a P-AssertedIdentity header that includes the public user identity that was present in the P-Preferred-Identity header. Add a second P-Asserted identity header that contains the tel URI associated with the public user identity. If the tel URI associated with one of the registered public user identities is included in the P-Preferred-Identity header, check the validity of the tel URI, remove the P-Preferred-Identity header and insert a P-AssertedIdentity header that includes the tel URI that was present in the P-Preferred-Identity header. Add a second P-Asserted-Identity header that contains a public user identity associated with the tel URI;
- select an E-CSCF and add the URI of the selected E-CSCF to the topmost Route header.

NOTE 3: It is implementation dependant as to how the P-CSCF obtains the list of E-CSCFs.
If the P-CSCF does not receive any response to the INVITE request (including its retransmissions); or receives a 3 xx response or 480 (Temporarily Unavailable) response to an INVITE request, the P-CSCF shall select a new E-CSCF and forward the INVITE request.

When the P-CSCF receives a target refresh request for a dialog with the Request-URI containing a GRUU the P-CSCF shall:

- obtain the UE IP address and UE protected server port related to the GRUU contained in the Request-URI and rewrite the Request-URI with that UE IP address and UE protected server port; and
- perform the steps in subclause 5.2.6.4 for when the P-CSCF receives, destined for the UE, a target refresh request for a dialog.

5.2.10.5 Abnormal cases

If the IM CN subsystem to where the P-CSCF belongs to is not capable to handle emergency sessions or due to local policy does not handle emergency sessions or only handles certain type of emergency session request or does not support emergency sessions for either the geographical location of the UE is located or the IP-CAN to which the UE is attached, the P-CSCF shall not forward the INVITE request. The P-CSCF:

- shall respond to the INVITE request with a 380 (Alternative Service) response;
- shall assume that the UE supports version 1 of the XML Schema for the IM CN subsystem XML body if support for the 3GPP IMS XML body in the Accept header is not indicated; and
- shall include in the 380 (Alternative Service) response:
- a Content-Type header field with the value set to associated MIME type of the 3GPP IMS XML body as described in subclause 7.6.1.

The body shall contain:
a) an <alternative-service> element, set to the parameters of the alternative service;
b) a <type> child element, set to "emergency" to indicate that it was an emergency call;
c) a <reason> child element, set to an operator configurable reason; and
d) an <action> child element, set to "emergency-registration" if the request included an emergency service URN in the Request-URI.

NOTE 1: Emergency service URN in the request-URI indicates for the network that the emergency call attempt is recognized by the UE.

NOTE 2: Some networks only allow session requests with a Request-URI containing an emergency service URN, i.e. a service URN with a top-level service type of "sos" as specified in RFC 5031 [69].

5.2.11 Void

5.3 Procedures at the I-CSCF

5.3.1 Registration procedure

5.3.1.1 General

During the registration procedure the I-CSCF shall behave as a stateful proxy.

5.3.1.2 Normal procedures

When the I-CSCF receives a REGISTER request, the I-CSCF shall verify whether or not it has arrived from a trusted domain. If the request has not arrived from a trusted domain, the I-CSCF shall complete the processing of the request by responding with 403 (Forbidden) response. Otherwise, the I-CSCF starts the user registration status query procedure to the HSS as specified in 3GPP TS 29.228 [14].

NOTE 1: The I-CSCF can find out whether the request arrived from a trusted domain or not, from the procedures described in 3GPP TS 33.210 [19A].

NOTE 2: Different UEs, each with its own private user identity, can register the same shared public user identity. Registrations of all public user identities belonging to these UEs are directed to the same S-CSCF as described in 3GPP TS 29.228 [14].

Prior to performing the user registration query procedure to the HSS, the I-CSCF decides which HSS to query, possibly as a result of a query to the Subscription Locator Functional (SLF) entity as specified in 3GPP TS 29.228 [14]. As a result of the query the I-CSCF gets the Redirect-Host AVP.

If the user registration status query response from the HSS includes a valid SIP URI, the I-CSCF shall:

1) replace the Request-URI of the received REGISTER request with the SIP URI received from the HSS in the Server-Name AVP;
2) optionally include the received Redirect-Host AVP value in the P-User-Database header as defined in RFC 4457 [82]; and
3) forward the REGISTER request to the indicated S-CSCF.

NOTE 3: The P-User-Database header can be included only if the I-CSCF can assume (e.g. based on local configuration) that the receiving S-CSCF will be able to process the header.

If the user registration status query response from the HSS includes a list of capabilities, the I-CSCF shall:

1) select a S-CSCF that fulfils the indicated mandatory capabilities - if more than one S-CSCFs fulfils the indicated mandatory capabilities the S-CSCF which fulfils most of the possibly additionally indicated optional capabilities;
2) replace the Request-URI of the received REGISTER request with the URI of the S-CSCF;
3) optionally, include the received Redirect-Host AVP value in the P-User-Database header as defined in RFC 4457 [82]; and
4) forward the REGISTER request to the selected S-CSCF.

NOTE 4: The P-User-Database header can be included only if the I-CSCF can assume (e.g. based on local configuration) that the receiving S-CSCF will be able to process the header.

When the I-CSCF receives a 2 xx response to a REGISTER request, the I-CSCF shall proxy the 2 xx response to the P CSCF.

5.3.1.3 Abnormal cases

In the case of SLF query, if the SLF does not send HSS address to the I-CSCF, the I-CSCF shall send back a 403 (Forbidden) response to the UE.

If the HSS sends a negative response to the user registration status query request, the I-CSCF shall send back a 403 (Forbidden) response.

If the user registration status query procedure cannot be completed, e.g. due to time-out or incorrect information from the HSS, the I-CSCF shall send back a 480 (Temporarily Unavailable) response to the UE.

If a selected S-CSCF:

- does not respond to the REGISTER request and its retransmissions by the I-CSCF; or
- sends back a 3xx response or 480 (Temporarily Unavailable) response to a REGISTER request;
and:
- the REGISTER request did not include an "integrity-protected" parameter in the Authorization header; or
- did include an "integrity-protected" parameter with a value different from "yes" in the Authorization header;
then:
- if the I-CSCF has received the list of capabilities from the HSS, the I-CSCF shall select a new S-CSCF as described in subclause 5.3.1.2, based on the capabilities indicated from the HSS. The newly selected S-CSCF shall not be one of any S-CSCFs selected previously during this same registration procedure; or
- if the I-CSCF has received a valid SIP URI from the HSS because the S-CSCF is already assigned to other UEs sharing the same public user identity, it will request the list of capabilities from the HSS and, on receiving these capabilities, the I-CSCF shall select a new S-CSCF as described in subclause 5.3.1.2, based on the capabilities indicated from the HSS. The newly selected S-CSCF shall not be one of any S-CSCFs selected previously during this same registration procedure.

If a selected S-CSCF does not respond to a REGISTER request and its retransmissions by the I-CSCF and the REGISTER request did include an Authorization header with the "integrity-protected" parameter set to "yes", the ICSCF shall send back a or 504 (Server Time-Out) response to the user, in accordance with the procedures in RFC 3261 [26].

If the I-CSCF cannot select a S-CSCF which fulfils the mandatory capabilities indicated by the HSS, the I-CSCF shall send back a 600 (Busy Everywhere) response to the user.

5.3.2 Initial requests

5.3.2.1 Normal procedures

The I-CSCF may behave as a stateful proxy for initial requests.
Upon receipt of a request, the I-CSCF shall perform the originating procedures as described in subclause 5.3.2.1A if the topmost Route header of the request contains the "orig" parameter. Otherwise, the I-CSCF shall continue with the rest of the procedures of this subclause.

When the I-CSCF receives a request, the I-CSCF shall verify whether it has arrived from a trusted domain or not. If the request has arrived from a non trusted domain, then the I-CSCF shall remove all P-Charging-Vector headers and all P-Charging-Function-Addresses headers the request may contain.

NOTE 1: The I-CSCF can find out whether the request arrived from a trusted domain or not, from the procedures described in 3GPP TS 33.210 [19A].

The I-CSCF shall discard the P-Profile Key header, if the I-CSCF receives the Profile Key header in a SIP request or response.

When the I-CSCF receives, destined for a server user or a PSI, an initial request for a dialog or standalone transaction the I-CSCF shall:

1) if the Request-URI includes:
a) a pres: or an im: URI, then translate the pres: or im: URI to a public user identity and replace the RequestURI of the incoming request with that public user identity; or
b) a SIP-URI that is not a GRUU and with the user part starting with a + and the user parameter equals "phone" then replace the Request-URI with a tel-URI with the user part of the SIP-URI in the telephone-subscriber element in the tel-URI; or
c) a SIP URI that is a GRUU, then obtain the public user identity from the Request-URI and use it for location query procedure to the HSS. When forwarding the request, the I-CSCF shall not modify the Request-URI of the incoming request;

NOTE 2: If the Request-URI is a GRUU with the user part starting with $a+$ and the user parameter equals "phone", the I-CSCF builds a tel URI from the user part and uses it only to query the HSS. Subsequently, when the I-CSCF forwards the request to the S-CSCF, it will not modify the Request-URI.

NOTE 3: SRV records have to be advertised in DNS pointing to the I-CSCF for pres: and im: queries.
2) remove a Route header, if present; and
3) check if the domain name of the Request-URI matches with one of the PSI subdomains configured in the ICSCF. If the match is successful, the I-CSCF resolves the Request-URI by an internal DNS mechanism into the IP address of the AS hosting the PSI and does not start the user location query procedure. Otherwise, the I-CSCF will start the user location query procedure to the HSS as specified in 3GPP TS 29.228 [14] for the called PSI or user, indicated in or derived from the Request-URI. Prior to performing the user location query procedure to the HSS, the I-CSCF decides which HSS to query, possibly as a result of a query to the Subscription Locator Functional (SLF) entity as specified in 3GPP TS 29.228 [14].

When the I-CSCF receives any response to such a request, the I-CSCF shall store the value of the term-ioi parameter received in the P-Charging-Vector header, if present.

NOTE 4: Any received term-ioi parameter will be a type 3 term-ioi. The type 3 term-ioi identifies the service provider from which the response was sent.

When the I-CSCF receives an INVITE request, the I-CSCF may require the periodic refreshment of the session to avoid hung states in the I-CSCF. If the I-CSCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE 5: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

In case the I-CSCF is able to resolve the Request-URI into the IP address of the AS hosting the PSI, then it shall:

1) store the value of the icid parameter received in the P-Charging-Vector header and retain the icid parameter in the P-Charging-Vector header. If no icid parameter was found, then create a new, globally unique value for the icid parameter and insert it into the P-Charging-Vector header; and
2) forward the request directly to the AS hosting the PSI.

Upon successful user location query, when the response contains the URI of the assigned S-CSCF, the I-CSCF shall:

1) insert the URI received from the HSS as the topmost Route header;
2) store the value of the icid parameter received in the P-Charging-Vector header and retain the icid parameter in the P-Charging-Vector header. If no icid parameter was found, then create a new, globally unique value for the icid parameter and insert it into the P-Charging-Vector header. The I-CSCF shall add a type 3 orig-ioi parameter before the received orig-ioi parameter. The I-CSCF shall set the type 3 orig-ioi parameter to a value that identifies the sending network of the request. The I-CSCF shall not include the type 3 term-ioi parameter;
3) optionally, include the received Redirect-Host AVP value in the P-User-Database header as defined in RFC 4457 [82]; and
4) forward the request based on the topmost Route header.

NOTE 6: The P-User-Database header can be included only if the I-CSCF can assume (e.g. based on local configuration) that the receiving S-CSCF will be able to process the header.

Upon successful user location query, when the response contains information about the required S-CSCF capabilities, the I-CSCF shall:

1) select a S-CSCF according to the method described in 3GPP TS 29.228 [14];
2) insert the URI of the selected S-CSCF as the topmost Route header field value;
3) execute the procedure described in step 2 and 3 in the above paragraph (upon successful user location query, when the response contains the URI of the assigned S-CSCF);
4) optionally, include the received Redirect-Host AVP value in the P-User-Database header as defined in RFC 4457 [82];
5) if the Wildcarded PSI value is received from the HSS in the Wildcarded-PSI AVP and the I-CSCF supports the the SIP P-Profile-Key private header extension, include the wildcarded PSI value in the P-Profile-Key header as defined in RFC 5002 [97]; and
6) forward the request to the selected S-CSCF.

NOTE 7: The P-User-Database header can be included only if the I-CSCF can assume (e.g. based on local configuration) that the receiving S-CSCF will be able to process the header.

Upon an unsuccessful user location query when the response from the HSS indicates that the user does not exist, and if the Request-URI is a tel URI containing a public telecommunications number as specified in RFC 3966 [22], the I-
CSCF may support a local configuration option that indicates whether or not request routeing is to be attempted. If the local configuration option indicates that request routeing is to be attempted, then the I-CSCF shall perform one of the following procedures based on local operator policy:

1) forward the request to the transit functionality for subsequent routeing; or
2) invoke the portion of the transit functionality that translates the public telecommunications number contained in the Request-URI to a routeable SIP URI, and process the request based on the result, as follows:
a) if the translation fails, the request may be forwarded to a BGCF or any other appropriate entity (e.g. a MRFC to play an announcement) in the home network, or the I-CSCF may send an appropriate SIP response to the originator, such as 404 (Not Found) or 604 (Does not exist anywhere). When forwarding the request to a BGCF or any other appropriate entity, the I-CSCF shall leave the original Request-URI containing the tel URI unmodified; or
b) if this translation succeeds, then replace the Request-URI with the routeable SIP URI and process the request as follows:

- determine the destination address (e.g. DNS access) using the URI placed in the topmost Route header if present, otherwise based on the Request-URI. If the destination requires interconnect functionalities (e.g. the destination address is of an IP address type other than the IP address type used in the IM CN subsystem), the I-CSCF shall forward the request to the destination address via an IBCF in the same network;
- if network hiding is needed due to local policy, put the address of the IBCF to the topmost route header; and
- route the request based on SIP routeing procedures.

Upon an unsuccessful user location query when the response from the HSS indicates that the user does not exist, and if local operator policy does not indicate that request routeing is to be attempted, then, the I-CSCF shall return an appropriate unsuccessful SIP response. This response may be a 404 (Not found) or 604 (Does not exist anywhere) in the case the user is not a user of the home network.

Upon an unsuccessful user location query when the response from the HSS indicates that the user is not registered and no services are provided for such a user, the I-CSCF shall return an appropriate unsuccessful SIP response. This response may be a 480 (Temporarily unavailable) response if the user is recognized as a valid user, but is not registered at the moment and it does not have services for unregistered users.

When the I-CSCF receives an initial request for a dialog or standalone transaction, that contains a single Route header pointing to itself, the I-CSCF shall determine from the entry in the Route header whether it needs to do HSS query. In case HSS query is needed, then the I-CSCF shall:

1) remove its own SIP URI from the topmost Route header; and
2) route the request based on the Request-URI header field.

When the I-CSCF receives an initial request for a dialog or standalone transaction containing more than one Route header, the I-CSCF shall:

1) remove its own SIP URI from the topmost Route header;and
2) forward the request based on the topmost Route header.

NOTE 8: In accordance with SIP the I-CSCF can add its own routeable SIP URI to the top of the Record-Route header to any request, independently of whether it is an initial request. The P-CSCF will ignore any Record-Route header that is not in the initial request of a dialog.

When the I-CSCF receives a response to an initial request (e.g. 183 (Session Progress) response or 2 xx response), the ICSCF shall store the values from the P-Charging-Function-Addresses header, if present. If the next hop is outside of the current network, then the I-CSCF shall remove the P-Charging-Function-Addresses header prior to forwarding the message.

When the I-CSCF, upon sending an initial INVITE request to the S-CSCF, receives a 305 (Use Proxy) response from the S-CSCF, it shall forward the initial INVITE request to the SIP URI indicated in the Contact field of the 305 (Use Proxy) response, as specified in RFC 3261 [26].

5.3.2.1A Originating procedures for requests containing the "orig" parameter

The procedures of this subclause apply for requests received at the I-CSCF when the topmost Route header of the request contains the "orig" parameter.

The I-CSCF shall verify for all requests whether they arrived from a trusted domain or not. If the request arrived from a non trusted domain, then the I-CSCF shall respond with 403 (Forbidden) response.

If the request arrived from a trusted domain, the I-CSCF shall perform the procedures below.
NOTE 1: The I-CSCF can find out whether the request arrived from a trusted domain or not, from the procedures described in 3GPP TS 33.210 [19A].

When the I-CSCF receives an initial request for a dialog or standalone transaction the I-CSCF will start the user location query procedure to the HSS as specified in 3GPP TS 29.228 [14] for the calling user, indicated in the P-Asserted-Identity header. Prior to performing the user location query procedure to the HSS, the I-CSCF decides which HSS to query, possibly as a result of a query to the Subscription Locator Functional (SLF) entity as specified in 3GPP TS 29.228 [14].

When the I-CSCF receives an INVITE request, the I-CSCF may require the periodic refreshment of the session to avoid hung states in the I-CSCF. If the I-CSCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE 2: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

When the response for user location query contains information about the required S-CSCF capabilities, the I-CSCF shall select a S-CSCF according to the method described in 3GPP TS 29.228 [14].

If the user location query was successful, the I-CSCF shall:

1) insert the URI of the S-CSCF - either received from the HSS, or selected by the I-CSCF based on capabilities as the topmost Route header appending the "orig" parameter to the URI of the S-CSCF;
2) store the value of the icid parameter received in the P-Charging-Vector header and retain the icid parameter in the P-Charging-Vector header. If no icid parameter was found, then create a new, globally unique value for the icid parameter and insert it into the P-Charging-Vector header;
3) optionally, include the received Redirect-Host AVP value in the P-User-Database header as defined in draft-camarillo-sipping-user-database [82]; and
4) forward the request based on the topmost Route header.

NOTE 3: The P-User-Database header can be included only if the I-CSCF can assume (e.g. based on local configuration) that the receiving S-CSCF will be able to process the header.

Upon an unsuccessful user location query, the I-CSCF shall return an appropriate unsuccessful SIP response. This response may be a 404 (Not found) response or 604 (Does not exist anywhere) response in the case the user is not a user of the home network.

When the I-CSCF receives any response to the above request, and forwards it to AS, the I-CSCF shall:

- store the values from the P-Charging-Function-Addresses header, if present. If the next hop is outside of the current network, then the I-CSCF shall remove the P-Charging-Function-Addresses header prior to forwarding the message; and
- insert a P-Charging-Vector header containing the type 3 orig-ioi parameter, if received in the request, and a type 3 term-ioi parameter in the response. The I-CSCF shall set the type 3 term-ioi parameter to a value that identifies the sending network of the response and the type 3 orig-ioi parameter is set to the previously received value of type 3 orig-ioi.

5.3.2.2 Abnormal cases

In the case of SLF query, if the SLF does not send HSS address to the I-CSCF, the I-CSCF shall send back a 404 (Not Found) response to the UE.

If the I-CSCF receives a negative response to the user location query, the I-CSCF shall send back a 404 (Not Found) response.

If the I-CSCF receives a CANCEL request and if the I-CSCF finds an internal state indicating a pending Cx transaction with the HSS, the I-CSCF:

- shall answer the CANCEL with a 200 OK; and
- shall answer the original request with a 487 Request Terminated.

NOTE: The I-CSCF will discard any later arriving (pending) Cx answer message from the HSS.
With the exception of 305 (Use Proxy) rersponses, the I-CSCF may recurse on a 3xx response only when the domain part of the URI contained in the 3 xx response is in the same domain as the I-CSCF. For the same cases, if the URI is an IP address, the I-CSCF shall only recurse if the IP address is known locally to be a address that represents the same domain as the I-CSCF.

5.3.3 Void

5.3.3.1 Void
5.3.3.2 Void

5.3.3.3 Void

5.3.4 Void

5.4 Procedures at the S-CSCF

5.4.1 Registration and authentication

5.4.1.1 Introduction

The S-CSCF shall act as the SIP registrar for all UAs belonging to the IM CN subsystem and with public user identities.
Subclause 5.4.1.2 through subclause 5.4.1.7 define S-CSCF procedures for SIP registration that do not relate to emergency. All registration requests are first screened according to the procedures of subclause 5.4.8.2 to see if they do relate to an emergency registration.

The S-CSCF shall support the use of the Path and Service-Route header. The S-CSCF shall also support the Require and Supported headers. The Path header is only applicable to the REGISTER request and its 200 (OK) response. The Service-Route header is only applicable to the 200 (OK) response of REGISTER. The S-CSCF shall not act as a redirect server for REGISTER requests.

The network operator defines minimum and maximum times for each registration. These values are provided within the S-CSCF.

The procedures for notification concerning automatically registered public user identities of a user are described in subclause 5.4.2.1.2.

In case a device performing address and/or port number conversions is provided by a $\mathrm{NA}(\mathrm{P}) \mathrm{T}$ or $\mathrm{NA}(\mathrm{P}) \mathrm{T}-\mathrm{PT}$, the S CSCF may need to modify the SIP signalling according to the procedures described in annex K if both a reg-id and instance ID parameter are present in the received contact header as described in draft-ieft-outbound [92].

5.4.1.2 Initial registration and user-initiated reregistration

5.4.1.2.1 Unprotected REGISTER

NOTE 1: Any REGISTER request sent unprotected by the UE is considered to be an initial registration. A 200 (OK) final response to such a request will only be sent back after the S-CSCF receives a correct authentication challenge response in a REGISTER request that is sent integrity protected.

NOTE 2: A REGISTER with Expires header value equal to zero should always be received protected. However, it is possible that in error conditions a REGISTER with Expires header value equal to zero may be received unprotected. In that instance the procedures below will be applied.

Upon receipt of a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "no", for a user identity linked to a private user identity that has previously registered one or more public user identities, the S-CSCF shall:

1) perform the procedure for receipt of a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "no"', for the received public user identity; and
2) if the authentication that concludes the initial registration has been successful, and there are public user identities belonging to this user that have been previously registered and the previous registrations have not expired, the S-

CSCF shall perform the network initiated deregistration procedure for the previously registered public user identities belonging to this user excluding the public user identity being registered (as described in subclause 5.4.1.5.

NOTE 3: The S-CSCF will inform the HSS that the previously registered public user identities, excluding the public user identity being registered, have been deregistered.

NOTE 4: Contact related to emergency registration is not affected. S-CSCF is not able deregister contact related to emergency registration and will not delete that.

When S-CSCF receives a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "no" and a non-empty response directive, the S-CSCF shall ignore the value of the response directive.

Upon receipt of a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "no", which is not for an already registered public user identity linked to the same private user identity, the S-CSCF shall:

1) identify the user by the public user identity as received in the To header and the private user identity as received in the username field in the Authorization header of the REGISTER request;
2) check if the P-Visited-Network header is included in the REGISTER request, and if it is included identify the visited network by the value of this header;
3) select an authentication vector for the user. If no authentication vector for this user is available, after the S-CSCF has performed the Cx Multimedia Authentication procedure with the HSS, as described in 3GPP TS 29.228 [14], the S-CSCF shall select an authentication vector as described in 3GPP TS 33.203 [19].

Prior to performing Cx Multimedia Authentication procedure with the HSS, the S-CSCF decides which HSS to query, possibly as a result of a query to the Subscription Locator Functional (SLF) entity as specified in 3GPP TS 29.228 [14] or use the value as received in the P-User-Database header in the REGISTER request as defined in RFC 4457 [82];

NOTE 5: The HSS address received in the response to SLF query or as a value of P-User-Database header can be used to address the HSS of the public user identity in further queries.

NOTE 6: At this point the S-CSCF informs the HSS, that the user currently registering will be served by the SCSCF by passing its SIP URI to the HSS. This will be used by the HSS to direct all subsequent incoming initial requests for a dialog or standalone transactions destined for this user to this S-CSCF.

NOTE 7: When passing its SIP URI to the HSS, the S-CSCF may include in its SIP URI the transport protocol and the port number where it wants to be contacted.
4) store the icid parameter received in the P-Charging-Vector header;
5) challenge the user by generating a 401 (Unauthorized) response for the received REGISTER request, including a WWW-Authenticate header which transports:

- a globally unique name of the S-CSCF in the realm field;
- the RAND and AUTN parameters and optional server specific data for the UE in the nonce field;
- the security mechanism, which is AKAv1-MD5, in the algorithm field;
- the IK (Integrity Key) parameter for the P-CSCF in the ik field (see subclause 7.2A.1); and
- the CK (Cipher Key) parameter for the P-CSCF in the ck field (see subclause 7.2A.1);

6) store the RAND parameter used in the 401 (Unathorized) response for future use in case of a resynchronisation. If a stored RAND already exists in the S-CSCF, the S-CSCF shall overwrite the stored RAND with the RAND used in the most recent 401 (Unauthorized) response;
7) send the so generated 401 (Unauthorized) response towards the UE; and,
8) start timer reg-await-auth which guards the receipt of the next REGISTER request.

If the received REGISTER request indicates that the challenge sent previously by the S-CSCF to the UE was deemed to be invalid by the UE, the S-CSCF shall stop the timer reg-await-auth and proceed as described in the subclause 5.4.1.2.3.

5.4.1.2.2 Protected REGISTER

Upon receipt of a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "yes", the S-CSCF shall identify the user by the public user identity as received in the To header and the private user identity as received in the Authorization header of the REGISTER request, and:

In the case that there is no authentication currently ongoing for this user (i.e. no timer reg-await-auth is running):

1) check if the user needs to be reauthenticated.

The S-CSCF may require authentication of the user for any REGISTER request, and shall always require authentication for REGISTER requests received without the "integrity-protected" parameter in the Authorization header set to "yes".

If the user needs to be reauthenticated, the S-CSCF shall proceed with the procedures as described for the unprotected REGISTER in subclause 5.4.1.2.1, beginning with step 3). If the user does not need to be reauthenticated, the S-CSCF shall proceed with the following steps in this paragraph; and
2) check whether an Expires timer is included in the REGISTER request and its value. If the Expires header indicates a zero value, the S-CSCF shall perform the deregistration procedures as described in subclause 5.4.1.4. If the Expires header does not indicate zero, the S-CSCF shall check whether the public user identity received in the To header is already registered. If it is not registered, the S-CSCF shall proceed beginning with step 5 below. Otherwise, the S-CSCF shall proceed beginning with step 6 below.

In the case that a timer reg-await-auth is running for this user the S-CSCF shall:

1) check if the Call-ID of the request matches with the Call-ID of the 401 (Unauthorized) response which carried the last challenge. The S-CSCF shall only proceed further if the Call-IDs match.
2) stop timer reg-await-auth;
3) check whether an Authorization header is included, containing:
a) the private user identity of the user in the username field;
b) the algorithm which is AKAv1-MD5 in the algorithm field; and
c) the authentication challenge response needed for the authentication procedure in the response field.

The S-CSCF shall only proceed with the following steps in this paragraph if the authentication challenge response was included;
4) check whether the received authentication challenge response and the expected authentication challenge response (calculated by the S-CSCF using XRES and other parameters as described in RFC 3310 [49]) match. The XRES parameter was received from the HSS as part of the Authentication Vector. The S-CSCF shall only proceed with the following steps if the challenge response received from the UE and the expected response calculated by the S-CSCF match;
5) after performing the Cx Server Assignment procedure with the HSS, as described in 3GPP TS 29.228 [14], store the following information in the local data:
a) the list of public user identities, including the registered own public user identity and its associated set of implicitly registered public user identities due to the received REGISTER request. Each public user identity is identified as either barred or non-barred; and,
b) all the service profile(s) corresponding to the public user identities being registered (explicitly or implicitly), including initial Filter Criteria(the initial Filter Criteria for the Registered and common parts is stored and the unregisterd part is retained for possible use later - in the case of the S-CSCF is retained if the user becomes unregistered);

NOTE 1: There might be more than one set of initial Filter Criteria received because some implicitly registered public user identities that are part of the same implicit registration set belong to different service profiles.
6) update registration bindings:
a) bind to each non-barred registered public user identity all registered contact information including all header parameters contained in the Contact header and all associated URI parameters, with the exception of the URI "pub-gruu" and "temp-gruu" parameters as specified in draft-ietf-sip-gruu [93], and store information for future use;
b) for each binding that contains a + sip.instance header parameter, assign a new temporary GRUU, as specified in subclause 5.4 .7 A .3 .

NOTE 2: There might be more then one contact information available for one public user identity.
NOTE 3: The barred public user identities are not bound to the contact information.
7) check whether a Path header was included in the REGISTER request and construct a list of preloaded Route headers from the list of entries in the received Path header. The S-CSCF shall preserve the order of the preloaded Route headers and bind them to the contact information that was received in the REGISTER message;

NOTE 4: If this registration is a reregistration or an initial registration (i.e., there are previously registered public user identities belonging to the user that have not been deregistered or expired), then a list of pre-loaded Route headers will already exist. The new list replaces the old list.
8) determine the duration of the registration by checking the value of the Expires header in the received REGISTER request. The S-CSCF may reduce the duration of the registration due to local policy or send back a 423 (Interval Too Brief) response specifying the minimum allowed time for registration;
9) store the icid parameter received in the P-Charging-Vector header;
10) if an orig-ioi parameter is received in the P-Charging-Vector header, store the value of the received orig-ioi parameter;

NOTE 5: Any received orig-ioi parameter will be a type 1 orig-ioi. The type 1 orig-ioi identifies the network from which the request was sent.
11) create a 200 (OK) response for the REGISTER request, including:
a) the list of received Path headers;
b) a P-Associated-URI header containing the list of the registered public user identity and its associated set of implicitly registered public user identities. The first URI in the list of public user identities supplied by the HSS to the S-CSCF will indicate the default public user identity to be used by the S-CSCF. The public user identity indicated as the default public user identity must be a registered public user identity. The S-CSCF shall place the default public user identity as the first entry in the list of URIs present in the P-AssociatedURI header. The default public user identity will be used by the P-CSCF in conjunction with the procedures for the P-Asserted-Identity header, as described in subclause 5.2.6.3. If the S-CSCF received a display name from the HSS for a public user identity, then it shall populate the P-Associated-URI header entry for that public identity with the associated display name. The S-CSCF shall not add a barred public user identity to the list of URIs in the P-Associated-URI header;

NOTE 6: The P-Associated-URI header lists only the public user identity and its associated set of implicitly registered public user identities that have been registered, rather than the list of user's URIs that may be either registered or unregistered as specified in the RFC 3455 [52]. If the registered public user identity which is not barred does not have any other associated public user identities, the P-Associated-URI header lists only the registered public user identity itself, rather than an empty P-Associated-URI header as specified in RFC 3455 [52].
c) a Service-Route header containing:

- the SIP URI identifying the S-CSCF containing an indication that requests routed via the service route (i.e. from the P-CSCF to the S-CSCF) are treated as for the UE-originating case. This indication may e.g. be in a URI parameter, a character string in the user part of the URI or be a port number in the URI; and,
- if network topology hiding is required a SIP URI identifying an IBCF as the topmost entry;
d) a P-Charging-Function-Addresses header containing the values received from the HSS if the P-CSCF is in the same network as the S-CSCF. It can be determined if the P-CSCF is in the same network as the S-CSCF by the contents of the P-Visited-Network-ID header field included in the REGISTER request;
e) a P-Charging-Vector header containing the orig-ioi parameter, if received in the REGISTER request and a type 1 term-ioi parameter. The S-CSCF shall set the type 1 term-ioi parameter to a value that identifies the sending network of the response and the orig-ioi parameter is set to the previously received value of orig-ioi;
f) a Contact header listing all contact addresses for this public user identity, including all saved header and URI parameters (including all ICSI values and IARI values) received in the Contact header field of the REGISTER request, and
g) gruus in the Contact header. If the REGISTER request contained a Required or Supported header containing the value "gruu" then for each contact address in the contact header that has a + sip.instance header parameter, add "pub-gruu" and "temp-gruu" header parameters. The values of these parameters shall contain, respectively, the public GRUU and the most recently assigned temporary GRUU representing (as specified in subclause 5.4 .7 A) the association between the public user identity from the To header in the REGISTER request and the instance ID contained in the + sip.instance parameter.

NOTE 7: There might be other contact addresses available, that other UEs have registered for the same public user identity.
12) send the so created $200(\mathrm{OK})$ response to the UE;
13)for all service profiles in the implicit registration set send a third-party REGISTER request, as described in subclause 5.4.1.7, to each AS that matches the Filter Criteria of the service profile from the HSS for the REGISTER event; and,

NOTE 8: If this registration is a reregistration, the Filter Criteria already exists in the local data.
NOTE 9: If the same AS matches the Filter Criteria of several service profiles for the event of REGISTER request, then the AS will receive several third-party REGISTER requests. Each of these requests will include a public user identity from the corresponding service profile.
14) consider the public user identity being registered to be bound to the contact address specified in the Contact header for the duration indicated in the Expires header.

5.4.1.2.3 Abnormal cases

In the case that the REGISTER request, that contains the authentication challenge response from the UE does not match with the expected REGISTER request (e.g. wrong Call-Id or authentication challenge response) and the request has the "integrity-protected" parameter in the Authorization header set to "yes", the S-CSCF shall:

- send a 403 (Forbidden) response to the UE. The S-CSCF shall consider this authentication attempt as failed. The S-CSCF shall not update the registration state of the subscriber.

NOTE 1: If the UE was registered before, it stays registered until the registration expiration time expires.
In the case that the REGISTER request, which was supposed to carry the response to the challenge, contains no authentication challenge response and no AUTS parameters indicating that the MAC parameter was invalid in the challenge, the S-CSCF shall:

- respond with a 403 (Forbidden) response to the UE. The S-CSCF shall not update the registration state of the subscriber.

NOTE 2: If the UE was registered before, it stays registered until the registration expiration time expires.
In the case that the REGISTER request from the UE containing an AUTS directive, indicating that the SQN was deemed to be out of range by the UE), the S-CSCF will fetch new authentication vectors from the HSS. In order to indicate a resynchronisation, the S-CSCF shall include the AUTS directive received from the UE and the stored RAND, when fetching the new authentication vectors. On receipt of the new authentication vectors from the HSS, the S-CSCF shall either:

- send a 401 (Unauthorized) response to initiate a further authentication attempt, using these new vectors; or
- respond with a 403 (Forbidden) response if the authentication attempt is to be abandoned. The S-CSCF shall not update the registration state of the subscriber.

NOTE 3: If the UE was registered before, it stays registered until the registration expiration time expires.
NOTE 4: Since the UE responds only to two consecutive invalid challenges, the S-CSCF will send a 401 (Unauthorized) response that contains a new challenge only twice.

NOTE 5: In the case of an AUTS directive being present in the REGISTER request, the response directive in the same REGISTER request will not be taken into account by the S-CSCF.

In the case that the expiration timer from the UE is too short to be accepted by the S-CSCF, the S-CSCF shall:

- reject the REGISTER request with a 423 (Interval Too Brief) response, containing a Min-Expires header with the minimum registration time the S-CSCF will accept.

On receiving a failure response to one of the third-party REGISTER requests, based on the information in the Filter Criteria the S-CSCF may:

- abort sending third-party REGISTER requests; and
- initiate network-initiated deregistration procedure.

If the Filter Criteria does not contain instruction to the S-CSCF regarding the failure of the contact to the AS, the SCSCF shall not initiate network-initiated deregistration procedure.

In the case that the REGISTER request from the UE contains more than one SIP URIs as Contact header entries, the SCSCF shall store:

- the entry in the Contact header with the highest qualue; or
- an entry decided by the S-CSCF based on local policy;
and include it in the $200(\mathrm{OK})$ response.
NOTE 6: If the timer reg-await-auth expires, the S-CSCF will consider the authentication to have failed. If the public user identity was already registered, the S-CSCF will leave it registered, as described in 3GPP TS 33.203 [19].

In the case that the S-CSCF receives a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "yes", for which the public user identity received in the To header and the private user identity received in the Authorization header of the REGISTER request do not match to any registered user at this S-CSCF, the S-CSCF shall:

- respond with a 500 (Server Internal Error) response to the UE.

NOTE 7: This error is not raised if there is a match on the private user identity, but no match on the public user identity.

For any error response, the S-CSCF shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the REGISTER request and a type 1 term-ioi parameter. The S-CSCF shall set the type 1 term-ioi parameter to a value that identifies the sending network of the response and the orig-ioi parameter is set to the previously received value of orig-ioi.

NOTE 8: Any previously received orig-ioi parameter will be a type 1 orig-ioi. The type 1 orig-ioi identifies the visited network of the registered user.

5.4.1.3 Authentication and reauthentication

Authentication and reauthentication is performed by the registration procedures as described in subclause 5.4.1.2.

5.4.1.4 User-initiated deregistration

When S-CSCF receives a REGISTER request with the Expires header field containing the value zero, the S-CSCF shall:

- check whether the "integrity-protected" parameter in the Authorization header field set to "yes", indicating that the REGISTER request was received integrity protected. The S-CSCF shall only proceed with the following steps if the "integrity-protected" parameter is set to "yes";
- release all dialogs that include this user's registered contact address, where the dialogs were initiated by or terminated towards this contact with the registered contact address for which the same public user identity found in the To header field that was received in the REGISTER request or with one of the implicitly registered public user identities by applying the steps listed in subclause 5.4.5.1.2. However:
- if the dialog that was established by the UE subscribing to the reg event package used the public user identity that is going to be deregistered; and
- this dialog is the only remaining dialog used for subscription to reg event package;
then the S-CSCF shall not release this dialog;
- if this public user identity was registered only by this UE, deregister the public user identity found in the To header field together with the implicitly registered public user identities. Otherwise, the S-CSCF will only remove the contact address that was registered by this UE;

NOTE: If the UE sends a REGISTER request with the value "*" in the Contact header and the value zero in the Expires header, the S-CSCF will only remove the contact address that was registered by this UE identified with its private user identity.

- for all service profiles in the implicit registration set send a third-party REGISTER request, as described in subclause 5.4.1.7, to each AS that matches the Filter Criteria of the service profile from the HSS for the REGISTER event;
- if this is a deregistration request for the only public user identity currently registered with its associated set of implicitly registered public user identities (i.e. no other is registered) and there are still active multimedia sessions that includes this user's registered contact address, where the session was initiated by or terminated towards the contact with the registered contact address for that public user identity which is currently registered or with one of the implicitly registered public user identities, release only each of these multimedia sessions associated with the registered contact address by applying the steps listed in subclause 5.4.5.1.2. Only dialogs associated to the multimedia sessions originated or terminated towards the registered user's contact address shall be released; and
- send a 200 (OK) response to a REGISTER request with the Contact header field containing the contact address being deregistered and either the Expires header field or expires parameter with the value equals zero.

If all public user identities of the UE are deregistered, then the S-CSCF may consider the UE and P-CSCF subscriptions to the reg event package cancelled (i.e. as if the UE had sent a SUBSCRIBE request with an Expires header containing a value of zero).

If the Authorization header of the REGISTER request contained an "integrity-protected" parameter set to the value "no", the S-CSCF shall apply the procedures described in subclause 5.4.1.2.1.

On completion of the above procedures in this subclause and of the Cx Server Assignment procedure with the HSS, as described in 3GPP TS 29.228 [14], for one or more public user identities, the S-CSCF shall update or remove those public user identities, their registration state and the associated service profiles from the local data (based on operators' policy the S-CSCF can request of the HSS to either be kept or cleared as the S-CSCF allocated to this subscriber).

5.4.1.5 Network-initiated deregistration

NOTE 1: A network-initiated deregistration event that occurs at the S-CSCF may be received from the HSS or may be an internal event in the S-CSCF.

Prior to initiating the network-initiated deregistration for the only currently registered public user identity and its associated set of implicitly registered public user identities that have been registered with the same contact (i.e. no other public user identity is registered with this contact) while there are still active multimedia sessions belonging to this contact, the S-CSCF shall release only the multimedia sessions belonging to this contact as described in the following paragraph. The multimedia sessions for the same public user identity, if registered with another contact remain unchanged.

Prior to initiating the network-initiated deregistration while there are still active multimedia sessions that are associated with this user and contact, the S-CSCF shall release none, some or all of these multimedia sessions by applying the steps listed in subclause 5.4.5.1.2 under the following conditions:

- when the S-CSCF does not expect the UE to reregister (i.e. S-CSCF will set the event attribute within the <contact> element to "rejected" for the NOTIFY request, as described below), the S-CSCF shall release all sessions that are associated with the registered contact address for the public user identities being deregistered, which includes the implicitly registered public user identities.
- when the S-CSCF expects the UE to reregister (i.e. S-CSCF will set the event attribute within the <contact> element to "deactivated" for the NOTIFY request, as described below), the S-CSCF shall only release sessions that currently include the user's contact address, where the session was initiated by or terminated towards the user with the contact address stered to one of the public user identities being deregistered, which includes the implicitly registered public user identities.

When a network-initiated deregistration event occurs for one or more public user identities that are bound to one or more contacts, the S-CSCF shall send a NOTIFY request to all subscribers that have subscribed to the respective reg event package. For each NOTIFY request, the S-CSCF shall:

1) set the Request-URI and Route header to the saved route information during subscription;
2) set the Event header to the "reg" value;
3) in the body of the NOTIFY request, include as many <registration> elements as many public user identities the S-CSCF is aware of the user owns;
4) set the aor attribute within each <registration> element to one public user identity:
a) set the <uri> sub-element inside the <contact> sub-element of each <registration> element to the contact address provided by the UE;
b) if the public user identity:
i) has been deregistered then:

- set the state attribute within the <registration> element to "terminated";
- set the state attribute within the <contact> element to "terminated"; and
- set the event attribute within the <contact> element to "deactivated" if the S-CSCF expects the UE to reregister or "rejected" if the S-CSCF does not expect the UE to reregister; or
ii) has been kept registered then:
I) set the state attribute within the <registration> element to "active";
II) set the state attribute within the <contact> element to:
- for the contact address to be removed set the state attribute within the <contact> element to "terminated", and event attribute element to "deactivated" if the S-CSCF expects the UE to reregister or "rejected" if the S-CSCF does not expect the UE to reregister; or
- for the contact address which remain unchanged, if any, leave the <contact> element unmodified, and if the contact has been assigned GRUUs set the <pub-gruu> and <temp-gruu> sub-elements of the <contact> element as specified in draft-ietf-sipping-gruu-reg-event [94] and include the <unknown-param> sub-element within each <contact> to any additional header parameters contained in the Contact header of the REGISTER request according to RFC 3680 [43]; and

NOTE 2: There might be more than one contact information available for one public user identity. When deregistering this UE, the S-CSCF will only modify the <contact> elements that were originally registered by this UE using its private user identity. The <contact> elements of the same public user identitity, if registered by another UE using different private user identities remain unchanged.
5) add a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17].

The S-CSCF shall only include the non-barred public user identities in the NOTIFY request.

When sending a final NOTIFY request with all <registration> element(s) having their state attribute set to "terminated" (i.e. all public user identities have been deregistered or expired), the S-CSCF shall also terminate the subscription to the registration event package by setting the Subscription-State header to the value of "terminated".

Also, for all service profiles in the implicit registration set the S-CSCF shall send a third-party REGISTER request, as described in subclause 5.4.1.7, to each AS that matches the Filter Criteria of the service profile from the HSS as if a equivalent REGISTER request had been received from the user deregistering that public user identity, or combination of public user identities.

In case of the deregistration of the old contact information when the UE is roaming, registration is done in a new network and the previous registration has not expired, on completion of the above procedures, the S-CSCF shall remove the registration information related to the old contact from the local data.

Otherwise, on completion of the above procedures for one or more public user identities linked to the same private user identity, the S-CSCF shall deregister those public user identities and the associated implicitly registered public user identities. On completion of the Cx Server Assignment procedure with the HSS, as described in 3GPP TS 29.228 [14], the S-CSCF shall update or remove those public user identities linked to the same private user identity, their registration state and the associated service profiles from the local data (based on operators' policy the S-CSCF can request of the HSS to either be kept or cleared as the S-CSCF allocated to this subscriber). On the completion of the Cx RegistrationTermination procedure with the HSS, as described in 3GPP TS 29.228 [14], the S-CSCF shall remove those public user identities, their registration state and the associated service profiles from the local data.

5.4.1.6 Network-initiated reauthentication

The S-CSCF may request a subscriber to reauthenticate at any time, based on a number of possible operator settable triggers as described in subclause 5.4.1.2.

If the S-CSCF is informed that a private user identity needs to be re-authenticated, the S-CSCF shall generate a NOTIFY request on all dialogs which have been established due to subscription to the reg event package of that user. For each NOTIFY request the S-CSCF shall:

1) set the Request-URI and Route header to the saved route information during subscription;
2) set the Event header to the "reg" value;
3) in the body of the NOTIFY request, include as many <registration> elements as many public user identities the S-CSCF is aware of the user owns:
a) set the <uri> sub-element inside the <contact> sub-element of each <registration> element to the contact address provided by the UE;
b) set the aor attribute within each <registration> element to one public user identity;
c) set the state attribute within each <registration> element to "active";
d) set the state attribute within each <contact> element to "active";
e) set the event attribute within each <contact> element that was registered by this UE to "shortened";
f) set the expiry attribute within each <contact> element that was registered by this UE to an operator defined value; and
g) set the <pub-gruu> and <temp-gruu> sub-elements within each <contact> element as specified in subclause 5.4.2.1.2; and

NOTE 1: There might be more than one contact information available for one public user identity. The S-CSCF will only modify the <contact> elements that were originally registered by this UE using its private user identity. The S-CSCF will not modify the <contact> elements for the same public user identitity, if registered by another UE using different private user identity.
4) set a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17].

Afterwards the S-CSCF shall wait for the user to reauthenticate (see subclause 5.4.1.2).
NOTE 2: Network initiated re-authentication may occur due to internal processing within the S-CSCF.

The S-CSCF shall only include the non-barred public user identities in the NOTIFY request.
When generating the NOTIFY request, the S-CSCF shall shorten the validity of all registration lifetimes associated with this private user identity to an operator defined value that will allow the user to be re-authenticated.

5.4.1.7 Notification of Application Servers about registration status

During registration, the S-CSCF shall include a P-Access-Network-Info header and a P-Visited-Network-ID header (as received in the REGISTER request from the UE) in the 3rd-party REGISTER sent towards the ASs, if the AS is part of the trust domain. If the AS is not part of the trust domain, the S-CSCF shall not include any P-Access-Network-Info header or P-Visited-Network-ID header. The S-CSCF shall not include a P-Access-Network-Info header in any responses to the REGISTER request.

If the registration procedure described in subclauses 5.4.1.2, 5.4.1.4 or 5.4.1.5 (as appropriate) was successful, the SCSCF shall send a third-party REGISTER request to each AS with the following information:
a) the Request-URI, which shall contain the AS's SIP URI;
b) the From header, which shall contain the S-CSCF's SIP URI;
c) the To header, which shall contain a non-barred public user identity belonging to the service profile of the processed Filter Criteria. It may be either a public user identity as contained in the REGISTER request received from the UE or one of the implicitly registered public user identities in the service profile, as configured by the operator;

NOTE 1: For the whole implicit registration set only one public user identity per service profile appears in the third-party REGISTER requests. Thus, based on third-party REGISTER requests only, the ASs will not have complete information on the registration state of each public user identity in the implicit registration set. The only way to have a complete and continuously updated information (even upon administrative change in subscriber's profile) is to subscribe to the reg event package.
d) the Contact header, which shall contain the S-CSCF's SIP URI;
e) for initial registration and user-initiated reregistration (subclause 5.4.1.2), the Expires header, which shall contain the same value that the S-CSCF returned in the $200(\mathrm{OK})$ response for the REGISTER request received from the UE;
f) for user-initiated deregistration (subclause 5.4.1.4) and network-initiated deregistration (subclause 5.4.1.5), the Expires header, which shall contain the value zero;
g) for initial registration and user-initiated reregistration (subclause 5.4.1.2), a message body, if there is Filter Criteria indicating the need to include HSS provided data for the REGISTER event (e.g. HSS may provide AS specific data to be included in the third-party REGISTER). If there is a service information XML element provided in the HSS Filter Criteria for an AS (see 3GPP TS 29.228 [14]), then the S-CSCF shall include it in the message body of the REGISTER request within the <service-info> XML element as described in subclause 7.6. For the messages including the IM CN subsystem XML body, the S-CSCF shall set the value of the ContentType header to include the MIME type specified in subclause 7.6;
h) for initial registration and user-initiated reregistration, the P-Charging-Vector header, which shall contain the same icid parameter that the S-CSCF received in the original REGISTER request from the UE and add a type 3 orig-ioi parameter before the received orig-ioi parameter. The S-CSCF shall set the type 3 orig-ioi parameter to a value that identifies the sending network of the request. The S-CSCF shall not include the type 3 term-ioi parameter;
i) for initial registration and user-initiated reregistration, a P-Charging-Function-Addresses header, which shall contain the values received from the HSS if the message is forwarded within the S-CSCF home network; and
j) in case the original received REGISTER request contained a P-User-Database header and the AS belongs to the same operator as the S-CSCF, optionally a P-User-Database header which shall contain the received value.

When the S-CSCF receives any response to a third-party REGISTER request, the S-CSCF shall store the value of the term-ioi parameter received in the P-Charging-Vector header, if present.

NOTE 2: Any received term-ioi parameter will be a type 3 term-ioi. The type 3 term-ioi identifies the service provider from which the response was sent.

If the S-CSCF fails to receive a SIP response or receives a 408 (Request Timeout) response or a 5 xx response to a thirdparty REGISTER, the S-CSCF shall:

- if the default handling defined in the filter criteria indicates the value "SESSION_CONTINUED" as specified in 3GPP TS 29.228 [14] or no default handling is indicated, no further action is needed; and
- if the default handling defined in the filter criteria indicates the value "SESSION_TERMINATED" as specified in 3GPP TS 29.228 [14], the S-CSCF shall, for a currently registered public user identity, initiate the networkinitiated deregistration as described in subclause 5.4.1.5.

5.4.1.8 Service profile updates

NOTE 1: The S-CSCF can receive an update of subscriber data notification on the Cx interface, from the HSS, which can affect the stored information about served public user identities. According to 3GPP TS 29.228 [14], the changes are guaranteed not to affect the default public user identity within the registration implicit set.

When receiving a Push-Profile-Request (PPR) from the HSS (as described in 3GPP TS 29.228 [14]), modifying the service profile of served public user identities, the S-CSCF shall

1) if the modification consists in the addition of a new non-barred public user identity to an implicit set, or in the change of status from barred to non-barred for a public user identity already in the implicit set, add the public user identity to the list of registered, non-barred public user identities;
2) if the modification consists in the deletion or in the change of status from non-barred to barred of a public user identity in an implicit set, remove the public user identity from the list of registered, non-barred public user identities;

NOTE 2: As the S-CSCF checks the barring status of the public user identity on receipt of a initial request for a dialog, or a standalone transaction, the above procedures have no impact on transactions or dialogs already in progress and are effective only for new transactions and dialogs.
3) if the modification consists of deletion of a public user identity from an implicit registration set while there are active multimedia session belonging to this public user identity and contact, the S-CSCF shall perform the network initiated deregistration procedures as described in sub-clause 5.4.1.5 and skip synchronization of the UE and IM CN entitities as described in step 4; and
4) synchronize with the UE and IM CN entities, by either:

- performing the procedures for notification of the reg-event subscribers about registration state, as described in subclause 5.4.2.1.2; or
- triggering the UE to re-register, by shortening the life time of the current registration, as described in subclause 5.4.1.6.

5.4.2 Subscription and notification

5.4.2.1 Subscriptions to S-CSCF events

5.4.2.1.1 Subscription to the event providing registration state

When an incoming SUBSCRIBE request addressed to S-CSCF arrives containing the Event header with the reg event package, the S-CSCF shall:

1) check if, based on the local policy, the request was generated by a subscriber who is authorised to subscribe to the registration state of this particular user. The authorized subscribers include:

- all public user identities this particular user owns, that the S-CSCF is aware of, and which are not-barred;
- all the entities identified by the Path header (i.e. the P-CSCF to which this user is attached to); and
- all the ASs listed in the initial filter criteria that are part of the trust domain; and

NOTE 1: The S-CSCF finds the identity for authentication of the subscription in the P-Asserted-Identity header received in the SUBSCRIBE request.
2) store the value of the orig-ioi parameter received in the P-Charging-Vector header if present; and

NOTE 2: Any received orig-ioi parameter will be a type 3 orig-ioi. The type 3 orig-ioi identifies the service provider from which the request was sent.
3) generate a $2 x x$ response acknowledging the SUBSCRIBE request and indicating that the authorised subscription was successful as described in RFC 3680 [43]. The S-CSCF shall populate the header fields as follows:

- an Expires header, set to either the same or a decreased value as the Expires header in SUBSCRIBE request; and
- if the request originated from an ASs listed in the initial filter criteria, a P-Charging-Vector header containing the orig-ioi parameter, if received in the SUBSCRIBE request, and a type 3 term-ioi. The S-CSCF shall set the type 3 term-ioi parameter to a value that identifies the sending network of the response and the orig-ioi parameter is set to the previously received value of orig-ioi.

The S-CSCF may set the Contact header to an identifier uniquely associated to the SUBSCRIBE request and generated within the S-CSCF, that may help the S-CSCF to correlate refreshes for the SUBSCRIBE.

NOTE 3: The S-CSCF could use such unique identifiers to distinguish between UEs, when two or more users, holding a shared subscription, register under the same public user identity.
Afterwards the S-CSCF shall perform the procedures for notification about registration state as described in subclause 5.4.2.1.2.

For any final response that is not a $2 x x$ response, the S-CSCF shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the SUBSCRIBE request and a type 3 term-ioi. The S-CSCF shall set the type 3 termioi parameter to a value that identifies the sending network of the response and the orig-ioi parameter is set to the previously received value of orig-ioi.

When the S-CSCF receives a subscription refresh request for a dialog that was established by the UE subscribing to the reg event package, the S-CSCF shall accept the request irrespective if the user's public user identity specified in the SUBSCRIBE request is either registered or has been deregistered.

5.4.2.1.2 Notification about registration state

When sending a NOTIFY request, the S-CSCF shall not use the default filtering policy as specified in RFC 3680 [43], i.e. the S-CSCF shall always include in every NOTIFY request the state information of all registered public user identities of the user (i.e. the full state information).

NOTE 1: Contact information related to emergency registration is not included.
When generating NOTIFY requests, the S-CSCF shall not preclude any valid reg event package parameters in accordance with RFC 3680 [43].

For each NOTIFY request on all dialogs which have been established due to subscription to the reg event package of that user, the S-CSCF shall:

1) set the Request-URI and Route header to the saved route information during subscription;
2) set the Event header to the "reg" value;
3) in the body of the NOTIFY request, include one <registration> elements for each public user identity that the SCSCF is aware the user owns.

If the user shares one or more public user identities with other users, any contact addresses registered by other users of the shared public user identity shall be included in the NOTIFY request;
4) for each <registration> element:
a) set the aor attribute to one public user identity;
b) set the <uri> sub-element inside each <contact> sub-element of the <registration> element to the contact address provided by the respective UE as follows:
I) if the aor attribute of the <registration> element contains a SIP URI, then for each contact address that contains a + sip.instance header parameter, include <pub-gruu> and <temp-gruu> sub-elements within the corresponding <contact> element. The S-CSCF shall set the contents of these elements as specified in draft-ietf-sipping-gruu-reg-event [94]; or
II) if the aor attribute of the <registration> element contains a tel-URI, determine its alias SIP URI and then include a copy of the <pub-gruu> and <temp-gruu> sub-elements from that equivalent element; and
c) if the public user identityset at step a):
I) has been deregistered (i.e. no active contact left) then:

- set the state attribute within the <registration> element to "terminated";
- set the state attribute within each <contact> element to "terminated"; and
- set the event attribute within each <contact> element to "deactivated", "expired", "unregistered", "rejected" or "probation" according to RFC 3680 [43].

If the public user identity has been deregistered and the deregistration has already been indicated in the NOTIFY request, and no new registration has occurred, its <registration> element shall not be included in the subsequent NOTIFY requests; or
II) has been registered then:

- set the <unknown-param> element to any additional header parameters contained in the contact header of the REGISTER request according to RFC 3680 [43];
- set the state attribute within the <registration> element to "active", if not already set to "active", otherwise leave it unchanged; and:
- set the state attribute within the <contact> element to "active"; and set the event attribute within the <contact> element to "registered"; or
III) has been re-registered then:
- set the <unknown-param> element to any additional header parameters contained in the contact header of the REGISTER request according to RFC 3680 [43];
- for contact addresses to be registered: set the state attribute within the <contact> element to "active"; and set the event attribute within the <contact> element to "registered"; or
- for contact addresses to be re-registered, set the state attribute within the <contact> element to "active"; and set the event attribute within the <contact> element to "refreshed" according to RFC 3680 [43]; or
- for contact addresses that remain unchanged, if any, leave the <contact> element unmodified; or
IV)has been automatically registered, and has not been previously automatically registered:
- set the <unknown-param> element to any additional header parameters contained in the contact header of the originsl REGISTER request according to RFC 3680 [43];
- set the state attribute within the <registration> element to "active";
- set the state attribute within the <contact> element to "active"; and
- set the event attribute within the <contact> element to "created"; or

V) is hosted (unregistered case) at the S-CSCF:

- set the state attribute within the <registration> element to "terminated";
- set the state attribute within each <contact> element to "terminated"; and
- set the event attribute within each <contact> element to "unregistered".

The S-CSCF shall also terminate the subscription to the registration event package by setting the SubscriptionState header to the value of "terminated"; and
5) set the P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17] and a type 3 orig-ioi parameter. The S-CSCF shall set the type 3 orig-ioi parameter to a value that identifies the sending network of the request. The S-CSCF shall not include the type 3 term-ioi parameter.

The S-CSCF shall only include the non-barred public user identities in the NOTIFY request.
EXAMPLE: If sip:user1_public1@home1.net is registered, the public user identity sip:user1_public2@home1.net can automatically be registered. Therefore the entries in the body of the NOTIFY request look like:

```
<?xml version="1.0"?>
<reginfo xmlns="urn:ietf:params:xml:ns:reginfo"
                version="0" state="full">
    <registration aor="sip:user1_public1@home1.net" id="as9"
                    state="active">
        <contact id="76" state="active" event="registered">
            <uri>sip:[5555::aaa:bbb:ccc:ddd]</uri>
            <unknown-param name="audio"/>
        </contact>
    </registration>
    <registration aor="sip:user1_public2@home1.net" id="as10"
                state="active">
        <contact id="86" state="active" event="created">
            <uri>sip:[5555::aaa:bbb:ccc:ddd]</uri>
            <unknown-param name="audio"/>
        </contact>
    </registration>
</reginfo>
```

When sending a final NOTIFY request with all <registration> element(s) having their state attribute set to "terminated" (i.e. all public user identities have been deregistered, expired or are hosted (unregistered case) at the S-CSCF), the SCSCF shall also terminate the subscription to the registration event package by setting the Subscription-State header to the value of "terminated".

When all of a UE's contact addresses have been deregistered (i.e.there is no <contact> element set to "active" for this UE), the S-CSCF shall consider subscription to the reg event package belonging to the UE cancelled (i.e. as if the UE had sent a SUBSCRIBE request with an Expires header containing a value of zero).

The S-CSCF shall only include the non-barred public user identities in the NOTIFY request.
When the S-CSCF receives any response to the NOTIFY request, the S-CSCF shall store the value of the term-ioi parameter received in the P-Charging-Vector header, if present.

NOTE 2: Any received term-ioi parameter will be a type 3 term-ioi. The type 3 term-ioi identifies the service provider from which the response was sent.

5.4.3 General treatment for all dialogs and standalone transactions excluding requests terminated by the S-CSCF

5.4.3.1 Determination of UE-originated or UE-terminated case

Upon receipt of an initial request or a target refresh request or a stand-alone transaction, the S-CSCF shall:

- perform the procedures for the UE-originating case as described in subclause 5.4.3.2 if the request makes use of the information for UE-originating calls, which was added to the Service-Route header entry of the S-CSCF during registration (see subclause 5.4.1.2), e.g. the message is received at a certain port or the topmost Route header contains a specific user part or parameter; or,
- perform the procedures for the UE-originating case as described in subclause 5.4.3.2 if the topmost Route header of the request contains the "orig" parameter. The S-CSCF shall remove the "orig" parameter from the topmost Route header; or,
- perform the procedures for the UE-terminating case as described in subclause 5.4.3.3 if this information is not used by the request.

5.4.3.2 Requests initiated by the served user

When the S-CSCF receives from the served user or from a PSI an initial request for a dialog or a request for a standalone transaction, and the request is received either from a functional entity within the same trust domain or contains a valid original dialog identifier (see step 3) or the dialog identifier (From, To and Call-ID header fields) relates to an existing request processed by the S-CSCF, then prior to forwarding the request, the S-CSCF shall:

1) determine whether the request contains a barred public user identity in the P-Asserted-Identity header field of the request or not. In case the said header field contains a barred public user identity for the user, then the S-CSCF shall reject the request by generating a 403 (Forbidden) response. Otherwise, continue with the rest of the steps;

NOTE 1: If the P-Asserted-Identity header field contains a barred public user identity, then the message has been received, either directly or indirectly, from a non-compliant entity which should have had generated the content with a non-barred public user identity.

1A) if the Contact is a GRUU, but is not valid as defined in subclause 5.4.7A.4, then return a 4 xx response as specified in draft-ietf-sip-gruu [93];
2) store the value of the orig-ioi parameter received in the P-Charging-Vector header if present, and remove it from any forwarded request;

NOTE 2: Any received orig-ioi parameter will be a type 3 orig-ioi. The type 3 orig-ioi identifies the service provider from which the request was sent (AS initiating a session on behalf of a user or a PSI);
3) check if an original dialog identifier that the S-CSCF previously placed in a Route header is present in the topmost Route header of the incoming request. If not present, the S-CSCF shall build an ordered list of initial filter criteria based on the public user identity in the P-Asserted-Identity header of the received request as described in 3GPP TS 23.218 [5]. If present, the request has been sent from an AS in response to a previously sent request, an ordered list of initial filter criteria already exists and it shall be kept unchanged even if the AS has changed the P -Asserted-Identity header;
4) remove its own SIP URI from the topmost Route header;

4A) if there was an original dialog identifier present in the topmost Route header of the incoming request and the request is received from a functional entity within the same trust domain and contains a P-Asserted-Service header field, continue the procedure with step 5;

4B) if the request contains a P-Preferred-Service header field, check whether the ICSI value contained in the P-Preferred-Service header field is part of the set of the subscribed services for the served user and determine whether the contents of the request (e.g. SDP media capabilities, Content-Type header field) match the ICSI for the subscribed service:
a) if not, as an operator option, the S-CSCF may reject the request by generating a 403 (Forbidden) response. Otherwise remove the P-Preferred-Service header field and continue with the rest of the steps; and
b) if so, then include a P-Asserted-Service header field in the request containing the ICSI value contained in the P-Preferred-Service header field, remove the P-Preferred-Service header field, and continue the procedure with step 5;

4C) if the request does not contain a P-Preferred-Service header field, check whether the contents of the request match a subscribed service for each and any of the subscribed services for the served user:
a) if not, as an operator option, the S-CSCF may reject the request by generating a 403 (Forbidden) response; and
b) if so, and if the request is related to an IMS communication service and the IMS communication service requires the use of an ICSI value then select an ICSI value for the related IMS communication service and include a P-Asserted-Service header field in the request containing the selected ICSI value; and
c) if so, and if the request is related to an IMS communication service and the IMS communication service does not require the use of an ICSI value then continue without including an ICSI value; and
d) if so, and if the request does not relate to an IMS communication service (or if the S-CSCF is unable to unambiguously determine the service being requested but decides to allow the session to continue) then continue without inclding an ICSI value;
5) check whether the initial request matches the next unexecuted initial filter criteria from the ordered list of initial filter criteria, and if it does, the S-CSCF shall:
a) insert the AS URI to be contacted into the Route header as the topmost entry followed by its own URI populated as specified in the subclause 5.4.3.4;
b) if the AS is located outside the trust domain then the S-CSCF shall remove the access-network-charging-info parameter in the P-Charging-Vector header from the request that is forwarded to the AS; if the AS is located within the trust domain, then the S-CSCF shall retain the access-network-charging-info parameter in the P -Charging-Vector header in the request that is forwarded to the AS; and
c) insert a type 3 orig-ioi parameter before the received orig-ioi parameters in the P-Charging-Vector header. The S-CSCF shall set the type 3 orig-ioi parameter to a value that identifies the sending network of the request. The S-CSCF shall not include the type 3 term-ioi parameter;

NOTE 3: Depending on the result of processing the filter criteria the S-CSCF might contact one or more AS(s) before processing the outgoing Request-URI.

NOTE 4: An AS can activate or deactivate its own filter criteria via the Sh interface. As the S-CSCF checks initial filter criteria only on receipt of an initial request for a dialog, or a standalone transaction, a modified service profile will have no impact on transactions or dialogs already in progress and the modified profile will be effective only for new transactions and dialogs. If the S-CSCF receives a modification of the iFC during their execution, then it should not update the stored initial Filter Criteria until the iFC related to the initial request have been completely executed.
6) if there is no original dialog identifier present in the topmost Route header of the incoming request store the value of the icid parameter received in the P-Charging-Vector header and retain the icid parameter in the P -Charging-Vector header. Optionally, the S-CSCF may generate a new, globally unique icid and insert the new value in the icid parameter of the P-Charging-Vector header when forwarding the message. If the S-CSCF creates a new icid, then it is responsible for maintaining the two icid values in the subsequent messaging;
7) in step 5 , if the initial request did not match the next unexecuted initial filter criteria (i.e. the request is not forwarded to an AS), insert an orig-ioi parameter into the P-Charging-Vector header. The S-CSCF shall set the type 2 orig-ioi parameter to a value that identifies the sending network. The S-CSCF shall not include the type 2 term-ioi parameter;
8) if there is no original dialog identifier present in the topmost Route header of the incoming request insert a P-Charging-Function-Addresses header populated with values received from the HSS if the message is forwarded within the S-CSCF home network, including towards AS;
9) if there is no original dialog identifier present in the topmost Route header of the incoming request and if the SCSCF has knowledge that the SIP URI contained in the received P-Asserted-Identity header is an alias SIP URI for a tel URI, add a second P-Asserted-Identity header containing this tel-URI, including the display name associated with the tel URI, if available. If the P-Asserted-Identity header contains only a tel URI, the S-CSCF shall add a second P-Asserted-Identity header containing a SIP URI. The added SIP URI shall contain in the user part a " + " followed by the international public telecommunication number contained in tel URI, and user's home domain name in the hostport part. The added SIP URI shall contain the same value in the display name as contained in the tel URI. The S-CSCF shall also add a user parameter equals "phone" to the SIP URI;

NOTE 5: The S-CSCF recognizes that a given SIP URI is an alias SIP URI of a tel URI, since this grouping is sent from the HSS (see 3GPP TS 29.228 [14]). If tel URI is shared URI so is the alias SIP URI.
10) if the request is not forwarded to an AS and if the outgoing Request-URI is:

- a SIP URI with the user part starting with a + and the user parameter equals "phone", and if configured per local operator policy, the S-CSCF shall perform the procedure described here. Local policy can dictate whether this procedure is performed for all domains of the SIP URI, only if the domain belongs to the home network, or not at all. If local policy indicates that the procedure is to be performed, then the S-CSCF shall translate the international public telecommunications number contained in the user part of the SIP URI (see RFC 3966 [22]) to a globally routeable SIP URI using either an ENUM/DNS translation mechanism with the
format specified in RFC 3761 [24], or any other available database. Database aspects of ENUM are outside the scope of the present document. An S-CSCF that implements the additional routeing functionality described in annex I may forward the request without attempting translation. If a translation is in fact performed and it succeeds, the S-CSCF shall update the Request-URI with the globally routeable SIP URI returned by ENUM/DNS. If this translation fails, the request may be forwarded to a BGCF or any other appropriate entity (e.g. a MRFC to play an announcement) in the originator's home network or the S-CSCF may send an appropriate SIP response to the originator. When forwarding the request to a BGCF or any other appropriate entity, the S-CSCF shall leave the original Request-URI containing the SIP URI with user parameter equals phone unmodified. If the request is forwarded, the S-CSCF shall remove the access-network-charging-info parameter from the P-Charging-Vector header prior to forwarding the message;
- a tel URI in the international format, the S-CSCF shall translate the E. 164 address (see RFC 3966 [22]) to a globally routeable SIP URI using either an ENUM/DNS translation mechanism with the format specified in RFC 3761 [24], or any other available database. Database aspects of ENUM are outside the scope of the present document. An S-CSCF that implements the additional routeing functionality described in Annex I may forward the request without attempting translation. If this translation is in fact performed and it succeeds, the S-CSCF shall update the Request-URI with the globally routeable SIP URI returned by ENUM/DNS. If this translation fails, the request may be forwarded to a BGCF or any other appropriate entity (e.g a MRFC to play an announcement) in the originator's home network or the S-CSCF may send an appropriate SIP response to the originator. When forwarding the request to a BGCF or any other appropriate entity, the S-CSCF shall leave the original Request-URI containing the tel URI unmodified. If the request is forwarded, the S-CSCF shall remove the access-network-charging-info parameter from the P-ChargingVector header prior to forwarding the message;
- a tel URI in non-international format (i.e. the local service number analysis and handling is either failed in the appropriate AS or the request has not been forwarded to AS for local service number analysis and handling at all), either forward the request to a BGCF or any other appropriate entity (e.g a MRFC to play an announcement) in the originator's home network or send an appropriate SIP response to the originator; and
- a pres URI or an im URI, the S-CSCF shall forward the request as specified in RFC 3861 [63]. In this case, the S-CSCF shall not modify the received Request-URI.

11) determine the destination address (e.g. DNS access) using the URI placed in the topmost Route header if present, otherwise based on the Request-URI. If the destination requires interconnect functionalities (e.g. the destination address is of an IP address type other than the IP address type used in the IM CN subsystem), the S-CSCF shall forward the request to the destination address via an IBCF in the same network;
12) if network hiding is needed due to local policy, put the address of the IBCF to the topmost route header;
13) in case of an initial request for a dialog:
a) determine the need for GRUU processing. GRUU processing is required if:

- an original dialog identifier that the S-CSCF previously placed in a Route header is not present in the topmost Route header of the incoming request (this means the request is not returning after having been sent to an AS), and
- the contact address contains a valid GRUU as specified in subclause 5.4.7A.4.
b) if GRUU processing is not required and the initial request originated from a served user, then determine the need to record-route for other reasons:
- if the request is routed to an AS which is part of the trust domain, the S-CSCF can decide whether to record-route or not. The decision is configured in the S-CSCF using any information in the received request that may otherwise be used for the initial filter criteria. If the request is record-routed the S-CSCF shall create a Record-Route header containing its own SIP URI; or
- if the request is routed elsewhere, create a Record-Route header containing its own SIP URI;

NOTE 6: For requests originated from a PSI the S-CSCF can decide whether to record-route or not based on operator policy.
c) if GRUU processing is required, the S-CSCF shall create a Record-Route header containing its own SIP URI;
d) if GRUU processing is required, the S-CSCF shall save an indication that GRUU-routeing is to be performed for in-dialog requests that reach the S-CSCF because of the Record-route header added in step c);

NOTE 7: The manner of representing the GRUU-routeing indication is a private matter for the S-CSCF. The indication is used during termination processing of in-dialog requests to cause the S-CSCF to replace a Request-URI containing a GRUU with the corresponding registered contact address. It can be saved using values in the Record-Route header, or in dialog state.
14) based on the destination user (Request-URI), remove the P-Access-Network-Info header and the access-network-charging-info parameter in the P-Charging-Vector header prior to forwarding the message;
15)route the request based on SIP routeing procedures; and
16) if the request is an INVITE request, save the Contact, Cseq and Record-Route header field values received in the request such that the S-CSCF is able to release the session if needed.

When the S-CSCF receives, an initial request for a dialog or a request for a standalone transaction, from an AS acting on behalf of an unregistered user, the S-CSCF shall:

1) execute the procedures described in the steps $1,2,3,4,4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}, 5,6,7,8,9,10,11,12,13,14,15$ and 16 in the above paragraph (when the S-CSCF receives, from a registered served user, an initial request for a dialog or a request for a standalone transaction).

NOTE 8: When the S-CSCF does not have the user profile, before executing the actions as listed above, it initiates the S-CSCF Registration/deregistration notification with the purpose of downloading the relevant user profile (i.e. for unregistered user) and informs the HSS that the user is unregistered. The S-CSCF will assess triggering of services for the unregistered user, as described in 3GPP TS 29.228 [14].

If the S-CSCF fails to receive a SIP response or receives a 408 (Request Timeout) response or a 5 xx response from the AS, the S-CSCF shall:

- if the default handling defined in the filter criteria indicates the value "SESSION_CONTINUED" as specified in 3GPP TS 29.228 [14] or no default handling is indicated, execute the procedure from step 4 ; and
- if the default handling defined in the filter criteria indicates the value "SESSION_TERMINATED" as specified in 3GPP TS 29.228 [14], either forward the received response or, if the request is an initial INVITE request, send a 408 (Request Timeout) response or a 5xx response towards the served UE as appropriate (without verifying the matching of filter criteria of lower priority and without proceeding for further steps).

If the S-CSCF receives any final response from the AS, it shall forward the response towards the served UE (without verifying the matching of filter criteria of lower priority and without proceeding for further steps).

When the S-CSCF receives any response to the above request, the S-CSCF may:

1) apply any privacy required by RFC 3323 [33] and RFC 3325 [34] to the P-Asserted-Identity header.

NOTE 9: The P-Asserted-Identity header would normally only be expected in 1xx or 2xx responses.
NOTE 10:The optional procedure above is in addition to any procedure for the application of privacy at the edge of the trust domain specified by RFC 3325 [34].

When the S-CSCF receives any response to the above request containing a term-ioi parameter, the S-CSCF shall store the value of the received term-ioi parameter received in the P-Charging-Vector header, if present, and remove all received ioi parameters from the forwarded response if next hop is not an AS.

NOTE 11:Any received term-ioi parameter will be a type 2 term-ioi or type 3 term-ioi. The term-ioi parameter identifies the sending network of the response message.

When the S-CSCF receives any response to the above request, and forwards it to AS, the S-CSCF shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the request, and a type 3 term-ioi parameter in the response. The S-CSCF shall set the type 3 term-ioi parameter to a value that identifies the sending network of the response and the type 3 orig-ioi parameter is set to the previously received value of type 3 orig-ioi.

When the S-CSCF receives any 1xx or 2xx response to the initial request for a dialog, if the response corresponds to an INVITE request, the S-CSCF shall save the Contact and Record-Route header field values in the response in order to be able to release the session if needed.

When the S-CSCF, upon sending an initial INVITE request that includes an IP address in the SDP offer (in "c=" parameter), receives an error response indicating that the the IP address type is not supported, (e.g., the S-CSCF receives the 488 (Not Acceptable Here) with 301 Warning header indicating "incompatible network address format"), the S-CSCF shall either:

- fork the initial INVITE request to the IBCF; or
- process the error response and forward it using the Via header.

When the S-CSCF receives from the served user a target refresh request for a dialog, prior to forwarding the request the S-CSCF shall:

0A) if the dialog is related to an IMS communication service determine whether the contents of the request (e.g. SDP media capabilities, Content-Type header field) match the IMS communication service as received as the ICSI value in the P-Asserted-Service header in the initial request. As an operator option, if the contents of the request do not match the IMS communication service the S-CSCF may reject the request by generating a status code reflecting which added contents are not matching. Otherwise, continue with the rest of the steps;

1) remove its own URI from the topmost Route header;
2) create a Record-Route header containing its own SIP URI;
3) for INVITE dialogs (i.e. dialogs initiated by an INVITE request), save the Contact and Cseq header field values received in the request such that the S-CSCF is able to release the session if needed;
4) in case the request is routed towards the destination user (Request-URI) or in case the request is routed to an AS located outside the trust domain, remove the access-network-charging-info parameter in the P-Charging-Vector header; and
5) route the request based on the topmost Route header.

When the S-CSCF receives any 1xx or 2xx response to the target refresh request for an INVITE dialog, the S-CSCF shall replace the saved Contact header field values in the response such that the S-CSCF is able to release the session if needed.

When the S-CSCF receives from the served user a subsequent request other than a target refresh request for a dialog, prior to forwarding the request the S-CSCF shall:

1) remove its own URI from the topmost Route header;
2) in case the request is routed towards the destination user (Request-URI) or in case the request is routed to an AS located outside the trust domain, remove the access-network-charging-info parameter in the P-Charging-Vector header; and
3) route the request based on the topmost Route header.

With the exception of 305 (Use Proxy) responses, the S-CSCF shall not recurse on 3xx responses.

5.4.3.3 Requests terminated at the served user

When the S-CSCF receives, destined for a statically pre-configured PSI or a registered served user, an initial request for a dialog or a request for a standalone transaction, prior to forwarding the request, the S-CSCF shall:

1) check if an original dialog identifier that the S-CSCF previously placed in a Route header is present in the topmost Route header of the incoming request.

- If present, the request has been sent from an AS in response to a previously sent request.
- If not present, it indicates that the request is visiting the S-CSCF for the first time and in this case the SCSCF shall determine whether the request contains a barred public user identity in the Request-URI of the request or not. In case the Request-URI contains a barred public user identity for the user, then the S-CSCF shall reject the request by generating a 404 (Not Found) response. Otherwise, the S-CSCF shall save the Request-URI from the request and continue with the rest of the steps;

2) remove its own URI from the topmost Route header;
3) if there was an original dialog identifier present in the topmost Route header of the incoming request then check whether the Request-URI matches the saved Request-URI. The Request-URI and saved Request-URI are considered a match if the Request-URI is equal to the saved value of the Request-URI, or if the Request-URI is a public GRUU and the saved value of the Request-URI is a temporary GRUU and both the public and temporary GRUUs represent the same public user identity and instance ID. If there is no match, then:
a) if the request is an INVITE request, save the Contact, CSeq and Record-Route header field values received in the request such that the S-CSCF is able to release the session if needed; and
b) forward the request based on the topmost Route header or if not available forward the request based on the Request-URI (routeing based on Request-URI is specified in steps 10 through 14 from subclause 5.4.3.2) and skip the following steps.

3A) if the Request-URI is a GRUU, but is not valid as defined in subclause 5.4.7A.4, then return a 4 xx response as specified in draft-ietf-sip-gruu [93];

3B) if the Request-URI contains a public GRUU and the saved value of the Request URI is a temporary GRUU, then replace the Request-URI with the saved value of the Request-URI;

3C) if the request contains a P-Asserted-Service header field check whether the IMS communication service identified by the ICSI value contained in the P-Asserted-Service header field is allowed by the subscribed services for the served user:
a) if so, continue from step 4 ; and
b) if not, as an operator option, the S-CSCF may reject the request by generating a 403 (Forbidden) response. Otherwise, remove the P-Asserted-Service header field and continue with the rest of the steps;

3D) if the request does not contain a P-Asserted-Service header field check if the contents of the request matches a subscribed service (e.g. SDP media capabilities, Content-Type header field) for each and any of the subscribed services for the served user;
a) if not, as an operator option, the S-CSCF may reject the request by generating a 403 (Forbidden) response. Otherwise, continue with the rest of the steps; and
b) if so, and if the request is related to an IMS communication service and the IMS communication service requires the use of an ICSI value then include a P-Asserted-Service header field in the request containing the ICSI value for the related IMS communication service, and use it as a header field in the initial request when matching initial filter criteria in step 4; and
c) if so, and if the request is related to an IMS communication service and the IMS communication service does not require the use of an ICSI value then continue without including an ICSI value; and
d) if so, and if the request does not relate to an IMS communication service (or if the S-CSCF is unable to unambiguously determine the service being requested but decides to allow the session to continue) then continue without inclding an ICSI value;
4) check whether the initial request matches the next unexecuted initial filter criteria based on the public user identity identified by the Request-URI in the priority order and apply the filter criteria on the SIP method as described in 3GPP TS 23.218 [5] subclause 6.5. If there is a match, then the S-CSCF shall:

- if the Request-URI is a temporary GRUU as defined in section 5.4.7A.3, then replace the Request-URI with the public GRUU that is associated with the temporary GRUU (i.e. the public GRUU representing the same public user identity and instance ID as the temporary GRUU);
- insert the AS URI to be contacted into the Route header as the topmost entry followed by its own URI populated as specified in the subclause 5.4.3.4; and
- insert a type 3 orig-ioi parameter in the P-Charging-Vector header. The type 3 orig-ioi parameter identifies the sending network of the request message before the received orig-ioi. The S-CSCF shall not include the type 3 term-ioi parameter;

NOTE 1: Depending on the result of the previous process, the S-CSCF can contact one or more AS(s) before processing the outgoing Request-URI.

NOTE 2: If the Request-URI of the received terminating request contains a temporary GRUU, then step 4 replaces the Request-URI with the associated public GRUU before invoking the AS, and step 3B restores the original temporary GRUU when the request is returned from the AS.

NOTE 3: An AS can activate or deactivate its own filter criteria via the Sh interface. As the S-CSCF checks initial filter criteria only on receipt of an initial request for a dialog, or a standalone transaction, a modified service profile will have no impact on transactions or dialogs already in progress and the modified profile will be effective only for new transactions and dialogs. If the S-CSCF receives a modification of the iFC during their execution, then it should not update the stored initial Filter Criteria until the iFC related to the initial request have been completely executed.
5) if there was no original dialog identifier present in the topmost Route header of the incoming request insert a P-Charging-Function-Addresses header field, if not present, populated with values received from the HSS if the message is forwarded within the S-CSCF home network, including towards AS;
6) if there was no original dialog identifier present in the topmost Route header of the incoming request store the value of the icid parameter received in the P-Charging-Vector header and retain the icid parameter in the P -Charging-Vector header;
7) if there was no original dialog identifier present in the topmost Route header of the incoming request store the value of the orig-ioi parameter received in the P-Charging-Vector header, if present, and remove all received ioi parameters from the forwarded request if next hop is not an AS;

NOTE 4: Any received orig-ioi parameter will be a type 2 orig-ioi. or type 3 orig-ioi. The type 2 orig-ioi parameter identifies the sending network of the request message.
8) in the case there are no Route headers in the request, create a target set of potential routes from the the list of preloaded routes saved during registration or re-registration as described in subclause 5.4.1.2, as follows:
a) if the Request-URI is a valid GRUU as defined in subclause 5.4.7A.4, then the target set is determined by following the procedures for Request Targeting specified in draft-ietf-sip-gruu [93], using the public user identity and instance ID derived from the GRUU using the procedures of subclause 5.4.7 A;
b) if the Request-URI is not a GRUU, then the target set is all the registered contacts saved for the destination public user identity;
9) if necessary perform the caller preferences to callee capabilities matching according to RFC 3841 [56B] to the target set;

NOTE 5: This might eliminate entries and reorder the target set.
10) in case there are no Route headers in the request:
a) if there is more than one route in the target set determined in steps 8) and 9) above:

- if the fork directive in the Request Disposition header was set to "no-fork", use the contact with the highest qvalue parameter when building the Request-URI. In case no qvalue parameters were provided, the S-CSCF shall decide locally what contact address to be used when building the Request-URI; otherwise
- fork the request or perform sequential search based on the relative preference indicated by the qvalue parameter of the Contact header in the original REGISTER request, as described in RFC 3261 [26]. In case no qvalue parameters were provided, then the S-CSCF determine the contact address to be used when building the Request-URI as directed by the Request Disposition header as described in RFC 3841 [56B]. If the Request-Disposition header is not present, the S-CSCF shall decide locally whether to fork or perform sequential search among the contact addresses;
- in case that no route is chosen, return a 480 (Temporarily unavailable) response or another appropriate unsuccessful SIP response and terminate these procedures.
b) build a Request-URI with the contents of the Contact URI from the chosen route determined in the previous step;
c) insert a P-Called-Party-ID SIP header field containing the contents of the Request-URI received in the request unless the Request-URI contains a temporary GRUU in which case insert the public GRUU in the P-Called-Party-ID;
d) build the Route header field with the Path values from the chosen route; and
e) save the Request-URI and the total number of Record-route headers as part of the dialog request state.

NOTE 6: For each initial dialog request terminated at a served user two pieces of state are maintained to assist in processing GRUUs: the chosen contact address to which the request is routed; and the position of an entry for the S-CSCF in the Record-Route header that will be responsible for GRUU translation, if needed (the position is the number of entries in the list before the entry was added). The entry will be added in step 5) of the below procedures for handling S-CSCF receipt any 1 xx or 2 xx response to the initial request for a dialog. The S-CSCF can record-route multiple times, but only one of those (the last) will be responsible for gruu translation at the terminating end.
11) if the request is an INVITE request, save the Contact, CSeq and Record-Route header field values received in the request such that the S-CSCF is able to release the session if needed;
12) optionally, apply any privacy required by RFC 3323 [33] and RFC 3325 [34] to the P-Asserted-Identity header and privacy required by RFC 4244 [66];

NOTE 7: The optional procedure above is in addition to any procedure for the application of privacy at the edge of the trust domain specified by RFC 3325 [34].
13)in case of an initial request for a dialog, either:

- if the request is routed to an AS which is part of the trust domain, the S-CSCF can decide whether to recordroute or not. The decision is configured in the S-CSCF using any information in the received request that may otherwise be used for the initial filter criteria. If the request is record-routed the S-CSCF shall create a Record-Route header containing its own SIP URI; or
- if the request is routed elsewhere, create a Record-Route header containing its own SIP URI;

13A) if the request is routed to the P-CSCF remove the P-User-Database header if present; and
14)forward the request based on the topmost Route header.

If the S-CSCF fails to receive a SIP response or receives a 408 (Request Timeout) response or a 5 xx response from the AS, the S-CSCF shall:

- if the default handling defined in the filter criteria indicates the value "SESSION_CONTINUED" as specified in 3GPP TS 29.228 [14] or no default handling is indicated, execute the procedure from step 4; and
- if the default handling defined in the filter criteria indicates the value "SESSION_TERMINATED" as specified in 3GPP TS 29.228 [14], either forward the received response or, if the request is an initial INVITE request, send a 408 (Request Timeout) response or a 5 xx response towards the originating UE as appropriate (without verifying the matching of filter criteria of lower priority and without proceeding for further steps).

If the S-CSCF receives any final response from the AS, it shall forward the response towards the originating UE (without verifying the matching of filter criteria of lower priority and without proceeding for further steps).

When the S-CSCF receives any response to the above request and forwards it to AS, the S-CSCF shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the request, and a type 3 term-ioi parameter in the response. The S-CSCF shall set the type 3 term-ioi parameter to a value that identifies the sending network of the response and the orig-ioi parameter is set to the previously received value of orig-ioi.

NOTE 8: Any received term-ioi parameter will be a type 3 term-ioi. The term-ioi parameter identifies the service provider from which the response was sent.

When the S-CSCF receives, destined for an unregistered user, an initial request for a dialog or a request for a standalone transaction, the S-CSCF shall:

1) Void.
2) execute the procedures described in $1,2,3,3 \mathrm{C}, 3 \mathrm{D}, 4,5,6,7,11,13 ; 13 \mathrm{~A}$ and 14 in the above paragraph (when the S-CSCF receives, destined for the registered served user, an initial request for a dialog or a request for a standalone transaction).
3) In case that no AS needs to be contacted, then S-CSCF shall return an appropriate unsuccessful SIP response. This response may be a 480 (Temporarily unavailable) and terminate these procedures.

NOTE 9: When the S-CSCF does not have the user profile, before executing the actions as listed above, it initiates the S-CSCF Registration/deregistration notification with the purpose of downloading the relevant user profile (i.e. for unregistered user) and informs the HSS that the user is unregistered. The S-CSCF will assess triggering of services for the unregistered user, as described in 3GPP TS 29.228 [14]. When requesting the user profile the S-CSCF can include the information in the P-Profile-Key header in SCSCF Registration/deregistration notification.

Prior to performing S-CSCF Registration/Deregistration procedure with the HSS, the S-CSCF decides which HSS to query, possibly as a result of a query to the Subscription Locator Functional (SLF) entity as specified in 3GPP TS 29.228 [14] or use the value as received in the P-User-Database header in the initial request for a dialog or a request for a standalone transaction as defined in RFC 4457 [82]. The HSS address received in the response to SLF query can be used to address the HSS of the public user identity with further queries.

When the S-CSCF receives any 1xx or 2xx response to the initial request for a dialog (whether the user is registered or not), it shall:

1) if the response corresponds to an INVITE request, save the Contact and Record-Route header field values in the response such that the S-CSCF is able to release the session if needed;
2) if the response is not forwarded to an AS (i.e. the response is related to a request that was matched to the first executed initial filter criteria), insert a type 2 term-ioi parameter in the P-Charging-Vector header of the outgoing response. The type 2 term-ioi is set to a value that identifies the sending network of the response and the orig-ioi parameter is set to the previously received value of orig-ioi. Values of orig-ioi and term-ioi in the received response are removed;
3) in the case where the S-CSCF has knowledge that the SIP URI contained in the received P-Asserted-Identity header is an alias SIP URI for a tel URI, the S-CSCF shall add a second P-Asserted-Identity header containing this tel URI, including the display name associated with the tel URI, if available. If the P-Asserted-Identity header contains only a tel URI, the S-CSCF shall add a second P-Asserted-Identity header containing a SIP URI. The added SIP URI shall contain in the user part a " + " followed by the international public telecommunication number contained in tel URI, and user's home domain name in the hostport part. The added SIP URI shall contain the same value in the display name as contained in the tel URI. The S-CSCF shall also add a user parameter equals "phone" to the SIP URI;
4) in case the response is sent towards the originating user, the S-CSCF may retain the P-Access-Network-Info header based on local policy rules and the destination user (Request-URI); and
5) save an indication that GRUU routeing is to be performed for subsequent requests sent within this same dialog if:
a) there is a record-route position saved as part of the initial dialog request state; and
b) the contact address in the response is a valid GRUU as specified in subclause 5.4.7A.4.

NOTE 10:There could be several responses returned for a single request, and the decision to insert or modify the Record-Route needs to be applied to each. But a response might also return to the S-CSCF multiple times as it is routed back through AS. The S-CSCF will take this into account when carrying out step 5) to ensure that the information is stored only once.

When the S-CSCF receives a response to a request for a standalone transaction (whether the user is registered or not), in the case where the S-CSCF has knowledge that the SIP URI contained in the received P-Asserted-Identity header is an alias SIP URI for a tel URI, the S-CSCF shall add a second P-Asserted-Identity header containing this tel URI, including the display name associated with the tel URI, if available. If the P-Asserted-Identity header contains only a tel URI, the S-CSCF shall add a second P-Asserted-Identity header containing a SIP URI. The added SIP URI shall contain in the user part a " + " followed by the international public telecommunication number contained in tel URI, and user's home domain name in the hostport part. The added SIP URI shall contain the same value in the display name as contained in the tel URI. The S-CSCF shall also add a user parameter equals "phone" to the SIP URI. In case the
response is forwarded to an AS that is located within the trust domain, the S-CSCF shall retain and the access-network-charging-info parameter in the P-Charging-Vector header; otherwise, the S-CSCF shall remove the access-network-charging-info parameter in the P-Charging-Vector header.

When the S-CSCF receives the $200(\mathrm{OK})$ response for a standalone transaction request, the S-CSCF shall:

1) insert a P-Charging-Function-Addresses header populated with values received from the HSS if the message is forwarded within the S-CSCF home network, including towards an AS; and
2) if the response is not forwarded to an AS (i.e. the response is related to a request that was matched to the first executed initial filter criteria), insert a type 2 term-ioi parameter in the P-Charging-Vector header of the outgoing response. The type 2 term-ioi is set to a value that identifies the sending network of the response and the type 2 orig-ioi parameter is set to the previously received value of orig-ioi.

NOTE 11:If the S-CSCF forked the request of a stand alone transaction to multiple UEs and receives multiple 200 (OK) responses, the S-CSCF will select and return only one 200 (OK) response. The criteria that the SCSCF employs when selecting the $200(\mathrm{OK})$ response is based on the operator's policy (e.g. return the first 200 (OK) response that was received).

When the S-CSCF receives, destined for a served user, a target refresh request for a dialog, prior to forwarding the request, the S-CSCF shall:

0A) if the dialog is related to an IMS communication service determine whether the contents of the request (e.g. SDP media capabilities, Content-Type header field) match the IMS communication service as received as the ICSI value in the P-Asserted-Service header in the initial request. As an operator option, if the contents of the request do not match the IMS communication service the S-CSCF may reject the request by generating a status code reflecting which added contents are not matching. Otherwise, continue with the rest of the steps;

1) if the incoming request is received on a dialog for which GRUU routeing is to be performed and the RequestURI is not the GRUU for this dialog, then return a response of 400 (Bad Request).
2) if the incoming request is received on a dialog for which GRUU routeing is to be performed and the RequestURI contains the GRUU for this dialog then the S-CSCF shall:

- perform the procedures for Request Targeting specified in draft-ietf-sip-gruu [93], using the public user identity and instance ID derived from the Request-URI, as specified in subclause 5.4.7A;
- if no contact can be selected, return a response of 480 (Temporarily Unavailable).

3) remove its own URI from the topmost Route header;
4) for INVITE dialogs (i.e. dialogs initiated by an INVITE request), save the Contact and Cseq header field values received in the request such that the S-CSCF is able to release the session if needed;
5) create a Record-Route header containing its own SIP URI; and
6) forward the request based on the topmost Route header.

When the S-CSCF receives any 1xx or 2xx response to the target refresh request for a dialog (whether the user is registered or not), the S-CSCF shall:

1) for INVITE dialogs, replace the saved Contact header field values in the response such that the S-CSCF is able to release the session if needed; and
2) in case the response is forwarded to an AS that is located within the trust domain, the S-CSCF shall retain the access-network-charging-info parameter in the P-Charging-Vector header; otherwise, the S-CSCF shall remove the access-network-charging-info parameter in the P-Charging-Vector header.

When the S-CSCF receives, destined for the served user, a subsequent request other than target refresh request for a dialog, prior to forwarding the request, the S-CSCF shall:

1) if the incoming request is received on a dialog for which GRUU routeing is to be performed and the RequestURI is not the GRUU for this dialog, then return a response of 400 (Bad Request).
2) if the incoming request is received on a dialog for which GRUU routeing is to be performed and the RequestURI contains the GRUU for this dialog then the S-CSCF shall:

- perform the procedures for Request Targeting specified in draft-ietf-sip-gruu [93], using the public user identity and instance ID derived from the Request-URI, as specified in subclause 5.4.7A;
- if no contact can be selected, return a response of 480 (Temporarily Unavailable).

3) remove its own URI from the topmost Route header; and
4) forward the request based on the topmost Route header.

When the S-CSCF receives a response to a a subsequent request other than target refresh request for a dialog, in case the response is forwarded to an AS that is located within the trust domain, the S-CSCF shall retain the access-network-charging-info parameter from the P-Charging-Vector header; otherwise, the S-CSCF shall remove the access-network-charging-info parameter from the P-Charging-Vector header.

With the exception of 305 (Use Proxy) responses, the S-CSCF shall not recurse on 3xx responses.

5.4.3.4 Original dialog identifier

The original dialog identifier is an implementation specific token that the S-CSCF encodes into the own S-CSCF URI in a Route header, prior to forwarding the request to an AS. This is possible because the S-CSCF is the only entity that creates and consumes the value.

The token may identify the original dialog of the request, so in case an AS acting as a B2BUA changes the dialog, the S-CSCF is able to identify the original dialog when the request returns to the S-CSCF. In a case of a standalone transaction, the token indicates that the request has been sent to the S-CSCF from an AS in response to a previously sent request. The token can be encoded in different ways, such as e.g., a character string in the user-part of the S-CSCF URI, a parameter in the S-CSCF URI or port number in the S-CSCF URI.

The S-CSCF shall ensure that the value chosen is unique so that the S-CSCF may recognize the value when received in a subsequent message of one or more dialogs and make the proper association between related dialogs that pass through an AS.

5.4.3.5 Void

5.4.4 Call initiation

5.4.4.1 Initial INVITE

When the S-CSCF receives an INVITE request, either from the served user or destined to the served user, the S-CSCF may require the periodic refreshment of the session to avoid hung states in the S-CSCF. If the S-CSCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE 1: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

When the S-CSCF receives an initial INVITE request destined for the served user, it shall either:
a) examine the SDP offer (the "c=" parameter) to detect if it contains an IP address type that is not supported by the IM CN subsystem; or
b) process the initial INVITE request without examining the SDP.

NOTE 2: If the SDP offer contained an IP address type that is not supported by the IM CN subsystem, the S-CSCF will receive the 488 (Not Acceptable Here) response with 301 Warning header indicating "incompatible network address format".

Subsequently, when the S-CSCF detects that the SDP offer contained an IP address type that is not supported by the IM CN subsystem (i.e., either case a) or b)), the S-CSCF shall either:

- return a 305 (Use Proxy) response to the I-CSCF with the Contact field containing the SIP URI of the IBCF, or
- forward the initial INVITE request to the IBCF. When forwarding the initial INVITE request, the S-CSCF shall not insert its SIP URI into the Record-Route header.

5.4.4.2 Subsequent requests

5.4.4.2.1 UE-originating case

When the S-CSCF receives any 1xx or 2 xx response, the S-CSCF shall insert a P-Charging-Function-Addresses header populated with values received from the HSS if the message is forwarded within the S-CSCF home network, including towards AS.

When the S-CSCF receives the request containing the access-network-charging-info parameter in the P-ChargingVector, the S-CSCF shall store the access-network-charging-info parameter from the P-Charging-Vector header. The SCSCF shall retain access-network-charging-info parameter in the P-Charging-Vector header when the request is forwarded to an AS. However, the S-CSCF shall not include the access-network-charging-info parameter in the P-Charging-Vector header when the request is forwarded outside the home network of the S-CSCF.

When the S-CSCF receives any request or response (excluding ACK requests and CANCEL requests and responses) related to a UE-originated dialog or standalone transaction, the S-CSCF may insert previously saved values into P-Charging-Vector and P-Charging-Function-Addresses headers before forwarding the message within the S-CSCF home network, including towards AS.

5.4.4.2.2 UE-terminating case

When the S-CSCF receives the any 1xx or 2xx response, the S-CSCF shall insert a P-Charging-Function-Addresses header populated with values received from the HSS if the message is forwarded within the S-CSCF home network, including towards AS.

When the S-CSCF receives 180 (Ringing) or 200 (OK) (to INVITE) responses containing the access-network-charginginfo parameter in the P-Charging-Vector, the S-CSCF shall store the access-network-charging-info parameter from the P-Charging-Vector header. The S-CSCF shall retain the access-network-charging-info parameter in the P-ChargingVector header when the response is forwarded to an AS. However, the S-CSCF shall not include the access-network-charging-info parameter in the P-Charging-Vector header when the response is forwarded outside the home network of the S-CSCF.

When the S-CSCF receives any request or response (excluding ACK requests and CANCEL requests and responses) related to a UE-terminated dialog or standalone transaction, the S-CSCF may insert previously saved values into P-Charging-Vector and P-Charging-Function-Addresses headers before forwarding the message within the S-CSCF home network, including towards AS.

5.4.5 Call release

5.4.5.1 S-CSCF-initiated session release

5.4.5.1.1 Cancellation of a session currently being established

Upon receipt of an network internal indication to release a session which is currently being established, the S-CSCF shall cancel the related dialogs by sending the CANCEL request according to the procedures described in RFC 3261 [26].

5.4.5.1.2 Release of an existing session

Upon receipt of a network internal indication to release an existing multimedia session, the S-CSCF shall:

1) generate the first BYE request for the called user based on the information saved for the related dialog, including:

- a Request-URI, set to the stored Contact header provided by the called user;
- a To header, set to the To header value as received in the 200 OK response for the initial INVITE request;
- a From header, set to the From header value as received in the initial INVITE request;
- a Call-ID header, set to the Call-Id header value as received in the initial INVITE request;
- a CSeq header, set to the CSeq value that was stored for the direction from the calling to the called user, incremented by one;
- a Route header, set to the routeing information towards the called user as stored for the dialog;
- a Reason header that contains proper SIP response code;
- further headers, based on local policy.

2) generate the second BYE request for the calling user based on the information saved for the related dialog, including:

- a Request-URI, set to the stored Contact header provided by the calling user;
- a To header, set to the From header value as received in the initial INVITE request;
- a From header, set to the To header value as received in the 200 OK response for the initial INVITE request;
- a Call-ID header, set to the Call-Id header value as received in the initial INVITE request;
- a CSeq header, set to the CSeq value that was stored for the direction from the called to the calling user, incremented by one - if no CSeq value was stored for that session it shall generate and apply a random number within the valid range for CSeqs;
- a Route header, set to the routeing information towards the calling user as stored for the dialog;
- a Reason header that contains proper SIP response code;
- further headers, based on local policy.

3) if the S-CSCF serves the calling user, treat the first BYE request as if received directly from the calling user, i.e. send it to internal service control and based on the outcome further on towards the called user;
4) if the S-CSCF serves the calling user, send the second BYE request directly to the calling user.
5) if the S-CSCF serves the called user, send the first BYE request directly to the called user;
6) if the S-CSCF serves the called user, treat the second BYE request as if received directly from the called user, i.e. shall send it to internal service control and based on the outcome further on towards to the calling user.

Upon receipt of the 2 xx responses for both BYE requests, the S-CSCF shall release all information related to the dialog and the related multimedia session.

5.4.5.1.2A Release of the existing dialogs due to registration expiration

When the registration lifetime of the only public user identity currently registered with its associated set of implicitly registered public user identities (i.e. no other is registered) expires while there are still active multimedia sessions that includes this user's contact address, where the session was initiated by or terminated towards the user with the contact address associated with the public user identity currently registered or with one of the implicitly registered public used identities, the S-CSCF shall release each of these multimedia sessions by applying the steps listed in the subclause 5.4.5.1.2. Only dialogs associated to the multimedia sessions originated or terminated towards the registered user's contact address shall be released.

5.4.5.1.3 Abnormal cases

Upon receipt of a request on a dialog for which the S-CSCF initiated session release, the S-CSCF shall terminate the received request and answer it with a 481 (Call/Transaction Does Not Exist) response.

5.4.5.2 Session release initiated by any other entity

Upon receipt of a 2 xx response for a BYE request matching an existing dialog, the S-CSCF shall delete all the stored information related to the dialog.

5.4.5.3 Session expiration

If the S-CSCF requested the session to be refreshed periodically, and the S-CSCF got the indication that the session will be refreshed, when the session timer expires, the S-CSCF shall delete all the stored information related to the dialog.

5.4.6 Call-related requests

5.4.6.1 ReINVITE

5.4.6.1.1 Determination of served user

Void.

5.4.6.1.2 UE-originating case

For a reINVITE request or UPDATE request from the UE within the same dialog, the S-CSCF shall store the updated access-network-charging-info parameter from P-Charging-Vector header in the received SIP request. The S-CSCF shall retain the access-network-charging-info parameter in the P-Charging-Vector header when the request is forwarded to an AS. However, the S-CSCF shall not include the access-network-charging-info parameter in the P-Charging-Vector header when the request is forwarded outside the home network of the S-CSCF.

For a reINVITE request from the UE, if the request is to be forwarded to an AS that is located within the trust domain, the S-CSCF shall retain the access-network-charging-info parameter from the P-Charging-Vector header; otherwise, the S-CSCF shall remove the access-network-charging-info parameter from the P-Charging-Vector header.

5.4.6.1.3 UE-terminating case

For a reINVITE request or UPDATE request destined towards the UE within the same dialog, when the S-CSCF receives the $200(\mathrm{OK})$ response (to the INVITE request or UPDATE request), the S-CSCF shall store the updated access-network-charging-info parameter from the P-Charging-Vector header. The S-CSCF shall retain the access-network-charging-info parameter in the P-Charging-Vector header when the response is forwarded to the AS. However, the S-CSCF shall not include the access-network-charging-info parameter in the P-Charging-Vector header when the $200(\mathrm{OK})$ response is forwarded outside the home network of the S-CSCF.

For any SIP response to an INVITE request, if the response is to be forwarded to an AS that is located within the trust domain, the S-CSCF shall retain the access-network-charging-info parameter from the P-Charging-Vector header; otherwise, the S-CSCF shall remove the access-network-charging-info parameter from the P-Charging-Vector header.

5.4.7 Void

5.4.7A GRUU management

5.4.7A.1 Overview of GRUU operation

The S-CSCF provides a service of assigning and translating GRUUs for use by registered UEs. This is conducted as specified in draft-ietf-sip-gruu [93] and draft-ietf-sipping-gruu-reg-event [94]. Two kinds of GRUUs are assigned: public GRUUs and temporary GRUUs.

Each assigned GRUU represents an association between a public user identity and an instance ID provided by a registering UE. It is used to address a particular UE that possesses the instance ID and registers with the public user identity. The GRUU also denotes a contact address registered with a public user identity when the contact address has a "+sip.instance" header parameter containing the the GRUU instance ID.

The S-CSCF issues GRUUs as part of the registration process, and also reports GRUUs as part of notifications for subscriptions to the "reg" event package. The S-CSCF always issues GRUUs in pairs - a public GRUU and a temporary GRUU. In case of implicit registration the S-CSCF assigns a unique public GRUU and a unique temporary GRUU for each public user identity.

5.4.7A. 2 Representation of public GRUUs

Each public GRUU shall conform to all requirements specified in draft-ietf-sip-gruu [93].
The S-CSCF constructs a public GRUU by adding a "gr" URI parameter to a public user identity. The "gr" parameter serves as an indicator that the URI is in fact a GRUU and carries a value that encodes the instance ID.

By default, the value of the "gr" parameter is a copy of the value of the "sip.instance" header parameter from a Contact address registered with the S-CSCF, with escaping of special characters as specified in RFC 3261 [26]. A different representation of the instance ID may be specified for specific forms of instance ID.

NOTE: The specification of such additional specific representations of the instance ID is outside the scope of this version of the specification.

The public GRUU for a particular association of public user identity and instance ID is persistent. The same public GRUU will be returned each time a registration is performed with a particular pair of public user identity and instance ID.

5.4.7A. 3 Representation of temporary GRUUs

Each temporary GRUU shall conform to all requirements specified in draft-ietf-sip-gruu [93].
Each temporary GRUU shall contain a "gr" URI parameter, which serves as an indicator that the URI is in fact a GRUU. It shall not contain a value.

Because of the limited lifetime of an temporary GRUU, only the S-CSCF that created a temporary GRUU is required to understand how to translate that GRUU to the corresponsing public user identity and instance ID.

The specific representation of a temporary GRUU may be decided by each S-CSCF implementation. Temporary GRUUs must route to the assigning S-CSCF without requiring each assigned GRUU to be stored in the HSS.

The S-CSCF may choose a representation of temporary GRUUs that requires no extra state to be retained, such as that specified in draft-ietf-sip-gruu [93]. Alternatively, the S-CSCF may choose a stateful representation. This is an implementation choice.

NOTE: One possible implementation is for the S-CSCF to have a statically configured wildcard PSI that routes to it, with each temporary GRUU being encoded so that it matches the wildcard.

5.4.7A. 4 GRUU recognition and validity

The S-CSCF shall be able to recognize those GRUUs it has assigned, verify their validity, and extract the associated public user identity and instance ID. This is true for both public GRUUs and temporary GRUUs.

GRUUs are distinguished from other URIs by the presence of a "gr" URI parameter. Public GRUUs are distinguished from temporary GRUUs by the presence of a value for the "gr" URI parameter.

The instance ID is derived from a public GRUU by decoding the value of the "gr" parameter in conformance with the encoding rules specified in sub-clause 5.4.7A.2. The public user identity is extracted from a public GRUU by removing the "gr" URI parameter.

The S-CSCF can recognize a public GRUU as valid if the derived instance ID is a syntactically correct URN, and the derived public user identity compares equal, according to the comparison rules of RFC 3261 [26], to a public user identity active within the S-CSCF.

The public user identity and instance ID are derived from a temporary GRUU via implementation specific means consistent with the way temporary GRUUs are constructed. The validity of a temporary GRUU shall be determined in conformance with draft-ietf-sip-gruu [93], and is determined using implementation specific means.

5.4.8 Emergency service

5.4.8.1 General

S-CSCF shall handle the emergency registration as per the needs of the normal registration.

For all registrations identified as relating to an emergency registration, the S-CSCF shall give priority over other transactions or dialogs. This allows special treatment of such registrations.

NOTE: This special treatment can include filtering, higher priority processing, routeing, call gapping. The exact meaning of priority is not defined further in this document, but is left to national regulation and network configuration.

5.4.8.2 Initial emergency registration or user-initiated emergency reregistration

When the S-CSCF receives a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "no" and the Contact header includes a "sos" URI parameter that indicates that this is an emergency registration, as described in draft-patel-ecrit-sos-parameter [91A], the S-CSCF shall perform the actions as specified in subclause 5.4.1.2.1 with the following additions:

- if the public user identity is linked to a private user identity that has a registered emergency public user identity but with a new contact address, and the authentication has been successful and if the previous emergency registration has not expired, the S-CSCF shall delete the previous contact information. Contacts related to nonemergency registration shall not be deregistered.

When the S-CSCF receives a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "yes" and the Contact header includes a "sos" URI parameter that indicates that this is an emergency registration, as described in draft-patel-ecrit-sos-parameter [91A], the S-CSCF shall identify the user by the public user identity as received in the To header and the private user identity as received in the Authorization header of the REGISTER request the S-CSCF shall perform the actions as specified in subclause 5.4.1.2.2 with the following additions:

- the S-CSCF shall not include a Service-Route in the 200 (OK) to the REGISTER request;
- the S-CSCF shall not include a temporary GRUU in the 200 (OK) to the REGISTER request;
- store the Path header and the contact information including all header parameters contained in the Contact header. The S-CSCF shall use the Path header and the contact information obtained during the emergency registration to build a preloaded Route header values for the emergency dialogs (e.g. PSAP call back session) destined for the UE;

Editor's note: It is for further study when the Contact header includes the URI parameter whether the S-CSCF needs to include the URI parameter as part of the GRUU.

NOTE 1: The Path header and contact information used for the emergency dialogs destined for the UE and obtained during the emergency registration can be different than the Path header used for the non-emergency communication and obtained during the non-emergency registration.

NOTE 2: If the previous emergency registration with different contact information or emergency Path header has not expired, the S-CSCF will not perform the network initiated deregistration procedure for the previous emergency registration, but will let it expire.

- the S-CSCF shall not send any third-party REGISTER requests to any AS; and
- determine the duration of the registration by checking the value of the Expires header in the received REGISTER request and based on local policy.

NOTE 3: The value of the emergency registration time is subject to national regulation and can be subject to roaming agreements.

5.4.8.3 User-initiated emergency deregistration

When S-CSCF receives a REGISTER request with the Expires header field containing the value zero and the Contact header contains a contact address that has been registered for emergency service (i.e. the "sos" URI parameter that indicates that this is an emergency registration is included in the Contact header field, as described in draft-patel-ecrit-sos-parameter [91A]), the S-CSCF shall reject the REGISTER request by sending a 501 (Not Implemented) response.

NOTE: The UE cannot terminate its emergency registration.

5.4.8.4 Network-initiated emergency deregistration

The S-CSCF shall not perform a network-initiated emergency deregistration.

5.4.8.5 Network-initiated emergency reauthentication

If a given public user identity and the associated contact address have been registered via emergency registration, the S CSCF shall not reauthenticate this public user identity.

5.4.8.6 Subscription to the event providing registration state

If a S-CSCF receives a SUBSCRIBE request addressed to S-CSCF containing the Event header with the reg event package with the Contact header that contains a contact address that has been registered for emergency service, the SCSCF shall reject the SUBSCRIBE request for the reg-event package by sending a 489 (Bad Event) response.

5.4.8.7 \quad Notification of the registration state

When the user performs an emergency registration or when the emergency registration expires, the S-CSCF shall not send a NOTIFY request to the subscribers to the reg event package of the respective user.

The contact address that has been registered for emergency service shall not be included in the NOTIFY requests sent to the subscribers to the reg event package of the user.

5.5 Procedures at the MGCF

5.5.1 General

The MGCF, although acting as a UA, does not initiate any registration of its associated addresses. These are assumed to be known by peer-to-peer arrangements within the IM CN subsystem. Therefore table A.4/1 and dependencies on that major capability shall not apply.

The use of the Path and Service-Route headers shall not be supported by the MGCF.
When the MGCF sends any request or response related to a dialog, the MGCF may insert previously saved values into P-Charging-Vector and P-Charging-Function-Addresses headers before sending the message.

The MGCF shall use a GRUU referring to itself (as specified in draft-ietf-sip-gruu [93]) when inserting a contact address in a dialog establishing or target refreshing SIP message. This specification does not define how GRUUs are created by the MGCF; they can be provisioned by the operator or obtained by any other mechanism. A GRUU used by the MGCF when establishing a dialog shall remain valid for the lifetime of the dialog.

The MGCF shall handle requests addressed to its currently valid GRUUs when received outside of the dialog in which the GRUU was provided.

EXAMPLE: Upon receipt of an INVITE request addressed to a GRUU assigned to a dialog it has active, and containing a Replaces header referencing that dialog, the MGCF will be able to establish the new call replacing the old one.

5.5.2 Subscription and notification

Void.

5.5.3 Call initiation

5.5.3.1 Initial INVITE

5.5.3.1.1 Calls originated from circuit-switched networks

When the MGCF receives an indication of an incoming call from a circuit-switched network, the MGCF shall:

1) generate an INVITE request:

- set the Request-URI to the "tel" format using an E. 164 address or to the "sip" format using an E164 address in the user portion and set user=phone;

NOTE 1: Details how to set the host portion are out of scope of the document. However, when a SIP URI is used the host portion needs to be part of the domain name space owned by the I-CSCF

- set the Supported header to "100rel" (see RFC 3312 [30] as updated by RFC 4032 [64]));
- include an P-Asserted-Identity header, including the display name if available, depending on corresponding information in the circuit-switched network;
- create a new, globally unique value for the icid parameter and insert it into the P-Charging-Vector header; and
- insert a type 2 orig-ioi parameter into the P-Charging-Vector header. The MGCF shall set the type 2 orig-ioi parameter to a value that identifies the sending network in which the MGCF resides and the type 2 term-ioi parameter shall not be included.

When the MGCF receives a 1 xx or 2 xx response to an initial request for a dialog, the MGCF shall store the value of the received term-ioi parameter received in the P-Charging-Vector header, if present.

NOTE 2: Any received term-ioi parameter will be a type 2 term-ioi. The type 2 term-ioi parameter identifies the sending network of the response message.

5.5.3.1.2 Calls terminating in circuit-switched networks

When the MGCF receives an initial INVITE request with Supported header indicating "100rel", the MGCF shall:

1) store the value of the orig-ioi parameter received in the P-Charging-Vector header, if present;

NOTE: Any received orig-ioi parameter will be a type 2 orig-ioi. The orig-ioi parameter identifies the sending network of the request message.
2) send a 100 (Trying) response;
3) after a matching codec is found or no codec is required at the MGW, send 183 "Session Progress" response:

- set the Require header to the value of "100rel";
- store the values received in the P-Charging-Function-Addresses header;
- store the value of the icid parameter received in the P-Charging-Vector header; and
- insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the initial INVITE request and a type 2 term-ioi. The MGCF shall set the type 2 term-ioi parameter to a value that identifies the network in which the MGCF resides and the orig-ioi parameter is set to the previously received value of orig-ioi.

If a codec is required and the MGCF does not find an available matching codec at the MGW for the received initial INVITE request, the MGCF shall:

- send 503 (Service Unavailable) response if the type of codec was acceptable but none were available; or
- send 488 (Not Acceptable Here) response if the type of codec was not supported, and may include SDP in the message body to indicate the codecs supported by the MGCF/MGW.

5.5.3.2 Subsequent requests

5.5.3.2.1 Calls originating in circuit-switched networks

When the MGCF receives 183 (Session Progress) response to an INVITE request, the MGCF shall:

- store the values received in the P-Charging-Function-Addresses header.

The MGCF shall send an UPDATE request when the following conditions are fulfilled:

- conditions as specified in 3GPP TS 29.163 [11B]; and
- the MGCF receives $200(\mathrm{OK})$ response to a PRACK request

5.5.3.2.2 Calls terminating in circuit-switched networks

When the MGCF receives an indication of a ringing for the called party of outgoing call to a circuit-switched network, the MGCF shall:

- send 180 (Ringing) response to the UE.

When the MGCF receives an indication of answer for the called party of outgoing call to a circuit-switched network, the MGCF shall:

- send 200 (OK) response to the UE. The 200 (OK) response shall include an P-Asserted-Identity header if corresponding information is received from the circuit-switched network.

5.5.4 Call release

5.5.4. \quad Call release initiated by a circuit-switched network

When the MGCF receives an indication of call release from a circuit-switched network, the MGCF shall:

- send a BYE request to the UE.

5.5.4.2 IM CN subsystem initiated call release

NOTE: The release of a call towards the circuit-switched network additionally requires signalling procedures other than SIP in the MGCF that are outside the scope of this document.

5.5.4.3 MGW-initiated call release

When the MGCF receives an indication from the MGW that the bearer was lost, the MGCF shall:

- send a BYE request towards the UE; and
- may include Error-Info header witha pointer to additional information indicating that bearer was lost.

5.5.5 Call-related requests

5.5.5.1 ReINVITE

5.5.5.1.1 Calls originating from circuit-switched networks

Void.

5.5.5.1.2 Calls terminating in circuit-switched networks

When the MGCF receives a reINVITE request for hold/resume operation, the MGCF shall:

- send 100 (Trying) response;
- after performing interaction with MGW to hold/resume the media flow, send 200 (OK) response.

5.5.6 Further initial requests

When the MGCF responds to an OPTIONS request with a 200 (OK) response, the MGCF may include a message body with an indication of the DTMF capabilities and supported codecs of the MGCF/MGW.

NOTE: The detailed interface for requesting MGCF/MGW capabilities is not specified in this version of the document. Other solutions can be used in the interim.

5.6 Procedures at the BGCF

5.6.1 General

The use of the Path and Service-Route headers shall not be supported by the BGCF.
When the BGCF receives any request or response (excluding ACK requests and CANCEL requests and responses) related to a dialog or standalone transaction, the BGCF may insert previously saved values into P-Charging-Vector and P-Charging-Function-Addresses headers before forwarding the message.

With the exception of 305 (Use Proxy) responses, the BGCF may recurse on a 3xx response only when the domain part of the URI contained in the 3 xx response is in the same domain as the BGCF. For the same cases, if the URI is an IP address, the BGCF shall only recurse if the IP address is known locally to be a address that represents the same domain as the BGCF.

5.6.2 Common BGCF procedures

When determining where to route the received request, the originating BGCF may use the information obtained from other protocols or any other available databases.

When the BGCF receives a request, the BGCF shall forward the request:

- to an MGCF within its own network; or
- to another network containing a BGCF, or I-CSCF; or
- where the request is for another network, to an IBCF in its own network, if local policy requires IBCF capabilities towards another network.

When forwarding the request to the next hop, the BGCF may leave the received Request-URI unmodified.
The BGCF need not Record-Route the INVITE request. While the next entity may be a MGCF acting as a UA, the BGCF shall not apply the procedures of RFC 3323 [33] relating to privacy. The BGCF shall store the values received in the P-Charging-Function-Addresses header. The BGCF shall store the value of the icid parameter received in the P-Charging-Vector header and retain the icid parameter in the P-Charging-Vector header.

NOTE 1: The means by which the decision is made to forward to an MGCF or to another network is outside the scope of the present document, but may be by means of a lookup to an external database, or may be by data held internally to the BGCF.

When the BGCF receives an INVITE request, if the BGCF inserts its own Record-Route header, the BGCF may require the periodic refreshment of the session to avoid hung states in the BGCF. If the BGCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE 2: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

5.7 Procedures at the Application Server (AS)

5.7.1 Common Application Server (AS) procedures

5.7.1.1 Notification about registration status

The AS may support the REGISTER method in order to discover the registration status of the user. If a REGISTER request arrives and the AS supports the REGISTER method, the AS shall store the Expires parameter from the request and generate a $200(\mathrm{OK})$ response or an appropriate failure response. For the success case, the $200(\mathrm{OK})$ response shall contain Expires value equal to the value received in the REGISTER request. The AS shall store the values received in

P-Charging-Function-Addresses header. Also, the AS shall store the values of the icid parameter and orig-ioi parameter if present in the P-Charging-Vector header from the REGISTER request. The AS shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the REGISTER request and a type 3 term-ioi parameter in the response to REGISTER. The AS shall set the type 3 term-ioi parameter to a value that identifies the service provider from which the response is sent and the orig-ioi parameter is set to the previously received value of orig-ioi.

Upon receipt of a third-party REGISTER request, the AS may subscribe to the reg event package for the public user identity registered at the user's registrar (S-CSCF) as described in RFC 3680 [43].

On sending a SUBSCRIBE request, the AS shall populate the header fields as follows:
a) a Request URI set to the resource to which the AS wants to be subscribed to, i.e. to a SIP URI that contains the public user identity of the user that was received in the To header field of the third-party REGISTER request;
b) a From header field set to the AS's SIP URI;
c) a To header field, set to a SIP URI that contains the public user identity of the user that was received in the To header field of the third-party REGISTER request;
d) an Event header set to the "reg" event package;
e) a P-Asserted-Identity header field set to the SIP URI of the AS; and

NOTE 1: The S-CSCF expects the SIP URI used in the P-Asserted-Identity header to correspond to the SIP URI, which identified this AS in the initial filter criteria of the user to whose registration state the AS subscribes to.
f) a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17] and a type 3 orig-ioi parameter. The type 3 orig-ioi identifies the service provider from which the request is sent. The AS shall not include the type 3 term-ioi parameter.

Upon receipt of a 2 xx response to the SUBSCRIBE request, the AS shall store the information for the so established dialog and the expiration time as indicated in the Expires header of the received response.

Upon receipt of any response, the AS shall store the value of the term-ioi parameter received in the P-Charging-Vector header if present.

NOTE 2: Any received term-ioi parameters will be any type term-ioi but includes the adjacent network term ioi in frst position. The first term-ioi identifies the network operator from which the response was originated for a release 5 S-CSCF and the network operator from which the request was sent otherwise.

NOTE 3: Upon receipt of a NOTIFY request with all <registration> element(s) having their state attribute set to "terminated" (i.e. all public user identities are deregistered) and the Subscription-State header set to "terminated", the AS considers the subscription to the reg event package terminated, i.e. as if the AS had sent a SUBSCRIBE request with an Expires header containing a value of zero.

Upon receipt of a NOTIFY request, the AS shall store the value of the orig-ioi parameters if present in the P-ChargingVector header. The AS shall insert a P-Charging-Vector header in the response to the NOTIFY rquest containing the orig-ioi parameter, if received in the NOTIFY request and a type 3 term-ioi. The AS shall set the type 3 term-ioi parameter to a value that identifies the service provider from which the response is sent and the orig-ioi parameter is set to the previously received value of orig-ioi.

5.7.1.2 Extracting charging correlation information

When an AS receives an initial request for a dialog or a request (excluding ACK requests and CANCEL requests and responses) for a standalone transaction, the AS shall store the values received in the P-Charging-Vector header, e.g. orig-ioi parameter, if present, and icid parameter, and retain the P-Charging-Vector header in the message. The AS shall store the values received in the P-Charging-Function-Addresses header and retain the P-Charging-Function-Addresses header in the message.

When an AS sends any request or response related to a dialog or standalone transaction, the AS may insert previously saved values into the P-Charging-Vector and P-Charging-Function-Addresses headers before sending the message.

5.7.1.3 Access-Network-Info and Visited-Network-ID

The AS may receive in any request or response (excluding ACK requests and CANCEL requests and responses) information about the served user access network. The AS may receive information about the served user core network in REGISTER requests from S-CSCF. This information is contained in the P-Access-Network-Info header and P-
Visited-Network-ID header. The AS can use the headers to provide an appropriate service to the user.

5.7.1.4 User identify verification at the AS

The procedures at the AS to accomplish user identity verification are described with the help of figure 5-1.
NOTE: Different means can be used to represent or transport the credentials. Such mechanisms are subject to operator policy and can e.g. include the P-Asserted-Identity header, the Authorization header or other mechanisms not specified by 3GPP TS 24.229.

When the AS receives a SIP initial or standalone request, excluding REGISTER request, that does not contain credentials, the AS shall:
a) if a Privacy header is present in the initial or standalone request and the Privacy header value is set to "id" or "user", then the user and the request are considered as anonymous, and no further actions are required. The AS shall consider the request as authenticated;
b) if there is no Privacy header present in the initial or standalone request, or if the Privacy header contains a value other than "id" or "user", then the AS shall check for the presence of a P-Asserted-Identity header in the initial or standalone request. Two cases exist:
i) the initial or standalone request contains a P-Asserted-Identity header. This is typically the case when the user is located inside a trusted domain as defined by subclause 4.4. In this case, the AS is aware of the identity of the user and no extra actions are needed. The AS shall consider the request as authenticated.
ii) the initial or standalone request does not contain a P-Asserted-Identity header. This is typically the case when the user is located outside a trusted domain as defined by subclause 4.4. In this case, the AS does not have a verified identity of the user. The AS shall check the From header of the initial or standalone request. If the From header value in the initial or standalone request is set to "Anonymous" as specified in RFC 3261 [26], then the user and the request are considered as anonymous and no further actions are required. If the From header value does not indicate anonymity, then the AS shall challenge the user by issuing a 401 (Unauthorized) response including a challenge as per procedures described in RFC 3261 [26].

When the AS receives a SIP initial or standalone request that contains credentials but it does not contain a P-AssertedIdentity header the AS shall check the correctness of the credentials as follows:
a) If the credentials are correct, then the AS shall consider the identity of the user verified, and the AS shall consider the request as authenticated;
b) If the credentials are not correct, the AS may either rechallenge the user by issuing a 401 (Unauthorized) response including a challenge as per procedures described in RFC 3261 [26] (up to a predetermined maximum number of times predefined in the AS configuration data), or consider the user as anonymous. If the user is considered anonymous, the AS shall consider the request as authenticated.

Figure 5-1: User identity verification flow at the AS

5.7.1.5 Request authorization

Once the AS have tried to verify the identity of the user, the AS either has a verified identity of the user or it considers the user as anonymous.

If the user is considered anonymous, the AS shall check whether the authorization policy defined for this request allows anonymous requests. If anonymous requests are allowed, then the AS can proceed with the requested functionality, otherwise, the AS shall not proceed with the requested functionality.

If the user is identified by an identity, the AS shall apply the authorization policy related to the requested functionality to detect whether the particular user is allowed to request the functionality. The authorization policy may require a verified identity of a user.

If the request is authorized then the AS shall continue with the procedures as defined for that request.
If the request is not authorized, the AS shall either:

- reject the request according to the procedures defined for that request e.g., by issuing a 403 (Forbidden) response; or
- send a 2 xx final response if the authorization policy requires to deny the requested functionality, whilst appearing to the user as if the request has been granted.

5.7.1.6 Event notification throttling

If the AS has a local configuration information limiting the rate at which notification generation is allowed, then the AS shall take that information into account. Such local configuration information could be e.g. the shortest time period between issuing consecutive NOTIFY requests.

5.7.1.7 Local numbering

5.7.1.7.1 Interpretation of the numbers in a non-international format

If home operator's local policy defines a prefix string(s) to enable subscribers to differentiate dialling a geo-local number and/or a home-local number and if the phone number in a non-international format in the Request URI includes such a prefix, the AS shall interpret the received number in a non-international format as a geo-local number or as a home-local number according to the prefix.

If the phone number in a non-international format in the Request URI includes a "phone-context" parameter, the AS shall:

1) if the "phone-context" parameter contains access technology information or the home domain name prefixed by the "geo-local." string, interpret it as a geo-local number;
2) if the "phone-context" parameter contains the home domain name, interpret it as a home-local number; or
3) if the "phone-context" parameter contains any other value, apply general procedures for translation.

If the phone number in a non-international format in the Request URI includes both operator defined prefix and a "phone-context" parameter and those information are contradictory, the AS shall ignore either the prefix or the "phonecontext" parameter according to operator policy.

If the phone number in a non-international format in the Request URI does not include either a phone-context parameter or an operator defined prefix, the AS shall interpret the phone number in a non-international format either as a geo-local number or as a home-local number according to operator policy.

NOTE: Operator must ensure that service setting dialling strings do not reach local numbering AS by setting appropriately the precedences of the initial filter criteria.

5.7.1.7.2 Translation of the numbers in a non-international format

When an AS receives a request having a geo-local number in a non-international format in the Request URI, the AS shall use the "phone-context" parameter to determine the visited access network, if "phone-context" parameter in the

Request-URI is available. If "phone-context" parameter in the Request-URI is not available, the AS may determine the visited access network based on P-Access-Network-Info header, if it is available in the received request, or by means outside the scope of this document.

If the visited access network is determined the AS shall attempt to determine whether the geo-local number is used to access a service in the visited network or the local addressing plan of the visited network and translate the received geolocal number to a globally routeable SIP URI or an international tel URI:

NOTE 1: During the translation the AS can contact an entity in the visited access network for getting the needed information. The protocol and procedures for this is outside the scope of this specification.

When an AS receives a request having a home-local number in a non-international format in the Request URI, the AS shall determine whether the home-local number is used to access a service or the local addressing plan and translate the received home-local number to a globally routeable SIP URI or an international tel URI:

When an AS receives a request having any other number in a non-international format in the Request URI, the AS shall attempt to determine whether it is used to access a service in the third network or the local addressing plan of the third network and translate the received number in a non-international format to a globally routeable SIP URI or an international tel URI:

NOTE 2: The AS can translate the tel URI to a SIP URI by including the 'telephone-subscriber' part of the received tel URI to the user part of the SIP URI and setting the domain name of the SIP URI to indicate the domain name of the network of the phone number based on the received "phone-context" parameter;

If the translation at the AS fails, the AS shall either send an appropriate SIP response or route the request based on the topmost Route header, based on local policy.

5.7.1.8 GRUU assignment and usage

It shall be possible for an AS to use a GRUU referring to itself when inserting a contact address in a dialog establishing or target refreshing SIP message. When using a GRUU, it shall do so in conformance with draft-ietf-sip-gruu [93].

This specification does not define how GRUUs are created by the AS; they can be provisioned by the operator or obtained by any other mechanism. The GRUU shall remain valid for the time period in which features addressed to it remain meaningful.

The AS shall handle requests addressed to its currently valid GRUUs when received outside of the dialog in which the GRUU was provided.

EXAMPLE: Upon receipt of an INVITE request addressed to a GRUU assigned to a dialog it has active, and containing a Replaces header referencing that dialog, the AS will be able to establish the new call replacing the old one, if that is appropriate for the features being provided by the AS.

When an AS is acting as a routeing B2BUA (as defined in subclause 5.7.5) it may provide a contact address that is not a GRUU when the contact address in the incoming message that is being replaced is not a GRUU. In all other cases it shall use a GRUU.

When an AS acts as UA or Initiating B2BUA it may provide a contact address that is not a GRUU in cases where it can ascertain that valid requests that could result from the use of that contact and follow the usage rules of draft-ietf-sipgruu [93] will reach the element. In all other cases a GRUU shall be used.

An AS acting as a UA or an initiating or routeing B2BUA on behalf of a public user identity can provide a GRUU in the contact address referring to itself as described above. When the AS provides a GRUU on behalf of a user, subsequent dialog-initiating requests sent to that GRUU will be routed directly to the AS, thus bypassing terminating services assigned to the user. If the AS wishes to have terminating services applied for the user, the AS may generate a new terminating request addressed to a public GRUU associated with the public user identity of the user.

NOTE 1: If the AS wishes to have terminating services applied when the public user identity on whose behalf the AS is acting is unregistered, then the options available to the AS depend on whether or not the subscriber has ever previously registered with the IM CN subsystem. In the case where the public user identity had previously registered with the IM CN subsystem, then the AS can use the most recently allocated public GRUU if available. In the case where the user has never registered with the IM CN subsystem, then the AS can use the public user identity itself.

NOTE 2: Once terminating services have been applied, it is assumed that the terminating S-CSCF will route the request back to this AS via the initial filter criteria. In order for this to work, the initial filter criteria of the target user need to be configured so that the AS is invoked at the appropriate time relative to other terminating ASs (say, after the required terminating services have been applied). The mechanism to ensure that the AS is invoked by the initial filter criteria at the appropriate time is outside the scope of this specification (e.g. the user"s filter criteria could be statically configured to invoke the AS at the correct time, or the AS could use the Dynamic Service Activation Information mechanism to activate the appropriate filter criteria).

When an AS acts as a UA or an initiating or routeing B2BUA, and is originating or terminating a request on behalf of a public user identity, and privacy is required, the AS shall ensure that any GRUU provided in the contact address in the request does not reveal the public user identity of the user.

5.7.1.9 Use of ICSI and IARI values

It shall be possible for an AS based upon the service logic to validate an ICSI value received in an Accept-Contact header or received in a P-Asserted-Service header and reject the request if necessary.

A trusted AS may insert a P-Asserted-Service header field in a request for a new dialog or standalone transaction. An untrusted AS may insert a P-Preferred-Service header field in a request for a new dialog or standalone transaction. If the request is related to an IMS communication service that requires the use of an ICSI then the AS:

- shall include the ICSI value (coded as specified in subclause 7.2A.8.2), for the IMS communication service that is related to the request in either a P-Asserted-Service header field or a P-Preferred-Service header field depending whether the AS is trusted or not according to draft-drage-sipping-service-identification [121].

When an AS that is acting as a UA or initiating B2BUA or routeing B2BUA sends an initial request for a dialog or a request for a standalone transaction, the AS may include in an Accept-Contact header field containing:

- an ICSI value (coded as specified in subclause 7.2A.8.2); and
- one or more IARI values (coded as specified in subclause 7.2A.9.2) that are related to the request in a g.3gpp.app-ref feature tag as defined in subcluase 7.9.3 and RFC 3841 [56B];
if the ICSI or IARIs for the IMS communication service and IMS application are known.
The AS may:
- include the received ICSI and IARI values;
- replace or remove received ICSI and IARI values; or
- include new ICSI and IARI values.

When the AS acting as a UA or initiating B2BUA or routeing B2BUA sends a SIP request or a SIP response related to an IMS communication service, the AS may include in the Contact header field:

- in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 one or more ICSI values (coded as specified in subclause 7.2A.8.2); and
- one or more IARI values (coded as specified in subclause 7.2A.9.2) in a g.3gpp.iari-ref feature tag, for the IMS applications, that are related to the request as defined in subclause 7.9.2 and RFC 3840 [62].

The AS may:

- include the received ICSI and IARI values;
- replace or remove received ICSI and IARI values; or
- include new ICSI and IARI values.

5.7.2 Application Server (AS) acting as terminating UA, or redirect server

When acting as a terminating UA the AS shall behave as defined for a UE in subclause 5.1.4, with the exceptions identified in this subclause.

The AS, although acting as a UA, does not initiate any registration of its associated addresses. These are assumed to be known by peer-to-peer arrangements within the IM CN subsystem.

An AS acting as redirect server shall propagate any received IM CN subsystem XML message body in the redirected message.

When an AS acting as a terminating UA generates a subsequent request that does not relate to an INVITE dialog, the AS shall insert a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17].

When the AS acting as terminating UA receives an initial request for a dialog or a request for a standalone transaction, it shall store the value of the orig-ioi parameters received in the P-Charging-Vector header if present.

NOTE: received orig-ioi parameters will be any type orig-ioi but includes the adjacent network term ioi in frst position. The first orig-ioi identifies the network operator from which the request was originated for a release $5 \mathrm{~S}-\mathrm{CSCF}$ and the network operator from which the request was sent otherwise.

When the AS acting as terminating UA generates a response to an initial request for a dialog or a request for a standalone transaction, it shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the request and a type 3 term-ioi. The AS shall set the type 3 term-ioi parameter to a value that identifies the service provider from which the response is sent and the orig-ioi parameter is set to the previously received value of orig-ioi.

5.7.3 Application Server (AS) acting as originating UA

In order to support an AS acting as an originating UA, the AS has to be within the same trust domain as the S-CSCF to which requests will be sent.

When acting as an originating UA the AS shall behave as defined for a UE in subclause 5.1.3, with the exceptions identified in this subclause.

The AS, although acting as a UA, does not initiate any registration of its associated addresses. These are assumed to be known by peer-to-peer arrangements within the IM CN subsystem.

When an AS acting as an originating UA generates an initial request for a dialog or a request for a standalone transaction, the AS shall insert a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17] and a type 3 orig-ioi. The AS shall set the type 3 orig-ioi parameter to a value that identifies the service provider from which the request is sent. The AS shall not include the type 3 term-ioi parameter.

NOTE 1: The AS can retrieve CCF and/or ECF addresses from HSS on Sh interface.
When the AS acting as an originating UA receives any response to an initial request for a dialog or a request for a standalone transaction, it shall store the value of the term-ioi parameter received in the P-Charging-Vector header if present.

NOTE 2: Any received term-ioi parameter will be a type 3 term-ioi. The type 3 term-ioi identifies the network operator from which the response was sent.

When an AS acting as an originating UA generates a subsequent request that does not relate to an INVITE dialog, the AS shall insert a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17].

The AS shall extract charging function addresses from any P-Charging-Function-Addresses header that is received in any 1 xx or 2 xx responses to the requests.

The AS may also indicate that the proxies should not fork the request by including a "no-fork" directive within the Request-Disposition header in the request as described in RFC 3841 [56B].

When sending an initial request on behalf of a PSI that is hosted by the AS, the AS shall:

- insert a Request-URI as determined by the service logic;
- insert a P-Asserted-Identity containing the PSI;
- if the AS is not able to resolve the next hop address by itself or the operator policy does not allow it, insert a Route header pointing either to the S-CSCF where the PSI is hosted, or to the entry point of the home network of the PSI or to the transit function. The AS shall append the "orig" parameter to the URI in the topmost Route header; and

NOTE 3: The address of the S-CSCF hosting the PSI can be obtained by querying the HSS on the Sh interface.
NOTE 4: AS can only send the initial request to the entry point of the home network of the PSI only if the AS can assume (e.g. based on local configuration) that the receiving entry point will be able to process the request as an originating request.

- if the AS is able to resolve the next hop address by itself and the operator policy allows it, forward the originating request directly to the destination without involving any S-CSCF in the originating IM CN subsystem.

When sending an initial request on behalf of a public user identity, the AS shall:

- insert a Request-URI as determined by the service logic;
- insert a P-Asserted-Identity containing the public user identity;
- if the AS intends to send the originating request to the home network of the public user identity or the operator policy requires it, insert a Route header pointing to the S-CSCF where the public user identity on whose behalf the request is generated is registered or hosted (unregistered case) or to the entry point of the public user identity's network. The AS shall append the "orig" parameter to the URI in the topmost Route header; and

NOTE 5: The address of the S-CSCF can be obtained either by querying the HSS on the Sh interface or during third-party registration.

NOTE 6: AS can send the initial request to the entry point of the public user identity's network or to the entry point of the home network of the PSI only if the AS can assume (e.g. based on local configuration) that the receiving entry point will be able to process the request as an originating request.

- if the AS intends to send the originating request directly to the terminating network and the operator policy allows it, forward the originating request directly to the destination without involving any S-CSCF in the originating IM CN subsystem.

When sending an initial request to a served public user identity, the AS shall insert:

- a Request-URI containing the served public user identity;
- a P-Asserted-Identity as determined by the service logic (e.g. the URI of the AS or the URI of the entity that triggered the SIP request, if the sending of the initial request is triggered by a non-SIP request); and
- a Route header pointing to the S-CSCF where the public user identity to whom the request is generated is registered or hosted (unregistered case) or to the entry point of the public user identity's network. The AS shall not append the "orig" parameter to the URI in the topmost Route header.

NOTE 7: The address of the S-CSCF can be obtained either by querying the HSS on the Sh interface or during third-party registration.

The AS can indicate privacy of the P-Asserted-Identity in accordance with RFC 3323 [33], and the additional requirements contained within RFC 3325 [34].

Where privacy is required, in any initial request for a dialog or request for a standalone transaction, the AS shall set the From header to "Anonymous" as specified in RFC 3261 [26].

NOTE 8: The contents of the From header cannot be relied upon to be modified by the network based on any privacy specified by the user either within the AS indication of privacy or by network subscription or network policy. Therefore the AS includes the value "Anonymous" whenever privacy is explicitly required.

5.7.4 Application Server (AS) acting as a SIP proxy

When the AS acting as a SIP proxy receives a request from the S-CSCF, prior to forwarding the request it shall:

- remove its own URI from the topmost Route header; and
- after executing the required services, route the request based on the topmost Route header.

The AS may modify the SIP requests based on service logic, prior to forwarding the request back to the S-CSCF.
The AS shall not fork the request if the fork-directive in the Request-Disposition header is set to "no-fork" as described in RFC 3841 [56B].

An AS acting as a SIP proxy shall propagate any received IM CN subsystem XML message body in the forwarded message.

When the AS acting as a SIP proxy receives an initial request for a dialog or a request for a standalone transaction, it shall store the value of the orig-ioi parameter received in the P-Charging-Vector header if present. The AS shall remove the orig-ioi parameter from the forwarded request.

NOTE: Any received orig-ioi parameters will be any type orig-ioi but includes the adjacent network term ioi in frst position. The first orig-ioi identifies the network operator from which the request was originated for a release 5 S -CSCF and the network operator from which the request was sent otherwise.

When the AS acting as a SIP proxy generates a response to an initial request for a dialog or a request for a standalone transaction, it shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the request and a type 3 term-ioi. The AS shall set the type 3 term-ioi parameter to a value that identifies the service provider from which the response is sent and the orig-ioi parameter is set to the previously received value of orig-ioi. Any values of orig-ioi or term-ioi received in any response that is being forwarded are not used.

5.7.5 Application Server (AS) performing 3rd party call control

5.7.5.1 General

The AS performing 3rd party call control acts as a B2BUA. There are two kinds of 3rd party call control:

- Routeing B2BUA: an AS receives a request, terminates it and generates a new request, which is based on the received request.
- Initiating B2BUA: an AS initiates two requests, which are logically connected together at the AS, or an AS receives a request and initiates a new request that is logically connected but unrelated to the incoming request from the originating user (e.g. the P-Asserted-Identity of the incoming request is changed by the AS).

When the AS receives a terminated call and generates a new call, and dependent on whether the service allows the AS to change the P-Asserted-Identity for outgoing requests compared with the incoming request, the AS will select appropriate kind of 3rd party call control.

The B2BUA AS will internally map the message headers between the two dialogs that it manages. It is responsible for correlating the dialog identifiers and will decide when to simply translate a message from one dialog to the other, or when to perform other functions. These decisions are specific to each AS and are outside the scope of the present document.

The AS, although acting as a UA, does not initiate any registration of its associated addresses. These are assumed to be known by peer-to-peer arrangements within the IM CN subsystem.

For standalone transactions, when the AS is acting as a Routeing B2BUA, the AS shall copy the remaining Route header(s) unchanged from the received request for a standalone transation to the new request for a standalone transaction.

When the AS receives a Replaces header within an initial request for a dialog, the AS should check, whether the AS acts as a routeing B2BUA for the dialog identified in the Replaces header. The AS should:

- if the AS acts as routeing B2BUA for the dialog indicated in the Replaces header, include in the forwarded request a Replaces header, indicating the the dialog on the outgoing side that corresponds to the dialog identified in the received Replaces header; or
- if the AS does not act as a routeing B2BUA for the dialog indicated in the Replaces header, include in the forwarded request the Replaces header as received in the incoming request.

When the AS acting as a routeing B2BUA receives an initial request for a dialog or a request for a standalone transaction, the AS shall:

- store the value of the orig-ioi parameter received in the P-Charging-Vector header if present; and
- remove the orig-ioi parameter from the forwarded request.

NOTE: Any received orig-ioi parameters will be any type orig-ioi but includes the adjacent network term ioi in frst position. The first orig-ioi identifies the network operator from which the request was originated for a release 5 S-CSCF and the network operator from which the request was sent otherwise.

When the AS acting as a routeing B2BUA generates a response to an initial request for a dialog or a request for a standalone transaction, it shall insert a P-Charging-Vector header containing the orig-ioi parameter, if received in the request and a type 3 term-ioi. The AS shall set the type 3 term-ioi parameter to a value that identifies the service provider from which the response is sent and the orig-ioi parameter is set to the previously received value of orig-ioi. Any values of orig-ioi or term-ioi received in any response that is being forwarded are not used.

5.7.5.2 Call initiation

5.7.5.2.1 Initial INVITE

When the AS acting as a Routeing B2BUA receives an initial INVITE request, the AS shall:

1) remove its own SIP URI from the topmost Route header of the received INVITE request;
2) perform the AS specific functions. See 3GPP TS 23.218 [5];
3) if successful, generate and send a new INVITE request to establish a new dialog;
4) copy the remaining Route header(s) unchanged from the received INVITE request to the new INVITE request;
5) copy the P-Asserted-Identity to the outgoing request;
6) if a Route header is present, route the new INVITE request based on the topmost Route header; and

NOTE 1: The topmost Route header of the received INVITE request will contain the AS's SIP URI. The following Route header will contain the SIP URI of the S-CSCF.
if no Route header is present (e.g. the AS may be acting on behalf of a PSI):
a) insert a Route header pointing either to the S-CSCF where the PSI is hosted or to the entry point of the home network of the PSI or to the transit function, if the AS is not able to resolve the next hop address by itself or the operator policy requires it; or
b) forward the originating request directly to the destination without involving any S-CSCF in the originating IM CN subsystem, if the AS is able to resolve the next hop address by itself, and the operator policy allows it.

NOTE 2: The address of the S-CSCF hosting the PSI can be obtained by querying the HSS on the Sh interface.
When the AS is acting as an Initiating B2BUA, the AS shall apply the procedures described in subclause 5.7.3 for any outgoing requests. The AS shall either set the icid parameter in the P-Charging-Vector header to be the same as received or different.

NOTE 3: The AS can retrieve CCF and/or ECF adresses from HSS on Sh interface.

5.7.5.2.2 Subsequent requests

Void.

5.7.5.3 Call release

5.7.5.4 Call-related requests

An AS may initiate a call release. See 3GPP TS 23.218 [5] for possible reasons. The AS shall simultaneously send the BYE request for both dialogs managed by the B2BUA.

5.7.5.5 Further initial requests

When the AS is acting as an Initiating B2BUA the AS shall apply the procedures described in subclause 5.7 .3 for both requests. The AS shall either set the icid parameter in the P-Charging-Vector header to be the same as received or different.

5.7.6 Void

5.8 Procedures at the MRFC

5.8.1 General

Although the MRFC is acting as a UA, it is outside the scope of this specification how the MRFC associated addresses are made known to other entities.

When the MRFC sends any request or response (excluding ACK requests and CANCEL requests and responses) related to a dialog or standalone transaction, the MRFC may insert previously saved values into P-Charging-Vector and P-Charging-Function-Addresses headers before sending the message.

The MRFC shall use a GRUU referring to itself (as specified in draft-ietf-sip-gruu [93]) when inserting a contact address in a dialog establishing or target refreshing SIP message. This specification does not define how GRUUs are created by the MRFC; they can be provisioned by the operator or obtained by any other mechanism. A GRUU used by the MRFC when establishing a dialog shall remain valid for the lifetime of the dialog.

The MRFC shall handle requests addressed to its currently valid GRUUs when received outside of the dialog in which the GRUU was provided.

EXAMPLE: Upon receipt of an INVITE request addressed to a GRUU assigned to a dialog it has active, and containing a Replaces header referencing that dialog, the MRFC will be able to establish the new call replacing the old one.

5.8.2 Call initiation

5.8.2.1 Initial INVITE

5.8.2.1.1 MRFC-terminating case

5.8.2.1.1.1 Introduction

The MRFC shall provide a P-Asserted-Identity header in a response to the initial request for a dialog, or any response for a standalone transaction. It is a matter of network policy whether the MRFC expresses privacy according to RFC 3323 [33] with such responses.

When the MRFC receives an initial INVITE request, the MRFC shall store the values received in the P-ChargingVector header, e.g. icid parameter. The MRFC shall store the values received in the P-Charging-Function-Addresses header.

5.8.2.1.1.2 Tones and announcements

The MRFC can receive INVITE requests to set up a session to play tones and announcements. The MRFC acts as terminating UA in this case.

When the MRFC receives an INVITE request with an indicator for a tone or announcement, the MRFC shall:

- send 100 (Trying) response.

NOTE: The detailed interfaces for requesting tones and announcements are not specified in this version of the document. Other solutions can be used in the interim.

5.8.2.1.1.3 Ad-hoc conferences

The MRFC can receive INVITE requests to set up an ad-hoc conferencing session (e.g. Multiparty Call) or to add parties to the conference. The MRFC acts as terminating UA in this case.

When the MRFC receives an INVITE request with an indicator to initiate ad hoc conferencing, the MRFC shall:

- send 100 (Trying) response; and
- after the MRFP indicates that the conference resources are available, send 200 (OK) response with an MRFC conference identifier.If the MRFC chooses to send a 183 (Session Progress) response prior to the 200 (OK), then the conference identifier may also be included in the 183 (Session Progress) response.

When the MRFC receives an INVITE request with an indicator to add a party to an existing ad hoc conference (i.e. MRFC conference identifier), the MRFC shall:

- send 100 Trying response; and
- after the MRFP indicates that the conferencing request is granted, send 200 OK response with the MRFC conference identifier.If the MRFC chooses to send a 183 Session Progress response prior to the 200 OK, then the conference identifier may also be included in the 183 Session Progress response.

NOTE: The detailed interface for requesting ad-hoc conferencing sessions is not specified in this version of the document. Other solutions can be used in the interim.

5.8.2.1.1.4 Transcoding

The MRFC may receive INVITE requests to set up transcoding between endpoints with incompatible codecs. The MRFC acts as terminating UA in this case.

When the MRFC receives an INVITE request with an indicator for transcoding and a codec is supplied in SDP, the MRFC shall:

- send 100 (Trying) response; and
- after the MRFP indicates that the transcoding request is granted, send 200 (OK) response.

When the MRFC receives an INVITE request with an indicator for transcoding but no SDP, the MRFC shall:

- send 183 (Session Progress) response with list of codecs supported by the MRFC/MRFP.

5.8.2.1.2 MRFC-originating case

The MRFC shall provide a P-Asserted-Identity header in an initial request for a dialog, or any request for a standalone transaction. It is a matter of network policy whether the MRFC expresses privacy according to RFC 3323 [33] with such requests.

When an MRFC generates an initial request for a dialog or a request for a standalone transaction, the MRFC shall insert a P-Charging-Vector header with the icid parameter populated as specified in 3GPP TS 32.260 [17].

5.8.2.2 Subsequent requests

5.8.2.2.1 Tones and announcements

When the MRFC receives an ACK request for a session, this may be considered as an event to direct the MRFP to start the playing of a tone or announcement.

5.8.3 Call release

5.8.3.1 S-CSCF-initiated call release

5.8.3.1.1 Tones and announcements

When the MRFC receives a BYE request for a session, the MRFC directs the MRFP to stop the playing of a tone or announcement.

5.8.3.2 MRFC-initiated call release

5.8.3.2.1 Tones and announcements

When the MRFC has a timed session to play tones and announcements and the time expires, the MRFC shall:

- send a BYE request towards the UE.

When the MRFC is informed by the MRFP that tone or announcement resource has been released, the MRFC shall:

- send a BYE request towards the UE.

5.8.2.2.2 Transcoding

When the MRFC receives a PRACK request (in response to the 183 (Session Progress) response) with an indicator for transcoding and codec supplied in SDP, the MRFC shall:

- after the MRFP indicates that the transcoding request is granted, send 200 (OK) response.

5.8.4 Call-related requests

5.8.4.1 ReINVITE

5.8.4.1.1 MRFC-terminating case

5.8.4.1.1.1 Ad-hoc conferences

The MRFC can receive reINVITE requests to modify an ad-hoc conferencing session (e.g. Multiparty Call) for purposes of floor control and for parties to leave and rejoin the conference.

When the MRFC receives a reINVITE request, the MRFC shall:

- send 100 (Trying) response; and
- after the MRFP indicates that the conferencing request is granted, send $200(\mathrm{OK})$ response with the MRFC conference identifier.If the MRFC chooses to send a 183 (Session Progress) response prior to the 200 OK, then the conference identifier may also be included in the 183 (Session Progress) response.

NOTE: The detailed interface for requesting ad-hoc conferencing sessions is not specified in this version of the document. Other solutions can be used in the interim.

5.8.4.1.2 MRFC-originating case

Void.

5.8.4.2 REFER

5.8.4.2.1 MRFC-terminating case

Void.

5.8.4.2.2 MRFC-originating case

Void.

5.8.4.2.3 REFER initiating a new session

Void.

5.8.4.2.4 REFER replacing an existing session

Void.

5.8.4.3 INFO

Void.

5.8.5 Further initial requests

When the MRFC responds to an OPTIONS request with a 200 (OK) response, the MRFC may include a message body with an indication of the supported tones/announcement packages, DTMF capabilities, supported codecs and conferencing options of the MRFC/MRFP.

NOTE: The detailed interface for requesting MRFC/MRFP capabilities is not specified in this version of the document. Other solutions can be used in the interim.

5.9 Void

5.9.1 Void

5.10 Procedures at the IBCF

5.10.1 General

As specified in 3GPP TS 23.228 [7] border control functions may be applied between two IM CN subsystems or between an IM CN subsystem and other SIP-based multimedia networks based on operator preference. The IBCF may act both as an entry point and as an exit point for a network. If it processes a SIP request received from other network it functions as an entry point (see subclause 5.10.2) and it acts as an exit point whenever it processes a SIP request sent to other network (see subclause 5.10.3).

The functionalities of the IBCF include:

- network configuration hiding (see subclause 5.10.4);
- application level gateway (see subclause 5.10.5);
- transport plane control, i.e. QoS control (see subclause 5.10.5);
- screening of SIP signalling (see subclause 5.10.6); and
- inclusion of an IWF if appropriate.

NOTE: The functionalities performed by the IBCF are configured by the operator, and it is network specific.

5.10.2 IBCF as an exit point

5.10.2.1 Registration

When IBCF receives a REGISTER request, the IBCF shall:

1) if network topology hiding is required, then apply the encryption procedures for the Path header as described in subclause 5.10.4.1;
2) if network topology hiding is required or IBCF is configured to perform application level gateway and/or transport plane control functionalities, then the IBCF shall add its own routeable SIP URI to the top of the Path header; and

NOTE 1: The IBCF can include in the inserted SIP URI an indicator that identifies the direction of subsequent requests received by the IBCF i.e., from the S-CSCF towards the P-CSCF, to identify the UE-terminating case. The IBCF can encode this indicator in different ways, such as, e.g., a unique parameter in the URI, a character string in the username part of the URI, or a dedicated port number in the URI.

NOTE 2: Any subsequent request that includes the direction indicator (in the Route header) or arrives at the dedicated port number, indicates that the request was sent by the S-CSCF towards the P-CSCF.

NOTE 3: In accordance with the procedures described in RFC 3608 [38], an IBCF does not insert its own routeable SIP URI to the Service-Route header.
3) select an entry point of the home network and forward the request to that entry point.

If the selected entry point:

- does not respond to the REGISTER request and its retransmissions by the IBCF; or
- sends back a 3xx response or 480 (Temporarily Unavailable) response to a REGISTER request;
the IBCF shall select a new entry point and forward the original REGISTER request.
NOTE 4: The list of the entry points can be either obtained as specified in RFC 3263 [27A] or provisioned in the IBCF. The entry point can be an IBCF or an I-CSCF.

If the IBCF fails to forward the REGISTER request to any entry point, the IBCF shall send back a 504 (Server Time-Out) response to the P-CSCF, in accordance with the procedures in RFC 3261 [26].

5.10.2.2 Initial requests

Upon receipt of any request, except the REGISTER method, the IBCF shall:

1) if the request is an INVITE request, respond with a 100 (Trying) provisional response;
2) if the request is an INVITE request and the IBCF is configured to perform application level gateway and/or transport plane control functionalities, save the Contact, CSeq and Record-Route header field values received in the request such that the IBCF is able to release the session if needed;
3) if network topology hiding is required, apply the procedures as described in subclause 5.10.4;
4) if screening of SIP signalling is required, apply the procedures as described in subclause 5.10.6;
5) if IBCF processes a request without a pre-defined route (e.g. the subscription to reg event package originated by the P-CSCF), select an entry point of the home network and forward the request to that entry point;

NOTE 1: The list of the entry points can be either obtained as specified in RFC 3263 [27A] or provisioned in the IBCF. The entry point can be an IBCF or an I-CSCF.
6) store the values from the P-Charging-Function-Addresses header, if present; and
7) remove some of the parameters from the P-Charging-Vector header or the header itself, depending on operator policy, if present; and
8) remove the P-Charging-Function-Addresses headers, if present, prior to forwarding the message.

When the IBCF receives an INVITE request, the IBCF may require the periodic refreshment of the session to avoid hung states in the IBCF. If the IBCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE 2: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

When the IBCF receives a response to the initial request and network topology hiding is required, then the IBCF shall apply the procedures as described in subclause 5.10.4.

When the IBCF receives a response to the initial request and screening of SIP signalling is applied, then the IBCF shall apply the procedures as described in subclause 5.10.6.

5.10.2.3 Subsequent requests

Upon receipt of any request, except the REGISTER method, the IBCF shall:

1) if the request is an INVITE request, respond with a 100 (Trying) provisional response;
2) if the request is a target refresh request and the IBCF is configured to perform application level gateway and/or transport plane control functionalities, save the Contact and CSeq header field values received in the request such that the IBCF is able to release the session if needed;
3) if the subsequent request is other than a target refresh request (including requests relating to an existing dialog where the method is unknown) and the IBCF is configured to perform application level gateway and/or transport plane control functionalities, save the Contact and CSeq header field values received in the request such that the IBCF is able to release the session if needed;
4) if network topology hiding is required, apply the procedures as described in subclause 5.10.4; and
5) if screening of SIP signalling is required, apply the procedures as described in subclause 5.10.6.

When the IBCF receives a response to the subsequent request and network topology hiding is required, then the IBCF shall apply the procedures as described in subclause 5.10.4.

When the IBCF receives a response to the subsequent request and screening of SIP signalling is required, then the IBCF shall apply the procedures as described in subclause 5.10.6.

5.10.2.4 IBCF-initiated call release

If the IBCF provides transport plane control functionality and receives an indication of a transport plane related error the IBCF may:

1) generate a BYE request for the terminating side based on information saved for the related dialog; and
2) generate a BYE request for the originating side based on the information saved for the related dialog.

NOTE: Transport plane related errors can be indicated from e.g. TrGW, or PCRF. The protocol for indicating transport plane related errors to the IBCF is out of scope of this specification.

Upon receipt of the 2 xx responses for both BYE requests, the IBCF shall release all information related to the dialog and the related multimedia session.

5.10.3 IBCF as an entry point

5.10.3.1 Registration

When IBCF receives a REGISTER request, the IBCF shall:

1) verify if it arrived from a trusted domain or not. If the request arrived from an untrusted domain, respond with 403 (Forbidden) response;

NOTE 1: The IBCF can find out whether the request arrived from a trusted domain or not, from the procedures described in 3GPP TS 33.210 [19A].
2) if network topology hiding, or screening of SIP signalling, is required or IBCF is configured to perform application level gateway and/or transport plane control functionalities, add its own routeable SIP URI to the top of the Path header; and

NOTE 2: The IBCF can include in the inserted SIP URI an indicator that identifies the direction of subsequent requests received by the IBCF i.e., from the S-CSCF towards the P-CSCF, to identify the UE-terminating case. The IBCF can encode this indicator in different ways, such as, e.g., a unique parameter in the URI, a character string in the username part of the URI, or a dedicated port number in the URI.

NOTE 3: Any subsequent request that includes the direction indicator (in the Route header) or arrives at the dedicated port number, indicates that the request was sent by the S-CSCF towards the P-CSCF.

NOTE 4: In accordance with the procedures described in RFC 3608 [38], an IBCF does not insert its own routable SIP URI to the Service-Route header.
3) If IBCF is colocated with an I-CSCF, or it has a preconfigured I-CSCF to be contacted, forward the request to that I-CSCF. Otherwise select an I-CSCF and forward the request to that I-CSCF.

NOTE 5: The selection of an I-CSCF can lead to additional delays.
If the selected I-CSCF:

- does not respond to the REGISTER request and its retransmissions by the IBCF; or
- sends back a 3xx response or 480 (Temporarily Unavailable) response to a REGISTER request;
the IBCF shall select a new I-CSCF and forward the original REGISTER request.
NOTE 5: The list of the I-CSCFs can be either obtained as specified in RFC 3263 [27A] or provisioned in the IBCF.

If the IBCF fails to forward the REGISTER request to any I-CSCF, the IBCF shall send back a 504 (Server Time-Out) response towards the P-CSCF, in accordance with the procedures in RFC 3261 [26].

5.10.3.2 Initial requests

Upon receipt of any request, except the REGISTER request, the IBCF shall verify whether the request is arrived from a trusted domain or not. If the request arrived from an untrusted domain, then the IBCF shall;

- if the topmost Route header of the request contains the "orig" parameter, respond with 403 (Forbidden) response. Otherwise,
- remove all P-Charging-Vector headers and all P-Charging-Function-Addresses headers the request may contain.

Upon receipt of any request, except the REGISTER request, the IBCF shall:

1) if the request is an INVITE request, then respond with a 100 (Trying) provisional response;
2) if the request is an INVITE request and the IBCF is configured to perform application level gateway and/or transport plane control functionalities, then the IBCF shall save the Contact, CSeq and Record-Route header field values received in the request such that the IBCF is able to release the session if needed;
3) if network topology hiding is required, then apply the procedures as described in subclause 5.10 .4 ; and
4) If IBCF receives an initial request for a dialog or standalone transaction, that contains a single Route header pointing to itself, and it is co-located with an I-CSCF, or it has a preconfigured I-CSCF to be contacted, then forward the request to that I-CSCF. Otherwise select an I-CSCF and forward the request to that I-CSCF. If the single Route header of the request contains the "orig" parameter, the IBCF shall insert the "orig" parameter to the URI of the I-CSCF.

NOTE 1: The selection of an I-CSCF can lead to additional delays.
When the IBCF receives an INVITE request, the IBCF may require the periodic refreshment of the session to avoid hung states in the IBCF. If the IBCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

When the IBCF receives a response to an initial request (e.g. 183 or 2 xx), the IBCF shall:

1) store the values from the P-Charging-Function-Addresses header, if present;
2) remove the P-Charging-Function-Addresses header prior to forwarding the message; and
3) if network topology hiding is required, then the IBCF shall apply the procedures as described in subclause 5.10.4.

5.10.3.3 Subsequent requests

Upon receipt of any request, except the REGISTER method, the IBCF shall:

1) if the request is an INVITE request, then respond with a 100 (Trying) provisional response;
2) if the request is a target refresh request and the IBCF is configured to perform application level gateway and/or transport plane control functionalities, then the IBCF shall save the Contact and CSeq header field values received in the request such that the IBCF is able to release the session if needed;
3) if the subsequent request is other than a target refresh request (including requests relating to an existing dialog where the method is unknown) and the IBCF is configured to perform application level gateway and/or transport plane control functionalities, then the IBCF shall save the Contact and CSeq header field values received in the request such that the IBCF is able to release the session if needed; and
4) if network topology hiding is required, then apply the procedures as described in subclause 5.10.4.

When the IBCF receives a response to the subsequent request and network topology hiding is required, then the IBCF shall apply the procedures as described in subclause 5.10.4.

5.10.3.4 IBCF-initiated call release

If the IBCF provides transport plane control functionality and receives an indication of a transport plane related error the IBCF may:

1) generate a BYE request for the terminating side based on information saved for the related dialog; and
2) generate a BYE request for the originating side based on the information saved for the related dialog.

NOTE: Transport plane related errors can be indicated from e.g. TrGW or PCRF. The protocol for indicating transport plane related errors to the IBCF is out of scope of this specification.

Upon receipt of the 2 xx responses for both BYE requests, the IBCF shall release all information related to the dialog and the related multimedia session.

5.10.4 THIG functionality in the IBCF

5.10.4.1 General

NOTE 1: THIG functionality is performed in I-CSCF in Release-5 and Release-6 and is compatible with the procedures specified in this subclause.

The following procedures shall only be applied if network topology hiding is required by the network. The network requiring network topology hiding is called the hiding network.

NOTE 2: Requests and responses are handled independently therefore no state information is needed for that purpose within an IBCF.

The IBCF shall apply network topology hiding to all headers which reveal topology information, such as Via, Route, Record-Route, Service-Route, and Path.

Upon receiving an incoming REGISTER request for which network topology hiding has to be applied and which includes a Path header, the IBCF shall add the routeable SIP URI of the IBCF to the top of the Path header. The IBCF may include in the inserted SIP URI an indicator that identifies the direction of subsequent requests received by the IBCF i.e., from the S-CSCF towards the P-CSCF, to identify the UE-terminating case. The IBCF may encode this
indicator in different ways, such as, e.g., a unique parameter in the URI, a character string in the username part of the URI, or a dedicated port number in the URI.

NOTE 3: Any subsequent request that includes the direction indicator (in the Route header) or arrives at the dedicated port number, indicates that the request was sent by the S-CSCF towards the P-CSCF.

Upon receiving an incoming initial request for which network topology hiding has to be applied and which includes a Record-Route header, the IBCF shall add its own routeable SIP URI to the top of the Record-Route header.

5.10.4.2 Encryption for network topology hiding

Upon receiving an outgoing request/response from the hiding network the IBCF shall perform the encryption for network topology hiding purposes, i.e. the IBCF shall:

1) use the whole header values which were added by one or more specific entity of the hiding network as input to encryption, besides the UE entry;
2) not change the order of the headers subject to encryption when performing encryption;
3) use for one encrypted string all received consecutive header entries subject to encryption, regardless if they appear in separate consecutive headers or if they are consecutive entries in a comma separated list in one header;
4) construct a hostname that is the encrypted string;
5) append a "tokenized-by" parameter and set it to the value of the encrypting network's name, after the constructed hostname;
6) form one valid entry for the specific header out of the resulting NAI, e.g. prepend "SIP/2.0/UDP" for Via headers or "sip:" for Path, Service-Route, Route and Record-Route headers;
7) if the IBCF encrypted an entry in the Route header, then it also inserts its own URI before the topmost encrypted entry; and
8) if the IBCF encrypted an entry in the Via header, then it also inserts its own URI before the topmost encrypted entry.

NOTE 1: Even if consecutive entries of the same network in a specific header are encrypted, they will result in only one encrypted header entry. For example:

```
Via: SIP/2.O/UDP ibcf1.home1.net;lr,
    SIP/2.0/UDP Token( SIP/2.0/UDP scscf1.home1.net;lr,
            SIP/2.0/UDP pcscf1.home1.net;lr);
                                    tokenized-by=home1.net,
    SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd]
```

NOTE 2: If multiple entries of the same network are within the same type of headers, but they are not consecutive, then these entries will be tokenized to different strings. For example:

```
Record-Route: sip:ibcf1.home1.net;lr,
    sip:Token(sip:scscf1.home1.net;lr);tokenized-by=home1.net,
    sip:asl.foreign.net;lr,
    sip:Token(sip:scscf1.home1.net;lr,
        sip:pcscf1.home1.net;lr);tokenized-by=home1.net
```

NOTE 3: If request will return to the hiding network (e.g. after visiting an AS), then the URI of IBCF is inserted. For example:

```
Route: sip:asl.foreign.net;lr,
    sip:ibcf1.homel.net;lr,
    sip:Token(sip:scscf1.home1.net;lr);tokenized-by=home1.net
```


5.10.4.3 Decryption for network topology hiding

Upon receiving and incoming requests/response to the hiding network the IBCF shall perform the decryption for network topology hiding purposes, i.e. the IBCF shall:

1) identify hostnames encrypted by the network this IBCF belongs to within all headers of the incoming message;
2) use those hostnames that carry the identification of the hiding network within the value of the "tokenized-by" parameter as input to decryption;
3) use as encrypted string the hostname which follows the sent-protocol (for Via Headers, e.g. "SIP/2.0/UDP") or the URI scheme (for Route and Record-Route Headers, e.g. "sip:");
4) replace all content of the received header which carries encrypted information with the entries resulting from decryption.

EXAMPLE: An encrypted entry to a Via header that looks like:

$$
\begin{array}{ll}
\text { Via: } & \text { SIP/2.0/UDP Token(SIP/2.0/UDP scscfi.home1.net;lr, } \\
& \text { SIP/2.0/UDP pcscf1.home1.net;lr);tokenized-by=home1.net }
\end{array}
$$

will be replaced with the following entries:
Via: SIP/2.0/UDP scscfi.home1.net;lr, SIP/2.0/UDP pcscfi.home1.net;lr
NOTE: Motivations for these decryption procedures are e.g. to allow the correct routeing of a response through the hiding network, to enable loop avoidance within the hiding network, or to allow the entities of the hiding network to change their entries within e.g. the Record-Route header.

5.10.5 IMS-ALG functionality in the IBCF

The IBCF shall only apply the following procedures if application level gateway functionality is required by the network.

The IBCF acts as a B2BUA when it performs IMS-ALG functionality. As an IMS-ALG, the IBCF will internally map the message headers between the two dialogs that it manages. It is responsible for correlating the dialog identifiers and will decide when to simply translate a message from one dialog to the other, or when to perform other functions. The IBCF, although acting as a UA, does not initiate any registration of its associated addresses. These are assumed to be known by peer-to-peer arrangements within the IM CN subsystem.

When the IBCF receives an initial INVITE request from another SIP network, i.e. the IBCF acts as an entry point, the IBCF shall generate a new initial INVITE request and forward it to the I-CSCF. In case the initial INVITE request is received from own network, i.e. the IBCF acts as an exit point, the IBCF shall generate a new initial INVITE request and forward it to the entry point of the other network.

An IBCF may provide a contact address that is not a GRUU when the contact address in the incoming message that is being replaced is not a GRUU. In all other cases it shall use a GRUU. When using a GRUU, it shall do so in conformance with draft-ietf-sip-gruu [93].

This specification does not define how GRUUs are created by the IBCF; they can be provisioned by the operator or obtained by any other mechanism. The GRUU shall remain valid for the time period in which features addressed to it remain meaningful.

The IBCF shall handle requests addressed to its currently valid GRUUs when received outside of the dialog in which the GRUU was provided.

EXAMPLE: Upon receipt of an INVITE request addressed to a GRUU assigned to a dialog it has active, and containing a Replaces header referencing that dialog, the IBCF will be able to establish the new call replacing the old one.

The internal function of the IBCF as an IMS-ALG is defined in 3GPP TS 29.162 [11A].

5.10.6 Screening of SIP signalling

5.10.6.1 General

The IBCF may act as a B2BUA when it performs screening of SIP signalling functionality. In this case the B2BUA behaviour of the IBCF shall comply with the description given in subclause 5.10 .5 for the IMS-ALG functionality.

NOTE: Many headers are intended for end-to-end operation; removal of such headers will impact the intended end-to-end operation between the end users. Additionally the IM CN subsystem does not preclude security mechanisms covering SIP headers; any such removal can prevent validation of all headers covered by the security mechanism.

5.10.6.2 IBCF procedures for SIP headers

If specified by local policy rules, the IBCF may omit or modify any received SIP headers prior to forwarding SIP messages, with the following exceptions.

As a result of any screening policy adopted, the IBCF should not modify at least the following headers which would cause misoperation of the IM CN subsystem:

- Authorization; and
- WWW-Authenticate.

Where the IBCF appears in the path between the UE and the S-CSCF, some headers are involved in the registration and authentication of the user. As a result of any screening policy adopted as part of normal operation, e.g. where the request or response is forwarded on, the IBCF should not modify as part of the registration procedure at least the following headers:

- Path; and
- Service-Route.

NOTE 1: If the IBCF modifies SIP information elements (SIP headers, SIP message bodies) other than as specified by SIP procedures (e.g., RFC 3261 [26]) caution needs to be taken that SIP functionality (e.g., routeing using Route, Record-Route and Via) is not impacted in a way that could create interoperability problems with networks that assume that this information is not modified.

NOTE 2: Where operator requirements can be achieved by configuration hiding, then these procedures can be used in preference to screening.

The IBCF may add, remove, or modify, the P-Early-Media header within forwarded SIP requests and responses according to procedures in RFC 5009 [109].

NOTE 3: The IBCF can use the header for the gate control procedures, as described in 3GPP TS 29.214 [13D]. In the presence of early media for multiple dialogs due to forking, if the IBCF is able to identify the media associated with a dialog, (i.e., if symmetric RTP is used by the UE and and the IBCF can use the remote SDP information to determine the source of the media) the IBCF can selectively open the gate corresponding to an authorized early media flow for the selected media.

When the IBCF, located in the home network, receives a SIP request from another entity within the same trust domain, the IBCF may police the ICSI value contained in the P-Asserted-Service header field.

5.10.6.3 IBCF procedures for SIP message bodies

If IP address translation (NA(P)T or IP version interworking) occurs on the user plane, the IBCF shall modify SDP according to the annex F and G as appropriate;

Additionally, the IBCF may take the followings action upon SIP message bodies:

1) examine the length of a SIP message body and if required by local policy, take an appropriate action (e.g. forward the message body transparently, reject the request, remove the body);
2) examine the characteristics of the message body (i.e. check the values of any Content-Type, ContentDisposition, and Content-Language headers), take an appropriate action defined by local policy (e.g. forward the body unchanged, remove the body, reject the call); and
3) examine the content of SIP bodies, and take appropriate action defined by local policy (e.g. forward the body unchanged, remove the body, reject the call).

5.11 Procedures at the E-CSCF

5.11.1 General

The PSAP may either be directly connected to the IM CN subsystem or via the PSTN.
The E-CSCF retrieves a PSAP URI, based on the location of the UE. The PSAP URI can be retrieved from an LRF or from local configuration. The PSAP address will either point to a PSAP connected to the IM CN subsystem or to a PSAP connected to the PSTN.

If the E-CSCF fails to select a PSAP based on the received location information contained in an INVITE request, the ECSCF can interrogate an LRF or an external server in order to retrieve location information.

NOTE 1: The protocol used between an E-CSCF and an LRF and between an E-CSCF and an external server is not specified in this version of the specification.

5.11.2 UE originating case

The E-CSCF may either forward the call to a PSAP in the IP network or forward the call to a PSAP in the PSTN. In the latter case the call will pass a BGCF and a MGCF before entering the PSTN.

Upon receipt of an initial request for a dialog, or a standalone transaction, or an unknown method including a RequestURI with an emergency service URN, i.e. a service URN with a top-level service type of "sos" as specified in RFC 5031 [69], or an emergency number the E-CSCF shall:

1) remove its own SIP URI from the topmost Route header;
2) if the PSAP is the next hop, store the value of the icid parameter received in the P-Charging-Vector header and remove the received information in the P -Charging-Vector header, else keep the P -Charging-Vector if the next hop is an exit IBCF or a BGCF;
3) if the PSAP is the next hop remove the P-Charging-Function-Addresses headers, if present, else keep the P-Charging-Function-Addresses headers if the next hop is an exit IBCFor an BGCF;
4) if an IBCF or BGCF is the next hop insert a type 2 orig-ioi parameter into the P-Charging-Vector header. The ECSCF shall set the type 2 orig-ioi parameter to a value that identifies the sending network. The E-CSCF shall not include the term-ioi parameter;
5) get location information as

- geographical location information received as a location object from a message body with the content type application/pidf+xml in accordance with draft-ietf-sip-location-conveyance [89]; and
- location identifier as derived from the P-Access-Network-Info header, if available.

NOTE 1: The E-CSCF can request location information from an LRF. The protocol used to retrieve the location information from the LRF is not specified in this version of the specification.

NOTE 2: As an alternative to retrieve location information from the LRF the E-CSCF can also request location information from an external server. The address to the external server can be received in the Geolocation header as specified in draft-ietf-sip-location-conveyance [89]. The protocol used to retrieve the location information from the external server is not specified in this version of the specification.
6) select, based on location information and optionally type of emergency service:

- a PSAP connected to the IM CN subsystem network and add the PSAP URI to the topmost Route header; or

NOTE 3: The E-CSCF conveys the P-Access-Network-Info header containing the location identifier, if defined for the access type as specified in subclause 7.2 A .4 , to the PSAP.

- a PSAP in the PSTN, add the BGCF URI to the topmost Route header and add a PSAP URI in tel URI format to the Request-URI with an entry used in the PSTN/CS domain to address the PSAP;

NOTE 4: The E-CSCF conveys the P-Access-Network-Info header containing the location identifier, if defined for the access type as specified in subclause 7.2A.4, towards the MGCF. The MGCF can translate the location information if included in INVITE (i.e. both the geographical location information in PIDF-LO and the location identifier in the P-Access-Network-Info header) into ISUP signalling, see 3GPP TS 29.163 [11B].

NOTE 5: The E-CSCF can request location information and routeing information from the LRF. The E-CSCF can for example send the location identifier to LRF and LRF maps the location identifier into the corresponding geographical location information that LRF sends to E-CSCF. The LRF can invoke an RDF to convert the location information into a proper PSAP/EC URI. Both the location information and the PSAP URI are returned to the E-CSCF.

NOTE 6: The way the E-CSCF determines the next hop address when the PSAP address is a tel URI is implementation dependent.
7) if the E-CSCF receives a reference number from the LRF the E-CSCF shall include the reference number in the P-Asserted-Identity header;

NOTE 7: The reference number is used in the communication between the PSAP and LRF.
8) if due to local policy or if the PSAP requires interconnect functionalities (e.g. PSAP address is of an IP address type other than the IP address type used in the IM CN subsystem), put the address of the IBCF to the topmost route header, in order to forward the request to the PSAP via an IBCF in the same network;
9) create a Record-Route header containing its own SIP URI
10) if the request is an INVITE request, save the Contact, Cseq and Record-Route header field values received in the request such that the E-CSCF is able to release the session if needed; and
11)route the request based on SIP routeing procedures.

NOTE 8: Depending on local operator policy, the E-CSCF has the capability to reject requests relating to specific methods in accordance with RFC 3261 [26], as an alternative to the functionality described above.

Upon receipt of an initial request for a dialog, a standalone transaction, or an unknown method, that does not include a Request-URI with an emergency service URN or an emergency number, the E-CSCF shall reject the call by sending a 403 (Forbidden) response.

When the E-CSCF receives the request containing the access-network-charging-info parameter in the P-ChargingVector, the E-CSCF shall store the access-network-charging-info parameter from the P-Charging-Vector header. The ECSCF shall retain access-network-charging-info parameter in the P-Charging-Vector header.

When the E-CSCF receives any request or response (excluding ACK requests and CANCEL requests and responses) related to a UE-originated dialog or standalone transaction, the E-CSCF may insert previously saved values into P-Charging-Vector and P-Charging-Function-Addresses headers before forwarding the message.

When the E-CSCF receives an INVITE request from the UE, the E-CSCF may require the periodic refreshment of the session to avoid hung states in the E-CSCF. If the E-CSCF requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE 9: Requesting the session to be refreshed requires support by at least the UE or the PSAP or MGCF. This functionality cannot automatically be granted, i.e. at least one of the involved UAs needs to support it in order to make it work.

6 Application usage of SDP

6.1 Procedures at the UE

6.1.1 General

The "integration of resource management and SIP" extension is hereafter in this subclause referred to as "the precondition mechanism" and is defined in RFC 3312 [30] as updated by RFC 4032 [64].

In order to authorize the media streams, the P-CSCF and S-CSCF have to be able to inspect the SDP payloads. Hence, the UE shall not encrypt the SDP payloads.

During session establishment procedure, SIP messages shall only contain SDP payload if that is intended to modify the session description, or when the SDP payload must be included in the message because of SIP rules described in RFC 3261 [26].

For "video" and "audio" media types that utilize the RTP/RTCP, the UE shall specify the proposed bandwidth for each media stream utilizing the " $\mathrm{b}=$ " media descriptor and the "AS" bandwidth modifier in the SDP.

If the media line in the SDP indicates the usage of RTP/RTCP, and if the RTCP bandwidth level for the session is different than the default RTCP bandwidth as specified in RFC 3556 [56], then in addition to the "AS" bandwidth modifier in the media-level " $\mathrm{b}=$ " line, the UE shall include two media-level " $\mathrm{b}=$ " lines, one with the "RS" bandwidth modifier and the other with the "RR" bandwidth modifier as described in RFC 3556 [56] to specify the required bandwidth allocation for RTCP.

For other media streams the " $b=$ " media descriptor may be included. The value or absence of the " $b=$ " parameter will affect the assigned QoS which is defined in or 3GPP 29.213 [13C].

NOTE 1: In a two-party session where both participants are active, the RTCP receiver reports are not sent, therefore, the RR bandwidth modifier will typically get the value of zero.

The UE shall include the MIME subtype "telephone-event" in the " $\mathrm{m}=$ " media descriptor in the SDP for audio media flows that support both audio codec and DTMF payloads in RTP packets as described in RFC 2833 [23].

The UE shall inspect the SDP contained in any SIP request or response, looking for possible indications of grouping of media streams according to RFC 3524 [54] and perform the appropriate actions for IP-CAN bearer establishment for media according to IP-CAN specific procedures (see subclause B.2.2.5 for IP-CAN implemented using GPRS).

If resource reservation is needed, the UE shall start reserving its local resources whenever it has sufficient information about the media streams, media authorization and used codecs available.

NOTE 2: Based on this resource reservation can, in certain cases, be initiated immediately after the sending or receiving of the initial SDP offer.

In order to fulfil the QoS requirements of one or more media streams, the UE may re-use previously reserved resources. In this case the local preconditions related to the media stream, for which resources are re-used, shall be indicated as met.

If an IP-CAN bearer is rejected or modified, the UE shall, if the SDP is affected, update the remote SIP entity according to RFC 3261 [26] and RFC 3311 [29].

NOTE 3: The UE can use one IP address for signalling (and specify it in the Contact header) and different IP address(es) for media (and specify it in the " $\mathrm{c}=$ " parameter of the SDP).

If the UE wants to transport media streams with TCP and there are no specific alternative negotiation mechanisms defined for that particular application, then the UE shall support the procedures and the SDP rules specified in RFC 4145 [83].

6.1.2 Handling of SDP at the originating UE

An INVITE request generated by a UE shall contain a SDP offer and at least one media description. The SDP offer shall reflect the calling user's terminal capabilities and user preferences for the session. The UE shall order the SDP offer with the most preferred codec listed first.

If the desired QoS resources for one or more media streams have not been reserved at the UE when constructing the SDP offer, the UE shall:

- indicate the related local preconditions for QoS as not met, using the segmented status type, as defined in RFC 3312 [30] and RFC 4032 [64], as well as the strength-tag value "mandatory" for the local segment and the strength-tag value "optional" for the remote segment, if the UE supports the precondition mechanism (see subclause 5.1.3.1); and,
- set the related media streams to inactive, by including an "a=inactive" line, according to the procedures described in RFC 4566 [39], unless the UE knows that the precondition mechanism is supported by the remote UE.

NOTE 1: When setting the media streams to the inactive mode, the UE can include in the first SDP offer the proper values for the RS and RR modifiers and associate bandwidths to prevent the receiving of the RTCP packets, and not send any RTCP packets.

If the desired QoS resources for one or more media streams are available at the UE when the SDP offer is sent, the UE shall indicate the related local preconditions as met, using the segmented status type, as defined in RFC 3312 [30] and RFC 4032 [64], as well as the strength-tag value "mandatory" for the local segment and the strength-tag value "optional" for the remote segment, if the UE supports the precondition mechanism (see subclause 5.1.3.1).

NOTE 2: If the originating UE does not support the precondition mechanism it will not include any precondition information in SDP.

Upon generating the SDP offer for an INVITE request generated after receiving a 488 (Not Acceptable Here) response, as described in subclause 5.1.3.1, the UE shall include SDP payload containing a subset of the allowed media types, codecs and other parameters from the SDP payload of all 488 (Not Acceptable Here) responses related to the same session establishment attempt (i.e. a set of INVITE requests used for the same session establishment). The UE shall order the codecs in the SDP payload according to the order of the codecs in the SDP payload of the 488 (Not Acceptable Here) response.

NOTE 3: The UE can attempt a session establishment through multiple networks with different policies and potentially can need to send multiple INVITE requests and receive multiple 488 (Not Acceptable Here) responses from different CSCF nodes. The UE therefore takes into account the SDP contents of all the 488 (Not Acceptable Here) responses received related to the same session establishment when building a new INVITE request.

Upon confirming successful local resource reservation, the UE shall create a SDP offer in which:

- the related local preconditions are set to met, using the segmented status type, as defined in RFC 3312 [30] and RFC 4032 [64]; and
- the media streams previously set to inactive mode are set to active (sendrecv, sendonly or recvonly) mode.

Upon receiving an SDP answer, which includes more than one codec for one or more media streams, the UE shall send an SDP offer at the first possible time, selecting only one codec per media stream.

6.1.3 Handling of SDP at the terminating UE

Upon receipt of an initial SDP offer in which no precondition information is available, the terminating UE shall in the SDP answer:

- if, prior to sending the SDP answer the desired QoS resources have been reserved at the terminating UE, set the related media streams the in the SDP answer to:
- active mode, if the offered media streams were not listed as inactive; or
- inactive mode, if the offered media streams were listed as inactive.

If the terminating UE had previously set one or more media streams to inactive mode and the QoS resources for those media streams are now ready, it shall set the media streams to active mode by applying the procedures described in RFC 4566 [39] with respect to setting the direction of media streams.

Upon sending a SDP answer to an SDP offer (which included one or more media lines which was offered with several codecs) the terminating UE shall select exactly one codec per payload and indicate only the selected codec for the related media stream.

NOTE 1: A SDP media line can indicate several different payloads. For example a media line indicating an audio media type can indicate several codecs for the audio stream as well as the MIME subtype "telephoneevent" for DTMF payload.

Upon sending a SDP answer to an SDP offer, with the SDP answer including one or more media streams for which the originating side did indicate its local preconditions as not met, if the precondition mechanism is supported by the terminating UE, the terminating UE shall indicate its local preconditions and request the confirmation for the result of the resource reservation at the originating end point.

NOTE 2: If the terminating UE does not support the precondition mechanism it will ignore any precondition information received from the originating UE.

Upon receiving an initial INVITE request, that includes the SDP offer containing an IP address type (in the "c=" parameter) that is not supported by the UE, it shall respond with the 488 (Not Acceptable Here) response with 301 Warning header indicating "incompatible network address format".

NOTE 3: Upon receiving an initial INVITE request, that includes an SDP offer containing connection addresses (in the " $c=$ " parameter) equal to zero, the UE will select the media streams that is willing to accept for the session, reserve the QoS resources for accepted media streams, and include its valid connection address in the SDP answer.

6.2 Procedures at the P-CSCF

When the P-CSCF receives any SIP request containing an SDP offer, the P-CSCF shall examine the media parameters in the received SDP. If the P-CSCF finds any media parameters which are not allowed on the network by local policy or if available by bandwidth authorisation limitation information coming from the PCRF, the P-CSCF shall return a 488 (Not Acceptable Here) response containing SDP payload. This SDP payload contains either all the media types, codecs and other SDP parameters which are allowed according to the local policy, or, based on configuration by the operator of the P-CSCF, a subset of these allowed parameters. This subset may depend on the content of the received SIP request. The P-CSCF shall build the SDP payload in the 488 (Not Acceptable Here) response in the same manner as a UAS builds the SDP in a 488 (Not Acceptable Here) response as specifed in RFC 3261 [26]. The P-CSCF shall order the SDP payload with the most preferred codec listed first. If the SDP offer is encrypted, the P-CSCF may reject the request.

When the P-CSCF receives a SIP response different from 200 (OK) response containing SDP offer, the P-CSCF shall not examine the media parameters in the received SDP offer, but the P-CSCF shall rather check the succeeding request containing the SDP answer for this offer, and if necessary (i.e. the SDP answer reduced by the UE still breaches local policy, or if available by bandwidth authorisation limitation information coming from the PCRF), the P-CSCF shall return a 488 (Not Acceptable Here) response containing the local policy allowed SDP payload. If the SDP answer is encrypted, the P-CSCF may reject the succeeding request.

When the P-CSCF receives a $200(\mathrm{OK})$ response containing SDP offer, the P-CSCF shall examine the media parameters in the received SDP. If the P-CSCF finds any media parameters which are not allowed on the network by local policy or if available by bandwidth authorisation limitation information coming from the PCRF, the P-CSCF shall forward the SDP offer and on the receipt of the ACK request containing the SDP answer, it shall immediately terminate the session as described in subclause 5.2.8.1.2. If the SDP offer is encrypted, the P-CSCF shall forward the SDP offer and on the receipt of the ACK request containing the SDP answer, it may immediately terminate the session as described in subclause 5.2.8.1.2.

In case a device performing address and/or port number conversions is provided by a $\mathrm{NA}(\mathrm{P}) \mathrm{T}$ or $\mathrm{NA}(\mathrm{P}) \mathrm{T}-\mathrm{PT}$ controlled by the P-CSCF, or by a hosted NAT, the P-CSCF may need to modify the media connection data in SDP bodies according to the procedures described in annex F and/or annex G .

The P-CSCF shall apply and maintain the same policy within the SDP from the initial request or response containing SDP and throughout the complete SIP session.

The P-CSCF may inspect, if present, the " $b=R S$ " and " $b=R R$ " lines in order to find out the bandwidth allocation requirements for RTCP.

6.3 Procedures at the S-CSCF

When the S-CSCF receives any SIP request containing an SDP offer, the S-CSCF shall examine the media parameters in the received SDP. If the S-CSCF finds any media parameters which are not allowed based on local policy or subscription (i.e. the information in the instances of the Core Network Service Authorization class in the service profile, described in 3GPP TS 29.228 [14]), the S-CSCF shall return a 488 (Not Acceptable Here) response containing SDP payload. This SDP payload contains either all the media types, codecs and other SDP parameters which are allowed according to the local policy and users subscription or, based on configuration by the operator of the S-CSCF, a subset of these allowed parameters. This subset may depend on the content of the received SIP request. The S-CSCF shall build the SDP payload in the 488 (Not Acceptable Here) response in the same manner as a UAS builds the SDP in a 488 (Not Acceptable Here) response as specified in RFC 3261 [26]. If the SDP offer is encrypted, the S-CSCF may reject the request.

When the S-CSCF receives a SIP response different from 200 (OK) response containing SDP offer, the S-CSCF shall not examine the media parameters in the received SDP offer, but the S-CSCFshall rather check the succeeding request containing the SDP answer for this offer, and if necessary (i.e. the SDP answer reduced by the UE still breaches local policy), the S-CSCF shall return a 488 (Not Acceptable Here) response containing the local policy allowed SDP payload. If the SDP answer is encrypted, the S-CSCF may reject the succeeding request.

When the S-CSCF receives a $200(\mathrm{OK})$ response containing SDP offer, the S-CSCF shall examine the media parameters in the received SDP. If the S-CSCF finds any media parameters which are not allowed based on local policy or subscription (i.e. the information in the instances of the Core Network Service Authorization class in the service profile, described in 3GPP TS 29.228 [14]), the S-CSCF shall forward the SDP offer and on the receipt of the ACK request containing the SDP answer, it shall immediately terminate the session as described in subclause 5.4.5.1.2. If the SDP offer is encrypted, the S-CSCF shall forward the SDP offer and on the receipt of the ACK request containing the SDP answer, it may immediately terminate the session as described in subclause 5.4.5.1.2.

6.4 Procedures at the MGCF

6.4.1 Calls originating from circuit-switched networks

The usage of SDP by the MGCF is the same as its usage by the UE, as defined in the subclause 6.1 and A.3.2, with the following exception:

- in an initial SDP offer the MGCF shall not use the "inactive" attribute when the local preconditions are met; and
- in an INVITE request generated by a MGCF, the MGCF shall indicate the current status of the local precondition.
 and it shall ignore them when received in the SDP.

When the MGCF generates and sends an INVITE request for a call originating in a circuit-switched network, the MGCF shall:

- populate the SDP with the codecs supported by the associated MGW (see 3GPP TS 26.235 [10] for the supported codecs); and
- in order to support DTMF, populate the SDP with MIME subtype "telephone-event" as described in RFC 2833 [23].

When the MGCF receives 183 (Session Progress) response to an INVITE request, the MGCF shall:

- check that a supported codec has been indicated in the SDP.

6.4.2 Calls terminating in circuit-switched networks

The usage of SDP by the MGCF is the same as its usage by the UE, as defined in the subclause 6.1 and A.3.2, with the following exception:

- When the MGCF sends a 183 (Session Progress) response with SDP payload, it shall only request confirmation for the result of the resource reservation at the originating end point if there are any remaining unfulfilled preconditions.

When sending an SDP, the MGCF shall not include the " $\mathrm{i}=\mathrm{"}$, " $\mathrm{u}=\mathrm{"}$, " $\mathrm{e}=\mathrm{=}$ ", " $\mathrm{p}=\mathrm{"}$, " $\mathrm{r}=\mathrm{"}$, and " $\mathrm{z}=$ " descriptors in the SDP, and it shall ignore them when received in the SDP.

When the MGCF receives an initial INVITE request, the MGCF shall:

- check for a codec that matches the requested SDP, which may include the MIME subtype "telephone-event" as described in RFC 2833 [23].

When the MGCF generates and sends a 183 (Session Progress) response to an initial INVITE request, the MGCF shall:

- set SDP indicating the selected codec, which may include the MIME subtype "telephone-event" as described in RFC 2833 [23].

6.5 Procedures at the MRFC

Void.

6.6 Procedures at the AS

Since an AS may provide a wide range of different services, procedures for the SDP usage for an AS acting as originating UA, terminating UA or third-party call control role are dependent on the service provided to the UA and on the capabilities on the remote UA. There is no special requirements regarding the usage of the SDP, except the requirements for the SDP capabilities described in the following paragraphs and clause A.3:

1) Providing that an INVITE request generated by an AS contains SDP payload, the AS has the capability of reflecting the originating AS's capabilities, desired QoS and precondition requirements for the session in the SDP payload.
2) When the AS sends a 183 (Session Progress) response with SDP payload including one or more " $\mathrm{m}=$ " media types, it has the capability of requesting confirmation for the result of the resource reservation at the originating endpoint.

6.7 Procedures at the IMS-ALG functionality

When the IBCF acts as an IMS-ALG, it makes procedures as for an originating UA and terminating UA. The IMS-ALG acts as a B2BUA. The treatment of the SDP information between originating UA and terminating UA is described in 3GPP TS 29.162 [11A].

7 Extensions within the present document
 7.1 SIP methods defined within the present document
 There are no SIP methods defined within the present document over and above those defined in the referenced IETF specifications.

7.2 SIP headers defined within the present document

7.2.0 General

There are no SIP headers defined within the present document over and above those defined in the referenced IETF specifications.

7.2.1 Void

7.2.2 Void
7.2.3 Void
7.2.4 Void
7.2.5 Void
7.2.6 Void
7.2.7 Void
7.2.8 Void
7.2.9 Void
7.2.10 Void
7.2A Extensions to SIP headers defined within the present document
7.2A.1 Extension to WWW-authenticate header
7.2A.1.1 Introduction

This extension defines a new authentication parameter (auth-param) for the WWW-Authenticate header used in a 401 (Unauthorized) response to the REGISTER request. For more information, see RFC 2617 [21] subclause 3.2.1.
7.2A.1.2 Syntax

The syntax for for auth-param is specified in table 7.4.

Table 7.4: Syntax of auth-param

```
auth-param = 1#( integrity-key / cipher-key )
integrity-key = "ik" EQUAL ik-value
cipher-key = "ck" EQUAL ck-value
ik-value = LDQUOT *(HEXDIG) RDQUOT
ck-value = LDQUOT *(HEXDIG) RDQUOT
```


7.2A.1.3 Operation

This authentication parameter will be used in a 401 (Unauthorized) response in the WWW-authenticate header during UE authentication procedure as specified in subclause 5.4.1.

The S-CSCF appends the integrity-key parameter (directive) to the WWW.-Authenticate header in a 401 (Unauthorized) response. The P-CSCF stores the integrity-key value and removes the integrity-key parameter from the header prior to forwarding the response to the UE.

The S-CSCF appends the cipher-key parameter (directive) to the WWW-Authenticate header in a 401 (Unauthorized) response. The P-CSCF removes the cipher-key parameter from the header prior to forwarding the response to the UE. In the case ciphering is used, the P-CSCF stores the cipher-key value.

7.2A.2 Extension to Authorization header

7.2A.2.1 Introduction

This extension defines a new auth-param for the Authorization header used in REGISTER requests. For more information, see RFC 2617 [21] subclause 3.2.2.

7.2A.2.2 Syntax

The syntax of auth-param for the Authorization header is specified in table 7.5.

> Table 7.5: Syntax of auth-param for Authorization header

```
auth-param = "integrity-protected" EQUAL ("yes" / "no")
```


7.2A.2.3 Operation

This authentication parameter is inserted by the P-CSCF in the Authorization header of all the REGISTER requests received from the UE. The value of the "integrity protected" field in the auth-param parameter is set as specified in subclause 5.2.2. This information is used by S-CSCF to decide whether to challenge the REGISTER request or not, as specified in subclause 5.4.1.

7.2A.3 Tokenized-by parameter definition (various headers)

7.2A.3.1 Introduction

The tokenized-by parameter is an extension parameter appended to encrypted entries in various SIP headers as defined in subclause 5.10.4.

7.2A.3.2 Syntax

The syntax for the tokenized-by parameter is specified in table 7.6:

Table 7.6: Syntax of tokenized-by-param

```
rr-param = tokenized-by-param / generic-paramvia-params = via-ttl / via-maddr / via-
received / via-branch / tokenized-by-param / via-extensiontokenized-by-param =
"tokenized-by" EQUAL hostname
```

The BNF for uri-parameter is taken from IETF RFC 3261 [26] and modified accordingly.

7.2A.3.3 Operation

The tokenized-by parameter is appended by IBCF (THIG) after all encrypted strings within SIP headers when network configuration hiding is active. The value of the parameter is the domain name of the network which encrypts the information.

7.2A. $4 \quad$ P-Access-Network-Info header

7.2A.4.1 Introduction

The P-Access-Network-Info header is extended to include specific information relating to particular access technologies.

7.2A.4.2 Syntax

The syntax of the P-Access-Network-Info header is described in RFC 3455 [52]. There are additional coding rules for this header depending on the type of IP-CAN, according to access technology specific descriptions.

Table 7.6A describes the 3GPP-specific extended syntax of the P-Access-Network-Info header field defined in RFC 3455 [52].

Table 7.6A: Syntax of extended P-Access-Network-Info header

```
P-Access-Network-Info = 'P-Access-Network-Info' HCOLON
access-net-spec *(COMMA access-net-spec)
access-net-spec = access-type [SEMI np] *(SEMI access-info)
access-type = "IEEE-802.11" / "IEEE-802.11a" / "IEEE-802.11b" / "IEEE-802.11g" /
    "3GPP-GERAN" / "3GPP-UTRAN-FDD" / "3GPP-UTRAN-TDD" / "ADSL" / "ADSL2" / 
    "ADSL2+" / "RADSL" / "SDSL" / "HDSL" / "HDSL2" / "G.SHDSL" / "VDSL" /
    "IDSL" / "3GPP2-1X" / "3GPP2-1X-HRPD" / "3GPP2-UMB" / "DOCSIS" / token
np = "network-provided"
access-info = cgi-3gpp / utran-cell-id-3gpp / dsl-location / i-wlan-node-id / ci-3gpp2
    / extension-access-info
extension-access-info
    = gen-value
    = "cgi-3gpp" EQUAL (token / quoted-string)
    = "utran-cell-id-3gpp" EQUAL (token / quoted-string)
    = "i-wlan-node-id" EQUAL (token / quoted-string)
    = "dsl-location" EQUAL (token / quoted-string)
    = "ci-3gpp2" EQUAL (token / quoted-string)
```


7.2A.4.3 Additional coding rules for P-Access-Network-Info header

The UE shall populate the P-Access-Network-Info header, where use is specified in subclause 5.1, with the following contents:

1) the access-type field set to one of "3GPP-GERAN","3GPP-UTRAN-FDD", "3GPP-UTRAN-TDD", "3GPP21X", "3GPP2-1X-HRPD", "3GPP2-UMB", "IEEE-802.11", "IEEE-802.11a", "IEEE-802.11b", "IEEE-802.11g", "ADSL", "ADSL2", "ADSL2+", "RADSL", "SDSL", "HDSL", "HDSL2", "G.SHDSL", "VDSL", "IDSL", or "DOCSIS" as appropriate to the access technology in use.
2) if the access type field is set to "3GPP-GERAN", a cgi-3gpp parameter set to the Cell Global Identity obtained from lower layers of the UE. The Cell Global Identity is a concatenation of MCC, MNC, LAC and CI (as
described in 3GPP TS 23.003 [3]). The value of "cgi-3gpp" parameter is therefore coded as a text string as follows:

Starting with the most significant bit, MCC (3 digits), MNC (2 or 3 digits depending on MCC value), LAC (fixed length code of 16 bits using full hexadecimal representation) and CI (fixed length code of 16 bits using a full hexadecimal representation);
3) if the access type field is equal to "3GPP-UTRAN-FDD", or "3GPP-UTRAN-TDD", a "utran-cell-id-3gpp" parameter set to a concatenation of the MCC, MNC, LAC (as described in 3GPP TS 23.003 [3]) and the UMTS Cell Identity (as described in 3GPP TS 25.331 [9A]), obtained from lower layers of the UE, and is coded as a text string as follows:

Starting with the most significant bit, MCC (3 digits), MNC (2 or 3 digits depending on MCC value), LAC (fixed length code of 16 bits using full hexadecimal representation) and UMTS Cell Identity (fixed length code of 28 bits using a full hexadecimal representation);
4) if the access type field is set to "3GPP2-1X", a ci-3gpp2 parameter set to the ASCII representation of the hexadecimal value of the string obtained by the concatenation of SID (16 bits), NID (16 bits), PZID (8 bits) and BASE_ID (16 bits) (see 3GPP2 C.S0005-D [85]) in the specified order. The length of the ci-3gpp2 parameter shall be 14 hexadecimal characters. The hexadecimal characters (A through F) shall be coded using the uppercase ASCII characters. If the MS does not know the values for any of the above parameters, the MS shall use the value of 0 for that parameter. For example, if the SID is unknown, the MS shall represent the SID as 0x0000;

NOTE 1: The SID value is represented using 16 bits as supposed to 15 bits as specified in 3GPP2 C.S0005-D [85].
EXAMPLE: \quad If SID $=0 \times 1234$, NID $=0 \times 5678$, PZID $=0 x 12$, BASE_ID $=0 \times F F F F$, the ci- 3 gpp 2 value is set to the string "1234567812FFFF".
5) if the access type field is set to "3GPP2-1X-HRPD", a ci-3gpp2 parameter set to the ASCII representation of the hexadecimal value of the string obtained by the concatenation of Sector ID (128 bits) and Subnet length (8 bits) (see 3GPP2 C.S0024-A [86]) in the specified order. The length of the ci-3gpp2 parameter shall be 34 hexadecimal characters. The hexadecimal characters (A through F) shall be coded using the uppercase ASCII characters;

EXAMPLE: If the Sector ID $=0 \times 12341234123412341234123412341234$, Subnet length $=0 x 11$, the ci-3gpp2 value is set to the string " 1234123412341234123412341234123411 ".
6) if the access type field is set to "3GPP2-UMB" 3 GPP2 C.S0084-000 [86A], a ci-3gpp2 parameter is set to the ASCII representation of the hexadecimal value of the Sector ID (128 bits) defined in 3GPP2 C.S0084000 [86A]. The length of the ci-3gpp2 parameter shall be 32 hexadecimal characters. The hexadecimal characters (A through F) shall be coded using the uppercase ASCII characters.

EXAMPLE: If the Sector $\mathrm{ID}=0 \mathrm{x} 12341234123412341234123412341234$, the ci-3gpp2 value is set to the string "12341234123412341234123412341234".
7) if the access-type field set to one of "IEEE-802.11", "IEEE-802.11a", "IEEE-802.11b" or "IEEE-802.11g", an "i-wlan-node-id" parameter is set to the ASCII representation of the hexadecimal value of the AP's MAC address without any delimiting characters.

EXAMPLE: If the AP's MAC address $=00-0 \mathrm{C}-\mathrm{F} 1-12-60-28$, then i-wlan-node-id is set to the string "000cf1126028".
8) if the access-type field is set to one of "ADSL", "ADSL2", "ADSL2+", "RADSL", "SDSL", "HDSL", "HDSL2", "G.SHDSL", "VDSL", "IDSL", the access-info field shall contain a dsl-location parameter obtained from the CLF (see NASS functional architecture); and
9) if the access-type field set to "DOCSIS", the access info parameter is set to a null value. This release of this specification does not define values for use in this parameter.

NOTE 2: The "cgi-3gpp", the "utran-cell-id-3gpp", the "ci-3gpp2", the "i-wlan-node-id", and the "dsl-location" parameters described above among other usage also constitute the location identifiers that are used for IMS emergency services.

If the P-CSCF receives an initial request for a dialog or standalone transaction or an unknown method and:

- the request includes a P-Access-Network-Info header with a "network-provided" parameter the P-CSCF shall remove the P-Access-Network-Info header;
- the request is sent using xDSL as an IP-CAN the P-CSCF may insert a P-Access-Network-Info header into the request by setting the access-type field to one of "ADSL", "ADSL2", "ADSL2+", "RADSL", "SDSL", "HDSL", "HDSL2", "G.SHDSL", "VDSL", or "IDSL", adding the "network-provided" parameter and the "dsl-location" parameter with the value received in the Location-Information header in the User-Data Answer command as specified in ETSI ES 283035 [98]; and

NOTE 3: The way the P-CSCF deduces that the request comes using xDSL access is implementation dependent.

- the request is sent using DOCSIS as an IP-CAN the P-CSCF may insert a P-Access-Network-Info header into the request by setting the access-type field to "DOCSIS" and including the "network-provided" parameter.

NOTE 4: The way the P-CSCF deduces that the request comes using DOCSIS access is implementation dependent.

7.2A.5 P-Charging-Vector header

7.2A.5.1 Introduction

The P-Charging-Vector header field is extended to include specific charging correlation information needed for IM CN subsystem functional entities.

7.2A.5.2 Syntax

7.2A.5.2.1 General

The syntax of the P-Charging-Vector header field is described in RFC 3455 [52]. There may be additional coding rules for this header depending on the type of IP-CAN, according to access technology specific descriptions.

Table 7.6B describes 3GPP-specific extensions to the P-Charging-Vector header field defined in RFC 3455 [52].
Table 7.6B: Syntax of extensions to P-Charging-Vector header

```
access-network-charging-info = (gprs-charging-info / i-wlan-charging-info / xdsl-charging-info /
    packetcable-charging-info / generic-param)
gprs-charging-info = ggsn SEMI auth-token [SEMI pdp-info-hierarchy] *(SEMI extension-param)
ggsn = "ggsn" EQUAL gen-value
pdp-info-hierarchy = "pdp-info" EQUAL LDQUOT pdp-info *(COMMA pdp-info) RDQUOT
pdp-info = pdp-item SEMI pdp-sig SEMI gcid [SEMI flow-id]
pdp-item = "pdp-item" EQUAL DIGIT
pdp-sig = "pdp-sig" EQUAL ("yes" / "no")
gcid = "gcid" EQUAL 1*HEXDIG
auth-token = "auth-token" EQUAL 1*HEXDIG
flow-id = "flow-id" EQUAL "(" "{" 1*DIGIT COMMA 1*DIGIT "}" *(COMMA "{" 1*DIGIT COMMA 1*DIGIT
    "}")")"
extension-param = token [EQUAL token]
i-wlan-charging-info = "pdg"
xdsl-charging-info = bras SEMI auth-token [SEMI xDSL-bearer-info] *(SEMI extension-param)
bras = "bras" EQUAL gen-value
xDSL-bearer-info = "dsl-bearer-info" EQUAL LDQUOT dsl-bearer-info *(COMMA dsl-bearer-info) RDQUOT
dsl-bearer-info = dsl-bearer-item SEMI dsl-bearer-sig SEMI dslcid [SEMI flow-id]
dsl-bearer-item = "dsl-bearer-item" EQUAL DIGIT
dsl-bearer-sig = "dsl-bearer-sig" EQUAL ("Yes" / "no")
dslcid = "dslcid" EQUAL 1*HEXDIG
packetcable-charging-info = packetcable [SEMI bcid]
packetcable = "packetcable-multimedia"
bcid = "bcid" EQUAL 1*48(HEXDIG)
```

The access-network-charging-info parameter is an instance of generic-param from the current charge-params component of P-Charging-Vector header.

The access-network-charging-info parameter includes alternative definitions for different types access networks. The description of these parameters are given in the subsequent subclauses.

The access network charging information is not included in the P-Charging-Vector for SIP signalling that is not associated with a session.

When the access network charging information is included in the P-Charging-Vector and necessary information is not available from the $\mathrm{Gx} / \mathrm{Rx}$ interface reference points then null or zero values are included.

For type 1 and type 3 IOIs, the generating SIP entity shall express the orig-ioi and term-ioi parameters in the format of a quoted string as specified in RFC 3455 [52] with a specific string prefix being "Type 1 " and "Type 3 " respectively to indicate the type of IOI. For the type 2 IOI, no string prefix is used. The receiving SIP entity does not perform syntactic checking of the contents of the IOI parameter (the IOI parameter is passed unmodified to charging entities).

7.2A.5.2.2 GPRS as IP-CAN

GPRS is the initially supported access network (gprs-charging-info parameter). For GPRS there are the following components to track: GGSN address (ggsn parameter), media authorization token (auth token parameter), and a pdpinfo parameter that contains the information for one or more PDP contexts. In this release the media authorization token is set to zero. The pdp-info contains one or more pdp-item values followed by a collection of parameters (pdp-sig, gcid, and flow-id). The value of the pdp-item is a unique number that identifies each of the PDP-related charging information within the P-Charging-Vector header. Each PDP context has an indicator if it is an IM CN subsystem signalling PDP context (pdp-sig parameter), an associated GPRS Charging Identifier (gcid parameter), and a identifier (flow-id parameter). The flow-id parameter contains a sequence of curly bracket delimited flow identifier tuples that identify associated m -lines and relative order of port numbers in an m -line within the SDP from the SIP signalling to which the PDP context charging information applies. For a complete description of the semantics of the flow-id parameter see 3GPP TS 29.214 [13D] Annex B. The gcid, ggsn address and flow-id parameters are transferred from the GGSN to the P-CSCF via the PCRF over the Rx interface (see 3GPP TS 29.214 [13D] and Gx interface (see 3GPP TS 29.212 [13B]).

The gcid value is received in binary format at the P-CSCF (see 3GPP TS 29.214 [13D]). The P-CSCF shall encode it in hexadecimal format before include it into the gcid parameter. On receipt of this header, a node receiving a gcid shall decode from hexadecimal into binary format.

The access network charging information is not included in the P-Charging-Vector for SIP signalling that is not associated with a multimedia session. The access network charging information may be unavailable for sessions that use a general purpose PDP context (for both SIP signalling and media) or that do not require media authorisation.

7.2A.5.2.3 I-WLAN as IP-CAN

The access-network-charging-info parameter is an instance of generic-param from the current charge-params component of P -Charging-Vector header.

This version of the specification defines the use of "pdg" for inclusion in the P-Charging-Vector header. No other extensions are defined for use in I-WLAN in this version of the specification.

7.2A.5.2.4 xDSL as IP-CAN

The access-network-charging-info parameter is an instance of generic-param from the current charge-params component of P-Charging-Vector header. The access-network-charging-info parameter includes alternative definitions for different types of access networks. This subclause defines the components of the xDSL instance of the access-network-charging-info.

For xDSL, there are the following components to track: BRAS address (bras parameter), media authorization token (auth-token parameter), and a set of dsl-bearer-info parameters that contains the information for one or more xDSL bearers.

The dsl-bearer-info contains one or more dsl-bearer-item values followed by a collection of parameters (dsl-bearer-sig, dslcid, and flow-id). The value of the dsl-bearer-item is a unique number that identifies each of the dsl-bearer-related charging information within the P-Charging-Vector header. Each dsl-bearer-info has an indicator if it is an IM CN subsystem signalling dsl-bearer (dsl-bearer-sig parameter), an associated DSL Charging Identifier (dslcid parameter), and a identifier (flow-id parameter). The flow-id parameter contains a sequence of curly bracket delimited flow identifier tuples that identify associated m-lines and relative order of port numbers in an m-line within the SDP from the SIP signalling to which the dsl-bearer charging information applies. For a complete description of the semantics of the flow-id parameter see 3GPP TS 29.214 [13D].

The format of the dslcid parameter is identical to that of ggsn parameter. On receipt of this header, a node receiving a dslcid shall decode from hexadecimal into binary format.

For a dedicated dsl-bearer for SIP signalling, i.e. no media stream requested for a session, then there is no authorisation activity or information exchange over the Rx and Gx interfaces. Since there are no dslcid, media authorization token or flow identifiers in this case, the dslcid and media authorization token are set to zero and no flow identifier parameters are constructed by the PCRF.

7.2A.5.2.5 DOCSIS as IP-CAN

The access-network-charging-info parameter is an instance of generic-param from the current charge-params component of P-Charging-Vector header. The access-network-charging-info parameter includes alternative definitions for different types of access networks. This subclause defines the components of the cable instance of the access-network-charging-info. Cable access is based upon the architecture defined by Data Over Cable Service Interface Specification (DOCSIS).

The billing correlation identifier (bcid) uniquely identifies the PacketCable DOCSIS bearer resources associated with the session within the cable operator's network for the purposes of billing correlation. To facilitate the correlation of session and bearer accounting events, a correlation ID that uniquely identifies the resources associated with a session is needed. This is accomplished through the use of the bcid as generated by the PacketCable Multimedia network. This bcid is returned to the P-CSCF within the response to a successful resource request.

The bcid is specified in RFC 3603 [74A]. This identifier is chosen to be globally unique within the system for a window of several months. Consistent with RFC 3603 [74A], the BCID must be encoded as a hexadecimal string of up to 48 characters. Leading zeroes may be suppressed.

If the bcid value is received in binary format by the P-CSCF from the IP-CAN, the P-CSCF shall encode it in hexadecimal format before including it into the bcid parameter. On receipt of this header, a node using a bcid will normally decode from hexadecimal into binary format.

7.2A.5.3 Operation

The operation of this header is described in subclauses 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.

7.2A.6 Orig parameter definition

7.2A.6.1 Introduction

The "orig" parameter is a uri-parameter intended to:

- tell the S-CSCF that it has to perform the originating services instead of terminating services;
- tell the I-CSCF that it has to perform originating procedures.

7.2A.6.2 Syntax

The syntax for the orig parameter is specified in table 7.7:
Table 7.7: Syntax of orig parameter

```
uri-parameter = transport-param / user-param / method-param / ttl-param / maddr-param / lr-param /
    orig / other-param
orig = "orig"
```

The BNF for uri-parameter is taken from IETF RFC 3261 [26] and modified accordingly.

7.2A.6.3 Operation

The orig parameter is appended to the address of the S-CSCF, I-CSCF or IBCF by the ASs, when those initiate requests on behalf of the user. The S-CSCF will run originating services whenever the orig parameter is present next to its address. The I-CSCF will run originating procedures whenever the orig parameter is present next to its address. The IBCF will preserve the "orig" parameter in the topmost Route header.

7.2A. 7 Extension to Security-Client, Security-Server and Security-Verify headers

7.2A.7.1 Introduction

This extension defines new paramerts for the Security-Client, Security-Server and Security-Verify headers.

7.2A.7.2 Syntax

The syntax for the Security-Client, Security-Server and Security-Verify headers is defined in IETF RFC 3329. The additional syntax is defined in Annex H of 3GPP TS 33.203 [19].

7.2A.7.3 Operation

The operation of the additional parameters for the Security-Client, Security-Server and Security-Verify headers is defined in Annex H of 3GPP TS 33.203 [19].

7.2A.8 IMS Communication Service Identifier (ICSI)

7.2A.8.1 Introduction

The ICSI is defined to fulfil the requirements as stated in 3GPP TS 23.228 [7].

7.2A.8.2 Coding of the ICSI

This parameter is coded as a URN. The ICSI URN may be included as:

- a tag value within the g.3gpp.icsi-ref media feature tag as defined in subclause 7.9.2 and RFC 3840 [62], in which case those characters of the URN that are not part of the tag-value definition in RFC 3840 [62] shall be represented in the escaped encoding as defined in RFC 3986 [124]; or
- as a value of the P-Preferred-Service or P-Asserted-Service header fields as defined draft-drage-sipping-serviceidentification [121].

A list of the URNs containing ICSI values registered by 3GPP can be found at http://www.3gpp.org/tb/Other/URN/URN.htm

An example of an ICSI for a 3GPP defined IMS communication service is:

```
urn:urn-xxx:3gpp-service.ims.icsi.mmtel
```

An example of a g.3gpp.icsi-ref media feature tag containing an ICSI for a 3GPP defined IMS communication service is:

```
g.3gpp.icsi-ref ="urn%3Aurn-xxx%3A3gpp-service.ims.icsi.mmtel"
```

An example of an ICSI for a 3GPP defined IMS communication service in a P-Preferred-Service header field is

```
P-Preferred-Service: urn:urn-xxx:3gpp-service.ims.icsi.mmtel
```

An example of an ICSI for a 3GPP defined IMS communication service in a P-Asserted-Service header field is

```
P-Asserted-Service: urn:urn-xxx:3gpp-service.ims.icsi.mmtel
```

Editor's note: urn-xxx will be allocated a number when it is registered with IANA.

7.2A.9 IMS Application Reference Identifier (IARI)

7.2A.9.1 Introduction

The IARI is defined to fulfil the requirements as stated in 3GPP TS 23.228 [7].

7.2A.9.2 Coding of the IARI

This parameter is coded as a URN. The IARI URN may be included as a tag-value within the g.3gpp.iari-ref media feature tag as defined in subclause 7.9.3 and RFC 3840 [62], in which case those characters of the URN that are not part of the tag-value definition in RFC 3840 [62] shall be represented in the escaped encoding as defined in RFC 3986 [124].

A list of the URNs containing IARI values registered by 3GPP can be found at http://www.3gpp.org/tb/Other/URN/URN.htm

An example of a g.3gpp.iari-ref media feature tag containing an IARI is:
g.3gpp.iari-ref ="urn\%3Aurn-xxx\%3A3gpp-application.ims.iari.mmtel-application-v1"

Editor's note: urn-xxx will be allocated a number when it is registered with IANA.

7.2A.10 Phone-context parameter

7.2A.10.1 Introduction

The "phone-context" parameter indicates that the UE uses local service number in the Request-URI.

7.2A.10.2 Syntax

The syntax of the "phone-context" parameter is described in RFC 3966 [22]. There are additional coding rules for this parameter depending on the type of IP-CAN, according to access technology specific descriptions.

7.2A.10.3 Additional coding rules for phone-context parameter

In case the current IP-CAN is indicated in the phone-context the entities inserting the "phone-context" parameter shall populate the "phone-context" parameter with the following contents:

1) if the IP-CAN is GPRS, then the "phone-context" parameter is a domain name. It is constructed from the MCC, the MNC and the home network domain name by concatenating the MCC, MNC, and the string "gprs" as domain labels before the home network domain name;

EXAMPLE: If MCC $=216, \mathrm{MNC}=01$, then the "phone-context" parameter is set to '216.01.gprs.home1.net'.
2) if the IP-CAN is I-WLAN, then the "phone-context" parameter is a domain name. It is constructed from the SSID, AP's MAC address, and the home network domain name by concatenating the SSID, AP's MAC address, and the string "i-wlan" as domain labels before the home network domain name;

EXAMPLE: If SSID $=$ BU-Airport, AP's MAC $=00-0 \mathrm{C}-\mathrm{F} 1-12-60-28$, and home network domain name is "home1.net", then the "phone-context" parameter is set to the string "bu-airport.000cf1126028.iwlan.home1.net".
3) if the IP-CAN is xDSL, then the "phone-context" parameter is a domain name. It is constructed from the dsllocation (see subclause 7.2A.4) and the home network domain name by concatenating the dsl-location and the string "xdsl" as domain labels before the home network domain name;
4) if the IP-CAN is DOCSIS, then the "phone-context" parameter is based on data configured locally in the UE; and
5) if the access network information is not available in the UE, then the "phone-context" parameter is set to the home network domain name preceded by the string "geo-local".

In case the home domain is indicated in the phone-context, the "phone-context" parameter is set to the home network domain name (as it is used to address the SIP REGISTER request, see subclause 5.1.1.1A).

In case the "phone-context" parameter indicates a network other than the home network or the visited access network, the "phone-context" parameter is set according to RFC 3966 [22].

7.3 Option-tags defined within the present document

There are no option-tags defined within the present document over and above those defined in the referenced IETF specifications.

7.4 Status-codes defined within the present document

There are no status-codes defined within the present document over and above those defined in the referenced IETF specifications.

7.5 Session description types defined within the present document

There are no session description types defined within the present document over and above those defined in the referenced IETF specifications.

7.6 3GPP IM CN subsystem XML body

7.6.1 General

This subclause contains the 3GPP IM CN Subsystem XML body in XML format. The 3GPP IM CN Subsystem XML shall be valid against the 3GPP IM CN Subsystem XML schema defined in table 7.7A.

Any SIP User Agent or proxy may insert or remove the 3GPP IM CN subsystem XML body or parts of it, as required, in any SIP message. The 3GPP IM CN subsystem XML body shall not be forwarded outside a 3GPP network.

The associated MIME type with the 3GPP IMS XML body is "application/3gpp-ims+xml".

7.6.2 Document Type Definition

The XML Schema is defined in table 7.7A.

Table 7.7A: IM CN subsystem XML body, XML Schema

```
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
                attributeFormDefault="unqualified" version="1">
    <xs:complexType name="tIMS3GPP">
        <xs:sequence>
            <xs:choice>
                <xs:element name="alternative-service" type="tAlternativeService"/>
                    <xs:element name="service-info" type="xs:string"/>
            </xs:choice>
            <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="version" type="xs:decimal" use="required"/>
        <xs:anyAttribute/>
    </xs: complexType>
    <xs:complexType name="tAlternativeService">
        <xs:sequence>
            <xs:element name="type" type="tType"/>
            <xs:element name="reason" type="xs:string"/>
            <xs:element name="action" type="tAction" minOccurs="0"/>
            <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:anyAttribute/>
    </xs:complexType>
    <xs:complexType name="tType">
        <xs:sequence>
            <xs:element name="emergency" minOccurs="0" maxOccurs="1">
                <xs:complexType/>
            </xs:element>
            <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:anyAttribute/>
    </xs:complexType>
    <xs:complexType name="tAction">
        <xs:sequence>
            <xs:element name="emergency-registration" minOccurs="0" maxOccurs="1">
                    <xs:complexType/>
            </xs:element>
            <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:anyAttribute/>
    </xs: complexType>
    <xs:element name="ims-3gpp" type="tIMS3GPP"/>
</XS:schema>
```


7.6.3 XML Schema description

This subclause describes the elements of the IMS Document Type Definition as defined in table 7.7A.
<ims-3gpp>: This is the root element of the IMS XML body. It shall always be present. XML instance documents of future versions of the XML Schema in table 7.7A shall be valid against the XML Schema in table 7.7A in this document. XML instance documents of the XML Schema in table 7.7A in the present document shall have a version attribute value, part of the ims-3gpp element, that is equal to the value of the XML Schema version described in the present document.
<service-info>: the transparent element received from the HSS for a particular trigger point are placed within this optional element.
<alternative-service>: in the present document, the alternative service is used as a response for an attempt to establish an emergency session within the IM CN subsystem. The element describes an alternative service where the call should success. The alternative service is described by the type of service information. A possible reason cause why an alternative service is suggested may be included.

The <alternative-service> element contains a <type> element that indicates the type of alternative service and an <action> element, an optional element.

The <type> element contains only the value "emergency" in the present document.
The <action> element contains only the value "emergency-registration" in the present document.

The <reason> element contains an explanatory text with the reason why the session setup has been redirected. A UE may use this information to give an indication to the user.

7.7 SIP timers

The timers defined in RFC 3261 [26] need modification in some cases to accommodate the delays introduced by the air interface processing and transmission delays. Table 7.8 shows recommended values for IM CN subsystem.

Table 7.8 lists in the first column, titled "SIP Timer" the timer names as defined in RFC 3261 [26].
The second column, titled "value to be applied between IM CN subsystem elements" lists the values recommended for network elements e.g. P-CSCF, S-CSCF, MGCF, when communicating with each other i.e. when no air interface leg is included. These values are identical to those recommended by RFC 3261 [26].

The third column, titled "value to be applied at the UE" lists the values recommended for the UE, when in normal operation the UE generates requests or responses containing a P-Access-Network-Info header which included a value of "3GPP-GERAN","3GPP-UTRAN-FDD", "3GPP-UTRAN-TDD", "3GPP2-1X", "3GPP2-1X-HRPD", "3GPP2-UMB", "IEEE-802.11", "IEEE-802.11a", "IEEE-802.11b", or "IEEE-802.11g". These are modified when compared to RFC 3261 [26] to accommodate the air interface delays. In all other cases, the UE should use the values specified in RFC 3261 [26] as indicated in the second column of table 7.8.

The fourth column, titled "value to be applied at the P-CSCF toward a UE" lists the values recommended for the PCSCF when an air interface leg is traversed, and which are used on all SIP transactions on a specific security association where the security association was established using a REGISTER request containing a P-Access-NetworkInfo header which included a value of "3GPP-GERAN","3GPP-UTRAN-FDD", "3GPP-UTRAN-TDD", "3GPP2-1X", "3GPP2-1X-HRPD", "3GPP2-UMB", "IEEE-802.11", "IEEE-802.11a" or "IEEE-802.11b", or "IEEE-802.11g". These are modified when compared to RFC 3261 [26]. In all other cases, the P-CSCF should use the values specified in RFC 3261 [26] as indicated in the second column of table 7.8.

The final column reflects the timer meaning as defined in RFC 3261 [26].
Table 7.8: SIP timers

SIP Timer	Value to be applied between IM CN subsystem elements	Value to be applied at the UE	Value to be applied at the P-CSCF toward a UE	Meaning
T1	500 ms default	2s default	2s default	RTT estimate
T2	4s	16s	16s	The maximum retransmit interval for non-INVITE requests and INVITE responses
T4	5s	17s	17s	Maximum duration a message will remain in the network
Timer A	initially T1	initially T1	initially T1	INVITE request retransmit interval, for UDP only
Timer B	64*T1	64*T1	64*T1	INVITE transaction timeout timer
Timer C	>3 min	$>3 \mathrm{~min}$	$>3 \mathrm{~min}$	proxy INVITE transaction timeout
Timer D	$>32 \mathrm{~s}$ for UDP	$>128 \mathrm{~s}$	$>128 \mathrm{~s}$	Wait time for response retransmits
	Os for TCP/SCTP	Os for TCP/SCTP	Os for TCP/SCTP	
Timer E	initially T1	initially T1	initially T1	non-INVITE request retransmit interval, UDP only
Timer F	64*T1	64*T1	64*T1	non-INVITE transaction timeout timer
Timer G	initially T1	initially T1	initially T1	INVITE response retransmit interval
Timer H	64*T1	64*T1	64*T1	Wait time for ACK receipt.
Timer I	T4 for UDP	T4 for UDP	T4 for UDP	Wait time for ACK retransmits
	Os for TCP/SCTP	Os for TCP/SCTP	Os for TCP/SCTP	
Timer J	64*T1 for UDP	64*T1 for UDP	64*T1 for UDP	Wait time for non-INVITE request retransmits
	Os for TCP/SCTP	Os for TCP/SCTP	0s for TCP/SCTP	
Timer K	T4 for UDP	T4 for UDP	T4 for UDP	Wait time for response retransmits
	Os for TCP/SCTP	Os for TCP/SCTP	Os for TCP/SCTP	

7.8 IM CN subsystem timers

Table 7.9 shows recommended values for timers specific to the IM CN subsystem.
Table 7.9: IM CN subsystem

Timer	$\begin{array}{l}\text { Value to be } \\ \text { applied at the UE }\end{array}$	$\begin{array}{c}\text { Value to be applied at } \\ \text { the P-CSCF }\end{array}$	$\begin{array}{c}\text { Value to be applied at } \\ \text { the S-CSCF }\end{array}$	Meaning		
reg-await- not applicable	not applicable	4 minutes	$\begin{array}{l}\text { The timer is used by the S-CSCF } \\ \text { auth }\end{array}$			
during the authentication						
procedure of the UE. For detailed						
usage of the timer see					$\}$	subclause 5.4.1.2.
:---						
The authentication procedure						
may take in the worst case as						
long as 2 times Timer F. The IM						
CN subsystem value for Timer F						
is 128 seconds.						

NOTE: The UE and the P-CSCF use the value of the reg-await-auth timer to set the SIP level lifetime of the temporary set of security associations.

7.9 Media feature tags defined within the current document

7.9.1 General

This subclause describes the media feature tag definitions that are applicable for the 3GPP IM CN subsystem.

7.9.2 Definition of media feature tag g.3gpp.icsi-ref

Media feature-tag name: g.3gpp.icsi-ref.
ASN. 1 Identifier: New assignment by IANA.
Editor"s note: The media feature-tag name is to be registered with IANA.
Summary of the media feature indicated by this tag: Each value of the Service Reference media feature-tag indicates the software applications supported by the agent. The values for this tag equal the IMS communication Service Identifier (ICSI) values supported by the agent.

The Service Reference media feature tag is defined to fulfil the requirements for forking to an appropriate UE when multiple UEs are registered and dispatch to an appropriate application within the UE based upon the IMS communication Service Identifier (ICSI) values as stated in 3GPP TS 23.228 [7].

Multiple tag-values can be included in the Service Reference media feature-tag .
Values appropriate for use with this feature-tag: Token with an equality relationship.
The feature-tag is intended primarily for use in the following applications, protocols, services, or negotiation mechanisms:

This feature-tag is most useful in a communications application, for describing the capabilities of a device, such as a phone or PDA.

Examples of typical use: Routeing an IMS Communication Session to a device that supports a particular software application or understands a particular service.

Related standards or documents:
3GPP TS 24.229: "IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP), stage 3"

Security Considerations: Security considerations for this media feature-tag are discussed in subclause 11.1 of RFC 3840 [6].

7.9.3 Definition of media feature tag g.3gpp.iari-ref

Media feature-tag name: g.3gpp.iari-ref.
ASN. 1 Identifier: New assignment by IANA.
Editor"s note: The media feature-tag name is to be registered with IANA.
Summary of the media feature indicated by this tag: Each value of the Application Reference media feature-tag indicates the software applications supported by the agent. The values for this tag equal IMS Application Reference Identifier (IARI) values supported by the agent

The Application Reference media feature tag is defined to fulfil the requirements for forking to an appropriate UE when multiple UEs are registered and dispatch to an appropriate application within the UE based upon and IMS Application Reference Identifier (IARI) values as stated in 3GPP TS 23.228 [7].

Multiple tag-values can be included in the Application Reference media feature-tag.
Values appropriate for use with this feature-tag: Token with an equality relationship.
The feature-tag is intended primarily for use in the following applications, protocols, services, or negotiation mechanisms:

This feature-tag is most useful in a communications application, for describing the capabilities of a device, such as a phone or PDA.

Examples of typical use: Routeing an IMS Application Session to a device that supports a particular software application or understands a particular application.

Related standards or documents:
3GPP TS 24.229: "IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP), stage 3"

Security Considerations: Security considerations for this media feature-tag are discussed in subclause 11.1 of RFC 3840 [6].

8 SIP compression

8.1 SIP compression procedures at the UE

8.1.1 SIP compression

If in normal operation the UE generates requests or responses containing a P-Access-Network-Info header which included a value of "3GPP-GERAN","3GPP-UTRAN-FDD", "3GPP-UTRAN-TDD", "3GPP2-1X", "3GPP2-1XHRPD", "3GPP2-UMB", "IEEE-802.11", "IEEE-802.11a", "IEEE-802.11b" or "IEEE-802.11g", then the UE shall support:

- SigComp as specified in RFC 3320 [32] and as updated by RFC 4896 [118]; and
- the additional requirements specified in RFC 5049 [79], with the exception that the State Memory Size of at least 4096 bytes shall be a minimum value.

If in normal operation the UE generates requests or responses containing a P-Access-Network-Info header which included a value of "3GPP-GERAN","3GPP-UTRAN-FDD", "3GPP-UTRAN-TDD", "3GPP2-1X", "3GPP2-1XHRPD", "3GPP2-UMB", "IEEE-802.11", "IEEE-802.11a", "IEEE-802.11b" or "IEEE-802.11g", then the UE may support:

- the negative acknowledgement mechanism specified in RFC 4077 [65A].

When using SigComp the UE shall send compressed SIP messages in accordance with RFC 3486 [55]. When the UE will create the compartment is implementation specific, but the compartment shall not be created until a set of security associations are set up. The compartment shall finish when the UE is deregistered. State creations and announcements shall be allowed only for messages received in a security association.

NOTE: Exchange of bytecodes during registration will prevent unnecessary delays during session setup.
If the UE supports SigComp, then the UE shall support:

- the SIP dictionary specified in RFC 3485 [42] and as updated by RFC 4896 [118]. If compression is enabled, the UE shall use the dictionary to compress the first message.

If the UE supports SigComp, then the UE may support:

- if the UE supports the presence user agent or watcher roles as specified in table $\mathrm{A} .3 \mathrm{~A} / 2$ and table $\mathrm{A} .3 \mathrm{~A} / 4$, the presence specific dictionary specified in RFC 5112 [119].

8.1.2 Compression of SIP requests and responses transmitted to the P CSCF

If in normal operation the UE generates requests or responses containing a P-Access-Network-Info header which included a value of "3GPP-GERAN","3GPP-UTRAN-FDD", "3GPP-UTRAN-TDD", "3GPP2-1X", "3GPP2-1XHRPD", "3GPP2-UMB", "IEEE-802.11", "IEEE-802.11a", "IEEE-802.11b" or IEEE-802.11g", then the UE should compress the requests and responses transmitted to the P-CSCF according to subclause 8.1.1. In other cases where SigComp is supported, it need not.

NOTE 1: Compression of SIP messages is an implementation option. However, compression is strongly recommended.

NOTE 2: In an IP-CAN where compression support is mandatory, the UE may send even the first message compressed. Sigcomp provides mechanisms to allow the UE to know if state has been created in the PCSCF or not.

8.1.3 Decompression of SIP requests and responses received from the P CSCF

If the UE supports SigComp, then theUE shall decompress the compressed requests and responses received from the P CSCF according to subclause 8.1.1.

If the UE detects a decompression failure at the P-CSCF, the recovery mechanism is implementation specific.

8.2 SIP compression procedures at the P-CSCF

8.2.1 SIP compression

The P-CSCF shall support:

- SigComp as specified in RFC 3320 [32] and as updated by RFC 4896 [118]; and
- the additional requirements specified in RFC 5049 [79], with the exception that the State Memory Size of at least 4096 bytes shall be a minimum value.

The P-CSCF may support:

- the negative acknowledgement mechanism specified in RFC 4077 [65A].

When using SigComp the P-CSCF shall send compressed SIP messages in accordance with RFC 3486 [55]. When the P-CSCF will create the compartment is implementation specific, but the compartment shall not be created until a set of security associations are set up. The compartment shall finish when the UE is deregistered. State creations and announcements shall be allowed only for messages received in a security association.

The P-CSCF shall support:

- the SIP dictionary specified in RFC 3485 [42] and as updated by RFC 4896 [118]. If compression is enabled, the P-CSCF shall use the dictionary to compress the first message.

The P-CSCF may support:

- the presence specific dictionary specified in RFC 5112 [119].

NOTE: Exchange of bytecodes during registration will prevent unnecessary delays during session setup.

8.2.2 Compression of SIP requests and responses transmitted to the UE

The P-CSCF should compress the requests and responses transmitted to the UE according to subclause 8.2.1.
For all SIP transactions on a specific security association where the security association was established using a REGISTER request containing a P-Access-Network-Info header which included a value of "3GPP-GERAN","3GPP-UTRAN-FDD", "3GPP-UTRAN-TDD", "3GPP2-1X", "3GPP2-1X-HRPD", "3GPP2-UMB", "IEEE-802.11", "IEEE802.11 a ", "IEEE-802.11b" or "IEEE-802.11g" then the P-CSCF should compress the requests and responses transmitted to the UE according to subclause 8.2.1. In other cases where SigComp is supported, it need not.

NOTE: Compression of SIP messages is an implementation option. However, compression is strongly recommended.

8.2.3 Decompression of SIP requests and responses received from the UE

The P-CSCF shall decompress the compressed requests and responses received from the UE according to subclause 8.2.1.

If the P-CSCF detects a decompression failure at the UE, the recovery mechanism is implementation specific.

$9 \quad$ IP-Connectivity Access Network aspects when connected to the IM CN subsystem

9.1 Introduction

A UE accessing the IM CN subsystem and the IM CN subsystem itself utilises the services supported by the IP-CAN to provide packet-mode communication between the UE and the IM CN subsystem. General requirements for the UE on the use of these packet-mode services are specified in this clause.

Possible aspects particular to each IP-CAN is described separately for each IP-CAN.

9.2 Procedures at the UE

9.2.1 Connecting to the IP-CAN and P-CSCF discovery

Prior to communication with the IM CN subsystem, the UE shall:
a) establish a connection with the IP-CAN;
b) obtain an IP address using either the standard IETF protocols (e.g., DHCP or IPCP) or a protocol that is particular to the IP-CAN technology that the UE is utilising. The obtained IP address shall be fixed throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the last deregistration; and
c) acquire a P-CSCF address(es).

The UE may acquire an IP address via means other than the DHCP. In this case, upon acquiring an IP address, the UE shall request the configuration information (that includes the DNS and P-CSCF addresses) from the DHCP server through a single request and reply exchanged with the DHCP server.

The methods for acquiring a P-CSCF address(es) are:
I. Employ Dynamic Host Configuration Protocol for IPv4 RFC 2131 [40A] or_for IPv6 (DHCPv6) RFC 3315 [40], the DHCP options for SIP servers RFC 3319 [41] and the DHCP options for Domain Name Servers (DNS) RFC 3646 [56C] in case of IPv6 and RFC 3361 [35A] in case of IPv4).

The UE shall either:

- in the DHCP query, request a list of SIP server domain names of P-CSCF(s) and the list of Domain Name Servers (DNS); or
- request a list of SIP server IP addresses of P-CSCF(s).
II. Obtain the P-CSCF address(es) by employing a procedure that the IP-CAN technology supports. (e.g. GPRS).

When acquiring a P-CSCF address(es) the UE can freely select either method I or II.
The UE may also request a DNS Server IP address(es) as specified in RFC 3315 [40] and RFC 3646 [56C] or RFC 2131 [40A].

9.2.2 Handling of the IP-CAN

The means to ensure that appropriate resources are available for the media flow(s) on the IP-CAN(s) related to a SIP session is dependant on the characteristics for each IP-CAN, and is described separately for each IP-CAN in question.

GPRS is described in annex B. I-WLAN is described in annex D. xDSL is described in annex E. DOCSIS is described in Annex H. If a particular handling of the IP-CAN is needed for emergency calls, this is described in the annex for each access technology.

9.2.3 Special requirements applying to forked responses

Since the UE does not know that forking has occurred until a second provisional response arrives, the UE will request the radio/bearer resources as required by the first provisional response. For each subsequent provisional response that may be received, different alternative actions may be performed depending on the requirements in the SDP answer:

- the UE has sufficient radio/bearer resources to handle the media specified in the SDP of the subsequent provisional response, or
- the UE must request additional radio/bearer resources to accommodate the media specified in the SDP of the subsequent provisional response.

NOTE 1: When several forked responses are received, the resources requested by the UE is the "logical OR" of the resources indicated in the multiple responses to avoid allocation of unnecessary resources. The UE does not request more resources than proposed in the original INVITE request.

NOTE 2: When service-based local policy is applied, the UE receives the same authorization token for all forked requests/responses related to the same SIP session.

When the first final $200(\mathrm{OK})$ response for the INVITE request is received for one of the early dialogues, the UE proceeds to set up the SIP session using the radio/bearer resources required for this session. Upon the reception of the first final $200(\mathrm{OK})$ response for the INVITE request, the UE shall release all unneeded radio/bearer resources.

Annex A (normative): Profiles of IETF RFCs for 3GPP usage

A. 1 Profiles

A.1.1 Relationship to other specifications

This annex contains a profile to the IETF specifications which are referenced by this specification, and the PICS proformas underlying profiles do not add requirements to the specifications they are proformas for.

This annex provides a profile specification according to both the current IETF specifications for SIP, SDP and other protocols (as indicated by the "RFC status" column in the tables in this annex) which are referenced by this specification and to the 3GPP specifications using SIP (as indicated by the "Profile status" column in the tables in this annex.

In the "RFC status" column the contents of the referenced specification takes precedence over the contents of the entry in the column.

In the "Profile status" column, there are a number of differences from the "RFC status" column. Where these differences occur, these differences take precedence over any requirements of the IETF specifications. Where specification concerning these requirements exists in the main body of the present document, the main body of the present document takes precedence.

Where differences occur in the "Profile status" column, the "Profile status" normally gives more strength to a "RFC status" and is not in contradiction with the "RFC status", e.g. it may change an optional "RFC status" to a mandatory "Profile status". If the "Profile status" weakens the strength of a "RFC status" then additionally this will be indicated by further textual description in the present document.

For all IETF specifications that are not referenced by this document or that are not mentioned within the 3GPP profile of SIP and SDP, the generic rules as defined by RFC 3261 [26] and in addition the rules in clauses 5 and 6 of this specification apply, e.g.:

- a proxy which is built in accordance to this specification passes on any unknown method, unknown header field or unknown header parameter after applying procedures such as filtering, insertion of P-Asserted-Identity header, etc.;
- an UA which is built in accordance to this specification will
- handle received unknown methods in accordance to the procedures defined in RFC 3261 [26], e.g. respond with a 501 (Not Implemented) response; and
- handle unknown header fields and unknown header parameters in accordance to the procedures defined in RFC 3261 [26], e.g. respond with a 420 (Bad Extension) if an extension identified by an option tag in the Require header of the received request is not supported by the UA.

A.1.2 Introduction to methodology within this profile

This subclause does not reflect dynamic conformance requirements but static ones. In particular, a condition for support of a PDU parameter does not reflect requirements about the syntax of the PDU (i.e. the presence of a parameter) but the capability of the implementation to support the parameter.

In the sending direction, the support of a parameter means that the implementation is able to send this parameter (but it does not mean that the implementation always sends it).

In the receiving direction, it means that the implementation supports the whole semantic of the parameter that is described in the main part of this specification.

As a consequence, PDU parameter tables in this subclause are not the same as the tables describing the syntax of a PDU in the reference specification, e.g. RFC 3261 [26] tables 2 and 3. It is not rare to see a parameter which is optional in the syntax but mandatory in subclause below.

The various statii used in this subclause are in accordance with the rules in table A.1.
Table A.1: Key to status codes

Status code	Status name	Meaning
m	mandatory	the capability shall be supported. It is a static view of the fact that the conformance requirements related to the capability in the reference specification are mandatory requirements. This does not mean that a given behaviour shall always be observed (this would be a dynamic view), but that it shall be observed when the implementation is placed in conditions where the conformance requirements from the reference specification compel it to do so. For instance, if the support for a parameter in a sent PDU is mandatory, it does not mean that it shall always be present, but that it shall be present according to the description of the behaviour in the reference specification (dynamic conformance requirement).
o	optional	the capability may or may not be supported. It is an implementation choice.
n / a	it is impossible to use the capability. No answer in the support column is required.	
c cinteger>	prohibited (excluded)	It is not allowed to use the capability. This is more common for a profile.
o.<integer>	qualified optional	the requirement on the capability ("m", "o", "n/a" or "x") depends on the support of other optional or conditional items. <integer> is the identifier of the conditional expression.
i	for mutually exclusive or selectable options from a set. <integer> is the identifier of the group of options, and the logic of selection of the options.	

In the context of this specification the " i " status code mandates that the implementation does not change the content of the parameter. It is an implementation option if the implementation acts upon the content of the parameter (e.g. by setting filter criteria to known or unknown parts of parameters in order to find out the route a message has to take).

It must be understood, that this 3GPP SIP profile does not list all parameters which an implementation will treat as indicated by the status code "irrelevant". In general an implementation will pass on all unknown messages, header fields and header parameters, as long as it can perform its normal behaviour.

The following additional comments apply to the interpretation of the tables in this Annex.
NOTE 1: The tables are constructed according to the conventional rules for ICS proformas and profile tables.
NOTE 2: The notation (either directly or as part of a conditional) of " m " for the sending of a parameter and " i " for the receipt of the same parameter, may be taken as indicating that the parameter is passed on transparently, i.e. without modification. Where a conditional applies, this behaviour only applies when the conditional is met.

A.1.3 Roles

Table A.2: Roles

Item	Roles	Reference	RFC status	Profile status
1	User agent	$[26]$	0.1	0.1
2	Proxy	$[26]$	0.1	0.1
0.1:	It is mandatory to support exactly one of these items.			
NOTE:For the purposes of the present document it has been chosen to keep the specification simple by the tables specifying only one role at a time. This does not preclude implementations providing two roles, but an entirely separate assessment of the tables shall be made for each role.				

Table A.3: Roles specific to this profile

Item	Roles	Reference	RFC status	Profile status
1	UE	5.1	n/a	0.1
2	P-CSCF	5.2	n/a	0.1
3	I-CSCF	5.3	n/a	0.1
3A	void			
4	S-CSCF	5.4	n/a	0.1
5	BGCF	5.6	n/a	0.1
6	MGCF	5.5	n/a	0.1
7	AS	5.7	n/a	0.1
7A	AS acting as terminating UA, or redirect server	5.7.2	n/a	c2
7B	AS acting as originating UA	5.7.3	n/a	c2
7C	AS acting as a SIP proxy	5.7.4	n/a	c2
7D	AS performing 3rd party call control	5.7.5	n / a	c2
8	MRFC	5.8	n/a	0.1
9	IBCF	5.10	n/a	0.1
9A	IBCF (THIG)	5.10 .4	n/a	c4
9B	IBCF (IMS-ALG)	5.10 .5	n/a	c4
9C	IBCF (Screening of SIP signalling)	5.10.6	n/a	c4
10	Additional routeing functionality	Annex I	n/a	c3
11	E-CSCF	5.11	n / a	0.1
$\begin{aligned} & \text { c2: } \\ & \text { c3: } \end{aligned}$	IF A.3/7 THEN o. 2 ELSE n/a - AS. IF A.3/3 OR A.3/4 OR A.3/5 OR A.3/6 OR A.3/9 THEN o ELSE 0.1 - - I-CSCF, S-CSCF, BGCF, MGCF, IBCF.			
c4:	IF A.3/9 THEN o. 3 ELSE n/a - IBCF.			
0.1:	It is mandatory to support exactly one of these items.			
0.2:	It is mandatory to support at least one of these items.			
0.3:				
NOTE:	For the purposes of the present document it has been chosen to keep the specification simple by the tables specifying only one role at a time. This does not preclude implementations providing two roles, but an entirely separate assessment of the tables shall be made for each role.			

Table A.3A: Roles specific to additional capabilities

Item	Roles	Reference	RFC status	Profile status
1	Presence server	$\begin{aligned} & \text { 3GPP TS } 24.141 \\ & {[8 \mathrm{~A}]} \end{aligned}$	n/a	c1
2	Presence user agent	$\begin{aligned} & \text { 3GPP TS } 24.141 \\ & {[8 \mathrm{~A}]} \end{aligned}$	n/a	c2
3	Resource list server	$\begin{aligned} & \text { 3GPP TS } 24.141 \\ & \text { [8A] } \end{aligned}$	n/a	c3
4	Watcher	$\begin{aligned} & \text { 3GPP TS } 24.141 \\ & \text { [8A] } \end{aligned}$	n/a	c4
11	Conference focus	$\begin{aligned} & \text { 3GPP TS } 24.147 \\ & \text { [8B] } \end{aligned}$	n/a	c5
12	Conference participant	3GPP TS 24.147 [8B]	n/a	c6
21	CSI user agent	3GPP TS 24.279 [8E]	n/a	c7
22	CSI application server	$\begin{aligned} & \text { 3GPP TS } 24.279 \\ & \text { [8E] } \end{aligned}$	n/a	c8
31	Messaging application server	$\begin{aligned} & \text { 3GPP TS } 24.247 \\ & \text { [8F] } \end{aligned}$	n/a	c5
32	Messaging list server	$\begin{aligned} & \text { 3GPP TS } 24.247 \\ & \text { [8F] } \end{aligned}$	n/a	c5
33	Messaging participant	3GPP TS 24.247 [8F]	n/a	c2
50	Multimedia telephony service participant	$\begin{aligned} & \text { 3GPP TS } 24.173 \\ & \text { [8H] } \end{aligned}$	n/a	c2
50A	Multimedia telephony service application server	$\begin{aligned} & \text { 3GPP TS } 24.173 \\ & {[8 \mathrm{H}]} \end{aligned}$	n/a	c9
61	SM-over-IP sender	3GPP TS 24.341 [8L]	n/a	c2
62	SM-over-IP receiver	3GPP TS 24.341 [8L]	n/a	c2
63	IP-SM-GW	$\begin{aligned} & \text { 3GPP TS } 24.341 \\ & \text { [8L] } \end{aligned}$	n/a	c1
c1:	IF A.3/7A AND A.3/7B THEN o ELSE n/a - - AS acting as terminating UA, or redirect server and AS acting as originating UA.			
c2:	IF A.3/1 THEN o ELSE n/a - - UE.			
c3:	IF A.3/7A THEN o ELSE n/a - AS acting as terminating UA, or redirect server.			
c4:	IF A.3/1 OR A.3/7B THEN o ELSE n/a - UE or AS acting as originating UA.			
c5:	IF A.3/7D AND A.3/4 AND A.3/8 THEN o ELSE n/a - - AS performing 3rd party call control and S-CSCF and MRFC (note 2).			
c6:	IF A.3/1 OR A.3A/11 THEN o ELSE n/a - - UE or conference focus.			
c7:	IF A.3/1 THEN o ELSE n/a - UE.			
c8:	IF A.3/7D THEN o ELSE n/a - CSI AS performing 3rd party call control.			
c9:	IF A.3/7A OR A.3/7B OR A.3/7C OR A.3/7D THEN o ELSE n/a - - AS acting as terminating UA, or redirect server, AS acting as originating UA, AS acting as a SIP proxy, AS performing 3rd party call control.			
	specifying only one role at a time. This does not preclude implementations providing two roles, but an entirely separate assessment of the tables shall be made for each role.			
NOTE 2:	The functional split between the MRFC and the conferencing AS is out of scope of this document and they are assumed to be collocated			

Table A.3B: Roles with respect to access technology

Item	Value used in P-Access-Network-Info header	Reference	RFC status	Profile status
1	3GPP-GERAN	[52] 4.4	0	c1
2	3GPP-UTRAN-FDD	[52] 4.4	0	c1
3	3GPP-UTRAN-TDD	[52] 4.4	0	c1
4	3GPP2-1X	[52] 4.4	0	c1
5	3GPP2-1X-HRPD	[52] 4.4	0	c1
6	3GPP2-UMB	[52] 4.4	0	c1
11	IEEE-802.11	[52] 4.4	0	c1
12	IEEE-802.11a	[52] 4.4	0	c1
13	IEEE-802.11b	[52] 4.4	0	c1
14	IEEE-802.11g	[52] 4.4	0	c1
21	ADSL	[52] 4.4	0	c1
22	ADSL2	[52] 4.4	0	c1
23	ADSL2+	[52] 4.4	0	c1
24	RADSL	[52] 4.4	0	c1
25	SDSL	[52] 4.4	0	c1
26	HDSL	[52] 4.4	0	c1
27	HDSL2	[52] 4.4	0	c1
28	G.SHDSL	[52] 4.4	0	c1
29	VDSL	[52] 4.4	0	c1
30	IDSL	[52] 4.4	0	c1
41	DOCSIS	[52] 4.4	0	c1
$\begin{aligned} & \mathrm{c} 1: \\ & \mathrm{o.1:} \end{aligned}$	If A.3/1 OR A.3/2 THEN o. 1 ELSE n/a. It is mandatory to support at least one of these items.			

A. 2 Profile definition for the Session Initiation Protocol as used in the present document

A.2.1 User agent role

A.2.1.1 Introduction

This subclause contains the ICS proforma tables related to the user role. They need to be completed only for UA implementations:

Prerequisite: A.2/1-- user agent role.

A.2.1.2 Major capabilities

Table A.4: Major capabilities

Item	Does the implementation support	Reference	RFC status	Profile status
	Capabilities within main protocol			
1	client behaviour for registration?	[26] subclause 10.2	0	c3
2	registrar?	[26] subclause 10.3	0	c4
2A	registration of multiple contacts for a single address of record	[26] 10.2.1.2, 16.6	0	-
2B	initiating a session?	[26] subclause 13	0	0
2C	initiating a session which require local and/or remote resource reservation?	[27]	0	c43
3	client behaviour for INVITE requests?	[26] subclause 13.2	c18	c18
4	server behaviour for INVITE requests?	[26] subclause 13.3	c18	c18
5	session release?	[26] subclause 15.1	c18	c18
6	timestamping of requests?	[26] subclause 8.2.6.1	0	0
7	authentication between UA and UA?	[26] subclause 22.2	c34	c34
8	authentication between UA and registrar?	[26] subclause 22.2	0	n/a
8A	authentication between UA and proxy?	[26] 20.28, 22.3	0	0
9	server handling of merged requests due to forking?	[26] 8.2.2.2	m	m
10	client handling of multiple responses due to forking?	[26] 13.2.2.4	m	m
11	insertion of date in requests and responses?	[26] subclause 20.17	0	0
12	downloading of alerting information?	[26] subclause 20.4	0	0
	Extensions			
13	the SIP INFO method?	[25]	0	n/a
14	reliability of provisional responses in SIP?	[27]	c19	c44
15	the REFER method?	[36]	0	c33
16	integration of resource management and SIP?	[30] [64]	c19	c44
17	the SIP UPDATE method?	[29]	c5	c44
19	SIP extensions for media authorization?	[31]	0	c14
20	SIP specific event notification?	[28]	0	c13
21	the use of NOTIFY to establish a dialog?	[28] 4.2	0	n/a
22	acting as the notifier of event information?	[28]	c2	c15
23	acting as the subscriber to event information?	[28]	c2	c16
24	session initiation protocol extension header field for registering non-adjacent contacts?	[35]	0	c6
25	private extensions to the Session Initiation Protocol (SIP) for network asserted identity within trusted networks?	[34]	o	m
26	a privacy mechanism for the Session Initiation Protocol (SIP)?	[33]	0	m
26A	request of privacy by the inclusion of a Privacy header indicating any privacy option?	[33]	c9	c11
26B	application of privacy based on the received Privacy header?	[33]	c9	n/a
26C	passing on of the Privacy header transparently?	[33]	c9	c12
26D	application of the privacy option "header" such that those headers which cannot be completely expunged of identifying information without the assistance of intermediaries are obscured?	[33] 5.1	c10	c27

26E	application of the privacy option "session" such that anonymization for the session(s) initiated by this message occurs?	[33] 5.2	c10	c27
26F	application of the privacy option "user" such that user level privacy functions are provided by the network?	[33] 5.3	c10	c27
26G	application of the privacy option "id" such that privacy of the network asserted identity is provided by the network?	[34] 7	c10	n/a
26H	application of the privacy option "history" such that privacy of the History-Info header is provided by the network?	[66] 7.2	c37	c37
27	a messaging mechanism for the Session Initiation Protocol (SIP)?	[50]	0	c7
28	session initiation protocol extension header field for service route discovery during registration?	[38]	0	c17
29	compressing the session initiation protocol?	[55]	0	c8
30	private header extensions to the session initiation protocol for the 3rdGeneration Partnership Project (3GPP)?	[52]	o	m
31	the P-Associated-URI header extension?	[52] 4.1	c21	c22
32	the P-Called-Party-ID header extension?	[52] 4.2	c21	c23
33	the P-Visited-Network-ID header extension?	[52] 4.3	c21	c24
34	the P-Access-Network-Info header extension?	[52] 4.4	c21	c25
35	the P-Charging-Function-Addresses header extension?	[52] 4.5	c21	c26
36	the P-Charging-Vector header extension?	[52] 4.6	c21	c26
37	security mechanism agreement for the session initiation protocol?	[48]	0	c20
38	the Reason header field for the session initiation protocol?	[34A]	0	0
38A	use of the Reason header field in Session Initiation Protocol (SIP) responses?	[130]	0	C82
39	an extension to the session initiation protocol for symmetric response routeing?	[56A]	0	c62
40	caller preferences for the session initiation protocol?	[56B]	C29	c29
40A	the proxy-directive within callerpreferences?	[56B] 9.1	0.5	0.5
40B	the cancel-directive within callerpreferences?	[56B] 9.1	0.5	0.5
40C	the fork-directive within callerpreferences?	[56B] 9.1	0.5	c28
40D	the recurse-directive within callerpreferences?	[56B] 9.1	0.5	0.5
40E	the parallel-directive within callerpreferences?	[56B] 9.1	0.5	c28
40F	the queue-directive within callerpreferences?	[56B] 9.1	0.5	0.5
41	an event state publication extension to the session initiation protocol?	[70]	o	c30
42	SIP session timer?	[58]	C19	c19
43	the SIP Referred-By mechanism?	[59]	0	c33
44	the Session Inititation Protocol (SIP)	[60]	c19	c38 (note 1)

	"Replaces" header?			
45	the Session Inititation Protocol (SIP) "Join" header?	[61]	c19	c19 (note 1)
46	the callee capabilities?	[62]	0	c35
47	an extension to the session initiation protocol for request history information?	[66]	0	0
48	Rejecting anonymous requests in the session initiation protocol?	[67]	0	0
49	session initiation protocol URIs for applications such as voicemail and interactive voice response	[68]	0	0
50	Session Initiation Protocol's (SIP) nonINVITE transactions?	[84]	m	m
51	the P-User-Database private header extension?	[82] 4	0	0
52	a uniform resource name for services	[69]	n/a	c39
53	obtaining and using GRUUs in the Session Initiation Protocol (SIP)	[93]	0	c40 (note 2)
54	an extension to the session initiation protocol for request cpc information?	[95]	0	c41
55	the Stream Control Transmission Protocol (SCTP) as a Transport for the Session Initiation Protocol (SIP)?	[96]	0	c42
56	the SIP P-Profle-Key private header extension?	[97]	n/a	n/a
57	managing client initiated connections in SIP?	[92]	0	c45
58	indicating support for interactive connectivity establishment in SIP?	[102]	0	c46
59	multiple-recipient MESSAGE requests in the session initiation protocol?	[104]	c47	c48
60	SIP location conveyance	[89]	0	c49
61	referring to multiple resources in the session initiation protocol?	[105]	c50	c50
62	conference establishment using request-contained lists in the session initiation protocol?	[106]	c51	c52
63	subscriptions to request-contained resource lists in the session initiation protocol?	[107]	c53	c53
64	dialstring parameter for the session initiation protocol uniform resource identifier?	[103]	0	c19
65	the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular?	[111]	0	c60
66	the SIP P-Early-Media private header extension for authorization of early media?	[109] 8	0	c58
71	addressing an amplification vulnerability in session initiation protocol forking proxies?	[117]	0	c87
72	the remote application identification of applying signalling compression to SIP	[79] 9.1	0	c8
73	a session initiation protocol media feature tag for MIME application subtypes?	[120]	o	c59
74	Identification of communication services in the session initiation protocol?	[121]	o	c61
75	SOS URI parameter for marking SIP requests related to emergency calls?	[91A]	0	c88

c2:	IF A.4/20 THEN 0.1 ELSE n/a - SIP specific event notification extension.
c3:	IF A.3/1 OR A.3/4 THEN m ELSE n/a - UE or S-CSCF functional entity.
c4:	IF A.3/4 THEN m ELSE IF A.3/7 THEN o ELSE n/a - S-CSCF or AS functional entity.
c5:	IF A.4/16 THEN m ELSE o - integration of resource management and SIP extension.
c6:	IF A.3/4 OR A.3/1 THEN m ELSE n/a. - - S-CSCF or UE.
c7:	IF A.3/1 OR A.3/4 OR A.3/7A OR A.3/7B OR A.3/7D OR A.3/9B THEN m ELSE n/a - - UA or S-CSCF or AS acting as terminating UA or AS acting as originating UA or AS performing $3^{\text {rd }}$ party call control or IBCF (IMS-ALG).
c8:	IF A. $3 / 1$ THEN (IF (A.3B/1 OR A.3B/2 OR A.3B/3 OR A.3B/4 OR A.3B/5 OR A.3B/6 OR A.3B/11 OR A.3B/12 OR A.3B/13 OR A.3B/14) THEN m ELSE o) ELSE n/a - - UE behaviour (based on P-Access-Network-Info usage).
c9	IF A.4/26 THEN o.2 ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).
c10	IF A.4/26B THEN o.3 ELSE n/a - - application of privacy based on the received Privacy header.
c11:	IF A.3/1 OR A.3/6 THEN o ELSE IF A.3/9B THEN m ELSE n/a - - UE or MGCF, IBCF (IMS-ALG).
c12:	IF A.3/7D THEN m ELSE n/a - AS performing 3rd-party call control.
c13:	IF A.3/1 OR A.3/2 OR A.3/4 OR A.3/9B THEN m ELSE 0 - - UE or S-CSCF or IBCF (IMS-ALG).
c14:	IF A.3/1 AND A4/2B THEN m ELSE IF A.3/2 THEN o ELSE n/a - UE and initiating sessions or P-CSCF.
c15:	IF A.4/20 AND (A.3/4 OR A.3/9B) THEN m ELSE o - SIP specific event notification extensions and SCSCF or IBCF (IMS-ALG).
c16:	IF A.4/20 AND (A.3/1 OR A.3/2 OR A.3/9B) THEN m ELSE o - - SIP specific event notification extension and UE or P-CSCF or IBCF (IMS-ALG).
c17:	IF A.3/1 or A.3/4 THEN m ELSE n/a - - UE or S-CSCF.
c18:	IF A.4/2B THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - initiating sessions.
c19:	IF A.4/2B THEN o ELSE n/a -- initiating sessions.
c20:	IF A.3/1 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - UE behaviour.
c21:	IF A.4/30 THEN o. 4 ELSE n/a - - private header extensions to the session initiation protocol for the 3rdGeneration Partnership Project (3GPP).
c22:	IF A. $4 / 30$ AND (A.3/1 OR A.3/4) THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and S-CSCF or UA.
c23:	IF A. $4 / 30$ AND A. $3 / 1$ THEN o ELSE $n / a-$ - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and UE.
c24:	IF A.4/30 AND A.3/4) THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and S-CSCF.
c25:	IF A.4/30 AND (A.3/1 OR A.3/4 OR A.3/7A OR A.3/7D OR A.3/9B) THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and UE, SCSCF or AS acting as terminating UA or AS acting as third-party call controller or IBCF (IMS-ALG).
c26:	IF A.4/30 AND (A.3/6 OR A.3/7A OR A.3/7B or A.3/7D) THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and MGCF, AS acting as a terminating UA, or AS acting as an originating UA, or AS acting as third-party call controller.
c27:	IF A.3/7D THEN o ELSE x - - AS performing 3rd party call control.
c28:	IF A.3/1 THEN m ELSE o.5-- UE.
c29:	IF A.4/40A OR A.4/40B OR A.4/40C OR A.4/40D OR A.4/40E OR A.4/40F THEN m ELSE n/a - - support of any directives within caller preferences for the session initiation protocol.
c30:	IF A.3A/1 OR A.3A/2 THEN m ELSE IF A.3/1 THEN o ELSE n/a - - presence server, presence user agent, UE, AS.
c33:	IF A.3/9B OR A.3A/11 OR A.3A/12 OR A.4/44 THEN m ELSE o - - IBCF (IMS-ALG) or conference focus or conference participant or the Session Inititation Protocol (SIP) "Replaces" header.
c34:	IF A. $4 / 44$ OR A. $4 / 45$ OR A.3/9B THEN m ELSE n/a - the Session Inititation Protocol (SIP) "Replaces" header or the Session Inititation Protocol (SIP) "Join" header or IBCF (IMS-ALG).
c35:	IF A.3/4 OR A.3/9B OR A.3A/21 OR A.3A/22 THEN m ELSE IF (A.3/1 OR A.3/6 OR A.3/7 OR A.3/8) THEN o ELSE n/a-- S-CSCF or IBCF (IMS-ALG) functional entities or CSI user agent or CSI application server, UE or MGCF or AS or MRFC functional entity.
c37	IF A.4/47 THEN o. 3 ELSE n/a - - an extension to the session initiation protocol for request history information.
c38:	IF A.4/2B AND (A.3A/11 OR A.3A/12 OR A.3/7D) THEN m ELSE IF A.4/2B THEN o ELSE n/a - - initiating sessions, conference focus, conference participant, AS performing 3rd party call control.
c39:	IF A.3/1 THEN m ELSE n/a - UE.
c40	IF A.3/4 OR A.3/1 THEN m ELSE IF (A.3/7A OR A.3/7B OR A.3/7D) THEN o ELSE n/a - - S-CSCF, UE, AS, AS acting as terminating UA, or redirect server, AS acting as originating UA, AS performing 3rd party call control.
c41:	IF A.3/2 OR A.3/3 OR A.3/4 OR A.3.5 OR A.3/6 OR A.3/7 OR A.3/8 OR A.3/9 THEN o ELSE n/a - - cpc URI parameter.
c42:	IF A.3/1 n/a ELSE o-- UE.
c43:	IF A.4/2B THEN o ELSE n/a - - initiating sessions.
c44:	IF A.4/2C THEN m ELSE o - - initiating a session which require local and/or remote resource reservation.
c45:	IF A.3/1 OR A.3/4 THEN o ELSE n/a - - UE, S-CSCF.
c46	IF A.3/1 OR A.3/4 THEN o ELSE n/a - UE, S-CSCF.
c47:	IF A.4/27 THEN o ELSE n/a - a messaging mechanism for the Session Initiation Protocol (SIP).
c48:	IF A.3A/32 AND A.4/27 THEN m ELSE IF A.4/27 THEN o ELSE n/a - - messaging list server, a messaging mechanism for the Session Initiation Protocol (SIP).
c49:	IF A.3/1 OR A.3/9B THEN m ELSE o - - UE, IBCF (IMS-ALG).
c50:	IF A.4/15 THEN o ELSE n/a - the REFER method.
c51:	

c52:	IF A.3A/11 AND A.4/2B THEN m ELSE IF A.4/2B THEN o ELSE n/a - - conference focus, initiating a session.
c53:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification.
c58:	IF A.3/9B OR A.3/6 THEN m ELSE o - - IBCF (IMS-ALG), MGCF.
c59:	IF (A.3/4 THEN m ELSE IF (A.3/1 OR A.3/6 OR A.3/7A OR A.3/7B OR A.3/7D OR A.3/8) THEN o ELSE n/a -- S-CSCF, UE, MGCF, AS, AS acting as terminating UA, or redirect server, AS acting as originating UA, AS performing 3rd party call control, or MRFC.
c60:	IF A.3/9B THEN m ELSE IF A.3/1 OR A.3/7A OR A.3/7B OR A.3/7D THEN o ELSE n/a - - IBCF (IMS-ALG), UE, AS acting as terminating UA, AS acting as originating UA, AS performing $3^{\text {rd }}$ party call control.
c61:	IF (A.3/1 OR A.3/6 OR A.3/7A OR A.3/7B OR A.3/7D OR A.3/8 OR A.3/9B) THEN o ELSE n/a - - UE, MGCF, AS, AS acting as terminating UA, or redirect server, AS acting as originating UA, AS performing 3rd party call control, or MRFC or IBCF (IMS-ALG).
c62:	IF A.3/1 THEN o ELSE n/a - UE.
c82:	IF A.3/6 THEN m ELSE n/a - MGCF.
c87:	IF A.3/9B OR A.3/9C THEN m ELSE o - IBCF (IMS-ALG), IBCF (Screening of SIP signalling).
c88	IF A.3/1 OR A.3/4 OR A.3/6 OR A.3/9B OR A.3/9C THEN m ELSE n/a - UE, S-CSCF, MGCF, IBCF (IMSALG), IBCF (Screening of SIP signalling).
0.1:	At least one of these capabilities is supported.
0.2:	At least one of these capabilities is supported.
0.3:	At least one of these capabilities is supported.
0.4:	At least one of these capabilities is supported.
0.5:	At least one of these capabilities is supported.
NOTE 1:	At the MGCF, the interworking specifications do not support a handling of the header associated with this extension.
NOTE 2:	If a UE is unable to become engaged in a service that potentially requires the ability to identify and interact with a specific UE even when multiple UEs share the same single Public User Identity then the UE support can be " o " instead of " m ". Examples include telemetry applications, where point-to-point communication is desired between two users.

Prerequisite A.5/20-- SIP specific event notification
Table A.4A: Supported event packages

Item	Does the implementation support	Subscriber			Notifier		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	reg event package?	[43]	c1	c3	[43]	c2	c4
1A	reg event package extension for GRUUs?	[94]	c1	c25	[94]	c2	c4
2	refer package?	[36] 3	c13	c13	[36] 3	c13	c13
3	presence package?	[74] 6	c1	c5	[74] 6	c2	c6
4	eventlist with underlying presence package?	$\begin{aligned} & {[75],[74]} \\ & 6 \end{aligned}$	c1	c7	$\begin{aligned} & {[75],[74]} \\ & 6 \end{aligned}$	c2	c8
5	presence.winfo templatepackage?	[72] 4	C1	c9	[72] 4	c2	c10
6	ua-profile package?	[77] 3	C1	C1	[77] 3	C2	C12
7	conference package?	[78] 3	c1	c21	[78] 3	c1	c22
8	message-summary package?	[65]	c1	c23	[65] 3	c2	c24
9	poc-settings package	[110]	c1	c26	[110]	c2	c27
c1:	IF A.4/23 THEN o ELSE n/a - - acting as the subscriber to event information. IF A.4/22 THEN o ELSE n/a - - acting as the notifier of event information. IF A.3/1 OR A.3/2 THEN m ELSE IF A.3/7 THEN o ELSE n/a - - UE, P-CSCF, AS. IF A.3/4 THEN m ELSE n/a - - S-CSCF. IF A.3A/3 OR A.3A/4 THEN m ELSE IF A. $4 / 23$ THEN o ELSE n/a - - resource list server or watcher, acting as the subscriber to event information.						
c2:							
c3:							
c4:							
c5:							
c6:	IF A.3A/1 THEN m ELSE IF A.4/22 THEN o ELSE n/a - - presence server, acting as the notifier of event information.						
c7:	IF A.3A/4 THEN m ELSE IF A.4/23 THEN o ELSE n/a - - watcher, acting as the subscriber to event information.						
c8:	IF A.3A/3 THEN m ELSE IF A.4/22 THEN o ELSE n/a - - resource list server, acting as the notifier of event information.						
c9:	IF A.3A/2 THEN m ELSE IF A.4/23 THEN o ELSE n/a - - presence user agent, acting as the subscriber to event information.						
c10:	IF A.3A/1 THEN m ELSE IF A.4/22 THEN o ELSE n/a - - presence server, acting as the notifier of event information.						
c11:	IF A.3A/2 OR A.3A/4 THEN o ELSE IF A. $4 / 23$ THEN o ELSE n/a - - presence user agent or watcher, acting as the subscriber to event information.						
c12:	IF A.3A/1 OR A.3A/3 THEN m ELSE IF A.4/22 THEN o ELSE n/a - - presence server or resource list server, acting as the notifier of event information.						
c13:	IF A.4/15 THEN m ELSE n/a - the REFER method.						
c21:	IF A.3A/12 THEN m ELSE IF A.4/23 THEN o ELSE n/a - - conference participant or acting as the subscriber to event information.						
c22:	IF A.3A/11 THEN m ELSE IF A.4/22 THEN o ELSE n/a - - conference focus or acting as the notifier of event information.						
c23:	IF (A.3/1 OR A.3/7A OR A.3/7B) AND A.4/23 THEN o ELSE n/a - - UE, AS acting as terminating UA, or redirect server, AS acting as originating UA all as subscriber of event information.						
c24:	IF (A.3/1 OR A.3/7A OR A.3/7B) AND A.4/22 THEN o ELSE n/a - UE, AS acting as terminating UA, or redirect server, AS acting as originating UA all as notifier of event information.						
c25:	IF A.4A/1 THEN (IF A.3/1 AND A.4/53 THEN m ELSE o) ELSE n/a - - reg event package, UE, reg event package extension for GRUUs.						
c26:	IF (A.3/7B OR A.3/1) AND (A.4/23 OR A.4/41) THEN o ELSE n/a - - AS acting as originating UA, UE ,acting						
c27:	as the subscriber to event information, an event state publication extension to the session initiation protocol. IF (A.4/22 OR A.4/41) AND A.3/1 THEN o ELSE n/a - - UE, acting as the notifier of event information, an event state publication extension to the session initiation protocol.						

A.2.1.3 PDUs

Table A.5: Supported methods

Item	PDU	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	ACK request	[26] 13	c10	c10	[26] 13	c11	c11
2	BYE request	[26] 15.1	c12	c12	[26] 15.1	c12	c12
3	BYE response	[26] 15.1	c12	c12	[26] 15.1	c12	c12
4	CANCEL request	[26] 9	m	m	[26] 9	m	m
5	CANCEL response	[26] 9	m	m	[26] 9	m	m
8	INVITE request	[26] 13	c10	c10	[26] 13	c11	c11
9	INVITE response	[26] 13	c11	c11	[26] 13	c10	c10
9A	MESSAGE request	[50] 4	c7	c7	[50] 7	c7	c7
9B	MESSAGE response	[50] 4	c7	c7	[50] 7	c7	c7
10	NOTIFY request	[28] 8.1.2	c4	c4	[28] 8.1.2	c3	c3
11	NOTIFY response	[28] 8.1.2	c3	c3	[28] 8.1.2	c4	c4
12	OPTIONS request	[26] 11	m	m	[26] 11	m	m
13	OPTIONS response	[26] 11	m	m	[26] 11	m	m
14	PRACK request	[27] 6	c5	c5	[27] 6	c5	c5
15	PRACK response	[27] 6	c5	c5	[27] 6	c5	c5
15A	PUBLISH request	$\begin{aligned} & {[70]} \\ & 11.1 .3 \end{aligned}$	c20	c20	$\begin{aligned} & {[70]} \\ & 11.1 .3 \end{aligned}$	c20	c20
15B	PUBLISH response	$\begin{aligned} & {[70]} \\ & \text { 11.1.3 } \end{aligned}$	c20	c20	$\begin{aligned} & {[70]} \\ & 11.1 .3 \end{aligned}$	c20	c20
16	REFER request	[36] 3	c1	c1	[36] 3	c1	c1
17	REFER response	[36] 3	c1	c1	[36] 3	C1	c1
18	REGISTER request	[26] 10	c8	c8	[26] 10	c9	c9
19	REGISTER response	[26] 10	c9	c9	[26] 10	c8	c8
20	SUBSCRIBE request	[28] 8.1.1	c3	c3	[28] 8.1.1	c4	c4
21	SUBSCRIBE response	[28] 8.1.1	c4	c4	[28] 8.1.1	c3	c3
22	UPDATE request	[29] 6.1	c6	c6	[29] 6.2	c6	c6
23	UPDATE response	[29] 6.2	c6	c6	[29] 6.1	c6	c6
c1:	IF A.4/15 THEN m ELSE n / a - - the REFER method extension.						
c3:	IF A.4/23 THEN m ELSE n/a - - recipient for event information.						
c4:	IF A. $4 / 22$ THEN m ELSE $n / a-$ - notifier of event information.						
c5:	IF A.4/14 THEN m ELSE n / a - - reliability of provisional responses extension.						
c6:	IF A. $4 / 17$ THEN m ELSE n/a - the SIP update method extension.						
c7:	IF A. $4 / 27$ THEN m ELSE $n / a-$ - the SIP MESSAGE method.						
c8:	IF A.4/27 THEN m ELSE n/a - - the SIP MESSAGE method. IF A.4/1 THEN m ELSE n/a - - client behaviour for registration.						
c9:	IF A.4/2 THEN m ELSE n/a - - registrar.						
c10:	IF A.4/3 THEN m ELSE n/a - client behaviour for INVITE requests.						
c11:	IF A.4/4 THEN m ELSE n/a - server behaviour for INVITE requests.						
$\begin{aligned} & \text { c12: } \\ & \text { c20: } \end{aligned}$	IF A. $4 / 5$ THEN m ELSE n/a - session release.						

A.2.1.4 PDU parameters

A.2.1.4.1 Status-codes

Table A.6: Supported status-codes

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	100 (Trying)	[26] 21.1.1	c21	c21	[26] 21.1.1	c11	c11
101	1xx response	[26] 21.1	p21	p21	[26] 21.1	p21	p21
101A	18x response	[26] 21.1	p21	p21	[26] 21.1	p21	p21
2	180 (Ringing)	[26] 21.1.2	c2	c2	[26] 21.1.2	c1	c1
3	181 (Call Is Being Forwarded)	[26] 21.1.3	c2	c2	[26] 21.1.3	c1	c1
4	182 (Queued)	[26] 21.1.4	c2	c2	[26] 21.1.4	c1	c1
5	183 (Session Progress)	[26] 21.1.5	c1	c1	[26] 21.1.5	c1	c1
102	2xx response	[26] 21.2	p22	p22	[26] 21.1	p22	p22
6	200 (OK)	[26] 21.2.1	m	m	[26] 21.2.1	m	m
7	202 (Accepted)	[28] 8.3.1	c3	c3	[28] 8.3.1	c3	c3
103	3xx response	[26] 21.3	p23	p23	[26] 21.1	p23	p23
8	300 (Multiple Choices)	[26] 21.3.1	m	m	[26] 21.3.1	m	m
9	301 (Moved Permanently)	[26] 21.3.2	m	m	[26] 21.3.2	m	m
10	302 (Moved Temporarily)	[26] 21.3.3	m	m	[26] 21.3 .3	m	m
11	305 (Use Proxy)	[26] 21.3.4	m	m	[26] 21.3 .4	m	m
12	380 (Alternative Service)	[26] 21.3.5	m	m	[26] 21.3 .5	m	m
104	4xx response	[26] 21.4	p24	p24	[26] 21.4	p24	p24
13	400 (Bad Request)	[26] 21.4.1	m	m	[26] 21.4.1	m	m
14	401 (Unauthorized)	[26] 21.4.2	0	c12	[26] 21.4.2	m	m
15	402 (Payment Required)	[26] 21.4.3	n/a	n/a	[26] 21.4 .3	n/a	n/a
16	403 (Forbidden)	[26] 21.4.4	m	m	[26] 21.4.4	m	m
17	404 (Not Found)	[26] 21.4.5	m	m	[26] 21.4.5	m	m
18	405 (Method Not Allowed)	[26] 21.4.6	m	m	[26] 21.4.6	m	m
19	406 (Not Acceptable)	[26] 21.4.7	m	m	[26] 21.4.7	m	m
20	407 (Proxy Authentication Required)	[26] 21.4.8	0	0	[26] 21.4.8	m	m
21	408 (Request Timeout)	[26] 21.4.9	c2	c2	[26] 21.4.9	m	m
22	410 (Gone)	[26] 21.4.10	m	m	[26] 21.4 .10	m	m
22A	412 (Conditional Request Failed)	[70] 11.2.1	c20	c20	[70] 11.2.1	c20	c20
23	413 (Request Entity Too Large)	[26] 21.4.11	m	m	[26] 21.4.11	m	m
24	414 (Request-URI Too Large)	[26] 21.4.12	m	m	[26] 21.4.12	m	m
25	415 (Unsupported Media Type)	[26] 21.4.13	m	m	[26] 21.4.13	m	m
26	416 (Unsupported URI Scheme)	[26] 21.4.14	m	m	[26] 21.4.14	m	m
27	420 (Bad Extension)	[26] 21.4.15	m	c13	[26] 21.4 .15	m	m
28	421 (Extension Required)	[26] 21.4.16	0		[26] 21.4.16	i	i
28A	422 (Session Interval Too Small)	[58] 6	c7	c7	[58] 6	c7	c7
29	423 (Interval Too Brief)	[26] 21.4.17	c4	c4	[26] 21.4.17	m	m
29A	424 (Bad Location Information)	[89] 3.3	c23	c23	[89] 3.3	c23	c23
29B	429 (Provide Referrer Identity)	[59] 5	c8	c8	[59] 5	c9	c9
29C	430 (Flow Failed)	[92] 11	n/a	n/a	[92] 11	c22	c22
29D	433 (Anonymity Disallowed)	[67] 4	c14	c14	[67] 4	c14	c14
29E	439 (First Hop Lacks Outbound Support)	[92] 11	c28	c28	[92] 11	c29	c29
$29 F$	440 (Max Breadth Exceeded)	[117] 5	n/a	c30	[117] 5	c31	c31
30	480 (Temporarily	[26] 21.4.18	m	m	[26] 21.4.18	m	m

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
	Unavailable)						
31	481 (Call/Transaction Does Not Exist)	[26] 21.4.19	m	m	[26] 21.4.19	m	m
32	482 (Loop Detected)	[26] 21.4.20	m	m	[26] 21.4.20	m	m
33	483 (Too Many Hops)	[26] 21.4.21	m	m	[26] 21.4.21	m	m
34	484 (Address Incomplete)	[26] 21.4.22	0	0	[26] 21.4.22	m	m
35	485 (Ambiguous)	[26] 21.4.23	0	0	[26] 21.4.23	m	m
36	486 (Busy Here)	[26] 21.4.24	m	m	[26] 21.4.24	m	m
37	487 (Request Terminated)	[26] 21.4.25	m	m	[26] 21.4.25	m	m
38	488 (Not Acceptable Here)	[26] 21.4.26	m	m	[26] 21.4.26	m	m
39	489 (Bad Event)	[28] 7.3.2	c3	c3	[28] 7.3.2	c3	c3
40	491 (Request Pending)	[26] 21.4.27	m	m	[26] 21.4.27	m	m
41	493 (Undecipherable)	[26] 21.4.28	m	m	[26] 21.4.28	m	m
41A	494 (Security Agreement Required)	[48] 2	c5	c5	[48] 2	c6	c6
105	5xx response	[26] 21.5	p25	p25	[26] 21.5	p25	p25
42	500 (Internal Server Error)	[26] 21.5.1	m	m	[26] 21.5.1	m	m
43	501 (Not Implemented)	[26] 21.5.2	m	m	[26] 21.5.2	m	m
44	502 (Bad Gateway)	[26] 21.5.3	0	0	[26] 21.5.3	m	m
45	503 (Service Unavailable)	[26] 21.5.4	m	m	[26] 21.5.4	m	m
46	504 (Server Time-out)	[26] 21.5.5	m	m	[26] 21.5.5	m	m
47	505 (Version not supported)	[26] 21.5.6	m	m	[26] 21.5.6	m	m
48	513 (Message Too Large)	[26] 21.5.7	m	m	[26] 21.5.7	m	m
49	580 (Precondition Failure)	[30] 8			[30] 8		
106	6xx response	[26] 21.6	p26	p26	[26] 21.6	p26	p26
50	600 (Busy Everywhere)	[26] 21.6.1	m	m	[26] 21.6.1	m	m
51	603 (Decline)	[26] 21.6.2	c10	c10	[26] 21.6.2	m	m
52	604 (Does Not Exist Anywhere)	[26] 21.6.3	m	m	[26] 21.6.3	m	m
53	606 (Not Acceptable)	[26] 21.6.4	m	m	[26] 21.6.4	m	m

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
c1:	IF A.5/9 THEN m ELSE n/a - - INVITE response.						
c2:	IF A.5/9 THEN o ELSE n/a - - INVITE response.						
c3:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.						
c4:	IF A.5/19 OR A.5/21 THEN m ELSE n/a - REGISTER response or SUBSCRIBE response.						
c5:	IF A.4/37 AND A.4/2 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol and registrar.						
c6:	IF A.4/37 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol.						
c7:	IF A.4/42 AND (A.5/9 OR A.5/23) THEN m ELSE n/a - the SIP session timer AND (INVITE response OR UPDATE response).						
c8:	IF A.4/43 AND A. $5 / 17$ THEN o ELSE n/a - - the SIP Referred-By mechanism and REFER response						
c9	IF A.4/43 AND A.5/17 THEN m ELSE n/a - the SIP Referred-By mechanism and REFER response.						
c10:	IF A.4/44 THEN m ELSE o - the Session Inititation Protocol (SIP) "Replaces" header.						
c11	IF A.5/3 OR A.5/9 OR A.5/9B OR A.5/11OR A.5/13 OR A.5/15 OR A.5/15B OR A.5/17 OR A.5/19 OR A.5/21 OR A. $5 / 23$ THEN m ELSE n/a - BYE response or INVITE response or MESSAGE response or NOTIFY response or OPTIONS response or PRACK response or PUBLISH response or REFER response or REGISTER response or SUBSCRIBE response or UPDATE response.						
c1	IF A.3/4 THEN m ELSE o-- S-CSCF.						
c13	IF A.3/1 OR A.3/2 OR A.3/4 THEN m ELSE o-- UE, P-CSCF, S-CSCF.						
c14	IF A.4/48 THEN m ELSE n/a - rejecting anonymous requests in the session initiation protocol.						
c20	IF A.4/41 THEN m ELSE n/a - - an event state publication extension to the session initiation protocol.						
c21	OR A.5/23 THEN o ELSE n/a - BYE response or INVITE response or MESSAGE response or NOT response or OPTIONS response or PRACK response or PUBLISH response or REFER response or REGISTER response or SUBSCRIBE response or UPDATE response.						
c22:	IF A.4/57 THEN m ELSE n/a - managing client initiated connections in SIP.						
c23:	IF A.4/60 THEN m ELSE n/a - SIP location conveyance						
c28:	IF A.4/2 AND A.4/57 THEN m ELSE n/a - registrar, managing client initiated connections in SIP.						
c29:	IF A.4/1 AND A.4/57 THEN m ELSE n/a - - client behaviour for registration, managing client initiated connections in SIP.						
c30:	IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).						
c31	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.						
p21	A.6/2 OR A.6/3 OR A.6/4 OR A.6/5--1xx response.						
p22:	A.6/6 OR A.6/7--2xx response.						
p23:	A.6/8 OR A.6/9 OR A.6/10 OR A.6/11 OR A.6/12-- 3xx response.						
p24:	A.6/13 OR A.6/14 OR A.6/22A OR A OR A.6/29 OR A. A.6/31 OR A.6/32 A.6/40 OR A.6/41	A.6/16 4 OR AB OR A.6/34 $4 x x$ res	6/17 OR OR A.6/2 C OR A 6/35 OR	18 OR A A.6/26A D OR A. 36 OR A	R A. 6 $.6 / 27$ OR A. OR A	R A.6/2 6/28 OR OR A.6/ OR A.6/	$\begin{aligned} & \text { R A.6/22 } \\ & .6 / 28 A \\ & \text { OR } \\ & \text { OR } \end{aligned}$
$\begin{aligned} & \text { p25: } \\ & \text { p26: } \end{aligned}$	A. $6 / 42$ OR A. $6 / 43$ OR A. $6 / 44$ OR A. $6 / 45$ OR A.6/46 OR A.6/47 OR A.6/48 OR A.6/49--5xx response						

A.2.1.4.2 ACK method

Prerequisite A.5/1-ACK request
Table A.7: Supported headers within the ACK request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept-Contact	[56B] 9.2	c9	c9	[56B] 9.2	c10	c10
2	Allow-Events	[28] 7.2.2	c1	c1	[28] 7.2.2	c2	c2
3	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
4	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
7	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
8	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
9	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
10	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
11	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
12	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
13	From	[26] 20.20	m	m	[26] 20.20	m	m
13A	Max-Breadth	[117] 5.8	n / a	c14	[117] 5.8	c15	c15
14	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
15	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
15A	Privacy	[33] 4.2	c6	n/a	[33] 4.2	c6	n/a
16	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
17	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
17A	Reason	[34A] 2	c8	c8	[34A] 2	c8	c8
17B	Reject-Contact	[56B] 9.2	c9	c9	[56B] 9.2	c10	c10
17C	Request-Disposition	[56B] 9.1	c9	c9	[56B] 9.1	c10	c10
18	Require	[26] 20.32	0	0	[26] 20.32	m	m
19	Route	[26] 20.34	m	m	[26] 20.34	n / a	n/a
20	Timestamp	[26] 20.38	c7	c7	[26] 20.38	m	m
21	To	[26] 20.39	m	m	[26] 20.39	m	m
22	User-Agent	[26] 20.41	0	0	[26] 20.41	m	m
23	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF A.4/20 THEN o ELSE n/a - - SIP specific event notification extension. IF A. $4 / 20$ THEN m ELSE $n / a-$ - SIP specific event notification extension. IF A. $4 / 7$ THEN m ELSE $n / a-$ - authentication between UA and UA. IF A. $4 / 11$ THEN o ELSE n/a - - insertion of date in requests and responses. IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A.4/6 THEN o ELSE n/a - - timestamping of requests. IF A.4/38 THEN o ELSE n/a - - the Reason header field for the session initiation protocol. IF A.4/40 THEN o ELSE n/a - - caller preferences for the session initiation protocol. IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol. IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling). IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.						
c2:							
c3:							
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c14:							
c15:							

Table A.8: Void

A.2.1.4.3 BYE method

Prerequisite A.5/2-- BYE request
Table A.9: Supported headers within the BYE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	0	0	[26] 20.1	m	m
1A	Accept-Contact	[56B] 9.2	c18	c18	[56B] 9.2	c22	c22
2	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
3A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
4	Allow-Events	[28] 7.2.2	c1	c1	[28] 7.2.2	c2	c2
5	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
8	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
9	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
14	From	[26] 20.20	m	m	[26] 20.20	m	m
14A	Geolocation	[89] 3.2	c23	c23	[89] 3.2	c23	c23
14B	Max-Breadth	[117] 5.8	n/a	c29	[117] 5.8	c30	c30
15	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
16	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
16A	P-Access-Network-Info	[52] 4.4	c9	c10	[52] 4.4	c9	c11
16B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c6	c6
16C	P-Charging-Function- Addresses	[52] 4.5	c13	c14	[52] 4.5	c13	c14
16D	P-Charging-Vector	[52] 4.6	c12	n/a	[52] 4.6	c12	n/a
16E	P-Preferred-Identity	[34] 9.2	c6	x	[34] 9.2	n/a	n/a
16F	Privacy	[33] 4.2	c7	n/a	[33] 4.2	c7	c7
17	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
18	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
18A	Reason	[34A] 2	c17	c21	[34A] 2	c17	c17
19	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	n/a	n/a
19A	Referred-By	[59] 3	c19	c19	[59] 3	c20	c20
19B	Reject-Contact	[56B] 9.2	c18	c18	[56B] 9.2	c22	c22
19C	Request-Disposition	[56B] 9.1	c18	c18	[56B] 9.1	c22	c22
20	Require	[26] 20.32	0	0	[26] 20.32	m	m
21	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
21A	Security-Client	[48] 2.3.1	c15	c15	[48] 2.3.1	n/a	n/a
21B	Security-Verify	[48] 2.3.1	c16	c16	[48] 2.3.1	n/a	n/a
22	Supported	[26] 20.37	0	0	[26] 20.37	m	m
23	Timestamp	[26] 20.38	c8	c8	[26] 20.38	m	m
24	To	[26] 20.39	m	m	[26] 20.39	m	m
25	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
26	Via	[26] 20.42	m	m	[20] 20.42	m	m

c1:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.
c2:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.
c3:	IF A.4/7 THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ authentication between UA and UA.
c4:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.
c5:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.
c6:	IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c7:	IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c8:	IF A.4/6 THEN o ELSE n/a - - timestamping of requests.
c9:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.
c10:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE.
c11:	IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.
c12:	IF A.4/36 THEN o ELSE n/a-- the P-Charging-Vector header extension.
c13:	IF A. $4 / 35$ THEN o ELSE n/a - the P-Charging-Function-Addresses header extension.
c14:	IF A. $4 / 35$ THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c15:	IF A.4/37 THEN o ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-security} \mathrm{mechanism} \mathrm{agreement} \mathrm{for} \mathrm{the} \mathrm{session} \mathrm{initiation} \mathrm{protocol} \mathrm{(note)}$.
c16:	IF A. $4 / 37$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - security mechanism agreement for the session initiation protocol.
c17:	IF A.4/38 THEN o ELSE n / a - - the Reason header field for the session initiation protocol.
c18:	IF A.4/40 THEN o ELSE n/a - caller preferences for the session initiation protocol.
c19:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.
c20:	IF A. $4 / 43$ THEN o ELSE n/a - the SIP Referred-By mechanism.
c21:	IF A.3/2 THEN m ELSE IF A. $4 / 38$ THEN o ELSE n/a - - P-CSCF, the Reason header field for the session initiation protocol.
c22:	IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol.
c23:	IF A.4/60 THEN m ELSE n/a - SIP location conveyance.
c29:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).
c30:	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
NOTE:	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented. Use of this header in this method is not appropriate to the security mechanism defined by 3GPP TS 33.203 [19].

Table A.10: Void
Table A.11: Void
Prerequisite A.5/3-- BYE response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.11A: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c 1	[26] 20.17	m	m
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF A.4/11 THEN o ELSE n / a - - insertion of date in requests and responses.						

Prerequisite A.5/3-- BYE response for all remaining status-codes
Table A.12: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	RFC	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	c11	c11	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
3	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
4	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c12	c12	[89] 3.2	c12	c12
10	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
10A	P-Access-Network-Info	[52] 4.4	c5	c6	[52] 4.4	c5	c6
10B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c3	c3
10C	P-Charging-FunctionAddresses	[52] 4.5	c9	c10	[52] 4.5	c9	c10
10D	P-Charging-Vector	[52] 4.6	c8	n/a	[52] 4.6	c8	n/a
10E	P-Preferred-Identity	[34] 9.2	c3	x	[34] 9.2	n/a	n/a
10F	Privacy	[33] 4.2	c4	n/a	[33] 4.2	c4	c4
10G	Require	[26] 20.32	0	0	[26] 20.32	m	m
10H	Server	[26] 20.35	0	0	[26] 20.35	0	0
11	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	o (note)	0 (note)	[26] 20.43	0	0
c1:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses. IF A.4/6 THEN m ELSE n/a - - timestamping of requests. IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. $4 / 34$ THEN o ELSE n/a - the P-Access-Network-Info header extension. IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension. IF A. $4 / 35$ THEN o ELSE n/a - the P-Charging-Function-Addresses header extension. IF A. $4 / 35$ THEN m ELSE n/a - the P-Charging-Function-Addresses header extension. IF A. $6 / 18$ THEN m ELSE 0-- 405 (Method Not Allowed). IF A. $4 / 60$ THEN m ELSE n/a - - SIP location conveyance.						
c2:							
c3:							
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
NOTE:	For a 488 (Not Acceptable Here) response, RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/3-- BYE response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.13: Supported headers within the BYE response

Item	Header			Sending			Receiving		
		Ref. RFC status	Profile status	Ref.	Profile status				
status									

c1:	IF A.4/7 THEN o ELSE $n / a-$ - authentication between UA and UA.
c2:	IF A.4/7 THEN m ELSE $n / a-$ authentication between UA and UA.
c3:	IF A.4/20 THEN o ELSE $n / a-$ - SIP specific event notification extension.
c4:	IF A.4/20 THEN m ELSE $n / a-$ - SIP specific event notification extension.

Prerequisite A.5/3-- BYE response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106-- Additional for 3xx - $6 x x$ response
Table A.13A: Supported headers within the BYE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0	

Prerequisite A.5/3-- BYE response
Prerequisite: A.6/103 OR A.6/35-- Additional for 3xx or 485 (Ambiguous) response
Table A.14: Supported headers within the BYE response

Item	Header		Receiving				
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
OB	Contact	$[26] 20.10$	0 (note)	0	0	$[26] 20.10$	m
NOTE:	RFC $3261[26]$ gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/3-- BYE response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.15: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
2	Proxy-Authenticate	[26] 20.27	c1	c1	[26] 20.27	c1	c1
8	WWW-Authenticate	[26] 20.44	m	m	[26] 20.44	m	m
c1:	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.						

Prerequisite A.5/3-- BYE response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.16: Supported headers within the BYE response

Item	Seader			Receiving			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0

Table A.17: Void
Prerequisite A.5/3-- BYE response
Prerequisite: A.6/19-- Additional for 407 (Proxy Authentication Required) response
Table A.18: Supported headers within the BYE response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
2	Proxy-Authenticate	$[26] 20.27$	c 1	$c 1$	$[26] 20.27$	c 1	c 1	
6	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
$\mathrm{c} 1:$	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.							

Prerequisite A.5/3-- BYE response
Prerequisite A.6/25-- Additional for 415 (Unsupported Media Type) response
Table A.19: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0.1	0.1	[26] 20.1	m	m
2	Accept-Encoding	[26] 20.2	0.1	0.1	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0.1	0.1	[26] 20.3	m	m
0.1	At least one of these capabilities is supported.						

Prerequisite A.5/3-- BYE response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.20: Supported headers within the BYE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m	

Prerequisite A.5/3-- BYE response
Prerequisite: A. $6 / 28$ OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.20A: Supported headers within the BYE response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
3	Security-Server	$[48] 2$	x	x	$[48] 2$	c 1	c 1		
$\mathrm{c} 1:$	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ security mechanism agreement for the session initiation protocol.								

Table A.21: Void
Table A.22: Void
A.2.1.4.4 CANCEL method

Prerequisite A.5/4-- CANCEL request
Table A.23: Supported headers within the CANCEL request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept-Contact	[56B] 9.2	c9	c9	[56B] 9.2	c11	c11
5	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
8	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
9	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
10	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
11	From	[26] 20.20	m	m	[26] 20.20	m	m
11A	Max-Breadth	[117] 5.8	n/a	c16	[117] 5.8	c17	c17
12	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
14	Privacy	[33] 4.2	c6	n/a	[33] 4.2	c6	n/a
15	Reason	[34A] 2	c7	c10	[34A] 2	c7	c7
16	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	n/a	n/a
17	Reject-Contact	[56B] 9.2	c9	c9	[56B] 9.2	c11	c11
17A	Request-Disposition	[56B] 9.1	c9	c9	[56B] 9.1	c11	c11
18	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
19	Supported	[26] 20.37	0	0	[26] 20.37	m	m
20	Timestamp	[26] 20.38	c8	c8	[26] 20.38	m	m
21	To	[26] 20.39	m	m	[26] 20.39	m	m
22	User-Agent	[26] 20.41	0		[26] 20.41	0	
23	Via	[26] 20.42	m	m	[26] 20.42	m	m
c3:	IF A.4/7 THEN m ELSE n / a - - authentication between UA and UA. IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. $4 / 38$ THEN o ELSE n/a - the Reason header field for the session initiation protocol. IF A.4/6 THEN o ELSE n/a - - timestamping of requests. IF A. $4 / 40$ THEN o ELSE n/a - - caller preferences for the session initiation protocol. IF A. $3 / 2$ THEN m ELSE IF A. $4 / 38$ THEN o ELSE n/a - P-CSCF, the Reason header field for the session initiation protocol. IF A.4/40 THEN m ELSE n/a - caller preferences for the session initiation protocol. IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling). IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.						
c4:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c16:							
c17:							

Table A.24: Void
Prerequisite A.5/5-- CANCEL response for all status-codes
Table A.25: Supported headers within the CANCEL response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
5	From	[26] 20.20	m	m	[26] 20.20	m	m
5A	Privacy	[33] 4.2	c3	n/a	[33] 4.2	c3	n/a
6	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
7	To	[26] 20.39	m	m	[26] 20.39	m	m
7A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
8	Via	[26] 20.42	m	m	[26] 20.42	m	m
9	Warning	[26] 20.43	0 (note)	0	[26] 20.43	0	0
$\begin{aligned} & \text { c1: } \\ & \text { c2: } \\ & \text { c3: } \end{aligned}$	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses. IF A.4/6 THEN m ELSE n / a - - timestamping of requests. IF A. $4 / 26$ THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).						
NOTE:	For a 488 (Not Acceptable Here) response, RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/5-- CANCEL response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.26: Supported headers within the CANCEL response

Item	Header		Sending				Receiving		
		Ref. RFC status	Profile status	Ref. RFC	Profile status				
2	Record-Route	$[26] 20.30$	n / a	n / a	$[26] 20.30$	n / a	n / a		
4	Supported	$[26] 20.37$	o	m	$[26] 20.37$	m	m		

Prerequisite A.5/5-- CANCEL response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106 - - Additional for 3xx - 6xx response
Table A.26A: Supported headers within the CANCEL response

Item	Header			Rending			RFCiving status			Profile status
		Ref.	RFC status	Profile status	Ref.	0				
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0			

Table A.27: Void
Prerequisite A.5/5-- CANCEL response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.28: Supported headers within the CANCEL response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
4	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0	

Table A.30: Void

Table A.31: Void

A.2.1.4.5 COMET method

Void

A.2.1.4.6 INFO method

Void

A.2.1.4.7 INVITE method

Prerequisite A.5/8-- INVITE request
Tables A. 32 to A.45: Void
Table A.46: Supported headers within the INVITE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0	c47	[26] 20.1	m	m
1A	Accept-Contact	[56B] 9.2	c24	c24	[56B] 9.2	c32	c32
2	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
4	Alert-Info	[26] 20.4	0	0	[26] 20.4	c1	c1
5	Allow	$\begin{aligned} & {[26] 20.5,} \\ & {[26] 5.1} \end{aligned}$	O (note 1)	0	$\begin{aligned} & {[26] 20.5,} \\ & {[2615.1} \end{aligned}$	m	m
6	Allow-Events	[28] 7.2.2	c2	c2	[28] 7.2.2	c2	c2
8	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
9	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
10	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
11	Contact	[26] 20.10	m	m	[26] 20.10	m	m
12	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
13	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
14	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
15	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
16	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
17	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
18	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
19	Expires	[26] 20.19	0	0	[26] 20.19	0	0
20	From	[26] 20.20	m	m	[26] 20.20	m	m
20A	Geolocation	[89] 3.2	c33	c33	[89] 3.2	c33	c33
20B	History-Info	[66] 4.1	c31	c31	[66] 4.1	c31	c31
21	In-Reply-To	[26] 20.21	0	0	[26] 20.21	0	0
21A	Join	[61] 7.1	c30	c30	[61] 7.1	c30	c30
21B	Max-Breadth	[117] 5.8	n/a	c45	[117] 5.8	c46	c46
22	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n / a	n / a
23	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
23A	Min-SE	[58] 5	c26	c26	[58] 5	c25	c25
24	Organization	[26] 20.25	0	0	[26] 20.25	0	0
24A	P-Access-Network-Info	[52] 4.4	c15	c16	[52] 4.4	c15	c17
24B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c7	c7
24C	P-Asserted-Service	[121] 4.1	n/a	n/a	[121] 4.1	c38	c38
24D	P-Called-Party-ID	[52] 4.2	x	x	[52] 4.2	c13	c13
24E	P-Charging-FunctionAddresses	[52] 4.5	c20	c21	[52] 4.5	c20	c21
24F	P-Charging-Vector	[52] 4.6	c18	c19	[52] 4.6	c18	c19
24G	P-Early-Media	[109] 8	c34	c34	[109] 8	c34	c34
25	P-Media-Authorization	[31] 5.1	n/a	n/a	[31] 5.1	c11	c12
25A	P-Preferred-Identity	[34] 9.2	c7	c5	[34] 9.2	n/a	n/a

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
25B	P-Preferred-Service	[121] 4.2	c37	c36	[121] 4.2	n/a	n/a
25C	P-Profile-Key	[97] 5	n/a	n/a	[97] 5	n/a	n/a
25D	P-User-Database	[82] 4	n/a	n / a	[82] 4	n/a	n/a
25E	P-Visited-Network-ID	[52] 4.3	x (note 3)	x	[52] 4.3	c14	n/a
26	Priority	[26] 20.26	0	0	[26] 20.26	0	0
26A	Privacy	[33] 4.2	c9	c9	[33] 4.2	c9	c9
27	Proxy-Authorization	[26] 20.28	c6	c6	[26] 20.28	n/a	n/a
28	Proxy-Require	[26] 20.29	0 (note 2)	0 (note 2)	[26] 20.29	n/a	n/a
28A	Reason	[34A] 2	c8	c8	[34A] 2	c8	c8
29	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	m	m
30	Referred-By	[59] 3	c27	c27	[59] 3	c28	c28
31	Reject-Contact	[56B] 9.2	c24	c24	[56B] 9.2	c32	c32
31A	Replaces	[60] 6.1	c29	c29	[60] 6.1	c29	c29
31B	Reply-To	[26] 20.31	0	0	[26] 20.31	0	0
31B	Request-Disposition	[56B] 9.1	c24	c24	[56B] 9.1	c32	c32
32	Require	[26] 20.32	0	m	[26] 20.32	m	m
33	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
33A	Security-Client	[48] 2.3.1	c22	c22	[48] 2.3.1	n/a	n/a
33B	Security-Verify	[48] 2.3.1	c23	c23	[48] 2.3.1	n/a	n/a
33C	Session-Expires	[58] 4	c25	c25	[58] 4	c25	c25
34	Subject	[26] 20.36	0	0	[26] 20.36	0	0
35	Supported	[26] 20.37	m	m	[26] 20.37	m	m
36	Timestamp	[26] 20.38	c10	c10	[26] 20.38	m	m
37	To	[26] 20.39	m	m	[26] 20.39	m	m
38	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
39	Via	[26] 20.42	m	m	[26] 20.42	m	m

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status
c1	IF A.4/12 THEN m ELSE n/a - downloading of alerting information.						
c2:	IF A.4/20 THEN m ELSE n / a - - SIP specific event notification extension.						
c3:	IF A.4/7 THEN m ELSE n/a - - authentication between UA and UA.						
c4:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses						
c5:	IF A.3/1 AND A.4/25 THEN o ELSE n/a - - UE and private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c6:	IF A.4/8A THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - authentication between UA and proxy.						
c7:	IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c8:	IF A.4/38 THEN o ELSE $\mathrm{n} / \mathrm{a}-$ - the Reason header field for the session initiation protocol.						
c9:	IF A.4/26 THEN o ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c10	IF A.4/6 THEN o ELSE n/a - -timestamping of requests.						
c11	IF A.4/19 THEN m ELSE n/a - SIP extensions for media authorization						
c12.	IF A.3/1 THEN m ELSE n/a-- UE						
c13:	IF A.4/32 THEN o ELSE n/a - - the P-Called-Party-ID extension.						
c14	IF A.4/33 THEN o ELSE n/a-- the P-Visited-Network-ID extension.						
c15:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.						
c16:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - - the P-Access-Network-Info header extension and UE.						
c17:	IF A. $4 / 34$ AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.						
c18:	IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension.						
c19:	IF A.4/36 THEN m ELSE n / a - - the P-Charging-Vector header extension.						
c20:	IF A.4/35 THEN o ELSE n/a - the P-Charging-Function-Addresses header extension.						
c21:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.						
c22:	IF A.4/37 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note 4).						
c23:	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - security mechanism agreement for the session initiation protocol.						
c24:	IF A.4/40 THEN o ELSE n/a - - caller preferences for the session initiation protocol.						
c25:	IF A.4/42 THEN m ELSE n/a - the SIP session timer.						
c26:	IF A.4/42 THEN o ELSE n/a - the SIP session timer.						
c27:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.						
c28:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.						
c29:	IF A.4/44 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - the Session Inititation Protocol (SIP) "Replaces" header.						
c30:	IF A.4/45 THEN m ELSE n/a - the Session Inititation Protocol (SIP) "Join" header.						
c31:	IF A. $4 / 47$ THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.						
c32:	IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol.						
c33:	IF A.4/60 THEN m ELSE n/a - SIP location conveyance.						
c34:	IF A.4/66 THEN m ELSE n/a - - The SIP P-Early-Media private header extension for authorization of early media.						
c36:	IF A.3/1 AND A.4/74 THEN o ELSE n/a - - UE and identification of communication services in the session initiation protocol						
c37:	IF A.4/74 THEN o ELSE n/a - - Identification of communication services in the session initiation protocol						
c38:	IF A.4/74 THEN m ELSE n/a - - Identification of communication services in the session initiation protocol						
c45:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE $n / a-$ - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF						
c46:	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.						
c47:	IF A.3/1 AND A.4/2B THEN m ELSE o-- UE and initiating a session.						
0.1:	At least one of these shall be supported						
NOTE 1:	RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL						
NOTE 2:	No distinction has been made in these tables between first use of a request on a From/To/Call-ID combination, and the usage in a subsequent one. Therefore the use of " 0 " etc. above has been included from a viewpoint of first usage.						
NOTE 3:	The strength of this requirement in RFC 3455 [52] is SHOULD NOT, rather than MUST NOT.						
NOTE 4:	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented. Use of this header in this method is not appropriate to the security mechanism defined by 3GPP TS 33.203 [19].						

Table A.47: Void
Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.48: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m

Prerequisite A.5/9-- INVITE response for all remaining status-codes
Table A.49: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	c12	c12	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
2	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
3	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
4	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
$8^{\text {a }}$	Expires	[26] 20.19	0	0	[26] 20.19	0	0
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c14	c14	[89] 3.2	c14	c14
9B	History-Info	[66] 4.1	c13	c13	[66] 4.1	c13	c13
10	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
11	Organization	[26] 20.25	0	0	[26] 20.25	0	
11A	P-Access-Network-Info	[52] 4.4	c5	c6	[52] 4.4	c5	c7
11B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c3	c3
11C	P-Charging-FunctionAddresses	[52] 4.5	c10	c11	[52] 4.5	c11	c11
11D	P-Charging-Vector	[52] 4.6	c8	c9	[52] 4.6	c8	c9
11E	P-Preferred-Identity	[34] 9.2	c3	X	[34] 9.2	n/a	n/a
11F	Privacy	[33] 4.2	c4	c4	[33] 4.2	c4	c4
11G	Reply-To	[26] 20.31	0	0	[26] 20.31	0	0
11H	Require	[26] 20.32	m	m	[26] 20.32	m	m
111	Server	[26] 20.35	0	0	[26] 20.35	0	0
12	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
13	To	[26] 20.39	m	m	[26] 20.39	m	m
13A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
14	Via	[26] 20.42	m	m	[26] 20.42	m	m
15	Warning	[26] 20.43	0 (note)	0	[26] 20.43	0	0
c1:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses. IF A.4/6 THEN m ELSE n/a - - timestamping of requests. IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. $4 / 34$ THEN o ELSE n/a - the P-Access-Network-Info header extension. IF A. $4 / 34$ AND A. $3 / 1$ THEN m ELSE n / a - - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension. IF A. $4 / 36$ THEN m ELSE $n / a-$ - the P-Charging-Vector header extension. IF A.4/35 THEN o ELSE n/a - the P-Charging-Function-Addresses header extension. IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension. IF A.6/6 OR A.6/18 THEN m ELSE o-- 200 (OK), 405 (Method Not Allowed). IF A. $4 / 47$ THEN m ELSE $n / a-$ - an extension to the session initiation protocol for request history information. IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.						
c2:							
c3:							
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
c13:							
c14:							
NOTE:	For a 488 (Not Acceptable Here) response, RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/9 - - INVITE response
Prerequisite: A.6/101A - - Additional for 18x response
Table A.50: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC	Profile status
4	Contact	[26] 20.10	0	m	[26] 20.10	m	m
5	P-Answer-State	[111]	c13	c13	[111]	c13	c13
5A	P-Early-Media	[109] 8	c14	c14	[109] 8	c14	c14
6	P-Media-Authorization	[31] 5.1	n/a	n/a	[31] 5.1	c11	c12
7	Record-Route	[26] 20.30	0	m	[26] 20.30	m	m
9	Rseq	[27] 7.1	c2	m	[27] 7.1	c3	m
c2:	IF A.4/14 THEN o ELSE n/a - - reliability of provisional responses in SIP. IF A.4/14 THEN m ELSE $n / a-$ - reliability of provisional responses in SIP. IF A. $4 / 19$ THEN m ELSE $n / a-$ - SIP extensions for media authorization. IF A.3/1 THEN m ELSE n/a - - UE. IF A. $4 / 65$ THEN m ELSE n / a - - the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular. IF A. $4 / 66$ THEN m ELSE n / a - - the SIP P-Early-Media private header extension for authorization of early media.						
c3:							
c11:							
c12:							
c13:							
c14:							

Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.51: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0	0	[26] 20.1	m	m
1A	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
1B	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
2	Allow-Events	[28] 7.2.2	c3	c3	[28] 7.2.2	c4	c4
4	Authentication-Info	[26] 20.6	c1	c1	[26] 20.6	c2	c2
6	Contact	[26] 20.10	m	m	[26] 20.10	m	m
7	P-Answer-State	[111]	c14	c14	[111]	c14	c14
8	P-Media-Authorization	[31] 5.1	n/a	n/a	[31] 5.1	c11	c12
9	Record-Route	[26] 20.30	m	m	[26] 20.30	m	m
10	Session-Expires	[58] 4	c13	c13	[58] 4	c13	c13
13	Supported	[26] 20.37	m	m	[26] 20.37	m	m
c1:	IF A.4/7 THEN o ELSE n/a - - authentication between UA and UA. IF A. $4 / 7$ THEN m ELSE n/a - authentication between UA and UA. IF A.4/20 THEN o ELSE n/a - - SIP specific event notification extension. IF A. $4 / 20$ THEN m ELSE n/a - SIP specific event notification extension. IF A. $4 / 19$ THEN m ELSE n/a - SIP extensions for media authorization. IF A.3/1 THEN m ELSE n/a - - UE. IF A. $4 / 42$ THEN m ELSE n/a - - the SIP session timer. IF A.4/65 THEN m ELSE n/a - - the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular.						
c2:							
c3:							
c4:							
c11:							
c12:							
c13:							
c14:							

Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106 - - Additional for 3xx - 6xx response
Table A.51A: Supported headers within the INVITE response

Item	Seader			Rending			RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	0				
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0			

Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/103 OR A.6/35-- Additional for 3 xx or 485 (Ambiguous) response
Table A.52: Supported headers within the INVITE response

Item	Seader			Rending			RFeiving status			Profile status
		Ref.	RFC status	Profile status	Ref.	(26] 20.10	$0($ note 1)			

Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.53: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
6	Proxy-Authenticate	$[26] 20.27$	c 3	c 3	$[26] 20.27$	c 3	c 3	
13	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	m		
c1:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses.							
c2:	IF A.4/6 THEN m ELSE n/a - - timestamping of requests.							
c3:	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.							

Prerequisite A.5/9-- INVITE response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 600 (Busy Everywhere), 603 (Decline) response

Table A.54: Supported headers within the INVITE response

Item	Seader			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
8	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0		

Table A.55: Void
Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/20-- Additional for 407 (Proxy Authentication Required) response
Table A.56: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC	Profile status
6	Proxy-Authenticate	[26] 20.27	c1	c1	[26] 20.27	c1	c1
11	WWW-Authenticate	[26] 20.44	0	0	[26] 20.44	0	0
c1:	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.						

Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/25 - - Additional for 415 (Unsupported Media Type) response
Table A.57: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
1	Accept	$[26] 20.1$	0.1	0.1	$[26] 20.1$	m	m	
2	Accept-Encoding	$[26] 20.2$	0.1	0.1	$[26] 20.2$	m	m	
3	Accept-Language	$[26] 20.3$	0.1	0.1	$[26] 20.3$	m	m	
0.1	At least one of these capabilities is supported.							

Prerequisite A.5/9-- INVITE response
Prerequisite: A. $6 / 27$ - - Additional for 420 (Bad Extension) response
Table A.58: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
10	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m	

Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/28 OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.58A: Supported headers within the INVITE response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
3	Security-Server	$[48] 2$	x	x	$[48] 2$	c 1	c 1		
$\mathrm{c} 1:$	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ security mechanism agreement for the session initiation protocol.								

Prerequisite A.5/9 - - INVITE response
Prerequisite: A.6/28A - - Additional for 422 (Session Interval Too Small) response
Table A.58B: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Min-SE	[58] 5	c1	c1	[58] 5	c1	c1
c1:	IF A.4/42 THEN o ELSE n/a - the SIP session timer.						

Table A.59: Void
Table A.60: Void
Prerequisite A.5/9 - - INVITE response
Prerequisite: A.6/45--503 (Service Unavailable)
Table A.61: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
8	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	m	

Prerequisite A.5/9-- INVITE response
Prerequisite: A.6/17 OR A.6/22 OR A.6/29D OR A.6/30 OR A. $6 / 34$ OR A. $6 / 36$ OR A.6/42 OR A.6/44 - - Additional for 404 (Not Found), 410 (Gone), 433 (Anonymity Disallowed), 480 (Temporarily not available), 484 (Address Incomplete), 486 (Busy Here), 500 (Internal Server Error), 502 (Busy Everywhere) response

Table A.61A: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Reason	[130]	0	C1	[130]	0	C1

Table A.62: Void

A.2.1.4.7A MESSAGE method

Prerequisite A.5/9A - - MESSAGE request
Table A.62A: Supported headers within the MESSAGE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept-Contact	[56B] 9.2	c24	c24	[56B] 9.2	c28	c28
1A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
2	Allow-Events	[28] 7.2.2	c1	c1	[28] 7.2.2	c2	c2
3	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
4	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
5	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
6	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
7	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
8	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
9	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
10	Content-Type	[26] 20.15	m	m	[26] 29.15	m	m
11	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
12	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
13	Expires	[26] 20.19	0	0	[26] 20.19	0	0
14	From	[26] 20.20	m	m	[26] 20.20	m	m
14A	Geolocation	[89] 3.2	c29	c29	[89] 3.2	c29	c29
14B	History-Info	[66] 4.1	c27	c27	[66] 4.1	c27	c27
15	In-Reply-To	[26] 20.21	0	0	[26] 20.21	0	0
15A	Max-Breadth	[117] 5.8	n/a	c39	[117] 5.8	c40	c40
16	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
17	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
18	Organization	[26] 20.25	0	0	[26] 20.25	0	0
18A	P-Access-Network-Info	[52] 4.4	c15	c16	[52] 4.4	c15	c16
18B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c11	c11
18C	P-Asserted-Service	[121] 4.1	n/a	n/a	[121] 4.1	c33	c33
18D	P-Called-Party-ID	[52] 4.2	X	x	[52] 4.2	c13	c13
18E	P-Charging-FunctionAddresses	[52] 4.5	c20	c21	[52] 4.5	c20	c21
18F	P-Charging-Vector	[52] 4.6	c18	c19	[52] 4.6	c18	c19
18G	P-Preferred-Identity	[34] 9.2	c11	c7	[34] 9.2	n/a	n/a
18 H	P-Preferred-Service	[121] 4.2	c32	c31	[121] 4.2	n/a	n/a
18I	P-Profile-Key	[97] 5	n/a	n/a	[97] 5	n/a	n/a
18J	P-User-Database	[82] 4	n/a	n/a	[82] 4	n/a	n/a
18K	P-Visited-Network-ID	[52] 4.3	x (note 1)	x	[52] 4.3	c14	n/a
19	Priority	[26] 20.26	0	0	[26] 20.26	0	0
19A	Privacy	[33] 4.2	c12	c12	[33] 4.2	c12	c12
20	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
21	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
21A	Reason	[34A] 2	c6	c6	[34A] 2	c6	c6
22	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	n/a	n/a
22A	Referred-By	[59] 3	c25	c25	[59] 3	c26	c26
23	Reject-Contact	[56B] 9.2	c24	c24	[56B] 9.2	c28	c28
23A	Reply-To	[26] 20.31	0	0	[26] 20.31	0	0
23B	Request-Disposition	[56B] 9.1	c24	c24	[56B] 9.1	c28	c28
24	Require	[26] 20.32	c8	0	[26] 20.32	m	m
25	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
25A	Security-Client	[48] 2.3.1	c22	c22	[48] 2.3.1	n/a	n/a
25B	Security-Verify	[48] 2.3.1	c23	c23	[48] 2.3.1	n/a	n/a
26	Subject	[26] 20.35	0	0	[26] 20.36	0	0
27	Supported	[26] 20.37	c9	m	[26] 20.37	m	m
28	Timestamp	[26] 20.38	c10	c10	[26] 20.38	m	m
29	To	[26] 20.39	m	m	[26] 20.39	m	m
30	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
31	Via	[26] 20.42	m	m	[26] 20.42	m	m

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
c1:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.						
c2:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.						
c3:	IF A.4/7 THEN m ELSE n / a - - authentication between UA and UA.						
c4:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and response						
c5:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.						
c6:	IF A.4/38 THEN o ELSE n/a - the Reason header field for the session initiation protocol.						
c7:	IF A. $3 / 1$ AND A. $4 / 25$ THEN o ELSE $n / a-$ - UE and private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c8:	IF A.4/14 THEN o. 1 ELSE 0-- Reliable transport.						
c9	IF IF A.4/14 THEN o. 1 ELSE o - support of reliable transport.						
c10:	IF A.4/6 THEN o ELSE n/a - -timestamping of requests.						
c11	IF A.4/25 THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c12:	IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).						
c13:	IF A.4/32 THEN o ELSE n/a - the P-Called-Party-ID extension.						
c14:	IF A.4/33 THEN o ELSE n/a-- the P-Visited-Network-ID extension.						
c15:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.						
c16:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE.						
c17:	IF A. $4 / 34$ AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.						
c18:	IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension.						
c19:	IF A.4/36 THEN m ELSE n/a - - the P-Charging-Vector header extension.						
c20:	IF A.4/35 THEN o ELSE n/a--the P-Charging-Function-Addresses header extension.						
c21:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.						
c22:	IF A.4/37 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note 2).						
c23:	IF A.4/37 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						
c24:	IF A.4/40 THEN o ELSE $\mathrm{n} / \mathrm{a}-$ - caller preferences for the session initiation protocol.						
c25:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.						
c26:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.						
c27:	IF A. $4 / 47$ THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.						
c28:	IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol.						
c29:	IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.						
c31:	IF A.3/1 AND A.4/74 THEN o ELSE n/a - - UE and Identification of communication services in the session initiation protocol						
c32:	IF A.4/74 THEN o ELSE n/a - - Identification of communication services in the session initiation protocol						
c33:	IF A.4/74 THEN m ELSE n/a - - Identification of communication services in the session initiation protocol.						
c39:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF						
c40:	IF A.4/71 THEN m proxies.		amplific	vulnera			ol forking
NOTE	The strength of this requirement in RFC 3455 [52] is SHOULD NOT, rather than MUST NOT.						
NOTE 2:	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented. Use of this header in this method is not appropriate to the security mechanism defined by 3GPP TS 33.203 [19].						

Prerequisite A.5/9A - - MESSAGE request
Table A.62B: Supported message bodies within the MESSAGE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	application/vnd.3gpp.sms	[4D]	c1	c1	[4D]	c1	c1
c1:	IF A.3A/61 OR A.3A/62 OR A.3A/63 THEN m ELSE o - - an SM-over-IP sender or an SM-over-IP receiver or an IP-SM-GW for SMS over IP.						

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.62BA: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses.						

Prerequisite A.5/9B - - MESSAGE response for all remaining status-codes
Table A.62C: Supported headers within the MESSAGE response

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.62D: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Allow-Events	[28] 7.2.2	c3	c3	[28] 7.2.2	c4	c4
2	Authentication-Info	[26] 20.6	c1	c1	[26] 20.6	c2	c2
4	Supported	[26] 20.37	0	0	[26] 20.37	m	m
c1: c2: c3: c4:	IF A.4/7 THEN o ELSE n/a - - authentication between UA and UA. IF A. $4 / 7$ THEN m ELSE $n / a-$ - authentication between UA and UA. IF A.4/20 THEN o ELSE n/a - - SIP specific event notification extension. IF A. $4 / 20$ THEN m ELSE n / a - - SIP specific event notification extension.						

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A. $6 / 103$ OR A. $6 / 104$ OR A. $6 / 105$ OR A.6/106 - - Additional for $3 \mathrm{xx}-6 \mathrm{xx}$ response
Table A.62DA: Supported headers within the MESSAGE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0	

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/103-- Additional for 3xx or 485 (Ambiguous) response
Table A.62E: Supported headers within the MESSAGE response

Item	Seader			Receiving			
		Ref. RFC status	Profile status	Ref.	RFC status	Profile status	
2	Contact	$[26] 20.10$	0 (note)	0	$[26] 20.10$	m	m
NOTE:	The strength of this requirement is RECOMMENDED rather than OPTIONAL.						

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.62F: Supported headers within the MESSAGE response

Item	Header			Sending RFC status			Profile status
		Ref.	Ref.			RFC status	Profile status
3	Proxy-Authenticate	$[26] 20.27$	c 1	c 1	$[26] 20.27$	c 1	c 1
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	m	m
$\mathrm{c} 1:$	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.						

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/17 OR A.6/23 OR A.6/30 OR A.6/36 OR A.6/42 OR A.6/45 OR A.6/50 OR A.6/51 - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.62G: Supported headers within the MESSAGE response

Item	Seader			Receiving			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
4	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0

Table A.62H: Void
Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.62I: Supported headers within the MESSAGE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	$c 1$	
6	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
$c 1:$	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.							

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/25-- Additional for 415 (Unsupported Media Type) response
Table A.62J: Supported headers within the MESSAGE response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	Profile status status				
1	Accept	$[26] 20.1$	0.1	0.1	$[26] 20.1$	m	m		
2	Accept-Encoding	$[26] 20.2$	0.1	0.1	$[26] 20.2$	m	m		
3	Accept-Language	$[26] 20.3$	0.1	0.1	$[26] 20.3$	m	m		
0.1	At least one of these capabilities is supported.								

Prerequisite A.5/9B-- MESSAGE response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.62K: Supported headers within the MESSAGE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m		

Prerequisite A.5/9B - - MESSAGE response
Prerequisite: A.6/28 OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.62L: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	X	X	[48] 2	c1	c1
c1:	IF A.4/37 THEN m	security m	anism agr	ment for th	session	tion protoc	

Table A.62M: Void
Table A.62N: Void

A.2.1.4.8 NOTIFY method

Prerequisite A.5/10-- NOTIFY request
Table A.63: Supported headers within the NOTIFY request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0	0	[26] 20.1	m	m
1A	Accept-Contact	[56B] 9.2	c19	c19	[56B] 9.2	c23	c23
2	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
3A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
4	Allow-Events	[28] 7.2.2	c1	c1	[28] 7.2.2	c2	c2
5	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6A	Call-Info	[26] 20.9	0	0	[26] 20.9	c25	c25
6B	Contact	[26] 20.10	m	m	[26] 20.10	m	m
7	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
8	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
9	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
14	Event	[28] 7.2.1	m	m	[28] 7.2.1	m	m
15	From	[26] 20.20	m	m	[26] 20.20	m	m
15A	Geolocation	[89] 3.2	c24	c24	[89] 3.2	c24	c24
15B	History-Info	[66] 4.1	c22	c22	[66] 4.1	c22	c22
15C	Max-Breadth	[117] 5.8	n/a	c26	[117] 5.8	c27	c27
16	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
17	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
17A	P-Access-Network-Info	[52] 4.4	c10	c11	[52] 4.4	c10	c12
17B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c6	c6
17C	P-Charging-FunctionAddresses	[52] 4.5	c14	c15	[52] 4.5	c14	c15
17D	P-Charging-Vector	[52] 4.6	c13	n/a	[52] 4.6	c13	n/a
17E	P-Preferred-Identity	[34] 9.2	c6	X	[34] 9.2	n/a	n/a
17F	Privacy	[33] 4.2	c7	n/a	[33] 4.2	c7	c7
18	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
19	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
19A	Reason	[34A] 2	c18	c18	[34A] 2	c18	c18
20	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	c9	c9
20A	Referred-By	[59] 3	c20	c20	[59] 3	c21	c21
20B	Reject-Contact	[56B] 9.2	c19	c19	[56B] 9.2	c23	c23
20C	Request-Disposition	[56B] 9.1	c19	c19	[56B] 9.1	c23	c23
21	Require	[26] 20.32	0	0	[26] 20.32	m	m
22A	Security-Client	[48] 2.3.1	c16	c16	[48] 2.3.1	n/a	n/a
22B	Security-Verify	[48] 2.3.1	c17	c17	[48] 2.3.1	n/a	n/a
22	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
23	Subscription-State	[28] 8.2.3	m	m	[28] 8.2.3	m	m
24	Supported	[26] 20.37	0	0	[26] 20.37	m	m
25	Timestamp	[26] 20.38	c8	c8	[26] 20.38	m	m
26	To	[26] 20.39	m	m	[26] 20.39	m	m
27	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
28	Via	[26] 20.42	m	m	[26] 20.42	m	m
29	Warning	[26] 20.43	0	0	[26] 20.43	0	0

c1:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.
c2:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.
c3:	IF A.4/7 THEN m ELSE n/a - - authentication between UA and UA.
c4:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.
c5:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.
c6:	IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c7:	IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c8:	IF A.4/6 THEN o ELSE n/a - - timestamping of requests.
c9:	IF A. $4 / 15$ OR A. $4 / 20$ THEN m ELSE n/a - - the REFER method extension or SIP specific event notification extension.
c10:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.
c11:	IF A.4/34 AND A.3/1 THEN m ELSE n / a - - the P-Access-Network-Info header extension and UE.
c12:	IF A. $4 / 34$ AND (A.3/7A OR A.3/7D) THEN m ELSE $n / a-$ - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.
c13:	IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension.
c14:	IF A.4/35 THEN o ELSE n/a-- the P-Charging-Function-Addresses header extension.
c15:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c16:	IF A.4/37 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note).
c17:	IF A.4/37 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.
c18:	IF A.4/38 THEN o ELSE n/a - the Reason header field for the session initiation protocol.
c19:	IF A.4/40 THEN o ELSE n/a - caller preferences for the session initiation protocol.
c20:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.
c21:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.
c22:	IF A.4/47 THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.
c23:	IF A.4/40 THEN m ELSE n / a - - caller preferences for the session initiation protocol.
c24:	IF A.4/60 THEN m ELSE n/a - SIP location conveyance.
c25:	IF A.4/63 THEN m ELSE o-- subscriptions to request-contained resource lists in the session initiation protocol.
c26:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).
c27:	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
NOTE	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented. Use of this header in this method is not appropriate to the security mechanism defined by 3GPP TS 33.203 [19].

Prerequisite A.5/10-- NOTIFY request
Table A.64: Supported message bodies within the NOTIFY request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	sipfrag	[37] 2	c1	c1	[37]	c1	c1
c1:	IF A.4/15 THEN m	REFER	thod exten				

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.64A: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses.						

Prerequisite A.5/11-- NOTIFY response for all remaining status-codes
Table A.65: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
3	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
4	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c12	c12	[89] 3.2	c12	c12
10	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
10A	P-Access-Network-Info	[52] 4.4	c5	c6	[52] 4.4	c5	c7
10B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c3	c3
10C	P-Charging-FunctionAddresses	[52] 4.5	c9	c10	[52] 4.5	c9	c10
10D	P-Charging-Vector	[52] 4.6	c8	n/a	[52] 4.6	c8	n/a
10E	P-Preferred-Identity	[34] 9.2	c3	X	[34] 9.2	n/a	n/a
10F	Privacy	[33] 4.2	c4	n/a	[33] 4.2	c4	c4
10G	Require	[26] 20.32	m	m	[26] 20.32	m	m
10 H	Server	[26] 20.35	0	0	[26] 20.35	0	0
11	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	o (note)	0	[26] 20.43	0	0
c1:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses. IF A.4/6 THEN m ELSE n/a - - timestamping of requests. IF A.4/25 THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A.4/34 THEN o ELSE n/a - - the P-Access-Network-Info header extension. IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - - the P-Charging-Vector header extension. IF A.4/35 THEN o ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension. IF A.6/18 THEN m ELSE o-- 405 (Method Not Allowed). IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.						
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
NOTE:	RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.66: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow-Events	[28] 7.2.2	c4	c4	[28] 7.2.2	c5	c5
1	Authentication-Info	[26] 20.6	c1	c1	[26] 20.6	c2	c2
1A	Contact	[26] 20.10	0	0	[26] 20.10	m	m
2	Record-Route	[26] 20.30	c3	c3	[26] 20.30	c3	c3
5	Supported	[26] 20.37	m	m	[26] 20.37	m	m

c1:	IF A.4/7 THEN o ELSE $n / a-$ - authentication between UA and UA.
c2:	IF A.4/7 THEN m ELSE $n / a-$ authentication between UA and UA.
c3:	IF A.4/15 OR A.4/20 THEN m ELSE $n / a-$ - the REFER method extension or SIP specific event notification
c4:	extension.
IF A.4/20 THEN o ELSE $n / a-$ - SIP specific event notification extension.	
c5:	IF A.4/20 THEN m ELSE $n / a-$ SIP specific event notification extension.

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106-- Additional for 3xx - 6xx response
Table A.66A: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0	

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/103-- Additional for 3xx response
Table A.67: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Contact	$[26] 20.10$	m	m	$[26] 20.10$	m	m	

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.68: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	c 1	c 1	$[26] 20.27$	c 1	c 1	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	m	m	
$\mathrm{c} 1:$	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.							

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.69: Supported headers within the NOTIFY response

Item	Header			Rending			RFeiving RFC			Profile status
		Ref.	RFC status	Profile status	Ref.	0				
3	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0			

Table A.70: Void
Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.71: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref. RFC status	Profile status	Ref.	RFC status	Profile status		
2	Proxy-Authenticate	$[26] 20.27$	$c 3$	$c 3$	$[26] 20.27$	$c 3$	$c 3$	
6	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
c3:	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.							

Prerequisite A.5/11-- NOTIFY response
Prerequisite A.6/25-- Additional for 415 (Unsupported Media Type) response
Table A.72: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0.1	0.1	[26] 20.1	m	m
2	Accept-Encoding	[26] 20.2	0.1	0.1	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0.1	0.1	[26] 20.3	m	m
0.1	At least one of these capabilities is supported.						

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/27-- Addition for 420 (Bad Extension) response
Table A.73: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m	

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A. $6 / 28$ OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.73A: Supported headers within the NOTIFY response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
3	Security-Server	$[48] 2$	x	x	$[48] 2$	c 1	c 1		
$\mathrm{c} 1:$	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ security mechanism agreement for the session initiation protocol.								

Table A.74: Void

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/35-- Additional for 485 (Ambigious) response
Table A.74A: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Contact	$[26] 20.10$	0	0	$[26] 20.10$	m	m	

Prerequisite A.5/11-- NOTIFY response
Prerequisite: A.6/39-- Additional for 489 (Bad Event) response
Table A.75: Supported headers within the NOTIFY response

Item	Header		Sending RFC status			Profile status	Ref.
		Ref.	RFC status	Profile status			
1	Allow-Events	$[28] 7.2 .2$	m	m	$[28] 7.2 .2$	m	m

Table A.76: Void

A.2.1.4.9 OPTIONS method

Prerequisite A.5/12-- OPTIONS request
Table A.77: Supported headers within the OPTIONS request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	m	m
1A	Accept-Contact	[56B] 9.2	c21	c21	[56B] 9.2	c26	c26
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	m	m
3A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
4	Allow-Events	[28] 7.2 .2	c24	c24	[28] 7.2 .2	c1	c1
5	Authorization	[26] 20.7	c2	c2	[26] 20.7	c2	c2
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
8	Contact	[26] 20.10	0	0	[26] 20.10	0	0
9	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
10	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
11	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
12	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
13	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
14	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
15	Date	[26] 20.17	c3	c3	[26] 20.17	m	m
16	From	[26] 20.20	m	m	[26] 20.20	m	m
16A	Geolocation	[89] 3.2	c27	c27	[89] 3.2	c27	c27
16B	History-Info	[66] 4.1	c25	c25	[66] 4.1	c25	c25
16C	Max-Breadth	[117] 5.8	n/a	c31	[117] 5.8	c32	c32
17	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
18	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
19	Organization	[26] 20.25	0	0	[26] 20.25	0	0
19A	P-Access-Network-Info	[52] 4.4	c11	c12	[52] 4.4	c11	c13
19B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c6	c6
19C	P-Asserted-Service	[121] 4.1	n/a	n/a	[121] 4.1	c30	c30
19D	P-Called-Party-ID	[52] 4.2	X	X	[52] 4.2	c9	c9
19E	P-Charging-FunctionAddresses	[52] 4.5	c16	c17	[52] 4.5	c16	c17
19F	P-Charging-Vector	[52] 4.6	c14	c15	[52] 4.6	c14	c15
19G	P-Preferred-Identity	[34] 9.2	c6	c4	[34] 9.2	n/a	n/a
19H	P-Preferred-Service	[121] 4.2	c29	c28	[121] 4.2	n/a	n/a
191	P-Profile-Key	[97] 5	n/a	n/a	[97] 5	n/a	n/a
19J	P-User-Database	[82] 4	n/a	n/a	[82] 4	n/a	n/a
19K	P-Visited-Network-ID	[52] 4.3	x (note 2)	X	[52] 4.3	c10	n/a
19L	Privacy	[33] 4.2	c8	c8	[33] 4.2	c8	c8
20	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
21	Proxy-Require	[26] 20.29	0	o (note 1)	[26] 20.29	n/a	n/a
21A	Reason	[34A] 2	c20	c20	[34A] 2	c20	c20
22	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	n/a	n/a
22A	Referred-By	[59] 3	c22	c22	[59] 3	c23	c23
22B	Reject-Contact	[56B] 9.2	c21	c21	[56B] 9.2	c26	c26
22C	Request-Disposition	[56B] 9.1	c21	c21	[56B] 9.1	c26	c26
23	Require	[26] 20.32	0	0	[26] 20.32	m	m
24	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
24A	Security-Client	[48] 2.3.1	c18	c18	[48] 2.3.1	n/a	n/a
24B	Security-Verify	[48] 2.3.1	c19	c19	[48] 2.3.1	n / a	n/a
25	Supported	[26] 20.37	c6	c6	[26] 20.37	m	m
26	Timestamp	[26] 20.38	c7	c7	[26] 20.38	m	m
27	To	[26] 20.39	m	m	[26] 20.39	m	m
28	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
29	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.
c2:	IF A.4/7 THEN m ELSE n / a - - authentication between UA and UA.
c3:	IF A.4/11 THEN o ELSE $\mathrm{n} / \mathrm{a}-$ - insertion of date in requests and responses.
c4:	IF A.3/1 AND A. $4 / 25$ THEN o ELSE n/a - - UE and private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c5:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.
c6:	IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c7:	IF A.4/6 THEN o ELSE n/a - - timestamping of requests.
c8:	IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c9:	IF A.4/32 THEN o ELSE n/a - - the P-Called-Party-ID extension.
c10:	IF A.4/33 THEN o ELSE n/a - the P-Visited-Network-ID extension
c11:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension
c12:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE
c13:	IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.
c14:	IF A.4/36 THEN o ELSE n/a-t the P-Charging-Vector header extension.
c15:	IF A.4/36 THEN m ELSE n / a - - the P-Charging-Vector header extension.
c16:	IF A.4/35 THEN o ELSE n/a-- the P-Charging-Function-Addresses header extension.
c17:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c18:	IF A.4/37 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note 3).
c19:	IF A.4/37 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.
c20:	IF A.4/38 THEN o ELSE n/a - the Reason header field for the session initiation protocol.
c21:	IF A.4/40 THEN o ELSE n/a - caller preferences for the session initiation protocol.
c22:	IF A.4/43 THEN m ELSE n/a - - the SIP Referred-By mechanism.
c23:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.
c24:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.
c25:	IF A. $4 / 47$ THEN m ELSE n/a - an extension to the session initiation protocol for request history information.
c26:	IF A.4/40 THEN m ELSE n / a - - caller preferences for the session initiation protocol.
c27:	IF A.4/60 THEN m ELSE n/a - SIP location conveyance.
c28:	IF A.3/1 AND A.4/74 THEN o ELSE n/a - - UE and Identification of communication services in the session initiation protocol.
c29:	IF A.4/74 THEN o ELSE n/a - - Identification of communication services in the session initiation protocol.
c30:	IF A.4/74 THEN m ELSE n/a - - Identification of communication services in the session initiation protocol.
c31:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).
c32:	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
NOTE 1:	No distinction has been made in these tables between first use of a request on a From/To/Call-ID combination, and the usage in a subsequent one. Therefore the use of " 0 " etc. above has been included from a viewpoint of first usage.
NOTE 2:	The strength of this requirement in RFC 3455 [52] is SHOULD NOT, rather than MUST NOT.
NOTE 3:	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented. Use of this header in this method is not appropriate to the security mechanism defined by 3GPP TS 33.203 [19].

Table A.78: Void

Table A.79: Void
Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.79A: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Call-ID	$[26] 20.8$	m	m	$[26] 20.8$	m	m	
2	Content-Length	$[26] 20.14$	m	m	$[26] 20.14$	m	m	
3	Cseq	$[26] 20.16$	m	m	$[26] 20.16$	m	m	
4	Date	$[26] 20.17$	c 1	c 1	$[26] 20.17$	m	m	
5	From	$[26] 20.20$	m	m	$[26] 20.20$	m	m	
6	To	$[26] 20.39$	m	m	$[26] 20.39$	m	m	
7	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m	
$\mathrm{c}:$	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.							

Prerequisite A.5/13-- OPTIONS response for all remaining status-codes
Table A.80: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	c12	c12	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
2	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
3	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
4	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c14	c14	[89] 3.2	c14	c14
9B	History-Info	[66] 4.1	c13	c13	[66] 4.1	c13	c13
10	MIME-Version	[26] 20.24	\bigcirc	0	[26] 20.24	m	m
11	Organization	[26] 20.25	0	0	[26] 20.25	0	0
11A	P-Access-Network-Info	[52] 4.4	c5	c6	[52] 4.4	c5	c7
11B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c3	c3
11C	P-Charging-FunctionAddresses	[52] 4.5	c10	c11	[52] 4.5	c10	c11
11D	P-Charging-Vector	[52] 4.6	c8	c9	[52] 4.6	c8	c9
11E	P-Preferred-Identity	[34] 9.2	c3	x	[34] 9.2	n/a	n/a
11F	Privacy	[33] 4.2	c4	c4	[33] 4.2	c4	c4
11G	Require	[26] 20.32	m	m	[26] 20.32	m	m
11H	Server	[26] 20.35	0	0	[26] 20.35	0	0
12	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
13	To	[26] 20.39	m	m	[26] 20.39	m	m
13A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
14	Via	[26] 20.42	m	m	[26] 20.42	m	m
15	Warning	[26] 20.43	0 (note)	0	[26] 20.43	0	0
c1:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses. IF A.4/6 THEN m ELSE n/a - - timestamping of requests. IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. $4 / 34$ THEN o ELSE n/a - - the P-Access-Network-Info header extension. IF A.4/34 AND A.3/1 THEN m ELSE n/a - - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE $n / a-$ - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A. $4 / 36$ THEN o ELSE n/a - the P-Charging-Vector header extension. IF A. $4 / 36$ THEN m ELSE n / a - - the P-Charging-Vector header extension. IF A. $4 / 35$ THEN o ELSE n/a - the P-Charging-Function-Addresses header extension. IF A. $4 / 35$ THEN m ELSE $n / a-$ - the P-Charging-Function-Addresses header extension. IF A.6/6 OR A.6/18 THEN m ELSE o-- 200 (OK), 405 (Method Not Allowed). IF A. $4 / 47$ THEN m ELSE n / a - - an extension to the session initiation protocol for request history information. IF A. $4 / 60$ THEN m ELSE n / a - - SIP location conveyance.						
c2:							
c3:							
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
c13:							
c14:							
NOTE:	RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.81: Supported headers within the OPTIONS response

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106 - - Additional for 3xx - 6xx response
Table A.81A: Supported headers within the OPTIONS response

Item	Header		Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0	

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/103 OR A.6/35-- Additional for 3xx or 485 (Ambiguous) response
Table A.82: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Contact	[26] 20.10	0 (note)	0	[26] 20.10	m	m
NOTE:	RFC 3261 [26] gives	of this heade	as SHOU	rather tha	OPTIONAL.		

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.83: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref. RFC status	Profile status	Ref.	RFC status	Profile status		
4	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	$c 1$	
10	WWW-Authenticate	$[26] 20.44$	0		$[26] 20.44$	0		
c1:	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.							

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/17 OR A.6/23 OR A.6/30 OR A.6/36 OR A.6/42 OR A.6/45 OR A.6/50 OR A.6/51 - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response.

Table A.84: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
5	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0	

Table A.85: Void
Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.86: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
4	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	c 1	
8	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
c1:	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.							

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/25-- Additional for 415 (Unsupported Media Type) response
Table A.87: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
1	Accept	$[26] 20.1$	0.1	0.1	$[26] 20.1$	m	m	
2	Accept-Encoding	$[26] 20.2$	0.1	0.1	$[26] 20.2$	m	m	
3	Accept-Language	$[26] 20.3$	0.1	0.1	$[26] 20.3$	m	m	
0.1	At least one of these capabilities is supported.							

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.88: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
7	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m	

Prerequisite A.5/13-- OPTIONS response
Prerequisite: A.6/28 OR A.6/41A - - Additional 421 (Extension Required), 494 (Security Agreement Required) response

Table A.88A: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	X	X	[48] 2	c1	c1
c1:	IF A.4/37 THEN m	security m	anism agr	ment for th	session	tion protoc	

Table A.89: Void
Table A.90: Void

A.2.1.4.10 PRACK method

Prerequisite A.5/14-- PRACK request
Table A.91: Supported headers within the PRACK request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0	0	[26] 20.1	m	m
1A	Accept-Contact	[56B] 9.2	c15	C15	[56B] 9.2	c18	c18
2	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
3A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
4	Allow-Events	[28] 7.2.2	c1	c1	[28] 7.2.2	c2	c2
5	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
8	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
9	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
14	From	[26] 20.20	m	m	[26] 20.20	m	m
14A	Max-Breadth	[117] 5.8	n / a	c21	[117] 5.8	c22	c22
15	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
16	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
16A	P-Access-Network-Info	[52] 4.4	c9	c10	[52] 4.4	c9	c11
16B	P-Charging-FunctionAddresses	[52] 4.5	c13	c14	[52] 4.5	c13	c14
16C	P-Charging-Vector	[52] 4.6	c12	n/a	[52] 4.6	c12	n/a
16D	Privacy	[33] 4.2	c6	n/a	[33] 4.2	c6	n/a
17	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
18	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
19	Rack	[27] 7.2	m	m	[27] 7.2	m	m
19A	Reason	[34A] 2	c7	c7	[34A] 2	c7	c7
20	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	n/a	n/a
20A	Referred-By	[59] 3	c16	c16	[59] 3	c17	c17
20B	Reject-Contact	[56B] 9.2	c15	c15	[56B] 9.2	c18	c18
20C	Request-Disposition	[56B] 9.1	c15	c15	[56B] 9.1	c18	c18
21	Require	[26] 20.32	0	0	[26] 20.32	m	m
22	Route	[26] 20.34	m	m	[26] 20.34	n/a	n / a
23	Supported	[26] 20.37	0	0	[26] 20.37	m	m
24	Timestamp	[26] 20.38	c8	c8	[26] 20.38	m	m
25	To	[26] 20.39	m	m	[26] 20.39	m	m
26	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
27	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.
c2:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.
c3:	IF A.4/7 THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ authentication between UA and UA.
c4:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.
c5:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.
c6:	IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c7:	IF A.4/38 THEN o ELSE n / a - - the Reason header field for the session initiation protocol.
c8:	IF A.4/6 THEN o ELSE n/a - -timestamping of requests.
c9:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.
c10:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE.
c11:	IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE $n / a-$ - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.
c12:	IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension.
c13:	IF A.4/35 THEN o ELSE n/a-- the P-Charging-Function-Addresses header extension.
c14:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c15:	IF A.4/40 THEN o ELSE n/a - caller preferences for the session initiation protocol.
c16:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.
c17:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.
c18:	IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol.
c21:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).
c22:	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.

Table A.92: Void
Table A.93: Void
Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.93A: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Call-ID	$[26] 20.8$	m	m	$[26] 20.8$	m	m	
2	Content-Length	$[26] 20.14$	m	m	$[26] 20.14$	m	m	
3	Cseq	$[26] 20.16$	m	m	$[26] 20.16$	m	m	
4	Date	$[26] 20.17$	c 1	c 1	$[26] 20.17$	m	m	
5	From	$[26] 20.20$	m	m	$[26] 20.20$	m	m	
6	To	$[26] 20.39$	m	m	$[26] 20.39$	m	m	
7	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m	
$\mathrm{c} 1:$	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.							

Prerequisite A.5/15-- PRACK response for all remaining status-codes
Table A.94: Supported headers within the PRACK response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	c9	c9	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
3	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
4	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
9	From	[26] 20.20	m	m	[26] 20.20	m	m
10	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
10A	P-Access-Network-Info	[52] 4.4	c3	c4	[52] 4.4	c3	c5
10B	P-Charging-FunctionAddresses	[52] 4.5	c7	c8	[52] 4.5	c7	c8
10C	P-Charging-Vector	[52] 4.6	c6	n/a	[52] 4.6	c6	n/a
10D	P-Early-Media	[109] 8	c10	c10	[109] 8	c10	c10
10E	Privacy	[33] 4.2	c2	n/a	[33] 4.2	c2	n/a
10F	Require	[26] 20.32	0	0	[26] 20.32	m	m
10G	Server	[26] 20.35	0	0	[26] 20.35	0	0
11	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	o (note)	0	[26] 20.43	0	0
c1:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. $4 / 34$ THEN o ELSE n / a - - the P-Access-Network-Info header extension. IF A. $4 / 34$ AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension. IF A.4/35 THEN o ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A. $4 / 35$ THEN m ELSE $n / a-$ - the P-Charging-Function-Addresses header extension. IF A.6/18 THEN m ELSE o-- 405 (Method Not Allowed) IF A.4/66 THEN m ELSE n/a - the SIP P-Early-Media private header extension for authorization of early media.						
c2:							
c3:							
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
NOTE:	RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.95: Supported headers within the PRACK response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
0A	Allow-Events	[28] 7.2.2	c3	c3	[28] 7.2 .2	c4	c4
OB	Authentication-Info	[26] 20.6	c1	c1	[26] 20.6	c2	c2
0D	P-Early-Media	[109] 8	c5	c5	[109] 8	c5	c5
3	Supported	[26] 20.37	m	m	[26] 20.37	m	m
c1:	IF A.4/7 THEN o ELSE n/a - - authentication between UA and UA. IF A.4/7 THEN m ELSE n / a - - authentication between UA and UA. IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension. IF A. $4 / 20$ THEN m ELSE n/a - - SIP specific event notification extension. IF A.4/66 THEN m ELSE n/a - the SIP P-Early-Media private header extension for authorization of early media.						
c2:							
c3:							
c4:							
c5:							

Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106-- Additional for 3xx - 6xx response
Table A.95A: Supported headers within the PRACK response

Item	Seader			Rending			RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	0				
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0			

Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/103 OR A.6/35-- Additional for 3 xx or 485 (Ambiguous) response
Table A.96: Supported headers within the PRACK response

Item	Seader			Receiving			
		Ref. RFC status	Profile status	Ref.	RFC status	Profile status	
1	Contact	$[26] 20.10$	0 (note)	0	$[26] 20.10$	m	m
NOTE:	RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.97: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	c 1	c 1	$[26] 20.27$	c 1	c 1	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	m	m	
$\mathrm{c} 1:$	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.							

Prerequisite A.5/15-- PRACK response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response.

Table A.98: Supported headers within the PRACK response

Item	Header		Rending			Reiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0	

Table A.99: Void
Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/20-- Additional for 407 (Proxy Authentication Required) response
Table A.100: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref. Rtatus	Profile status	Ref.	RFC status	Profile status		
2	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	c1	
6	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
$c 1:$	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.							

Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/25-- Additional for 415 (Unsupported Media Type) response
Table A.101: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref. RFC status		Profile status	Ref.	RFC status	Profile status	
1	Accept	$[26] 20.1$	0.1	0.1	$[26] 20.1$	m	m	
2	Accept-Encoding	$[26] 20.2$	0.1	0.1	$[26] 20.2$	m	m	
3	Accept-Language	$[26] 20.3$	0.1	0.1	$[26] 20.3$	m	m	

Prerequisite A.5/15-- PRACK response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.102: Supported headers within the PRACK response

Item	Header		Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m	

Prerequisite A.5/15-- PRACK response
Prerequisite: A. $6 / 28$ OR A. $6 / 41$ A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.102A: Supported headers within the PRACK response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
3	Security-Server	[48] 2	X	X	[48] 2	c1	c1
	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - security mechanism agreement for the session initiation protocol.						

Table A.103: Void
Table A.104: Void

A.2.1.4.10A PUBLISH method

Prerequisite A.5/15A - PUBLISH request
Table A.104A: Supported headers within the PUBLISH request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c28	c28
2	Allow	[26] 20.5	0	0	[26] 20.5	m	m
3	Allow-Events	[26] 7.2.2	c1	c1	[26] 7.2.2	c2	c2
4	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
5	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
7	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
8	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
9	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
14	Event	[70] 4, 6	m	m	[70] 4, 6	m	m
15	Expires	```[26] 20.19, [70] 4, 5, 6```	0	0	```[26] 20.19, [70] 4, 5, 6```	m	m
16	From	[26] 20.20	m	m	[26] 20.20	m	m
16A	History-Info	[66] 4.1	c27	c27	[66] 4.1	c27	c27
17	In-Reply-To	[26] 20.21	0	0	[26] 20.21	\bigcirc	0
17A	Max-Breadth	[117] 5.8	n / a	c23	[117] 5.8	c24	c24
18	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
19	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
20	Organization	[26] 20.25	0	0	[26] 20.25	0	0
21	P-Access-Network-Info	[52] 4.4	c15	c16	[52] 4.4	c15	c17
22	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c11	c11
22A	P-Asserted-Service	[121] 4.1	n/a	n/a	[121] 4.1	c31	c31
23	P-Called-Party-ID	[52] 4.2	x	x	[52] 4.2	c13	c13
24	P-Charging-FunctionAddresses	[52] 4.5	c20	c21	[52] 4.5	c20	c21
25	P-Charging-Vector	[52] 4.6	c18	c19	[52] 4.6	c18	c19
26	P-Preferred-Identity	[34] 9.2	c11	c7	[34] 9.2	n/a	n/a
26A	P-Preferred-Service	[121] 4.2	c29	c30	[121] 4.2	n/a	n/a
26B	P-Profile-Key	[97] 5	n/a	n/a	[97] 5	n/a	n/a
26C	P-User-Database	[82] 4	n/a	n/a	[82] 4	n/a	n/a
27	P-Visited-Network-ID	[52] 4.3	x (note 3)	x	[52] 4.3	c14	n/a
28	Priorità	[26] 20.26	0	0	[26] 20.26	0	0
29	Privacy	[33] 4.2	c12	c12	[33] 4.2	c12	c12
30	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
31	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
32	Reason	[34A] 2	c8	c8	[34A] 2	c8	c8
33	Reject-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c28	c28
33A	Referred-By	[59] 3	c25	c25	[59] 3	c26	c26
34	Request-Disposition	[56B] 9.1	c22	c22	[56B] 9.1	c28	c28
35	Reply-To	[26] 20.31	0	0	[26] 20.31	0	0
36	Require	[26] 20.32	0	0	[26] 20.32	m	m
37	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
38	Security-Client	[48] 2.3.1	c9	c9	[48] 2.3.1	n/a	n/a
39	Security-Verify	[48] 2.3.1	c10	c10	[48] 2.3.1	n / a	n / a
40	SIP-If-Match	[70]	0	0	[70]	m	m

		11.3.2			11.3.2		
41	Subject	[26] 20.36	0	0	[26] 20.36	0	0
42	Supported	$\begin{aligned} & {[26]} \\ & 20.37, \\ & {[26] 7.1} \end{aligned}$	0	0	$\begin{array}{\|l\|} \hline[26] \\ 20.37, \\ {[26] 7.1} \\ \hline \end{array}$	m	m
43	Timestamp	[26] 20.38	c6	c6	[26] 20.38	m	m
44	To	[26] 20.39	m	m	[26] 20.39	m	m
45	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
46	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension						
c2:	IF A. $4 / 20$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - SIP specific event notification extension.						
c3:	IF A.4/7 THEN m ELSE n / a - - authentication between UA and UA.						
c4:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.						
c5:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.						
c6:	IF A.4/6 THEN o ELSE n/a - timestamping of requests.						
c7:	IF A.3/1 AND A.4/25 THEN o ELSE n/a - UE and private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c8:	IF A.4/38 THEN o ELSE n / a - - the Reason header field for the session initiation protocol.						
c9:	IF A.4/37 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note 1).						
c10:	IF A.4/37 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol.						
c11:	IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c12:	IF A.4/26 THEN o ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c13:	IF A.4/32 THEN o ELSE n/a - the P-Called-Party-ID extension.						
c14:	IF A.4/33 THEN o ELSE n/a--the P-Visited-Network-ID extension.						
c15:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.						
c16:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE.						
c17:	IF A. $4 / 34$ AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.						
c18:	IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension.						
c19:	IF A.4/36 THEN m ELSE n/a - the P-Charging-Vector header extension.						
c20:	IF A.4/35 THEN o ELSE n/a - the P-Charging-Function-Addresses header extension.						
c21:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.						
c22:	IF A.4/40 THEN o ELSE n/a - caller preferences for the session initiation protocol.						
c23:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).						
c24:	IF A.4/71 THEN m ELSE n / a - - addressing an amplification vulnerability in session initiation protocol forking proxies.						
c25:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.						
c26:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.						
c27:	IF A. $4 / 47$ THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.						
c28:	IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol.						
c30:	IF A.3/1 AND A.4/74 THEN o ELSE n/a - - UE and Identification of communication services in the session initiation protocol.						
c31:	IF A.4/74 THEN o ELSE n / a - - Identification of communication services in the session initiation protocol.IF A.4/74 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - Identification of communication services in the session initiation protocol.						
c32:							

NOTE 1: Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented.
NOTE 2: The strength of this requirement in RFC 3455 [52] is SHOULD NOT, rather than MUST NOT.

Table A.104B:
Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.104BA: Supported headers within the PUBLISH response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m

Prerequisite A.5/15B - - PUBLISH response for all remaining status-codes
Table A.104C: Supported headers within the PUBLISH response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	c12	c12	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Call-Info	[26] 24.9	0	0	[26] 24.9	m	m
3	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
4	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
5	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
6	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
7	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
8	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
9	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
10	From	[26] 20.20	m	m	[26] 20.20	m	m
10A	History-Info	[66] 4.1	c13	c13	[66] 4.1	c13	c 13
11	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
12	Organization	[26] 20.25	0	0	[26] 20.25	0	0
13	P-Access-Network-Info	[52] 4.4	c5	c6	[52] 4.4	c5	c7
14	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c3	c3
15	P-Charging-FunctionAddresses	[52] 4.5	c10	c11	[52] 4.5	c10	c11
16	P-Charging-Vector	[52] 4.6	c8	c9	[52] 4.6	c8	c9
17	P-Preferred-Identity	[34] 9.2	c3	X	[34] 9.2	n/a	n/a
18	Privacy	[33] 4.2	c4	c4	[33] 4.2	c4	c4
19	Require	[26] 20.32	m	m	[26] 20.32	m	m
20	Server	[26] 20.35	0	0	[26] 20.35	0	0
21	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
22	To	[26] 20.39	m	m	[26] 20.39	m	m
23	User-Agent	[26] 20.41	m	m	[26] 20.41	i	
24	Via	[26] 20.42	m	m	[26] 20.42	m	m
25	Warning	[26] 20.43	0	0	[26] 20.43	0	0
$\begin{aligned} & \text { c1: } \\ & \text { c2: } \\ & \text { c3: } \end{aligned}$	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses. IF A. $4 / 6$ THEN m ELSE n / a - - timestamping of requests. IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. $4 / 34$ THEN o ELSE n/a - the P-Access-Network-Info header extension. IF A.4/34 AND A.3/1 THEN m ELSE n/a - - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - - the P-Charging-Vector header extension. IF A. $4 / 36$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - the P-Charging-Vector header extension. IF A. $4 / 35$ THEN o ELSE n/a - the P-Charging-Function-Addresses header extension. IF A. $4 / 35$ THEN m ELSE n/a - the P-Charging-Function-Addresses header extension. IF A. $6 / 18$ THEN m ELSE o-- 405 (Method Not Allowed). IF A. $4 / 47$ THEN m ELSE n/a - an extension to the session initiation protocol for request history information.						
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
c13:							
NOTE:	For a 488 (Not Acceptable Here) response, RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/7-- Additional for 200 (OK) response
Table A.104D: Supported headers within the PUBLISH response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
2	Authentication-Info	[26] 20.6	c1	c1	[26] 20.6	c2	c2
3	Expires	$\begin{aligned} & {[26]} \\ & 20.19, \\ & {[70] 4,5,} \\ & 6 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 20.19, \\ & {[70] 4,5,} \\ & 6 \end{aligned}$	m	m
4	SIP-Etag	$\begin{aligned} & {[70]} \\ & 11.3 .1 \end{aligned}$	m	m	$\begin{aligned} & {[70]} \\ & 11.3 .1 \end{aligned}$	m	m
5	Supported	[26] 20.37	m	m	[26] 20.37	m	m
$\begin{array}{\|l\|} \hline \text { c1: } \\ \text { c2: } \\ \hline \end{array}$	IF A.4/7 THEN o ELSE n/a - - authentication between UA and UA. IF A. $4 / 7$ THEN m ELSE n / a - - authentication between UA and UA.						

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106 - - Additional for 3xx - 6xx response
Table A.104DA: Supported headers within the PUBLISH response

Item	Seader			Rending			RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	0				
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0			

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/103 OR A.6/35-- Additional for 3 xx or 485 (Ambiguous) response
Table A.104E: Supported headers within the PUBLISH response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Contact	$[26] 20.10$	0	0	$[26] 20.10$	m	m	

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/8 OR A.6/9 OR A.6/10 OR A.6/11OR A.6/12 - Additional for 401 (Unauthorized) response
Table A.104F: Supported headers within the PUBLISH response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
3	Proxy-Authenticate	$[26] 20.27$	c 1	c 1	$[26] 20.27$	c 1	c 1		
5	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	m	m		
$\mathrm{c} 1:$	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.								

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/17 OR A.6/23 OR A.6/30 OR A.6/36 OR A.6/42 OR A.6/45 OR A.6/50 OR A.6/51 - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.104G: Supported headers within the PUBLISH response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0	

Table A.104H: Void
Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.104I: Supported headers within the PUBLISH response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
3	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	c 1		
5	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0		
c1:	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.								

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/25 - - Additional for 415 (Unsupported Media Type) response
Table A.104J: Supported headers within the PUBLISH response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	Profile status status				
1	Accept	$[26] 20.1$	0.1	0.1	$[26] 20.1$	m	m		
2	Accept-Encoding	$[26] 20.2$	0.1	0.1	$[26] 20.2$	m	m		
3	Accept-Language	$[26] 20.3$	0.1	0.1	$[26] 20.3$	m	m		
0.1	At least one of these capabilities is supported.								

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.104K: Supported headers within the PUBLISH response

Item	Header			Rending			RFC		
		Ref.	RFC status	Profile status	Ref.	Profile status			
4	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m		

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A. $6 / 28$ OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.104L: Supported headers within the PUBLISH response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
3	Security-Server	$[48] 2$	x	x	$[48] 2$	$c 1$	c 1		
$\mathrm{c} 1:$	IF A.4/37 THEN m ELSE $n / a--$ security	mechanism agreement for the session initiation protocol.							

Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/29-- Additional for 423 (Interval Too Brief) response
Table A.104M: Supported headers within the PUBLISH response

Item	Header		Sending			Receiving		
		Ref. RFC status	Profile status	Ref. RFC status	Profile status			
3	Min-Expires	$[26]$	m	m	$[26]$	m	m	
		20.23,			20.23,			

Table A.104N: Void
Prerequisite A.5/15B - - PUBLISH response
Prerequisite: A.6/39-- Additional for 489 (Bad Event) response
Table A.1040: Supported headers within the PUBLISH response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
2	Allow-Events	$[28] 8.2 .2$	m	m	$[28] 8.2 .2$	m	m		

Table A.104P: Void

A.2.1.4.11 REFER method

Prerequisite A.5/16-- REFER request
Table A.105: Supported headers within the REFER request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
OA	Accept	[26] 20.1	0	0	[26] 20.1	m	m
0B	Accept-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c25	c25
OC	Accept-Encoding	[26] 20.2	\bigcirc	\bigcirc	[26] 20.2	m	m
1	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
1A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
2	Allow-Events	[28] 7.2.2	c1	c1	[28] 7.2.2	c2	c2
3	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
4	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
5	Contact	[26] 20.10	m	m	[26] 20.10	m	m
5A	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
5B	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
5C	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
6	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
7	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
8	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
9	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
10	Expires	[26] 20.19	0	0	[26] 20.19	0	0
11	From	[26] 20.20	m	m	[26] 20.20	m	m
11A	Geolocation	[89] 3.2	c26	c26	[89] 3.2	c26	c26
11B	History-Info	[66] 4.1	c24	c24	[66] 4.1	c24	c24
11C	Max-Breadth	[117] 5.8	n/a	c30	[117] 5.8	c31	c31
12	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n / a	n / a
13	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
14	Organization	[26] 20.25	0	0	[26] 20.25	0	0
14A	P-Access-Network-Info	[52] 4.4	c12	c13	[52] 4.4	c12	c14
14B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	C8	C8
14C	P-Asserted-Service	[121] 4.1	n/a	n/a	[121] 4.1	c29	c29
14D	P-Called-Party-ID	[52] 4.2	x	x	[52] 4.2	c10	c10
14E	P-Charging-Function- Addresses	[52] 4.5	c17	c18	[52] 4.5	c17	c18
14F	P-Charging-Vector	[52] 4.6	c15	c16	[52] 4.6	c15	c16
14G	P-Preferred-Identity	[34] 9.2	c8	c7	[34] 9.2	n/a	n/a
14H	P-Preferred-Service	[121] 4.2	c28	c27	[121] 4.2	n/a	n/a
141	P-Profile-Key	[97] 5	n/a	n/a	[97] 5	n/a	n/a
14J	P-User-Database	[82] 4	n/a	n/a	[82] 4	n/a	n/a
14K	P-Visited-Network-ID	[52] 4.3	x (note 1)	x	[52] 4.3	c11	n/a
14L	Privacy	[33] 4.2	C9	c9	[33] 4.2	c9	c9
15	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
16	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
16A	Reason	[34A] 2	c21	c21	[34A] 2	c21	c21
17	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	m	m
18	Refer-To	[36] 3	m	m	[36] 3	m	m
18A	Referred-By	[59] 3	c23	c23	[59] 3	c23	c23
18B	Reject-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c25	c25
18C	Request-Disposition	[56B] 9.1	c22	c22	[56B] 9.1	c25	c25
19	Require	[26] 20.32	0	0	[26] 20.32	m	m
20	Route	[26] 20.34	m	m	[26] 20.34	n / a	n / a
20A	Security-Client	[48] 2.3.1	c19	c19	[48] 2.3.1	n/a	n/a
20B	Security-Verify	[48] 2.3.1	c20	c20	[48] 2.3.1	n/a	n/a
21	Supported	$\begin{aligned} & {[26]} \\ & 20.37, \\ & {[26] 7.1} \end{aligned}$	-	\bigcirc	$\begin{aligned} & {[26]} \\ & 20.37, \\ & {[26] 7.1} \end{aligned}$	m	m
22	Timestamp	[26] 20.38	c6	c6	[26] 20.38	m	m
23	To	[26] 20.39	m	m	[26] 20.39	m	m

24	User-Agent	[26] 20.41	o	0	[26] 20.41		0
25	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1	IF A.4/20 THEN o ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ SIP specific event notification exte						
c2	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.						
c3:	IF A. $4 / 7$ THEN m ELSE n / a - - authentication between UA and UA.						
c4	IF A.4/11 THEN o ELSE n/a - -insertion of date in requests and responses.						
c5:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.						
c6:	IF A.4/6 THEN o ELSE n/a - -timestamping of requests.						
c7:	IF A.3/1 AND A. $4 / 25$ THEN o ELSE $n / a--$ UE and private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c8:	IF A. $4 / 25$ THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c9:	IF A.4/26 THEN o ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c10	IF A.4/32 THEN o ELSE n/a - - the P-Called-Party-ID extension.						
c11:	IF A.4/33 THEN o ELSE n/a - the P-Visited-Network-ID extension						
c12:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extensio						
c13:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE.						
c14:	IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.						
c	IF A.4/36 THEN o ELSE n/a-- the P-Charging-Vector header extension.						
c16	IF A.4/36 THEN m ELSE n/a - the P-Charging-Vector header extension.						
c17:	IF A.4/35 THEN o ELSE n/a - the P-Charging-Function-Addresses header extension.						
c18:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension. IF A.4/37 THEN o ELSE n/a - - security mechanism agreement for the session initiation protocol (note 2).						
c19							
c20:	IF A.4/37 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						
c21:	IF A.4/38 THEN o ELSE $\mathrm{n} / \mathrm{a}-$ - the Reason header field for the session initiation protocol.						
c22:	IF A.4/40 THEN o ELSE n/a - - caller preferences for the session initiation protocol.						
c23:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By Mechanism.						
c24:	IF A.4/47 THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.						
c25:	IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol.						
c26:	IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.						
c27:	initiation protocol.						
c28:	IF A.4/74 THEN o ELSE n/a - Identification of communication services in the session initiation protocol.						
c29:	IF A.4/74 THEN m ELSE n / a - - Identification of communication services in the session initiation protocol.						
c30:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF						
c31:	IF A.4/71 proxies.	addressing			y in sessio		ol forking
NOTE	The strength of this requirement in RFC 3455 [52] is SHOULD NOT, rather than MUST NOT						
NOTE 2:	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented. Use of this header in this method is not appropriate to the security mechanism defined by 3GPP TS 33.203 [19].						

Table A.106: Void
Table A.107: Void
Prerequisite A.5/17-- REFER response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.107A: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Call-ID	$[26] 20.8$	m	m	$[26] 20.8$	m	m	
2	Content-Length	$[26] 20.14$	m	m	$[26] 20.14$	m	m	
3	Cseq	$[26] 20.16$	m	m	$[26] 20.16$	m	m	
4	Date	$[26] 20.17$	c 1	c 1	$[26] 20.17$	m	m	
5	From	$[26] 20.20$	m	m	$[26] 20.20$	m	m	
6	To	$[26] 20.39$	m	m	$[26] 20.39$	m	m	
7	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m	
$\mathrm{c}:$	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.							

Prerequisite A.5/17-- REFER response for all remaining status-codes
Table A.108: Supported headers within the REFER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	c12	c12	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Contact	[26] 20.10	c13	c13	[26] 20.10	m	m
1B	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
2	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
3	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
4	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
5	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
6	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
7	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
8	From	[26] 20.20	m	m	[26] 20.20	m	m
8A	Geolocation	[89] 3.2	c15	c15	[89] 3.2	c15	c15
8B	History-Info	[66] 4.1	c14	c14	[66] 4.1	c14	c14
9	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
10	Organization	[26] 20.25	0	0	[26] 20.25	0	0
10A	P-Access-Network-Info	[52] 4.4	c5	c6	[52] 4.4	c5	c7
10B	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c3	c3
10C	P-Charging-FunctionAddresses	[52] 4.5	c10	c11	[52] 4.5	c10	c11
10D	P-Charging-Vector	[52] 4.6	c8	c9	[52] 4.6	c8	c9
10E	P-Preferred-Identity	[34] 9.2	c3	X	[34] 9.2	n/a	n/a
10F	Privacy	[33] 4.2	c4	c4	[33] 4.2	c 4	c4
10G	Require	[26] 20.32	m	m	[26] 20.32	m	m
10 H	Server	[26] 20.35	0	0	[26] 20.35	0	0
11	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	o (note)	0	[26] 20.43	0	0
c1:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses. IF A.4/6 THEN m ELSE n/a - - timestamping of requests. IF A.4/25 THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A.4/34 THEN o ELSE n/a - - the P-Access-Network-Info header extension. IF A.4/34 AND A.3/1 THEN m ELSE n/a - - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - - the P-Charging-Vector header extension. IF A.4/36 THEN m ELSE n/a - - the P-Charging-Vector header extension. IF A.4/35 THEN o ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension. IF A. $6 / 18$ THEN m ELSE o-- 405 (Method Not Allowed) IF A. $6 / 102$ THEN m ELSE o-- 2xx response. IF A.4/47 THEN m ELSE n/a - - an extension to the session initiation protocol for request history information. IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.						
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
c13:							
c14:							
NOTE:	For a 488 (Not Acceptable Here) response, RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/17-- REFER response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.109: Supported headers within the REFER response

Item	Header	Sending	Receiving

		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Allow-Events	$[28] 7.2 .2$	c 3	c 3	$[28] 7.2 .2$	c 4	c 4
2	Authentication-Info	$[26] 20.6$	c 1	c 1	$[26] 20.6$	c 2	c 2
5	Record-Route	$[26] 20.30$	m	m	$[26] 20.30$	m	m
8	Supported	$[26] 20.37$	m	m	$[26] 20.37$	m	m
$\mathrm{c}:$	IF A.4/7 THEN o ELSE n/a - authentication between UA and UA.						
c2:	IF A.4/7 THEN m ELSE n/a - authentication between UA and UA.						
c3:	IF A.4/20 THEN o ELSE n/a - - SIP specific event notification extension.						
c4:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.						

Prerequisite A.5/17-- REFER response
Prerequisite: A. $6 / 103$ OR A. $6 / 104$ OR A. $6 / 105$ OR A.6/106 - - Additional for $3 x x-6 x x$ response
Table A.109A: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0	

Table A.110: Void
Prerequisite A.5/17-- REFER response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.111: Supported headers within the REFER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
4	Proxy-Authenticate	[26] 20.27	c1	c1	[26] 20.27	c1	c1
10	WWW-Authenticate	[26] 20.44	m	m	[26] 20.44	m	m
c1:	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.						

Prerequisite A.5/17-- REFER response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.112: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
6	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	0	

Table A.113: Void
Prerequisite A.5/17-- REFER response
Prerequisite: A.6/20-- Additional for 407 (Proxy Authentication Required) response
Table A.114: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
4	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	c1	
8	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
$c 1:$	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.							

Prerequisite A.5/17-- REFER response
Prerequisite: A.6/25 - - Additional for 415 (Unsupported Media Type) response
Table A.115: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref. RFC status	Profile status	Ref.	RFC status	Profile status		
1	Accept	$[26] 20.1$	0.1	0.1	$[26] 20.1$	m	m	
2	Accept-Encoding	$[26] 20.2$	0.1	0.1	$[26] 20.2$	m	m	
3	Accept-Language	$[26] 20.3$	0.1	0.1	$[26] 20.3$	m	m	
0.1	At least one of these capabilities is supported.							

Prerequisite A.5/17-- REFER response
Prerequisite: A. $6 / 27$ - - Additional for 420 (Bad Extension) response
Table A.116: Supported headers within the REFER response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
8	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m		

Prerequisite A.5/17-- REFER response
Prerequisite: A.6/28 OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.116A: Supported headers within the REFER response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	RFC status	Profile status				
3	Security-Server	$[48] 2$	x	x	$[48] 2$	c 1	c 1		
$\mathrm{c} 1:$	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ security mechanism agreement for the session initiation protocol.								

Table A.117: Void
Table A.118: Void

A.2.1.4.12 REGISTER method

Prerequisite A.5/18-- REGISTER request
Table A.119: Supported headers within the REGISTER request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0	0	[26] 20.1	m	m
2	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
3A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
4	Allow-Events	[28] 7.2.2	c27	c27	[28] 7.2.2	c1	c1
5	Authorization	$\begin{aligned} & {[26] 20.7,} \\ & {[49]} \end{aligned}$	c2	c29	$\begin{aligned} & {[26] 20.7,} \\ & {[49]} \end{aligned}$	m	c22
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
8	Contact	[26] 20.10	0	m	[26] 20.10	m	m
9	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
10	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
11	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
12	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
13	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
14	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
15	Date	[26] 20.17	c3	c3	[26] 20.17	m	m
16	Expires	[26] 20.19	0	0	[26] 20.19	m	m
17	From	[26] 20.20	m	m	[26] 20.20	m	m
17A	Geolocation	[89] 3.2	c31	c31	[89] 3.2	c31	c31
17B	History-Info	[66] 4.1	c28	c28	[66] 4.1	c28	c28
17C	Max-Breadth	[117] 5.8	n/a	c35	[117] 5.8	c36	c36
18	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
19	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
20	Organization	[26] 20.25	0	0	[26] 20.25	0	0
20A	P-Access-Network-Info	[52] 4.4	c12	c13	[52] 4.4	c12	c14
20B	P-Charging-FunctionAddresses	[52] 4.5	c17	c18	[52] 4.5	c17	c18
20C	P-Charging-Vector	[52] 4.6	c15	c16	[52] 4.6	c15	C16
20D	P-User-Database	[82] 4	n/a	n/a	[82] 4	c30	c30
20E	P-Visited-Network-ID	[52] 4.3	x (note 2)	X	[52] 4.3	c10	c11
20FE	Path	[35] 4	c4	c5	[35] 4	m	c6
20GF	Privacy	[33] 4.2	c9	n/a	[33] 4.2	c9	n/a
21	Proxy-Authorization	[26] 20.28	c8	c8	[26] 20.28	n/a	n/a
22	Proxy-Require	[26] 20.29	0	o (note 1)	[26] 20.29	n/a	n/a
22A	Reason	[34A] 2	c23	c23	[34A] 2	c23	c23
22B	Referred-By	[59] 3	c25	c25	[59] 3	c26	c26
22C	Request-Disposition	[56B] 9.1	c24	c24	[56B] 9.1	n/a	n/a
23	Require	[26] 20.32	0	0	[26] 20.32	m	m
24	Route	[26] 20.34	0	n/a	[26] 20.34	n/a	n/a
24A	Security-Client	[48] 2.3.1	c19	c20	[48] 2.3.1	n/a	n/a
24B	Security-Verify	[48] 2.3.1	c20	c20	[48] 2.3.1	c21	n/a
25	Supported	[26] 20.37	0	c29	[26] 20.37	m	m
26	Timestamp	[26] 20.38	c7	c7	[26] 20.38	c7	c7
27	To	[26] 20.39	m	m	[26] 20.39	m	m
28	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
29	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.
c2:	IF A.4/8 THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ authentication between UA and registrar.
c3:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.
c4:	IF A.4/24 THEN o ELSE n/a - session initiation protocol extension header field for registering non-adjacent contacts.
c5:	IF A.4/24 THEN x ELSE n/a - session initiation protocol extension header field for registering non-adjacent contacts.
c6:	IF A.3/4 THEN m ELSE n/a. - - S-CSCF.
c7:	IF A.4/6 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - timestamping of requests.
c8:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.
c9:	IF A.4/26 THEN o ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).
c10:	IF A.4/33 THEN o ELSE n/a - the P-Visited-Network-ID extension.
c11:	IF A.4/33 THEN m ELSE n/a - the P-Visited-Network-ID extension
c12:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.
c13:	IF A.4/34 AND (A.3/1 OR A.3/4) THEN o ELSE n/a - the P-Access-Network-Info header extension and UE or S-CSCF.
c14:	IF A.4/34 AND (A.3/4 OR A.3/7A) THEN m ELSE n/a - - the P-Access-Network-Info header extension and S-CSCF or AS acting as terminating UA.
c15:	IF A.4/36 THEN o ELSE n/a - the P-Charging-Vector header extension.
c16:	IF A.4/36 OR A.3/4 THEN m ELSE n/a - the P-Charging-Vector header extension (including S-CSCF as registrar).
c17:	IF A.4/35 THEN o ELSE n/a - the P-Charging-Function-Addresses header extension.
c18:	IF A.4/35 OR A. $3 / 4$ THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension (including S-CSCF as registrar).
c19:	IF A.4/37 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note 3).
c20:	IF A.4/37 THEN m ELSE n / a - - security mechanism agreement for the session initiation protocol.
c21:	IF A.4/37 AND A.4/2 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol and registrar.
c22:	IF A.3/4 THEN m ELSE n/a - S-CSCF.
c23:	IF A.4/38 THEN o ELSE n / a - - the Reason header field for the session initiation protocol.
c24:	IF A.4/40 THEN o ELSE n/a - caller preferences for the session initiation protocol.
c25:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.
c26:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.
c27:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.
c28:	IF A. $4 / 47$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - an extension to the session initiation protocol for request history information.
c29:	IF A.3/1 THEN m ELSE o - - UE.
c30:	IF A.4/48 THEN m ELSE n/a - the P-User-Database private header extension.
c31:	IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.
c35:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).
c36:	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
NOTE 1:	No distinction has been made in these tables between first use of a request on a From/To/Call-ID combination, and the usage in a subsequent one. Therefore the use of " 0 " etc. above has been included from a viewpoint of first usage.
NOTE 2:	The strength of this requirement in RFC 3455 [52] is SHOULD NOT, rather than MUST NOT.
NOTE 3:	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented.

Table A.120: Void
Table A.121: Void
Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.121A: Supported headers within the REGISTER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Call-ID	$[26] 20.8$	m	m	$[26] 20.8$	m	m	
2	Content-Length	$[26] 20.14$	m	m	$[26] 20.14$	m	m	
3	Cseq	$[26] 20.16$	m	m	$[26] 20.16$	m	m	
4	Date	$[26] 20.17$	c 1	c 1	$[26] 20.17$	m	m	
5	From	$[26] 20.20$	m	m	$[26] 20.20$	m	m	
6	To	$[26] 20.39$	m	m	$[26] 20.39$	m	m	
7	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m	
c1:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.							

Prerequisite A.5/19-- REGISTER response for all remaining status-codes
Table A.122: Supported headers within the REGISTER response

Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.123: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	0		[26] 20.1	0	
1A	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
1B	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
2	Allow-Events	[28] 7.2.2	c12	c12	[28] 7.2.2	c13	c13
3	Authentication-Info	[26] 20.6	c6	c6	[26] 20.6	c7	c7
5	Contact	[26] 20.10	0	0	[26] 20.10	m	m
5A	Flow-Timer	[92] 11	c15	c15	[92] 11	c15	c15
5B	P-Associated-URI	[52] 4.1	c8	c9	[52] 4.1	c10	c11
6	Path	[35] 4	c3	c3	[35] 4	c4	c4
8	Service-Route	[38] 5	c5	c5	[38] 5	c5	c5
9	Supported	[26] 20.37	m	m	[26] 20.37	m	m
c1:							
c2:	IF A.3/4 OR A.3/1THEN m ELSE n/a. - S-CSCF or UE.						
c3:	IF A.4/24 THEN m ELSE n/a - - session initiation protocol extension header field for registering nonadjacent contacts.						
c4:	IF A.4/24 THEN o ELSE n/a - session initiation protocol extension header field for registering non-adjacent contacts.						
c5:	IF A. $4 / 28$ THEN m ELSE $n / a-$ - session initiation protocol extension header field for service route discovery during registration.						
c6:	IF A.4/8 THEN o ELSE n/a - - authentication between UA and registrar.						
c7:	IF A.4/8 THEN m ELSE n / a - - authentication between UA and registrar.						
c8:	IF A.4/2 AND A.4/31 THEN m ELSE n/a - P-Assocated-URI header extension and registrar.						
c9:	IF A.3/1 AND A.4/31 THEN m ELSE n/a-- P-Assocated-URI header extension and S-CSCF.						
c10:	IF A.4/31 THEN o ELSE n/a - P-Assocated-URI header extension.						
c11:	IF A.4/31 AND A.3/1 THEN m ELSE n/a - P-Assocated-URI header extension and UE.						
c12:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.						
c13:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.						
c15:	IF A. $4 / 57$ THEN m ELSE n/a - - managing client initiated connections in SIP.						

Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106-- Additional for 3xx - 6xx response
Table A.123A: Supported headers within the REGISTER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0	

Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/103 OR A.6/35 - - Additional for 3xx or 485 (Ambiguous) response
Table A.124: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Contact	$[26] 20.10$	0 (note)	0	$[26] 20.10$	m	m

Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.125: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
4	Proxy-Authenticate	[26] 20.27	c1	x	[26] 20.27	c1	x
6	Security-Server	[48] 2	x	x	[48] 2	n/a	c2
10	WWW-Authenticate	[26] 20.44	m	m	[26] 20.44	m	m
$\begin{aligned} & \text { c1: } \\ & \text { c2: } \end{aligned}$	IF A.4/8 THEN m ELSE n/a - - support of authentication between UA and registrar. IF A.4/37 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol.						

Prerequisite A.5/19-- REGISTER response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.126: Supported headers within the REGISTER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status		
6	Retry-After	$[26] 20.33$	Profile status					

Table A.127: Void
Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.128: Supported headers within the REGISTER response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
5	Proxy-Authenticate	$[26] 20.27$	c 1	x	$[26] 20.27$	c 1	x	
9	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
$\mathrm{c} 1:$	IF A.4/8 THEN m ELSE n/a - support of authentication between UA and registrar.							

Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/25-- Additional for 415 (Unsupported Media Type) response
Table A.129: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0.1	0.1	[26] 20.1	m	m
2	Accept-Encoding	[26] 20.2	0.1	0.1	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0.1	0.1	[26] 20.3	m	m
0.1	At least one of these capabilities is supported.						

Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.130: Supported headers within the REGISTER response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
8	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m		

Prerequisite A.5/19-- REGISTER response
Prerequisite: A. $6 / 28$ OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.130A: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c2	c2	[48] 2	c1	c1
$\begin{aligned} & \text { c1: } \\ & \text { c2: } \end{aligned}$	IF A.4/37 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol. IF A.4/37 AND A.4/2 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol and registrar.						

Prerequisite A.5/19-- REGISTER response
Prerequisite: A.6/29-- Additional for 423 (Interval Too Brief) response
Table A.131: Supported headers within the REGISTER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
5	Min-Expires	$[26] 20.23$	m	m	$[26] 20.23$	m	m	

Table A.132: Void
Table A.133: Void

A.2.1.4.13 SUBSCRIBE method

Prerequisite A.5/20-- SUBSCRIBE request
Table A.134: Supported headers within the SUBSCRIBE request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0	0	[26] 20.1	m	m
1A	Accept-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c26	c26
2	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
3A	Allow	[26] 20.5	0	0	[26] 20.5	m	m
4	Allow-Events	[28] 7.2.2	0	0	[28] 7.2.2	m	m
5	Authorization	[26] 20.7	c3	c3	[26] 20.7	c3	c3
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6A	Contact	[26] 20.10	m	m	[26] 20.10	m	m
7	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
8	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
9	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	c4	c4	[26] 20.17	m	m
14	Event	[28] 7.2.1	m	m	[28] 7.2.1	m	m
15	Expires	[26] 20.19	o (note 1)	o (note 1)	[26] 20.19	m	m
16	From	[26] 20.20	m	m	[26] 20.20	m	m
16A	Geolocation	[89] 3.2	c27	c27	[89] 3.2	c27	c27
16B	History-Info	[66] 4.1	c25	c25	[66] 4.1	c25	c25
16C	Max-Breadth	[117] 5.8	n/a	c38	[117] 5.8	c39	c39
17	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
18	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
18A	Organization	[26] 20.25	0	0	[26] 20.25	0	0
18B	P-Access-Network-Info	[52] 4.4	c12	c13	[52] 4.4	c12	c14
18C	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c6	c6
18D	P-Asserted-Service	[121] 4.1	n/a	n/a	[121] 4.1	c32	c32
18E	P-Called-Party-ID	[52] 4.2	X	X	[52] 4.2	c10	c10
18F	P-Charging-FunctionAddresses	[52] 4.5	c17	c18	[52] 4.5	c17	c18
18G	P-Charging-Vector	[52] 4.6	c15	c16	[52] 4.6	c15	c16
18 H	P-Preferred-Identity	[34] 9.2	c6	c7	[34] 9.2	n/a	n/a
18I	P-Preferred-Service	[121] 4.2	c31	c30	[121] 4.2	n/a	n/a
18J	P-Profile-Key	[97] 5	n/a	n/a	[97] 5	n/a	n/a
18K	P-User-Database	[82] 4	n/a	n/a	[82] 4	n/a	n/a
18L	P-Visited-Network-ID	[52] 4.3	x (note 2)	X	[52] 4.3	c11	n/a
18M	Privacy	[33] 4.2	c9	c9	[33] 4.2	c9	c9
19	Proxy-Authorization	[26] 20.28	c5	c5	[26] 20.28	n/a	n/a
20	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
20A	Reason	[34A] 2	c21	c21	[34A] 2	c21	c21
21	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	m	m
21A	Referred-By	[59] 3	c23	c23	[59] 3	c24	c24
21B	Reject-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c26	c26
21C	Request-Disposition	[56B] 9.1	c22	c22	[56B] 9.1	c26	c26
22	Require	[26] 20.32	0	0	[26] 20.32	m	m
23	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
23A	Security-Client	[48] 2.3.1	c19	c19	[48] 2.3.1	n/a	n/a
23B	Security-Verify	[48] 2.3.1	c20	c20	[48] 2.3.1	n/a	n/a
24	Supported	[26] 20.37	0	0	[26] 20.37	m	m
25	Timestamp	[26] 20.38	c8	c8	[26] 20.38	m	m
26	To	[26] 20.39	m	m	[26] 20.39	m	m

Table A.135: Void
Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.135A: Supported headers within the SUBSCRIBE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses.						

Prerequisite A.5/21-- SUBSCRIBE response for all remaining status-codes
Table A.136: Supported headers within the SUBSCRIBE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	c12	c12	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
3	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
4	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c14	c14	[89] 3.2	c14	c14
9B	History-Info	[66] 4.1	c13	c13	[66] 4.1	c13	c13
10	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
10A	Organization	[26] 20.25	0	0	[26] 20.25	0	0
10B	P-Access-Network-Info	[52] 4.4	c5	c6	[52] 4.4	c5	c7
10C	P-Asserted-Identity	[34] 9.1	n/a	n/a	[34] 9.1	c3	c3
10D	P-Charging-Function- Addresses	[52] 4.5	c10	c11	[52] 4.5	c10	c11
10E	P-Charging-Vector	[52] 4.6	c8	c9	[52] 4.6	c8	c9
10F	P-Preferred-Identity	[34] 9.2	c3	X	[34] 9.2	n/a	n/a
10G	Privacy	[33] 4.2	c4	c4	[33] 4.2	c4	c4
10H	Require	[26] 20.32	m	m	[26] 20.32	m	m
101	Server	[26] 20.35	0	0	[26] 20.35	0	0
11	Timestamp	[26] 20.38	m	m	[26] 20.38	c2	c2
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	O (note)	0	[26] 20.43	0	0
c1: c2: c3:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses. IF A. $4 / 6$ THEN m ELSE n/a - - timestamping of requests. IF A.4/25 THEN o ELSE n/a - - private extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks. IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension. IF A. $4 / 34$ AND A. $3 / 1$ THEN m ELSE n/a - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - - the P-Charging-Vector header extension. IF A. $4 / 36$ THEN m ELSE n / a - - the P-Charging-Vector header extension. IF A.4/35 THEN o ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A. $4 / 35$ THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A. $6 / 18$ THEN m ELSE 0-- 405 (Method Not Allowed). IF A. $4 / 47$ THEN m ELSE n / a - - an extension to the session initiation protocol for request history information. IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.						
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
c13: c14:							
NOTE:	For a 488 (Not Acceptable Here) response, RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.137: Supported headers within the SUBSCRIBE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
0 A	Allow-Events	$[28] 7.2 .2$	0	0	$[28] 7.2 .2$	m	m	

1	Authentication-Info	$[26] 20.6$	c 1	c 1	$[26] 20.6$	c 2	c 2
1 A	Contact	$[26] 20.10$	m	m	$[26] 20.10$	m	m
2	Expires	$[26] 20.19$	m	m	$[26] 20.19$	m	m
3	Record-Route	$[26] 20.30$	m	m	$[26] 20.30$	m	m
4	Require	$[26] 20.32$	m	m	$[26] 20.32$	m	m
6	Supported	$[26] 20.37$	m	m	$[26] 20.37$	m	m
$\mathrm{c}:$	IF A.4/7 THEN o ELSE n/a - authentication between UA and UA.						
c2:	IF A.4/7 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ authentication between UA and UA.						

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106-- Additional for 3xx - $6 x x$ response
Table A.137A: Supported headers within the SUBSCRIBE response

Item	Header			Rending			RFC				Ref.	RFC status	Profile status	Ref.	Profile status
		Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0								

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/103 OR A.6/35 - - Additional for 3 xx or 485 (Ambiguous) response
Table A.138: Supported headers within the SUBSCRIBE response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
1	Contact	$[26] 20.10$	m (note)	m	$[26] 20.10$	m	m		
NOTE:	The strength of this requirement is RECOMMENDED rather than MANDATORY for a 485 response.								

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.139: Supported headers within the SUBSCRIBE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	c 1	c 1	$[26] 20.27$	c 1	c 1	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	m		
$\mathrm{c} 1:$	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.	m						

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480 (Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.140: Supported headers within the SUBSCRIBE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Retry-After	$[26] 20.33$	0		$[26] 20.33$	0		

Table A.141: Void
Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/20-- Additional for 407 (Proxy Authentication Required) response
Table A.142: Supported headers within the SUBSCRIBE response

Item	Header		Sending			Receiving		
		Ref. Rtatus	Profile status	Ref.	RFC status	Profile status		
2	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	c1	
6	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
$c 1:$	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.							

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite A.6/25-- Additional for 415 (Unsupported Media Type) response
Table A.143: Supported headers within the SUBSCRIBE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	0.1	0.1	[26] 20.1	m	m
2	Accept-Encoding	[26] 20.2	0.1	0.1	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0.1	0.1	[26] 20.3	m	m
6	Server	[26] 20.35	0	0	[26] 20.35	0	0
0.1	At least one of these capabilities is supported.						

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.144: Supported headers within the SUBSCRIBE response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m		

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A. $6 / 28$ OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.144A: Supported headers within the SUBSCRIBE response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
3	Security-Server	$[48] 2$	x	x	$[48] 2$	$c 1$	c 1		
$\mathrm{c} 1:$	IF A.4/37 THEN m ELSE n/a - - security	mechanism agreement for the session initiation protocol.							

Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/29-- Additional for 423 (Interval Too Brief) response
Table A.145: Supported headers within the SUBSCRIBE response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
2	Min-Expires	$[26] 20.23$	m	m	$[26] 20.23$	m	m		

Table A.146: Void
Prerequisite A.5/21-- SUBSCRIBE response
Prerequisite: A.6/39-- Additional for 489 (Bad Event) response
Table A.147: Supported headers within the SUBSCRIBE response

Item	Header			Rending			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Allow-Events	$[28] 7.2 .2$	m	m	$[28] 7.2 .2$	m	m

Table A.148: Void
Table A.149: Void

A.2.1.4.14 UPDATE method

Prerequisite A.5/22-- UPDATE request
Table A.150: Supported headers within the UPDATE request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	0	0	[26] 20.1	m	m
1A	Accept-Contact	[56B] 9.2	c20	c20	[56B] 9.2	c24	c24
2	Accept-Encoding	[26] 20.2	0	0	[26] 20.2	m	m
3	Accept-Language	[26] 20.3	0	0	[26] 20.3	m	m
4	Allow	[26] 20.5	0	0	[26] 20.5	m	m
5	Allow-Events	[28] 7.2.2	c2	c2	[28] 7.2.2	c3	c3
6	Authorization	[26] 20.7	c4	c4	[26] 20.7	c4	c4
7	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
8	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
9	Contact	[26] 20.10	m	m	[26] 20.10	m	m
10	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
11	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
12	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
13	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
14	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
15	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
16	Date	[26] 20.17	c5	c5	[26] 20.17	m	m
17	From	[26] 20.20	m	m	[26] 20.20	m	m
17A	Geolocation	[89] 3.2	c25	c25	[89] 3.2	c25	c25
17B	Max-Breadth	[117] 5.8	n/a	c29	[117] 5.8	c30	c30
18	Max-Forwards	[26] 20.22	m	m	[26] 20.22	n/a	n/a
19	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
19A	Min-SE	[58] 5	c21	c21	[58] 5	c21	c21
20	Organization	[26] 20.25	0	0	[26] 20.25	0	0
20A	P-Access-Network-Info	[52] 4.4	c11	c12	[52] 4.4	c11	c13
20B	P-Charging-FunctionAddresses	[52] 4.5	c16	c17	[52] 4.5	c16	c17
20C	P-Charging-Vector	[52] 4.6	c14	c15	[52] 4.6	c14	c15
20D	P-Early-Media	[109] 8	c26	c26	[109] 8	c26	c26
20E	Privacy	[33] 4.2	c6	n/a	[33] 4.2	c6	n/a
21	Proxy-Authorization	[26] 20.28	c10	c10	[26] 20.28	n/a	n/a
22	Proxy-Require	[26] 20.29	0	n/a	[26] 20.29	n/a	n/a
22A	Reason	[34A] 2	c8	c8	[34A] 2	c8	c8
23	Record-Route	[26] 20.30	n/a	n/a	[26] 20.30	n/a	n/a
23A	Referred-By	[59] 3	c22	c22	[59] 3	c23	c23
23B	Reject-Contact	[56B] 9.2	c20	c20	[56B] 9.2	c24	c24
23C	Request-Disposition	[56B] 9.1	c20	c20	[56B] 9.1	c24	c24
24	Require	[26] 20.32	0	0	[26] 20.32	m	m
25	Route	[26] 20.34	m	m	[26] 20.34	n/a	n/a
25A	Security-Client	[48] 2.3.1	c18	c18	[48] 2.3.1	n/a	n/a
25B	Security-Verify	[48] 2.3.1	c19	c19	[48] 2.3.1	n/a	n/a
25C	Session-Expires	[58] 4	c21	c21	[58] 4	c21	c21
26	Supported	[26] 20.37	0	0	[26] 20.37	m	m
27	Timestamp	[26] 20.38	c9	c9	[26] 20.38	m	m
28	To	[26] 20.39	m	m	[26] 20.39	m	m
29	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
30	Via	[26] 20.42	m	m	[26] 20.42	m	m

c2:	IF A.4/20 THEN o ELSE n/a - - SIP specific event notification extension.
c3:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.
c4:	IF A.4/7 THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ authentication between UA and UA.
c5:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.
c6:	IF A.4/26 THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c8:	IF A.4/38 THEN o ELSE $\mathrm{n} / \mathrm{a}-$ - the Reason header field for the session initiation protocol.
c9:	IF A.4/6 THEN o ELSE n/a - - timestamping of requests.
c10:	IF A.4/8A THEN m ELSE n/a - - authentication between UA and proxy.
c11:	IF A.4/34 THEN o ELSE n/a - the P-Access-Network-Info header extension.
c12:	IF A.4/34 AND A.3/1 THEN m ELSE n/a - the P-Access-Network-Info header extension and UE.
c13:	IF A. $4 / 34$ AND (A.3/7A OR A.3/7D) THEN m ELSE $n / a-$ - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller.
c14:	IF A.4/36 THEN o ELSE n/a-- the P-Charging-Vector header extension.
c15:	IF A.4/36 THEN m ELSE n/a - the P-Charging-Vector header extension.
c16:	IF A. $4 / 35$ THEN o ELSE n/a - the P-Charging-Function-Addresses header extension.
c17:	IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c18:	IF A.4/37 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note).
c19:	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ security mechanism agreement for the session initiation protocol.
c20:	IF A.4/40 THEN o ELSE n/a - - caller preferences for the session initiation protocol.
c21:	IF A.4/42 THEN m ELSE n/a - the SIP session timer.
c22:	IF A.4/43 THEN m ELSE n/a - the SIP Referred-By mechanism.
c23:	IF A.4/43 THEN o ELSE n/a - the SIP Referred-By mechanism.
c24:	IF A.4/40 THEN m ELSE n/a - - caller preferences for the session initiation protocol.
c25:	IF A.4/60 THEN m ELSE n/a - SIP location conveyance.
c26:	IF A.4/66 THEN m ELSE n/a - - the SIP P-Early-Media private header extension for authorization of early media.
c29:	IF A.4/71 AND (A.3/9B OR A.3/9C THEN m) ELSE n/a - - IF A.4/71 AND (A.3/9B OR A.3/9C) THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, IBCF (IMS-ALG), IBCF (Screening of SIP signalling).
c30:	IF A.4/71 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
NOTE:	Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented. Use of this header in this method is not appropriate to the security mechanism defined by 3GPP TS 33.203 [19].

Table A.151: Void
Prerequisite A.5/23-- UPDATE response
Prerequisite: A.6/1-- Additional for 100 (Trying) response
Table A.151A: Supported headers within the UPDATE response

Item	Header		Sending				Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
1	Call-ID	$[26] 20.8$	m	m	$[26] 20.8$	m	m		
2	Content-Length	$[26] 20.14$	m	m	$[26] 20.14$	m	m		
3	Cseq	$[26] 20.16$	m	m	$[26] 20.16$	m	m		
4	Date	$[26] 20.17$	c 1	c 1	$[26] 20.17$	m	m		
5	From	$[26] 20.20$	m	m	$[26] 20.20$	m	m		
6	To	$[26] 20.39$	m	m	$[26] 20.39$	m	m		
7	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m		
c1:	IF A.4/11 THEN o ELSE n/a - insertion of date in requests and responses.								

Prerequisite A.5/23-- UPDATE response for all remaining status-codes
Table A.152: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	c11	c11	[26] 20.5	m	m
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Call-Info	[26] 20.9	0	0	[26] 20.9	0	0
1B	Contact	[26] 20.10	0	0	[26] 20.10	0	0
2	Content-Disposition	[26] 20.11	0	0	[26] 20.11	m	m
3	Content-Encoding	[26] 20.12	0	0	[26] 20.12	m	m
4	Content-Language	[26] 20.13	0	0	[26] 20.13	m	m
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	m	m
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	c1	c1	[26] 20.17	m	m
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c13	c13	[89] 3.2	c13	c13
10	MIME-Version	[26] 20.24	0	0	[26] 20.24	m	m
10A	Organization	[26] 20.25	0	0	[26] 20.25	0	0
10B	P-Access-Network-Info	[52] 4.4	c4	c5	[52] 4.4	c4	c6
10C	P-Charging-FunctionAddresses	[52] 4.5	c9	c10	[52] 4.5	c9	c10
10D	P-Charging-Vector	[52] 4.6	c7	c8	[52] 4.6	c7	c8
10E	Privacy	[33] 4.2	c3	n/a	[33] 4.2	c3	n/a
10F	Require	[26] 20.31	m	m	[26] 20.31	m	m
10G	Server	[26] 20.35	0	0	[26] 20.35	0	0
11	Timestamp	[26] 20.38	c12	c12	[26] 20.38	c2	c2
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	0	0	[26] 20.41	0	0
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	o (note)	0	[26] 20.43	0	0
c1:	IF A.4/11 THEN o ELSE n/a - - insertion of date in requests and responses. IF A.4/6 THEN m ELSE n/a - - timestamping of requests. IF A. $4 / 26$ THEN o ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A.4/34 THEN o ELSE n/a - - the P-Access-Network-Info header extension. IF A.4/34 AND A.3/1 THEN m ELSE n/a - - the P-Access-Network-Info header extension and UE. IF A.4/34 AND (A.3/7A OR A.3/7D) THEN m ELSE n/a - - the P-Access-Network-Info header extension and AS acting as terminating UA or AS acting as third-party call controller. IF A.4/36 THEN o ELSE n/a - - the P-Charging-Vector header extension. IF A.4/36 THEN m ELSE n/a - - the P-Charging-Vector header extension. IF A.4/35 THEN o ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A.4/35 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension. IF A.6/18 THEN m ELSE o-- 405 (Method Not Allowed) IF A.4/6 THEN o ELSE n/a - - timestamping of requests. IF A.4/60 THEN m ELSE n/a - - SIP location conveyance.						
c2:							
c3:							
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c11:							
c12:							
c13:							
NOTE:	For a 488 (Not Acceptable Here) response, RFC 3261 [26] gives the status of this header as SHOULD rather than OPTIONAL.						

Prerequisite A.5/23-- UPDATE response
Prerequisite: A.6/102-- Additional for 2xx response
Table A.153: Supported headers within the UPDATE response

Item	Header		Sending			Receiving		
		RFC. status	Profile status	Ref. status	Profile status			
OA	Accept	$[26] 20.1$	0	0	$[26] 20.1$	m	m	
OB	Accept-Encoding	$[26] 20.2$	0	0	$[26] 20.2$	m	m	
OC	Accept-Language	$[26] 20.3$	0	0	$[26] 20.3$	m	m	
1	Allow-Events	$[28] 7.2 .2$	c 4	c 4	$[28] 7.2 .2$	c 5	c 5	
2	Authentication-Info	$[26] 20.6$	c 1	c 1	$[26] 20.6$	c 2	c 2	

3	Contact	[26] 20.10	m	m	[26] 20.10	m	m
3A	P-Early-Media	[109] 8	c6	c6	[109] 8	c6	c6
4	Session-Expires	[58]	c3	c3	[58]	c3	c3
6	Supported	[26] 20.37	m	m	[26] 20.37	m	m
c1:	IF A.4/7 THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ authentication between UA and UA.						
c2:							
c3:	IF A.4/42 THEN m ELSE n / a - - the SIP session timer						
c4:	IF A.4/20 THEN o ELSE n/a - SIP specific event notification extension.						
c5:	IF A.4/20 THEN m ELSE n/a - SIP specific event notification extension.						
c6:	IF A. $4 / 66$ THEN m ELSE $n / a-$ - the SIP P-Early-Media private header extension for authorization of early media.						

Prerequisite A.5/23-- UPDATE response
Prerequisite: A.6/103 OR A.6/104 OR A.6/105 OR A.6/106 - - Additional for 3xx - 6xx response
Table A.153A: Supported headers within the UPDATE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	0	0	$[26] 20.18$	0	0	

Prerequisite A.5/23 - UPDATE response
Prerequisite: A.6/103 OR A.6/35-- Additional for $3 \mathrm{xx}, 485$ (Ambiguous) response
Table A.154: Supported headers within the UPDATE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Contact	$[26] 20.10$	0	0	$[26] 20.10$	0	0	

Prerequisite A.5/23 - UPDATE response
Prerequisite: A.6/14-- Additional for 401 (Unauthorized) response
Table A.154A: Supported headers within the UPDATE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Proxy-Authenticate	$[26] 20.27$	c 1	c 1	$[26] 20.27$	c 1	c 1	
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	m	m	
$\mathrm{c} 1:$	IF A.4/7 THEN m ELSE n/a - - support of authentication between UA and UA.							

Prerequisite A.5/23 - UPDATE response
Prerequisite: A. $6 / 17$ OR A. $6 / 23$ OR A. $6 / 30$ OR A. $6 / 36$ OR A. $6 / 42$ OR A. $6 / 45$ OR A. $6 / 50$ OR A. $6 / 51$ - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.155: Supported headers within the UPDATE response

Item	Header		Sending			Receiving	
		Ref.	RFC status	Profile status	Ref.	RFC status	
5	Retry-After	$[26] 20.33$	0	0	$[26] 20.33$	0	
status							

Table A.156: Void
Prerequisite A.5/23-- UPDATE response
Prerequisite: A.6/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.157: Supported headers within the UPDATE response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
4	Proxy-Authenticate	$[26] 20.27$	$c 1$	$c 1$	$[26] 20.27$	$c 1$	c1	
8	WWW-Authenticate	$[26] 20.44$	0	0	$[26] 20.44$	0	0	
$c 1:$	IF A.4/7 THEN m ELSE n/a - support of authentication between UA and UA.							

Prerequisite A.5/23-- UPDATE response
Prerequisite: A.6/25 - - Additional for 415 (Unsupported Media Type) response
Table A.158: Supported headers within the UPDATE response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
1	Accept	$[26] 20.1$	0.1	0.1	$[26] 20.1$	m	m	
2	Accept-Encoding	$[26] 20.2$	0.1	0.1	$[26] 20.2$	m	m	
3	Accept-Language	$[26] 20.3$	0.1	0.1	$[26] 20.3$	m	m	
0.1	At least one of these capabilities is supported.							

Prerequisite A.5/23 - UPDATE response
Prerequisite: A.6/27-- Additional for 420 (Bad Extension) response
Table A.159: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
7	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	m	m

Prerequisite A.5/23-- UPDATE response
Prerequisite: A. $6 / 28$ OR A.6/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.159A: Supported headers within the UPDATE response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
3	Security-Server	$[48] 2$	x	x	$[48] 2$	c 1	c 1		
$\mathrm{c} 1:$	IF A.4/37 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ security mechanism agreement for the session initiation protocol.								

Prerequisite A.5/23-- UPDATE response
Prerequisite: A.6/28A - Additional for 422 (Session Interval Too Small) response
Table A.159B: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Min-SE	[58] 5	c1	c1	[58] 5	c1	c1
c1:	IF A.4/42 THEN m ELSE n / a - - the SIP session timer.						

Table A.160: Void
Table A.161: Void

A.2. 2 Proxy role

A.2.2.1 Introduction

This subclause contains the ICS proforma tables related to the proxy role. They need to be completed only for proxy implementations.

Prerequisite: A.2/2-- proxy role

A.2.2.2 Major capabilities

Table A.162: Major capabilities

Item	Does the implementation support	Reference	RFC status	Profile status
	Capabilities within main protocol			
3	initiate session release?	[26] 16	x	c27
4	stateless proxy behaviour?	[26] 16.11	0.1	c29
5	stateful proxy behaviour?	[26] 16.2	0.1	c28
6	forking of initial requests?	[26] 16.1	c1	c31
7	support of indication of TLS connections in the Record-Route header on the upstream side?	[26] 16.7	0	n/a
8	support of indication TLS connections in the Record-Route header on the downstream side?	[26] 16.7	0	n/a
8A	authentication between UA and proxy?	$\begin{aligned} & {[26] 20.28,} \\ & 22.3 \\ & \hline \end{aligned}$	0	X
9	insertion of date in requests and responses?	[26] 20.17	0	0
10	suppression or modification of alerting information data?	[26] 20.4	0	0
11	reading the contents of the Require header before proxying the request or response?	[26] 20.32	0	0
12	adding or modifying the contents of the Require header before proxying the REGISTER request or response	[26] 20.32	0	m
13	adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER?	[26] 20.32	0	0
14	being able to insert itself in the subsequent transactions in a dialog (record-routing)?	[26] 16.6	0	c2
15	the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing?	[26] 16.7	c3	c3
16	reading the contents of the Supported header before proxying the response?	[26] 20.37	0	0
17	reading the contents of the Unsupported header before proxying the 420 response to a REGISTER?	[26] 20.40	0	m
18	reading the contents of the Unsupported header before proxying the 420 response to a method other than REGISTER?	[26] 20.40	0	0
19	the inclusion of the Error-Info header in $3 x x-6 x x$ responses?	[26] 20.18	0	0
19A	reading the contents of the Organization header before proxying the request or response?	[26] 20.25	0	0
19B	adding or concatenating the Organization header before proxying the request or response?	[26] 20.25	0	0
19C	reading the contents of the Call-Info header before proxying the request or response?	[26] 20.9	0	0
19D	adding or concatenating the Call-Info header before proxying the request or response?	[26] 20.9	0	0
19E	delete Contact headers from 3xx responses prior to relaying the response?	[26] 20	0	0
	Extensions			

20	the SIP INFO method?	[25]	0	0
21	reliability of provisional responses in SIP?	[27]	0	i
22	the REFER method?	[36]	0	\bigcirc
23	integration of resource management and SIP?	[30] [64]	0	i
24	the SIP UPDATE method?	[29]	c4	i
26	SIP extensions for media authorization?	[31]	0	c7
27	SIP specific event notification	[28]	0	i
28	the use of NOTIFY to establish a dialog	[28] 4.2	0	n/a
29	Session Initiation Protocol Extension Header Field for Registering NonAdjacent Contacts	[35]	0	c6
30	extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks	[34]	0	m
30A	act as first entity within the trust domain for asserted identity	[34]	c5	c8
30B	act as subsequent entity within trust network that can route outside the trust network	[34]	c5	c9
31	a privacy mechanism for the Session Initiation Protocol (SIP)	[33]	0	m
31A	request of privacy by the inclusion of a Privacy header	[33]	n/a	n/a
31B	application of privacy based on the received Privacy header	[33]	c10	c12
31C	passing on of the Privacy header transparently	[33]	c10	c13
31D	application of the privacy option "header" such that those headers which cannot be completely expunged of identifying information without the assistance of intermediaries are obscured?	[33] 5.1	X	x
31E	application of the privacy option "session" such that anonymization for the session(s) initiated by this message occurs?	[33] 5.2	n/a	n/a
31F	application of the privacy option "user" such that user level privacy functions are provided by the network?	[33] 5.3	n/a	n/a
31G	application of the privacy option "id" such that privacy of the network asserted identity is provided by the network?	[34] 7	c11	c12
31H	application of the privacy option "history" such that privacy of the History-Info header is provided by the network?	[66] 7.2	c34	c34
32	Session Initiation Protocol Extension Header Field for Service Route Discovery During Registration	[38]	0	c30
33	a messaging mechanism for the Session Initiation Protocol (SIP)	[50]	0	m
34	Compressing the Session Initiation Protocol	[55]	0	c7
35	private header extensions to the session initiation protocol for the 3rdGeneration Partnership Project (3GPP)?	[52]	0	m
36	the P-Associated-URI header extension?	[52] 4.1	c14	c15
37	the P-Called-Party-ID header extension?	[52] 4.2	c14	c16
38	the P-Visited-Network-ID header extension?	[52] 4.3	c14	c17

39	reading, or deleting the P-Visited-Network-ID header before proxying the request or response?	[52] 4.3	c18	n/a
41	the P-Access-Network-Info header extension?	[52] 4.4	c14	c19
42	act as first entity within the trust domain for access network information?	[52] 4.4	c20	c21
43	act as subsequent entity within trust network for access network information that can route outside the trust network?	[52] 4.4	c20	c22
44	the P-Charging-Function-Addresses header extension?	[52] 4.5	c14	m
44A	adding, deleting or reading the P -Charging-Function-Addresses header before proxying the request or response?	[52] 4.6	c25	c26
45	the P-Charging-Vector header extension?	[52] 4.6	c14	m
46	adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response?	[52] 4.6	c23	c24
47	security mechanism agreement for the session initiation protocol?	[48]	0	c7
48	the Reason header field for the session initiation protocol	[34A]	-	o
48A	use of the Reason header field in Session Initiation Protocol (SIP) responses?	[130]	0	0
49	an extension to the session initiation protocol for symmetric response routeing	[56A]	0	m
50	caller preferences for the session initiation protocol?	[56B]	c33	c33
50A	the proxy-directive within callerpreferences?	[56B] 9.1	0.4	0.4
50B	the cancel-directive within callerpreferences?	[56B] 9.1	0.4	0.4
50C	the fork-directive within callerpreferences?	[56B] 9.1	0.4	c32
50D	the recurse-directive within callerpreferences?	[56B] 9.1	0.4	0.4
50E	the parallel-directive within callerpreferences?	[56B] 9.1	0.4	c32
50F	the queue-directive within callerpreferences?	[56B] 9.1	0.4	0.4
51	an event state publication extension to the session initiation protocol?	[70]	o	m
52	SIP session timer?	[58]	0	0
53	the SIP Referred-By mechanism?	[59]	0	0
54	the Session Inititation Protocol (SIP) "Replaces" header?	[60]	0	0
55	the Session Inititation Protocol (SIP) "Join" header?	[61]	0	0
56	the callee capabillities?	[62]	0	0
57	an extension to the session initiation protocol for request history information?	[66]	-	O
58	Rejecting anonymous requests in the session initiation protocol?	[67]	o	o
59	session initiation protocol URIs for applications such as voicemail and interactive voice response	[68]	0	0
60	the P-User-Database private header extension?	[82]	0	0
61	Session initiation protocol's non-INVITE transactions?	[83]	m	m
62	a uniform resource name for services	[69]	n/a	c35

63	obtaining and using GRUUs in the Session Initiation Protocol (SIP)	[93]	0	c36
64	an extension to the session initiation protocol for request cpc information?	[95]	0	c37
65	the Stream Control Transmission Protocol (SCTP) as a Transport for the Session Initiation Protocol (SIP)?	[96]	0	o (note2)
66	the SIP P-Profle-Key private header extension?	[97]	0	c41
66A	making the first query to the database in order to populate the P-Profile-Key header?	[97]	c38	c39
66B	using the information in the P-ProfileKey header?	[97]	c38	c40
67	managing client initiated connections in SIP?	[92] 11	0	c42
69	multiple-recipient MESSAGE requests in the session initiation protocol	[104]	n/a	n/a
70	SIP location conveyance?	[89]	0	m
70A	addition or modification of location in a SIP method?	[89]	c44	c45
70B	passes on locations in SIP method without modification?	[89]	c44	c46
71	referring to multiple resources in the session initiation protocol?	[105]	n/a	n/a
72	conference establishment using request-contained lists in the session initiation protocol?	[106]	n/a	n/a
73	subscriptions to request-contained resource lists in the session initiation protocol?	[107]	n/a	n/a
74	dialstring parameter for the session initiation protocol uniform resource identifier?	[103]	0	n/a
75	the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular?	[111]	0	c60
76	the SIP P-Early-Media private header extension for authorization of early media?	[109] 8	0	c51
81	addressing an amplification vulnerability in session initiation protocol forking proxies?	[117]	c52	c52
82	the remote application identification of applying signaling compression to SIP	[79] 9.1	0	c7
83	a session initiation protocol media feature tag for MIME application subtypes?	[120]	0	c53
84	identification of communication services in the session initiation protocol?	[121]	0	c54
84A	act as authentication entity within the trust domain for asserted service?	[121]	c55	c56
85	SOS URI parameter for marking SIP requests related to emergency calls?	[91A]	0	c61

c1:	IF A.162/5 THEN o ELSE n/a - stateful proxy behaviour.
c2:	IF A.3/2 OR A.3/9A OR A.3/4 THEN m ELSE o - - P-CSCF, IBCF (THIG) or S-CSC
c3:	IF (A.162/7 AND NOT A.162/8) OR (NOT A.162/7 AND A.162/8) THEN m ELSE IF
	A.162/14 THEN o ELSE n/a-- TLS interworking with non-TLS else proxy insertion.
c5:	IF A.162/30 THEN o ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c6:	IF A.3/2 OR A.3/9A THEN m ELSE n/a - P-CSCF or IBCF (THIG).
c7:	IF A.3/2 THEN m ELSE n/a - P-CSCF
c8:	IF A. $3 / 2$ AND A. $162 / 30$ THEN m ELSE n/a - - P-CSCF and extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c9:	IF A.3/2 AND A. $162 / 30$ THEN m ELSE IF A.3/7C AND A.162/30 THEN o ELSE n/a -S-CSCF or AS acting as proxy and extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks (NOTE 1).
c10:	IF A.162/31 THEN o. 2 ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c11:	IF A. $162 / 31 \mathrm{~B}$ THEN o ELSE x - - application of privacy based on the received Privacy header.
c12:	IF A.162/31 AND A.3/4 THEN m ELSE n/a - S-CSCF.
c13:	IF A.162/31 AND (A.3/2 OR A.3/3 OR A.3/7C OR A.3/9A) THEN m ELSE n/a - - PCSCF or I-CSCF or AS acting as a SIP proxy or IBCF (THIG).
c14:	IF A. $162 / 35$ THEN o. 3 ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP).
c15:	IF A. $162 / 35$ AND (A.3/2 OR A.3/3 OR A.3/9A) THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and P-CSCF or I-CSCF or IBCF (THIG).
c16:	IF A. $162 / 35$ AND (A.3/2 OR A.3/3 OR A.3/4 OR A.3/9A) THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership
c17:	IF A. 162/35 AND (A.3/2 OR A.3/3 OR A.3/9A) THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and P-CSCF or I-CSCF or IBCF (THIG).
c18:	IF A.162/38 THEN o ELSE n/a - the P-Visited-Network-ID header extension.
c19:	IF A.162/35 AND (A.3/2 OR A.3.3 OR A.3/4 OR A.3/7 THEN m ELSE n/a - - private header extensions to the session initiation protocol for the 3rd-Generation Partnership Project (3GPP) and P-CSCF, I-CSCF, S-CSCF, AS acting as a proxy.
c20:	IF A. $162 / 41$ THEN o ELSE n/a - the P-Access-Network-Info header extension.
c21:	IF A.162/41 AND A.3/2 THEN m ELSE n/a - the P-Access-Network-Info header extension and P-CSCF.
c22:	IF A. $162 / 41$ AND A. $3 / 4$ THEN m ELSE $n / a-$ - the P-Access-Network-Info header extension and S-CSCF.
c23:	IF A.162/45 THEN o ELSE n/a - the P-Charging-Vector header extension.
c24:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c25:	IF A.162/44 THEN o ELSE n/a - the P-Charging-Function-Addresses header extension.
c26:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function Addresses header extension.
c27:	IF A.3/2 OR A.3/4 THEN m ELSE x - - P-CSCF or S-CSCF.
c28:	IF A.3/2 OR A.3/3 OR A.3/4 THEN m ELSE 0.8 - - P-CSCF or i-CSCF or S-CSCF.
c29:	IF A.3/2 OR A.3/4 THEN n/a ELSE IF A.3/3 THEN o ELSE o.8-- P-CSCF or S-CSCF or I-CSCF.
c30:	IF A.3/2 o ELSE i - P-CSCF.
c31:	IF A.3/4 THEN m ELSE x - S-CSCF.
c32:	IF A.3/4 THEN m ELSE 0.4-- S-CSCF.
c33:	IF A.162/50A OR A.162/50B OR A.162/50C OR A.162/50D OR A.162/50E OR A.162/50F THEN m ELSE n/a - - support of any directives within caller preferences for the session initiation protocol.
c34:	IF A. $162 / 57$ THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.
c35:	IF A.3/2 OR A.3/11 THEN m ELSE n/a - P-CSCF, E-CSCF.
c36:	IF A.3/4 THEN m ELSE n/a-- S-CSCF.
c37:	IF A.3/2 OR A.3/3 OR A.3/4 OR A.3/5 OR A.3/6 OR A.3/7 OR A.3/8 OR A.3/9A THEN - ELSE n/a - cpc URI parameter.
c38:	IF A.162/66 THEN o ELSE n/a - the SIP P-Profile-Key private header.
c39:	IF A.162/66 AND (A.3/3 OR A.3/9A) THEN m ELSE n/a - - the SIP P-Profile-Key private header, I-CSCF or IBCF (THIG).
c40:	IF A.162/66 AND A.3/4 THEN m ELSE n/a - - the SIP P-Profile-Key private header, SCSCF.
c41:	IF A.3/3 OR A.3/4 OR A.3/9A THEN o ELSE n/a - - I-CSCF or S-CSCF or IBCF (THIG).
c42:	IF A.3/2 OR A.3/3 OR A.3/4 THEN o ELSE n/a - P-CSCF, I-CSCF, S-CSCF.
c44:	IF A.162/70 THEN o. 5 ELSE n/a - - SIP location conveyance.
c45:	IF A.162/70 AND A.3/11 THEN m EESSIIF A.162/70 AND A.3/7C THEN o. 6 ELSE n/a

```
c46: IF A.162/70 AND A.3/2 OR A.3/3 OR A.3/5 OR A.3/10 THEN m ELSE IF A.162/70
        AND A.3/7C THEN o.6 ELSE n/a - - SIP location conveyance, P-CSCF, I-CSCF, S-
        CSCF, BGCF, additional routeing functionality.
c51: IF A.3/2 THEN m ELSE o-- P-CSCF.
c52: IF A.162/6 THEN m ELSE o - - forking of initial requests.
c53: IF A.3/4 THEN m ELSE n/a - - S-CSCF.
c54: IF A.3/3 OR A.3/4 OR A.3/7 OR A.3/2 OR A.3/9A THEN m ELSE n/a - - l-CSCF, S-
        CSCF, BGCF, P-CSCF. IBCF (THIG).
c55: IF A.162/84 THEN o ELSE n/a - - identification of communication services in the
        session initiation protocol.
c56: IF A.3/4 AND A.162/84 THEN m ELSE n/a - S-CSCF and identification of
        communication services in the session initiation protocol.
c60: IF A.3/2 OR A.3/3 OR A.3/4 THEN o ELSE n/a -- P=CSCF, I-CSCF, S-CSCF.
c61 IF A.3/2 OR A.3/3 OR A.3/11 OR A.3/5 THEN m ELSE n/a - - P-CSCF, I-CSCF, E-
        CSCF, BGCF.
0.1: It is mandatory to support at least one of these items.
0.2: It is mandatory to support at least one of these items.
0.3: It is mandatory to support at least one of these items.
0.4 At least one of these capabilities is supported.
0.5: It is mandatory to support exactly one of these items.
0.6: It is mandatory to support exactly one of these items.
0.8 It is mandatory to support at least one of these items.
NOTE 1: An AS acting as a proxy may be outside the trust domain, and therefore not able to
        support the capability for that reason; in this case it is perfectly reasonable for the
        header to be passed on transparently, as specified in the PDU parts of the profile.
NOTE 2: Not applicable over Gm reference point (UE - P-CSCF).
```


A.2.2.3 PDUs

Table A.163: Supported methods

Item	PDU	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	ACK request	[26] 13	m	m	[26] 13	m	m
2	BYE request	[26] 16	m	m	[26] 16	m	m
3	BYE response	[26] 16	m	m	[26] 16	m	m
4	CANCEL request	[26] 16.10	m	m	[26] 16.10	m	m
5	CANCEL response	[26] 16.10	m	m	[26] 16.10	m	m
8	INVITE request	[26] 16	m	m	[26] 16	m	m
9	INVITE response	[26] 16	m	m	[26] 16	m	m
9A	MESSAGE request	[50] 4	c5	c5	[50] 7	c5	c5
9B	MESSAGE response	[50] 4	c5	c5	[50] 7	c5	c5
10	NOTIFY request	[28] 8.1.2	c3	c3	[28] 8.1.2	c3	c3
11	NOTIFY response	[28] 8.1.2	c3	c3	[28] 8.1.2	c3	c3
12	OPTIONS request	[26] 16	m	m	[26] 16	m	m
13	OPTIONS response	[26] 16	m	m	[26] 16	m	m
14	PRACK request	[27] 6	c6	c6	[27] 6	c6	c6
15	PRACK response	[27] 6	c6	c6	[27] 6	c6	c6
15A	PUBLISH request	$\begin{aligned} & {[70]} \\ & 11.1 .1 \end{aligned}$	c20	c20	$\begin{aligned} & {[70]} \\ & 11.1 .1 \end{aligned}$	c20	c20
15B	PUBLISH response	$\begin{aligned} & \hline \text { [70] } \\ & \text { 11.1.1 } \end{aligned}$	c20	c20	$\begin{aligned} & {[70]} \\ & \text { 11.1.1 } \end{aligned}$	c20	c20
16	REFER request	[36] 3	c1	c1	[36] 3	c1	c1
17	REFER response	[36] 3	c1	c1	[36] 3	c1	c1
18	REGISTER request	[26] 16	m	m	[26] 16	m	m
19	REGISTER response	[26] 16	m	m	[26] 16	m	m
20	SUBSCRIBE request	[28] 8.1.1	c3	c3	[28] 8.1.1	c3	c3
21	SUBSCRIBE response	[28] 8.1.1	c3	c3	[28] 8.1.1	c3	c3
22	UPDATE request	[29] 7	c4	c4	[29] 7	c4	c4
23	UPDATE response	[29] 7	c4	c4	[29] 7	c4	c4
c1:	IF A. 162/22 THEN m ELSE n/a - the REFER method. IF A.162/27 THEN m ELSE n/a - - SIP specific event notification. IF A. $162 / 24$ THEN m ELSE $n / a-$ - the SIP UPDATE method. IF A. 162/33 THEN m ELSE n/a - the SIP MESSAGE method. ÌF A.162/21 THEN m ELSE n/a - - reliability of provisional responses. IF A. $4 / 51$ THEN m ELSE n/a						
c3							
c4							
c5:							
c6:							

A.2.2.4 PDU parameters

A.2.2.4.1 Status-codes

Table A.164: Supported-status codes

Item	Header	Sending			Receiving		
		Ref.	RFC	Profile status	Ref.	RFC status	Profile status
1	100 (Trying)	$\begin{aligned} & \hline[26] \\ & 21.1 .1 \end{aligned}$	c1	c1	$\begin{aligned} & \hline[26] \\ & 21.1 .1 \end{aligned}$	c2	c2
101	1xx response	[26] 21.1	p21	p21	[26] 21.1	p21	p21
101A	18x response	[26] 21.1	p21	p21	[26] 21.1	p21	p21
2	180 (Ringing)	$\begin{aligned} & {[26]} \\ & 21.1 .2 \end{aligned}$	c3	c3	$\begin{aligned} & {[26]} \\ & 21.1 .2 \end{aligned}$	c3	c3
3	181 (Call Is Being Forwarded)	$\begin{aligned} & \hline[26] \\ & 21.1 .3 \end{aligned}$	c3	c3	$\begin{aligned} & {[26]} \\ & 21.1 .3 \end{aligned}$	c3	c3
4	182 (Queued)	$\begin{aligned} & \hline[26] \\ & 21.1 .4 \end{aligned}$	c3	c3	$\begin{aligned} & {[26]} \\ & 21.1 .4 \end{aligned}$	c3	c3
5	183 (Session Progress)	$\begin{aligned} & {[26]} \\ & 21.1 .5 \end{aligned}$	c3	c3	$\begin{aligned} & {[26]} \\ & 21.1 .5 \end{aligned}$	c3	c3
102	2xx response	[26] 21.2	p22	p22	[26] 21.1	p22	p22
6	200 (OK)	$\begin{aligned} & {[26]} \\ & 21.2 .1 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.2 .1 \end{aligned}$	i	m
7	202 (Accepted)	[28] 8.3.1	c4	c4	[28] 8.3.1	c4	c4
103	3xx response	[26] 21.3	p23	p23	[26] 21.1	p23	p23
8	300 (Multiple Choices)	$\begin{aligned} & {[26]} \\ & 21.3 .1 \\ & \hline \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.3 .1 \\ & \hline \end{aligned}$	i	i
9	301 (Moved Permanently)	$\begin{aligned} & {[26]} \\ & 21.3 .2 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.3 .2 \end{aligned}$	i	i
10	302 (Moved Temporarily)	$\begin{aligned} & \hline[26] \\ & 21.3 .3 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.3 .3 \end{aligned}$	i	i
11	305 (Use Proxy)	$\begin{aligned} & {[26]} \\ & 21.3 .4 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.3 .4 \end{aligned}$	i	i
12	380 (Alternative Service)	$\begin{aligned} & {[26]} \\ & 21.3 .5 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.3 .5 \end{aligned}$	i	i
104	4xx response	[26] 21.4	p24	p24	[26] 21.4	p24	p24
13	400 (Bad Request)	$\begin{aligned} & {[26]} \\ & 21.4 .1 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .1 \end{aligned}$	i	i
14	401 (Unauthorized)	$\begin{aligned} & {[26]} \\ & 21.4 .2 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .2 \end{aligned}$	i	c10
15	402 (Payment Required)	$\begin{aligned} & \hline[26] \\ & 21.4 .3 \end{aligned}$	n/a	n/a	$\begin{aligned} & {[26]} \\ & 21.4 .3 \end{aligned}$	n/a	n/a
16	403 (Forbidden)	$\begin{aligned} & {[26]} \\ & 21.4 .4 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .4 \end{aligned}$	i	i
17	404 (Not Found)	$\begin{aligned} & {[26]} \\ & 21.4 .5 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .5 \end{aligned}$	i	i
18	405 (Method Not Allowed)	$\begin{aligned} & {[26]} \\ & 21.4 .6 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .6 \end{aligned}$	i	i
19	406 (Not Acceptable)	$\begin{aligned} & \hline[26] \\ & 21.4 .7 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.4 .7 \end{aligned}$	i	i
20	407 (Proxy Authentication Required)	$\begin{aligned} & \hline[26] \\ & 21.4 .8 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .8 \end{aligned}$	i	i
21	408 (Request Timeout)	$\begin{aligned} & {[26]} \\ & 21.4 .9 \end{aligned}$	c3	c3	$\begin{aligned} & {[26]} \\ & 21.4 .9 \end{aligned}$	i	i
22	410 (Gone)	$\begin{aligned} & {[26]} \\ & 21.4 .10 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .10 \end{aligned}$	i	i
22A	412 (Conditional Request Failed)	$\begin{aligned} & \hline[70] \\ & 11.2 .1 \end{aligned}$	c20	c20	$\begin{aligned} & \hline[70] \\ & 11.2 .1 \end{aligned}$	c19	c19
23	413 (Request Entity Too Large)	$\begin{aligned} & {[26]} \\ & 21.4 .11 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .11 \end{aligned}$	i	i
24	414 (Request-URI Too Large)	$\begin{aligned} & {[26]} \\ & 21.4 .12 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .12 \end{aligned}$	i	i
25	415 (Unsupported Media Type)	$\begin{aligned} & {[26]} \\ & 21.4 .13 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .13 \end{aligned}$	i	i

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC	Profile status
26	416 (Unsupported URI Scheme)	$\begin{aligned} & \hline[26] \\ & 21.4 .14 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.4 .14 \end{aligned}$	i	i
27	420 (Bad Extension)	$\begin{aligned} & {[26]} \\ & 21.4 .15 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .15 \end{aligned}$	i	i
28	421 (Extension Required)	$\begin{aligned} & {[26]} \\ & 21.4 .16 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .16 \end{aligned}$	i	i
28A	422 (Session Interval Too Small)	[58] 6	c8	c8	[58] 6	c8	c8
29	423 (Interval Too Brief)	$\begin{aligned} & \hline[26] \\ & 21.4 .17 \\ & \hline \end{aligned}$	c5	c5	$\begin{aligned} & {[26]} \\ & 21.4 .17 \end{aligned}$	c6	c6
29A	424 (Bad Location Information)	[89] 3.3	c23	c23	[89] 3.3	c24	c24
29B	429 (Provide Referrer Identity)	[59] 5	c9	c9	[59] 5	c9	c9
29C	430 (Flow Failed)	[92] 11	0	c21	[92] 11	m	c22
29D	433 (Anonymity Disallowed)	[67] 4	c14	c14	[67] 4	c14	c14
29E	439 (First Hop Lacks Outbound Support)	[92] 11	c28	c28	[92] 11	c29	c29
29F	440 (Max Breadth Exceeded)	[117] 5	c30	c30	[117] 5	c31	c31
30	480 (Temporarily not available)	$\begin{aligned} & \hline[26] \\ & 21.4 .18 \\ & \hline \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .18 \end{aligned}$	i	i
31	481 (Call /Transaction Does Not Exist)	$\begin{aligned} & {[26]} \\ & 21.4 .19 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .19 \end{aligned}$	i	i
32	482 (Loop Detected)	$\begin{aligned} & {[26]} \\ & 21.4 .20 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .20 \end{aligned}$	i	i
33	483 (Too Many Hops)	$\begin{aligned} & {[26]} \\ & 21.4 .21 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .21 \end{aligned}$	i	i
34	484 (Address Incomplete)	$\begin{aligned} & {[26]} \\ & 21.4 .22 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .22 \end{aligned}$	i	i
35	485 (Ambiguous)	$\begin{aligned} & \hline[26] \\ & 21.4 .23 \\ & \hline \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.4 .23 \end{aligned}$	i	i
36	486 (Busy Here)	$\begin{aligned} & {[26]} \\ & 21.4 .24 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .24 \end{aligned}$	i	i
37	487 (Request Terminated)	$\begin{aligned} & \hline[26] \\ & 21.4 .25 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.4 .25 \end{aligned}$	i	i
38	488 (Not Acceptable Here)	$\begin{aligned} & \hline[26] \\ & 21.4 .26 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .26 \end{aligned}$	i	i
39	489 (Bad Event)	[28] 7.3.2	c4	c4	[28] 7.3.2	c4	c4
40	491 (Request Pending)	$\begin{aligned} & {[26]} \\ & 21.4 .27 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .27 \end{aligned}$	i	i
41	493 (Undecipherable)	$\begin{aligned} & {[26]} \\ & 21.4 .28 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.4 .28 \end{aligned}$	i	i
41A	494 (Security Agreement Required)	[48] 2	c7	c7	[48] 2	n/a	n/a
105	5xx response	[26] 21.5	p25	p25	[26] 21.5	p25	p25
42	500 (Internal Server Error)	$\begin{aligned} & {[26]} \\ & 21.5 .1 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.5 .1 \end{aligned}$	i	i
43	501 (Not Implemented)	$\begin{aligned} & {[26]} \\ & 21.5 .2 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.5 .2 \end{aligned}$	i	i
44	502 (Bad Gateway)	$\begin{aligned} & \hline[26] \\ & 21.5 .3 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.5 .3 \end{aligned}$	i	i
45	503 (Service Unavailable)	$\begin{aligned} & \hline[26] \\ & 21.5 .4 \\ & \hline \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.5 .4 \\ & \hline \end{aligned}$	i	i
46	504 (Server Time-out)	$\begin{aligned} & \hline[26] \\ & 21.5 .5 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.5 .5 \end{aligned}$	i	i
47	505 (Version not supported)	$\begin{aligned} & \hline[26] \\ & 21.5 .6 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.5 .6 \end{aligned}$	i	i
48	513 (Message Too Large)	$\begin{aligned} & \hline[26] \\ & 21.5 .7 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.5 .7 \end{aligned}$	i	i
49	580 (Precondition Failure)	[30] 8	m	m	[30] 8	i	,
106	6xx response	[26] 21.6	p26	p26	[26] 21.6	p26	p26
50	600 (Busy Everywhere)	$\begin{aligned} & {[26]} \\ & 21.6 .1 \\ & \hline \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 21.6 .1 \end{aligned}$	i	i
51	603 (Decline)	$\begin{aligned} & \hline[26] \\ & 21.6 .2 \end{aligned}$	m	m	$\begin{aligned} & \hline[26] \\ & 21.6 .2 \end{aligned}$	i	i

Item	Header	Sending			Receivin		
		Ref.	RFC status	Profil statu	Ref.	RFC status	Profile status
5		21.6 .3	m	m	6		
53	606 (Not Accep		m		$[26]$ 21.6 .4		
c1:	IF A.163/3 OR A.163/9 OR A.163/9B OR A.163/11 OR A.163/13 OR A. $163 / 15$ OR A.163/15B OR A.163/17 OR A.163/19 OR A.163/21 OR A. 163/23 AND A. $162 / 5$ THEN m ELSE n/a - BYE response or INVITE response or MESSAGE response or NOTIFY response or OPTIONS response or PRACK response or PUBLISH response or REFER response or REGISTER response or SUBSCRIBE response or UPDATE response, stateful proxy. IF A. 163/3 OR A.163/9 OR A.163/9B OR A.163/11 OR A.163/13 OR A.163/15 OR A.163/15B OR A.163/17 OR A. $163 / 19$ OR A.163/21 OR A. $163 / 23$ THEN (IF A. $162 / 5$ THEN m ELSE i) ELSE n/a - - BYE response or INVITE response or MESSAGE response or NOTIFY response or OPTIONS response or PRACK response or PUBLISH response or REFER response or REGISTER response or SUBSCRIBE response or UPDATE response, stateful proxy. IF A.163/9 THEN m ELSE n/a - - INVITE response. IF A.162/27 THEN m ELSE n/a - - SIP specific event notification. IF A.163/19 OR A.163/21 THEN m ELSE n/a - - REGISTER response or SUBSCRIBE response. IF A.163/19 OR A.163/21 THEN i ELSE n/a - REGISTER response or SUBSCRIBE response. IF A. 162/47 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol. IF A. 162/52 THEN m ELSE n/a - - the SIP session timer. IF A. 162/53 AND A. $163 / 17$ THEN m ELSE n/a - the SIP Referred-By mechanism and REFER response. IF A.3/2 THEN m ELSE i - - P-CSCF. IF A. 162/58 THEN m ELSE n/a - - rejecting anonymous requests in the session initiation protocol. IF A.162/51 THEN i ELSE n/a - - an event state publication extension to the session initiation protocol. IF A. 162/51 THEN m ELSE n/a - - an event state publication extension to the session initiation protocol. IF A.4/57 AND A.3/2 THEN o ELSE n/a - - managing client initiated connections in SIP, P-CSCF. IF A. $4 / 57$ AND A. $3 / 4$ THEN m ELSE i - - managing client initiated connections in SIP, S-CSCF. IF A. 162/70 THEN m ELSE n/a - - SIP location conveyance. IF A.162/70 THEN i ELSE n/a - - SIP location conveyance. IF A. 162/57 AND THEN m ELSE n/a - - managing client initiated connections in SIP. IF A. 162/57 AND THEN i ELSE n/a - - managing client initiated connections in SIP. IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies. IF A.162/81 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies. A.164/2 OR A.164/3 OR A.164/4 OR A.164/5--1xx response A.164/6 OR A.164/7-- 2xx response A.164/8 OR A.164/9 OR A.164/10 OR A.164/11 OR A.164/12 OR A.164/13 - - 3xx response A.164/14 OR A. 164/15 OR A.164/16 OR A.164/17 OR A.164/18 OR A.164/19 OR A. $164 / 20$ OR A. 164/21 OR A. 164/22 OR A.164/22A OR A.164/23 OR A.164/24 OR A. $164 / 25$ OR A.164/26 OR A.164/26A OR A.164/27 OR A.164/28 OR A.164/28A OR A.164/29 OR A.164/29A OR A.164/29B OR A.164/29C OR A. 164/29D OR A.164/29E OR A.164/29F OR A.164/30 OR A.164/31 OR A.164/32 OR A. $164 / 33$ OR A. $164 / 34$ OR A. $164 / 35$ OR A. $164 / 36$ OR A. $164 / 436$ OR A. $164 / 38$ OR A. $164 / 39$ OR A. $164 / 40$ OR A. 164/41 OR A.164/41A. - - 4xx response A. 164/42 OR A. $164 / 43$ OR A. $164 / 44$ OR A. $164 / 45$ OR A. $164 / 46$ OR A. $164 / 47$ OR A. $164 / 48$ OR A. $164 / 49$ - - 5xx response A. $164 / 50$ OR A. $164 / 51$ OR A. $164 / 52$ OR A.164/53--6xx response						
c3							
c4:							
c5:							
c6:							
c7:							
c8:							
c9:							
c10:							
c14:							
c19:							
c20:							
c21:							
c22:							
c23:							
c24:							
c28:							
c29:							
c30:							
c31:							
p21:							
p22:							
p23:							
p24:							
p25:							

A.2.2.4.2 ACK method

Prerequisite A.163/1-- ACK request
Table A.165: Supported headers within the ACK request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept-Contact	[56B] 9.2	c10	c10	[56B] 9.2	c11	c11
2	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
3	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
4	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
7	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
8	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
9	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
10	Content-Type	[26] 20.15	m	m	[26] 20.15	i	c3
11	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
12	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
13	From	[26] 20.20	m	m	[26] 20.20	m	m
13A	Max-Breadth	[117] 5.8	c15	c15	[117] 5.8	c16	c16
14	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
15	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c3
15A	Privacy	[33] 4.2	c6	c6	[33] 4.2	c7	c7
16	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c4	c4
17	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
17A	Reason	[34A] 2	c8	c8	[34A] 2	c9	c9
17B	Reject-Contact	[56B] 9.2	c10	c10	[56B] 9.2	c11	c11
17C	Request-Disposition	[56B] 9.1	c10	c10	[56B] 9.1	c11	c11
18	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
19	Route	[26] 20.34	m	m	[26] 20.34	m	m
20	Timestamp	[26] 20.38	m	m	[26] 20.38	i	I
21	To	[26] 20.39	m	m	[26] 20.39	m	m
22	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
23	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF A.4/20 THEN m ELSE i - SIP specific event notification extension.						
c2:	IF A.162/9 THEN m ELSE $\mathrm{i}-$ - insertion of date in requests and responses.						
c3:	IF A.3/2 OR A.3/4 THEN m ELSE i - - P-CSCF or S-CSCF.						
c4:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.						
c5:	IF A.162/11 OR A.162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.						
c6:	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c7:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.						
c8:	IF A. 162/48 THEN m ELSE n/a - - the Reason header field for the session initiation protocol.						
c9:	IF A.162/48 THEN i ELSE $\mathrm{n} / \mathrm{a}-$ - the Reason header field for the session initiation protocol.						
c10:	IF A.162/50 THEN m ELSE n/a - caller preferences for the session initiation protocol.						
c11:	IF A.162/50 THEN i ELSE n/a - caller preferences for the session initiation protocol.						
c15:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.						
c16:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.						
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.						

Table A.166: Void

A.2.2.4.3 BYE method

Prerequisite A.163/2-- BYE request
Table A.167: Supported headers within the BYE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c23	c23
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
3A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
4	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
5	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	c3
8	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	c3
9	Content-Language	[26] 20.13	m	m	[26] 20.13	i	c3
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	i	c3
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
14	From	[26] 20.20	m	m	[26] 20.20	m	m
14A	Geolocation	[89] 3.2	c26	c26	[89] 3.2	c27	c27
14B	Max-Breadth	[117] 5.8	c33	c33	[117] 5.8	c34	c34
15	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
16	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c3
16A	P-Access-Network-Info	[52] 4.4	c13	c13	[52] 4.4	c14	c14
16B	P-Asserted-Identity	[34] 9.1	c9	c9	[34] 9.1	c10	c10
16C	P-Charging-FunctionAddresses	[52] 4.5	c17	c17	[52] 4.5	c18	c18
16D	P-Charging-Vector	[52] 4.6	c15	n/a	[52] 4.6	c16	n/a
16E	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c8	n/a
16F	Privacy	[33] 4.2	c11	c11	[33] 4.2	c12	c12
17	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c4	c4
18	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
18A	Reason	[34A] 2	c20	c20	[34A] 2	c21	c21
19	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
19A	Referred-By	[59] 3	c24	c24	[59] 3	c25	c25
19B	Reject-Contact	[56B] 9.2	c22	c22	[56B] 9.2	c23	c23
19C	Request-Disposition	[56B] 9.1	c22	c22	[56B] 9.1	c23	c23
20	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
21	Route	[26] 20.34	m	m	[26] 20.34	m	m
21A	Security-Client	[48] 2.3.1	x	X	[48] 2.3.1	c19	c19
21B	Security-Verify	[48] 2.3.1	X	X	[48] 2.3.1	c19	c19
22	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
23	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
24	To	[26] 20.39	m	m	[26] 20.39	m	m
25	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
26	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.
c2:	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.
c3:	IF A.3/2 OR A.3/4 THEN m ELSE i - P-CSCF or S-CSCF.
c4:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c5:	IF A.162/11 OR A.162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A. 162/16 THEN m ELSE i - reading the contents of the Supported header before proxying the response.
c7:	IF A. 162/14 THEN o ELSE $\mathrm{i}-$ - the requirement to be able to insert itself in the subsequent transactions in a dialog.
c8:	IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c9:	IF A. $162 / 30$ THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c10:	IF A.162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c11:	IF A.162/31 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - a privacy mechanism for the Session Initiation Protocol (SIP).
c12:	IF A. 162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c13:	IF A. 162/43 THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c14:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c15:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c16:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c17:	IF A.162/44 THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension.
c18:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE $n / a-$ - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c19:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.
c20:	IF A. $162 / 48$ THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c21:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c22:	IF A.162/50 THEN m ELSE n/a - - caller preferences for the session initiation protocol.
c23:	IF A.162/50 THEN i ELSE n/a - caller preferences for the session initiation protocol.
c24:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c25:	IF A.162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.
c26:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c27:	IF A. 162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.
c33:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c34:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.

Table A.168: Void
Table A.169: Void
Prerequisite A.163/3-- BYE response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.169A: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - - stateful proxy behaviour that inserts date, or stateless proxies. IF A.162/4 THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/3-- BYE response for all remaining status codes
Table A.170: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	c2
3	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	c2
4	Content-Language	[26] 20.13	m	m	[26] 20.13	i	c2
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	i	c2
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c15	c15	[89] 3.2	c16	c16
10	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c2
10A	P-Access-Network-Info	[52] 4.4	c12	c12	[52] 4.4	c13	c13
10B	P-Asserted-Identity	[34] 9.1	c4	c4	[34] 9.1	c5	c5
10C	P-Charging-FunctionAddresses	[52] 4.5	c10	c10	[52] 4.5	c11	c11
10D	P-Charging-Vector	[52] 4.6	c8	n/a	[52] 4.6	c9	n/a
10E	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c3	n/a
10F	Privacy	[33] 4.2	c6	c6	[33] 4.2	c7	c7
10G	Require	[26] 20.32	m	m	[26] 20.32	c14	c14
10H	Server	[26] 20.35	m	m	[26] 20.35	i	i
11	Timestamp	[26] 20.38	m	m	[26] 20.38	i	1
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	m	m	[26] 20.43	i	i
c1: c2: c3: c4:	IF A.162/9 THEN m ELSE i- - insertion of date in requests and responses. IF A.3/2 OR A.3/4 THEN m ELSE i - - P-CSCF or S-CSCF. IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity. IF A.162/30 THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c5:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.						
c6:	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c7:	IF A. 162/31D OR A. 162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently. IF A. 162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.						
c9:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.						
$\begin{aligned} & \text { c10: } \\ & \text { c11: } \end{aligned}$	IF A. 162/44 THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A.162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.						
c12:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE $n / a-$ - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.						
c13:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - - act as subsequent entity within trust network						
c14:	IF A. 162/11 OR A. $162 / 13$ THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER. IF A. 162/70 THEN m ELSE n/a - - SIP location conveyance. IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.						
$\begin{aligned} & \text { c15: } \\ & \text { c16: } \end{aligned}$							

Prerequisite: A.164/102-- Additional for 2xx response
Table A.171: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
0A	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	i	c1
1	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
2	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
5	Supported	[26] 20.37	m	m	[26] 20.37	i	i
$\begin{aligned} & \text { c1: } \\ & \text { c3: } \end{aligned}$	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension. IF A. $162 / 15$ THEN o ELSE i - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing.						

Prerequisite A.163/3-- BYE response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.171A: Supported headers within the BYE response

Item	Header			Rending			RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i			

Prerequisite A.163/3-BYE response
Prerequisite: A. 164/103 OR A.164/35 - - Additional for 3 xx or 485 (Ambiguous) response
Table A.172: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Contact	[26] 20.10	m	m	[26] 20.10	c1	c1
c1:	IF A.162/19E THEN m ELSE i - - deleting Contact headers.						

Prerequisite A.163/3-- BYE response
Prerequisite: A.164/14-- Additional for 401 (Unauthorized) response
Table A.173: Supported headers within the BYE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/3-- BYE response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.174: Supported headers within the BYE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i	

Table A.175: Void
Prerequisite A.163/3-- BYE response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.176: Supported headers within the BYE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/3-- BYE response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.177: Supported headers within the BYE response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
1	Accept	$[26] 20.1$	m	m	$[26] 20.1$	i	i		
2	Accept-Encoding	$[26] 20.2$	m	m	$[26] 20.2$	i	i		
3	Accept-Language	$[26] 20.3$	m	m	$[26] 20.3$	i	i		

Prerequisite A.163/3-- BYE response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.178: Supported headers within the BYE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3	c 3		
c3:	IF A.162/18 THEN m ELSE $\mathrm{i}-\mathrm{reading}$ the contents of the Unsupported response to a method other than REGISTER.								

Prerequisite A.163/3-- BYE response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.178A: Supported headers within the BYE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A. $162 / 47$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - security mechanism agreement for the session initiation protocol.						

Table A.179: Void
Table A.180: Void

A.2.2.4.4 CANCEL method

Prerequisite A.163/4-- CANCEL request
Table A.181: Supported headers within the CANCEL request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept-Contact	[56B] 9.2	c10	c10	[56B] 9.2	c11	c11
5	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
8	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
9	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
10	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
11	From	[26] 20.20	m	m	[26] 20.20	m	m
11A	Max-Breadth	[117] 5.8	c15	c15	[117] 5.8	c16	c16
12	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
14	Privacy	[33] 4.2	c3	c3	[33] 4.2	c4	c4
15	Reason	[34A] 2	c8	c8	[34A] 2	c9	c9
16	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
17	Reject-Contact	[56B] 9.2	c10	c10	[56B] 9.2	c11	c11
17A	Request-Disposition	[56B] 9.1	c10	c10	[56B] 9.1	c11	c11
18	Route	[26] 20.34	m	m	[26] 20.34	m	m
19	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
20	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
21	To	[26] 20.39	m	m	[26] 20.39	m	m
22	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
23	Via	[26] 20.42	m	m	[26] 20.42	m	m
c2:	IF A.162/9 THEN m ELSE i- - insertion of date in requests and responses. IF A.162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.						
c3:							
c4:							
c6:	IF A.162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.						
c7:	IF A.162/14 THEN o ELSE i - - the requirement to be able to insert itself in the subsequent transactions in a dialog.						
c8:	IF A.162/48 THEN m ELSE n/a - the Reason header field for the session initiation protocol.						
c9:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.						
c10:	IF A.162/50 THEN m ELSE n/a - - caller preferences for the session initiation protocol.						
c11:	IF A.162/50 THEN i ELSE n/a - caller preferences for the session initiation protocol.						
c15:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.						
c16:	IF A. $162 / 81$ AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.						
NOTE	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.						

Table A.182: Void
Prerequisite A.163/5-- CANCEL response for all status-codes
Table A.183: Supported headers within the CANCEL response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
5	From	[26] 20.20	m	m	[26] 20.20	m	m
5A	Privacy	[33] 4.2	c2	c2	[33] 4.2	c3	c3
6	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
7	To	[26] 20.39	m	m	[26] 20.39	m	m
7A	User-Agent	[26] 20.41	0		[26] 20.41	0	
8	Via	[26] 20.42	m	m	[26] 20.42	m	m
9	Warning						
$\begin{aligned} & \text { c1: } \\ & \text { c2: } \\ & \text { c3: } \end{aligned}$							

Prerequisite A.163/5-- CANCEL response
Prerequisite: A. 164/102-- Additional for 2xx response
Table A.184: Supported headers within the CANCEL response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
2	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
4	Supported	[26] 20.37	m	m	[26] 20.37	i	i
c3:	IF A.162/15 THEN o ELSE i - - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing.						

Prerequisite A.163/5-- CANCEL response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.184A: Supported headers within the CANCEL response

Item	Header			Rending			Reiving RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
1	Error-Info	$[26] 20.18$	m	m	$[26.18$	i	i			

Table A.185: Void
Prerequisite A.163/5-- CANCEL response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51--
Additional for Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.186: Supported headers within the CANCEL response

Item	Header			Rending			RFCiving status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
4	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i			

Table A.188: Void
Table A.189: Void

A.2.2.4.5 COMET method

Void

A.2.2.4.6 INFO method

Void

A.2.2.4.7 INVITE method

Prerequisite A.163/8-- INVITE request
Tables A. 188 to A.203: Void
Table A.204: Supported headers within the INVITE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Contact	[56B] 9.2	c34	c34	[56B] 9.2	c34	c35
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
4	Alert-Info	[26] 20.4	c2	c2	[26] 20.4	c3	c3
5	Allow	[26] 20.5	m	m	[26] 20.5	i	i
6	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
8	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
9	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
10	Call-Info	[26] 20.9	m	m	[26] 20.9	c12	c12
11	Contact	[26] 20.10	m	m	[26] 20.10	i	i
12	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	c6
13	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	c6
14	Content-Language	[26] 20.13	m	m	[26] 20.13	i	c6
15	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
16	Content-Type	[26] 20.15	m	m	[26] 20.15	i	c6
17	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
18	Date	[26] 20.17	m	m	[26] 20.17	c4	c4
19	Expires	[26] 20.19	m	m	[26] 20.19	i	i
20	From	[26] 20.20	m	m	[26] 20.20	m	m
20A	Geolocation	[89] 3.2	c47	c47	[89] 3.2	c48	c48
20B	History-Info	[66] 4.1	c43	c43	[66] 4.1	c43	c43
21	In-Reply-To	[26] 20.21	m	m	[26] 20.21	i	i
21A	Join	[61] 7.1	c41	c41	[61] 7.1	c42	c42
21B	Max-Breadth	[117] 5.8	c63	c63	[117] 5.8	c64	c64
22	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
23	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c6
23A	Min-SE	[58] 5	0	0	[58] 5	0	0
24	Organization	[26] 20.25	m	m	[26] 20.25	c5	c5
24A	P-Access-Network-Info	[52] 4.4	c28	c28	[52] 4.4	c29	c30
24B	P-Asserted-Identity	[34] 9.1	c15	c15	[34] 9.1	c16	c16
24C	P-Asserted-Service	[121] 4.1	c53	c53	[121] 4.1	c54	c54
24D	P-Called-Party-ID	[52] 4.2	c19	c19	[52] 4.2	c20	c21
24E	P-Charging-FunctionAddresses	[52] 4.5	c26	c27	[52] 4.5	c26	c27
24F	P-Charging-Vector	[52] 4.6	c24	c24	[52] 4.6	c25	c25
24G	P-Early-Media	[109] 8	0	c50	[109] 8	0	c51
25	P-Media-Authorization	[31] 5.1	c9	X	[31] 5.1	n/a	n/a
25A	P-Preferred-Identity	[34] 9.2	X	x	[34] 9.2	c14	c14
25B	P-Preferred-Service	[121] 4.2	x	x	[121] 4.2	c52	c52

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
25B	P-Profile-Key	[97] 5	c45	c45	[97] 5	c46	c46
25C	P-User-Database	[82] 4	c44	c44	[82] 4	c44	c44
25D	P-Visited-Network-ID	[52] 4.3	c22	n/a	[52] 4.3	c23	n/a
26	Priority	[26] 20.26	m	m	[26] 20.26	i	i
26A	Privacy	[33] 4.2	c17	c17	[33] 4.2	c18	c18
27	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c13	c13
28	Proxy-Require	$\begin{aligned} & {[26]} \\ & 20.29, \\ & {[34] 4} \end{aligned}$	m	m	$\begin{array}{\|l} \hline[26] \\ 20.29, \\ {[34] 4} \\ \hline \end{array}$	m	m
28A	Reason	[34A] 2	c32	c32	[34A] 2	c33	c33
29	Record-Route	[26] 20.30	m	m	[26] 20.30	c11	c11
30	Referred-By	[59] 3	c37	c37	[59] 3	c38	c38
31	Reject-Contact	[56B] 9.2	c34	c34	[56B] 9.2	c34	c35
31A	Replaces	[60] 6.1	c39	c39	[60] 6.1	c40	c40
31B	Reply-To	[26] 20.31	m	m	[26] 20.31	i	i
31B	Request-Disposition	[56B] 9.1	c34	c34	[56B] 9.1	c34	c34
32	Require	[26] 20.32	m	m	[26] 20.32	c7	c7
33	Route	[26] 20.34	m	m	[26] 20.34	m	m
33A	Security-Client	[48] 2.3.1	X	x	[48] 2.3.1	c31	c31
33B	Security-Verify	[48] 2.3.1	x	x	[48] 2.3.1	c31	c31
33C	Session-Expires	[58] 4	c36	c36	[58] 4	c36	c36
34	Subject	[26] 20.36	m	m	[26] 20.36	i	i
35	Supported	[26] 20.37	m	m	[26] 20.37	c8	c8
36	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
37	To	[26] 20.39	m	m	[26] 20.39	m	m
38	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
39	Via	[26] 20.42	m	m	[26] 20.42	m	m

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.						
c2	IF A.162/10 THEN n / a ELSE m - - suppression or modification of alerting information data.						
c3:	IF A.162/10 THEN m ELSE i - - suppression or modification of alerting information data.						
c4	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.						
c5:	IF A.162/19A OR A.162/19B THEN m ELSE i - reading, adding or concatenating the Organization header.						
c6:	IF A.3/2 OR A.3/4 THEN m ELSE i - P-CSCF or S-CSCF.						
c7:	IF A. $162 / 11$ OR A. $162 / 13$ THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.						
c8:	IF A.162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.						
c9:	IF A.162/26 THEN m ELSE n/a - SIP extensions for media authorization						
c11:	IF A.162/14 THEN m ELSE i - - the requirement to be able to insert itself in the subsequent transactions in a dialog.						
c12:	IF A.162/19C OR A.162/19D THEN m ELSE i - - reading, adding or concatenating the Call-Info header.						
c13:	IF A.162/8A THEN m ELSE i - authentication between UA and proxy						
c14	IF A.162/30A THEN m ELSE n/a - - act as first entity within the trust domain for asserted identity.						
c15:	IF A.162/30 THEN m ELSE n/a - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c16:	IF A.162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.						
c1	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c18:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.						
c19	IF A.162/37 THEN m ELSE n/a - the P-Called-Party-ID header extension.						
c20:	IF A.162/37 THEN i ELSE n/a - the P-Called-Party-ID header extension.						
c21:	IF A.162/37 AND A.3/2 THEN m ELSE IF A.162/37 AND (A.3/3 OR A.3/9A) THEN i ELSE n/a - - the P-Called-Party-ID header extension and P-CSCF or (I-CSCF or IBCF (THIG)).						
c22:	IF A.162/38 THEN m ELSE n/a - the P-Visited-Network-ID header extension.						
c23:	IF A.162/39 THEN m ELSE i - - reading, or deleting the P-Visited-Network-ID header before proxying the request or response.						
c24	IF A. $162 / 45$ THEN m ELSE n/a - the P-Charging-Vector header extension.						
c25:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE $n / a-$ - adding, deleting, reading or modifying the P -Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.						
26	IF A. $162 / 44$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - the P-Charging-Function-Addresses header extension						
c27:	IF A. 162/44A THEN m ELSE IF A. 162/44 THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.						
c28:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE $n / a-$ - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.						
c29:	IF A. $162 / 43$ THEN m ELSE IF A. $162 / 41$ THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.						
c30:	IF A. 162/43 OR (A.162/41 AND A.3/2) THEN m ELSE IF A.162/41 THEN i ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension (with or without P-CSCF).						
c31:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						
c32:	IF A. 162/48 THEN m ELSE n/a - the Reason header field for the session initiation protocol.						
c33:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.						
c34	IF A.162/50 THEN m ELSE n / a - - caller preferences for the session initiation protocol.						
c35:	IF A. $162 / 50$ AND A.4/3 THEN m ELSE IF A. $162 / 50$ AND NOT A.4/3 THEN i ELSE n/a - - caller preferences for the session initiation protocol, and S-CSCF.						
c36:	IF A. $162 / 52$ THEN m ELSE n/a - the SIP session timer.						
c37:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.						
c38:	IF A.162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.						
c39:	IF A.162/54 THEN m ELSE n/a - the Session Inititation Protocol (SIP) "Replaces" header.						
c40:	IF A. $162 / 54$ THEN i ELSE n/a - - the Session Inititation Protocol (SIP) "Replaces" header.						
c41:	IF A.162/55 THEN m ELSE n/a - - the Session Inititation Protocol (SIP) "Join" header.						
c42:	IF A.162/55 THEN i ELSE n/a - the Session Inititation Protocol (SIP) "Join" header.						
c43:	IF A. $162 / 57$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - an extension to the session initiation protocol for request history information.						
c44:	IF A.162/60 THEN m ELSE n/a - the P-User-Database private header extension.						

Item	Header	Sending			eceivin		
		Ref	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profi statu	Ref.	RFC status	Profile status
c45:	IF A.162/66A THEN m ELSE n/a - - making the first query to the database in order to populate the P-Profile-Key header. IF A.162/66B THEN m ELSE n/a - - using the information in the P-Profile-Key header. IF A. $162 / 70$ THEN m ELSE n/a - SIP location conveyance. IF A. 162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification. IF A.162/76 THEN m ELSE n/a - - the SIP P-Early-Media private header extension for authorization of early media. IF A.162/76 THEN (IF A.3/2 THEN m ELSE i) ELSE n/a - - P-CSCF, using the information in the P-EarlyMedia header. IF A.162/84A THEN m ELSE n/a - act as authentication entity within the trust domain for asserted service. IF A.162/84 THEN m ELSE n/a - identification of communication services in the session initiation protocol. IF A.162/84 OR A.162/30B THEN m ELSE i - - identification of communication services in the session initiation protocol or subsequent entity within trust network that can route outside the trust network. IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies. IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.						
c46							
c47							
c48:							
c50							
c51							
c52:							
c53:							
c54:							
c63							
c64:							
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.						

Table A.205: Void
Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.206: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - stateful proxy behaviour that inserts date, or stateless proxies. IF A.162/4 THEN i ELSE m - - Stateless proxy passes on.						
c1: c2:							

Prerequisite A.163/9-- INVITE response for all remaining status-codes
Table A.207: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Call-Info	[26] 20.9	m	m	[26] 20.9	c4	c4
2	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	c3
3	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	c3
4	Content-Language	[26] 20.13	m	m	[26] 20.13	i	c3
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	i	c3
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
8A	Expires	[26] 20.19	m	m	[26] 20.19	i	i
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	History-Info	[66] 4.1	c17	c17	[66] 4.1	c17	c17
10	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c3
11	Organization	[26] 20.25	m	m	[26] 20.25	c2	c2
11A	P-Access-Network-Info	[52] 4.4	c14	c14	[52] 4.4	c15	c15
11B	P-Asserted-Identity	[34] 9.1	c6	c6	[34] 9.1	c7	c7
11C	P-Charging-FunctionAddresses	[52] 4.5	c12	c12	[52] 4.5	c13	c13
11D	P-Charging-Vector	[52] 4.6	c10	c10	[52] 4.6	c11	c11
11E	P-Preferred-Identity	[34] 9.2	x	x	[34] 9.2	c5	n/a
11F	Privacy	[33] 4.2	c8	c8	[33] 4.2	c9	c9
11G	Reply-To	[26] 20.31	m	m	[26] 20.31	i	i
11H	Require	[26] 20.32	m	m	[26] 20.32	c16	c16
111	Server	[26] 20.35	m	m	[26] 20.35	i	i
12	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
13	To	[26] 20.39	m	m	[26] 20.39	m	m
13A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
14	Via	[26] 20.42	m	m	[26] 20.42	m	m
15	Warning	[26] 20.43	m	m	[26] 20.43	i	i

c1:	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.
c2:	IF A.162/19A OR A.162/19B THEN m ELSE i - reading, adding or concatenating the Organization header.
c3:	IF A.3/2 OR A.3/4 THEN m ELSE i - - P-CSCF or S-CSCF.
c4:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c5:	IF A.162/30A THEN m ELSE n/a - - act as first entity within the trust domain for asserted identity.
c6:	IF A.162/30 THEN m ELSE n/a - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c7:	IF A.162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c8:	IF A.162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c9:	IF A. 162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c10:	IF A. $162 / 45$ THEN m ELSE n/a - the P-Charging-Vector header extension.
c11:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c12:	IF A. 162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c13:	IF A. $162 / 44 \mathrm{~A}$ THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c14:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE $n / a-$ - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c15:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c16:	IF A. 162/11 OR A. $162 / 13$ THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c17:	IF A. $162 / 57$ THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.
c18:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c19:	IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.

Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/101A - - Additional for 18x response
Table A.208: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
4	Contact	[26] 20.10	m	m	[26] 20.10	i	i
5	P-Answer-State	[111]	c13	c13	[111]	c14	c14
5A	P-Early-Media	[109] 8	0	c11	[109] 8	0	c12
6	P-Media-Authorization	[31] 5.1	c9	x	[31] 5.1	n/a	n/a
7	Record-Route	[26] 20.10	m	m	[26] 20.10	c15	c15
9	Rseq	[27] 7.1	m	m	[27] 7.1		i
11	Supported	[26] 20.37	m	m	[26] 20.37	i	i
$\begin{aligned} & \text { c9: } \\ & \text { c11: } \end{aligned}$	IF A. $162 / 26$ THEN m ELSE n/a - - SIP extensions for media authorization. IF A. 162/76 THEN m ELSE n/a - - the SIP P-Early-Media private header extension for authorization of early media. IF A.162/76 THEN (IF A.3/2 THEN m ELSE i) ELSE n/a - - P-CSCF, using the information in the P-EarlyMedia header. IF A. 162/75 THEN m ELSE n/a - - the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular. IF A. 162/75 THEN i ELSE n/a - the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular. IF A. 162/14 THEN m ELSE i - - the requirement to be able to insert itself in the subsequent transactions in a dialog.						
c12:							
c13:							
c14:							
c15:							

Prerequisite A.163/9 - - INVITE response
Prerequisite: A.164/102-- Additional for 2xx response
Table A.209: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
1B	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
2	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
4	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
6	Contact	[26] 20.10	m	m	[26] 20.10	i	i
7	P-Answer-State	[111]	c13	c13	[111]	c14	c14
8	P-Media-Authorization	[31] 5.1	c9	x	[31] 5.1	n/a	n/a
9	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
10	Session-Expires	[58] 4	c11	c11	[58] 4	c11	c11
13	Supported	[26] 20.37	m	m	[26] 20.37	i	i
c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.						
c3:	IF A.162/14 THEN m ELSE $\mathrm{i}-$ - the requirement to be able to insert itself in the subsequent transactions in a dialog.						
c9:	IF A.162/26 THEN m ELSE n/a - SIP extensions for media authorization.						
c11:	IF A.162/52 THEN m ELSE n/a - the SIP session timer.						
c13:	IF A.162/75 THEN m ELSE n/a - - the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular.						
c14:	IF A. 162/75 THEN i ELSE n/a - the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular.						

Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - $6 x x$ response
Table A.209A: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i	

Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/103 OR A.164/35 - - Additional for 3 xx or 485 (Ambiguous) response
Table A.210: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
4	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1	
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE i-- deleting Contact headers.							

Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/14-- Additional for 401 (Unauthorized) response
Table A.211: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
6	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
15	WWW-Authenticate	$[26] 20.44$	0		$[26] 20.44$	0		

Prerequisite A.163/9 - - INVITE response
Prerequisite: A.164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/50 OR A.164/51 - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 600 (Busy Everywhere), 603 (Decline) response

Table A.212: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
8	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i	
12	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m	

Table A.213: Void
Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/20-- Additional for 407 (Proxy Authentication Required) response
Table A.214: Supported headers within the INVITE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref. status	Profile status		
6	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
11	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.215: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	I
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i

Prerequisite A.163/9-- INVITE response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.216: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
10	Unsupported	[26] 20.40	m	m	[26] 20.40	c3	c3
c3:	IF A. 162/18 THEN m ELSE i - - reading the contents of the Unsupported header before proxying the 420 response to a method other than REGISTER.						

Prerequisite A.163/9 - - INVITE response
Prerequisite: A. 164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.216A: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						

Prerequisite A.16/9-- INVITE response
Prerequisite: A.164/28A - - Additional for 422 (Session Interval Too Small) response
Table A.216B: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Min-SE	[58] 5	c1	c1	[58] 5	c1	c1
c1:	IF A.162/52 THEN m ELSE n/a - - the SIP session timer.						

Table A.217: Void
Table A.217A: Void
Prerequisite A.163/9 - - INVITE response
Prerequisite: A.164/45--503 (Service Unavailable)
Table A.217B: Supported headers within the INVITE response

Item	Header			Rending			RFeiving status			Profile status
		Ref.	RFC status	Profile status	Ref.	(
8	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i			

Prerequisite A.163/9 - - INVITE response
Prerequisite: A.164/17 OR A.164/22 OR A.164/29D OR A.164/30 OR A.166/34 OR A.164/36 OR A.164/42 OR A.164/44-- Additional for 404 (Not Found), 410 (Gone), 433 (Anonymity Disallowed). 480 (Temporarily not available), 484 (Address Incomplete) 486 (Busy Here), 500 (Internal Server Error), 502 (Bad Gateway) response

Table A.217C: Supported headers within the INVITE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Reason	[130]	0	c1	[130]	0	c1

Table A.218: Void

A.2.2.4.7A MESSAGE method

Prerequisite A.163/9A - - MESSAGE request
Table A.218A: Supported headers within the MESSAGE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept-Contact	[56B] 9.2	c28	c28	[56B] 9.2	c28	c29
1A	Allow	[26] 20.5	m	m	[50] 10	i	i
2	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
3	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
4	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
5	Call-Info	[26] 20.9	m	m	[26] 20.9	c4	c4
6	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
7	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
8	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
9	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
10	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
11	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
12	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
13	Expires	[26] 20.19	m	m	[26] 20.19	1	i
14	From	[26] 20.20	m	m	[26] 20.20	m	m
14A	Geolocation	[89] 3.2	c36	c36	[89] 3.2	c37	c37
14B	History-Info	[66] 4.1	c32	c32	[66] 4.1	c32	c32
15	In-Reply-To	[26] 20.21	m	m	[50] 10	i	i
15A	Max-Breadth	[117] 5.8	c48	c48	[117] 5.8	c49	c49
16	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
17	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
18	Organization	[26] 20.25	m	m	[26] 20.25	c3	c3
18A	P-Access-Network-Info	[52] 4.4	c23	c23	[52] 4.4	c24	c24
18B	P-Asserted-Identity	[34] 9.1	c10	c10	[34] 9.1	c11	c11
18C	P-Asserted-Service	[121] 4.1	c40	c40	[121] 4.1	c41	c41
18D	P-Called-Party-ID	[52] 4.2	c14	c14	[52] 4.2	c15	c16
18E	P-Charging-FunctionAddresses	[52] 4.5	c21	c21	[52] 4.5	c22	c22
18F	P-Charging-Vector	[52] 4.6	c19	c19	[52] 4.6	c20	c20
18G	P-Preferred-Identity	[34] 9.2	x	X	[34] 9.2	c9	c9
18H	P-Preferred-Service	[121] 4.2	x	X	[121] 4.2	c39	c39
181	P-Profile-Key	[97] 5	c34	c34	[97] 5	c35	c35
18J	P-User-Database	[82] 4	c33	c33	[82] 4	c33	c33
18K	P-Visited-Network-ID	[52] 4.3	c17	n/a	[52] 4.3	c18	n/a
19	Priority	[26] 20.26	m	m	[26] 20.26	i	i
19A	Privacy	[33] 4.2	c12	c12	[33] 4.2	c13	c13
20	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c8	c8
21	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
21A	Reason	[34A] 2	c26	c26	[34A] 2	c27	c27

22	Record-Route	$[26] 20.30$	m	m	$[26] 20.30$	c 7	c 7
22 A	Referred-By	$[59] 3$	c 30	c 30	$[59] 3$	c 31	c 31
23	Reject-Contact	$[56 \mathrm{~B}] 9.2$	c 28	c 28	$[56 \mathrm{~B}] 9.2$	c 28	c 29
23A	Reply-To	$[26] 20.31$	m	m	$[26] 20.31$	i	i
23B	Request-Disposition	$[56 \mathrm{~B}] 9.1$	c 28	c 28	$[56 \mathrm{~B}] 9.1$	c 28	c 28
24	Require	$[26] 20.32$	m	m	$[26] 20.32$	c 5	c 5
25	Route	$[26] 20.34$	m	m	$[26] 20.34$	m	m
25A	Security-Client	$[48] 2.3 .1$	x	x	$[48] 2.3 .1$	c 25	c 25
25B	Security-Verify	$[48] 2.3 .1$	x	x	$[48] 2.3 .1$	c 25	c 25
26	Subject	$[26] 20.36$	m	m	$[26] 20.36$	i	i
27	Supported	$[26] 20.37$	m	m	$[26] 20.37$	c 6	c 6
28	Timestamp	$[26] 20.38$	m	m	$[26] 20.38$	i	i
29	To	$[26] 20.39$	m	m	$[26] 20.39$	m	m
30	User-Agent	$[26] 20.41$	m	m	$[26] 20.41$	i	i
31	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m

c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.
c2:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses.
c3:	IF A.162/19A OR A.162/19B THEN m ELSE i - - reading, adding or concatenating the Organization header.
c4:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c5:	IF A. 162/11 OR A.162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A. 162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.
c7:	IF A. $162 / 14$ THEN o ELSE $\mathrm{i}-$ - the requirement to be able to insert itself in the subsequent transactions in a dialog.
c8:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c9:	IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c10:	IF A.162/30 THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c11:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c12	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).
c13:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c14:	IF A.162/37 THEN m ELSE n/a - the P-Called-Party-ID header extension.
c15:	IF A.162/37 THEN i ELSE n/a - the P-Called-Party-ID header extension.
c16:	IF A.162/37 AND A.3/2 THEN m ELSE IF A. $162 / 37$ AND (A.3/3 OR A.3/9A) THEN i ELSE $n / a-$ - the P-Called-Party-ID header extension and P-CSCF or (I-CSCF or IBCF (THIG).
c17:	IF A.162/38 THEN m ELSE n/a - the P-Visited-Network-ID header extension.
c18:	IF A.162/39 THEN m ELSE i - - reading, or deleting the P-Visited-Network-ID header before proxying the request or response.
c19:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c20:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c21:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c22:	IF A. 162/44A THEN m ELSE IF A. 162/44 THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c23:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c24:	IF A. $162 / 43$ THEN m ELSE IF A. $162 / 41$ THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c25:	IF A. 162/47 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol.
c26:	IF A.162/48 THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c27:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c28:	IF A.162/50 THEN m ELSE n/a - caller preferences for the session initiation protocol.
c29:	IF A. $162 / 50$ AND A. $4 / 3$ THEN m ELSE IF A. $162 / 50$ AND NOT A.4/3 THEN i ELSE n/a - - caller preferences for the session initiation protocol, and S-CSCF.
c30:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c31:	IF A. $162 / 53$ THEN m ELSE n/a - the SIP Referred-By mechanism.
c32:	IF A. $162 / 57$ THEN m ELSE n / a - - an extension to the session initiation protocol for request history information.
c33:	IF A.162/60 THEN m ELSE n/a - the P-User-Database private header extension.
c34:	IF A.162/66A THEN m ELSE n/a - - making the first query to the database in order to populate the P-Profile-Key header.
c35:	IF A.162/66B THEN m ELSE n/a - using the information in the P-Profile-Key header.
c36:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c37:	IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.
c39:	IF A.162/84A THEN m ELSE n/a - act as authentication entity within the trust domain for asserted service.
c40:	IF A.162/84 THEN m ELSE n/a - - identification of communication services in the session initiation protocol.
c41:	IF A.162/84 OR A.162/30B THEN m ELSE i - - identification of communication services in the session initiation protocol or subsequent entity within trust network that can route outside the trust network.
c48:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c49:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.

$\begin{array}{ll}\text { NOTE: } & \begin{array}{l}\text { c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for } \\ \\ \text { SUBSCRIBE and NOTIFY. }\end{array}\end{array}$

Prerequisite A.163/9A - - MESSAGE request
Table A.218B: Supported message bodies within the MESSAGE request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	application/vnd.3gpp.sms	$[4 \mathrm{D}]$	m	m	$[4 \mathrm{D}]$	i	i

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.218BA: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1: c2:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - stateful proxy behaviour that inserts date, or stateless proxies. IF A. $162 / 4$ THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/9B - - MESSAGE response for all remaining status-codes
Table A.218C: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
OA	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Call-Info	[26] 20.9	m	m	[26] 20.9	c3	c3
3	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
4	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
5	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
6	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
7	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
8	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
9	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
9A	Expires	[26] 20.19	m	m	[26] 20.19	i	i
10	From	[26] 20.20	m	m	[26] 20.20	m	m
10A	Geolocation	[89] 3.2	c17	c17	[89] 3.2	c18	c18
10B	History-Info	[66] 4.1	c16	c16	[66] 4.1	c16	c16
11	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
12	Organization	[26] 20.25	m	m	[26] 20.25	c2	c2
12A	P-Access-Network-Info	[52] 4.4	c13	c13	[52] 4.4	c14	c14
12B	P-Asserted-Identity	[34] 9.1	c5	c5	[34] 9.1	c6	c6
12C	P-Charging-FunctionAddresses	[52] 4.5	c11	c11	[52] 4.5	c12	c12
12D	P-Charging-Vector	[52] 4.6	c9	n/a	[52] 4.6	c10	n/a
12E	P-Preferred-Identity	[34] 9.2	X	x	[34] 9.2	c4	n/a
12F	Privacy	[33] 4.2	c7	c7	[33] 4.2	c8	c8
12G	Reply-To	[26] 20.31	m	m	[26] 20.31	i	i
12 H	Require	[26] 20.32	m	m	[26] 20.32	c15	c15
13	Server	[26] 20.35	m	m	[26] 20.35	i	i
14	Timestamp	[26] 20.38	i	i	[26] 20.38	i	i
15	To	[26] 20.39	m	m	[26] 20.39	m	m
16	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
17	Via	[26] 20.42	m	m	[26] 20.42	m	m
18	Warning	[26] 20.43	m	m	[26] 20.43	i	i

c1:	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.
c2:	IF A.162/19A OR A.162/19B THEN m ELSE i - reading, adding or concatenating the Organization header.
c3:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c4:	IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c5:	IF A.162/30 THEN m ELSE n/a - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c6:	IF A.162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c7:	IF A.162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c8:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c9:	IF A. $162 / 45$ THEN m ELSE n / a - - the P-Charging-Vector header extension.
c10:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c11:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c12:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c13:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c14:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c15:	IF A. $162 / 11$ OR A. $162 / 13$ THEN m ELSE $\mathrm{i}-$ - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c16:	IF A. $162 / 57$ THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ an extension to the session initiation protocol for request history information.
c17:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c18:	IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/102-- Additional for 2xx response
Table A.218D: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
2	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
4	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
6	Supported	[26] 20.37	m	m	[26] 20.37	i	i
$\begin{aligned} & \text { c1: } \\ & \text { c3: } \end{aligned}$	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension. IF A.162/15 THEN o ELSE i - - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing.						

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - $6 x x$ response
Table A.218DA: Supported headers within the MESSAGE response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i		

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A. 164/103 OR A.164/35 - - Additional for 3 xx or 485 (Ambiguous) response
Table A.218E: Supported headers within the MESSAGE response

Item	Sender			Receiving			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
2	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE i - - deleting Contact headers.						

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/14-- Additional for 401 (Unauthorized) response
Table A.218F: Supported headers within the MESSAGE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.218G: Supported headers within the MESSAGE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
4	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i	

Table A.218H: Void
Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.218I: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref. RFC	Profile status	
3	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/25 - - Additional for 415 (Unsupported Media Type)
Table A.218J: Supported headers within the MESSAGE response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
1	Accept	$[26] 20.1$	m	m	$[26] 20.1$	i	i		
2	Accept-Encoding	$[26] 20.2$	m	m	$[26] 20.2$	i	i		
3	Accept-Language	$[26] 20.3$	m	m	$[26] 20.3$	i	i		

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.218K: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
5	Unsupported	[26] 20.40	m	m	[26] 20.40	c3	c3
c3:	IF A. $162 / 18$ THEN m ELSE i - reading the contents of the Unsupported header before proxying the 420 response to a method other than REGISTER.						

Prerequisite A.163/9B - - MESSAGE response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.218L: Supported headers within the MESSAGE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						

Table A.218M: Void
Table A.218N: Void

A.2.2.4.8 NOTIFY method

Prerequisite A.163/10-- NOTIFY request
Table A.219: Supported headers within the NOTIFY request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Contact	[56B] 9.2	c 21	c21	[56B] 9.2	c22	c22
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
3A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
4	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
5	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6A	Call-Info	[26] 20.9	m	m	[26] 20.9	c28	c28
6B	Contact	[26] 20.10	m	m	[26] 20.10	i	i
7	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
8	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
9	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
14	Event	[28] 7.2.1	m	m	[28] 7.2.1	m	m
15	From	[26] 20.20	m	m	[26] 20.20	m	m
15A	Geolocation	[89] 3.2	c26	c26	[89] 3.2	c27	c27
15B	History-Info	[66] 4.1	c25	c25	[66] 4.1	c25	c25
15C	Max-Breadth	[117] 5.8	c29	c29	[117] 5.8	c30	c30
16	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
17	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
17A	P-Access-Network-Info	[52] 4.4	c16	c16	[52] 4.4	c17	c17
17B	P-Asserted-Identity	[34] 9.1	c8	c8	[34] 9.1	c9	c9
17C	P-Charging-FunctionAddresses	[52] 4.5	c14	c14	[52] 4.5	c15	c15
17D	P-Charging-Vector	[52] 4.6	c12	n/a	[52] 4.6	c13	n/a
17E	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c3	n/a
17F	Privacy	[33] 4.2	c10	c10	[33] 4.2	c11	c11
18	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c4	c4
19	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
19A	Reason	[34A] 2	c19	c19	[34A] 2	c20	c20
20	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
20A	Referred-By	[59] 3	c23	c23	[59] 3	c24	c24
20B	Reject-Contact	[56B] 9.2	c21	c21	[56B] 9.2	c22	c22
20C	Request-Disposition	[56B] 9.1	c21	c21	[56B] 9.1	c22	c22
21	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
22	Route	[26] 20.34	m	m	[26] 20.34	m	m
22A	Security-Client	[48] 2.3.1	X	X	[48] 2.3.1	c18	c18
22B	Security-Verify	[48] 2.3.1	X	x	[48] 2.3.1	c18	c18
23	Subscription-State	[28] 8.2.3	m	m	[28] 8.2.3	i	i
24	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
25	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
26	To	[26] 20.39	m	m	[26] 20.39	m	m
27	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
28	Via	[26] 20.42	m	m	[26] 20.42	m	m
29	Warning	[26] 20.43	m	m	[26] 20.43	i	i

c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.
c2:	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.
c3:	IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c4:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c5:	IF A. $162 / 11$ OR A. $162 / 13$ THEN m ELSE $\mathrm{i}-$ - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A.162/16 THEN m ELSE i - reading the contents of the Supported header before proxying the response.
c7:	IF A. $162 / 14$ THEN (IF A.162/22 OR A.162/27 THEN m ELSE o) ELSE i - - the requirement to be able to insert itself in the subsequent transactions in a dialog or (the REFER method or SIP specific event notification).
c8:	IF A. $162 / 30$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c9:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c10:	IF A.162/31 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - a privacy mechanism for the Session Initiation Protocol (SIP).
c11:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c12:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c13:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c14:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c15:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c16:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c17:	IF A. 162/43 THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c18:	IF A.162/47 THEN m ELSE n / a - - security mechanism agreement for the session initiation protocol.
c19:	IF A.162/48 THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c20:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c21:	IF A.162/50 THEN m ELSE n/a - caller preferences for the session initiation protocol.
c22:	IF A.162/50 THEN i ELSE n/a - caller preferences for the session initiation protocol.
c23:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c24:	IF A.162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.
c25:	IF A. $162 / 57$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - an extension to the session initiation protocol for request history information.
c26:	IF A.162/70 THEN m ELSE n/a - - SIP location conveyance.
c27:	IF A. 162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.
c28:	IF A.162/19C OR A.162/19D THEN m ELSE i - - reading, adding or concatenating the Call-Info header.
c29:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c30:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.

Prerequisite A.163/10-- NOTIFY request
Table A.220: Supported message bodies within the NOTIFY request

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	sipfrag	$[37] 2$	m	m	$[37] 2$	i	i	

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.220A: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	RFC	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
$\begin{aligned} & \mathrm{c} 1: \\ & \mathrm{c} 2: \end{aligned}$	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - - stateful proxy behaviour that inserts date, or stateless proxies. IF A.162/4 THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/11-- NOTIFY response for all remaining status-codes
Table A.221: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
3	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
4	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c14	c14	[89] 3.2	C15	C15
10	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
10A	P-Access-Network-Info	[52] 4.4	c11	C11	[52] 4.4	c12	c12
10B	P-Asserted-Identity	[34] 9.1	c3	c3	[34] 9.1	c4	c4
10C	P-Charging-FunctionAddresses	[52] 4.5	c9	c9	[52] 4.5	c10	c10
10D	P-Charging-Vector	[52] 4.6	c7	n/a	[52] 4.6	c8	n/a
10E	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c2	n/a
10F	Privacy	[33] 4.2	c5	c5	[33] 4.2	c6	c6
10G	Require	[26] 20.32	m	m	[26] 20.32	c13	c13
10 H	Server	[26] 20.35	m	m	[26] 20.35	i	i
11	Timestamp	[26] 20.38	m	m	[26] 20.38	i	I
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	m	m	[26] 20.43	i	i
c1: c2: c3:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses. IF A.162/30A THEN m ELSE n / a - - act as first entity within the trust domain for asserted identity. IF A. 162/30 THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c4:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.						
c5:	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c6:	IF A. $162 / 31$ D OR A. $162 / 31$ G THEN m ELSE IF A. 162/31C THEN i ELSE n/a - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.						
c7:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.						
$\begin{aligned} & \text { c9: } \\ & \text { c10: } \end{aligned}$	IF A. 162/44 THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A.162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.						
c11:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network						
c12:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - - act as subsequent entity within trust network						
c13:	IF A. 162/11 OR A. 162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER. IF A. 162/70 THEN m ELSE n/a - SIP location conveyance. IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.						
$\begin{aligned} & \text { c14: } \\ & \text { c15: } \end{aligned}$							

Prerequisite A.163/11-- NOTIFY response

Prerequisite: A.164/102-- Additional for 2xx response
Table A.222: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
1	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
1A	Contact	[26] 20.10	m	m	[26] 20.10	i	i
2	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
5	Supported	[26] 20.37	m	m	[26] 20.37	i	1
$\begin{aligned} & \text { c1: } \\ & \text { c3: } \end{aligned}$	IF A.4/20 THEN m ELSE i- SIP specific event notification extension. IF A.162/15 THEN m ELSE $\mathrm{i}-$ - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing.						

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106 - - Additional for 3xx - 6xx response
Table A.222A: Supported headers within the NOTIFY response

Item	Header		Rending			RFC RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	m			
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i		

Prerequisite A.163/11 - - NOTIFY response
Prerequisite: A.164/103-- Additional for 3xx response
Table A.223: Supported headers within the NOTIFY response

Item	Header		Receiving				
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE $\mathrm{i}-\mathrm{d}$ - deleting Contact headers.						

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/14-- Additional for 401 (Unauthorized) response
Table A.224: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.225: Supported headers within the NOTIFY response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
3	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i		

Table A.226: Void
Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.227: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.228: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status	Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	I
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.229: Supported headers within the NOTIFY response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3	c 3		
$\mathrm{c} 3:$	IF A.162/18 THEN m ELSE $\mathrm{i}-\mathrm{reading}$ the contents of the Unsupported response to a method other than REGISTER.								

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.229A: Supported headers within the NOTIFY response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A. $162 / 47$ THEN m	- securi	chanism	reement for	he sess	itiation pr	

Table A.230: Void
Prerequisite A.163/11 - - NOTIFY response
Prerequisite: A.164/35 - - Additional for 485 (Ambigious) response
Table A.230A: Supported headers within the NOTIFY response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Contact	$[26] 20.10$	m	m	$[26] 20.10$	i	i	

Prerequisite A.163/11-- NOTIFY response
Prerequisite: A.164/39-- Additional for 489 (Bad Event) response
Table A.231: Supported headers within the NOTIFY response

Item	Header			Sending			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Allow-Events	$[28] 7.2 .2$	m	m	$[28] 7.2 .2$	c 1	c 1
c1:	IF A.4/20 THEN m ELSE i-- SIP specific event notification extension.						
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.						

Table A.232: Void

A.2.2.4.9 OPTIONS method

Prerequisite A.163/12-- OPTIONS request
Table A.233: Supported headers within the OPTIONS request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Contact	[56B] 9.2	c28	c28	[56B] 9.2	c28	c29
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
3A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
4	Allow-Events	[28] 7.2 .2	m	m	[28] 7.2 .2	c1	c1
5	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Call-Info	[26] 20.9	m	m	[26] 20.9	c4	c4
8	Contact	[26] 20.10	m	m	[26] 20.10	i	1
9	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
10	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
11	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
12	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
13	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
14	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
15	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
16	From	[26] 20.20	m	m	[26] 20.20	m	m
16A	Geolocation	[89] 3.2	c36	c36	[89] 3.2	c37	c37
16B	History-Info	[66] 4.1	c32	c32	[66] 4.1	c32	c32
16C	Max-Breadth	[117] 5.8	c41	c41	[117] 5.8	c42	c42
17	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
18	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	
19	Organization	[26] 20.25	m	m	[26] 20.25	c3	c3
19A	P-Access-Network-Info	[52] 4.4	c23	c23	[52] 4.4	c24	c24
19B	P-Asserted-Identity	[34] 9.1	c10	c10	[34] 9.1	c11	c11
19C	P-Asserted-Service	[121] 4.1	c39	c39	[121] 4.1	c40	c40
19D	P-Called-Party-ID	[52] 4.2	c14	c14	[52] 4.2	c15	c16
19E	P-Charging-FunctionAddresses	[52] 4.5	c21	c21	[52] 4.5	c22	c22
19F	P-Charging-Vector	[52] 4.6	c19	c19	[52] 4.6	c20	c20
19G	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c9	c9
19H	P-Preferred-Service	[121] 4.2	X	X	[121] 4.2	c38	c38
191	P-Profile-Key	[97] 5	c34	c34	[97] 5	c35	c35
19J	P-User-Database	[82] 4	c33	c33	[82] 4	c33	c33
19k	P-Visited-Network-ID	[52] 4.3	c17	n/a	[52] 4.3	c18	n/a
19L	Privacy	[33] 4.2	c12	c12	[33] 4.2	c13	c13
20	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c8	c8
21	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
21A	Reason	[34A] 2	c26	c26	[34A] 2	c27	c27
22	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
22A	Referred-By	[59] 3	c30	c30	[59] 3	c31	c31
22B	Reject-Contact	[56B] 9.2	c28	c28	[56B] 9.2	c28	c29
22C	Request-Disposition	[56B] 9.1	c28	c28	[56B] 9.1	c28	c28
23	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
24	Route	[26] 20.34	m	m	[26] 20.34	m	m
24A	Security-Client	[48] 2.3.1	X	X	[48] 2.3.1	c25	c25
24B	Security-Verify	[48] 2.3.1	X	X	[48] 2.3.1	c25	c25
25	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
26	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
27	To	[26] 20.39	m	m	[26] 20.39	m	m
28	User-Agent	[26] 20.41	m	m	[26] 20.41	i	1
29	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.
c2:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses.
c3:	IF A.162/19A OR A.162/19B THEN m ELSE i - reading, adding or concatenating the Organization header.
c4:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c5:	IF A.162/11 OR A.162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A.162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.
c7:	IF A. 162/14 THEN o ELSE i-- the requirement to be able to insert itself in the subsequent transactions in a dialog.
c8:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c9:	IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c10:	IF A.162/30 THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c11:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c12	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).
c13:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c14:	IF A.162/37 THEN m ELSE n/a - the P-Called-Party-ID header extension.
c15:	IF A.162/37 THEN i ELSE n/a - the P-Called-Party-ID header extension.
c16:	IF A.162/37 AND A.3/2 THEN m ELSE IF A. $162 / 37$ AND (A.3/3 OR A.3/9A) THEN i ELSE n/a - - the P-Called-Party-ID header extension and P-CSCF or (I-CSCF or IBCF (THIG)).
c17:	IF A.162/38 THEN m ELSE n/a - - the P-Visited-Network-ID header extension.
c18:	IF A.162/39 THEN m ELSE i - - reading, or deleting the P-Visited-Network-ID header before proxying the request or response.
c19:	IF A.162/45 THEN m ELSE n/a - - the P-Charging-Vector header extension.
c20:	IF A. $162 / 46$ THEN m ELSE IF A. 162/45 THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c21:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c22:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c23:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c24:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c25:	IF A.162/47 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol.
c26:	IF A.162/48 THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c27:	IF A. 162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c28:	IF A.162/50 THEN m ELSE n/a - caller preferences for the session initiation protocol.
c29:	IF A. $162 / 50$ AND A. $4 / 3$ THEN m ELSE IF A. $162 / 50$ AND NOT A.4/3 THEN i ELSE n/a - - caller preferences for the session initiation protocol, and S-CSCF.
c30:	IF A.162/53 THEN i ELSE n/a - - the SIP Referred-By mechanism.
c31:	IF A. 162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.
c32:	IF A. 162/57 THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.
c33:	IF A.162/60 THEN m ELSE n/a - the P-User-Database private header extension.
c34:	IF A.162/66A THEN m ELSE n/a - - making the first query to the database in order to populate the P-Profile-Key header.
c35:	IF A.162/66B THEN m ELSE n/a - using the information in the P-Profile-Key header.
c36:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c37:	IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.
c38:	IF A.162/84A THEN m ELSE n/a - act as authentication entity within the trust domain for asserted service.
c39:	IF A.162/84 THEN m ELSE n/a - - identification of communication services in the session initiation protocol.
c40:	IF A.162/84 OR A.162/30B THEN m ELSE i - - identification of communication services in the session initiation protocol or subsequent entity within trust network that can route outside the trust network.
c41:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c42:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.

Table A.234: Void

Table A.235: Void
Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/1 - - Additional for 100 (Trying) response
Table A.235A: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - - stateful proxy behaviour that inserts date, or stateless proxies. IF A.162/4 THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/13-- OPTIONS response for all remaining status-codes
Table A.236: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Call-Info	[26] 20.9	m	m	[26] 20.9	c3	c3
2	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
3	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
4	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c17	c17	[89] 3.2	c18	c18
9B	History-Info	[66] 4.1	c16	c16	[66] 4.1	c16	c16
10	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
11	Organization	[26] 20.25	m	m	[26] 20.25	c2	c2
11A	P-Access-Network-Info	[52] 4.4	c13	c13	[52] 4.4	c14	c14
11B	P-Asserted-Identity	[34] 9.1	c5	c5	[34] 9.1	c6	c6
11C	P-Charging-Function- Addresses	[52] 4.5	c11	c11	[52] 4.5	c12	c12
11D	P-Charging-Vector	[52] 4.6	c9	c9	[52] 4.6	c10	c10
11E	P-Preferred-Identity	[34] 9.2	\times	x	[34] 9.2	c4	n/a
11F	Privacy	[33] 4.2	c7	c7	[33] 4.2	c8	c8
11G	Require	[26] 20.32	m	m	[26] 20.32	c15	c15
11H	Server	[26] 20.35	m	m	[26] 20.35	i	i
12	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
13	To	[26] 20.39	m	m	[26] 20.39	m	m
13A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
14	Via	[26] 20.42	m	m	[26] 20.42	m	m
15	Warning	[26] 20.43	m	m	[26] 20.43	i	i

c1:	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.
c2:	IF A.162/19A OR A.162/19B THEN m ELSE i - - reading, adding or concatenating the Organization header.
c3:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c4:	IF A.162/30A THEN m ELSE n/a - - act as first entity within the trust domain for asserted identity.
c5:	IF A. 162/30 THEN m ELSE n/a - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c6:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c7:	IF A.162/31 THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ a privacy mechanism for the Session Initiation Protocol (SIP).
c8:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c9:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c10:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P -Charging-Vector header extension.
c11:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c12:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c13:	IF A. $162 / 43$ THEN x ELSE IF A.162/41 THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c14:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c15:	IF A. $162 / 11$ OR A. $162 / 13$ THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c16:	IF A. $162 / 57$ THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.
c17:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c18:	IF A. 162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/102-- Additional for 2xx response
Table A.237: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
1B	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
2	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
3	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
5	Contact	[26] 20.10	m	m	[26] 20.10	i	i
9	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
12	Supported	[26] 20.37	m	m	[26] 20.37	i	i
$\begin{aligned} & \text { c1: } \\ & \text { c3: } \end{aligned}$	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension. IF A.162/15 THEN o ELSE i - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing.						

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.237A: Supported headers within the OPTIONS response

Item	Header			Rending			RFeiving RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i			

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A. 164/103 OR A.164/35 - - Additional for 3 xx or 485 (Ambiguous) response
Table A.238: Supported headers within the OPTIONS response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
3	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1		
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE i - - deleting Contact headers.								

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/14 - - Additional for 401 (Unauthorized) response
Table A.239: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
4	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
10	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51 - - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.240: Supported headers within the OPTIONS response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
5	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i	

Table A.241: Void
Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.242: Supported headers within the OPTIONS response

Item	Header		Sending RFC status			Profile status	Ref.			RFC status	Profile status
		Ref.	$[26] 20.27$	m	m	$[26] 20.27$	m				
4	Proxy-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i				
8	WWW-Authenticate										

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.243: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.244: Supported headers within the OPTIONS response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
7	Unsupported	[26] 20.40	m	m	[26] 20.40	c3	c3
c3:	IF A. $162 / 18$ THEN m ELSE i - reading the contents of the Unsupported header before proxying the 420 response to a method other than REGISTER.						

Prerequisite A.163/13-- OPTIONS response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.244A: Supported headers within the OPTIONS response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
3	Security-Server	$[48] 2$	$c 1$	$c 1$	$[48] 2$	n / a	n / a		
$\mathrm{c} 1:$	IF A.162/47 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ - security	mechanism agreement for the session initiation protocol.							

Table A.245: Void
Table A.246: Void

A.2.2.4.10 PRACK method

Prerequisite A.163/14-- PRACK request
Table A.247: Supported headers within the PRACK request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Contact	[56B] 9.2	c18	c18	[56B] 9.2	c19	c19
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
3A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
4	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
5	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	c3
8	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	c3
9	Content-Language	[26] 20.13	m	m	[26] 20.13	i	c3
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	i	c3
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
14	From	[26] 20.20	m	m	[26] 20.20	m	m
14A	Max-Breadth	[117] 5.8	c26	c26	[117] 5.8	c27	c27
15	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
16	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c3
16A	P-Access-Network-Info	[52] 4.4	c14	c14	[52] 4.4	c15	c15
16B	P-Charging-FunctionAddresses	[52] 4.5	c12	c12	[52] 4.5	c13	c13
16C	P-Charging-Vector	[52] 4.6	c10	n/a	[52] 4.6	c11	n/a
16D	P-Early-Media	[109] 8	0	c22	[109] 8	0	c23
16E	Privacy	[33] 4.2	c8	c8	[33] 4.2	c9	c9
17	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c4	c4
18	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
19	Rack	[27] 7.2	m	m	[27] 7.2	i	i
19A	Reason	[34A] 2	c16	c16	[34A] 2	c17	c17
20	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
20A	Referred-By	[59] 3	c20	c20	[59] 3	c21	c21
20B	Reject-Contact	[56B] 9.2	c18	c18	[56B] 9.2	c19	c19
20C	Request-Disposition	[56B] 9.1	c18	c18	[56B] 9.1	c19	c19
21	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
22	Route	[26] 20.34	m	m	[26] 20.34	m	m
23	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
24	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
25	To	[26] 20.39	m	m	[26] 20.39	m	m
26	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
27	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.
c2:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses.
c3:	IF A.3/2 OR A.3/4 THEN m ELSE i - P-CSCF or S-CSCF.
c4:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c5:	IF A.162/11 OR A. 162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A.162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.
c7:	IF A.162/14 THEN 0 ELSE $\mathrm{i}-$ - the requirement to be able to insert itself in the subsequent transactions in a dialog.
c8:	IF A.162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c9:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c10:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c11:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c12:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c13:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c14:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE $n / a-$ - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c15:	IF A. $162 / 43$ THEN m ELSE IF A. $162 / 41$ THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c16:	IF A. $162 / 48$ THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c17:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c18:	IF A.162/50 THEN m ELSE n/a - caller preferences for the session initiation protocol.
c19:	IF A.162/50 THEN i ELSE n/a - caller preferences for the session initiation protocol.
c20:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c21:	IF A.162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.
c22:	IF A.162/76 THEN m ELSE n/a - - the SIP P-Early-Media private header extension for authorization of early media.
c23:	IF A.162/76 THEN (IF A.3/2 THEN m ELSE i) ELSE n/a - - P-CSCF, using the information in the P-EarlyMedia header.
c26:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c27:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.

Table A.248: Void
Table A.249: Void
Prerequisite A.163/15-- PRACK response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.249A: Supported headers within the PRACK response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1: c2:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - - stateful proxy behaviour that inserts date, or stateless proxies. IF A. $162 / 4$ THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/15-- PRACK response for all remaining status-codes
Table A.250: Supported headers within the PRACK response

Prerequisite A.163/15-- PRACK response
Prerequisite: A. 164/102-- Additional for 2xx response
Table A.251: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref. RFC	Profile status	RFC status	Profile status			
OA	Allow-Events	$[28] 7.2 .2$	m	m	$[28] 7.2 .2$	c 1	c 1	
OB	Authentication-Info	$[26] 20.6$	m	m	$[26] 20.6$	i	i	
OD	P-Early-Media	$[109] 8$	0	c 4	$[109] 8$	0	c 5	

1	Record-Route	$[26] 20.30$	m	m	$[26] 20.30$	c 3
4	Supported	$[26] 20.37$	m	m	$[26] 20.37$	i
c1:	IF A.4/20 THEN m ELSE i--SIP specific event notification extension.					
c3:	IF A.162/15 THEN o ELSE i-- the requirement to be able to use separate URIs in the upstream direction					
c4:	and downstream direction when record routeing. IF A.162/76 THEN m ELSE n/a - - the SIP P-Early-Media private header extension for authorization of early c5:	media. IF A.162/76 THEN (IF A.3/2 THEN m ELSE i) ELSE n/a - - P-CSCF, using the information in the P-Early- Media header.				

Prerequisite A.163/3-- PRACK response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.251A: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i	

Prerequisite A.163/15-- PRACK response
Prerequisite: A. 164/103 OR A.164/35-- Additional for 3xx or 485 (Ambiguous) response
Table A.252: Supported headers within the PRACK response

Item	Header		Receiving				
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE $\mathrm{i}--$ deleting Contact headers.						

Prerequisite A.163/15-- PRACK response
Prerequisite: A.164/14-- Additional for 401 (Unauthorized) response
Table A.253: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/15-- PRACK response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A. 164/50 OR A.164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.254: Supported headers within the PRACK response

Item	Header			Rending			Receiving RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
3	Retry-After	$[26] 20.33$	m	m	$[20.33$	i	i			

Table A.255: Void
Prerequisite A.163/15-- PRACK response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.256: Supported headers within the PRACK response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref. RFC status	Profile status		
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/15-- PRACK response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.257: Supported headers within the PRACK response

Item	Seader			Rending			RFC		
		Ref.	RFC status	Profile status	Refrofile status				
1	Accept	$[26] 20.1$	m	m	$[26] 20.1$	i	i		
2	Accept-Encoding	$[26] 20.2$	m	m	$[26] 20.2$	i	i		
3	Accept-Language	$[26] 20.3$	m	m	$[26] 20.3$	i	i		

Prerequisite A.163/15-- PRACK response
Prerequisite: A.164/27-- Addition for 420 (Bad Extension) response
Table A.258: Supported headers within the PRACK response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3	c 3		
c3:	IF A.162/18 THEN m ELSE $\mathrm{i}-\mathrm{reading}$ the contents of the Unsupported response to a method other than REGISTER.								

Prerequisite A.163/15-- PRACK response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.258A: Supported headers within the PRACK response

Item	Header			Sending			Receiving		
		Ref. RFC status	Profile status	Ref.	RFC status	Profile status			
3	Security-Server	$[48] 2$	c 1	c 1	$[48] 2$	n / a	n / a		
$\mathrm{c} 1:$	IF A.162/47 THEN m ELSE $\mathrm{n} / \mathrm{a}--$ security	mechanism agreement for the session initiation protocol.							

Table A.259: Void
Table A.260: Void

A.2.2.4.10A PUBLISH method

Prerequisite A.163/15A - - PUBLISH request
Table A.260A: Supported headers within the PUBLISH request

Item	Header	Sending			Receiving		
		Ref.	RFC	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept-Contact	[56B] 9.2	c28	c28	[56B] 9.2	c28	c29
2	Allow	[26] 20.5	m	m	[26] 20.5	i	i
3	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c29	c29
4	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
5	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6	Call-Info	[26] 24.9	m	m	[26] 24.9	c4	c4
7	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
8	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
9	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
14	Event	[70] 4, 6	m	m	[70] 4, 6	m	m
15	Expires	$\begin{aligned} & {[26]} \\ & 20.19, \\ & {[70] 4,5,} \\ & 6 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 20.19, \\ & {[70] 4,5,} \\ & 6 \end{aligned}$	i	i
16	From	[26] 20.20	m	m	[26] 20.20	m	m
16A	History-Info	[66] 4.1	c32	c32	[66] 4.1	c32	c32
17	In-Reply-To	[26] 20.21	m	m	[26] 20.21	i	i
17A	Max-Breadth	[117] 5.8	c44	c44	[117] 5.8	c45	c45
18	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
19	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
20	Organization	[26] 20.25	m	m	[26] 20.25	c3	c3
21	P-Access-Network-Info	[52] 4.4	c23	c23	[52] 4.4	c24	c24
22	P-Asserted-Identity	[34] 9.1	c10	c10	[34] 9.1	c11	c11
22A	P-Asserted-Service	[121] 4.1	c38	c38	[121] 4.1	c39	c39
23	P-Called-Party-ID	[52] 4.2	c14	c14	[52] 4.2	c15	c16
24	P-Charging-Function- Addresses	[52] 4.5	c21	c21	[52] 4.5	c22	c22
25	P-Charging-Vector	[52] 4.6	c19	c19	[52] 4.6	c20	c20
26	P-Preferred-Identity	[34] 9.2	x	x	[34] 9.2	c9	c9

26 A	P-Preferred-Service	$[121] 4.2$	x	x	$[121] 4.2$	c 37	c 37
26 B	P-Profile-Key	$[97] 5$	c 34	c 34	$[97] 5$	c 35	c 35
26 C	P-User-Database	$[82] 4$	c 33	c 33	$[82] 4$	c 33	c 33
27	P-Visited-Network-ID	$[52] 4.3$	c 17	n / a	$[52] 4.3$	c 18	n / a
28	Priorità	$[26] 20.26$	m	m	$[26] 20.26$	i	i
29	Privacy	$[33] 4.2$	c 12	c 12	$[33] 4.2$	c 13	c 13
30	Proxy-Authorization	$[26] 20.28$	m	m	$[26] 20.28$	c 7	c 7
31	Proxy-Require	$[26] 20.29$	m	m	$[26] 20.29$	m	m
32	Reason	$[34 \mathrm{~A}] 2$	c 8	c 8	$[34 \mathrm{~A}] 2$	c 1	c 1
33	Referred-By	$[59] 3$	c 30	c 30	$[59] 3$	c 31	c 31
34	Reject-Contact	$[56 \mathrm{~B}] 9.2$	c 27	c 27	$[56 \mathrm{~B}] 9.2$	c 27	c 28
34 A	Reply-To	$[26] 20.31$	m	m	$[26] 20.31$	i	i
35	Request-Disposition	$[56 \mathrm{~B}] 9.1$	c 27	c 27	$[56 \mathrm{~B}] 9.1$	c 27	c 27
36	Require	$[26] 20.32$	m	m	$[26] 20.32$	c 5	c 5
37	Route	$[26] 20.34$	m	m	$[26] 20.34$	m	m
38	Security-Client	$[48] 2.3 .1$	x	x	$[48] 2.3 .1$	c 25	c 25
39	Security-Verify	$[48] 2.3 .1$	x	x	$[48] 2.3 .1$	c 26	c 26
40	SIP-If-Match	$[70]$	m	m	$[70]$	i	i
41		Subject	$[26] 20.36$	m	m	$[26] 20.36$	i
42	Supported	$[26] 20.37$	m	m	$[26] 20.37$	c 6	i
43	Timestamp	$[26] 20.38$	m	m	$[26] 20.38$	i	c 6
44	To	$[26] 20.39$	m	m	$[26] 20.39$	m	m
45	User-Agent	$[26] 20.41$	m	m	$[26] 20.41$	i	i
46	Via	$[26] 20.42$	m	m	$[26] 20.42$	m	m

c1:	IF A.162/48 THEN i ELSE n/a - - the Reason header field for the session initiation protocol.
c2:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses.
c3:	IF A.162/19A OR A.162/19B THEN m ELSE i - reading, adding or concatenating the Organization header.
c4:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c5:	IF A.162/11 OR A.162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A.162/16 THEN m ELSE i - reading the contents of the Supported header before proxying the response.
c7:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c8:	IF A. $162 / 48$ THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - the Reason header field for the session initiation protocol.
c9	IF A.162/30A THEN m ELSE n/a - - act as first entity within the trust domain for asserted identity.
c10:	IF A. $162 / 30$ THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c11:	IF A.162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c12:	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).
c13:	IF A. 162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c14:	IF A.162/37 THEN m ELSE n/a - the P-Called-Party-ID header extension.
c15:	IF A.162/37 THEN i ELSE n/a - the P-Called-Party-ID header extension.
c16:	IF A.162/37 AND A.3/2 THEN m ELSE IF A.162/37 AND (A.3/3 OR A.3/9A) THEN i ELSE n/a - - the P-Called-Party-ID header extension and P-CSCF or (I-CSCF or IBCF (THIG).
c17:	IF A.162/38 THEN m ELSE n/a - the P-Visited-Network-ID header extension.
c18:	IF A.162/39 THEN m ELSE i-- reading, or deleting the P-Visited-Network-ID header before proxying the request or response.
c19:	IF A. $162 / 45$ THEN m ELSE n/a - the P-Charging-Vector header extension.
c20:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c21:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c22:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c23:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE $n / a--$ act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c24:	IF A. 162/43 THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c25:	IF A.162/47 THEN o ELSE n/a - security mechanism agreement for the session initiation protocol (note 1).
c26:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.
c27:	IF A.162/50 THEN m ELSE n/a - caller preferences for the session initiation protocol.
c28:	IF A. $162 / 50$ AND A. $4 / 3$ THEN m ELSE IF A. $162 / 50$ AND NOT A.4/3 THEN i ELSE n/a - - caller preferences for the session initiation protocol, and S-CSCF.
c29:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension (note 2).
c30:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c31:	IF A.162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.
c32:	IF A. $162 / 57$ THEN m ELSE n / a - - an extension to the session initiation protocol for request history information.
c33:	IF A.162/60 THEN m ELSE n/a - the P-User-Database private header extension.
c34:	IF A.162/66A THEN m ELSE n/a - - making the first query to the database in order to populate the P-Profile-Key header.
c35:	IF A.162/66B THEN m ELSE n/a - using the information in the P-Profile-Key header.
c37:	IF A.162/84A THEN m ELSE $\mathrm{n} / \mathrm{a}-\mathrm{-}$ act as authentication entity within the trust domain for asserted service.
c38:	IF A.162/84 THEN m ELSE n/a - identification of communication services in the session initiation protocol.
c39:	IF A. $162 / 84$ OR A.162/30B THEN m ELSE i - - identification of communication services in the session initiation protocol or subsequent entity within trust network that can route outside the trust network.
c44:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c45:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.

NOTE 1: Support of this header in this method is dependent on the security mechanism and the security architecture which is implemented.
NOTE 2: c29 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.

Table A.260B: Void

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/1 - - Additional for 100 (Trying) response
Table A.260BA: Supported headers within the PUBLISH response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1: c2:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - stateful proxy behaviour that inserts date, or stateless proxies. IF A. 162/4 THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/15B - - PUBLISH response for all remaining status-codes
Table A.260C: Supported headers within the PUBLISH response

Item	Header	Sending			Receiving		
		Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
OA	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Call-Info	[26] 24.9	m	m	[26] 24.9	c3	c3
3	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
4	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
5	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
6	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
7	Content-Type	[26] 20.15	m	m	[26] 20.15	1	i
8	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
9	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
10	From	[26] 20.20	m	m	[26] 20.20	m	m
10A	History-Info	[66] 4.1	c16	c16	[66] 4.1	C16	c16
11	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
12	Organization	[26] 20.25	m	m	[26] 20.25	c2	c2
13	P-Access-Network-Info	[52] 4.4	c13	c13	[52] 4.4	c14	c14
14	P-Asserted-Identity	[34] 9.1	c5	c5	[34] 9.1	c6	c6
15	P-Charging-FunctionAddresses	[52] 4.5	c11	c11	[52] 4.5	c12	c12
16	P-Charging-Vector	[52] 4.6	c9	n/a	[52] 4.6	c10	n/a
17	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c4	n/a
18	Privacy	[33] 4.2	c7	c7	[33] 4.2	c8	c8
19	Require	[26] 20.32	m	m	[26] 20.32	c15	C15
20	Server	[26] 20.35	m	m	[26] 20.35	i	1
21	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
22	To	[26] 20.39	m	m	[26] 20.39	m	m
23	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
24	Via	[26] 20.42	m	m	[26] 20.42	m	m
25	Warning	[26] 20.43	m	m	[26] 20.43	i	i

IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses.
c2: IF A.162/19A OR A.162/19B THEN m ELSE i-- reading, adding or concatenating the Organization header.
c3: IF A.162/19C OR A.162/19D THEN m ELSE i - - reading, adding or concatenating the Call-Info header.
c4: IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c5: IF A. 162/30 THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c6: IF A. 162/30A or A.162/30B THEN m ELSE i-- extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c7: \quad IF A. 162/31 THEN m ELSE $n / a-$ - a privacy mechanism for the Session Initiation Protocol (SIP).
c8: IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c9: IF A.162/45 THEN m ELSE n/a - - the P-Charging-Vector header extension.
c10: IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE $n / a-$ - adding, deleting, reading or modifying the P -Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c11: IF A.162/44 THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension.
c12: IF A.162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE $n / a-$ - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c13: IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c14: IF A. $162 / 43$ THEN m ELSE IF A. $162 / 41$ THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c15: IF A. $162 / 11$ OR A. $162 / 13$ THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c16: IF A. $162 / 57$ THEN m ELSE $n / a-$ - an extension to the session initiation protocol for request history information.

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/7-- Additional for 200 (OK) response
Table A.260D: Supported headers within the PUBLISH response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
2	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
3	Expires	$\begin{aligned} & {[26]} \\ & 20.19, \\ & {[70] 4,5,} \\ & 6 \end{aligned}$	m	m	$\begin{aligned} & {[26]} \\ & 20.19, \\ & {[70] 4,5,} \\ & 6 \end{aligned}$	i	i
4	SIP-Etag	$\begin{array}{\|l\|} \hline[70] \\ 11.3 .1 \end{array}$	m	m	$\begin{aligned} & {[70]} \\ & 11.3 .1 \end{aligned}$	i	i
5	Supported	[26] 20.37	m	m	[26] 20.37	i	i

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.260DA: Supported headers within the PUBLISH response

Item	Seader			Rending			RFC		
		Ref.	RFC status	Profile status	Ref.	Profile status status			
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i		

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A. 164/103 OR A.164/35 - - Additional for 3 xx or 485 (Ambiguous) response
Table A.260E: Supported headers within the PUBLISH response

Item	Header		Rending			RFC		
		Ref.	RFC status	Profile status	Ref.	Profile status status		
2	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1	
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE -- deleting Contact headers.							

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/8 OR A.164/9 OR A.164/10 OR A.164/11 OR A.164/12 - - Additional for 401 (Unauthorized) response

Table A.260F: Supported headers within the PUBLISH response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
5	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A. 164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.260G: Supported headers within the PUBLISH response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i	

Table A.260H: Void
Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.260I: Supported headers within the PUBLISH response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
5	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/15B-- PUBLISH response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.260J: Supported headers within the PUBLISH response

Item	Seader			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
1	Accept	$[26] 20.1$	m	m	$[26] 20.1$	i	i		
2	Accept-Encoding	$[26] 20.2$	m	m	$[26] 20.2$	i	i		
3	Accept-Language	$[26] 20.3$	m	m	$[26] 20.3$	i	i		

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.260K: Supported headers within the PUBLISH response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
4	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3	c 3		
c3:	IF A.162/18 THEN m ELSE $\mathrm{i}-\mathrm{reading}$ the contents of the Unsupported response to a method other than REGISTER.								

Prerequisite A.163/15B-- PUBLISH response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.260L: Supported headers within the PUBLISH response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A. $162 / 47$ THEN m	- securi	chanism	reement for	he sess	itiation pr	

Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/29-- Additional for 423 (Interval Too Brief) response
Table A.260M: Supported headers within the PUBLISH response

Item	Header		Sending			Receiving		
		Ref. RFC status	Profile status	Ref. RFC status	Profile status			
3	Min-Expires	$[26]$	m	m	$[26]$	i	i	
		20.23,			20.23,			
		$[70] 5,6$						

Table A.260N: Void
Prerequisite A.163/15B - - PUBLISH response
Prerequisite: A.164/39-- Additional for 489 (Bad Event) response
Table A.2600: Supported headers within the PUBLISH response

Item	Header	Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
2	Allow-Events	$[28] 8.2 .2$	m	m	$[28] 8.2 .2$	i	i

Table A.260P: Void

A.2.2.4.11 REFER method

Prerequisite A.163/16-- REFER request
Table A.261: Supported headers within the REFER request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
OA	Accept	[26] 20.1	m	m	[26] 20.1	i	i
0B	Accept-Contact	[56B] 9.2	c27	c27	[56B] 9.2	c27	c28
0 C	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
1	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
1A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
2	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
3	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
4	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
5	Contact	[26] 20.10	m	m	[26] 20.10	i	i
5A	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
5B	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
5C	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
6	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
7	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
8	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
9	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
10	Expires	[26] 20.19	m	m	[26] 20.19	i	i
11	From	[26] 20.20	m	m	[26] 20.20	m	m
11A	Geolocation	[89] 3.2	c35	c35	[89] 3.2	c36	c36
11B	History-Info	[66] 4.1	c31	c31	[66] 4.1	c31	c31
11C	Max-Breadth	[117] 5.8	c40	c40	[117] 5.8	c41	c41
12	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
13	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
14	Organization	[26] 20.25	m	m	[26] 20.25	c3	c3
14A	P-Access-Network-Info	[52] 4.4	c22	c22	[52] 4.4	c23	c23
14B	P-Asserted-Identity	[34] 9.1	c9	c9	[34] 9.1	c10	c10
14C	P-Asserted-Service	[121] 4.1	c38	c38	[121] 4.1	c39	c39
14D	P-Called-Party-ID	[52] 4.2	c13	c13	[52] 4.2	c14	c15
14E	P-Charging-Function- Addresses	[52] 4.5	c20	c20	[52] 4.5	c21	c21
14F	P-Charging-Vector	[52] 4.6	c18	c18	[52] 4.6	c19	c19
14G	P-Preferred-Identity	[34] 9.2	x	x	[34] 9.2	c8	c8
14H	P-Preferred-Service	[121] 4.2	x	x	[121] 4.2	c37	c37
141	P-Profile-Key	[97] 5	c33	c33	[97] 5	c34	c34
14J	P-User-Database	[82] 4	c32	c32	[82] 4	c32	c32
14K	P-Visited-Network-ID	[52] 4.3	c16	n/a	[52] 4.3	c17	n/a
14L	Privacy	[33] 4.2	c11	c11	[33] 4.2	c12	c12
15	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c4	c4
16	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
16A	Reason	[34A] 2	c25	c25	[34A] 2	c26	c26
17	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
18	Refer-To	[36] 3	c3	c3	[36] 3	c4	c4
18A	Referred-By	[59] 3	c29	c29	[59] 3	c30	c30
18B	Reject-Contact	[56B] 9.2	c27	c27	[56B] 9.2	c27	c28
18C	Request-Disposition	[56B] 9.1	c27	c27	[56B] 9.1	c27	c27
19	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
20	Route	[26] 20.34	m	m	[26] 20.34	m	m
20A	Security-Client	[48] 2.3.1	x	x	[48] 2.3.1	c24	c24
20B	Security-Verify	[48] 2.3.1	x	x	[48] 2.3.1	c24	c24
21	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
22	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
23	To	[26] 20.39	m	m	[26] 20.39	m	m
24	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
25	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.
c2:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses.
c3:	IF A.162/19A OR A.162/19B THEN m ELSE i - reading, adding or concatenating the Organization header.
c4:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c5:	IF A. 162/11 OR A. $162 / 13$ THEN m ELSE $\mathrm{i}-$ - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A. 162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.
c7:	IF A. $162 / 14$ THEN m ELSE $\mathrm{i}-$ - the requirement to be able to insert itself in the subsequent transactions in a dialog.
c8:	IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c9:	IF A. $162 / 30$ THEN m ELSE n/a - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c10:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c11:	IF A. 162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c12:	IF A.162/31D OR A. $162 / 31$ G THEN m ELSE IF A.162/31C THEN i ELSE n/a - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c13	IF A.162/37 THEN m ELSE n/a - the P-Called-Party-ID header extension.
c14:	IF A.162/37 THEN i ELSE n/a - - the P-Called-Party-ID header extension.
c15:	IF A. 162/37 AND A. $3 / 2$ THEN m ELSE IF A. $162 / 37$ AND (A.3/3 OR A.3/9A) THEN i ELSE n/a - - the P-Called-Party-ID header extension and P-CSCF or (I-CSCF or IBCF (THIG).
c16	IF A.162/38 THEN m ELSE n/a - the P-Visited-Network-ID header extension.
c17:	IF A.162/39 THEN m ELSE i - - reading, or deleting the P-Visited-Network-ID header before proxying the request or response.
c18:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c19:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c20:	IF A. 162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c21:	IF A. $162 / 44$ A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c22:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c23:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c24:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.
c25:	IF A.162/48 THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c26:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c27:	IF A.162/50 THEN m ELSE n/a - caller preferences for the session initiation protocol.
c28:	IF A. $162 / 50$ AND A.4/3 THEN m ELSE IF A. $162 / 50$ AND NOT A.4/3 THEN i ELSE n/a - - caller preferences for the session initiation protocol, and S-CSCF.
c29:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c30:	IF A. 162/53 THEN m ELSE n/a - - the SIP Referred-By mechanism.
c31:	IF A. $162 / 57$ THEN m ELSE n / a - - an extension to the session initiation protocol for request history information.
c32:	IF A.162/60 THEN m ELSE n/a - the P-User-Database private header extension.
c33:	IF A.162/66A THEN m ELSE n/a - - making the first query to the database in order to populate the P-Profile-Key header.
c34:	IF A.162/66B THEN m ELSE n/a - - using the information in the P-Profile-Key header.
c35:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c36:	IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.
c37:	IF A.162/84A THEN m ELSE n/a - act as authentication entity within the trust domain for asserted service.
c38:	IF A.162/84 THEN m ELSE n/a - identification of communication services in the session initiation protocol.
c39:	IF A.162/84 OR A.162/30B THEN m ELSE i - - identification of communication services in the session initiation protocol or subsequent entity within trust network that can route outside the trust network.
c40:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c41:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.

Table A.262: Void
Table A.263: Void
Prerequisite A.163/17-- REFER response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.263A: Supported headers within the REFER response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1: c2:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - stateful proxy behaviour that inserts date, or stateless proxies. IF A.162/4 THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/17-- REFER response for all remaining status-codes
Table A.264: Supported headers within the REFER response

Item	Header	Sending			Receiving		
		Ref.	RFC	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Contact	[26] 20.10	m	m	[26] 20.10	i	i
1B	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
2	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
3	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
4	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
5	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
6	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
7	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
8	From	[26] 20.20	m	m	[26] 20.20	m	m
8A	Geolocation	[89] 3.2	c16	c16	[89] 3.2	c17	c17
8B	History-Info	[66] 4.1	c15	c15	[66] 4.1	c15	c15
9	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
10	Organization	[26] 20.25	m	m	[26] 20.25	c2	c2
10A	P-Access-Network-Info	[52] 4.4	c12	c12	[52] 4.4	c13	c13
10B	P-Asserted-Identity	[34] 9.1	c4	c4	[34] 9.1	c5	c5
10C	P-Charging-FunctionAddresses	[52] 4.5	c10	c10	[52] 4.5	c11	c11
10D	P-Charging-Vector	[52] 4.6	c8	c8	[52] 4.6	c9	c9
10E	P-Preferred-Identity	[34] 9.2	x	x	[34] 9.2	c3	n/a
10F	Privacy	[33] 4.2	c6	c6	[33] 4.2	c7	c7
10G	Require	[26] 20.32	m	m	[26] 20.32	c14	c14
10H	Server	[26] 20.35	m	m	[26] 20.35	i	i
11	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	m	m	[26] 20.43	i	i

c1:	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.
c2:	IF A.162/19A OR A.162/19B THEN m ELSE i - - reading, adding or concatenating the Organization header.
c3:	IF A.162/30A THEN m ELSE n/a - act as first entity within the trust domain for asserted identity.
c4:	IF A. 162/30 THEN m ELSE n/a - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.
c5:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.
c6:	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).
c7:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c8:	IF A. $162 / 45$ THEN m ELSE n/a - the P-Charging-Vector header extension.
c9:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c10:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c11:	IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c12:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c13:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c14:	IF A. $162 / 11$ OR A. $162 / 13$ THEN m ELSE $\mathrm{i}-$ - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c15:	IF A. $162 / 57$ THEN m ELSE $n / a-$ - an extension to the session initiation protocol for request history information.
c16:	IF A. 162/70 THEN m ELSE n/a - - SIP location conveyance.
c17:	IF A. 162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.

Prerequisite A.163/17-- REFER response
Prerequisite: A.164/102-- Additional for 2xx response
Table A.265: Supported headers within the REFER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
2	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
5	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
8	Supported	[26] 20.37	m	m	[26] 20.37	i	i
$\begin{aligned} & \text { c1: } \\ & \text { c3: } \end{aligned}$	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension. IF A.162/15 THEN m ELSE i - - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing.						

Prerequisite A.163/17-- REFER response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - $6 x x$ response
Table A.265A: Supported headers within the REFER response

Item	Header			Rending			Receiving RFC status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i			

Table A.266: Void
Prerequisite A.163/17-- REFER response
Prerequisite: A.164/8 OR A.164/9 OR A.164/10 OR A.164/11 OR A.164/12 - - Additional for 401 (Unauthorized) response

Table A.267: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
4	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
10	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/17-- REFER response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.268: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
6	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i	

Table A.269: Void
Prerequisite A.163/17-- REFER response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.270: Supported headers within the REFER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
4	Proxy-Authenticate	$[26] 20.27$	0		$[26] 20.27$	0		
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/17-- REFER response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.271: Supported headers within the REFER response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i

Prerequisite A.163/17-- REFER response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.272: Supported headers within the REFER response

Item	Header			Sending			Receiving		
		Ref.	$\begin{array}{c}\text { RFC } \\ \text { status }\end{array}$	$\begin{array}{c}\text { Profile } \\ \text { status }\end{array}$	Ref.	$\begin{array}{c}\text { RFC } \\ \text { status }\end{array}$	$\begin{array}{c}\text { Profile } \\ \text { status }\end{array}$		
8	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3			

Prerequisite A.163/17-- REFER response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.272A: Supported headers within the REFER response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						

Table A.273: Void
Table A.274: Void

A.2.2.4.12 REGISTER method

Prerequisite A.163/18-- REGISTER request
Table A.275: Supported headers within the REGISTER request

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
3A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
4	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
5	Authorization	$\begin{aligned} & {[26] 20.7,} \\ & {[49]} \end{aligned}$	m	m	$\begin{aligned} & {[26] 20.7,} \\ & {[49]} \end{aligned}$	i	i
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
7	Call-Info	[26] 20.9	m	m	[26] 20.9	c2	c2
8	Contact	[26] 20.10	m	m	[26] 20.10	i	i
9	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
10	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
11	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
12	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
13	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
14	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
15	Date	[26] 20.17	m	m	[26] 20.17	m	m
16	Expires	[26] 20.19	m	m	[26] 20.19	i	i
17	From	[26] 20.20	m	m	[26] 20.20	m	m
17A	Geolocation	[89] 3.2	c26	c26	[89] 3.2	c27	c27
17B	History-Info	[66] 4.1	c24	c24	[66] 4,1	c24	c24
17C	Max-Breadth	[117] 5.8	c31	c31	[117] 5.8	c32	c32
18	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
19	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
20	Organization	[26] 20.25	m	m	[26] 20.25	c3	c3
20A	P-Access-Network-Info	[52] 4.4	c16	c16	[52] 4.4	c17	c17
20B	P-Charging-FunctionAddresses	[52] 4.5	c14	c14	[52] 4.5	c15	c15
20C	P-Charging-Vector	[52] 4.6	c12	c12	[52] 4.6	c13	c13
20D	P-User-Database	[82] 4	c25	c25	[82] 4	n/a	n/a
20E	P-Visited-Network-ID	[52] 4.3	c10	c10	[52] 4.3	c11	c11
20F	Path	[35] 4.2	c6	c6	[35] 4.2	c6	c6
20G	Privacy	[33] 4.2	c8	c8	[33] 4.2	c9	c9
21	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c7	c7
22	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
22A	Reason	[34A] 2	c19	c19	[34A] 2	c20	c20
22B	Referred-By	[59] 3	c22	c22	[59] 3	c23	c23
22C	Request-Disposition	[56B] 9.1	c21	c21	[56B] 9.1	c21	c21
23	Require	[26] 20.32	m	m	[26] 20.32	c4	c4
24	Route	[26] 20.34	m	m	[26] 20.34	m	m
24A	Security-Client	[48] 2.3.1	X	X	[48] 2.3.1	c18	c18
24B	Security-Verify	[48] 2.3.1	x	X	[48] 2.3.1	c18	c18
25	Supported	[26] 20.37	m	m	[26] 20.37	c5	c5
26	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
27	To	[26] 20.39	m	m	[26] 20.39	m	m
28	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
29	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF A.4/20 THEN m ELSE i - - SIP specific event notification extension.
c2:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c3:	IF A.162/19A OR A.162/19B THEN m ELSE i - - reading, adding or concatenating the Organization header.
c4:	IF A.162/11 OR A.162/12 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c5:	IF A. $162 / 16$ THEN m ELSE i - - reading the contents of the Supported header before proxying the response.
c6:	IF A.162/29 THEN m ELSE n/a - - PATH header support.
c7:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c8:	IF A.162/31 THEN m ELSE n / a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c9:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c10:	IF A.162/38 THEN m ELSE n/a - the P-Visited-Network-ID header extension.
c11:	IF A.162/39 THEN m ELSE i - - reading, or deleting the P-Visited-Network-ID header before proxying the request or response.
c12:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c13:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c14:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c15:	IF A.162/44A THEN m ELSE IF A. 162/44 THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c16:	IF A. $162 / 43$ THEN x ELSE IF A.162/41 THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c17:	IF A. 162/43 THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c18:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.
c19:	IF A.162/48 THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c20:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c21:	IF A.162/50 THEN m ELSE n/a - - caller preferences for the session initiation protocol.
c22:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c23:	IF A.162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.
c24:	IF A. $162 / 57$ THEN m ELSE n/a - - an extension to the session initiation protocol for request history information.
c25:	IF A.162/60 THEN m ELSE n/a - the P-User-Database private header extension.
c26:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c27:	IF A. 162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.
c31:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c32:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.

Table A.276: Void
Table A.277: Void
Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.277A: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1: c2:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - - stateful proxy behaviour that inserts date, or stateless proxies. IF A. $162 / 4$ THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/19-- REGISTER response for all remaining status-codes
Table A.278: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Call-Info	[26] 20.9	m	m	[26] 20.9	c2	c2
2	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
3	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
4	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	m	m	[26] 20.17	m	m
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c13	c13	[89] 3.2	C14	c14
9B	History-Info	[66] 4.1	c12	c12	[66] 4.1	c12	c12
10	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
11	Organization	[26] 20.25	m	m	[26] 20.25	c1	c1
11A	P-Access-Network-Info	[52] 4.4	c9	c9	[52] 4.4	c10	c10
11B	P-Charging-FunctionAddresses	[52] 4.5	c7	c7	[52] 4.5	c8	c8
11C	P-Charging-Vector	[52] 4.6	c5	c5	[52] 4.6	c6	c6
11D	Privacy	[33] 4.2	c3	c3	[33] 4.2	c4	c4
11E	Require	[26] 20.32	m	m	[26] 20.32	c11	c11
11F	Server	[26] 20.35	m	m	[26] 20.35	i	i
12	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
13	To	[26] 20.39	m	m	[26] 20.39	m	m
13A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
14	Via	[26] 20.42	m	m	[26] 20.42	m	m
15	Warning	[26] 20.43	m	m	[26] 20.43	i	i
c1: c2: c3: c4: c5: c6:	IF A. 162/19A OR A.162/19B THEN m ELSE i-- reading, adding or concatenating the Organization header. IF A.162/19C OR A.162/19D THEN m ELSE i - - reading, adding or concatenating the Call-Info header. IF A. 162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. 162/31D OR A. 162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently. IF A.162/45 THEN m ELSE n/a - - the P-Charging-Vector header extension. IF A. $162 / 46$ THEN m ELSE IF A. 162/45 THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.						
c7:	IF A.162/44 THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A.162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.						
c9:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.						
c10:	IF A. $162 / 43$ THEN m ELSE IF A. $162 / 41$ THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.						
c11:	IF A. $162 / 11$ OR A. 162/12 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER. IF A. $162 / 57$ THEN m ELSE n / a - - an extension to the session initiation protocol for request history information. IF A. 162/70 THEN m ELSE n/a - SIP location conveyance. IF A. 162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.						
c12:							
$\begin{aligned} & \text { c13: } \\ & \text { c14: } \end{aligned}$							

Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/102-- Additional for 2xx response
Table A.279: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
1B	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
2	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
3	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
5	Contact	[26] 20.10	m	m	[26] 20.10	i	i
5A	Flow-Timer	[92] 11	c12	c12	[92] 11	c13	c14
5B	P-Associated-URI	[52] 4.1	c8	c8	[52] 4.1	c9	c10
6	Path	[35] 4.2	c3	c3	[35] 4.2	c4	c4
8	Service-Route	[38] 5	c5	c5	[38] 5	c6	c7
9	Supported	[26] 20.37	m	m	[26] 20.37	i	i
c1:							
c3:							
c4:	IF A. 162/29 THEN m ELSE n/a - - Path extension support.						
c5:	IF A.162/32 THEN m ELSE n/a - - Service-Route extension support.						
c6:	IF A. 162/32 THEN i ELSE n/a - Service-Route extension support.						
c7:	IF A.162/32 THEN (IF A.3/2 THEN m ELSE i) ELSE n/a - - Service-Route extension and P-CSCF.						
c8:	IF A.162/36 THEN m ELSE n/a - the P-Associated-URI extension.						
c9:	IF A.162/36 THEN i ELSE n/a - the P-Associated-URI extension.						
c10:	IF A. 162/36 AND A. $3 / 2$ THEN m ELSE IF A. $162 / 36$ AND (A.3/3 OR A.3/9A) THEN i ELSE n/a - the P-						
c12:	IF A.162/67 THEN m ELSE n/a - managing client initiated transactions in SIP.						
c13:	IF A.162/67 THEN m ELSE n/a - managing client initiated transactions in SIP, P-CSCF, I-CSCF.						
c14:	IF A. $162 / 67$ AND A. $3 / 2$ THEN m ELSE IF A. $162 / 67$ AND A. $3 / 3$ THEN i ELSE n/a - managing client						

Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.171A: Supported headers within the REGISTER response

Item	Header		Sending			Receiving	
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i

Prerequisite A.163/19-- REGISTER response
Prerequisite: A. 164/103 OR A.164/35 - - Additional for 3xx or 485 (Ambiguous) response
Table A.280: Supported headers within the REGISTER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
3	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 2	c 2	
$\mathrm{c} 2:$	IF A.162/19E THEN m ELSE i - - deleting Contact headers.							

Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/14 - - Additional for 401 (Unauthorized) response
Table A.281: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \end{gathered}$	Profile status	Ref.	RFC status	Profile status
4	Proxy-Authenticate	[26] 20.27	m	m	[26] 20.27	m	m
6	Security-Server	[48] 2	x	c1	[48] 2	n/a	n/a
10	WWW-Authenticate	[26] 20.44	m	m	[26] 20.44	i	i
c1:	IF A.162/47 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol.						

Prerequisite A.163/19-- REGISTER response
Prerequisite: A. $164 / 17$ OR A. $164 / 23$ OR A. $164 / 30$ OR A. $164 / 36$ OR A. $164 / 42$ OR A. $164 / 45$ OR A. $164 / 50$ OR A.164/51-- Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.282: Supported headers within the REGISTER response

Item	Header			Rending			RFeiving status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
6	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i			

Table A.283: Void
Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.284: Supported headers within the REGISTER response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref. RFC		Profile status	
5	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
9	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.285: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i

Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.286: Supported headers within the REGISTER response

Item	Header			Rending			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
8	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3	c 3
$\mathrm{c} 3:$	IF A.162/17 THEN m ELSE.i						

Prerequisite A.163/19-- REGISTER response
Prerequisite: A. 164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.286A: Supported headers within the REGISTER response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A.162/47 THEN m ELSE n/a - - security mechanism agreement for the session initiation protocol.						

Prerequisite A.163/19-- REGISTER response
Prerequisite: A.164/29-- Additional for 423 (Interval Too Brief) response
Table A.287: Supported headers within the REGISTER response

Item	Header			Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Min-Expires	$[26] 20.23$	m	m	$[26] 20.23$	i	i		

Table A.288: Void
Table A.289: Void

A.2.2.4.13 SUBSCRIBE method

Prerequisite A.163/20-- SUBSCRIBE request
Table A.290: Supported headers within the SUBSCRIBE request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Contact	[56B] 9.2	c27	c27	[56B] 9.2	c27	c28
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
3A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
4	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
5	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
6	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
6A	Contact	[26] 20.10	m	m	[26] 20.10	i	i
7	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
8	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	i
9	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
10	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
11	Content-Type	[26] 20.15	m	m	[26] 20.15	i	i
12	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
13	Date	[26] 20.17	m	m	[26] 20.17	c2	c2
14	Event	[28] 7.2.1	m	m	[28] 7.2.1	m	m
15	Expires	[26] 20.19	m	m	[26] 20.19	i	i
16	From	[26] 20.20	m	m	[26] 20.20	m	m
16A	Geolocation	[89] 3.2	c35	c35	[89] 3.2	c36	c36
16B	History-Info	[66] 4.1	c31	c31	[66] 4.1	c31	c31
16C	Max-Breadth	[117] 5.8	c47	c47	[117] 5.8	c48	c48
17	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
18	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
18A	Organization	[26] 20.25	m	m	[26] 20.25	c3	c3
18B	P-Access-Network-Info	[52] 4.4	c22	c22	[52] 4.4	c23	c23
18C	P-Asserted-Identity	[34] 9.1	c9	c9	[34] 9.1	c10	c10
18D	P-Asserted-Service	[121] 4.1	c39	c39	[121] 4.1	c40	c40
18E	P-Called-Party-ID	[52] 4.2	c13	c13	[52] 4.2	c14	c15
18F	P-Charging-FunctionAddresses	[52] 4.5	c20	c20	[52] 4.5	c21	c21
18G	P-Charging-Vector	[52] 4.6	c18	c18	[52] 4.6	c19	c19
18H	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c8	c8
18I	P-Preferred-Service	[121] 4.2	X	X	[121] 4.2	c38	c38
18J	P-Profile-Key	[97] 5	c33	c33	[97] 5	c34	c34
18K	P-User-Database	[82] 4	c32	c32	[82] 4	c32	c32
18K	P-Visited-Network-ID	[52] 4.3	c16	n/a	[52] 4.3	c17	n/a
18M	Privacy	[33] 4.2	c11	c11	[33] 4.2	c12	c12
19	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c4	c4
20	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
20A	Reason	[34A] 2	c25	c25	[34A] 2	c26	c26
21	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
21A	Referred-By	[59] 3	c29	c29	[59] 3	c30	c30
21B	Reject-Contact	[56B] 9.2	c27	c27	[56B] 9.2	c27	c28
21C	Request-Disposition	[56B] 9.1	c27	c27	[56B] 9.1	c27	c27
22	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
23	Route	[26] 20.34	m	m	[26] 20.34	m	m
23A	Security-Client	[48] 2.3.1	X	X	[48] 2.3.1	c24	c24
23B	Security-Verify	[48] 2.3.1	X	X	[48] 2.3.1	c24	c24
24	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
25	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
26	To	[26] 20.39	m	m	[26] 20.39	m	m

27	User-Agent	2			[26] 20.41		
28	Via	[26]	m	m	[26] 20.42		
c1:	IF A.4/20 THEN m ELSE i - - SIP specific						
c2:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses.						
c3:	IF A.162/19A OR A.162/19B THEN m ELSE i - - reading, adding or concatenating the Organization header.						
	IF A.162/8A THEN m ELSE i - - authentication between UA and pro						
C5	IF A.162/11 OR A.162/13 THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.						
c6:	IF A.162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.						
c7:	IF A.162/14 THEN m ELSE i-- the requirement to be able to insert itself in the subsequent transactions in a dialog.						
c8:	IF A.162/30A THEN m ELSE n/a - - act as first entity within the trust domain for asserted identity. IF A. 162/30 THEN m ELSE n/a - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c9:							
c10	IF A.162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.						
c11	IF A.162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (S						
c12	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.						
c14	IF A. $162 / 37$ THEN i ELSE n/a - the P-Called-Party-ID header extension.						
c15	IF A. 162/37 AND A. $3 / 2$ THEN m ELSE IF A. $162 / 37$ AND (A.3/3 OR A.3/9A) THEN i ELSE n/a - the P Called-Party-ID header extension and P-CSCF or I-CSCF or IBCF (THIG).						
c16	IF A. 162/38 THEN m ELSE n/a - the P-Visited-Network-ID header extension. IF A. 162/39 THEN m ELSE i - - reading, or deleting the P-Visited-Network-ID header before proxying the request or response.						
c17							
c18:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extensio						
c19	IF A.162/46 THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P-Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.						
c20:	IF A. 162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.						
c21	IF A.162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.						
c22:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE $n / a-$ - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.						
c23:	IF A. $162 / 43$ THEN m ELSE IF A. 162/41 THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header						
c24	IF A.162/47 THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - security mechanism agreement for the session initiation protoco						
c25:	IF A.162/48 THEN m ELSE n / a - - the Reason header field for the session initiation protocol.						
c26	IF A.162/48 THEN i ELSE n / a - - the Reason header field for the session initiation protoco						
c27	IF A.162/50 THEN m ELSE n/a - - caller preferences for the session initiation protocol.						
c28:	IF A. $162 / 50$ AND A.4/3 THEN m ELSE IF A. $162 / 50$ AND NOT A.4/3 THEN i ELSE n/a - - caller preferences for the session initiation protocol, and S-CSCF.						
c29	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.						
c30:	IF A.162/53 THEN m ELSE n/a - the SIP Referred-By mechanism.						
c31:	IF A. $162 / 57$ THEN m ELSE $n / a-$ - an extension to the session initiation protocol for request history information.						
c32:	IF A.162/60 THEN m ELSE n/a - the P-User-Database private header extension.						
c33:	IF A.162/66A THEN m ELSE n/a - - making the first query to the database in order to populate the P -Profile-Key header.						
c34	IF A.162/66B THEN m ELSE n/a - - using the information in the P-Profile-Key header. IF A. 162/70 THEN m ELSE n/a - - SIP location conveyance.						
c35							
c36:	IF A.162/70A THEN m ELSE IF A. 162/70B THEN i ELSE n/a - - addition or modification of location in a SIP						
c38	method, passes on locations in SIP method without modification. IF A. 162/84A THEN m ELSE n / a - - act as authentication entity within the trust domain for asserted service.						
c39	IF A.162/84 THEN m ELSE n/a - - identification of communication services in the session initiation protocol.						
c40	IF A.162/84 OR A.162/30B THEN m ELSE i - - identification of communication services in the session initiation protocol or subsequent entity within trust network that can route outside the trust network.						
c47:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protoco forking proxies.						
c48:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.						

$\begin{array}{ll}\text { NOTE: } & \text { c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for } \\ & \text { SUBSCRIBE and NOTIFY. }\end{array}$

Table A.291: Void
Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.291A: Supported headers within the SUBSCRIBE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - stateful proxy behaviour that inserts date, or stateless proxies. IF A.162/4 THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/21-- SUBSCRIBE response for all remaining status-codes
Table A.292: Supported headers within the SUBSCRIBE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
OA	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	i
3	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	I
4	Content-Language	[26] 20.13	m	m	[26] 20.13	i	i
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	i	I
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	m	m	[26] 20.17	c 1	c1
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	History-Info	[66] 4.1	c15	c15	[66] 4.1	c15	c15
10	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	i
10A	Organization	[26] 20.25	m	m	[26] 20.25	c2	c2
10B	P-Access-Network-Info	[52] 4.4	c12	c12	[52] 4.4	c13	c13
10C	P-Asserted-Identity	[34] 9.1	c4	c4	[34] 9.1	c5	c5
10D	P-Charging-FunctionAddresses	[52] 4.5	c10	c10	[52] 4.5	c11	c11
10E	P-Charging-Vector	[52] 4.6	c8	c8	[52] 4.6	c9	c9
10F	P-Preferred-Identity	[34] 9.2	X	X	[34] 9.2	c3	n/a
10G	Privacy	[33] 4.2	c6	c6	[33] 4.2	c7	c7
10 H	Require	[26] 20.32	m	m	[26] 20.32	c14	c14
101	Server	[26] 20.35	m	m	[26] 20.35	i	i
11	Timestamp	[26] 20.38	m	m	[26] 20.38	i	1
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	i
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	m	m	[26] 20.43	i	i
c1: c2: c3: c4:	IF A.162/9 THEN m ELSE i- - insertion of date in requests and responses. IF A.162/19A OR A.162/19B THEN m ELSE i - - reading, adding or concatenating the Organization header. IF A.162/30A THEN m ELSE $\mathrm{n} / \mathrm{a}-$ - act as first entity within the trust domain for asserted identity. IF A.162/30 THEN m ELSE n/a - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks.						
c5:	IF A. 162/30A or A.162/30B THEN m ELSE i - - extensions to the Session Initiation Protocol (SIP) for asserted identity within trusted networks or subsequent entity within trust network that can route outside the trust network.						
c6:	IF A.162/31 THEN m ELSE n/a - a privacy mechanism for the Session Initiation Protocol (SIP).						
c7:	IF A. $162 / 31$ D OR A. $162 / 31$ G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently. IF A. 162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.						
c9:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE n/a - - adding, deleting, reading or modifying the P -Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.						
$\begin{aligned} & \text { c10: } \\ & \text { c11: } \end{aligned}$	IF A. 162/44 THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A. 162/44A THEN m ELSE IF A. $162 / 44$ THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.						
c12:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - - act as subsequent entity within trust network						
c13:	for access network information that can route outside the trust network, the P-Access-Network-Info header extension.						
c14:	the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.						
c15:	IF A. 162/57 THEN m ELSE n/a - - an extension to the session initiation protocol for request history information. IF A.162/70 THEN m ELSE n/a - - SIP location conveyance. IF A. $162 / 70$ A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.						
$\begin{aligned} & \text { c16: } \\ & \text { c17: } \end{aligned}$							

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/102-- Additional for 2xx response
Table A.293: Supported headers within the SUBSCRIBE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
0A	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	i	i
1	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
1A	Contact	[26] 20.10	m	m	[26] 20.10	i	i
2	Expires	[26] 20.19	m	m	[26] 20.19	i	i
3	Record-Route	[26] 20.30	m	m	[26] 20.30	c3	c3
6	Supported	[26] 20.37	m	m	[26] 20.37	i	-
c3:	IF A.162/15 THEN m ELSE i - - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing.						

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.293A: Supported headers within the SUBSCRIBE response

Item	Header			Rending			RFCiving status			Profile status
		Ref.	RFC status	Profile status	Ref.	i				
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i			

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/103 OR A.164/35 - - Additional for 3 xx or 485 (Ambiguous) response
Table A.294: Supported headers within the SUBSCRIBE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
1	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1		
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE $\mathrm{i}--$ deleting Contact headers.								

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/14-- Additional for 401 (Unauthorized) response
Table A.295: Supported headers within the SUBSCRIBE response

Item	Header		Sending			Receiving		
		Ref. status		Profile status	Ref.	RFC status	Profile status	
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480 (Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.296: Supported headers within the SUBSCRIBE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
3	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i		

Table A.297: Void
Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/20 - - Additional for 407 (Proxy Authentication Required) response
Table A.298: Supported headers within the SUBSCRIBE response

Item	Header		Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status		
2	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
6	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.299: Supported headers within the SUBSCRIBE response

Item	Header			Sending			Receiving		
		Ref. status	Profile status	Ref.	RFC status	Profile status			
1	Accept	$[26] 20.1$	m	m	$[26] 20.1$	i	i		
2	Accept-Encoding	$[26] 20.2$	m	m	$[26] 20.2$	i	i		
3	Accept-Language	$[26] 20.3$	m	m	$[26] 20.3$	i	i		

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.300: Supported headers within the SUBSCRIBE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3	c 3		
c3:	IF A.162/18 THEN m ELSE $\mathrm{i}-\mathrm{reading}$ the contents of the Unsupported response to a method other than REGISTER.								

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.300A: Supported headers within the SUBSCRIBE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						

Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/29-- Additional for 423 (Interval Too Brief) response
Table A.301: Supported headers within the SUBSCRIBE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
2	Min-Expires	$[26] 20.23$	m	m	$[26] 20.23$	i	i		

Table A.302: Void
Prerequisite A.163/21-- SUBSCRIBE response
Prerequisite: A.164/39-- Additional for 489 (Bad Event) response
Table A.303: Supported headers within the SUBSCRIBE response

Item	Header			Sending			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Allow-Events	$[28] 7.2 .2$	m	m	$[28] 7.2 .2$	c 1	c 1
c1:	IF A.4/20 THEN m ELSE i-- SIP specific event notification extension.						
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.						

Table A.303A: Void
Table A.304: Void

A.2.2.4.14 UPDATE method

Prerequisite A.163/22-- UPDATE request
Table A.305: Supported headers within the UPDATE request

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
1A	Accept-Contact	[56B] 9.2	c21	c21	[56B] 9.2	c22	c22
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	-	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i
4	Allow	[26] 20.5	m	m	[26] 20.5	i	i
5	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
6	Authorization	[26] 20.7	m	m	[26] 20.7	i	i
7	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
8	Call-Info	[26] 20.9	m	m	[26] 20.9	c8	c8
9	Contact	[26] 20.10	m	m	[26] 20.10	i	i
10	Content-Disposition	[26] 20.11	m	m	[26] 20.11	c4	c4
11	Content-Encoding	[26] 20.12	m	m	[26] 20.12	c4	c4
12	Content-Language	[26] 20.13	m	m	[26] 20.13	c4	c4
13	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
14	Content-Type	[26] 20.15	m	m	[26] 20.15	c4	c4
15	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
16	Date	[26] 20.17	m	m	[26] 20.17	c 2	c2
17	From	[26] 20.20	m	m	[26] 20.20	m	m
17A	Geolocation	[89] 3.2	c26	c26	[89] 3.2	c27	c27
17B	Max-Breadth	[117] 5.8	c32	c32	[117] 5.8	c33	c33
18	Max-Forwards	[26] 20.22	m	m	[26] 20.22	m	m
19	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c4
19A	Min-SE	[58] 5	c23	c23	[58] 5	c23	c23
20	Organization	[26] 20.25	m	m	[26] 20.25	c3	c3
20A	P-Access-Network-Info	[52] 4.4	c16	c16	[52] 4.4	c17	c17
20B	P-Charging-FunctionAddresses	[52] 4.5	c14	c14	[52] 4.5	c15	c15
20C	P-Charging-Vector	[52] 4.6	c12	c12	[52] 4.6	c13	c13
20D	P-Early-Media	[109] 8	0	c28	[109] 8	0	c29
20E	Privacy	[33] 4.2	c10	c10	[33] 4.2	c11	c11
21	Proxy-Authorization	[26] 20.28	m	m	[26] 20.28	c9	c9
22	Proxy-Require	[26] 20.29	m	m	[26] 20.29	m	m
22A	Reason	[34A] 2	c19	c19	[34A] 2	c20	c20
23	Record-Route	[26] 20.30	m	m	[26] 20.30	c7	c7
23A	Referred-By	[59] 3	c24	c24	[59] 3	c25	c25
23B	Reject-Contact	[56B] 9.2	c21	c21	[56B] 9.2	c22	c22
23C	Request-Disposition	[56B] 9.1	c21	c21	[56B] 9.1	c22	c22
24	Require	[26] 20.32	m	m	[26] 20.32	c5	c5
25	Route	[26] 20.34	m	m	[26] 20.34	m	m
25A	Security-Client	[48] 2.3.1	X	X	[48] 2.3.1	c18	c18
25B	Security-Verify	[48] 2.3.1	X	X	[48] 2.3.1	c18	c18
25C	Session-Expires	[58] 4	c23	c23	[58] 4	c23	c23
26	Supported	[26] 20.37	m	m	[26] 20.37	c6	c6
27	Timestamp	[26] 20.38	m	m	[26] 20.38	i	i
28	To	[26] 20.39	m	m	[26] 20.39	m	m
29	User-Agent	[26] 20.41	m	m	[26] 20.41	i	1
30	Via	[26] 20.42	m	m	[26] 20.42	m	m

c1:	IF
c2:	IF A.162/9 THEN m ELSE i - insertion of date in requests and responses.
c3:	IF A.162/19A OR A.162/19B THEN m ELSE i - reading, adding or concatenating the Organization header.
c4:	IF A.3/2 OR A.3/4 THEN m ELSE i - - P-CSCF or S-CSCF.
c5:	IF A.162/11 OR A.162/13 THEN m ELSE i-- reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER.
c6:	IF A.162/16 THEN m ELSE i - - reading the contents of the Supported header before proxying the response.
c7:	IF A. $162 / 14$ THEN o ELSE $\mathrm{i}-$ - the requirement to be able to insert itself in the subsequent transactions in a dialog.
c8:	IF A.162/19C OR A.162/19D THEN m ELSE i - reading, adding or concatenating the Call-Info header.
c9:	IF A.162/8A THEN m ELSE i - - authentication between UA and proxy.
c10:	IF A.162/31 THEN m ELSE n / a - - a privacy mechanism for the Session Initiation Protocol (SIP).
c11:	IF A.162/31D OR A.162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently.
c12:	IF A.162/45 THEN m ELSE n/a - the P-Charging-Vector header extension.
c13:	IF A. $162 / 46$ THEN m ELSE IF A. $162 / 45$ THEN i ELSE $n / a-$ - adding, deleting, reading or modifying the P -Charging-Vector header before proxying the request or response or the P-Charging-Vector header extension.
c14:	IF A.162/44 THEN m ELSE n/a - the P-Charging-Function-Addresses header extension.
c15:	IF A. 162/44A THEN m ELSE IF A. 162/44 THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-FunctionAddresses header extension.
c16:	IF A. $162 / 43$ THEN x ELSE IF A. $162 / 41$ THEN m ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c17:	IF A. $162 / 43$ THEN m ELSE IF A. $162 / 41$ THEN i ELSE n/a - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension.
c18:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.
c19:	IF A. $162 / 48$ THEN m ELSE n/a - the Reason header field for the session initiation protocol.
c20:	IF A.162/48 THEN i ELSE n/a - the Reason header field for the session initiation protocol.
c21:	IF A.162/50 THEN m ELSE n/a - - caller preferences for the session initiation protocol.
c22:	IF A.162/50 THEN i ELSE n/a - caller preferences for the session initiation protocol.
c23:	IF A.162/52 THEN m ELSE n/a - the SIP session timer.
c24:	IF A.162/53 THEN i ELSE n/a - the SIP Referred-By mechanism.
c25:	IF A.162/53 THEN m ELSE n / a - - the SIP Referred-By mechanism.
c26:	IF A.162/70 THEN m ELSE n/a - SIP location conveyance.
c27:	IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.
c28:	IF A.162/76 THEN m ELSE n/a - the SIP P-Early-Media private header extension for authorization of early media.
c29:	IF A.162/76 THEN (IF A.3/2 THEN m ELSE i) ELSE n/a - - P-CSCF, using the information in the P-EarlyMedia header.
c32:	IF A.162/81 THEN m ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies.
c33:	IF A.162/81 AND A.162/6 THEN m ELSE IF A.162/81 AND NOT A.162/6 THEN i ELSE n/a - - addressing an amplification vulnerability in session initiation protocol forking proxies, forking of initial requests.
NOTE:	c1 refers to the UA role major capability as this is the case of a proxy that also acts as a UA specifically for SUBSCRIBE and NOTIFY.

Table A.306: Void
Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/1-- Additional for 100 (Trying) response
Table A.306A: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
2	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
3	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
4	Date	[26] 20.17	c1	c1	[26] 20.17	c2	c2
5	From	[26] 20.20	m	m	[26] 20.20	m	m
6	To	[26] 20.39	m	m	[26] 20.39	m	m
7	Via	[26] 20.42	m	m	[26] 20.42	m	m
c1:	IF (A.162/9 AND A.162/5) OR A.162/4 THEN m ELSE n/a - - stateful proxy behaviour that inserts date, or stateless proxies. IF A.162/4 THEN i ELSE m - - Stateless proxy passes on.						

Prerequisite A.163/22-- UPDATE response for all remaining status-codes
Table A.307: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
0A	Allow	[26] 20.5	m	m	[26] 20.5	i	i
1	Call-ID	[26] 20.8	m	m	[26] 20.8	m	m
1A	Call-Info	[26] 20.9	m	m	[26] 20.9	c4	c4
1B	Contact	[26] 20.10	m	m	[26] 20.10	i	i
2	Content-Disposition	[26] 20.11	m	m	[26] 20.11	i	c3
3	Content-Encoding	[26] 20.12	m	m	[26] 20.12	i	c3
4	Content-Language	[26] 20.13	m	m	[26] 20.13	i	c3
5	Content-Length	[26] 20.14	m	m	[26] 20.14	m	m
6	Content-Type	[26] 20.15	m	m	[26] 20.15	i	c3
7	Cseq	[26] 20.16	m	m	[26] 20.16	m	m
8	Date	[26] 20.17	m	m	[26] 20.17	c1	c1
9	From	[26] 20.20	m	m	[26] 20.20	m	m
9A	Geolocation	[89] 3.2	c14	c14	[89] 3.2	c15	c15
10	MIME-Version	[26] 20.24	m	m	[26] 20.24	i	c3
10A	Organization	[26] 20.25	m	m	[26] 20.25	c2	c2
10B	P-Access-Network-Info	[52] 4.4	c11	c11	[52] 4.4	c12	c12
10C	P-Charging-Function- Addresses	[52] 4.5	c9	c9	[52] 4.5	c10	c10
10D	P-Charging-Vector	[52] 4.6	c7	n/a	[52] 4.6	c8	n/a
10E	Privacy	[33] 4.2	c5	c5	[33] 4.2	c6	c6
10F	Require	[26] 20.32	m	m	[26] 20.32	c13	c13
10G	Server	[26] 20.35	m	m	[26] 20.35	i	
11	Timestamp	[26] 20.38	m	m	[26] 20.38	i	
12	To	[26] 20.39	m	m	[26] 20.39	m	m
12A	User-Agent	[26] 20.41	m	m	[26] 20.41	i	
13	Via	[26] 20.42	m	m	[26] 20.42	m	m
14	Warning	[26] 20.43	m	m	[26] 20.43	i	
c1:	IF A.162/9 THEN m ELSE i - - insertion of date in requests and responses. IF A. 162/19A OR A. 162/19B THEN m ELSE i - - reading, adding or concatenating the Organization header. IF A.3/2 OR A.3/4 THEN m ELSE i - - P-CSCF or S-CSCF. IF A. 162/19C OR A. 162/19D THEN m ELSE i - - reading, adding or concatenating the Call-Info header. IF A. 162/31 THEN m ELSE n/a - - a privacy mechanism for the Session Initiation Protocol (SIP). IF A. 162/31D OR A. 162/31G THEN m ELSE IF A.162/31C THEN i ELSE n/a - - application of the privacy option "header" or application of the privacy option "id" or passing on of the Privacy header transparently. IF A.162/45 THEN m ELSE n/a - - the P-Charging-Vector header extension. IF A. 162/46 THEN m ELSE IF A. 162/45 THEN i ELSE n/a - - adding, deleting, reading or modifying the P- Charging-Vector header before proxying the request or response or the P -Charging-Vector header extension. IF A. 162/44 THEN m ELSE n/a - - the P-Charging-Function-Addresses header extension. IF A.162/44A THEN m ELSE IF A. 162/44 THEN i ELSE n/a - - adding, deleting or reading the P-Charging-Function-Addresses header before proxying the request or response, or the P-Charging-Function- Addresses header extension. IF A. $162 / 43$ THEN x ELSE IF A. 162/41 THEN m ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension. IF A. 162/43 THEN m ELSE IF A. 162/41 THEN i ELSE n/a - - act as subsequent entity within trust network for access network information that can route outside the trust network, the P-Access-Network-Info header extension. IF A. $162 / 11$ OR A. $162 / 13$ THEN m ELSE i - - reading the contents of the Require header before proxying the request or response or adding or modifying the contents of the Require header before proxying the request or response for methods other than REGISTER. IF A. 162/70 THEN m ELSE n/a - - SIP location conveyance. IF A.162/70A THEN m ELSE IF A.162/70B THEN i ELSE n/a - - addition or modification of location in a SIP method, passes on locations in SIP method without modification.						
c2:							
c3:							
c4:							
c5:							
c6:							
c7:							
c9: c10:							
c11:							
c12:							
c13:							
$\begin{aligned} & \text { c14: } \\ & \text { c15: } \end{aligned}$							

Prerequisite A.163/23 - UPDATE response
Prerequisite: A.164/102-- Additional for 2xx response

Table A.308: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	RFC status	Profile status
0A	Accept	[26] 20.1	m	m	[26] 20.1	i	i
0B	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
OC	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	I
1	Allow-Events	[28] 7.2.2	m	m	[28] 7.2.2	c1	c1
2	Authentication-Info	[26] 20.6	m	m	[26] 20.6	i	i
3	Contact	[26] 20.10	m	m	[26] 20.10	i	i
3A	P-Early-Media	[109] 8	0	c10	[109] 8	0	c11
4	Session-Expires	[58] 4	c4	c4	[58] 4	c4	c4
6	Supported	[26] 20.37	m	m	[26] 20.37	i	i
$\begin{aligned} & \text { c1: } \\ & \text { c3: } \end{aligned}$	IF A.4/20 THEN m ELSE i- - SIP specific event notification extension. IF A. $162 / 15$ THEN o ELSE i - the requirement to be able to use separate URIs in the upstream direction and downstream direction when record routeing. IF A. 162/52 THEN m ELSE n/a - - the SIP session timer. IF A.162/76 THEN m ELSE n/a - the SIP P-Early-Media private header extension for authorization of early media. IF A. $162 / 76$ THEN (IF A. $3 / 2$ THEN m ELSE i) ELSE n/a - - P-CSCF, using the information in the P-EarlyMedia header.						
c4: c10:							
c11:							

Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/103 OR A.164/104 OR A.164/105 OR A.164/106-- Additional for 3xx - 6xx response
Table A.308A: Supported headers within the UPDATE response

Item	Seader			Receiving			
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	Error-Info	$[26] 20.18$	m	m	$[26] 20.18$	i	i

Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/103 or A.164/35-- Additional for 3xx, 485 (Ambiguous) response
Table A.309: Supported headers within the UPDATE response

Item	Header		Rending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
2	Contact	$[26] 20.10$	m	m	$[26] 20.10$	c 1	c 1	
$\mathrm{c} 1:$	IF A.162/19E THEN m ELSE $\mathrm{i}--$ deleting Contact headers.							

Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/14-- Additional for 401 (Unauthorized) response
Table A.309A: Supported headers within the UPDATE response

Item	Header		Sending RFC status			Profile status	Ref.			RFC status	Profile status
		Ref.	$[26] 20.27$	m	m	$[26] 20.27$	m				
3	Proxy-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i				
6	WWW-Authenticate										

Prerequisite A.163/23-- UPDATE response
Prerequisite: A. 164/17 OR A.164/23 OR A.164/30 OR A.164/36 OR A.164/42 OR A.164/45 OR A.164/50 OR A.164/51 - Additional for 404 (Not Found), 413 (Request Entity Too Large), 480(Temporarily not available), 486 (Busy Here), 500 (Internal Server Error), 503 (Service Unavailable), 600 (Busy Everywhere), 603 (Decline) response

Table A.310: Supported headers within the UPDATE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
5	Retry-After	$[26] 20.33$	m	m	$[26] 20.33$	i	i		

Table A.311: Void
Prerequisite A.163/23-- UPDATE response
Prerequisite: A. 164/20-- Additional for 407 (Proxy Authentication Required) response
Table A.312: Supported headers within the UPDATE response

Item	Header		Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status	
4	Proxy-Authenticate	$[26] 20.27$	m	m	$[26] 20.27$	m	m	
8	WWW-Authenticate	$[26] 20.44$	m	m	$[26] 20.44$	i	i	

Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/25-- Additional for 415 (Unsupported Media Type) response
Table A.313: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
1	Accept	[26] 20.1	m	m	[26] 20.1	i	i
2	Accept-Encoding	[26] 20.2	m	m	[26] 20.2	i	i
3	Accept-Language	[26] 20.3	m	m	[26] 20.3	i	i

Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/27-- Additional for 420 (Bad Extension) response
Table A.314: Supported headers within the UPDATE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
7	Unsupported	$[26] 20.40$	m	m	$[26] 20.40$	c 3	c 3		
c3:	IF A.162/18 THEN m ELSE $\mathrm{i}--$ reading the contents of the Unsupported header before proxying the 420 response to a method other than REGISTER.								

Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/28 OR A.164/41A - - Additional for 421 (Extension Required), 494 (Security Agreement Required) response

Table A.314A: Supported headers within the UPDATE response

Item	Header	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
3	Security-Server	[48] 2	c1	c1	[48] 2	n/a	n/a
c1:	IF A.162/47 THEN m ELSE n/a - security mechanism agreement for the session initiation protocol.						

Prerequisite A.163/23-- UPDATE response
Prerequisite: A.164/28A - Additional for 422 (Session Interval Too Small) response
Table A.314B: Supported headers within the UPDATE response

Item	Header			Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status		
1	Min-SE	$[58] 5$	$c 1$	c 1	$[58] 5$	c 1	c 1		
$\mathrm{c} 1:$	IF A.162/52 THEN m ELSE n/a-- the SIP session timer.								

Table A.315: Void
Table A.316: Void

A. 3 Profile definition for the Session Description Protocol as used in the present document

A.3.1 Introduction

Void.

A.3.2 User agent role

This subclause contains the ICS proforma tables related to the user agent role. They need to be completed only for UA implementations.

Prerequisite: A.2/1 -- user agent role

A.3.2.1 Major capabilities

Table A.317: Major capabilities

Item	Does the implementation support	Reference	RFC status	Profile status
	Capabilities within main protocol			
	Extensions			
22	integration of resource management and SIP?	[30] [64]	0	m
23	grouping of media lines?	[53]	c3	c3
24	mapping of media streams to resource reservation flows?	[54]	0	c1
25	SDP bandwidth modifiers for RTCP bandwidth?	[56]	0	o (NOTE 1)
26	TCP-based media transport in the dession description protocol?	[83]	0	c2
27	interactive connectivity establishment?	[99]	0	c4
28	session description protocol format for binary floor control protocol streams?	[108]	0	-
29	extended RTP profile for real-time transport control protocol (RTCP)based feedback (RTP/AVPF)?	[135]	0	c5
30	SDP capability negotiation?	[137]	0	c6
c1:	IF A.3/1 THEN m ELSE n/a - - UE. IF A.3/1 OR A.3/6 OR A.3/7 THEN o ELSE n/a - - UE, MGCF, AS. IF A.317/24 THEN m ELSE o - - mapping of media streams to resource reservation flows. IF A.3/9B THEN m ELSE IF A.3/1 OR A. $3 / 6$ THEN o ELSE n/a - - IBCF, UE, MGCF. IF A.3A/50 OR A.3A/50A OR A.3/6 OR A.3/9B THEN m ELSE o - - multimedia telephony service participant, multimedia telephony service application server, MGCF, IBCF. IF A.3A/50 OR A.3A/50A OR A.3/6 OR A.3/9B THEN m ELSE o - - multimedia telephony service participant, multimedia telephony service application server, MGCF, IBCF.			
c2:				
c3:				
c4:				
c5:				
c6:				
NOTE 1:	For "video" and "audio" media types that utilise RTP/RTCP, if the RTCP bandwidth level for the session is different than the default RTCP bandwidth as specified in RFC 3556 [56], then, it shall be specified. For other media types, it may be specified.			

A.3.2.2 SDP types

Table A.318: SDP types

Item	Type	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
	Session level description						
1	$\mathrm{v}=$ (protocol version)	[39] 5.1	m	m	[39] 5.1	m	m
2	```O= (owner/creator and session identifier)```	[39] 5.2	m	m	[39] 5.2	m	m
3	$\mathrm{S}=$ (session name)	[39] 5.3	m	m	[39] 5.3	m	m
4	$\mathrm{i}=$ (session information)	[39] 5.4	0	c2	[39] 5.4	m	c3
5	$\mathrm{u}=$ (URI of description)	[39] 5.5	0	c4	[39] 5.5	0	n/a
6	$\mathrm{e}=$ (email address)	[39] 5.6	0	c4	[39] 5.6	0	n/a
7	$\mathrm{p}=$ (phone number)	[39] 5.6	0	c4	[39] 5.6	0	n/a
8	$\mathrm{c}=$ (connection information)	[39] 5.7	c5	c5	[39] 5.7	m	m
9	$\mathrm{b}=$ (bandwidth information)	[39] 5.8	O	0 (NOTE 1)	[39] 5.8	m	m
	Time description (one or more per description)						
10	$\mathrm{t}=$ (time the session is active)	[39] 5.9	m	m	[39] 5.9	m	m
11	r= (zero or more repeat times)	[39] 5.10	0	c4	[39] 5.10	0	n/a
	Session level description (continued)						
12	$\mathrm{z}=$ (time zone adjustments)	[39] 5.11	0	n/a	[39] 5.11	0	n / a
13	$\mathrm{k}=$ (encryption key)	[39] 5.12	x	x	[39] 5.12	n / a	n/a
14	a= (zero or more session attribute lines)	[39] 5.13	0	0	[39] 5.13	m	m
	Media description (zero or more per description)						
15	$\mathrm{m}=$ (media name and transport address)	[39] 5.14	0	0	[39] 5.14	m	m
16	$\mathrm{i}=$ (media title)	[39] 5.4	0	c2	[39] 5.4	0	c3
17	c= (connection information)	[39] 5.7	c1	c1	[39] 5.7	c1	c1
18	$\mathrm{b}=$ (bandwidth information)	[39] 5.8	O	0 (NOTE 1)	[39] 5.8		
19	$\mathrm{k}=$ (encryption key)	[39] 5.12	x	x	[39] 5.12	n / a	n/a
20	$a=\text { (zero or more media }$ attribute lines)	[39] 5.13	0	0	[39] 5.13	m	m
c1: c2: c3: c4: c5: NOTE 1:	IF (A.318/15 AND NOT A.318/8) THEN m ELSE (IF (A.318/15 AND A.318/8) THEN o ELSE n/a - - 'c=' contained in session level description and SDP contains media descriptions. IF A.3A/6 THEN x ELSE o-- MGCF. IF A.3A/6 THEN n/a ELSE m-- MGCF. IF A.3A/6 THEN x ELSE n/a - - MGCF. IF A.318/17 THEN o ELSE m-- "C=" contained in all media description. For "video" and "audio" media types that utilise RTP/RTCP, it shall be specified. For other media types, it may be specified.						

Prerequisite A.318/14 OR A.318/20-- a= (zero or more session/media attribute lines)
Table A.319: zero or more session / media attribute lines (a=)

Item	Field	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	RFC status	Profile status
1	category (a=cat)	[39] 6	c8	c8	[39] 6	c9	c9
2	keywords (a=keywds)	[39] 6	c8	c8	[39] 6	c9	c9
3	name and version of tool (a=tool)	[39] 6	c8	c8	[39] 6	c9	c9
4	packet time (a=ptime)	[39] 6	c10	c10	[39] 6	c11	c11
5	maximum packet time ($\mathrm{a}=$ maxptime)	$\begin{aligned} & {[39] 6,} \\ & {[123] 8} \end{aligned}$	c10	c10	$\begin{aligned} & {[39] 6,} \\ & {[123] 8} \end{aligned}$	c11	c11
6	receive-only mode (a=recvonly)	[39] 6	0	0	[39] 6	m	m
7	send and receive mode (a=sendrecv)	[39] 6	0	0	[39] 6	m	m
8	send-only mode (a=sendonly)	[39] 6	0	0	[39] 6	m	m
8A	Inactive mode (a=inactive)	[39] 6	0	0	[39] 6	m	m
9	whiteboard orientation (a=orient)	[39] 6	c10	c10	[39] 6	c11	c11
10	conference type (a=type)	[39] 6	c8	c8	[39] 6	c9	c9
11	character set (a=charset)	[39] 6	c8	c8	[39] 6	c9	c9
12	language tag (a=sdplang)	[39] 6	0	0	[39] 6	m	m
13	language tag (a=lang)	[39] 6	0	0	[39] 6	m	m
14	frame rate (a=framerate)	[39] 6	c10	c10	[39] 6	c11	c11
15	quality (a=quality)	[39] 6	c10	c10	[39] 6	c11	c11
16	format specific parameters ($a=f m t p$)	[39] 6	c10	c10	[39] 6	c11	c11
17	rtpmap attribute (a=rtpmap)	[39] 6	c10	c10	[39] 6	c11	c11
18	current-status attribute (a=curr)	[30] 5	c1	c1	[30] 5	c2	c2
19	desired-status attribute (a=des)	[30] 5	c1	c1	[30] 5	c2	c2
20	confirm-status attribute ($\mathrm{a}=$ conf)	[30] 5	c1	c1	[30] 5	c2	c2
21	media stream identification attribute ($\mathrm{a}=\mathrm{mid}$)	[53] 3	c3	c3	[53] 3	c4	c4
22	group attribute (a=group)	[53] 4	c5	c5	[53] 3	c6	c6
23	setup attribute (a=setup)	[83] 4	c7	c7	[83] 4	c7	c7
24	connection attribute ($\mathrm{a}=$ connection)	[83] 5	c7	c7	[83] 5	c7	c7
25	candidate IP addresses ($\mathrm{a}=$ candidate)	[99]	c12	c12	[99]	c13	c13
26	floor control server determination (a=floorctrl)	[108] 4	c14	c14	[108] 4	c14	c14
27	conference id (a=confid)	[108] 5	c14	c14	[108] 5	c14	c14
28	user id (a=userid)	[108] 5	c14	c14	[108] 5	c14	c14
29	association between streams and floors (a=floorid)	[108] 6	c14	c14	[108] 6	c14	c14
30	RTCP feedback capability attribute ($\mathrm{a}=\mathrm{rtcp}-\mathrm{fb}$)	[135] 4.2	c15	c15	[135] 4.2	c15	c15
31	extension of the rtcp-fb attribute ($\mathrm{a}=\mathrm{rtcp}-\mathrm{fb}$)	[136] 7.1	c15	c15	[136] 7.1	c15	c15
32	supported capability negotiation extensions (a=csup)	[137] 6.1	c16	c16	[137] 6.1	c16	c16
33	required capability negotiation extensions (a=creq)	[137] 6.1	c16	c16	[137] 6.1	c16	c16
34	attribute capability (a=acap)	[137] 6.1	c16	c16	[137] 6.1	c16	c16
35	transport protocol capability (a=tcap)	[137] 6.1	c16	c16	[137] 6.1	c16	c16
36	potential configuration (a=pcfg)	[137] 6.1	c16	c16	[137] 6.1	c16	c16
37	actual configuration ($\mathrm{a}=\mathrm{acfg}$)	[137] 6.1	c16	c16	[137] 6.1	c16	c16

c1:	IF A.317/22 AND A.318/20 THEN o ELSE n/a - - integration of resource management and SIP, media level attribute name "a=".
c2:	IF A.317/22 AND A.318/20 THEN m ELSE n/a - integration of resource management and SIP, media level attribute name "a=".
c3:	IF A.317/23 AND A.318/20 THEN o ELSE n / a - - grouping of media lines, media level attribute name "a=".
c4:	IF A.317/23 AND A.318/20 THEN m ELSE n/a - grouping of media lines, media level attribute name "a=".
c5:	IF A.317/23 AND A.318/14 THEN o ELSE n/a - grouping of media lines, session level attribute name "a=".
c6:	IF A.317/23 AND A.318/14 THEN m ELSE n/a - - grouping of media lines, session level attribute name "a=".
c7:	IF A.317/26 AND A.318/20 THEN m ELSE n/a - - TCP-based media transport in the dession description protocol, media level attribute name "a=".
c8:	IF A.318/14 THEN o ELSE x - - session level attribute name "a=".
c9:	IF A.318/14 THEN m ELSE n/a - session level attribute name "a=".
c10:	IF A.318/20 THEN o ELSE x - - media level attribute name "a=".
c11:	IF A.318/20 THEN m ELSE n / a - - media level attribute name " $\mathrm{a}=$ ".
c12:	IF A.317/27 AND A.318/20 THEN o ELSE n / a - - candidate IP addresses, media level atribute name "a=".
c13:	IF A.317/27 AND A.318/20 THEN m ELSE n/a - candidate IP addresses, media level attribute name "a=".
c14:	IF A.317/28 AND A.318/20 THEN m ELSE n/a - session description protocol format for binary floor control protocol streams, media level attribute name " $\mathrm{a}=$ ".
c15:	IF (A.317/29 AND A.318/20) THEN m ELSE n/a - extended RTP profile for real-time transport control protocol (RTCP)-based feedback (RTP/AVPF), media level attribute name " $\mathrm{a}=$ ".
c16:	IF A. $317 / 30$ AND A. $318 / 20$ THEN m ELSE n/a - - SDP capability negotiation, media level attribute name "a=".

A.3.2.3 Void

Table A.320: Void
Table A.321: Void
Table A.322: Void
Table A.323: Void
Table A.324: Void
Table A.325: Void
Table A.326: Void
Table A.327: Void

A.3.2.4 Void

Table A. 327 A: Void

A.3.3 Proxy role

This subclause contains the ICS proforma tables related to the user role. They need to be completed only for proxy implementations.

Prerequisite: A. $2 / 2$-- proxy role

A.3.3.1 Major capabilities

Table A.328: Major capabilities

Item	Does the implementation support	Reference	RFC status	Profile status
	Capabilities within main protocol			
OA	application of session policy?	6.2, 6.3	x	c2
	Extensions			
1	integration of resource management and SIP?	[30] [64]	0	n/a
2	grouping of media lines?	[53]	c3	x
3	mapping of media streams to resource reservation flows?	[54]	0	X
4	SDP bandwidth modifiers for RTCP bandwidth?	[56]	0	c1
5	TCP-based media transport in the session description protocol?	[83]	0	c1
6	interactive connectivity establishment?	[99]	0	c4
7	session description protocol format for binary floor control protocol streams?	[108]	0	0
8	extended RTP profile for real-time transport control protocol (RTCP)based feedback (RTP/AVPF)?	[135]	0	c5
9	SDP capability negotiation?	[137]	0	c5
$\begin{aligned} & \text { c1: } \\ & \text { c2: } \\ & \text { c3: } \\ & \text { c4 } \\ & \text { c5: } \end{aligned}$	IF A.3/2 THEN m ELSE n/a - P-CSCF role. IF A.3/2 OR A.3/4 THEN o ELSE x - P-CSCF, S-CSCF. IF A.328/3 THEN m ELSE o - - mapping of media streams to resource reservation flows. IF A.3/2 OR A.3/4 THEN m ELSE n/a - - P-CSCF, S-CSCF. IF (A.3A/50A AND A.3/7C) OR A.3/2 OR A.3/4 THEN m ELSE n/a - - multimedia telephony service application server as AS acting as a SIP proxy, P-CSCF, S-CSCF.			

A.3.3.2 SDP types

Table A.329: SDP types

Item	Type	Sending			Receiving		
		Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status	Ref.	$\begin{aligned} & \text { RFC } \\ & \text { status } \end{aligned}$	Profile status
	Session level description						
1	$\mathrm{v}=$ (protocol version)	[39] 5.1	m	m	[39] 5.1	m	m
2	$\begin{aligned} & 0=\text { (owner/creator and session } \\ & \text { identifier). } \end{aligned}$	[39] 5.2	m	m	[39] 5.2	i	i
3	$\mathrm{s}=$ (session name)	[39] 5.3	m	m	[39] 5.3	i	i
4	$\mathrm{i}=$ (session information)	[39] 5.4	m	m	[39] 5.4	i	i
5	$\mathrm{u}=$ (URI of description)	[39] 5.5	m	m	[39] 5.5	i	i
6	$\mathrm{e}=$ (email address)	[39] 5.6	m	m	[39] 5.6	i	i
7	$\mathrm{p}=$ (phone number)	[39] 5.6	m	m	[39] 5.6	i	i
8	$\mathrm{c}=$ (connection information)	[39] 5.7	m	m	[39] 5.7	i	i
9	$\mathrm{b}=$ (bandwidth information)	[39] 5.8	m	m	[39] 5.8	i	i
	Time description (one or more per description)						
10	$\mathrm{t}=$ (time the session is active)	[39] 5.9	m	m	[39] 5.9	i	i
11	$\mathrm{r}=$ (zero or more repeat times)	[39] 5.10	m	m	[39] 5.10	i	i
	Session level description (continued)						
12	$\mathrm{z}=$ (time zone adjustments)	[39] 5.11	m	m	[39] 5.11	i	i
13	$\mathrm{k}=$ (encryption key)	[39] 5.12	m	m	[39] 5.12	i	i
14	$\begin{aligned} & a=\text { (zero or more session } \\ & \text { attribute lines) } \end{aligned}$	[39] 5.13	m	m	[39] 5.13	i	i
	Media description (zero or more per description)						
15	$\mathrm{m}=$ (media name and transport address)	[39] 5.14	m	m	[39] 5.14	m	m
16	i= (media title)	[39] 5.4	m	m	[39] 5.4	i	i
17	c= (connection information)	[39] 5.7	m	m	[39] 5.7	i	i
18	$\mathrm{b}=$ (bandwidth information)	[39] 5.8	m	m	[39] 5.8	i	c1
19	$\mathrm{k}=$ (encryption key)	[39] 5.12	m	m	[39] 5.12	i	i
20	$\mathrm{a}=$ (zero or more media attribute lines)	[39] 5.13	m	m	[39] 5.13	i	c1
c1:	IF A.328/0A THEN m ELSE i - - application of session policy.						

Prerequisite A.329/14 OR A.329/20-- a= (zero or more session/media attribute lines)
Table A.330: zero or more session / media attribute lines (a=)

Item	Field	Sending			Receiving		
		Ref.	RFC status	Profile status	Ref.	$\begin{gathered} \text { RFC } \\ \text { status } \\ \hline \end{gathered}$	Profile status
1	category (a=cat)	[39] 6	m	m	[39] 6	i	i
2	keywords (a=keywds)	[39] 6	m	m	[39] 6	i	i
3	name and version of tool ($\mathrm{a}=$ =tool)	[39] 6	m	m	[39] 6	i	i
4	packet time (a=ptime)	[39] 6	m	m	[39] 6	i	c9
5	maximum packet time (a=maxptime)	$\begin{aligned} & {[39] 6,} \\ & {[123] 8} \end{aligned}$	m	m	$\begin{aligned} & {[39] 6,} \\ & {[123] 8} \end{aligned}$	i	c9
6	receive-only mode (a=recvonly)	[39] 6	m	m	[39] 6	i	c9
7	send and receive mode ($\mathrm{a}=$ =sendrecv)	[39] 6	m	m	[39] 6	i	c9
8	send-only mode (a=sendonly)	[39] 6	m	m	[39] 6	i	c9
8A	Inactive mode (a=inactive)	[39] 6	m	m	[39] 6	i	c9
9	whiteboard orientation (a=orient)	[39] 6	m	m	[39] 6	i	c9
10	conference type (a=type)	[39] 6	m	m	[39] 6	i	i
11	character set (a=charset)	[39] 6	m	m	[39] 6	i	i
12	language tag (a=sdplang)	[39] 6	m	m	[39] 6	i	c9
13	language tag (a=lang)	[39] 6	m	m	[39] 6	i	c9
14	frame rate (a=framerate)	[39] 6	m	m	[39] 6	i	c9
15	quality (a=quality)	[39] 6	m	m	[39] 6	i	c9
16	format specific parameters ($\mathrm{a}=\mathrm{fmtp}$)	[39] 6	m	m	[39] 6	i	c9
17	rtpmap attribute (a=rtpmap)	[39] 6	m	m	[39] 6	i	c9
18	current-status attribute (a=curr)	[30] 5	m	m	[30] 5	c2	c2
19	desired-status attribute (a=des)	[30] 5	m	m	[30] 5	c2	c2
20	confirm-status attribute (a=conf)	[30] 5	m	m	[30] 5	c2	c2
21	media stream identification attribute (a=mid)	[53] 3	c5	X	[53] 3	c6	X
22	group attribute (a=group)	[53] 4	c5	X	[53] 4	c6	X
23	setup attribute (a=setup)	[83] 4	c7	c7	[83] 4	c8	c8
24	connection attribute (a=connection)	[83] 5	c7	c7	[83] 5	c8	c8
25	candidate IP addresses (a=candidate)	[99]	c9	c9	[99]	c10	c10
26	floor control server determination (a=floorctrl)	[108] 4	c11	c11	[108] 4	c12	c13
27	conference id (a=confid)	[108] 5	c11	c11	[108] 5	c12	c13
28	user id (a=userid)	[108] 5	c11	c11	[108] 5	c12	C13
29	association between streams and floors (a=floorid)	[108] 6	c11	c11	[108] 6	c12	c13
30	RTCP feedback capability attribute (a=rtcp-fb)	[135] 4.2	c14	c14	[135] 4.2	c15	c15
31	extension of the rtcp-fb attribute ($\mathrm{a}=\mathrm{rtcp}-\mathrm{fb}$)	[136] 7.1	c14	c14	[136] 7.1	c15	c15
32	supported capability negotiation extensions (a=csup)	[137] 6.1	c16	c16	[137] 6.1	c17	c17
33	required capability negotiation extensions (a=creq)	[137] 6.1	c16	c16	[137] 6.1	c17	c17
34	attribute capability (a=acap)	[137] 6.1	c16	c16	[137] 6.1	c17	c17
35	transport protocol capability (a=tcap)	[137] 6.1	c16	c16	[137] 6.1	c17	c17
36	potential configuration $(\mathrm{a}=\mathrm{pcfg})$	[137] 6.1	c16	c16	[137] 6.1	c17	c17
37	actual configuration (a=acfg)	[137] 6.1	c16	c16	[137] 6.1	c17	c17

c2:	IF A.328/1 THEN m ELSE i - - integration of resource management and SIP.
c5:	IF A.328/2 THEN m ELSE n/a - grouping of media lines.
c6:	IF A.328/3 THEN m ELSE IF A.328/2 THEN i ELSE n/a - - mapping of media streams to resource reservation flows, grouping of media lines.
c7:	IF A.328/5 THEN m ELSE n/a.
c8:	IF A.328/5 THEN i ELSE n/a.
c9:	IF A.329/20 AND A.328/0A THEN m ELSE i - - media level attribute name " $\mathrm{a}=$ " and application of session policy.
c9:	IF A.328/6 THEN m ELSE n/a - interactive connectivity establishment.
c10:	IF A.328/1 AND A.328/6 THEN m ELSE IF A.328/6 THEN i ELSE n/a - - integration of resource management and SIP, interactive connectivity establishment.
c11:	IF A.328/7 THEN m ELSE n/a - - session description protocol format for binary floor control protocol streams.
c12:	IF A.328/7 THEN i ELSE n/a - - session description protocol format for binary floor control protocol streams.
c13:	IF A. 328/7 AND A.328/0A AND A.329/20 THEN m ELSE IF A.328/7 AND A.329/20 THEN i ELSE n/a - session description protocol format for binary floor control protocol streams, media level attribute name "a=" and application of session policy.
c14:	IF (A.328/8 AND A.329/20) THEN m ELSE n/a - - extended RTP profile for real-time transport control protocol (RTCP)-based feedback (RTP/AVPF), media level attribute name " $a=$ ".
c15:	IF (A.328/8 AND A.329/20) THEN i ELSE n/a - - extended RTP profile for real-time transport control protocol (RTCP)-based feedback (RTP/AVPF), media level attribute name " $a=$ ".
c16:	IF A.328/9 AND A.329/20 THEN m ELSE n/a - - SDP capability negotiation, media level attribute name "a=".
c17:	IF A.328/9 AND A.329/20 THEN i ELSE n/a - SDP capability negotiation, media level attribute name "a=".

A.3.3.3 Void

Table A.331: Void

Table A.332: Void
Table A.333: Void
Table A.334: Void
Table A.335: Void
Table A.336: Void
Table A.337: Void
Table A.338: Void

A.3.3.4 Void

Table A.339: Void

A. 4 Profile definition for other message bodies as used in the present document

Void.

Annex B (normative): IP-Connectivity Access Network specific concepts when using GPRS to access IM CN subsystem

B. 1 Scope

The present annex defines IP-CAN specific requirements for a call control protocol for use in the IP Multimedia (IM) Core Network (CN) subsystem based on the Session Initiation Protocol (SIP), and the associated Session Description Protocol (SDP), where the IP-CAN is General Packet Radio Service (GPRS).

B. 2 GPRS aspects when connected to the IM CN subsystem

B.2.1 Introduction

A UE accessing the IM CN subsystem, and the IM CN subsystem itself, utilise the services provided by GPRS to provide packet-mode communication between the UE and the IM CN subsystem.

Requirements for the UE on the use of these packet-mode services are specified in this clause. Requirements for the GGSN in support of this communication are specified in 3GPP TS 29.061 [11], 3GPP TS 29.207 [12] and 3GPP TS 29.212 [13C].

When using the GPRS, each IP-CAN bearer is provided by a PDP context.

B.2.2 Procedures at the UE

B.2.2.1 PDP context activation and P-CSCF discovery

Prior to communication with the IM CN subsystem, the UE shall:
a) perform a GPRS attach procedure.

If the bearer establishment is controlled by the UE the UE starts reserving its local resources whenever it has sufficient information about the media streams, media authorization and used codecs available as specified in 3GPP TS 24.008 [8].

NOTE 1: If the bearer establishment is controlled by the GPRS IP CAN the resource reservation requests are initiated by the GGSN after the P-CSCF has authorised the respective IP flows and provided the QoS requirements over the Rx interface to the PCRF as described in 3GPP TS 29.214 [13D].

NOTE 2: During the PDP context activation procedure it is negotiated whether the UE or the GPRS IP-CAN is responsible for establishing the applicable to all PDP contexts within the activated PDP address/APN pair as described in 3GPP TS 24.008 [8].
b) ensure that a PDP context used for SIP signalling according to the APN and GGSN selection criteria described in 3GPP TS 23.060 [4] and 3GPP TS 27.060 [10A] is available. This PDP context shall remain active throughout the period the UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration. As a result, the PDP context provides the UE with information that makes the UE able to construct an IPv6 address;

When the bearer establishment is controlled by the UE, the UE shall choose one of the following options when performing establishment of this PDP context:
I. A dedicated PDP context for SIP signalling:

The UE shall indicate to the GGSN that this is a PDP context intended to carry IM CN subsystem-related signalling only by setting the IM CN Subsystem Signalling Flag. The UE may also use this PDP context for DNS and DHCP signalling according to the static packet filters as described in 3GPP TS 29.061 [11]. The UE can also set the Signalling Indication attribute within the QoS IE;
II. A general-purpose PDP context:

The UE may decide to use a general-purpose PDP Context to carry IM CN subsystem-related signaling. The UE shall indicate to the GGSN that this is a general-purpose PDP context by not setting the IM CN Subsystem Signalling Flag. The UE may carry both signalling and media on the general-purpose PDP context. The UE can also set the Signalling Indication attribute within the QoS IE.

NOTE 3: When the bearer establishment is controlled by the GPRS IP-CAN, the GGSN follows the procedures described in 3GPP TS 29.061 [11] in order to establish a dedicated PDP context for SIP signalling.

The UE indicates the IM CN Subsystem Signalling Flag to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message. Upon successful signalling PDP context establishment the UE receives an indication from GGSN in the form of IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE. If the flag is not received, the UE shall consider the PDP context as a general-purpose PDP context.

The encoding of the IM CN Subsystem Signalling Flag within the Protocol Configuration Options IE is described in 3GPP TS 24.008 [8].

The UE can indicate a request for prioritised handling over the radio interface by setting the Signalling Indication attribute (see 3GPP TS 23.107 [4A]). The general QoS negotiation mechanism and the encoding of the Signalling Indication attribute within the QoS IE are described in 3GPP TS 24.008 [8].

NOTE 4: A general-purpose PDP Context can carry both IM CN subsystem signaling and media, in case the media does not need to be authorized by Policy and Charging control mechanisms as defined in 3GPP TS 29.212 [13C] and Service Based Local Policy mechanisms defined in 3GPP TS 29.207 [12] and the media stream is not mandated by the P-CSCF to be carried in a separate PDP Context.
c) acquire a P-CSCF address(es).

The methods for P-CSCF discovery are:
I. Employ Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3315 [40], the DHCPv6 options for SIP servers RFC 3319 [41] and DHCPv6 options for Domain Name Servers (DNS) RFC 3646 [56C] as described in subclause 9.2.1.
II. Transfer P-CSCF address(es) within the PDP context activation procedure.

The UE shall indicate the request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE of the ACTIVATE PDP CONTEXT REQUEST message or ACTIVATE SECONDARY PDP CONTEXT REQUEST message.

If the GGSN provides the UE with a list of P-CSCF IPv6 addresses in the ACTIVATE PDP CONTEXT ACCEPT message or ACTIVATE SECONDARY PDP CONTEXT ACCEPT message, the UE shall assume that the list is prioritised with the first address within the Protocol Configuration Options IE as the P-CSCF address with the highest priority.

The UE can freely select method I or II for P-CSCF discovery. In case method I is selected and several P-CSCF addresses or FQDNs are provided to the UE, the selection of P-CSCF address or FQDN shall be performed as indicated in RFC 3319 [41]. If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

If the UE is designed to use I above, but receives P-CSCF address(es) according to II, then the UE shall either ignore the received address(es), or use the address(es) in accordance with II, and not proceed with the DHCP request according to I.

The UE may request a DNS Server IPv6 address(es) via RFC 3315 [40] and RFC 3646 [56C] or by the Protocol Configuration Options IE when activating a PDP context according to 3GPP TS 27.060 [10A].

The encoding of the request and response for IPv6 address(es) for DNS server(s) and list of P-CSCF address(es) within the Protocol Configuration Options IE is described in 3GPP TS 24.008 [8].

B.2.2.1A Modification of a PDP context used for SIP signalling

The PDP context shall not be modified from a dedicated PDP context for SIP signalling to a general-purpose PDP context or vice versa. The IM CN Subsystem Signalling Flag shall not be set in the Protocol Configuration Options IE of the MODIFY PDP CONTEXT REQUEST message.

The UE shall not indicate the request for a P-CSCF address to the GGSN within the Protocol Configuration Options IE of the MODIFY PDP CONTEXT REQUEST message. The UE shall ignore P-CSCF address(es) if received from the GGSN in the Protocol Configuration Options IE of the MODIFY PDP CONTEXT RESPONSE message.

B.2.2.1B Re-establishment of the PDP context for SIP signalling

If the dedicated PDP context for SIP signalling is lost due to e.g. a GPRS routeing area update procedure and the bearer establishment is controlled by the UE, the UE shall attempt to re-establish the dedicated PDP context for SIP signalling. If this procedure does not succeed, the UE shall deactivate all PDP contexts established as a result of SIP signalling according to the 3GPP TS 24.008 [8].

B.2.2.2 Session management procedures

The existing procedures for session management as described in 3GPP TS 24.008 [8] shall apply while the UE is connected to the IM CN subsystem.

B.2.2.3 Mobility management procedures

The existing procedures for mobility management as described in 3GPP TS 24.008 [8] shall apply while the UE is connected to the IM CN subsystem.

B.2.2.4 Cell selection and lack of coverage

The existing mechanisms and criteria for cell selection as described in 3GPP TS 25.304 [9] and 3GPP TS 44.018 [20] shall apply while the UE is connected to the IM CN subsystem.

B.2.2.5 PDP contexts for media

B.2.2.5.1 General requirements

The UE can establish media streams that belong to different SIP sessions on the same PDP context.
During establishment of a session, the UE establishes data streams(s) for media related to the session. Such data stream(s) may result in activation of additional PDP context(s). Such additional PDP context(s) shall be established as secondary PDP contexts associated to the PDP context used for signalling. Such secondary PDP contexts for media can be established either by the UE or the GGSN.

NOTE: When the UE has to allocate bandwidth for RTP and RTCP in a PDP context, the UE uses the rules as those outlined in 3GPP TS 29.213 [13C].

B.2.2.5.1A Activation or modification of PDP contexts for media by the UE

If the UE receives indication within the SDP according to RFC 3524 [54] that media stream(s) belong to group(s), the media stream(s) shall be set up on separate PDP contexts according to the indication of grouping of media streams. The UE may freely group media streams to PDP context(s) in case no indication of grouping of media streams is received from the P-CSCF.

If the capabilities of the originating UE prevents it from establishment of additional PDP contexts according to the media grouping attributes given by the P-CSCF in accordance with RFC 3524 [54], the UE will not establish such
grouping of media streams. Instead, the originating UE shall negotiate media parameters for the session according to RFC 3264 [27B].

If the capabilities of the terminating UE prevents it from establishment of additional PDP contexts according to the media grouping attributes given by the P-CSCF in accordance with RFC 3524 [54], the UE will not establish such grouping of media streams. Instead, the terminating UE shall the UE shall handle such SDP offers in accordance with RFC 3388 [53].

The UE can receive a media authorization token in the P-Media-Authorization header from the P-CSCF according to RFC 3313 [31]. If a media authorization token is received in the P-Media-Authorization header when a SIP session is initiated, the UE shall:

- either use existing PDP context(s) where another media authorization token is already in use and no indication of grouping of media streams is required; or
- establish separate PDP context(s) for the media; or
- use an existing PDP context where media authorization token is not in use and no indication of grouping of media streams is required.

When a UE modifies a PDP context to indicate a new media authorization token:

- either as a result of establishment of an additional SIP session; or
- modification of media streams for an ongoing SIP session;
the UE shall include all media authorization tokens and all flow identifiers for all ongoing SIP sessions that use this particular PDP context.

If a media authorization token is received in subsequent messages for the same SIP session, the UE shall:

- use the existing PDP context(s) for media;
- modify the existing PDP context(s) for media; or
- establish additional PDP context(s) for media.

If either background or interactive QoS class is needed for the media, then the UE does not need to use the authorization token even if it receives one. In this case the UE may reuse an existing PDP context and it does not need to request PDP context modification unless it needs to modify the QoS.

If existing PDP context(s) where another media authorization token is already in use is re-used for the media, or separate PDP context(s) is established for the media, the UE shall proceed as follows:

- when a SIP session is terminated, the media authorization token is no longer valid and the UE shall not include it in future GPRS session management messages. The UE shall send a MODIFY PDP CONTEXT REQUEST message updating the binding information by deleting the media authorization token and the corresponding flow identifiers that are no longer valid. If a SIP session is terminated and no other SIP sessions are using the PDP context, the UE shall either update the binding information as described above or deactivate the PDP context;
- the UE shall transparently pass the media authorization token received from the P-CSCF in a response to an INVITE request at originating setup or in the INVITE request at terminating setup to the GGSN. The UE shall signal it by inserting it within the Traffic Flow Template IE in the ACTIVATE SECONDARY PDP CONTEXT REQUEST message or the MODIFY PDP CONTEXT REQUEST message;
- to identify to the GGSN which flow(s) (identified by m-lines within the SDP) that are transferred within a particular PDP context, the UE shall set the flow identifier(s) within the Traffic Flow Template IE in the ACTIVATE SECONDARY PDP CONTEXT REQUEST message or the MODIFY PDP CONTEXT REQUEST message. Detailed description of how the flow identifiers are constructed is provided in 3GPP TS 29.207 [12];
- if the UE receives several media authorization tokens from the P-CSCF within the same SIP request or response, the first instance of the media authorization token shall be sent to the GGSN, and subsequent instances are discarded by the UE; and
- the UE shall not include the IM CN Subsystem Signalling Flag when a PDP context for media is established or modified.

The encoding of the media authorization token and the flow identifiers within the Traffic Flow Template IE is described in 3GPP TS 24.008 [8].

B.2.2.5.1B Activation or modification of PDP contexts for media by the GGSN

If the UE receives an activation request from the GGSN for a PDP context which is associated with the PDP context used for signalling, the UE shall, based on the information contained in the Traffic Flow Template IE, correlate the media PDP context with a currently ongoing SIP session establishment or SIP session modification.

If the UE receives a modification request from the GGSN for a PDP context that is used for one or more media streams in an ongoing SIP session, the UE shall:

1) modify the related PDP context in accordance with the request received from the GGSN.

B.2.2.5.2 Special requirements applying to forked responses

Since the UE does not know that forking has occurred until a second, provisional response arrives, the UE sets up the PDP context(s) as required by the initial response received. If a subsequent provisional response is received, different alternative actions may be performed depending on the requirements in the SDP answer:

1) the bearer requirements of the subsequent SDP can be accommodated by the existing PDP context(s). The UE performs no activation or modification of PDP contexts.
2) the subsequent SDP introduces different QoS requirements or additional IP flows. The UE modifies the existing PDP context(s), if necessary, according to subclause B.2.2.5.1A.
3) the subsequent SDP introduces one or more additional IP flows. The UE establishes additional PDP context(s) according to subclause B.2.2.5.1A.

NOTE 1: When several forked responses are received, the resources requested by the UE is are the "logical OR" of the resources indicated in the multiple responses to avoid allocation of unnecessary resources. The UE does not request more resources than proposed in the original INVITE request.

NOTE 2: When service-based local policy is applied, the UE receives the same authorization token for all forked requests/responses related to the same SIP session.

When a final answer is received for one of the early dialogues, the UE proceeds to set up the SIP session. The UE shall release all the unneeded radio/bearer resources. Therefore, upon the reception of the first final 200 (OK) response for the INVITE request (in addition to the procedures defined in RFC 3261 [26] subclause 13.2.2.4), the UE shall:

1) in case PDP context(s) were established or modified as a consequence of the INVITE request and forked provisional responses that are not related to the accepted $200(\mathrm{OK})$ response, delete the PDP context(s) or modify the delete the PDP context(s) back to their original state.

B.2.2.5.3 Unsuccessful situations

One of the Go, Gq, Rx and Gx interface related error codes can be received by the UE in the ACTIVATE SECONDARY PDP CONTEXT REJECT message or the MODIFY PDP CONTEXT REJECT message. If the UE receives a Go, Gq, Rx and Gx interface related error code, the UE shall either terminate the session or retransmit the message up to three times. The Go, Gq, Rx and Gx interface related error codes are further specified in 3GPP TS 29.207 [12], 3GPP TS 29.209 [13A], 3GPP TS 29.214 [13D] and 3GPP TS 29.212 [13C].

B.2.2.6 Emergency service

No IP-CAN specific procedures for emergency registration have been defined for GPRS. However, when activating a PDP context to perform emergency registration, based on the conditions in subclause 5.1.6.1 of this specification, the UE can select an APN that results in selection of a GGSN located in the PLMN to which the UE is attached (see 3GPP TS 23.060 [4]). The procedures for PDP context activation and P-CSCF discovery, as described in subclause B.2.2.1 of this specification apply accordingly.

NOTE 1: The UE discovery of the local APN is not in the scope of this specification, but the UE can get information about such an APN e.g. via local configuration.

In order to find out whether the UE is attached to the home PLMN or to the visited PLMN, the UE shall compare the MCC values derived from its IMSI with the MCC of the PLMN the UE is attached to. If the MCC of the PLMN the UE is attached to does not match with the MCC derived from the IMSI, then for the purpose of emergency calls in the IM CN subsystem the UE shall consider to be attached to a VPLMN.

NOTE 2: In this respect an equivalent HPLMN, as defined in 3GPP TS 23.122 [4C] will be considered as a visited network.

B.2A Usage of SDP

B.2A. 1 Impact on SDP offer / answer of activation or modification of PDP contexts for media by the network

If due to the activation of PDP context from the network the related SDP media description needs to be changed the UE shall update the related SDP information by sending a new SDP offer within a SIP request, which is sent over the existing SIP dialog,

If the UE receives a modification request from the network for a PDP context that is used for one or more media streams in an ongoing SIP session, the UE shall:

1) if, due to the modification of the PDP context, the related SDP media description need to be changed, update the related SDP information by sending a new SDP offer within a SIP request, that is sent over the existing SIP dialog, and respond to the PDP context modification request.

NOTE: The UE can decide to indicate additional media streams as well as additional or different codecs in the SDP offer than those used in the already ongoing session.

B.2A. 2 Handling of SDP at the terminating UE when originating UE has resources available and IP-CAN performs network-initiated resource reservation for terminating UE

If the UE receives an SDP offer where the SDP offer includes all media streams for which the originating side indicated its local preconditions as met, if the precondition mechanism is supported by the terminating UE and the IP-CAN performs network-initiated resource reservation for the terminating UE and the available resources are not sufficient for the received offer the terminating UE shall indicate its local preconditions and provide the SDP answer to the originating side without waiting for resource reservation.

NOTE 1: If the resource reservation is controlled by the GPRS IP-CAN, the resource reservation request is initiated by the GGSN after the P-CSCF has authorised the respective IP flows and provided the QoS requirements over the Rx interface to the PCRF as described in 3GPP TS 29.214 [13D].

NOTE 2: During the PDP context activation procedure the UE and network negotiate whether the UE or the GPRS IP-CAN is responsible to the resource reservation applicable to all PDP contexts within the activated PDP address/APN pair as described in 3GPP TS 24.008 [8].

B. 3 Application usage of SIP

B.3.1 Procedures at the UE

B.3.1.1 P-Access-Network-Info header

The UE shall always include the P-Access-Network-Info header where indicated in subclause 5.1.

B.3.2 Procedures at the P-CSCF

B.3.2.1 Detecting requests destined for a PSAP

In order to determine whether the initial request for a dialog or standalone transaction or an unknown method is destined for a PSAP the P-CSCF shall compare the MCC field received in the P-Access-Network-Info header against its own MCC code.

B.3.2.2 Location information handling

Void.

B. 4 3GPP specific encoding for SIP header extensions

B.4.1 Void

Annex C (normative): UICC and USIM Aspects for access to the IM CN subsystem

C. 1 Scope

This clause describes the UICC and USIM aspects for access to the IM CN subsystem. Additional requirements related to UICC usage for access to the IM CN subsystem are described in 3GPP TS 33.203 [19].

C. 2 Derivation of IMS parameters from USIM

In case the UE is loaded with a UICC that contains a USIM application but does not contain an ISIM application, the UE shall:

- generate a private user identity;
- generate a temporary public user identity; and
- generate a home network domain name to address the SIP REGISTER request to.

All these three parameters are derived from the IMSI parameter in the USIM, according to the procedures described in 3GPP TS 23.003 [3]. Also in this case, the UE shall derive new values every time the UICC is changed, and shall discard existing values if the UICC is removed.

NOTE: If there is an ISIM and a USIM application on a UICC, the ISIM application is used for IMS authentication, as described in 3GPP TS 33.203 [19]. See subclause 5.1.1.1A.

C. 3 ISIM Location in 3GPP Systems

For 3GPP systems, if ISIM application is present, it is contained in UICC.

Annex D (normative): IP-Connectivity Access Network specific concepts when using I-WLAN to access IM CN subsystem

D. 1 Scope

The present annex defines IP-CAN specific requirements for a call control protocol for use in the IP Multimedia (IM) Core Network (CN) subsystem based on the Session Initiation Protocol (SIP), and the associated Session Description Protocol (SDP), where the IP-CAN is Wireless LAN Interworking (I-WLAN).

D. 2 I-WLAN aspects when connected to the IM CN subsystem

D.2.1 Introduction

A WLAN UE accessing the IM CN subsystem, and the IM CN subsystem itself, utilise the services provided by IWLAN to provide packet-mode communication between the WLAN UE and the IM CN subsystem.

Requirements for the WLAN UE on the use of these packet-mode services are specified in this clause. Requirements for the PDG in support of this communication are specified in 3GPP TS 29.161 [11C]. When using the I-WLAN, the IPCAN bearer is provided by an I-WLAN tunnel.

D.2.2 Procedures at the WLAN UE

D.2.2.1 I-WLAN tunnel activation and P-CSCF discovery

Prior to communication with the IM CN subsystem, the WLAN UE shall:
a) Perform I-WLAN network selection i.e. gaining 3GPP Direct access as described in 3GPP TS 24.234 [8C] in the access dependent case;
b) Establish an IKE security association and an IPsec ESP security association (I-WLAN tunnel with the PDG according to the W-APN and PDG selection criteria described in 3GPP TS 24.234 [8C]. The IKE security association and IPsec ESP security association (I-WLAN tunnel) shall remain active throughout the period the WLAN UE is connected to the IM CN subsystem, i.e. from the initial registration and at least until the deregistration.;

The WLAN UE may carry both signalling and media on an IPsec ESP security association.
c) Acquire a P-CSCF address(es).

The method for P-CSCF discovery is:
Employ Dynamic Host Configuration Protocol for IPv6 (DHCPv6) RFC 3315 [40], the DHCPv6 options for SIP servers RFC 3319 [41] and the DHCP options for Domain Name Servers (DNS) RFC 3646 [56C] as described in subclause 9.2.1.

In case several P-CSCF addresses or FQDNs are provided to the UE, the selection of P-CSCF address or FQDN shall be performed as indicated in RFC 3319 [41]. If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the WLAN UE is implementation specific.

The WLAN UE may request a DNS Server IPv6 address(es) via RFC 3315 [40] and RFC 3646 [56C].

D.2.2.1A Modification of a I-WLAN tunnel used for SIP signalling

Not applicable.

D.2.2.1BRe-establishment of the I-WLAN tunnel used for SIP signalling

Not applicable.

D.2.2.2 Void

D.2.2.3 Void

D.2.2.4 Void

D.2.2.5 I-WLAN tunnel procedures for media

D.2.2.5.1 General requirements

The WLAN UE can establish media streams that belong to different SIP sessions on the same I-WLAN tunnel.
During establishment of a session, the WLAN UE establishes data streams(s) for media related to the session. Such data stream(s) may result in activation of additional IPsec ESP security associations (I-WLAN tunnels).

If the WLAN UE receives indication within the SDP according to RFC 3524 [54] that media stream(s) belong to group(s), the media stream(s) shall be set up on separate IPSEC ESP security associations (I-WLAN tunnels) according to the indication of grouping of media streams. The WLAN UE may freely group media streams to IPsec ESP security association (I-WLAN tunnel(s)) in case no indication of grouping of media streams is received from the P-CSCF.

If the capabilities of the originating WLAN UE, or operator policy at the PDG prevents the originating WLAN UE from establishment of additional IPsec ESP security associations (I-WLAN tunnels) according to the media grouping attributes given by the P-CSCF in accordance with RFC 3524 [54], the WLAN UE will not establish such grouping of media streams. Instead, the originating WLAN UE shall negotiate media parameters for the session according to RFC 3264 [27B].

If the capabilities of the terminating WLAN UE or operator policy at the PDG prevents the originating WLAN UE from establishment of additional IPsec ESP security associations (I-WLAN tunnels) according to the media grouping attributes given by the P-CSCF in accordance with RFC 3524 [54], the WLAN UE will not establish such grouping of media streams. Instead, the terminating WLAN UE shall handle such SDP offers in accordance with RFC 3388 [53].

The UE can receive a media authorization token in the P-Media-Authorization header from the P-CSCF according to RFC 3313 [31]. If a media authorization token is received in the P-Media-Authorization header when a SIP session is initiated, the UE shall reuse the existing I-WLAN tunnel and ignore the media authorization token.

D.2.2.5.1A Activation or modification of I-WLAN tunnel for media by the UE Not applicable.

D.2.2.5.1B Activation or modification of I-WLAN tunnel for media by the network Not applicable.

D.2.2.5.2 Special requirements applying to forked responses

Since the UE is unable to perform bearer modification, forked responses place no special requirements on the UE.

D.2.2.5.3 Unsuccessful situations

Not applicable.

D.2.2.6 Emergency service

The details of network selection to select HPLMN or VPLMN are specified in 3GPP TS 24.234 [8C].

D. 3 Application usage of SIP

D.3.1 Procedures at the UE

D.3.1.1 P-Access-Network-Info header

The UE shall always include the P-Access-Network-Info header where indicated in subclause 5.1.

D.3.2 Procedures at the P-CSCF

D.3.2.1 Detecting requests destined for a PSAP

NOTE: The location of the I-WLAN AP is not specified in this version of the specification.
D.3.2.2 Location information handling

Void.

D. 4 3GPP specific encoding for SIP header extensions

Void.

Annex E (normative): IP-Connectivity Access Network specific concepts when using xDSL to access IM CN subsystem

E. 1 Scope

The present annex defines IP-CAN specific requirements for a call control protocol for use in the IP Multimedia (IM) Core Network (CN) subsystem based on the Session Initiation Protocol (SIP), and the associated Session Description Protocol (SDP), where the IP-CAN is xDSL.

E. 2 xDSL aspects when connected to the IM CN subsystem

E.2.1 Introduction

A UE accessing the IM CN subsystem, and the IM CN subsystem itself, utilise the services provided by the xDSL access network to provide packet-mode communication between the UE and the IM CN subsystem.

Requirements for the BRAS in support of this communication are outside the scope of this document and specified elsewhere.

From the UEs perspective, it is assumed that one or more IP-CAN bearer(s) are provided, in the form of connection(s) managed by the DSL modem supporting the UE.

In the first instance, it is assumed that the IP-CAN bearer(s) is (are) statically provisioned between the UE and the BRAS according to the user's subscription.

It is out of the scope of the current Release to specify whether a single IP-CAN bearer is used to convey both signalling and media flows, or whether several PVC connections are used to isolate various types of IP flows (signalling flows, conversational media, non conversational media...).

The end-to-end characteristics of the xDSL IP-CAN bearer depend on the type of regional access network, and on network configuration. The description of the network PVC termination (e.g., located in the DSLAM, in the BRAS...) is out of the scope of this annex.

E.2.2 Procedures at the UE

E.2.2.1 Activation and P-CSCF discovery

xDSL bearer(s) is (are) statically provisioned in the current Release.
Prior to communication with the IM CN subsystem, the UE shall perform a Network Attachment procedure using DHCP mode or PPP mode. When using xDSL, both IPv4 and IPv6 UEs may access the IM CN subsystem. The UE may request a DNS Server IPv4 address(es) via RFC 2132 [20F] or a DNS Server IPv6 address(es) via RFC 3315 [40].

When using IPv4, the UE may acquires a P-CSCF address(es) by using the DHCP (see RFC 2132 [20F]), the DHCPv4 options for SIP servers (see RFC 3361 [35A]), and RFC 3263 [27A].

In case the DHCP server provides several P-CSCF addresses or FQDNs to the UE, the UE shall select the P-CSCF address or FQDN as indicated in RFC 3361 [35A]. If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

When using IPv6, the UE may acquires a P-CSCF address(es) by using the DHCPv6 (see RFC 3315 [40] and RFC 3646 [56C]), the DHCPv6 options for SIP servers (see RFC 3319 [41]), and RFC 3263 [27H].

In case the DHCP server provides several P-CSCF addresses or FQDNs to the UE, the UE shall select the P-CSCF address or FQDN as indicated in RFC 3319 [41]. If sufficient information for P-CSCF address selection is not available, selection of the P-CSCF address by the UE is implementation specific.

E.2.2.1A Modification of xDSL used for SIP signalling

Not applicable.

E.2.2.1B Re-establishment of the xDSL used for SIP signalling

Not applicable.

E.2.2.2 Void

E.2.2.3 Void

E.2.2.4 Void

E.2.2.5 xDSL bearer(s) for media

E.2.2.5.1 General requirements

The UE can establish media streams that belong to different SIP sessions on the same xDSL bearer.

E.2.2.5.1A Activation or modification of xDSL bearers for media by the UE

If the UE receives indication within the SDP according to RFC 3524 [54] that media stream(s) belong to group(s), and if several xDSL bearers are available to the UE for the session, the media stream(s) may be sent on separate xDSL bearers according to the indication of grouping. The UE may freely group media streams to xDSL bearers in case no indication of grouping is received from the P-CSCF.

If the UE receives media grouping attributes in accordance with RFC 3524 [54] that it cannot provide within the available xDSL bearer(s), then the UE shall handle such SDP offers in accordance with RFC 3388 [53].

The UE can receive a media authorization token in the P-Media-Authorization header from the P-CSCF according to RFC 3313 [31]. If a media authorization token is received in the P-Media-Authorization header when a SIP session is initiated, the UE shall reuse the existing xDSL bearer(s) and ignore the media authorization token.

E.2.2.5.1B Activation or modification of xDSL bearers for media by the network

Not applicable.

E.2.2.5.2 Special requirements applying to forked responses

Since the UE is unable to perform bearer modification, forked responses place no special requirements on the UE.

E.2.2.5.3 Unsuccessful situations

Not applicable.

E.2.2.6 Emergency service

If attached to network via xDSL access technology, the UE shall always consider being attached to its home operator's network for the purpose of emergency calls.

NOTE: In xDSL the UE is unable to receive any indication from the network, that would allow the UE to determine, whether it is currently attached to its home operator's network or to a different network, so the UE assumes itself always attached to the home operator's network when connected via xDSL access technology.

E. 3 Application usage of SIP

E.3.1 Procedures at the UE

E.3.1.1 P-Access-Network-Info header

The UE may, but need not, include the P-Access-Network-Info header where indicated in subclause 5.1.

E.3.2 Procedures at the P-CSCF

E.3.2.1 Detecting requests destined for a PSAP

In order to determine whether the initial request for a dialog or standalone transaction or an unknown method is destined for a PSAP the P-CSCF shall check if the location information received in the network provided and/or UE provided "dsl-location" parameter in the P-Access-Network-Info header(s) belongs to a location in the same country.

NOTE 1: If local policy does not require the insertion of P-Access-Network-Info header in the P-CSCF even if it is missing in the received initial request, the P-CSCF can assume that the request is initiated by fixed broadband UE in the same country.

NOTE 2: If the location information in the network provided and UE provided "dsl-location" parameters (in a request that includes two P-Access-Network-Info headers) is contradictory, or the two P-Access-Network-Info headers indicate different access types the P-CSCF ignores either the network provided or the UE provided information according to operator policy.

E.3.2.2 Location information handling

Upon receipt of an initial request for a dialog or standalone transaction or an unknown method, the P-CSCF based on local policy may include a P-Access-Network-Info header.The value of the dsl-location parameter shall be the value as received in the Location-Information header in the User-Data Answer command as specified in ETSI ES 283035 [98].

NOTE: The way the P-CSCF deduce that the request comes from a UE connected through xDSL access is implementation dependent.

E. 4 3GPP specific encoding for SIP header extensions

Void.

Annex F (normative):
 Additional procedures in support for hosted NAT

NOTE: This subclause describes the mechanism for support of the hosted NAT scenario. This does not preclude other mechanisms but they are out of the scope of this annex.

F. 1 Scope

This annex describes the UE and P-CSCF procedures in support of hosted NAT. In this scenario, both the media flows and the SIP signalling both traverse a NA(P)T device located in the customer premises domain. The term "hosted NAT" is used to address this function.

When receiving an initial SIP REGISTER request without integrity protection, the P-CSCF can, determine whether to perform the hosted NAT procedures for the user identified by the REGISTER request by comparing the address information in the top-most SIP Via header with the IP level address information from where the request was received. The P-CSCF will use the hosted NAT procedure only when the address information do not match.

NOTE: There is no need for the P-CSCF to resolve a domain name in the Via header when UDP encapsulated tunnel mode for IPsec is used. The resolution of a domain name in the Via header is not required by RFC 3261 [26].

In order to provide hosted NAT traversal for SIP REGISTER requests without integrity protection and the associated responses, the P-CSCF makes use of the "received" and "rport" header field parameters as described in RFC 3261 [26] and RFC 3581 [56A]. The hosted NAT traversal for protected SIP messages is provided by applying UDP encapsulation to IPSec packets in accordance with RFC 3948 [63A].

Alternativly to the procedures defined in subclause F. 2 which are employed to support the hosted NAT scenario where the security solution is based on UDP encapsulated IPSec as defined in 3GPP TS 33.203 [19], subclause F. 4 provides procedures for NAT traversal for security solutions that are not defined in 3GPP TS 33.203 [19]. Use of such security solutions is outside the scope of this document.

F. 2 Application usage of SIP

F.2.1 UE usage of SIP

F.2.1.1 General

This subclause describes the UE SIP procedures for supporting hosted NAT scenarios. The description enhances the procedures specified in subclause 5.1.

The UE shall support the symmetric response routeing mechanism according to RFC 3581 [56A].

F.2.1.2 Registration and authentication

F.2.1.2.1 General

The text in subclause 5.1.1.1 applies without changes

F.2.1.2.1A Parameters contained in the ISIM

The text in subclause $5 \cdot 1.1 .1 \mathrm{~A}$ applies without changes

F.2.1.2.2 Initial registration

The procedures described in subclause 5.1.1.2 apply with the additional procedures described in the present subclause.
NOTE 1: In accordance with the definitions given in subclause 3.1 the IP address acquired initially by the UE in a hosted NAT scenario is the UE private IP address.

On sending a REGISTER request, the UE shall populate the header fields as indicated in subitems a) through j) of subclause 5.1.1.2 with the exceptions of subitems d), e) and h) which are modified as follows

The UE shall populate:
d) a Contact header according to the following rules: if the REGISTER request is sent without integrity protection, the Contact header shall be set to include SIP URI(s) containing the private IP address of the UE in the hostport parameter or FQDN. If the UE supports GRUU, it shall include a + sip.instance parameter containing the instance ID. If the REGISTER request is integrity protected, the UE shall include the public IP address or FQDN and the protected server port value in the hostport parameter. The UE shall only use a FQDN in a protected REGISTER request, if it is ensured that the FQDN resolves to the public IP address of the NAT. If the UE supports GRUU, it shall include $\mathrm{a}+$ sip.instance parameter containing the instance ID. The UE shall include all supported ICSI values (coded as specified in subclause 7.2A.8.2) in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 and RFC 3840 [62] for the IMS communication services it intends to use, and IARI values (coded as specified in subclause 7.2A.9.2), for the IMS applications it intends to use in a g.3gpp.iari-ref feature tag as defined in subclause 7.9.3 and RFC 3840 [62];

NOTE 2: The UE will learn its public IP address from the received parameter in the topmost Via header in the 401 (Unauthorized) response to the unprotected REGISTER request.
e) a Via header according to the following rules: if the REGISTER request is sent without integrity protection, the Via header shall be set to include the private IP address or FQDN of the UE in the sent-by field. If the REGISTER request is integrity protected, the UE shall include the public IP address or FQDN and the protected server port value in the sent-by field. The UE shall only use a FQDN in a protected REGISTER request, if it is ensured that the FQDN resolves to the public IP address of the NAT;

NOTE 3: If the UE specifies a FQDN in the host parameter in the Contact header and in the sent-by field in the Via header of an unprotected REGISTER request, this FQDN will not be subject to any processing by the PCSCF or other IMS entities. The means to ensure that the FQDN resolves to the public IP address of the NAT are outside of the scope of this specification. One option for resolving this is local configuration.
h) the Security-Client header field set to specify the security mechanism the UE supports, the IPsec layer algorithms the UE supports and the parameters needed for the security association setup. The UE shall support the setup of two pairs of security associations as defined in 3GPP TS 33.203 [19]. The syntax of the parameters needed for the security association setup is specified in Annex H of 3GPP TS 33.203 [19]. The UE shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The UE shall support the IPSec layer algorithms for integrity protection and for encryption as defined in 3GPP TS 33.203 [19], and shall announce support for them according to the procedures defined in RFC 3329 [48]. In addition to transport mode the UE shall support UDP encapsulated tunnel mode as per RFC 3948 [63A] and shall announce support for both modes as described in TS 33.203 [19];

When a 401 (Unauthorized) response to a REGISTER is received and this response is received without integrity protection, the procedures described in subclause 5.1.1.2 apply with the following additions:

The UE shall check whether a received parameter is present in the topmost Via header.

- If no received parameter is present, the UE shall proceed with the procedures described in subclause 5.1 of the main body of this specification;
- If a received parameter is present, the UE shall verify using the Security-Server header that mode "UDP-enc-tun" is selected. If the verification succeeds the UE shall store the IP address contained in the received parameter as the UE public IP address. If the verification does not succeed the UE shall abort the registration.

In addition, when a 401 (Unauthorized) response to a REGISTER is received (with or without integrity protection) the UE shall behave as described in subclause F.2.1.2.5.

When the UE, that is behind a NAT, receives a 400 (Bad Request) response with 301 Warning header indicating "incompatible network address format" to the unprotected REGISTER request, the UE shall randomly select new values
for the protected server port and the protected client port, and perform new initiate registration procedure by sending an unprotected REGISTER request containing the new values in the Security-Client header.

F.2.1.2.3 Initial subscription to the registration-state event package

The procedures described in subclause 5.1.1.3 apply with the additional procedures described in the present subclause.
On sending a SUBSCRIBE request, the UE shall populate the header fields as indicated in subclause 5.1.1.2 with the exception of subitem g) which is modified as follows

The UE shall populate:
g) a Contact header set to contain the UE public IP address or FQDN, and with the protected server port value as in the initial registration. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT.

NOTE: The means to ensure that the FQDN resolves to the public IP address of the NAT are outside of the scope of this specification. One option for resolving this is local configuration.

F.2.1.2.4 User-initiated re-registration

The procedures described in subclause 5.1.1.4 apply with the additional procedures described in the present subclause.
On sending a REGISTER request that does not contain a challenge response, the UE shall populate the header fields as indicated in subclause 5.1.1.4 with the exception of subitems d) and e) which are modified as follows.

The UE shall populate:
d) a Contact header set to include SIP URI(s) that contain(s) in the hostport parameter the public IP address of the UE or FQDN and protected server port value bound to the security association, and containing the instance ID of the UE in the +sip.instance parameter, if the UE supports GRUU. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT. The UE shall include all supported ICSI values (coded as specified in subclause 7.2A.8.2) in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 and RFC 3840 [62] for the IMS communication services it intends to use, and IARI values (coded as specified in subclause 7.2A.9.2), for the and IMS applications it intends to use in a g.3gpp.iari-ref feature tag as defined in subclause 7.9.3 and RFC 3840 [62];
e) a Via header set to include the public IP address or FQDN of the UE in the sent-by field and the protected server port value bound to the security association. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT;

NOTE 1: The means to ensure that the FQDN resolves to the public IP address of the NAT are outside of the scope of this specification. One option for resolving this is local configuration.

When the UE, that is behind a NAT, receives a 400 (Bad Request) response with 301 Warning header indicating "incompatible network address format" to the REGISTER request that does not contain a challenge response, the UE shall randomly select a new value for the protected client port, and send the REGISTER request containing the new values in the Security-Client header.

NOTE 2: The protected server port stays fixed for a UE until all public user identities of the UE have been deregistered.

F.2.1.2.5 Authentication

F.2.1.2.5.1 General

The procedures of subclause 5.1.1.5.1 apply with with the additional procedures described in the present subclause.

On receiving a 401 (Unauthorized) response to the REGISTER request and the response is deemed to be valid, the UE shall behave as of subclause 5.1.1.5.1 with the exception of subitem 3) which is modified as follows.

The UE shall:
3) send another REGISTER request using the temporary set of security associations to protect the message. The header fields are populated as defined for the initial request (see subclause F.2.1.2.2), with the addition that the UE shall include an Authorization header containing the private user identity and the authentication challenge response calculated by the UE using RES and other parameters, as described in RFC 3310 [49]. The UE shall also insert the Security-Client header that is identical to the Security-Client header that was included in the previous REGISTER request (i.e. the REGISTER request that was challenged with the received 401 (Unauthorized) response). The UE shall also insert the Security-Verify header into the request, by mirroring in it the content of the Security-Server header received in the 401 (Unauthorized) response. The UE shall set the CallID of the integrity protected REGISTER request which carries the authentication challenge response to the same value as the Call-ID of the 401 (Unauthorized) response which carried the challenge.

Whenever the $200(\mathrm{OK})$ response is not received before the temporary SIP level lifetime of the temporary set of security associations expires or a 403 (Forbidden) response is received, the UE shall consider the registration to have failed. The UE shall delete the temporary set of security associations it was trying to establish, and use the old set of security associations. The UE should send an unprotected REGISTER message according to the procedure specified in subclause F.2.1.2.2 if the UE considers the old set of security associations to be no longer active at the P-CSCF.

F.2.1.2.5.2 Network initiated re-authentication

The procedures of subclause 5.1.1.5.2 apply with with the additional procedures described in the present subclause.
On starting the re-authentication procedure sending a REGISTER request that does not contain a challenge response, the UE shall behave as of subclause 5.1.1.5.2 with the exception of subitem 2) which is is modified as follows.

The UE shall:
2) start the re-authentication procedures at the appropriate time (as a result of the S-CSCF procedure described in subclause 5.4.1.6) by initiating a reregistration as described in subclause F.2.1.2.4, if required.

F.2.1.2.5.3 Abnormal cases

The text in subclause 5.1.1.5.3 applies without changes.

F.2.1.2.5A Change of IPv6 address due to privacy

The text in subclause 5.1.1.5A applies without changes.

F.2.1.2.6 User-initiated deregistration

The procedures of subclause 5.1.1.6 apply with with the additional procedures described in the present subclause.
On sending a REGISTER request, the UE shall populate the header fields as indicated in subclause 5.1.1.6 with the exception of subitems d) and e) which is modified as follows.

The UE shall populate:
d) a Contact header set to either the value of "*" or SIP URI(s) that contain(s) in the hostport parameter the IP address of the UE or FQDN and the protected server port value bound to the security association; and containing the instance ID of the UE in the + sip.instance parameter, if the UE supports GRUU. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT;
e) a Via header set to include the IP address or FQDN of the UE in the sent-by field and the protected server port value bound to the security association. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT;

NOTE 1: In case of hosted NAT traversal only the UE public IP addresses are bound to security associations.

NOTE 2: The means to ensure that the FQDN resolves to the public IP address of the NAT are outside of the scope of this specification. One option for resolving this is local configuration.

F.2.1.2.7 Network-initiated deregistration

The procedures of subclause 5.1.1.7 apply with with the additional procedures described in the present subclause.
Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package as described in subclause 5.1.1.3, including one or more <registration> element(s) which were registered by this UE with:

- the state attribute set to "terminated" and the event attribute set to "rejected" or "deactivated"; or
- the state attribute set to "active" and the state attribute within the <contact> element belonging to this UE set to "terminated", and associated event attribute element to "rejected" or "deactivated";

The UE shall remove all registration details relating to these public user identities. In case of a "deactivated" event attribute, the UE shall start the initial registration procedure as described in subclause F.2.1.2.2. In case of a "rejected" event attribute, the UE shall release all dialogs related to those public user identities.

F.2.1.3 Subscription and notification

The text in subclause 5.1.2 applies without changes.

F.2.1.4 Generic procedures applicable to all methods excluding the REGISTER method

F.2.1.4.1 UE originating case

The procedures described in subclause 5.1.2A.1 apply with the additional procedures described in the present subclause.
When the UE sends any request, the requirements in subclause 5.1.2A.1 are replaced by the following requirements. The UE shall include:

- a Via header set to include the public IP address of the UE or FQDN and the protected server port in the sent-by field. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT; and if this is a request for a new dialog, and the request includes a Contact header, then the UE should populate the Contact header as follows:

1) if a public GRUU value (pub-gruu) has been saved associated with the public user identity to be used for this request, and the UE does not indicate privacy of the P-Asserted-Identity, then insert the public GRUU (pubgruu) value in the Contact header as specified in draft-ietf-sip-gruu [93]; or
2) if a temporary GRUU value (temp-gruu) has been saved associated with the public user identity to be used for this request, and the UE does indicate privacy of the P-Asserted-Identity, then insert the temporary GRUU (temp-gruu) value in the Contact header as specified in draft-ietf-sip-gruu [93].

If this is a request within an existing dialog, and the request includes a Contact header, and the Contact address previously used in the dialog was a GRUU, then the UE should insert the previously used GRUU value in the Contact header as specified in draft-ietf-sip-gruu [93].

If the UE did not insert a GRUU in the Contact header, then the UE shall include the public IP address of the UE or FQDN and the protected server port in the hostport parameter in any Contact header that is otherwise included. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT.

NOTE: The means to ensure that the FQDN resolves to the public IP address of the NAT are outside of the scope of this specification. One option for resolving this is local configuration.

The UE shall discard any SIP response that is not integrity protected and is received from the P-CSCF outside of the registration and authentication procedures. The requirements on the UE within the registration and authentication procedures are defined in subclause F.2.1.2.4.

When a SIP transaction times out, i.e. timer B, timer F or timer H expires at the UE, the UE may behave as if timer F expired, as described in subclause F.2.1.2.3.

F.2.1.4.2 UE terminating case

The procedures described in subclause 5.1.2A. 2 apply with the additional procedures described in the present subclause.
When the UE sends any response, the requirements in subclause 5.1.2A.1 are replaced by the following requirement.
If the response includes a Contact header, and the response is not sent within an existing dialog, then the UE should populate the Contact header as follows:

1) if a public GRUU value (pub-gruu) has been saved associated with the public user identity from the P-Called-Party-ID header, and the UE does not indicate privacy of the P-Asserted-Identity, then insert the public GRUU (pub-gruu) value in the Contact header as specified in draft-ietf-sip-gruu [93]; and
2) if a temporary GRUU value (temp-gruu) has been saved associated with the public user identity from the P-Called-Party-ID header, and the UE does indicate privacy of the P-Asserted-Identity, then the UE should insert the temporary GRUU (temp-gruu) value in the Contact header as specified in draft-ietf-sip-gruu [93].

If the UE did not insert a GRUU in the Contact header, then the UE shall:

- include the public IP address of the UE or FQDN and the protected server port in the hostport parameter in any Contact header that is otherwise included. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT.

NOTE: The means to ensure that the FQDN resolves to the public IP address of the NAT are outside of the scope of this specification. One option for resolving this is local configuration.

The UE shall discard any SIP request that is not integrity protected and is received from the P-CSCF outside of the registration and authentication procedures. The requirements on the UE within the registration and authentication procedures are defined in subclause F.2.1.2.

F.2.2 P-CSCF usage of SIP

F.2.2.1 Introduction

This subclause describes the SIP procedures for supporting hosted NAT scenarios.
The description enhances the procedures specified in subclause 5.2.
The P-CSCF shall support the symmetric response routeing mechanism according to RFC 3581 [56A].
NOTE: Symmetric response routeing is used to support hosted NAT and applicable only to initial, unprotected REGISTER requests and corresponding responses.

F.2.2.2 Registration

The procedures described in subclause 5.2.2 apply with the additional procedures described in the present subclause.
When the P-CSCF receives a REGISTER request from the UE, the P-CSCF shall behave as of subclause 5.2 .2 with the exception of subitem 5) and 6) which are modified as follows.

The P-CSCF shall:
5) in case the REGISTER request was received without integrity protection, then:
a) check the existence of the Security-Client header. If the header is not present, then the P-CSCF shall return a suitable 4 xx response. If the header is present the $\mathrm{P}-\mathrm{CSCF}$ shall:

- in case the UE indicated support for "UDP-enc-tun" then remove and store it.
- in case the UE does not indicate support for "UDP-enc-tun" then:
- if the host portion of the sent-by field in the topmost Via header contains an IP address that differs from the source address of the IP packet, silently drop the REGISTER;
- otherwise continue with procedures as of subclause 5.2.2.

NOTE 1: If the UE does not indicate support for "UDP-enc-tun" and the P-CSCF detects that the UE is located behind a NAT device, then the P-CSCF can just drop the REGISTER to avoid unnecessary signalling traffic.
b) if the host portion of the sent-by field in the topmost Via header contains a FQDN, or if it contains an IP address that differs from the source address of the IP packet, the P-CSCF shall:

- add a received parameter in accordance with the procedure defined in RFC 3261 [26]. If the P-CSCF adds a received parameter, it shall also add an rport parameter in accordance with the procedure defined in RFC 3581 [56A]; and
- check that no any previously registered UE has either the same public IP address (allocated by the NAT and indicated in the Via header) and the protected server port (specified in the Security-Client header) or the same public IP address and the protected client port (specified in the Security-Client header). If there is such UE, the P-CSCF shall return a 400 (Bad Request) response with 301 Warning header indicating "incompatible network address format" to the unprotected REGISTER request. Otherwise, the P-CSCF shall forward the REGISTER request.

NOTE 2: If two UEs are behind the same NAT, the NAT may assign to them the same public IP address (but different NAT's port). Hence, the two respective UE must have different protected server port numbers, and different protected client port numbers.
6) in case the REGISTER request was received integrity protected, then the P-CSCF shall:
a) check the security association which protected the request. If the security association is a temporary one, the P-CSCF shall:

- in case the host parameter in the Contact address is in the form of a FQDN, ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address bound to the security association;
- in case the P-CSCF has detected earlier that the UE is located behind a NAT, retrieve port_Uenc from the encapsulating UDP header of the packet received and complete configuration of the temporary set of security associations by configuring port_Uenc in each of the temporary security associations;
- check whether the request contains a Security-Verify header in addition to a Security-Client header. If there are no such headers, then the P-CSCF shall return a suitable 4 xx response. If there are such headers, then the P-CSCF shall compare the content of the Security-Verify header with the content of the SecurityServer header sent earlier and the content of the Security-Client header with the content of the SecurityClient header received in the challenged REGISTER. If those do not match, then there is a potential man-in-the-middle attack. The request should be rejected by sending a suitable 4 xx response. If the contents match, the P-CSCF shall remove the Security-Verify and the Security-Client header;
b) if the security association the REGISTER request was received on, is an already established one, then the PCSCF shall:
- remove the Security-Verify header if it is present;
- check if the Security-Client header containing new parameter values is present, and:
- if this header or any required parameter is missing, then the P-CSCF shall return a suitable 4 xx response.
- if this header and the required parameters are present, then the P-CSCF shall check that no any previously registered UE has the same public IP address and the protected client port (specified in the SecurityClient header). If there is such UE, the P-CSCF shall return a 400 (Bad Request) response with 301 Warning header indicating "incompatible network address format" to the REGISTER request. Otherwise, the P-CSCF shall remove and store the Security-Client header before forwarding the request to the S CSCF;

NOTE 3: When sending the protected REGISTER request to the P-CSCF, the UE will not modify the protected server port value, since the protected server port value stays fixed for a UE until all public user identities of the UE have been de-registered.

When the P-CSCF receives a 401 (Unauthorized) response to an unprotected REGISTER request and this response contains a received and rport parameter in the Via header associated with the UE and the UE indicated support for "UDP-enc-tun" IPsec mode, the P-CSCF shall:

1) delete any temporary set of security associations established towards the UE;
2) remove the CK and IK values contained in the 401 (Unauthorized) response and bind them to the proper private user identity and to the temporary set of security associations which will be setup as a result of this challenge. The P-CSCF shall forward the 401 (Unauthorized) response to the UE if and only if the CK and IK have been removed;
3) insert a Security-Server header in the response, containing the P-CSCF security list and the parameters needed for the security association setup, as specified in Annex H of 3GPP TS 33.203 [19]. The P-CSCF shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The P-CSCF shall support the IPSec layer algorithms for integrity protection and for encryption as defined in 3GPP TS 33.203 [19]. The P-CSCF shall indicate "UDP-enc-tun" as the only IPsec mode;
4) set up the temporary set of security associations with a temporary SIP level lifetime between the UE and the PCSCF for the user identified with the private user identity. The P-CSCF shall select UDP encapsulated tunnel mode and shall leave the value for port-Uenc unspecified in each of the temporary security associations. For further details see 3GPP TS 33.203 [19] and RFC 3329 [48]. The P-CSCF shall set the temporary SIP level lifetime for the temporary set of security associations to the value of reg-await-auth timer; and
5) send the 401 (Unauthorized) response unprotected to the UE using the mechanisms described in RFC 3261 [26] and RFC $3581[56 \mathrm{~A}]$, i.e. the P-CSCF shall send the response to the IP address indicated in the received parameter and to the port indicated in the rport parameter of the Via header associated with the UE. In case UDP is used as transport protocol, the P-CSCF shall use the port on which the REGISTER request was received as client port for sending the response back to the UE.

When the P-CSCF receives a 401 (Unauthorized) response to a protected REGISTER request and that REGISTER request was protected by an old set of security associations that use UDP encapsulated tunnel mode, the P-CSCF shall:

1) delete any temporary set of security associations established towards the UE;
2) remove the CK and IK values contained in the 401 (Unauthorized) response and bind them to the proper private user identity and to the temporary set of security associations which will be setup as a result of this challenge. The P-CSCF shall forward the 401 (Unauthorized) response to the UE if and only if the CK and IK have been removed;
3) insert a Security-Server header in the response, containing the P-CSCF security list and the parameters needed for the security association setup, as specified in Annex H of 3GPP TS 33.203 [19]. The P-CSCF shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The P-CSCF shall support the IPsec layer algorithms for integrity protection and encryption as defined in 3GPP TS 33.203 [19]. The P-CSCF shall indicate "UDP-enc-tun" as the IPsec mode;
4) set up the temporary set of security associations with a temporary SIP level lifetime between the UE and the PCSCF for the user identified with the private user identity. The P-CSCF shall select UDP encapsulated tunnel mode and shall specify the same port_Uenc that was used in the old set of security associations. The P-CSCF shall set the temporary SIP level lifetime for the temporary set of security associations to the value of reg-awaitauth timer; and
5) send the 401 (Unauthorized) response to the UE using the old set of security associations.

Otherwise, when the P-CSCF receives a 401 (Unauthorized) response to an unprotected REGISTER request and this response does not contain a received and rport parameter or when the P-CSCF receives a 401 (Unauthorized) response to a protected REGISTER request and that REGISTER request was protected by an old set of security associations that do not use UDP encapsulated tunnel mode, the P-CSCF shall proceed as described in subclause 5.2.2 of the main body of this specification.

F.2.3 S-CSCF usage of SIP

F.2.3.1 Protected REGISTER with IMS AKA as a security mechanism

The procedures at the S-CSCF described in subclause 5.4.1.2.2 apply.
NOTE: When two UEs that are behind the same NAT register their contact addresses, the NAT may assign to them the same public IP address (but different NAT's ports). If these two UEs select the same protected server port number, and register via different P-CSCFs, then they will have the same contact addresses (i.e. same IP address and protected server port). However, any request targeted to either UE will be sent to the respective P-CSCF, hence not causing any ambiguity at the P-CSCF when forwarding the request via NAT.

F. 3 Application usage of SDP

F.3.1 UE usage of SDP

The procedures as of subclause 6.1 apply.

F.3.2 P-CSCF usage of SDP

F.3.2.1 Introduction

Subclause F.3.2 describes the SDP related procedures performed by the P-CSCF in support of hosted NAT.

F.3.2.2 Receipt of an SDP offer

When the P-CSCF receives an SDP offer during session establishment, if this offer comes from a UE located behind a hosted NAT, the P-CSCF shall modify the SDP offer by replacing the IP address(es) and port number previously set in the SDP offer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface.

F.3.2.3 Receipt of an SDP answer

When the P-CSCF receives any SDP answer to an SDP offer described in subclause F.3.2.2, if this answer comes from a UE located behind a hosted NAT, the P-CSCF shall modify the SDP answer by replacing the IP address(es) and port number previously set in the SDP answer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface.

F.3.2.4 Change of media connection data

After the session is established, it is possible for both ends of the session to change the media connection data for the session. When the P-CSCF receives a SDP offer/answer coming from a UE located behind a hosted NAT with port number(s) or IP address(es) included, there are three different possibilities:

- IP address(es) or/and port number(s) have been added. In this case, the P-CSCF shall apply the procedures as described in subclause F.3.2.2 and subclause F.3.2.3 as appropriate for those additional IP address(es) or/and port number(s);
- IP address(es) and port number(s) have been reassigned to the end points. In this case, the P-CSCF shall apply the procedures as described in subclause F.3.2.2 and subclause F.3.2.3 as appropriate for those reassigned IP address(es) and port number(s);

NOTE: If necessary, the P-CSCF or IBCF will cause the IMS access gateway to release the resources related to the previously assigned IP address(es) and port number(s).

- no change has been made to the IP address(es) and port number(s). The P-CSCF shall apply procedures described in subclause F.3.2.2 using the previously stored IP address(es) and port number(s).

F. $4 \quad$ P-CSCF usage of SIP in case UDP encapsulated IPsec is not employed

F.4.1 Introduction

This subclause describes the SIP procedures for supporting hosted NAT scenarios in case UDP encapsulated IPsec is not employed. In these scenarios the procedures for NAT traversal must take into account that all SIP requests and responses are not protected by an IPsec security association.

F.4.2 Registration

The procedures described in subclause 5.2.2 apply with the additional procedures described in the present clause.
When the P-CSCF receives a REGISTER request from the UE, the P-CSCF shall add the "received" and "rport" parameters to the Via header set to the source IP address and port of the packet header in accordance with the procedure defined in RFC 3261 [26] and RFC 3581 [56A]. Furthermore, the P-CSCF performs the following actions on the Contact header depending on its content:

- if the Contact header contains a contact address in the form of an IP address (NOTE), the P-CSCF shall save this IP address for the duration of the registration and replace it by the source IP address of the packet containing the REGISTER request before forwarding the message;
- if the Contact header contains more than one contact addresses in the form of an IP address, the P-CSCF shall apply the above procedure to one of those contact addresses by choosing the one with the highest qualue parameter) and delete any other contact addresses containing an IP address. If the P-CSCF was unable to choose a contact address based on the qualue, the P-CSCF shall choose one based on local policy and delete any other contact addresses containing an IP address.

NOTE: When the host parameter in the Contact address is in the form of a FQDN, the P-CSCF has to ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address and port pointing towards the hosted NAT and bound to this UE.

When the P-CSCF received a response to the above request, if the Contact header contains a contact address in the form of an IP address, the P-CSCF shall replace this IP address by the saved IP address contained in the REGISTER request before forwarding the associated response to the UE.

F.4.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method

F.4.3.1 Introduction

The procedures described in subclause 5.2.6 apply with the additional procedures described in subclause F.4.3.

F.4.3.2 Request initiated by the UE

When the P-CSCF receives an initial request for a dialog or a request for a standalone transaction, the P-CSCF shall add the "received" and "rport" parameters to the Via header set to the source IP address and port in the packet header as defined in RFC 3261 [26] and RFC 3581 [56A]. Furthermore, if the contact address in the Contact header is in the form of an IP address, the P-CSCF shall save this IP address for the duration of the dialog or standalone transaction and replace it by the source IP address of the packet containing the REGISTER request.

When the P-CSCF received a response to the above request, if the Contact header contains a contact address in the form of an IP address, the P-CSCF shall replace this IP address by the saved IP address contained as per the previous paragraph.

F.4.3.3 Request terminated by the UE

When the P-CSCF receives a response to an initial request for a dialog or a request for a standalone transaction, if the contact address in the Contact header is in the form of an IP address, the P-CSCF shall save this IP address for the duration of the dialog or standalone transaction and replace it by the source IP address of the packet containing the REGISTER request.

Annex G (normative):
 Additional procedures in support of NA(P)T and NA(P)T-PT controlled by the P-CSCF

NOTE: This subclause describes the mechanism for support of NA(P)T and NA(P)T-PT controlled by the PCSCF scenario defined in 3GPP TS 23.228 [7]. This does not preclude other mechanisms but they are out of the scope of this annex.

G. 1 Scope

This annex describes the P-CSCF procedures for supporting the scenario where IP address and/or port conversions occur at the IMS Access Gateway level in the media path between the UE and the backbone. Two types of address conversions are covered:

IP version interworking (NA(P)T-PT); and
IP address/port translation (NA(P)T).
The annex assumes that signalling procedure take place over the Iq interface to enable the P-CSCF to request and retrieve the address bindings reserved in the transport plane.

G. $2 \quad$ P-CSCF usage of SDP

G.2.1 Introduction

The subclause G. 2 describes the P-CSCF procedures for supporting IP address and/or port conversions in SDP that occur in the media path between the UE and the backbone.

NOTE: In the particular case of RTP flows, port conversions also apply to the associated RTCP flows.

G.2.2 Receipt of an SDP offer

When the P-CSCF receives any SDP offer during session establishment, the P-CSCF shall modify the SDP offer by replacing the IP address(es) and port number previously set in the SDP offer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface.

G.2.3 Receipt of an SDP answer

When the P-CSCF receives any SDP answer to an SDP offer described in subclause G.2.3, the P-CSCF shall modify the SDP answer by replacing the IP address(es) and port number previously set in the SDP answer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface.

The P-CSCF may receive multiple provisional responses with an SDP answer due to forking of a request before the first final answer is received. For each SDP answer received in such subsequent provisional responses, the P-CSCF shall apply the procedure in this subclause.

G.2.4 Change of media connection data

After the session is established, it is possible for both ends of the session to change the media connection data for the session. When the P-CSCF receives a SDP offer/answer where port number(s) or IP address(es) is/are included, there are three different possibilities:

IP address(es) or/and port number(s) have been added. In this case, the P-CSCF shall apply the procedures as described in subclause G.2.2 or subclause G.2.3 as appropriate for those additional IP address(es) or/and port number(s); or

IP address(es) and port number(s) have been reassigned to the end points. In this case, the P-CSCF shall apply the procedures as described in subclause G.2.2 or subclause G.2.3 as appropriate for those reassigned IP address(es) and port number(s); or

NOTE: If necessary, the P-CSCF or IBCF will cause the IMS access gateway to release the resources related to the previously assigned IP address(es) and port number(s).
no change has been made to the IP address(es) and port number(s). The P-CSCF shall apply procedures described in subclause G.2.2 using the previously stored IP address(es) and port number(s).

Annex H (normative): IP-Connectivity Access Network specific concepts when using DOCSIS to access IM CN subsystem

H. 1 Scope

The present annex defines IP-CAN specific requirements for a call control protocol for use in the IP Multimedia (IM) Core Network (CN) subsystem based on the Session Initiation Protocol (SIP), and the associated Session Description Protocol (SDP), where the IP-CAN is a DOCSIS cable access network.

DOCSIS (Data Over Cable Service Interface Specification) is a term referring to the ITU-T Recommendation J112 [87] Annex B standard for cable modem systems.

H. 2 DOCSIS aspects when connected to the IM CN subsystem

H.2.1 Introduction

A UE accessing the IM CN subsystem, and the IM CN subsystem itself, utilise the services provided by the DOCSIS cable access network to provide packet-mode communication between the UE and the IM CN subsystem.

From the perspective of the UE, the necessary IP-CAN bearer for signalling is transparently available to the UE.
The UE is not directly involved in requests for IP-CAN bearer(s) for media flow(s). The IM CN interacts with the PCRF in the DOCSIS IP-CAN to establish IP-CAN bearer(s) for media flow(s), on behalf of the UE.

H.2.2 Procedures at the UE

H.2.2.1 Activation and P-CSCF discovery

Prior to communication with the IM CN subsystem, the UE shall perform a Network Attachment procedure as defined in the CableLabs PacketCable specifications PKT-TR-ARCH-FRM [88]. When using DOCSIS, both IPv4 and IPv6 UEs may access the IM CN subsystem. The procedures for P-CSCF discovery defined in subclause 9.2.1 of this document apply.

H.2.2.1A Modification of IP-CAN used for SIP signalling

Not applicable.

H.2.2.1B Re-establishment of the IP-CAN used for SIP signalling
 Not applicable.

H.2.2.2 Void

H.2.2.3 Void

H.2.2.4 Void

H.2.2.5 Handling of the IP-CAN for media

H.2.2.5.1 General requirements

The UE does not directly request resources for media flow(s).

H.2.2.5.1A Activation or modification of IP-CAN for media by the UE Not applicable.

H.2.2.5.1B Activation or modification of IP-CAN for media by the network

Not applicable.

H.2.2.5.2 Special requirements applying to forked responses

The UE does not directly request resources for media flow(s). As a result there are no special UE requirements applying to forked responses.

H.2.2.5.3 Unsuccessful situations

Not applicable.

H.2.2.6 Emergency service

If attached to network via DOCSIS access technology, the UE shall always consider being attached to its home operator's network for the purpose of emergency calls.

NOTE: In DOCSIS the UE is unable to receive any indication from the network, that would allow the UE to determine, whether it is currently attached to its home operator's network or to a different network, so the UE assumes itself always attached to the home operator's network when connected via DOCSIS access technology.

H. 3 Application usage of SIP

H.3.1 Procedures at the UE

H.3.1.1 P-Access-Network-Info header

If the UE is aware of the access technology, the UE shall include the P-Access-Network-Info header where indicated in subclause 5.1.

H.3.2 Procedures at the P-CSCF

H.3.2.1 Detecting requests destined for a PSAP

If access type field in the P-Access-Network-Info header indicated DOCSIS access the P-CSCF shall assume that the initial request for a dialog or standalone transaction or an unknown method destined for a PSAP is initiated in the same country.

NOTE 1: If local policy does not require the insertion of P-Access-Network-Info header in the P-CSCF even if it is missing in the received initial request, the P-CSCF can assume that the request is initiated by fixed broadband UE in the same country.

NOTE 2: If the network provided and UE provided P-Access-Network-Info headers indicate different access types the P-CSCF ignores the information in either the network provided or the UE provided P-Access-Network-Info header according to operator policy.

H.3.2.2 Location information handling

Upon receipt of an initial request for a dialog or standalone transaction or an unknown method, the P-CSCF based on local policy may include a P-Access-Network-Info header.

NOTE: The way the P-CSCF deduces that the request comes from a UE connected through DOCSIS access is implementation dependent.

H. 4 3GPP specific encoding for SIP header extensions

Void.

Annex I (normative): Additional routeing capabilities in support of transit traffic in IM CN subsystem

I. 1 Scope

Operators may use the IM CN subsystem as a transit network to provide transit functionality for their own CS networks, enterprise networks, or other network operators.

As specified in 3GPP TS 23.228 [7] additional routeing functions might reside in a stand-alone entity or might be collocated with the functionality of an MGCF, a BGCF, an I-CSCF, an S-CSCF, or an IBCF.

When colocated with an I-CSCF, the additional routeing capabilities may be performed in advance of I-CSCF proecedures as specificed in subclause 5.3, or after I-CSCF procedures have failed to identify an S-CSCF supporting the user identified by the Request-URI.

When colocated with an MGCF, the generated requests can be routed to an I-CSCF or to possible targets of the routeing procedures defined in subclause I.2.

The BGCF procedures specified in subclause 5.6 are a subset of the more general routeing procedures provided in this annex.

NOTE: Depending on the host entity for the additional routeing functions, the functionality can be accessed as:
a) the last set of functions on the host before forwarding a request (e.g., on an MGCF, an S-CSCF or an IBCF);
b) the first set of functions performed by the host entity when receiving a request at the host entity's entry point (e.g., on a BGCF, I-CSCF or IBCF);
c) a specified point in the logic of the host (e.g., on the I-CSCF at failure to identify an S-CSCF for the Request-URI); or
d) a set of functions associated with a separate entry point (e.g., at a separate entry point associated with a BGCF, I-CSCF, IBCF or separate function).

I. 2 Procedures

The additional routeing functionality, or associated functional entity, performing these additional routeing procedures should analyse the destination address, and determine whether to route to another network, directly, or via the IBCF, or to the BGCF, or the I-CSCF in its own network. This analysis may use public (e.g., DNS, ENUM) and/or private database lookups, and/or locally configured data and need not modify the Request-URI.URI as part of the route determination.

When provided as a separate function, the network element performing these functions need not Record-Route the INVITE request.

If the network element inserts its own Record-Route header, then it may require the periodic refreshment of the session to avoid hung states. If the network element requires the session to be refreshed, it shall apply the procedures described in RFC 4028 [58] clause 8.

NOTE: Requesting the session to be refreshed requires support by at least one of the UEs. This functionality cannot automatically be granted, i.e. at least one of the involved UEs needs to support it.

When provided as a separate function, the network element performing these functions shall not apply the procedures of RFC 3323 [33] relating to privacy.

Annex J (normative): CPC parameter definition

J. 1 Introduction

This annex defines the use of the "CPC" URI parameter for use within SIP URI and Tel URI.
Editor's note: This annex is based on draft-mahy-iptel-cpc-04.txt and can be removed when the internet draft becomes an RFC and the usage of the CPC is allowed for SIP URI. If this solution does not become an RFC, this parameter will be documented in the present document.

The Calling Party's Category is represented as a tel URI parameter. The ABNF syntax is as follows:

```
cpc = cpc-tag "=" cpc-value
cpc-tag = "cpc"
cpc-value
= "ordinary" / "test" / "operator" /
"payphone" / "unknown" /
genvalue
genvalue = 1*(alphanum / "-" / "." )
```

The Accept-Language header shall be used to express the language of the operator.
The semantics of these Calling Party's Category values are described below:
ordinary: The caller has been identified, and has no special features.
test: This is a test call that has been originated as part of a maintenance procedure.
operator: The call was generated by an operator position.
payphone: The calling station is a payphone.
unknown: The CPC could not be ascertained.
NOTE 1: The choice of CPC values and their use are up to the Service Provider. CPC values can be exchanged across networks if specified in a bilateral agreement between the service providers.

NOTE 2: Additional national/regional CPC values can exist (e.g. prison, police, hotel, hospital, cellular, cellularroaming., etc.)

J. 2 Trust domain

Entities in the IM CN subsystem shall restrict CPC tel URI or SIP URI parameter to specific domains that are trusted and support the CPC parameter. Therefore for the purpose of the CPC parameter within this specification, a trust domain also applies. This trust domain is identical to that of the P-Asserted-Identity.

SIP functional entities within the trust domain will need to take action on the removal of the CPC parameter when the SIP signalling crosses the boundary of the trust domain.

J. 3 Procedures at the originating UE

The CPC shall not be populated at the originating UE.

J. 4 Procedures at the originating P-CSCF

No special requirement.

J. 5 Procedures at the originating S-CSCF

No special requirement.
J. 6 Procedures at the I-CSCF

No special requirement.
J. 7 Procedures at the IBCF

No special requirement.

J. 8 Procedures at the terminating P-CSCF

No special requirement.

J. 9 Procedures at the AS at the originating network

The AS may populate the CPC parameter in each initial request for a dialog or a request for a standalone transaction in the tel URI or SIP URI of the P-Asserted-Identity based on their origin source.

Annex K (normative):
 Additional procedures in support of UE managed NAT traversal

K. 1 Scope

This annex describes the UE, P-CSCF, and S-CSCF procedures in support of UE managed NAT traversal. In this scenario, both the media flows and the SIP signalling both traverse a NA $(\mathrm{P}) \mathrm{T}$ device located in the customer premises domain. The term "hosted NAT" is used to address this function. This annex does not consider the case where the NAT is behind the P-CSCF as different NAT traversal procedures are necessary for this architectural scenario.

The procedures described in this subclause of this annex rely on the UE to manage the NAT traversal process. As part of the UE management process, the UE can learn whether it is behind a NAT or not, and choose whether the proceedures in this annex are applied or not.

The protection of SIP messages is provided by applying UDP encapsulation to IPSec packets in accordance with RFC 3948 [63A] and as defined in 3GPP TS 33.203 [19].

NOTE 1: This annex describes the mechanism for support of UE managed NAT traversal scenario defined in 3GPP TS 23.228 [7]. This does not preclude other mechanisms but they are out of the scope of this annex.

NOTE 2: It is recognized that outbound can be useful for capabilities beyond NAT traversal (e.g. multiple registrations) however this annex does not consider such capabilities at this time. Such capabilites can require additional information elements in the REGISTER request so that the P-CSCF and S-CSCF can distinguish whether to apply procedures as of annex F or annex K .

K. 2 Application usage of SIP

K.2.1 Procedures at the UE

K.2.1.1 General

This subclause describes the UE SIP procedures for supporting a UE managed hosted NAT traversal approach. The description enhances the procedures specified in subclause 5.1.

K.2.1.2 Registration and authentication

K.2.1.2.1 General

The text in subclause 5.1.1.1 applies without changes

K.2.1.2.1A Parameters contained in the ISIM

The text in subclause $5 \cdot 1.1 .1 \mathrm{~A}$ applies without changes

K.2.1.2.2 Initial registration

The procedures described in subclause 5.1.1.2 apply with the additional procedures described in the present subclause.
NOTE 1: In accordance with the definitions given in subclause 3.1 the IP address acquired initially by the UE in a hosted NAT scenario is the UE private IP address.

On sending a REGISTER request, the UE shall populate the header fields as indicated in subitems a) through j) of subclause 5.1.1.2 with the exceptions of subitems d), e) and h) which are modified as follows

The UE shall populate:
d) a Contact header according to the following rules: the Contact header shall be set to include SIP URI(s) containing the private IP address of the UE in the hostport parameter or FQDN. The UE shall also include an instance ID (sip.instance) and reg-id as described in draft-ietf-sip-outbound [92];
e) a Via header according to the following rules:

- For UDP, if the REGISTER request is sent without integrity protection, the Via header shall be set to include the private IP address or FQDN of the UE in the sent-by field. If the REGISTER request is integrity protected, the UE shall include the public IP address or FQDN and the protected server port value in the sentby field. In both cases the UE shall include the rport parameter as defined in RFC 3581 [56A]; or
- For TCP, if the REGISTER request is sent without integrity protection, the Via header shall be set to include the private IP address or FQDN of the UE in the sent-by field. If the REGISTER request is integrity protected, the UE shall include the public IP address or FQDN;

NOTE 2: The UE will learn its public IP address from the received parameter in the topmost Via header in the 401 (Unauthorized) response to the unprotected REGISTER request.

NOTE 3: If the UE specifies a FQDN in the host parameter in the Contact header and in the sent-by field in the Via header of an unprotected REGISTER request, this FQDN will not be subject to any processing by the PCSCF or other IMS entities.
h) the Security-Client header field set to specify the security mechanism the UE supports, the IPsec layer algorithms the UE supports and the parameters needed for the security association setup. The UE shall support the setup of two pairs of security associations as defined in 3GPP TS 33.203 [19]. The syntax of the parameters needed for the security association setup is specified in Annex H of 3GPP TS 33.203 [19]. The UE shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The UE shall support the IPSec layer algorithms for integrity protection and for encryption as defined in 3GPP TS 33.203 [19], and shall announce support for them according to the procedures defined in RFC 3329 [48]. In addition to transport mode the UE shall support UDP encapsulated tunnel mode as per RFC 3948 [63A] and shall announce support for both modes as described in 3GPP TS 33.203 [19];

When a 401 (Unauthorized) response to a REGISTER request is received and this response is received without integrity protection, the procedures described in subclause 5.1.1.2 apply with the following additions:

The UE shall check whether a received parameter is present in the topmost Via header:

- if no received parameter is present, or the received parameter is present and the IP address contained within matches the IP address the UE placed in the sent-by field of the Via header, the UE shall proceed with the procedures described in subclause 5.1 of the main body of this specification; or
- if a received parameter is present and the IP address does not match that which the UE placed in the sent-by field of the Via header, the UE is most likely behind a NAT. In this case, the UE shall verify using the Security-Server header that mode "UDP-enc-tun" is selected. If the verification succeeds the UE shall behave as described in subclause K.2.1.2.5 and store the IP address contained in the received parameer as the UE's public IP address. If the verification does not succeed the UE shall abort the registration.

When a 401 (Unauthorized) response to a REGISTER request is received with integrity protection the UE shall behave as described in subclause K.2.1.2.5.

On receiving the 200 (OK) response to the REGISTER request, the procedures described in subclause 5.1.1.2 apply with the following additions:

The UE shall determine the P-CSCFs ability to support the keep-alive procedures as described in draft-ietf-sipoutbound [92] by checking whether the outbound option tag is present in the Require header:

- if no outbound option-tag is present, the UE may use some other explicit indication in order to find out whether the P-CSCF supports the outbound edge proxy functionality. Such indication may be acomplished either through UE local configuration means or the UE can examine the $200(\mathrm{OK})$ response to its REGSITER request for Path headers, and if such are present check whether the bottommost Path header contains the "ob" URI parameter. If
the UE determines that the P-CSCF supports the outbound edge proxy functionality, the UE can use the keepalive techniques defined in subclause K.2.1.5 and draft-ietf-sip-outbound [92] towards the P-CSCF; or
- if an outbound option-tag is present, the UE shall initiate keep-alive mechanisms as defined in subclause K.2.1.5 and draft-ietf-sip-outbound [92] towards the P-CSCF.

NOTE 4: Presence of the outbound option-tag in the Require header indicates that both the P-CSCF and S-CSCF fully support the outbound procedures. The number of subsequent outbound registrations for the same private user identity but with a different reg-id value is based on operator policy.

K.2.1.2.3 Initial subscription to the registration-state event package

The procedures described in subclause 5.1.1.3 apply with the additional procedures described in the present subclause.
On sending a SUBSCRIBE request, the UE shall populate the header fields as indicated in subclause 5.1.1.3 with the modification of subitem g) and addition of subitem h) as follows:
g) a Contact header set to include a SIP URI that contains in the hostport parameter the public IP address of the UE or FQDN, the protected server port value bound to the security association and its instance IP (sip.instance) along with an "ob" parameter as described in ietf-draft-sip-outbound [92]; and
h) a Via header according to the following rules:

- For UDP, the UE shall include the public IP address or FQDN and the protected server port value in the sentby field. The UE shall also include the rport parameter as defined in RFC 3581 [56A]. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT; or
- For TCP, the UE shall include the public IP address or FQDN of the UE in the sent-by field. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT;

K.2.1.2.4 User-initiated re-registration

The procedures described in subclause 5.1.1.4 apply with the additional procedures described in the present subclause.
On sending a REGISTER request that does not contain a challenge response, the UE shall populate the header fields as indicated in subclause 5.1.1.4 with the exception of subitems d) and e) which are modified as follows.

The UE shall populate:
d) a Contact header set to include SIP URI(s) that contain(s) in the hostport parameter the private IP address of the UE or FQDN the protected server port value bound to the security association, its instance ID (sip.instance) along with the same reg-id used for the initial, successful, registration for the given P-CSCF public identity combination as described in draft-ietf-sip-outbound [92]. The UE shall include all supported ICSI values (coded as specified in subclause 7.2A.8.2) in a g.3gpp.icsi-ref feature tag as defined in subclause 7.9.2 and RFC 3840 [62] for the IMS communication services it intends to use, and IARI values (coded as specified in subclause 7.2A.9.2), for the IMS applications it intends to use in a g.3gpp.iari-ref feature tag as defined in subclause 7.9.3 and RFC 3840 [62]; and
e) a Via header according to the following rules:

- For UDP, the UE shall include the public IP address or FQDN and the protected server port value in the sentby field. The UE shall also include the rport parameter as defined in RFC 3581 [56A]. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT; or
- For TCP, the UE shall include the public IP address or FQDN of the UE in the sent-by field. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT;

When the timer F expires at the UE, the UE shall:

1) stop processing of all ongoing dialogs and transactions associated with that flow and silently discard them locally; and
2) after releasing all IP-CAN bearers used for the transport of media according to the procedures in subclause 9.2.2, the UE shall follow the procedures in draft-ietf-sip-outbound [92] to form a new flow to replace the failed one. When registering to create a new flow to replace the failed one, procedures in subclause 5.1.1.2 apply.

NOTE: These actions may also be triggered as a result of the failure of a STUN keep-alive. It is an implementation option whether these actions are also triggered by other means than expiration of timer F , e.g., based on ICMP messages.

If failed registration attempts occur in the process of creating a new flow, the flow recovery procedures defined in draft-ietf-sip-outbound [86] shall apply.

K.2.1.2.5 Authentication

K.2.1.2.5.1 General

The procedures of subclause 5.1.1.5.1 apply with the additional procedures described in the present subclause.
On receiving a 401 (Unauthorized) response to the REGISTER request and the response is deemed to be valid, the UE shall behave as of subclause 5.1.1.5.1 with the exception of subitem 3) which is modified as follows.

The UE shall:
3) send another REGISTER request using the temporary set of security associations to protect the message. The header fields are populated as defined for the initial request (see subclause K.2.1.2.2), with the addition that the UE shall include an Authorization header containing the private user identity and the authentication challenge response calculated by the UE using RES and other parameters, as described in RFC 3310 [49]. The UE shall also insert the Security-Client header that is identical to the Security-Client header that was included in the previous REGISTER request (i.e. the REGISTER request that was challenged with the received 401 (Unauthorized) response). The UE shall also insert the Security-Verify header into the request, by mirroring in it the content of the Security-Server header received in the 401 (Unauthorized) response. The UE shall set the CallID of the integrity protected REGISTER request which carries the authentication challenge response to the same value as the Call-ID of the 401 (Unauthorized) response which carried the challenge.

Whenever the $200(\mathrm{OK})$ response is not received before the temporary SIP level lifetime of the temporary set of security associations expires or a 403 (Forbidden) response is received, the UE shall consider the registration to have failed. The UE shall delete the temporary set of security associations it was trying to establish, and use the old set of security associations. The UE should send an unprotected REGISTER request according to the procedure specified in subclause K.2.1.2.2 if the UE considers the old set of security associations to be no longer active at the P-CSCF.

K.2.1.2.5.2 Network initiated re-authentication

The procedures of subclause 5.1.1.5.2 apply with the additional procedures described in the present subclause.
On starting the re-authentication procedure sending a REGISTER request that does not contain a challenge response, the UE shall behave as of subclause 5.1.1.5.2 with the exception of subitem 2) which is is modified as follows.

The UE shall:
2) start the re-authentication procedures at the appropriate time (as a result of the S-CSCF procedure described in subclause 5.4.1.6) by initiating a re-registration as described in subclause K.2.1.2.4, if required.

K.2.1.2.5.3 Abnormal cases

The text in subclause 5.1.1.5.3 applies without changes.

K.2.1.2.6 Change of IPv6 address due to privacy

The text in subclause 5.1.1.5A applies without changes.

K.2.1.2.7 User-initiated deregistration

The procedures of subclause 5.1.1.6 apply with the additional procedures described in the present subclause.
On sending a REGISTER request, the UE shall populate the header fields as indicated in subclause 5.1.1.6 with the exception of subitems d) and e) which are modified as follows.

The UE shall populate:
d) a Contact header set to either the value of "*" or SIP URI(s) that contain(s) in the hostport parameter the IP address of the UE or FQDN and the protected server port value bound to the security association, its instance ID along with the same Reg-ID used for the initial, successful, registration for the given P-CSCF public identity combination as described in -ietf-sip-outbound [92];. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT;
e) a Via header according to the following rules:

- For UDP, the UE shall include the public IP address or FQDN and the protected server port value in the sentby field. The UE shall also include the rport parameter as defined in RFC 3581 [56A]. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT; or
- For TCP, the UE shall include the public IP address or FQDN of the UE in the sent-by field. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT;

NOTE: In case of hosted NAT traversal only the UE public IP addresses are bound to security associations.

K.2.1.2.8 Network-initiated deregistration

The procedures of subclause 5.1.1.7 apply with the additional procedures described in the present subclause.
Upon receipt of a NOTIFY request on the dialog which was generated during subscription to the reg event package as described in subclause 5.1.1.3, including one or more <registration> element(s) which were registered by this UE with:

- the state attribute set to "terminated" and the event attribute set to "rejected" or "deactivated"; or
- the state attribute set to "active" and the state attribute within the <contact> element belonging to this UE set to "terminated", and associated event attribute element to "rejected" or "deactivated";

The UE shall remove all registration details relating to these public user identities. In case of a "deactivated" event attribute, the UE shall start the initial registration procedure as described in subclause K.2.1.2.2. In case of a "rejected" event attribute, the UE shall release all dialogs related to those public user identities.

K.2.1.3 Subscription and notification

The text in subclause 5.1.2 applies without changes.

K.2.1.4 Generic procedures applicable to all methods excluding the REGISTER method

K.2.1.4.1 UE originating case

The procedures described in subclause 5.1.2A.1 apply with the additional procedures described in the present subclause.
When the UE sends any request, the requirements in subclause 5.1.2A.1 are extended by the following requirements. The UE shall include:

- a Via header according to the following rules:
- For UDP, the UE shall include the public IP address or FQDN and the protected server port value in the sentby field. The UE shall also include the rport parameter as defined in RFC 3581 [56A]. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT; or
- For TCP, the UE shall include the public IP address or FQDN of the UE in the sent-by field. The UE shall only use an FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT; and
- if the request contains a Contact header, include a Contact header according to the following rules:
- if this is a request for a new or existing dialog, and the UE did insert a GRUU in the Contact header, then the UE shall also include its instance ID (sip.instance), and an "ob" parameter as described in draft-ietf-sipoutbound [92]; or
- if this is a request for a new or existing dialog, and the UE did not insert a GRUU in the Contact header, then the UE shall include the public IP address of the UE or FQDN and the protected server port in the hostport parameter along with its instance ID (sip.instance), and an "ob" parameter as described in draft-ietf-sipoutbound [92]. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT.

NOTE: The means to ensure that the FQDN resolves to the public IP address of the NAT are outside of the scope of this specification. One option for resolving this is local configuration.

The UE shall discard any SIP response that is not integrity protected and is received from the P-CSCF outside of the registration and authentication procedures. The requirements on the UE within the registration and authentication procedures are defined in subclause K.2.1.2.

When a SIP transaction times out, i.e. timer B, timer F or timer H expires at the UE, the UE may behave as if timer F expired, as described in subclause K.2.1.2.4.

K.2.1.4.2 UE terminating case

The procedures described in subclause 5.1.2A. 2 apply with the additional procedures described in the present subclause.
When the UE sends any response, the requirements in subclause 5.1.2A.2 are extended by the following requirement. If the UE did not include a GRUU in the Contact header, then the UE shall:

- include the public IP address of the UE or FQDN and the protected server port value bound to the security association in the hostport parameter in any Contact header that is otherwise included. The UE shall only use a FQDN, if it is ensured that the FQDN resolves to the public IP address of the NAT.

The UE shall discard any SIP request that is not integrity protected and is received from the P-CSCF outside of the registration and authentication procedures. The requirements on the UE within the registration and authentication procedures are defined in subclause K.2.1.2.

K.2.1.5 Maintaining flows and detecting flow failures

STUN Binding Requests are used by the UE as a keep-alive mechanism to maintain NAT bindings for signalling flows over connectionless transport (for dialogs outside a registration as well as within a registration) as well as to determine whether a flow (as described in draft-ietf-sip-outbound [92]) is still valid (e.g. a NAT reboot could cause the transport parameters to change). As such, the UE acts as a STUN client and shall follow the requirements defined by RFC 5389 [100]. Further, when using UDP encapsulated IPsec, the keep-alive capabilities defined within should not be used.

CRLF as defined in draft-ietf-sip-outbound [92] is used by the UE as a keep-alive mechanism to maintain NAT bindings for signaling flows over connection oriented transports (for dialogs outside a registration as well as within a registration) as well as to determine whether a flow (as described in draft-ietf-sip-outbound [92]) is still valid (e.g. a NAT reboot could cause the transport parameters to change). As such, the UE shall follow the requirements defined by draft-ietf-sip-outbound [92].

If the UE determines that the flow to a given P-CSCF is no longer valid (the UE does not receive a STUN reply (or CRLF) or the reply indicates a new public IP Address) the UE shall consider the flow and any associated security associations invalid and perform the initial Registration procedures defined in subclause K.2.1.2.2.

When a NAT is not present, it may not be desirable to send keep-alive requests (i.e. given battery considerations for wireless UEs). As such, if a UE can reliably determine that a NAT is not present (i.e. by comparing the 'received' and 'rport' parameters in the Via header in the response to the initial un-protected REGISTER request with the locally assigned IP Address and Port) then the UE may not perform the keep-alive procedures.

K.2.1.6 Emergency services

K.2.1.6.1 General

In addition to the procedures in subclause 5.1.6.1, the following additional procedures apply. When receiving and sending requests unprotected, the UE shall transmit and receive all SIP messages using the same IP Port.

K.2.1.6.2 Initial emergency registration

When a UE performs an initial emergency registration the UE shall perform the actions as specified in subclause K.2.1.2.2. The remaining procedures described in subclause 5.1.6.2 apply without modification.

K.2.1.6.2A New initial emergency registration

The text in subclause 5.1.6.2A applies without changes.

K.2.1.6.3 Initial subscription to the registration-state event package

The text in subclause 5.1.6.3 applies without changes.

K.2.1.6.4 User-initiated emergency reregistration

The UE shall perform user-initiated emergency reregistration as specified in subclause K.2.1.2.4. The remaining procedures described in subclause 5.1.6.4 apply without modification.

K.2.1.6.5 Authentication

The UE shall perform the authentication procedures as specified in subclause K.2.1.2.5.1 and subclause K.2.1.2.5.2. The remaining procedures described in subclause 5.1.6.5 apply without modification.

K.2.1.6.6 User-initiated emergency deregistration

The text in subclause 5.1.6.6 applies without changes.

K.2.1.6.7 Network-initiated emergency deregistration

The text in subclause 5.1.6.7 applies without changes.

K.2.1.6.8 Emergency session setup

K.2.1.6.8.1 General

The text in subclause 5.1.6.8.1 applies without changes.

K.2.1.6.8.2 Emergency session set-up in case of no registration

The procedures described in subclause 5.1.6.8.2 apply with the additional procedures described in the present subclause.
NOTE 1: In accordance with the definitions given in subclause 3.1 the IP address acquired initially by the UE in a hosted NAT scenario is the UEs private IP address.

On sending a INVITE request, the UE shall populate the header fields as indicated in subitems 1) through 9) of subclause 5.1.6.8.2 with the exceptions of subitems 6) and 7) which is modified as follows

The UE shall populate:
6) a Contact header set to include a SIP URI that contains in the hostport parameter the IP address of the UE and an unprotected port where the UE will receive incoming requests belonging to this dialog. The UE shall also include an "ob" URI parameter as described in draft-ietf-sip-outbound [92]. The UE shall not include either the public or temporary GRUU in the Contact header;
7) a Via header according to the following rules:

- for UDP, the Via header shall be set to include the private IP address or FQDN of the UE and the unprotected server port value where the UE will receive response to the emergency request in the sent-by field. The UE shall also include the rport parameter as defined in RFC 3581 [56A]; or
- for TCP, the Via header shall be set to include the private IP address or FQDN of the UE in the sent-by field;

NOTE 2: If the UE specifies a FQDN in the host parameter in the Contact header and in the sent-by field in the Via header, this FQDN will not be subject to any processing by the P-CSCF or other IMS entities.

When a non-negative response to the INVITE request is received, the UE shall check whether a received parameter is present in the topmost Via header.

- if no received parameter is present, or the receive parameter is present and the IP Address contained within matches the IP address the UE placed in the sent-by field of the Via header, the UE shall proceed with the procedures described in subclause 5.1.6.8.2 of the main body of this specification;
- if a received parameter is present and the IP address does not match that which the UE placed in the sent-by field of the Via header, the UE is most likely behind a NAT. In this case, the UE should maintain the flow to the PCSCF as described in subclause K.2.1.5 for the duration of the dialog.

NOTE 3: If the UE is behind a NAT, it needs to maintain the NAT bindings between the UE and the P-CSCF to allow for requests from the P-CSCF related to the emergency session.

K.2.1.6.8.3 Emergency session set-up with an emergency registration

After a successful initial emergency registration, the UE shall apply the procedures as specified in subclause K.2.1.4, subclause 5.1.3, and subclause 5.1.4. The remaining procedures described in subclause 5.1.6.8.3 apply without modification.

K.2.1.6.8.4 Emergency session set-up within a non-emergency registration

The UE shall apply the procedures as specified in subclause K.2.1.4, subclause 5.1.3, and subclause 5.1.4. The remaining procedures described in subclause 5.1.6.8.4 apply without modification.

K.2.1.6.9 Emergency session release

The text in subclause 5.1.6.9 applies without changes.

K.2.2 Procedures at the P-CSCF

K.2.2.1 Introduction

This subclause describes the SIP procedures for supporting hosted NAT scenarios.
The description enhances the procedures specified in subclause 5.2.

K.2.2.2 Registration

The procedures described in subclause 5.2.2 apply with the additional procedures described in the present subclause.
When the P-CSCF receives a REGISTER request from the UE, the P-CSCF shall behave as of subclause 5.2 .2 with the exception of subitems 1), 5), and 6) which are modified as follows.

The P-CSCF shall:

1) insert a Path header in the request including an entry containing:

- the SIP URI identifying the P-CSCF;
- an indication that requests routed in this direction of the path (i.e. from the S-CSCF to the P-CSCF) are expected to be treated as for the mobile-terminating case. This indication may e.g. be in a parameter in the URI, a character string in the user part of the URI, or be a port number in the URI; and
- a an IMS flow token and the 'ob' URI parameter;

NOTE 1: The form of the IMS flow token is of local significance to the P-CSCF only and can thus be chosen freely by a P-CSCF implementation.
5) in case the REGISTER request was received without integrity protection, then:
a) check the existence of the Security-Client header. If the header is not present, then the P-CSCF shall return a suitable 4xx response. If the header is present the P-CSCF shall:

- in case the UE indicated support for "UDP-enc-tun" then remove and store it; or
- in case the UE does not indicate support for "UDP-enc-tun" then:
- if the host portion of the sent-by field in the topmost Via header contains an IP address that differs from the source address of the IP packet, silently drop the REGISTER request;
- otherwise continue with procedures as of subclause 5.2.2;

NOTE 2: If the UE does not indicate support for "UDP-enc-tun" and the P-CSCF detects that the UE is located behind a NAT device, then the P-CSCF can just drop the REGISTER request to avoid unnecessary signalling traffic.
b) if the host portion of the sent-by field in the topmost Via header contains a FQDN, or if it contains an IP address that differs from the source address of the IP packet, the UE is assumed to be behind a NAT and the P-CSCF shall add a received parameter in accordance with the procedure defined in RFC 3261 [26]. If the PCSCF adds a received parameter, it shall also add an rport parameter in accordance with the procedure defined in RFC 3581 [56A] and remember that the UE is behind a NAT;
6) in case the REGISTER request was received integrity protected, then the P-CSCF shall:
a) check the security association which protected the request. If the security association is a temporary one, the P-CSCF shall:

- in case the host parameter in the Contact address is in the form of a FQDN, ensure that the given FQDN will resolve (e.g., by reverse DNS lookup) to the IP address bound to the security association;
- in case the P-CSCF has detected earlier that the UE is located behind a NAT, retrieve port_Uenc from the encapsulating UDP header of the packet received and complete configuration of the temporary set of security associations by configuring port_Uenc in each of the temporary security associations;
- check whether the request contains a Security-Verify header in addition to a Security-Client header. If there are no such headers, then the P-CSCF shall return a suitable 4 xx response. If there are such headers, then the P-CSCF shall compare the content of the Security-Verify header with the content of the SecurityServer header sent earlier and the content of the Security-Client header with the content of the SecurityClient header received in the challenged REGISTER request. If those do not match, then there is a potential man-in-the-middle attack. The request should be rejected by sending a suitable 4 xx response. If the contents match, the P-CSCF shall remove the Security-Verify and the Security-Client header;
b) process the Via header according to the following rules:
- If the host portion of the sent-by field in the topmost Via header contains a FQDN, or if it contains an IP address that differs from the source address of the IP packet, the P-CSCF shall add a received parameter in accordance with the procedure defined in RFC 3261 [26];
- If the P-CSCF adds a received parameter and UDP is being used, it shall also add an rport parameter with the UEs protected server port;

When the P-CSCF receives a 401 (Unauthorized) response to an unprotected REGISTER request and the P-CSCF previously determined that the UE is behind a NAT and the UE indicated support for "UDP-enc-tun" IPsec mode, the PCSCF shall:

1) delete any temporary set of security associations established towards the UE;
2) remove the CK and IK values contained in the 401 (Unauthorized) response and bind them to the proper private user identity and to the temporary set of security associations which will be setup as a result of this challenge. The P-CSCF shall forward the 401 (Unauthorized) response to the UE if and only if the CK and IK have been removed;
3) insert a Security-Server header in the response, containing the P-CSCF security list and the parameters needed for the security association setup, as specified in annex H of 3GPP TS 33.203 [19]. The P-CSCF shall support
the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The P-CSCF shall support the IPSec layer algorithms for integrity protection and for encryption as defined in 3GPP TS 33.203 [19]. The P-CSCF shall indicate "UDP-enc-tun" as the only IPsec mode;
4) set up the temporary set of security associations with a temporary SIP level lifetime between the UE and the PCSCF for the user identified with the private user identity. The P-CSCF shall select UDP encapsulated tunnel mode and shall leave the value for port-Uenc unspecified in each of the temporary security associations. For further details see 3GPP TS 33.203 [19] and RFC 3329 [48]. The P-CSCF shall set the temporary SIP level lifetime for the temporary set of security associations to the value of reg-await-auth timer; and
5) send the 401 (Unauthorized) response unprotected to the UE using the mechanisms described in RFC 3261 [26] and RFC 3581 [56A], i.e. the P-CSCF shall send the response to the IP address indicated in the received parameter and, in case UDP is used, to the port indicated in the rport parameter (if present) of the Via header associated with the UE. In case TCP is used as transport protocol, the P-CSCF shall use the port on which the REGISTER request was received as client port for sending the response back to the UE.

When the P-CSCF receives a 401 (Unauthorized) response to a protected REGISTER request and the P-CSCF previously determined that the UE is behind a NAT and that REGISTER request was protected by an old set of security associations that use UDP encapsulated tunnel mode, the P-CSCF shall:

1) delete any temporary set of security associations established towards the UE;
2) remove the CK and IK values contained in the 401 (Unauthorized) response and bind them to the proper private user identity and to the temporary set of security associations which will be setup as a result of this challenge. The P-CSCF shall forward the 401 (Unauthorized) response to the UE if and only if the CK and IK have been removed;
3) insert a Security-Server header in the response, containing the P-CSCF security list and the parameters needed for the security association setup, as specified in annex H of 3GPP TS 33.203 [19]. The P-CSCF shall support the "ipsec-3gpp" security mechanism, as specified in RFC 3329 [48]. The P-CSCF shall support the IPsec layer algorithms for integrity protection and encryption as defined in 3GPP TS 33.203 [19]. The P-CSCF shall indicate "UDP-enc-tun" as the IPsec mode;
4) set up the temporary set of security associations with a temporary SIP level lifetime between the UE and the PCSCF for the user identified with the private user identity. The P-CSCF shall select UDP encapsulated tunnel mode and shall specify the same port_Uenc that was used in the old set of security associations. The P-CSCF shall set the temporary SIP level lifetime for the temporary set of security associations to the value of reg-awaitauth timer; and
5) send the 401 (Unauthorized) response to the UE using the old set of security associations and using the rules for sending responses as described in RFC 3261 [26] and RFC 3581 [56A], i.e. the P-CSCF shall send the response to the IP address indicated in the received parameter and to the port indicated in the rport parameter (if present) of the Via header associated with the UE. Otherwise, when the P-CSCF receives a 401 (Unauthorized) response to an unprotected REGISTER request and this response does not contain a received and rport parameter or when the P-CSCF receives a 401 (Unauthorized) response to a protected REGISTER request and that REGISTER request was protected by an old set of security associations that do not use UDP encapsulated tunnel mode, the P-CSCF shall proceed as described in subclause 5.2.2 of the main body of this specification.

K.2.2.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method

K.2.2.3.1 Requests initiated by the UE

The procedures described in subclause 5.2.6.3 apply with the additional procedures described in the present subclause.
When the P-CSCF receives from the UE a request method other then a REGISTER request, and a Service-Route header list exits for the initiator of the request, the requirements are extended by the following requirements.

The P-CSCF shall:

- process the Via header according to the following rules:
- If the host portion of the sent-by field in the topmost Via header contains a FQDN, or if it contains an IP address that differs from the source address of the IP packet, the P-CSCF shall add a received parameter in accordance with the procedure defined in RFC 3261 [26];
- If the P-CSCF adds a received parameter and UDP is being used, it shall also add an rport parameter with the UEs protected server port;
- Before forwarding the request, based on the topmost Route header, in accordance with the procedures of RFC 3261 [26], the P-CSCF shall ensure that all signalling during the lifetime of the dialogue is sent over the same IMS flow set as the dialogue initiating request.

NOTE: The suggested way to ensure all signaling is sent over the same IMS flow set is to form an IMS flow token in the same way that a P-CSCF would form this for the Path header and insert this IMS flow token in the user portion of the URI used in the record route header field value.

When the P-CSCF receives a 1xx or 2 xx response to the above request, the requirements are extended by the following requirements. The P-CSCF shall:

- forward the response to the UE using the mechanisms described in RFC 3261 [26] and RFC 3581 [56A], i.e. the P-CSCF shall send the response to the IP address indicated in the received parameter and, in case UDP is used, to the port indicated in the rport parameter (if present) of the Via header associated with the UE. In case TCP is used, the P-CSCF shall use the port on which the REGISTER request was received as the client port for sending the response back to the UE.

K.2.2.3.2 Requests terminated by the UE

The procedures described in subclause 5.2.6.4 apply with the additional procedures described in the present subclause.
When the P-CSCF receives, destined for the UE, a request, the requirements are extended by the following requirements. The P-CSCF shall:

- forward the request to the terminating UE's server port over the appropriate flow within the denoted IMS flow set.

K.2.2.4 STUN server support

To support UE keep-alive procedures, the P-CSCF shall also support the requirements for a STUN server as defined by RFC 5389 [100]. The STUN server shall use the same signaling port that is used for SIP.

K.2.2.5 Emergency services

K.2.2.5.1 General

In addition to the procedures in subclause 5.2.10.1, the following additional procedures apply. When receiving and sending requests unprotected, the P-CSCF shall transmit and receive all SIP messages using the same IP Port.

K.2.2.5.2 General treatment for all dialogs and standalone transactions excluding the REGISTER method - from an unregistered user

The procedures described in subclause 5.2.10.2 apply with the additional procedures described in the present subclause.
When the P-CSCF receives from the UE a request method other then a REGISTER request, and matches one of the emergency service identifiers in any of these lists, the requirements are extended by the following requirements:

The P-CSCF shall

- process the Via header according to the following rules:
- if the host portion of the sent-by field in the topmost Via header contains a FQDN, or if it contains an IP address that differs from the source address of the IP packet, the P-CSCF shall add a received parameter in accordance with the procedure defined in RFC 3261 [26]; and
- if the P-CSCF adds a received parameter and UDP is being used, it shall also add an rport parameter with the port the UEs request came from;
- before forwarding the request, based on the topmost Route header, in accordance with the procedures of RFC 3261 [26], the P-CSCF shall ensure that all signaling during the lifetime of the dialogue is sent over the same IMS flow set as the dialogue initiating request.

NOTE: The suggested way to ensure all signaling is sent over the same IMS flow set is to form an IMS flow token in the same way that a P-CSCF would form this for the Path header and insert this IMS flow token in the user portion of the URI used in the record route header field value.

When the P-CSCF receives a 1xx or 2 xx response to the above request, the requirements are extended by the following requirements. The P-CSCF shall:

- forward the response to the UE using the mechanisms described in RFC 3261 [26] and RFC 3581 [56A], i.e. the P-CSCF shall send the response to the IP address indicated in the received parameter and, in case UDP is used, to the port indicated in the rport parameter (if present) of the Via header associated with the UE. In case TCP is used, the P-CSCF shall use the port on which the REGISTER request was received as client port for sending the response back to the UE.

K.2.2.5.3 General treatment for all dialogs and standalone transactions excluding the REGISTER method after emergency registration

The procedures described in subclause 5.2.10.3 apply with the additional procedures described in the present subclause.
When the P-CSCF receives from the UE a request method other then a REGISTER request, and matches one of the emergency service identifiers in any of these lists, the requirements are extended by the following requirements:

- the P-CSCF shall follow the procedures described in subclause K.2.2.3.1 and subclause 5.2.7.2.

When the P-CSCF receives a 1xx or 2 xx response to the above request, the requirements are extended by the following requirements. The P-CSCF shall:

- forward the response to the UE using the mechanisms described in RFC 3261 [26] and RFC 3581 [56A], i.e. the P-CSCF shall send the response to the IP address indicated in the received parameter and, in case UDP is used, to the port indicated in the rport parameter (if present) of the Via header associated with the UE. In case TCP is used as transport protocol, the P-CSCF shall use the port on which the REGISTER request was received as client port for sending the response back to the UE.

K.2.2.5.4 General treatment for all dialogs and standalone transactions excluding the REGISTER method - non-emergency registration

The procedures described in subclause 5.2.10.4 apply with the additional procedures described in the present subclause.
When the P-CSCF receives from the UE a request method other then a REGISTER request, and matches one of the emergency service identifiers in any of these lists, the requirements are extended by the following requirements:

- the P-CSCF shall follow the procedures described in subclause K.2.2.3.1 and subclause 5.2.7.2.

When the P-CSCF receives a 1xx or 2 xx response to the above request, the requirements are extended by the following requirements. The P-CSCF shall:

- forward the response to the UE using the mechanisms described in RFC 3261 [26] and RFC 3581 [56A], i.e. the P-CSCF shall send the response to the IP address indicated in the received parameter and, in case UDP is used, to the port indicated in the rport parameter (if present) of the Via header associated with the UE. In case TCP is used as transport protocol, the P-CSCF shall use the port on which the REGISTER request was received as client port for sending the response back to the UE.

K.2.2.5.5 Abnormal cases

The text in subclause 5.2.10.5 applies without changes.

K.2.3 Procedures at the S-CSCF

K.2.3.1 Registration and authentication

K.2.3.1.1 Introduction

The procedures described in subclause 5.4.1.1 apply with the additional procedures described in the present subclause

K.2.3.2 Initial registration and user-initiated re-registration

K.2.3.2.1 Unprotected REGISTER

The procedures described in subclause 5.4.1.2.1 apply with the additional procedures described in the present subclause.
Upon receipt of a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "no", for a user identity linked to a private user identity that has a registered public user identity but with a new contact address, the S-CSCF shall follow the procedures described in subitem 1) and 2) which is modified as follows:
2) if the authentication has been successful and if the previous registration has not expired, the S-CSCF shall determine if the contact address contains a reg-id and instance-id in the received contact header, and the first URI within the Path header contains the "ob" URI parameter. If the parameters are present, the S-CSCF shall follow the requirements defined in draft-ietf-sip-outbound [92]. If the parameters are not present, the S-CSCF shall perform the network initiated deregistration procedure only for the previous contact information as described in subclause 5.4.1.5.

K.2.3.2.2 Protected REGISTER

The procedures described in subclause 5.4.1.2.2 apply with the additional procedures described in the present subclause.
Upon receipt of a REGISTER request with the "integrity-protected" parameter in the Authorization header set to "yes" and the timer reg-await-auth is running the S-CSCF shall follow the procedures as described in all subitems with the additon of subitem 11) h) which is as follows:
h) if the received REGISTER contained both a reg-id and instance-id in the Contact header, and the first URI within the Path header contains the "ob" URI parameter a Require header with the "outbound" option-tag as described in draft-ietf-sip-outbound [92];

K.2.3.3 General treatment for all dialogs and standalone transactions excluding requests terminated by the S-CSCF

K.2.3.3.1 Determination of mobile-originated or mobile terminated case

The text in subclause 5.4.3.1 applies without changes

K.2.3.3.2 Requests initiated by the served user

The text in subclause 5.4.3.2 applies without changes

K.2.3.3.3 Requests terminated by the served user

The procedures described in subclause 5.4.3.3 apply with the additional procedures described in the present subclause.
When the S-CSCF receives, destined for a statically pre-configured PSI or a registered served user, an initial request for a dialog or a request for a standalone transaction, prior to forwarding the request, the S-CSCF shall follow all the procedures as describes with the exception of subitem 10) a) which is modified as follows:
10) in case there are no Route headers in the request, the S-CSCF shall:
a) if there is more than one route in the target set determined in steps 8) and 9) above, the S-CSCF shall:

- if the fork directive in the Request Disposition header was set to "no-fork", the contact with the highest qvalue parameter shall be used when building the Request-URI. In case no qvalue parameters were provided, the S-CSCF shall decide locally what contact address to be used when building the RequestURI; otherwise
- fork the request or perform sequential search based on the relative preference indicated by the qvalue parameter of the Contact header in the original REGISTER request, as described in RFC 3261 [26]. In case no qvalue parameters were provided, then the S-CSCF determine the contact address to be used when building the Request-URI as directed by the Request Disposition header as described in RFC 3841 [56B]. If the Request-Disposition header is not present, the S-CSCF shall decide locally whether to fork or perform sequential search among the contact addresses;
- in case that no route is chosen, the S-CSCF shall return a 480 (Temporarily unavailable) response or another appropriate unsuccessful SIP response and terminate these procedures.
- Per the rules defined in draft-ietf-sip-outbound [92], the S-SCSF shall not populate the target set with more than one contact with the same AOR and instance-id at a time. If a request for a particular AOR and instance-id fails with a 430 response, the S-CSCF shall replace the failed branch with another target with the same AOR and instance-id, but a different reg-id;
- If two bindings have the same instance-id and reg-id, it should prefer the contact that was most recently updated;

K. 3 Application usage of SDP

K.3.1 UE usage of SDP

The procedures as of subclause 6.1 apply.

K.3.2 P-CSCF usage of SDP

K.3.2.1 Introduction

Subclauses K.3.2.2 through K.3.2.4 describe the SDP related procedures performed by the P-CSCF in support of hosted NAT.

K.3.2.2 Receipt of an SDP offer

When the P-CSCF receives an SDP offer during session establishment, if this offer comes from a UE which does not support the procedures defined in subclause K.5.2.1 and is located behind a hosted NAT, the P-CSCF shall modify the SDP offer by replacing the IP Address(es) and port number(s) received in the SDP offer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface.

NOTE: The P-CSCF can determine if the UE supports the ICE procedures covered in section K.5.2.1 by the presence of $a=$ candidate attributes in the SDP.

When the P-CSCF receives an SDP offer during session establishment, if this offer comes from a UE which does support the procedures defined in subclause K.5.2.1 and is located behind a hosted NAT, the P-CSCF may choose to modify the SDP offer by replacing the IP Address(es) and port number(s) received in the SDP offer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface. If the P-CSCF chooses to modify the SDP offer, the P-CSCF shall remove all occurances of $a=c a n d i d a t e ~ a t t r i b u t e s ~ i n ~ t h e ~ S D P ~ o f f e r . ~$

K.3.2.3 Receipt of an SDP answer

When the P-CSCF receives any SDP answer to an SDP offer described in subclause K.5.2.1, if this answer comes from a UE which does not support the procedures defined in subclause K.5.2.2 and is located behind a hosted NAT, the P-

CSCF shall modify the SDP answer by replacing the IP address(es) and port number(s) received in the SDP answer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface.

NOTE: The P-CSCF can determine if the UE supports the ICE procedures covered in section K.5.2.1 by the presence of $a=$ candidate attributes in the SDP.

When the P-CSCF receives any SDP answer to an SDP offer described in subclause K.5.2.1, if this answer comes from a UE which does support the procedures defined in subclause K.5.2.2 and is located behind a hosted NAT, the P-CSCF may choose to modify the SDP answer by replacing the IP address(es) and port number(s) received in the SDP answer by the IP address(es) and port number(s) received from the IMS Access Gateway over the Iq interface. If the P-CSCF chooses to modify the SDP answer, the P-CSCF shall remove all occurances of $a=$ candidate attributes in the SDP offer.

K.3.2.4 Change of media connection data

After the session is established, it is possible for both ends of the session to change the media connection data for the session. When the P-CSCF receives a SDP offer/answer coming from a UE located behind a hosted NAT with port number(s) or IP address(es) included, there are three different possibilities:

- IP address(es) or/and port number(s) have been added. In this case, the P-CSCF shall apply the procedures as described in subclause K.3.2.2 and subclause K.3.2.3 as appropriate for those additional IP address(es) or/and port number(s);
- IP address(es) and port number(s) have been reassigned to the end points. In this case, the P-CSCF shall apply the procedures as described in subclause K.3.2.2 and subclause K.3.2.3 as appropriate for those reassigned IP address(es) and port number(s);

NOTE: If necessary, the P-CSCF or IBCF will cause the IMS access gateway to release the resources related to the previously assigned IP address(es) and port number(s).

- no change has been made to the IP address(es) and port number(s). The P-CSCF shall apply procedures described in subclause K.3.2.2 using the previously stored IP address(es) and port number(s).

K. 4 P-CSCF usage of SIP in case UDP encapsulated IPsec is not employed

K.4.1 Introduction

The procedures defined in subclauses K. 2 and K. 3 remain unchanged when supporting hosted NAT scenarios in case UDP encapsulated IPsec is not employed. In these scenarios the procedures for NAT traversal must take into account that all SIP requests and responses are not protected by an IPsec security association.

K. 5 Application usage of ICE

K.5.1 Introduction

The following subclauses describe a UEs usage of the Interactive Connectivity Establishment (ICE) procedures as documented in draft-ietf-mmusic-ice [99]

K.5.2 UE usage of ICE

K.5.2.1 General

NAT bindings also need to be kept alive for media. draft-ietf-mmusic-ice [99] provides requirements for STUN based keepalive mechanisms. UEs that do not implement the ICE procedures as defined in draft-ietf-mmusic-ice [99] should
implement the keepalive procedures defined in draft-ietf-mmusic-ice [99]. In the case where keepalives are required and the other end does not support ICE (such that STUN cannot be used for a keepalive), the UE shall send an empty (no payload) RTP packet with a payload type of 20 as a keepalive as long as the other end has not negotiated the use of this value. If this value has already been negotiated, then some other unused static payload type from table 5 of RFC 3551 [55A] shall be used. When sending an empty RTP packet, the UE shall continue using the sequence number (SSRC) and timestamp as the negotiated RTP steam.

K.5.2.2 Call initiation - UE-origination case

The UE should support the agent requirements for ICE as defined by draft-ietf-mmusic-ice [99] when sending the initial INVITE request. draft-ietf-mmusic-ice [99] provides procedures for:

1) Gathering candidate addresses for RTP and RTCP prior to sending the INVITE;
2) Encoding the candidate addresses in the SDP that is included with the INVITE;
3) Acting as a STUN server to receive binding requests from the remote client when it does connectivity checks;
4) Performing connectivity checks on received candidate addresses for RTP and RTCP;
5) Determining and possibly selecting a better active address based on the requirements in draft-ietf-mmusicice [99];
6) Subsequent offer/answer exchanges; and
7) Sending media.

When supporting the ICE procedures, the UE shall also support the STUN agent requirements as described in RFC 5389 [100] in order to gather STUN addresses, the TURN client requirements as described in draft-ietf-behaveturn [101] in order to gather TURN server addresses and the STUN server requirements defined in draft-ietf-mmusicice [99] as well as the requirements for STUN servers defined in RFC 5389 [100] for responding to connectivity checks.

Draft-ietf-mmusic-ice [99] provides an algorithm for determining the priority of a particular candidate. The following additional requirements are provided to the UE:

1) The type preference assigned for each type of candidate from least to highest should be: Relayed Transport Address, STUN address, local address; and
2) If the UE has a dual IPv4/IPv6 stack, IPv6 addresses may be assigned a higher local preference than IPv4 addresses based on the operator's policy.

Draft-ietf-mmusic-ice [99] provides guidance on choosing the in-use candidate and recommends that a UE choose relayed candidates as the in-use address. The following additional requirements are provided to the UE:

1) If a TURN server is available, the Relayed Transport Address should be used as the initial active transport address (i.e. as advertised in the m / c lines of the SDP); and
2) If a TURN server is not available, an address obtained via STUN should be used as the initial active transport address.

Regardless of whether the UE supports the above procedures, the UE shall, upon receipt of an SDP answer with candidate addresses, perform connectivity checks on the candidate addresses as described in draft-ietf-mmusic-ice [99]. In order to perform connectivity checks, the UE shall act as a STUN client as defined in RFC 5389 [100]. Further, the UE shall also follow the procedures in draft-ietf-mmusic-ice [99] when sending media.

K.5.2.3 Call termination - UE-termination case

The UE should support agent requirements for ICE as defined by draft-ietf-mmusic-ice [99] when receiving an initial INVITE request. draft-ietf-mmusic-ice [99] provides procedures for:

1) Gathering candidate addresses for RTP and RTCP prior to sending the answer as described in draft-ietf-mmusicice [99];
2) Encoding the candidate addresses in the SDP answer as described in draft-ietf-mmusic-ice [99];
3) Acting as a STUN server to receive binding requests from the remote client when it does connectivity checks;
4) Performing connectivity checks on received candidate addresses for RTP and RTCP;
5) Determining and possibly selecting a better active address based on the requirements in draft-ietf-mmusicice [99];
6) Subsequent offer/answer exchanges; and
7) Sending media.

When supporting the ICE procedures, the UE shall also support the STUN agent requirements as described in RFC 5389 [100] in order to gather STUN addresses, the TURN client requirements as described in draft-ietf-behaveturn [101] in order to gather TURN server addresses and the STUN server requirements defined in draft-ietf-mmusicice [99] as well as the requirements for STUN servers defined in RFC 5389 [100] for responding to connectivity checks.

Draft-ietf-mmusic-ice [99] provides an algorithm for determining the priority of a given candidate. The additional requirements for the UE:

1) The priority of candidate addresses from least to highest should be: Relayed Transport Address, STUN address, local address; and
2) If the UE has a dual IPv4/IPv6 stack, IPv6 addresses MAY be placed at a higher priority than IPV4 addresses based on the operator's policy.

Draft-ietf-mmusic-ice [99] provides guidance on choosing the in-use candidate and recommends that a UE choose relayed candidates as the in-use address. The following additional requirements are provided to the UE:

1) If a TURN server is available, the Relayed Transport Address should be used as the initial active transport address (i.e. as advertised in the m / c lines of the SDP); and
2) If a TURN server is not available, an address obtained via STUN should be used as the initial active transport address.

Regardless of whether the UE supports the above procedures, the UE shall, upon receipt of an SDP offer with candidate addresses, perform connectivity checks on the candidate addresses as described in draft-ietf-mmusic-ice [99]. In order to perform connectivity checks, the UE shall act as a STUN client as defined in RFC 5389 [100]. Further, the UE shall also follow the procedures in draft-ietf-mmusic-ice [99] when sending media.

When receiving an SDP offer which does not indicate support for ICE, the UE aborts the ICE procedures and reverts to RFC 3264 offer/answer procedures; per draft-ietf-mmusic-ice [99]. However, if the terminating UE is behind a NA(P)T device this may result in the inability to pass media for the session as the terminating UE will respond with its locally assigned IP address which is unreachable. In order to ensure successful media exchange, the terminating UE shall provide either a STUN derived IP address and port or a TURN provided IP address and port in the m / c lines of the SDP answer. If the provided address and port is a TURN address and port, the policy charging and control framework will be unable to establish proper filter criteria as the address is that of the TURN server and not that of the UE or NAT in front of the UE; see draft-ietf-mmusic-ice [99] subsclause B. 3 for further details. To rectify this issue, the terminating UE shall also include a candidate attribute as described in draft-ietf-mmusic-ice [99] identifying the server reflexive IP address and port (i.e. the IP address and port on the public side of the NAT) used when a TURN provided address and port is provided in the m / c line of the SDP answer.

Annex L (informative): Change history

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
					Version 0.0.0 Editor's internal draft			
					Version 0.0.1 Editor's internal draft			
					Version 0.0.2 Editor's internal draft			
		N1-001060			Version 0.0.3 Submitted to CN1 SIP adhoc \#1			
19/10/00		N1-001109			Version 0.0.4 Reflecting results of initial CN1 discussion			
19/10/00		N1-001115			Version 0.0.5 Reflecting output of CN1 SIP adhoc\#1 discussion			
09/11/00					Version 0.0.6 Revision to include latest template and styles			
		N1-010092			Version 0.0.7 Reflecting updates of some IETF drafts			
14/02/01		N1-010269			Version 0.0.8 Revision to include temporary annex B incorporating valuable source material			
18/03/01		$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \mathrm{N} 1-010378 \\ \mathrm{rev} \end{array} \\ \hline \end{array}$			Version 0.1.0 incorporating results of CN1 discussion at CN1 \#16			
12/04/01		N1-010737			Version 0.2.0 incorporating results of CN1 discussions at SIP adhoc \#4			
11/06/01		N1-010935			Version 0.3.0 incorporating results of CN1 discussions at CN1 \#16			
23/07/01		N1-011103			Version 0.4.0 incorporating results of CN1 discussions at CN1 \#18 (agreed documents N1011028, N1-011050, N1-011055, N1-011056)			
12/09/01		N1-011385			Version 0.5.0 incorporating results of CN1 discussions at CN1 \#19 (agreed documents N1011109, N1-011152, N1-011195, N1-011312, N1011319, N1-011343)			
04/10/01		N1-011470			Version 0.6.0 incorporating results of CN1 discussions at CN1 \#19bis (agreed documents N1011346, N1-011373, N1-011389, N1-011390, N1011392, N1-011393, N1-011394, N1-011408, N1011410, N1-011426)			
19/10/01		N1-011643			Version 0.7.0 incorporating results of CN1 discussions at CN1 \#20 (agreed documents N1011477, N1-011479, N1-011498, N1-011523, N1011548, N1-011585, N1-011586, N1-011592, N1011611, N1-011629)			
16/11/01		N1-011821			Version 0.8.0 incorporating results of CN1 discussions at CN1 \#20bis (agreed documents N1011685, N1-011690, N1-011741, N1-011743, N1011759, N1-011760, N1-011761, N1-011765c, N1011767, N1-011769, N1-011770, N1-011771, N1011774, N1-011777, N1-011779, N1-011780) N1-011712 was agreed but determined to have no impact on the specification at this time.			
30/11/01		N1-020010			Version 1.0.0 incorporating results of CN1 discussions at CN1 \#21 (agreed documents N1011828, N1-011829, N1-011836, N1-011899 [revision marks not used on moved text - additional change from chairman's report incorporated], implementation of subclause 3.1 editor's note based on discussion of N1-011900 [chairman's report], N1011905, N1-011984, N1-011985, N1-011986, N1011988, N1-011989, N1-012012 [excluding points 2 and 16], N1-012013, N1-012014 [excluding point 1], N1-012015, N1-012021, N1-012022, N1-012025, N1-012031, N1-012045, N1-012056, N1-012057) CN1 agreed for presentation for information to CN plenary.			
18/01/02		N1-020189			Version 1.1.0 incorporating results of CN1 discussions at CN1 SIP ad-hoc (agreed documents N1-020015, N1-020053, N1-020064, N1-020101, N1-020123, N1-020124, N1-020142, N1-020146, N1-020147, N1-020148, N1-020151, N1-020157, N1-020159, N1-020165). Also N1-012000 (agreed at previous meeting)			

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
					required, subclause 5.2.6 to be deleted and this change has been enacted			
01/02/02		N1-020459			Version 1.2.0 incorporating results of CN1 discussions at CN1 \#22 (agreed documents N1020198, N1-020396, N1-020398, N1-020399, N1020408, N1-020417, N1-020418, N1-020419, N1020421, N1-020422, N1-020436, N1-020437, N1020449)			
01/02/02		N1-020569			Version 1.2.1 issues to correct cut and paste error in incorporation of Annex B into main document. Affected subclause 5.1.1.3. Change to clause 7 title that was incorrectly applied to subclause 7.2 also corrected.			
22/02/02					Advanced to version 2.0.0 based on agreement of N1-020515. Version 2.0.0 incorporating results of CN1 discussions at CN1 \#22bis (agreed documents N1020466, N1-020468, N1-020469, N1-020472, N1020473, N1-020500, N1-020504, N1-020507, N1020511, N1-020512, N1-020521, N1-020583, N1020584, N1-020602, N1-020603, N1-020604, N1020611, N1-020612, N1-020613, N1-020614, N1020615, N1-020617, N1-020623, N1-020624, N1020625, N1-020626, N1-020627, N1-020642, N1020643, N1-020646, N1-020649, N1-020656, N1020659, N1-020668, N1-020669, N1-020670, N1020671). In addition N1-020409, agreed at CN1\#22 but missed from the previous version, was also implemented. References have been resequenced.			
02/03/02					Editorial clean-up by ETSI/MCC.	2.0.0	2.0.1	
11/03/02	$\begin{aligned} & \hline \text { TSG } \\ & \text { CN\#15 } \end{aligned}$	NP-020049			The draft was approved, and 3GPP TS 24.229 was then to be issued in Rel-5 under formal change control.	2.0.1	5.0.0	
2002-06	NP-16	NP-020230	004	1	S-CSCF Actions on Authentication Failure	5.0.0	5.1 .0	N1-020903
2002-06	NP-16	NP-020230	005	2	Disallow Parallel Registrations	5.0.0	5.1 .0	N1-020959
2002-06	NP-16	NP-020230	007	1	Hiding	5.0.0	5.1.0	N1-020910
2002-06	NP-16	NP-020312	008	8	Support for services for unregistered users	5.0.0	5.1 .0	
2002-06			009	1	Not implemented nor implementable. In the meeting report CN1\#24 under doc N1-021513 it is shown that CR095r2 supercedes 009r1 if 095r2 was to be approved in CN\#16 (but unfortunately 009r1 was also approved in the the CN\#16 draft minutes).			N1-020921
2002-06	NP-16	NP-020231	019		MGCF procedure clarification	5.0.0	5.1.0	N1-020788
2002-06	NP-16	NP-020231	020	2	MGCF procedure error cases	5.0.0	5.1.0	N1-020960
2002-06	NP-16	NP-020231	022	1	Abbreviations clean up	5.0.0	5.1.0	N1-020949
2002-06	NP-16	NP-020231	023		Clarification of SIP usage outside IM CN subsystem	5.0.0	5.1.0	N1-020792
2002-06	NP-16	NP-020314	024	3	Replacement of COMET by UPDATE	5.0.0	5.1.0	
2002-06	NP-16	NP-020231	025	3	Incorporation of current RFC numbers	5.0.0	5.1.0	N1-021091
2002-06	NP-16	NP-020231	026	1	Clarification of B2BUA usage in roles	5.0.0	5.1.0	N1-020941
2002-06	NP-16	NP-020231	028	4	Determination of MO / MT requests in I-CSCF(THIG)	5.0.0	5.1.0	N1-021248
2002-06	NP-16	NP-020231	030	2	P-CSCF release of an existing session	5.0.0	5.1 .0	N1-021006
2002-06	NP-16	NP-020232	031	1	S-CSCF release of an existing session	5.0.0	5.1 .0	N1-020939
2002-06	NP-16	NP-020232	033	3	SDP procedure at the UE	5.0.0	5.1.0	N1-020971
2002-06	NP-16	NP-020232	035	1	AS Procedures corrections	5.0.0	5.1 .0	N1-020934

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2002-06	NP-16	NP-020232	036	8	Corrections to SIP Compression	5.0.0	5.1 .0	N1-021499
2002-06	NP-16	NP-020232	037	1	Enhancement of S-CSCF and I-CSCF Routing Procedures for interworking with external networks	5.0.0	5.1 .0	N1-020928
2002-06	NP-16	NP-020232	041	2	Delivery of IMS security parameters from S-CSCF to the P-CSCF by using proprietary auth-param	5.0.0	5.1 .0	N1-021003
2002-06	NP-16	NP-020232	045		Cleanup of request / response terminology - clause 5	5.0.0	5.1 .0	N1-020835
2002-06	NP-16	NP-020232	046		Cleanup of request / response terminology - clause 6	5.0.0	5.1 .0	N1-020836
2002-06	NP-16	NP-020232	047	2	Simplification of profile tables	5.0.0	5.1 .0	N1-021059
2002-06	NP-16	NP-020232	049		Forking options	5.0.0	5.1 .0	N1-020839
2002-06	NP-16	NP-020315	050	1	Media-Authorization header corrections	5.0.0	5.1 .0	
2002-06	NP-16	NP-020233	051	1	Clause 5.4 editorials (S-CSCF)	5.0.0	5.1 .0	N1-020950
2002-06	NP-16	NP-020233	053	2	Integrity protection signalling from the P-CSCF to the S-CSCF	5.0.0	5.1 .0	N1-021007
2002-06	NP-16	NP-020233	054		Representing IM CN subsystem functional entities in profile table roles	5.0.0	5.1 .0	N1-020847
2002-06	NP-16	NP-020233	055		Clause 4 editorials	5.0.0	5.1 .0	N1-020848
2002-06	NP-16	NP-020233	056		Clause 5.8 editorials (MRFC)	5.0.0	5.1 .0	N1-020849
2002-06	NP-16	NP-020233	057	1	Annex A editorials, including precondition additions	5.0.0	5.1 .0	N1-021001
2002-06	NP-16	NP-020233	058	2	Representing the registrar as a UA	5.0.0	5.1 .0	N1-021054
2002-06	NP-16	NP-020233	059		Additional definitions	5.0.0	5.1 .0	N1-020852
2002-06	NP-16	NP-020312	060	11	Restructuring of S-CSCF Registration Sections	5.0.0	5.1 .0	
2002-06	NP-16	NP-020234	061	2	Determination of MOC / MTC at P-CSCF and SCSCF	5.0.0	5.1 .0	N1-021060
2002-06	NP-16	NP-020234	062		Correction to the terminating procedures	5.0.0	5.1 .0	N1-020927
2002-06	NP-16	NP-020234	063		Loose Routing for Network Initiated Call Release Procedures	5.0.0	5.1.0	N1-020940
2002-06	NP-16	NP-020234	064		Incorporation of previously agreed corrections to clause 5.2.5.2 (N1-020416)	5.0.0	5.1 .0	N1-021004
2002-06	NP-16	NP-020234	065		Clause 7.2 editorial corrections	5.0.0	5.1 .0	N1-021005
2002-06	NP-16	NP-020234	067	2	S-CSCF routing of MO calls	5.0.0	5.1 .0	N1-021097
2002-06	NP-16	NP-020234	068	1	I-CSCF routeing of dialog requests	5.0.0	5.1 .0	N1-021078
2002-06	NP-16	NP-020234	069	2	Definition of the Tokanised-by parameter	5.0.0	5.1 .0	N1-021096
2002-06	NP-16	NP-020235	070	3	SDP procedures at UE	5.0.0	5.1 .0	N1-021453
2002-06	NP-16	NP-020235	073	2	Updates to the procedures involving the iFCs, following the Oulu iFC changes	5.0.0	5.1 .0	N1-021440
2002-06	NP-16	NP-020235	074	1	Addition of DHCPv6 references to 24.229	5.0.0	5.1 .0	N1-021086
2002-06	NP-16	NP-020235	075	1	Clarification to URL and address assignments	5.0.0	5.1 .0	N1-021083
2002-06	NP-16	NP-020235	079	3	Downloading the implicitely registered public user identities from the S-CSCF to P-CSCF	5.0.0	5.1 .0	N1-021510
2002-06	NP-16	NP-020235	080	3	Clarification of GPRS aspects	5.0.0	5.1 .0	N1-021486
2002-06	NP-16	NP-020235	081	2	Introduction of Subscription Locator Function Interrogation at I-CSCF in 24.229	5.0.0	5.1 .0	N1-021469
2002-06	NP-16	NP-020235	082	1	Introduction of Visited_Network_ID p-header	5.0.0	5.1 .0	N1-021433
2002-06	NP-16	NP-020236	084	1	MRFC register addresses	5.0.0	5.1 .0	N1-021434
2002-06	NP-16	NP-020236	085	1	MRFC INVITE interface editor's notes	5.0.0	5.1 .0	N1-021470
2002-06	NP-16	NP-020236	086	1	MRFC OPTIONS interface editor's notes	5.0.0	5.1 .0	N1-021471

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2002-06	NP-16	NP-020236	087		MRFC PRACK \& INFO editor's notes	5.0.0	5.1.0	N1-021159
2002-06	NP-16	NP-020236	088	1	MGCF OPTIONS interface editor's notes	5.0.0	5.1.0	N1-021472
2002-06	NP-16	NP-020236	089		MGCF reINVITE editor's notes	5.0.0	5.1.0	N1-021161
2002-06	NP-16	NP-020237	090		3PCC AS editor's notes	5.0.0	5.1.0	N1-021162
2002-06	NP-16	NP-020237	091		AS acting as terminating UA editor's notes	5.0.0	5.1.0	N1-021163
2002-06	NP-16	NP-020237	092	1	AS acting as originating UA editor's notes	5.0.0	5.1.0	N1-021466
2002-06	NP-16	NP-020237	093	2	Charging overview clause	5.0.0	5.1.0	N1-021512
2002-06	NP-16	NP-020237	094	1	Procedures for original-dialog-id P-header	5.0.0	5.1.0	N1-021456
2002-06	NP-16	NP-020237	095	2	Procedures for charging-vector P-header	5.0.0	5.1.0	N1-021513
2002-06	NP-16	NP-020237	096	1	Procedures for charging-function-addresses P header	5.0.0	5.1.0	N1-021458
2002-06	NP-16	NP-020237	097	1	SDP types	5.0.0	5.1.0	N1-021467
2002-06	NP-16	NP-020237	100		Removal of State from profile tables	5.0.0	5.1.0	N1-021173
2002-06	NP-16	NP-020238	101		Editor's note cleanup - clause 3	5.0.0	5.1.0	N1-021174
2002-06	NP-16	NP-020238	102		Editor's note cleanup - clause 4	5.0.0	5.1.0	N1-021175
2002-06	NP-16	NP-020238	103		Editor's note cleanup - clause 5.1 and deletion of void subclauses	5.0.0	5.1.0	N1-021176
2002-06	NP-16	NP-020238	104	1	Editor's note cleanup - clause 5.2 and deletion of void subclauses	5.0.0	5.1.0	N1-021487
2002-06	NP-16	NP-020238	105		Editor's note cleanup - clause 5.3	5.0.0	5.1.0	N1-021178
2002-06	NP-16	NP-020238	106		Editor's note cleanup - clause 5.4 and deletion of void subclauses	5.0.0	5.1.0	N1-021179
2002-06	NP-16	NP-020238	107		Editor's note cleanup - clause 5.5 and deletion of void subclauses	5.0.0	5.1.0	N1-021180
2002-06	NP-16	NP-020238	110		Editor's note cleanup - clause 6	5.0.0	5.1.0	N1-021183
2002-06	NP-16	NP-020238	111		Editor's note cleanup - clause 9	5.0.0	5.1.0	N1-021184
2002-06	NP-16	NP-020239	113	1	SIP Default Timers	5.0.0	5.1.0	N1-021465
2002-06	NP-16	NP-020239	114	1	Correction of the subscription to the registration event package	5.0.0	5.1.0	N1-021436
2002-06	NP-16	NP-020239	115	1	Support for ISIMless UICC	5.0.0	5.1.0	N1-021441
2002-06	NP-16	NP-020239	119	1	SIP procedures at UE	5.0.0	5.1.0	N1-021452
2002-06	NP-16	NP-020239	121	2	New requirements in the P-CSCF	5.0.0	5.1.0	N1-021509
2002-06	NP-16	NP-020239	122		SDP procedures at MGCF	5.0.0	5.1.0	N1-021264
2002-06	NP-16	NP-020239	124	1	S-CSCF allocation	5.0.0	5.1.0	N1-021443
2002-06	NP-16	NP-020240	129	1	Introduction of P-Access-Network-Info header	5.0.0	5.1.0	N1-021498
2002-06	NP-16	NP-020240	130	2	Usage of Path and P-Service Route	5.0.0	5.1.0	N1-021508
2002-06	NP-16	NP-020240	133		Removal of Referred-By header from specification	5.0.0	5.1.0	N1-021354
2002-06	NP-16	NP-020240	134		Handling of Record-Route header in profile tables	5.0.0	5.1.0	N1-021357
2002-06	NP-16	NP-020312	135	1	Asserted identities and privacy	5.0.0	5.1.0	
2002-06	NP-16	NP-020240	136		Removal of caller preferences from specification	5.0.0	5.1.0	N1-021359
2002-06	NP-16	NP-020240	137		Substitution of REFER references	5.0.0	5.1.0	N1-021360
2002-06	NP-16	NP-020240	138		Removal of session timer from specification	5.0.0	5.1.0	N1-021361

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2002-09	NP-17	NP-020489	141	2	Adding MESSAGE to 24.229	5.1.0	5.2 .0	
2002-09	NP-17	NP-020375	142		Public user identity to use for third party register	5.1.0	5.2 .0	N1-021563
2002-09	NP-17	NP-020375	143	1	Replace P-Original-Dialog-ID header with unique data in Route header	5.1.0	5.2 .0	N1-021797
2002-09	NP-17	NP-020375	145		Synchronize text with latest I-D for P-headers for charging	5.1.0	5.2 .0	N1-021569
2002-09	NP-17	NP-020488	146	2	Service profiles and implicitly registered public user identities	5.1.0	5.2.0	
2002-09	NP-17	NP-020376	147		S-CSCF decides when to include	5.1.0	5.2.0	N1-021571
2002-09	NP-17	NP-020376	148		Clean up XML in clause 7.6	5.1.0	5.2 .0	N1-021572
2002-09	NP-17	NP-020376	149		Fix clause 5.2.7.4 header	5.1.0	5.2.0	N1-021573
2002-09	NP-17	NP-020376	150		Removal of forward reference to non P-CSCF procedures	5.1.0	5.2 .0	N1-021589
2002-09	NP-17	NP-020376	151		Deregistration of public user identities	5.1.0	5.2.0	N1-021590
2002-09	NP-17	NP-020376	152		Reauthentication trigger via other means	5.1.0	5.2 .0	N1-021591
2002-09	NP-17	NP-020487	153	3	Registration with integrity protection	5.1.0	5.2 .0	
2002-09	NP-17	NP-020485	154	2	Explicit listing of need to route response messages	5.1.0	5.2 .0	
2002-09	NP-17	NP-020377	157	1	Include IP address in ICID	5.1.0	5.2.0	N1-021816
2002-09	NP-17	NP-020377	158		Reference updates	5.1.0	5.2.0	N1-021604
2002-09	NP-17	NP-020377	159		Abbreviation updates	5.1.0	5.2 .0	N1-021605
2002-09	NP-17	NP-020377	163	1	Clarifications of allocation of IP address	5.1 .0	5.2 .0	N1-021817
2002-09	NP-17	NP-020377	171	1	Verifications at the P-CSCF for subsequent request	5.1.0	5.2 .0	N1-021802
2002-09	NP-17	NP-020377	174	1	Clarification of IMS signalling flag	5.1.0	5.2 .0	N1-021781
2002-09	NP-17	NP-020377	176	1	Definition of a general-purpose PDP context for IMS	5.1.0	5.2 .0	N1-021783
2002-09	NP-17	NP-020372	177	2	Request for DNS IPv6 server address	5.1.0	5.2 .0	N1-021833
2002-09	NP-17	NP-020378	178		Error cases for PDP context modification	5.1.0	5.2.0	N1-021679
2002-09	NP-17	NP-020378	183	1	Incorporation of draft-ietf-sip-sec-agree-04.txt	5.1.0	5.2 .0	N1-021791
2002-09	NP-17	NP-020378	185	1	User Initiated De-registration	5.1.0	5.2.0	N1-021787
2002-09	NP-17	NP-020378	186	1	Mobile initiated de-registration	5.1.0	5.2.0	N1-021788
2002-09	NP-17	NP-020378	187	1	CallID of REGISTER requests	5.1.0	5.2 .0	N1-021786
2002-09	NP-17	NP-020378	188	1	Correction to the I-CSCF routing procedures	5.1.0	5.2.0	N1-021803
2002-09	NP-17	NP-020378	189	1	Registration procedures at P-CSCF	5.1.0	5.2 .0	N1-021793
2002-09	NP-17	NP-020378	192	1	Corrections related to the P-Access-Network-Info header	5.1.0	5.2 .0	N1-021827
2002-09	NP-17	NP-020378	194	1	Chapter to decribe the registration event	5.1.0	5.2.0	N1-021794
2002-09	NP-17	NP-020484	196		Definition of abbreviation IMS	5.1.0	5.2 .0	
2002-12	NP-18	NP-020558	140	4	Support of non-IMS forking	5.2 .0	5.3.0	N1-022446
2002-12	NP-18	NP-020565	144	2	Identification of supported IETF drafts within this release	5.2.0	5.3.0	N1-022114
2002-12	NP-18	NP-020558	161	3	Clarifications and editorials to SIP profile	5.2.0	5.3.0	N1-022412
2002-12	NP-18	NP-020558	175	5	Clarifications of the binding and media grouping	5.2.0	5.3.0	N1-022494
2002-12	NP-18	NP-020558	179	2	Support of originating requests from Application	5.2 .0	5.3.0	N1-022106

| Change history | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Date | TSG \# | TSG Doc. | CR | Rev | Subject/Comment | Old | New | WG doc |
| | | | | | Servers | | | |

Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2002-12	NP-18	NP-020558	197		Wrong references in 4.1	5.2.0	5.3.0	N1-021902
2002-12	NP-18	NP-020558	198		Alignment of the MGCF procedures to RFC 3312	5.2.0	5.3.0	N1-021903
2002-12	NP-18	NP-020558	199	1	Service Route Header and Path Header interactions	5.2.0	5.3.0	N1-022080
2002-12	NP-18	NP-020558	202		Addition of clause 6 though clause 9 references to conformance clause	5.2.0	5.3.0	N1-021919
2002-12	NP-18	NP-020558	203	1	URL and address assignments	5.2.0	5.3.0	N1-022115
2002-12	NP-18	NP-020559	204	3	Fix gprs-charging-info definition and descriptions	5.2.0	5.3.0	N1-022426
2002-12	NP-18	NP-020559	206		Alignment of the SDP attributes related to QoS integration with IETF	5.2.0	5.3.0	N1-021930
2002-12	NP-18	NP-020559	207	1	Update of the 3GPP-generated SIP P- headers document references	5.2.0	5.3.0	N1-022116
2002-12	NP-18	NP-020559	208	1	Handling of INVITE requests that do not contain SDP	5.2.0	5.3.0	N1-022098
2002-12	NP-18	NP-020559	209	2	UE Registration	5.2.0	5.3.0	N1-022471
2002-12	NP-18	NP-020559	211	1	Usage of private user identity during registration	5.2.0	5.3.0	N1-022083
2002-12	NP-18	NP-020559	212	1	P-CSCF subscription to the users registration-state event	5.2.0	5.3.0	N1-022084
2002-12	NP-18	NP-020559	213	2	Handling of MT call by the P-CSCF	5.2.0	5.3.0	N1-022154
2002-12	NP-18	NP-020559	215		P-CSCF acting as a UA	5.2.0	5.3.0	N1-021939
2002-12	NP-18	NP-020559	216	1	S-CSCF handling of protected registrations	5.2.0	5.3.0	N1-022085
2002-12	NP-18	NP-020560	217	1	S-CSCF handling of subscription to the users registration-state event	5.2.0	5.3.0	N1-022086
2002-12	NP-18	NP-020560	218	1	Determination of MO or MT in I-CSCF	5.2 .0	5.3.0	N1-022102
2002-12	NP-18	NP-020560	220		Definition of the NAI and RTCP abbreviations	5.2.0	5.3.0	N1-021944
2002-12	NP-18	NP-020560	222	4	Go related error codes in the UE	5.2.0	5.3.0	N1-022495
2002-12	NP-18	NP-020560	223	1	Clarifications on CCF/ECF addresses	5.2.0	5.3.0	N1-022120
2002-12	NP-18	NP-020560	225	2	Clarifications on dedicated PDP Context for IMS signaling	5.2.0	5.3.0	N1-022156
2002-12	NP-18	NP-020560	228	3	Clarifications on the use of charging correlation information	5.2.0	5.3.0	N1-022425
2002-12	NP-18	NP-020560	232	1	Expires information in REGISTER response	5.2.0	5.3.0	N1-022095
2002-12	NP-18	NP-020560	235	2	Indication of successful establishment of Dedicated Signalling PDP context to the UE	5.2.0	5.3.0	N1-022129
2002-12	NP-18	NP-020560	237		P-CSCF sending 100 (Trying) Response for reINVITE	5.2.0	5.3.0	N1-021998
2002-12	NP-18	NP-020561	239	1	Correction on P-Asserted-Id, P-Preferred-Id, Remote-Party-ID	5.2.0	5.3.0	N1-022100
2002-12	NP-18	NP-020561	240	1	Clarifications to subclause 9.2.5	5.2.0	5.3.0	N1-022137
2002-12	NP-18	NP-020561	242		ENUM translation	5.2.0	5.3.0	N1-022020
2002-12	NP-18	NP-020561	243	1	AS routing	5.2.0	5.3.0	N1-022107
2002-12	NP-18	NP-020561	245	1	Warning header	5.2.0	5.3.0	N1-022108
2002-12	NP-18	NP-020561	246	3	S-CSCF procedure tidyup	5.2.0	5.3.0	N1-022497

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2002-12	NP-18	NP-020561	247	1	P-CSCF procedure tidyup	5.2 .0	5.3.0	N1-022125
2002-12	NP-18	NP-020561	248	2	UE procedure tidyup	5.2 .0	5.3.0	N1-022472
2002-12	NP-18	NP-020561	249	3	MESSAGE corrections part 1	5.2 .0	5.3.0	N1-022455
2002-12	NP-18	NP-020561	250	2	MESSAGE corrections part 2	5.2 .0	5.3.0	N1-022456
2002-12	NP-18	NP-020562	251	2	Security association clarifications	5.2 .0	5.3.0	N1-022440
2002-12	NP-18	NP-020562	252	1	The use of security association by the UE	5.2 .0	5.3.0	N1-022433
2002-12	NP-18	NP-020562	253	1	UE integrity protected re-registration	5.2 .0	5.3.0	N1-022434
2002-12	NP-18	NP-020562	255	3	Handling of default public user identities by the PCSCF	5.2.0	5.3.0	N1-022496
2002-12	NP-18	NP-020562	263		Fixing ioi descriptions	5.2 .0	5.3.0	N1-022266
2002-12	NP-18	NP-020562	264	1	Fix descriptions for ECF/CCF addresses	5.2 .0	5.3.0	N1-022447
2002-12	NP-18	NP-020562	266	2	Alignment with draft-ietf-sipping-reg-event-00 and clarification on network initiated deregistration	5.2 .0	5.3.0	N1-022493
2002-12	NP-18	NP-020563	267	1	Correction to network initiated re-authentication procedure	5.2 .0	5.3.0	N1-022449
2002-12	NP-18	NP-020563	268	1	Registration Expires Timer Default Setting	5.2 .0	5.3.0	N1-022439
2002-12	NP-18	NP-020563	269	1	Clarification on Sh interface for charging purposes	5.2.0	5.3.0	N1-022465
2002-12	NP-18	NP-020563	270	2	Clarifications on the scope	5.2.0	5.3.0	N1-022500
2002-12	NP-18	NP-020563	273	1	Add charging info for SUBSCRIBE	5.2 .0	5.3.0	N1-022467
2002-12	NP-18	NP-020563	274	1	Profile revisions for RFC 3261 headers	5.2 .0	5.3.0	N1-022413
2002-12	NP-18	NP-020563	275		Consistency changes for SDP procedures at MGCF	5.2 .0	5.3.0	N1-022345
2002-12	NP-18	NP-020563	276		Proxy support of PRACK	5.2 .0	5.3.0	N1-022350
2002-12	NP-18	NP-020563	277		Clarification of transparent handling of parameters in profile	5.2.0	5.3.0	N1-022351
2002-12	NP-18	NP-020564	279	1	Meaning of refresh request	5.2 .0	5.3.0	N1-022444
2002-12	NP-18	NP-020564	280		Removal of Caller Preferences dependency	5.2 .0	5.3.0	N1-022362
2002-12	NP-18	NP-020564	281	1	P-Access-Network-Info clarifications	5.2 .0	5.3.0	N1-022445
2002-12	NP-18	NP-020564	282		Clarification on use of the From header by the UE	5.2.0	5.3.0	N1-022370
2002-12	NP-18	NP-020634	283	2	Support of comp=sigcomp parameter	5.2 .0	5.3.0	
2002-12	NP-18	NP-020668	284	4	SDP media policy rejection	5.2.0	5.3.0	
2002-12	NP-18	NP-020567	285	1	Fallback for compression failure	5.2.0	5.3.0	N1-022481
2002-12	NP-18	NP-020564	287	1	SA related procedures	5.2.0	5.3.0	N1-022459
2002-12	NP-18	NP-020568	290	1	Emergency Service correction	5.2 .0	5.3.0	N1-022461
2002-12	NP-18	NP-020663	278	4	P-CSCF does not strip away headers	5.2 .0	5.3.0	N1-022499
2002-12	NP-18	NP-020557	289		PCF to PDF	5.2.0	5.3.0	N1-022387
2003-03	NP-19	NP-030049	291		Minor correction and consistency changes to general part of profile	5.3.0	5.4.0	N1-030012
2003-03	NP-19	NP-030049	292		SIP profile minor correction and consistency changes	5.3.0	5.4.0	N1-030013

Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2003-03	NP-19	NP-030049	293	1	Network asserted identity procedure corrections for the UE	5.3.0	5.4 .0	N1-030261
2003-03	NP-19	NP-030049	294	1	Asserted identity inclusion in SIP profile	5.3.0	5.4 .0	N1-030300
2003-03	NP-19	NP-030049	296		Profile references relating to registration	5.3.0	5.4 .0	N1-030023
2003-03	NP-19	NP-030049	297	2	Reference corrections	5.3.0	5.4.0	N1-030301
2003-03	NP-19	NP-030050	300	1	488 message with a subset of allowed media parameters	5.3.0	5.4 .0	N1-030245
2003-03	NP-19	NP-030050	301	1	Handling of Emergency Numbers in P-CSCF	5.3.0	5.4 .0	N1-030239
2003-03	NP-19	NP-030050	302	2	Correction of the registration state event package	5.3.0	5.4 .0	N1-030268
2003-03	NP-19	NP-030050	305	2	User initiated de-registration at P-CSCF	5.3.0	5.4 .0	N1-030295
2003-03	NP-19	NP-030050	306	2	Network-initiated deregistration at UE, P-CSCF, and S-CSCF	5.3.0	5.4.0	N1-030296
2003-03	NP-19	NP-030050	307	2	UE deregistration during established dialogs	5.3.0	5.4 .0	N1-030297
2003-03	NP-19	NP-030050	308	2	S-CSCF handling of deregistration during established dialogs	5.3.0	5.4 .0	N1-030298
2003-03	NP-19	NP-030050	309	1	S-CSCF handling of established dialogs upon deregistration	5.3.0	5.4 .0	N1-030233
2003-03	NP-19	NP-030050	310	2	S-CSCF handling of established dialogs upon registration-lifetime expiration	5.3.0	5.4 .0	N1-030299
2003-03	NP-19	NP-030051	311	1	P-CSCF handling of established dialogs upon registration-lifetime expiration	5.3.0	5.4 .0	N1-030235
2003-03	NP-19	NP-030051	312	1	Correction of Authentication procedure	5.3.0	5.4 .0	N1-030240
2003-03	NP-19	NP-030051	313		Mixed Path header and Service-Route operation	5.3.0	5.4 .0	N1-030127
2003-03	NP-19	NP-030051	315	2	Clarifications on updating the authorization token	5.3 .0	5.4 .0	N1-030255
2003-03	NP-19	NP-030051	318	2	Consideration of P-CSCF/PDF	5.3.0	5.4 .0	N1-030307
2003-03	NP-19	NP-030051	319	2	Clarification on GPRS charging information	5.3.0	5.4 .0	N1-030308
2003-03	NP-19	NP-030051	323	1	P-Access-Network-Info procedure corrections for the UE	5.3.0	5.4 .0	N1-030250
2003-03	NP-19	NP-030051	324	1	P-Access-Network-Info procedure corrections for the S-CSCF	5.3.0	5.4 .0	N1-030251
2003-03	NP-19	NP-030051	326	1	Updating user agent related profile tables	5.3.0	5.4.0	N1-030260
2003-03	NP-19	NP-030052	327	2	Cleanup and clarification to the registration and authentication procedure	5.3.0	5.4.0	N1-030282
2003-03	NP-19	NP-030052	328	1	Corrections to the reg event package	5.3.0	5.4.0	N1-030230
2003-03	NP-19	NP-030052	330	2	Clarifications for setting up separate PDP contexts in case of SBLP	5.3.0	5.4 .0	N1-030288
2003-03	NP-19	NP-030052	331	2	Handling of the P-Media-Autohorization header	5.3.0	5.4 .0	N1-030289
2003-03	NP-19	NP-030052	333	3	Removal of P-Asserted-Identity from clause 7 of 24.229 24.229	5.3.0	5.4 .0	N1-030310
2003-03	NP-19	NP-030052	334		P-CSCF general procedure corrections	5.3.0	5.4.0	N1-030182
2003-03	NP-19	NP-030052	335	2	Usage of Contact in UE's registration procedure	5.3.0	5.4 .0	N1-030281
2003-03	NP-19	NP-030052	337		Usage of P-Asserted-Identity for responses	5.3.0	5.4.0	N1-030193

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2003-03	NP-19	NP-030052	339	2	Authorization for registration event package	5.3.0	5.4.0	N1-030285
2003-03	NP-19	NP-030052	341	1	P-CSCF subscription to reg event	5.3.0	5.4.0	N1-030284
2003-06	NP-20	NP-030275	295	4	Security agreement inclusion in SIP profile	5.4 .0	5.5.0	N1-030939
2003-06	NP-20	NP-030275	322	5	3GPP P-header inclusion in SIP profile	5.4.0	5.5.0	N1-030938
2003-06	NP-20	NP-030275	332	5	Change of IP address for the UE	5.4.0	5.5.0	N1-030923
2003-06	NP-20	NP-030275	342		Removal of the requirement for UE re-authentication initiated by HSS	5.4.0	5.5.0	N1-030349
2003-06	NP-20	NP-030275	343	2	UE behaviour on reception of 420 (Bad Extension) message	5.4.0	5.5.0	N1-030552
2003-06	NP-20	NP-030275	347	2	Handling of DTMF	5.4 .0	5.5.0	N1-030551
2003-06	NP-20	NP-030276	348	1	Format of Tel URL in P-Asserted-Id	5.4.0	5.5.0	N1-030510
2003-06	NP-20	NP-030276	349		Delete Note on header stripping/SDP manipulation	5.4.0	5.5.0	N1-030387
2003-06	NP-20	NP-030276	354	1	Clarifications on using DNS procedures	5.4.0	5.5.0	N1-030520
2003-06	NP-20	NP-030276	356	4	Addition of procedures at the AS for SDP	5.4.0	5.5.0	N1-030942
2003-06	NP-20	NP-030276	357	1	Usage of P-Associated-URI	5.4.0	5.5.0	N1-030499
2003-06	NP-20	NP-030276	359	1	Network-initiated deregistration at UE and P-CSCF	5.4.0	5.5.0	N1-030501
2003-06	NP-20	NP-030276	360	2	Barred identities	5.4.0	5.5.0	N1-030550
2003-06	NP-20	NP-030276	365	1	PDP contex subject to SBLP cannot be reused by other IMS sessions	5.4.0	5.5.0	N1-030513
2003-06	NP-20	NP-030276	368	1	User authentication failure cleanups	5.4.0	5.5.0	N1-030506
2003-06	NP-20	NP-030277	369	3	S-CSCF behavior correction to enable call forwarding	5.4.0	5.5.0	N1-030931
2003-06	NP-20	NP-030277	370	1	SUBSCRIBE request information stored at the PCSCF and S-CSCF	5.4.0	5.5.0	N1-030521
2003-06	NP-20	NP-030277	371	1	Profile Tables - Transparency	5.4.0	5.5.0	N1-030858
2003-06	NP-20	NP-030277	375	1	Profile Tables - Major Capability Corrections	5.4.0	5.5.0	N1-030860
2003-06	NP-20	NP-030277	376	2	Profile Tables - Deletion of Elements not used in 24.229	5.4.0	5.5.0	N1-030921
2003-06	NP-20	NP-030277	377	1	Use of the QoS parameter 'signalling information' for a signalling PDP context	5.4.0	5.5.0	N1-030840
2003-06	NP-20	NP-030277	378	2	Deregistration of a PUID (not the last one)	5.4.0	5.5.0	N1-030919
2003-06	NP-20	NP-030277	379	2	'Last registered public user identity' terminology change	5.4.0	5.5.0	N1-030920
2003-06	NP-20	NP-030277	380	1	Check Integrity Protection for P-Access-NetworkInfo header	5.4.0	5.5.0	N1-030881
2003-06	NP-20	NP-030278	381	1	PCSCF setting of Integrity protection indicator and checking of Security Verify header	5.4.0	5.5.0	N1-030882
2003-06	NP-20	NP-030278	383	1	Consistent treatment of register and de-register	5.4.0	5.5.0	N1-030884
2003-06	NP-20	NP-030278	384	1	Optionality of sending CK is removed	5.4.0	5.5.0	N1-030885
2003-06	NP-20	NP-030278	385	1	Addition of note and Correction of References regarding security associations and registration	5.4 .0	5.5.0	N1-030886
2003-06	NP-20	NP-030278	387	1	Subscription/Registration refresh time	5.4.0	5.5.0	N1-030887

Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2003-06	NP-20	NP-030278	388	1	Corrections to use of IK	5.4 .0	5.5.0	N1-030863
2003-06	NP-20	NP-030278	390		Mobile-originating case at UE	5.4.0	5.5.0	N1-030647
2003-06	NP-20	NP-030278	394	2	Re-authentication procedure.	5.4.0	5.5.0	N1-030917
2003-06	NP-20	NP-030278	395		Replacement of SIP URL with SIP URI	5.4 .0	5.5.0	N1-030652
2003-06	NP-20	NP-030279	397	2	Notification about registration state	5.4.0	5.5.0	N1-030926
2003-06	NP-20	NP-030279	402	1	Handling of P-Asserted ID in MGCF	5.4.0	5.5.0	N1-030848
2003-06	NP-20	NP-030279	404	1	S-CSCF initiated release of calls to circiut switched network	5.4.0	5.5.0	N1-030873
2003-06	NP-20	NP-030279	405	2	Supported Integrity algorithms	5.4.0	5.5.0	N1-030927
2003-06	NP-20	NP-030279	407	1	RFC 3524, Single Reservation Flows	5.4 .0	5.5.0	N1-030851
2003-06	NP-20	NP-030279	410	1	Clarification of the S-CSCF's handling of the P-access-network-info header	5.4 .0	5.5.0	N1-030868
2003-06	NP-20	NP-030279	411	2	Port numbers in the RR header entries	5.4.0	5.5.0	N1-030941
2003-06	NP-20	NP-030279	412	2	Registration abnormal cases	5.4 .0	5.5.0	N1-030928
2003-06	NP-20	NP-030280	415		Minor correction to section 5.4.5.1.2	5.4 .0	5.5.0	N1-030720
2003-06	NP-20	NP-030280	417	1	Introduction of RTCP bandwidth	5.4.0	5.5.0	N1-030872
2003-06	NP-20	NP-030280	418	1	Registratin Event - Shortend	5.4 .0	5.5.0	N1-030844
2003-06	NP-20	NP-030280	419	1	HSS / S-CSCF text relating to user deregistration	5.4.0	5.5.0	N1-030845
2003-06	NP-20	NP-030280	421		Handling of unknown methods at the P-CSCF	5.4 .0	5.5.0	N1-030743
2003-06	NP-20	NP-030280	422	1	Definitions and abbreviations update	5.4 .0	5.5.0	N1-030870
2003-06	NP-20	NP-030280	423		Removal of hanging paragraph	5.4 .0	5.5.0	N1-030752
2003-06	NP-20	NP-030280	424		Access network charging information	5.4.0	5.5.0	N1-030753
2003-06	NP-20	NP-030280	425	1	UE procedure tidyup	5.4 .0	5.5.0	N1-030871
2003-06	NP-20	NP-030281	426		P-CSCF procedure tidyup	5.4 .0	5.5.0	N1-030755
2003-06	NP-20	NP-030281	427		I-CSCF procedure tidyup	5.4.0	5.5.0	N1-030756
2003-06	NP-20	NP-030281	428		S-CSCF procedure tidyup	5.4 .0	5.5.0	N1-030757
2003-06	NP-20	NP-030281	429		BGCF procedure tidyup	5.4.0	5.5.0	N1-030758
2003-06	NP-20	NP-030281	430		AS procedure tidyup	5.4.0	5.5.0	N1-030759
2003-06	NP-20	NP-030281	431		MRFC procedure tidyup	5.4.0	5.5.0	N1-030760
2003-06	NP-20	NP-030281	434	1	SDP procedure tidyup	5.4.0	5.5.0	N1-030852
2003-06	NP-20	NP-030281	438	2	Profile Tables - Further Corrections	5.4.0	5.5.0	N1-030935
2003-06	NP-20	NP-030281	439	3	AS's subscription for the registration state event package	5.4.0	5.5.0	N1-030940
2003-06	NP-20	NP-030281	440		Temporary Public User Identity in re- and deREGISTER requests	5.4.0	5.5.0	N1-030792
2003-09	NP-21	NP-030412	444	2	All non-REGISTER requests must be integrity protected	5.5.0	5.6.0	N1-031328
2003-09	NP-21	NP-030412	445		Download of all service profiles linked to PUID being registered and implicitly registered	5.5.0	5.6.0	N1-031010

Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2003-09	NP-21	NP-030412	448	3	Authentication at UE	5.5.0	5.6.0	N1-031326
2003-09	NP-21	NP-030412	449	1	Nework authentication failure at the UE	5.5.0	5.6.0	N1-031242
2003-09	NP-21	NP-030412	451	3	Handling of security association	5.5.0	5.6.0	N1-031327
2003-09	NP-21	NP-030412	452	1	Re-authentication timer at S-CSCF	5.5.0	5.6.0	N1-031274
2003-09	NP-21	NP-030412	455	2	Authentication failure at S-CSCF	5.5.0	5.6 .0	N1-031285
2003-09	NP-21	NP-030413	456	2	Subscription termination sent by the S-CSCF	5.5.0	5.6 .0	N1-031276
2003-09	NP-21	NP-030413	457		Subscription termination at the P-CSCF	5.5.0	5.6 .0	N1-031032
2003-09	NP-21	NP-030413	458		Network -initiated deregistration at P-CSCF	5.5.0	5.6.0	N1-031033
2003-09	NP-21	NP-030349	459	2	Notification about registration status at AS	5.5.0	5.6 .0	
2003-09	NP-21	NP-030413	461	1	Service profile	5.5.0	5.6 .0	N1-031233
2003-09	NP-21	NP-030413	466	1	Requirements on Preconditions	5.5.0	5.6.0	N1-031246
2003-09	NP-21	NP-030413	467	1	Call forwarding cleanup	5.5.0	5.6.0	N1-031238
2003-09	NP-21	NP-030413	468		Update of references	5.5.0	5.6 .0	N1-031094
2003-09	NP-21	NP-030414	470	1	Adding P-Asserted-Identity headers to NE initiated subscriptions	5.5.0	5.6.0	N1-031314
2003-09	NP-21	NP-030414	479	1	Replace USIM by ISIM for user identity storage	5.5.0	5.6.0	N1-031247
2003-09	NP-21	NP-030414	481	1	24.229 R5 CR: Corrections to Profile Tables	5.5.0	5.6.0	N1-031248
2003-09	NP-21	NP-030414	482		24.229 R5 CR: Setting of SUBSCRIBE exipiration time	5.5.0	5.6.0	N1-031140
2003-09	NP-21	NP-030414	483	3	24.229 R5 CR: Alignment of IMS Compression with RFC 3486	5.5.0	5.6.0	N1-031335
2003-09	NP-21	NP-030418	465	1	Alignment with TS for policy control over Gq interface	5.6.0	6.0.0	N1-031267
2003-09	NP-21	NP-030418	472	1	I-CSCF procedures for openness	5.6.0	6.0.0	N1-031304
2003-09	NP-21	NP-030433	473	3	Registration from multiple terminals and forking	5.6.0	6.0.0	
2003-09	NP-21	NP-030419	480	3	Access Independent IMS	5.6.0	6.0.0	N1-031333
2003-12	NP-22	NP-030482	487	1	Registration amendments in profile	6.0.0	6.1 .0	N1-031627
2003-12	NP-22	NP-030482	489		Privacy considerations for the UE	6.0.0	6.1 .0	N1-031351
2003-12	NP-22	NP-030476	493		INVITE dialog amendments in profile	6.0.0	6.1 .0	N1-031359
2003-12	NP-22	NP-030482	494		Correction of I-CSCF handling of multiple private user identities with same public user identity	6.0.0	6.1 .0	N1-031375
2003-12	NP-22	NP-030476	496	1	P-Asserted-Identity in SUBSCRIBE requests	6.0.0	6.1 .0	N1-031632
2003-12	NP-22	NP-030482	497		Addition of reference to Gq interface	6.0.0	6.1 .0	N1-031378
2003-12	NP-22	NP-030476	503	2	Update of HSS information at deregistration	6.0.0	6.1 .0	N1-031720
2003-12	NP-22	NP-030482	507		Unavailable definitions	6.0.0	6.1 .0	N1-031392
2003-12	NP-22	NP-030476	509		Reference corrections	6.0.0	6.1 .0	N1-031394
2003-12	NP-22	NP-030484	510	1	UICC related changes for IMS commonality and interoperability	6.0.0	6.1 .0	N1-031682
2003-12	NP-22	NP-030484	511		Interoperability and commonality; definition of scope	6.0.0	6.1 .0	N1-031427

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2003-12	NP-22	NP-030484	512		Interoperability and commonality; addition of terminology	6.0.0	6.1 .0	N1-031428
2003-12	NP-22	NP-030484	513		Interoperability and commonality; media grouping	6.0.0	6.1 .0	N1-031429
2003-12	NP-22	NP-030484	515		Interoperability and commonality; charging information	6.0.0	6.1 .0	N1-031431
2003-12	NP-22	NP-030482	518	1	Profile support of RFC 3326: The Reason Header Field for the Session Initiation Protocol	6.0.0	6.1 .0	N1-031681
2003-12	NP-22	NP-030482	519		Profile support of RFC 3581: An Extension to the Session Initiation Protocol (SIP) for Symmetric Response Routing	6.0.0	6.1 .0	N1-031439
2003-12	NP-22	NP-030484	522	1	Clause 9 restructuring	6.0.0	6.1 .0	N1-031684
2003-12	NP-22	NP-030477	524	2	Correct use of RAND during re-synchronisation failures	6.0.0	6.1 .0	N1-031712
2003-12	NP-22	NP-030478	526	1	Correction to description or RES/XRES usage	6.0.0	6.1 .0	N1-031617
2003-12	NP-22	NP-030483	529		Corrections on charging specification number	6.0.0	6.1 .0	N1-031469
2003-12	NP-22	NP-030581	531	3	Corrections on ICID for REGISTER	6.0.0	6.1 .0	
2003-12	NP-22	NP-030478	543	1	Correction of user initiated re-registration	6.0.0	6.1 .0	N1-031619
2003-12	NP-22	NP-030483	551	1	IMS trust domain in Rel 6	6.0.0	6.1 .0	N1-031622
2003-12	NP-22	NP-030478	556	1	P-CSCF and UE handling of Security Associations	6.0.0	6.1 .0	N1-031624
2003-12	NP-22	NP-030483	560	2	SDP offer handling in SIP responses in S-CSCF and P-CSCF	6.0.0	6.1 .0	N1-031727
2003-12	NP-22	NP-030483	564	1	SIP compression	6.0.0	6.1 .0	N1-031705
2003-12	NP-22	NP-030478	566		Sending challenge	6.0.0	6.1 .0	N1-031580
2003-12	NP-22	NP-030480	568	2	Reg-await-auth timer value	6.0.0	6.1 .0	N1-031716
2003-12	NP-22	NP-030480	571	1	Network initiated deregistration	6.0.0	6.1 .0	N1-031707
2003-12	NP-22	NP-030483	572		Text harmonisation with 3GPP2	6.0.0	6.1 .0	N1-031589
2003-12	NP-22	NP-030483	573	1	Procedures in the absence of UICC	6.0.0	6.1 .0	N1-031680
2003-12	NP-22	NP-030483	575	1	P-Access-Network-Info changes	6.0.0	6.1 .0	N1-031683
2004-03	NP-23	NP-040027	488	3	Completion of major capabilities table in respect of privacy	6.1 .0	6.2.0	N1-040406
2004-03	NP-23	NP-040027	499	5	P-CSCF integrity protection	6.1 .0	6.2.0	N1-040500
2004-03	NP-23	NP-040032	578	1	UE requesting no-fork	6.1 .0	6.2.0	N1-040184
2004-03	NP-23	NP-040032	579	1	Inclusion of caller preferences into profile	6.1 .0	6.2.0	N1-040284
2004-03	NP-23	NP-040027	586	1	Network-initiated re-authentication	6.1 .0	6.2 .0	N1-040391
2004-03	NP-23	NP-040032	588	1	Re-authentication - Abnormal cases	6.1 .0	6.2.0	N1-040393
2004-03	NP-23	NP-040027	592	1	Integrity protected correction	6.1 .0	6.2.0	N1-040398
2004-03	NP-23	NP-040032	596	1	Sec-agree parameter in "Proxy-Require" header	6.1 .0	6.2.0	N1-040400
2004-03	NP-23	NP-040027	600	2	Handling of record-route in target refresh and subsequent request	6.1 .0	6.2.0	N1-040481
2004-03	NP-23	NP-040035	603		Cleanup for IP-CAN and GPRS	6.1 .0	6.2.0	N1-040304
2004-03	NP-23	NP-040032	604		Forking in S-CSCF	6.1 .0	6.2 .0	N1-040325

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2004-03	NP-23	NP-040108	605	3	Determination of S-CSCF role	6.1 .0	6.2.0	
2004-03	NP-23	NP-040134	608	3	Unprotected deregistration	6.1 .0	6.2.0	
2004-03	NP-23	NP-040029	610		Sending authentication challenge	6.1 .0	6.2 .0	N1-040331
2004-03	NP-23	NP-040033	613		Reference to PDF operation	6.1 .0	6.2 .0	N1-040334
2004-03	NP-23	NP-040029	615	1	Support of MESSAGE (Profile Tables)	6.1 .0	6.2.0	N1-040466
2004-03	NP-23	NP-040033	616	2	Introduction of PSI Routing to 24.229	6.1 .0	6.2.0	N1-040487
2004-03	NP-23	NP-040033	617	1	P-CSCF Re-selection	6.1 .0	6.2.0	N1-040463
2004-03	NP-23	NP-040033	618		I-CSCF does not re-select S-CSCF during reregistration	6.1 .0	6.2.0	N1-040344
2004-03	NP-23	NP-040033	620	1	Handling of media authorization token due to messaging	6.1 .0	6.2 .0	N1-040430
2004-06	NP-24	NP-040191	621	2	Forking requests terminating at the served user	6.2.0	6.3 .0	N1-040739
2004-06	NP-24	NP-040191	624	1	Abbreviations	6.2.0	6.3.0	N1-040691
2004-06	NP-24	NP-040191	625	5	Removal of restriction for multiple SIP sessions on a single PDP context	6.2.0	6.3 .0	N1-041053
2004-06	NP-24	NP-040191	626	3	Record route in S-CSCF	6.2.0	6.3.0	N1-041061
2004-06	NP-24	NP-040189	627	3	Correction of reception of media authorization token	6.2.0	6.3.0	N1-040994
2004-06	NP-24	NP-040191	628	3	Introduction of PSI Routing to 24.229	6.2.0	6.3 .0	N1-041059
2004-06	NP-24	NP-040198	629	2	Addition of PRESNC material	6.2 .0	6.3 .0	N1-040996
2004-06	NP-24	NP-040189	631	1	Missing statements regarding P-Charging-FunctionAddresses header	6.2.0	6.3.0	N1-040987
2004-06	NP-24	NP-040191	634	1	Multiple registrations	6.2.0	6.3 .0	N1-041054
2004-06	NP-24	NP-040192	635	1	Network-initiated deregistration	6.2.0	6.3 .0	N1-041055
2004-06	NP-24	NP-040192	636		Network-initiated re-authentication	6.2 .0	6.3 .0	N1-040778
2004-06	NP-24	NP-040192	637	1	Mobile-initiated deregistration	6.2.0	6.3 .0	N1-041056
2004-06	NP-24	NP-040192	638	1	Notification about registration state	6.2.0	6.3 .0	N1-041057
2004-06	NP-24	NP-040189	642	3	Syntax of the extension to the P-Charging-Vector header field	6.2.0	6.3.0	N1-041100
2004-06	NP-24	NP-040192	643	2	Session Timer	6.2.0	6.3.0	N1-041095
2004-06	NP-24	NP-040193	644	3	Session initiation without preconditions	6.2.0	6.3 .0	N1-041096
2004-06	NP-24	NP-040192	645	1	IMS Conferencing: Inclusion of Profile Tables to TS 24.229	6.2.0	6.3.0	N1-041015
2004-06	NP-24	NP-040189	649	1	Revisions due to published version of draft-ietf-sipping-reg-event	6.2.0	6.3.0	N1-040992
2004-06	NP-24	NP-040198	652		Creation of separate event package table for UA role	6.2 .0	6.3.0	N1-041066
2004-09	NP-25	NP-040380	658		Correction of User identity verification at the AS	6.3.0	6.4 .0	N1-041344
2004-09	NP-25	NP-040381	666	1	NOTIFY requests	6.3 .0	6.4 .0	N1-041586
2004-09	NP-25	NP-040381	654	4	Callee capabilities and Registration	6.3.0	6.4.0	N1-041315
2004-09	NP-25	NP-040381	668	2	Network deregistration	6.3.0	6.4.0	N1-041614
2004-09	NP-25	NP-040381	682	1	SDP parameters received by the S-CSCF and the P-	6.3.0	6.4.0	N1-041592

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
					CSCF in the 200 OK message			
2004-09	NP-25	NP-040381	661	1	Call Release	6.3 .0	6.4.0	N1-041589
2004-09	NP-25	NP-040381	659		Multiple public ID registration	6.3 .0	6.4.0	N1-041350
2004-09	NP-25	NP-040381	660		Standalone transactions	6.3 .0	6.4.0	N1-041351
2004-09	NP-25	NP-040381	663		Unprotected REGISTER	6.3 .0	6.4.0	N1-041354
2004-09	NP-25	NP-040381	662	1	Session timer	6.3 .0	6.4.0	N1-041590
2004-09	NP-25	NP-040381	665		Contact in SUBSCRIBE request	6.3 .0	6.4.0	N1-041372
2004-09	NP-25	NP-040381	650	2	Support of draft-ietf-sip-replaces	6.3 .0	6.4.0	N1-041391
2004-09	NP-25	NP-040381	657	1	Support of draft-ietf-sip-join	6.3 .0	6.4.0	N1-041393
2004-09	NP-25	NP-040381	656	1	Support of draft-ietf-sip-referredby	6.3 .0	6.4.0	N1-041263
2004-09	NP-25	NP-040381	678		Support of TLS	6.3 .0	6.4.0	N1-041462
2004-09	NP-25	NP-040381	688	2	Filtering of the P-Access-Network-Info header by the S-CSCF and privacy rules	6.3 .0	6.4.0	N1-041641
2004-09	NP-25	NP-040382	692	2	Ipv6 IPv4 interworking	6.3.0	6.4.0	N1-041630
2004-09	NP-25	NP-040383	689	2	Addition of session set-up not requiring preconditions and reliable transport of provisional responses.	6.3 .0	6.4.0	N1-041632
2004-09	NP-25	NP-040385	697		Missing value for the event attribute within the <contact> element of NOTIFY body	6.3.0	6.4.0	N1-041540
2004-09	NP-25	NP-040385	698		HSS initiated deregistration	6.3 .0	6.4.0	N1-041549
2004-09	NP-25	NP-040385	673		Syntax correction for the P-Charging-Vector header	6.3 .0	6.4.0	N1-041434
2004-09	NP-25	NP-040385	699	1	Network initiated deregistration upon UE roaming and registration to a new network	6.3 .0	6.4.0	N1-041629
2004-12	NP-26	NP-040506	651	4	Downloading the user profile based on User-Data-Request-Type	6.4.0	6.5.0	N1-042031
2004-12	NP-26	NP-040506	703	2	SDP Encryption	6.4.0	6.5.0	N1-042095
2004-12	NP-26	NP-040506	704	1	RTCP streams	6.4.0	6.5.0	N1-042019
2004-12	NP-26	NP-040506	709		Contact in 200(OK) response	6.4.0	6.5.0	N1-041725
2004-12	NP-26	NP-040506	710	1	P-Access-Network-Info header	6.4.0	6.5.0	N1-042020
2004-12	NP-26	NP-040506	711	1	P-Called-Party-ID header	6.4 .0	6.5.0	N1-041954
2004-12	NP-26	NP-040506	713	1	IMS-ALG routing	6.4.0	6.5.0	N1-042021
2004-12	NP-26	NP-040506	714	1	Public User Identity	6.4.0	6.5.0	N1-042022
2004-12	NP-26	NP-040506	715	1	"Pres" and "im" URIs	6.4.0	6.5.0	N1-042023
2004-12	NP-26	NP-040502	723	1	Correction Term IOI handling	6.4.0	6.5.0	N1-041956
2004-12	NP-26	NP-040502	725	1	Request handling in S-CSCF originating case	6.4 .0	6.5.0	N1-041958
2004-12	NP-26	NP-040502	727	1	Request handling in S-CSCF - terminating case	6.4.0	6.5.0	N1-041960
2004-12	NP-26	NP-040506	728		SBLP and non-realtime PDP contexts	6.4.0	6.5.0	N1-041797
2004-12	NP-26	NP-040590	730	2	Reference updates	6.4.0	6.5.0	N1-042085
2004-12	NP-26	NP-040590	733	3	Support for extended SigComp	6.4.0	6.5.0	N1-042117

Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2004-12	NP-26	NP-040590	734	2	Correction to subclause 5.1.3 of TS 24,229	6.4.0	6.5.0	N1-042120
2004-12	NP-26	NP-040590	735	1	Correction to subclause 5.1.4.1.2.3 of TS 24,. 229	6.4.0	6.5.0	N1-042084
2004-12	NP-26	NP-040502	738	1	Population of Via header when using REGISTER method	6.4.0	6.5.0	N1-041962
2004-12	NP-26	NP-040590	739		Tel-URI related reference updates	6.4.0	6.5.0	N1-041869
2004-12	NP-26	NP-040590	741	1	Throttling	6.4.0	6.5.0	N1-042086
2004-12	NP-26	NP-040590	742		Editorial correction resulting from CR665	6.4.0	6.5.0	N1-041881
2004-12	NP-26	NP-040590	743		Unprotected REGISTER corrections	6.4 .0	6.5.0	N1-041882
2004-12	NP-26	NP-040590	744	1	Corrections to receiving SDP offer in 200 (OK) response	6.4.0	6.5.0	N1-042087
2004-12	NP-26	NP-040590	745	1	Privacy corrections	6.4.0	6.5.0	N1-042085
2004-12	NP-26	NP-040590	747	2	Syntax of the P-Charging-Vector	6.4.0	6.5.0	N1-042105
2004-12	NP-26	NP-040590	752	2	Unavailability of the access-network-charging-info when the session is established without SBLP	6.4.0	6.5.0	N1-042106
2004-12	NP-26	NP-040590	753	1	SIP messages carrying the access-network-charging-info for sessions without preconditions	6.4.0	6.5.0	N1-042089
2004-12	NP-26	NP-040590	755	1	Network-initiated deregistration for multiple UEs sharing the same user public identity and for the old contact information of a roaming UE registered in a new network	6.4.0	6.5.0	N1-042090
2004-12	NP-26	NP-040502	765	1	Interaction between S-CSCF and HSS in Network initiated deregistration procedure	6.4.0	6.5.0	N1-041966
2004-12	NP-26	NP-040502	768	1	Downloading of user profile	6.4.0	6.5.0	N1-042103
2005-01					Fix Word problem	6.5.0	6.5.1	
2005-03	NP-27	NP-050069	839		Filter criteria matching and generation of third-party REGISTER request for network-initiated deregistration	5.11.1	5.12 .0	N1-050220
2005-03	NP-27	NP-050069	785		Deregistration effect on active sessions	6.5.1	6.6 .0	N1-050052
2005-03	NP-27	NP-050069	784		Deregistration effect on active sessions	5.11.1	5.12 .0	N1-050051
2005-03	NP-27	NP-050069	809	1	IOI storage at MGCF	5.11 .1	5.12 .0	N1-050295
2005-03	NP-27	NP-050069	840		Filter criteria matching and generation of third-party REGISTER request for network-initiated deregistration	6.5.1	6.6.0	N1-050221
2005-03	NP-27	NP-050069	806	1	Use of original dialog identifier at AS	6.5.1	6.6 .0	N1-050292
2005-03	NP-27	NP-050069	807	2	Checking Request-URI for terminating requests at the S-CSCF	5.11 .1	5.12 .0	N1-050401
2005-03	NP-27	NP-050069	805	1	Use of original dialog identifier at AS	5.11.1	5.12 .0	N1-050291
2005-03	NP-27	NP-050069	808	2	Checking Request-URI for terminating requests at the S-CSCF	6.5.1	6.6.0	N1-050402
2005-03	NP-27	NP-050069	810	1	IOI storage at MGCF	6.5.1	6.6.0	N1-050296
2005-03	NP-27	NP-050073	794		RFC 3966	6.5.1	6.6.0	N1-050080
2005-03	NP-27	NP-050073	848	1	Removal of I-CSCF normative requirement on Cx interface	6.5.1	6.6.0	N1-050299
2005-03	NP-27	NP-050073	841		Filtering of the P-Access-Network-Info header by the	6.5.1	6.6 .0	N1-050225

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
					S-CSCF and privacy rules			
2005-03	NP-27	NP-050073	817		Editorial corrections	6.5.1	6.6 .0	N1-050129
2005-03	NP-27	NP-050073	786	1	Cleanups resulting from CR changes for last version	6.5.1	6.6 .0	N1-050324
2005-03	NP-27	NP-050073	821	1	Handling topmost Route header at the P-CSCF	6.5.1	6.6 .0	N1-050297
2005-03	NP-27	NP-050073	790		Registration - Abnormal Case	6.5.1	6.6 .0	N1-050076
2005-03	NP-27	NP-050074	832	1	Corrections to the tables for "PUBLISH"	6.5.1	6.6 .0	N1-050341
2005-03	NP-27	NP-050074	822	1	Corrections to the UE tables for "major capabilities"	6.5.1	6.6 .0	N1-050332
2005-03	NP-27	NP-050074	825	1	Corrections to the UE tables for "ACK"	6.5.1	6.6 .0	N1-050334
2005-03	NP-27	NP-050074	826	1	Corrections to the tables for "CANCEL"	6.5.1	6.6 .0	N1-050335
2005-03	NP-27	NP-050074	827	1	Corrections to the tables for "INVITE"	6.5.1	6.6 .0	N1-050336
2005-03	NP-27	NP-050074	828	1	Corrections to the tables for "MESSAGE"	6.5.1	6.6 .0	N1-050337
2005-03	NP-27	NP-050074	829	1	Corrections to the tables for "NOTIFY"	6.5.1	6.6 .0	N1-050338
2005-03	NP-27	NP-050074	830	1	Corrections to the tables for "OPTIONS"	6.5.1	6.6 .0	N1-050339
2005-03	NP-27	NP-050074	834	1	Corrections to the tables for "REGISTER"	6.5.1	6.6 .0	N1-050343
2005-03	NP-27	NP-050074	831	1	Corrections to the tables for "PRACK"	6.5.1	6.6 .0	N1-050340
2005-03	NP-27	NP-050074	833	1	Corrections to the tables for "REFER"	6.5.1	6.6 .0	N1-050342
2005-03	NP-27	NP-050074	835	1	Corrections to the tables for "SUBSCRIBE"	6.5.1	6.6 .0	N1-050344
2005-03	NP-27	NP-050074	836	1	Corrections to the tables for "UPDATE"	6.5.1	6.6 .0	N1-050345
2005-03	NP-27	NP-050074	837	1	Corrections to the tables for SDP	6.5.1	6.6 .0	N1-050346
2005-03	NP-27	NP-050074	824	1	Removal of the UE table for 'status codes'	6.5.1	6.6 .0	N1-050351
2005-03	NP-27	NP-050074	823	1	Corrections to the tables for "BYE"	6.5.1	6.6 .0	N1-050333
2005-03	NP-27	NP-050075	846	2	Correction to the Registration procedure	6.5.1	6.6 .0	N1-050413
2005-03	NP-27	NP-050075	850	1	Addition of IMS-ALF to profile tables	6.5.1	6.6 .0	N1-050348
2005-03	NP-27	NP-050075	851	2	Press and im URIs in incoming requests	6.5.1	6.6 .0	N1-050395
2005-03	NP-27	NP-050075	788	1	MO - Calls to IPv4 SIP terminals	6.5.1	6.6 .0	N1-050387
2005-03	NP-27	NP-050075	818	3	Corrections to subclause 5.5 in TS 24.229	6.5.1	6.6 .0	N1-050414
2005-03	NP-27	NP-050075	801	3	Default handling associated with the trigger at the SCSCF	6.5.1	6.6 .0	N1-050418
2005-03	NP-27	NP-050075	803	4	Default handling associated with the trigger for third party registration	6.5.1	6.6 .0	N1-050421
2005-03	NP-27	NP-050078	795	1	Sip-profile package in major capabilities	6.5.1	6.6 .0	N1-050306
2005-03	NP-27	NP-050127	849	2	Corrections to addition of session set-up not requiring preconditions and reliable transport of provisional responses	6.5.1	6.6.0	
2005-06	CP-28	CP-050059	879		Correction Reg-Await-Auth Timer	6.6 .0	6.7 .0	C1-050522
2005-06	CP-28	CP-050059	881		Security Association in P-CSCF	6.6 .0	6.7 .0	C1-050524
2005-06	CP-28	CP-050059	871	1	Port 5060	6.6 .0	6.7 .0	C1-050674
2005-06	CP-28	CP-050059	891	2	SIP headers storage for P-CSCF initiated session release	6.6.0	6.7.0	C1-050777

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2005-06	CP-28	CP-050059	921	1	Correction of error in the specification of the extension to Authorization header	6.6.0	6.7.0	C1-050689
2005-06	CP-28	CP-050059	886	2	Handling of P-Associated URI header	6.6 .0	6.7.0	C1-050783
2005-06	CP-28	CP-050059	907	2	Clarification to the procedures at the I-CSCF	6.6 .0	6.7 .0	C1-050785
2005-06	CP-28	CP-050061	894	1	Re-registration failure	6.6 .0	6.7 .0	C1-050709
2005-06	CP-28	CP-050061	892		Completion of status-code tables in SIP profile	6.6 .0	6.7 .0	C1-050571
2005-06	CP-28	CP-050061	865	1	Unsubscribe by P-CSCF	6.6 .0	6.7 .0	C1-050671
2005-06	CP-28	CP-050061	866	1	Protected initial registration	6.6 .0	6.7 .0	C1-050708
2005-06	CP-28	CP-050061	916	1	Clarify that S-CSCF shall support Supported and Require headers	6.6.0	6.7.0	C1-050684
2005-06	CP-28	CP-050061	862		Shared public user identities	6.6 .0	6.7 .0	C1-050599
2005-06	CP-28	CP-050061	860	1	P-CSCF - routing of REGISTER requests	6.6 .0	6.7 .0	C1-050701
2005-06	CP-28	CP-050061	870	1	Correction of table A.104A	6.6 .0	6.7 .0	C1-050711
2005-06	CP-28	CP-050061	887	1	Contact address in REGISTER response	6.6 .0	6.7 .0	C1-050716
2005-06	CP-28	CP-050061	890	1	P-CSCF Record-Route processing for target refresh requests/responses	6.6.0	6.7.0	C1-050717
2005-06	CP-28	CP-050061	893	1	AS originated requests on behalf of PSI	6.6 .0	6.7 .0	C1-050719
2005-06	CP-28	CP-050061	896	1	Routing PSI at terminating side	6.6 .0	6.7 .0	C1-050720
2005-06	CP-28	CP-050061	856	2	Notification about registration state	6.6 .0	6.7 .0	C1-050789
2005-06	CP-28	CP-050061	861	3	Registration failure at UE	6.6 .0	6.7 .0	C1-050790
2005-06	CP-28	CP-050061	899	2	Correction of the references for the integration of resource management procedures	6.6 .0	6.7 .0	C1-050791
2005-06	CP-28	CP-050061	902	2	Clarification on P-CSCF-intiated call release	6.6 .0	6.7 .0	C1-050792
2005-06	CP-28	CP-050061	863	3	Error handling in UE in case of RFC 3524	6.6 .0	6.7 .0	C1-050793
2005-06	CP-28	CP-050061	895	3	UE registration failure because the selected S-CSCF is unreachable	6.6.0	6.7.0	C1-050802
2005-06	CP-28	CP-050061	787	6	MT- SDP offer with IPv4 address.	6.6 .0	6.7 .0	C1-050794
2005-06	CP-28	CP-050061	858	1	S-CSCF redirecting	6.6 .0	6.7 .0	C1-050700
2005-06	CP-28	CP-050064	872	2	I-WLAN information for IMS	6.6 .0	6.7 .0	C1-050729
2005-06	CP-28	CP-050074	901		MWI RFC3842	6.6 .0	7.0.0	C1-050600
2005-06	CP-28	CP-050075	905	1	$3 x x$ response and non-SDP bodies handking by proxies	6.6.0	7.0.0	C1-050775
2005-09	CP-29	CP-050346	986		Modifications to 24.229 to allow multiple IPsec security association per IKE_Security association	7.0.0	7.1.0	
2005-09	CP-29	CP-050355	930	1	Correction Profile Table A. 119	7.0.0	7.1.0	C1-051061
2005-09	CP-29	CP-050355	946		Public User identity in 3rd party REG	7.0.0	7.1.0	C1-050906
2005-09	CP-29	CP-050355	957	1	Removal of Access Network Charging Information by the S-CSCF	7.0.0	7.1.0	C1-051081
2005-09	CP-29	CP-050355	965		Optional ccf	7.0.0	7.1.0	C1-050986
2005-09	CP-29	CP-050355	969	1	Contact header in REGISTER requests	7.0 .0	7.1 .0	C1-051177

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2005-09	CP-29	CP-050359	932		SigComp-Corrections	7.0.0	7.1.0	C1-050877
2005-09	CP-29	CP-050359	962	1	IETF reference corrections	7.0.0	7.1.0	C1-051074
2005-09	CP-29	CP-050359	968	1	AS procedure correction	7.0.0	7.1.0	C1-051085
2005-09	CP-29	CP-050367	924		Incorporation of draft-ietf-sip-history	7.0.0	7.1.0	C1-050838
2005-09	CP-29	CP-050367	938		Contact header	7.0.0	7.1.0	C1-050887
2005-09	CP-29	CP-050367	939	1	Reason header - loss of radio coverage	7.0.0	7.1.0	C1-051158
2005-09	CP-29	CP-050367	947	3	Changes to TS 24.229 to ease interworking with non precondition terminals	7.0.0	7.1.0	C1-051213
2005-09	CP-29	CP-050367	958	2	Contents of P-Associated-URI header in 200 (OK) response to REGISTER	7.0.0	7.1.0	C1-051206
2005-09	CP-29	CP-050367	960	3	Consideration on 3rd Party Service Provider in Trust Domain	7.0.0	7.1.0	C1-051208
2005-09	CP-29	CP-050367	971	1	Correction of requirement to insert P-AssertedIdentity header	7.0.0	7.1.0	C1-051166
2005-09	CP-29	CP-050368	950	3	privacy and trust rules for History header	7.0.0	7.1 .0	C1-051199
2005-10					missing word in subclause 5.4.1.2.2, bullet 10b) is added by MCC	7.1 .0	7.1.1	
2005-12	CP-30	CP-050538	1049		Replace 'originated' with 'terminated'	7.1.1	7.2.0	C1-051479
2005-12	CP-30	CP-050538	1046	2	Mobile originating call related requests	7.1.1	7.2 .0	C1-051668
2005-12	CP-30	CP-050538	1012	1	Correction to section 5.4.3.2 t of TS 24.229	7.1.1	7.2.0	C1-051563
2005-12	CP-30	CP-050538	1026		Handling of P-Charging-Function-Adress	7.1.1	7.2 .0	C1-051424
2005-12	CP-30	CP-050538	1071		Correction Syntax P-Charging Vector	7.1.1	7.2 .0	C1-051508
2005-12	CP-30	CP-050541	1002	1	Modification to the definition of Security Association	7.1.1	7.2 .0	C1-051576
2005-12	CP-30	CP-050542	0982	3	Access Type of P-Access-Network-Info header	7.1.1	7.2.0	C1-051675
2005-12	CP-30	CP-050542	1059		Replace 'served' by 'Originating' UE	7.1.1	7.2.0	C1-051489
2005-12	CP-30	CP-050542	1017		Correction to subclause 5.7.5.1. of TS 24229	7.1.1	7.2.0	C1-051382
2005-12	CP-30	CP-050542	1073	2	Short Session Setup in IMS	7.1.1	7.2.0	C1-051656
2005-12	CP-30	CP-050542	1054		Adjusting section reference in section 6.3	7.1.1	7.2.0	C1-051484
2005-12	CP-30	CP-050542	1029	1	B2B UA AS handling	7.1.1	7.2.0	C1-041597
2005-12	CP-30	CP-050542	1062	2	Correction to 3rd party registration procedures for SESSION_TERMINATED default handling	7.1.1	7.2.0	C1-051672
2005-12	CP-30	CP-050542	0994		cdma2000	7.1.1	7.2 .0	C1-051336
2005-12	CP-30	CP-050542	1043		Correction of a reference in some tables in Appendix A	7.1.1	7.2.0	C1-051473
2005-12	CP-30	CP-050542	1005	2	Refreshes of SUBSCRIBE to reg-event (Fix for Rel 7)	7.1.1	7.2 .0	C1-051670
2005-12	CP-30	CP-050542	1065	1	Charging terms correction	7.1.1	7.2.0	C1-051618
2005-12	CP-30	CP-050548	1081		Change of originating and terminating terminal terminology	7.1.1	7.2.0	C1-051535
2005-12	CP-30	CP-050548	1069	2	IBCF	7.1.1	7.2 .0	C1-051587
2005-12	CP-30	CP-050550	1055		Editorial Changes	7.1.1	7.2 .0	C1-051485

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2005-12	CP-30	CP-050550	0996	1	UE initiated deregistration	7.1.1	7.2.0	C1-051649
2005-12	CP-30	CP-050550	1027	1	Mobile originated Request for unregistered user	7.1.1	7.2.0	C1-051653
2005-12	CP-30	CP-050550	0990	1	Authentication related Clarification	7.1.1	7.2.0	C1-051560
2005-12	CP-30	CP-050550	1019	2	Receipt of SIP URI with user equal phone at I-CSCF	7.1.1	7.2.0	C1-051671
2005-12	CP-30	CP-050550	0995	2	Default public user ID	7.1.1	7.2.0	C1-051691
2005-12	CP-30	CP-050550	0997	1	P-Preferred-Identity header	7.1.1	7.2.0	C1-051650
2005-12	CP-30	CP-050550	1082	1	P-CSCF discovery	7.1.1	7.2.0	C1-051681
2005-12	CP-30	CP-050677	1085	2	Incorporating of TR 24.819 fixed broadband access impacts into TS 24.229	7.1.1	7.2.0	
2006-03	CP-31	CP-060106	1187	-	Removal of Warning header non-compliance with RFC 3261	7.2.0	7.3.0	C1-060328
2006-03	CP-31	CP-060106	1117	1	IMS AKA - SQN resync clarifications	7.2.0	7.3.0	C1-060453
2006-03	CP-31	CP-060106	1114	1	IMS AKA - content of initial authentication header	7.2.0	7.3.0	C1-060450
2006-03	CP-31	CP-060106	1204	-	Syntax and operation for Security-Client, SecurityServer and Security-Verify headers	7.2.0	7.3.0	C1-060387
2006-03	CP-31	CP-060107	1148	1	UE processing 305 (Use Proxy)	7.2.0	7.3.0	C1-060507
2006-03	CP-31	CP-060107	1164	1	Clarifications on P-CSCF discovery	7.2.0	7.3.0	C1-060459
2006-03	CP-31	CP-060107	1161	1	DHCPv6 options for Domain Name Servers	7.2.0	7.3.0	C1-060456
2006-03	CP-31	CP-060110	1136	1	SDP answer	7.2.0	7.3.0	C1-060472
2006-03	CP-31	CP-060110	1206	-	Inclusion of Ma reference point	7.2.0	7.3.0	C1-060392
2006-03	CP-31	CP-060110	1134	-	Preconditions required	7.2.0	7.3.0	C1-060192
2006-03	CP-31	CP-060110	1156	1	Tables Change in Appendix A	7.2.0	7.3.0	C1-060478
2006-03	CP-31	CP-060110	1132	1	P-Asserted-Identity	7.2.0	7.3.0	C1-060476
2006-03	CP-31	CP-060111	1219	-	Reference Update of TS24.229, Rel7	7.2.0	7.3.0	C1-060483
2006-03	CP-31	CP-060111	1119	2	IMS Short Session Setup - Clarifications	7.2.0	7.3.0	C1-060595
2006-03	CP-31	CP-060111	1189	3	Definition of principles for IOI exchange and storage	7.2.0	7.3.0	C1-060610
2006-03	CP-31	CP-060111	1129	2	Tel URI	7.2.0	7.3.0	C1-060593
2006-03	CP-31	CP-060117	1210	1	Coding of P-Access-Network-Info header for 3GPP2 IMS	7.2.0	7.3.0	C1-060494
2006-03	CP-31	CP-060118	1103	1	Editor"s Note on xDSL bearer	7.2.0	7.3.0	C1-060119
2006-03	CP-31	CP-060118	1095	1	Reference to new annexes on NAT	7.2.0	7.3.0	C1-060116
2006-03	CP-31	CP-060118	1101	-	Replaces header in Profile Tables	7.2.0	7.3.0	C1-060051
2006-03	CP-31	CP-060118	1093	2	P-Access-Network-Info header absence for emergency call detection	7.2.0	7.3.0	C1-060339
2006-03	CP-31	CP-060118	1196	1	correction for the procedure of changing media data	7.2.0	7.3.0	C1-060518
2006-03	CP-31	CP-060118	1197	1	Editorial Changes	7.2.0	7.3.0	C1-060519
2006-03	CP-31	CP-060118	1092	3	Optionality of P-Access-Network-Info header	7.2.0	7.3.0	C1-060338
2006-03	CP-31	CP-060118	1086	1	Addition of TISPAN supported internet-drafts	7.2.0	7.3.0	C1-060337
2006-03	CP-31	CP-060118	1089	1	IBCF corrections	7.2.0	7.3.0	C1-060110

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2006-03	CP-31	CP-060118	1106	4	Completion of IBCF routing procedures	7.2.0	7.3.0	C1-060498
2006-03	CP-31	CP-060118	1088	4	IBCF enhancements	7.2.0	7.3.0	C1-060603
2006-03	CP-31	CP-060119	1177	1	PacketCable Extensions to P-Charging-Vector header	7.2.0	7.3.0	C1-060512
2006-03	CP-31	CP-060120	1098	4	Emergency service S-CSCF impact	7.2.0	7.3 .0	C1-060601
2006-03	CP-31	CP-060120	1097	5	Emergency service - P-CSCF impact	7.2.0	7.3.0	C1-060600
2006-03	CP-31	CP-060120	1099	5	Emergency service - E-CSCF impact	7.2.0	7.3.0	C1-060599
2006-03	CP-31	CP-060120	1096	5	Emergency service - UE impact	7.2.0	7.3.0	C1-060602
2006-03	CP-31	CP-060121	1183	-	Transfer of Text from the Combinational Services TR 24.879 to TS 24.229	7.2.0	7.3 .0	C1-060311
2006-03	CP-31	CP-060124	1138	2	Session termination by P-CSCF	7.2.0	7.3.0	C1-060605
2006-03	CP-31	CP-060124	1157	3	Support for RFC 4145	7.2.0	7.3 .0	C1-060621
2006-03	CP-31	CP-060124	1184	3	Registration of multiple PUIs - CR	7.2.0	7.3.0	C1-060608
2006-03	CP-31	CP-060124	1137	1	Session termination by S-CSCF	7.2.0	7.3.0	C1-060533
2006-03	CP-31	CP-060124	1152	1	Editorial Changes	7.2.0	7.3.0	C1-060539
2006-03	CP-31	CP-060124	1107	1	Reference Update of TS24.229	7.2.0	7.3.0	C1-060123
2006-03	CP-31	CP-060124	1125	-	Pre-loaded Route header	7.2.0	7.3.0	C1-060183
2006-03	CP-31	CP-060142	1226	1	Transport of HSS address from I-CSCF to S-CSCF	7.2.0	7.3.0	-
2006-03	CP-31	CP-060153	1222	2	Mandationof RFC 4320 fixes for issues found with the Session Initiation Protocol's (SIP) Non-INVITE Transactions	7.2.0	7.3.0	-
2006-03	CP-31	CP-060176	1225	2	Support of call forwarding at the S-CSCF	7.2.0	7.3.0	-
2006-06	CP-32	CP-060232	1290	2	Realm Parameter Handling	7.3.0	7.4 .0	
2006-06	CP-32	CP-060249	1242	3	SDP answer	7.3.0	7.4 .0	
2006-06	CP-32	CP-060262	1309	2	Hiding correction	7.3.0	7.4 .0	C1-061115
2006-06	CP-32	CP-060262	1306	2	3rd-party registration	7.3.0	7.4 .0	C1-061098
2006-06	CP-32	CP-060262	1303	1	One private identity one contact	7.3.0	7.4 .0	C1-061095
2006-06	CP-32	CP-060264	1274	2	Re-authentication during deregistration	7.3.0	7.4.0	C1-061113
2006-06	CP-32	CP-060265	1312		I-CSCF registration procedure correction	7.3.0	7.4 .0	C1-060829
2006-06	CP-32	CP-060266	1265	1	IOI overview	7.3.0	7.4.0	C1-060997
2006-06	CP-32	CP-060266	1271	1	Introduction of signalling encryption	7.3.0	7.4.0	C1-060999
2006-06	CP-32	CP-060266	1348		UE behavior after timer F expiry	7.3.0	7.4 .0	C1-060897
2006-06	CP-32	CP-060266	1236	2	P-Asserted-ID	7.3.0	7.4.0	C1-061119
2006-06	CP-32	CP-060266	1238	1	Via header in the initial registration	7.3.0	7.4 .0	C1-060975
2006-06	CP-32	CP-060266	1327	1	Incorrect requirement on I-CSCF	7.3.0	7.4 .0	C1-061079
2006-06	CP-32	CP-060270	1247	1	Emergency PUID	7.3.0	7.4.0	C1-061054
2006-06	CP-32	CP-060270	1266	1	Inclusion of draft-ietf-ecrit-service-urn	7.3.0	7.4.0	C1-061009
2006-06	CP-32	CP-060270	1229		Emergency service S-CSCF impact	7.3.0	7.4.0	C1-060642

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2006-06	CP-32	CP-060270	1360		Inclusion of E-CSCF in subclause 3.1 and subclause 4.1	7.3.0	7.4.0	C1-060923
2006-06	CP-32	CP-060270	1249	2	Emergency call release	7.3.0	7.4.0	C1-061121
2006-06	CP-32	CP-060270	1338	1	Adding RDF in E-CSCF procedure	7.3.0	7.4 .0	C1-061060
2006-06	CP-32	CP-060270	1358	1	Priority handling for emergency calls at the E-CSCF	7.3.0	7.4.0	C1-061017
2006-06	CP-32	CP-060270	1357	1	Priority handling for emergency calls at the S-CSCF	7.3.0	7.4.0	C1-061015
2006-06	CP-32	CP-060270	1356	1	Priority handling for emergency calls at the P-CSCF	7.3.0	7.4.0	C1-061013
2006-06	CP-32	CP-060270	1354		Inclusion of session timer procedures at the E-CSCF	7.3.0	7.4.0	C1-060917
2006-06	CP-32	CP-060270	1340	2	TEL URI associated with emergency IMPU	7.3.0	7.4.0	C1-061120
2006-06	CP-32	CP-060270	1337	1	Getting local emergency numbers	7.3.0	7.4.0	C1-061010
2006-06	CP-32	CP-060270	1336	1	Some corrections in IMS emergency calls	7.3.0	7.4.0	C1-061059
2006-06	CP-32	CP-060271	1258	1	UDP encapsulation of IPSec	7.3.0	7.4 .0	C1-061019
2006-06	CP-32	CP-060271	1318	1	Extensions to P-Access-Network-Info header for DOCSIS Access	7.3.0	7.4.0	C1-061025
2006-06	CP-32	CP-060271	1317	2	PRACK	7.3.0	7.4.0	C1-061026
2006-06	CP-32	CP-060271	1267	1	IBCF corrections	7.3.0	7.4.0	C1-061022
2006-06	CP-32	CP-060271	1259	1	IBCF initiated call release	7.3.0	7.4.0	C1-061021
2006-06	CP-32	CP-060271	1345	1	Correction of the reference document	7.3.0	7.4.0	C1-061082
2006-06	CP-32	CP-060274	1234	1	Final NOTIFY	7.3.0	7.4.0	C1-060989
2006-06	CP-32	CP-060274	1255		Full notification	7.3.0	7.4 .0	C1-060686
2006-06	CP-32	CP-060274	1260		Reg event package parameters in notification	7.3.0	7.4.0	C1-060704
2006-06	CP-32	CP-060274	1261		Subscription refreshing	7.3.0	7.4.0	C1-060705
2006-06	CP-32	CP-060274	1217	2	Definition of B2BUA	7.3.0	7.4.0	C1-061074
2006-06	CP-32	CP-060274	1277	1	Usage of associated public user identities	7.3.0	7.4.0	C1-060964
2006-06	CP-32	CP-060274	1321		Verification by I-CSCF of trust domain origin for incoming requests	7.3.0	7.4.0	C1-060844
2006-06	CP-32	CP-060274	1322		Miscellaneous Correction	7.3.0	7.4.0	C1-060845
2006-06	CP-32	CP-060274	1328	1	Resilience to registration and authentication errors	7.3.0	7.4.0	C1-061080
2006-06	CP-32	CP-060274	1335	1	The Correction on the description for the information of registration status	7.3.0	7.4.0	C1-060986
2006-06	CP-32	CP-060274	1361		Reference updates	7.3.0	7.4.0	C1-060924
2006-06	CP-32	CP-060283	1366		Emergency service - UE impact	7.3.0	7.4 .0	
2006-06	CP-32	CP-060284	1367		Emergency service- E-CSCF impact	7.3.0	7.4 .0	
2006-06	CP-32	CP-060335	1232	3	Handling of P-Charging-Addresses	7.3.0	7.4.0	
2006-06	CP-32	CP-060345	1365	1	Registration of several unrelated public user identities	7.3.0	7.4.0	
2006-06	CP-32	CP-060352	1228	4	Emergency service P-CSCF-impact	7.3.0	7.4 .0	C1-061134
2006-09	CP-33	CP-060452	1461	1	Correction of Realm Parameter Handling for SCSCF procedures	7.4.0	7.5.0	C1-061732

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2006-09	CP-33	CP-060452	1467		SDP reference revision	7.4.0	7.5.0	C1-061657
2006-09	CP-33	CP-060452	1475	2	"Response" value in unprotected Register requests	7.4 .0	7.5.0	C1-061845
2006-09	CP-33	CP-060463	1351	3	Treatment of emergency requests other than INVITE requests at the P-CSCF	7.4 .0	7.5.0	C1-061357
2006-09	CP-33	CP-060463	1352	3	Treatment of emergency requests other than INVITE requests at the E-CSCF	7.4.0	7.5.0	C1-061358
2006-09	CP-33	CP-060463	1369	1	UE emergency deregistration	7.4.0	7.5 .0	C1-061304
2006-09	CP-33	CP-060463	1370	1	Emergency subscription	7.4 .0	7.5.0	C1-061305
2006-09	CP-33	CP-060463	1371	1	P-CSCF emergency subscription	7.4 .0	7.5 .0	C1-061306
2006-09	CP-33	CP-060463	1373	2	S-CSCF emergency registration	7.4 .0	7.5.0	C1-061350
2006-09	CP-33	CP-060463	1374	2	Handling of Emergency registration in S-CSCF	7.4.0	7.5 .0	C1-061349
2006-09	CP-33	CP-060463	1375	2	Handling of emergency registration at the UE	7.4 .0	7.5.0	C1-061351
2006-09	CP-33	CP-060463	1379	4	Location handling E-CSCF	7.4 .0	7.5.0	C1-061913
2006-09	CP-33	CP-060463	1380	1	Clarification of Emergency Session Setup without prior IMS Registration	7.4 .0	7.5.0	C1-061311
2006-09	CP-33	CP-060463	1381	1	Clarifications to subclause 5.1.6.1	7.4 .0	7.5.0	C1-061313
2006-09	CP-33	CP-060463	1383	1	Non-INVITE requests	7.4 .0	7.5.0	C1-061314
2006-09	CP-33	CP-060463	1384	2	IP-CAN for emergency calls	7.4 .0	7.5.0	C1-061355
2006-09	CP-33	CP-060463	1390	1	Adoption of terminology from draft-ietf-ecritrequirements	7.4 .0	7.5.0	C1-061315
2006-09	CP-33	CP-060463	1391	3	Minor corrections to EMC1 text from previous CRs	7.4 .0	7.5.0	C1-061367
2006-09	CP-33	CP-060463	1414	2	Handling of loacation information at E-CSCF	7.4.0	7.5 .0	C1-061860
2006-09	CP-33	CP-060463	1440	2	P-Asserted-Identity in P-CSCF handling	7.4 .0	7.5.0	C1-061861
2006-09	CP-33	CP-060463	1443	4	Handling of PSAP address mapping result at ECSCF	7.4 .0	7.5.0	C1-061919
2006-09	CP-33	CP-060465	1413	1	Miscellaneous Corrections in Annex F	7.4.0	7.5.0	C1-061826
2006-09	CP-33	CP-060465	1420	1	Transit IMS	7.4.0	7.5 .0	C1-061827
2006-09	CP-33	CP-060465	1425	1	P-CSCF procedures for session release when QoS resources are unavailable	7.4.0	7.5.0	C1-061830
2006-09	CP-33	CP-060465	1427	1	Make SDP bandwidth modifiers optional for standard RTCP usage	7.4.0	7.5.0	C1-061832
2006-09	CP-33	CP-060465	1430	3	Addition of the cpc parameter to TS24.229	7.4 .0	7.5.0	C1-061882
2006-09	CP-33	CP-060466	1385	4	Introduction of GRUU in 24.229	7.4 .0	7.5.0	C1-061858
2006-09	CP-33	CP-060466	1386	5	S-SCSF procedures to support GRUU	7.4 .0	7.5.0	C1-061915
2006-09	CP-33	CP-060468	1405		Original dialog identifier	7.4.0	7.5.0	C1-061408
2006-09	CP-33	CP-060468	1406		No-fork	7.4 .0	7.5 .0	C1-061409
2006-09	CP-33	CP-060468	1409		Connection addres - zero	7.4 .0	7.5.0	C1-061412
2006-09	CP-33	CP-060468	1415		Reference for populating the "Anonymous" From header	7.4.0	7.5.0	C1-061439
2006-09	CP-33	CP-060468	1439	1	Usage of P-Associated-URI	7.4.0	7.5.0	C1-061759

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2006-09	CP-33	CP-060468	1450		Clarification of network initiated deregistration to match reginfo format	7.4.0	7.5.0	C1-061585
2006-09	CP-33	CP-060468	1456	2	Authentication between UA and UA	7.4 .0	7.5.0	C1-061851
2006-09	CP-33	CP-060468	1457	2	Treatment by S-CSCF of profile changes for registered PUls	7.4.0	7.5.0	C1-061853
2006-09	CP-33	CP-060468	1458	1	Completionof RFC 4320 fixes for 100 Trying responses Non-INVITE Transactions RFC 4320 fixes for 100 Trying responses Non-INVITE Transactions tration	7.4.0	7.5.0	C1-061765
2006-09	CP-33	CP-060468	1463		Correction to S-CSCF procedures for UE-originated requests	7.4.0	7.5.0	C1-061646
2006-09	CP-33	CP-060468	1464	1	SCTP transport	7.4 .0	7.5.0	C1-061766
2006-09	CP-33	CP-060504	1257	4	SDP usage at MGCF	7.4.0	7.5 .0	C1-061847
2006-09	CP-33	CP-060504	1417	1	Type 3 orig-ioi in I-CSCF	7.4 .0	7.5.0	C1-061744
2006-09	CP-33	CP-060504	1469		SDP corrections	7.4.0	7.5 .0	C1-061659
2006-09	CP-33	CP-060504	1471		SDP completion	7.4 .0	7.5.0	C1-061661
2006-09	CP-33	CP-060504	1478	1	Updates to Profile Tables UE Major Capabilities	7.4.0	7.5.0	C1-061754
2006-09	CP-33	CP-060504	1481		Removal of Editor's notes in 24.229, rel-6	7.4.0	7.5.0	C1-061745
2006-09	CP-33	CP-060504	1483		Final codec selection	7.4.0	7.5 .0	C1-061850
2006-09	CP-33	CP-060526	1418	3	Originating requests on behalf of an unregistered user	7.4.0	7.5.0	C1-061758
2006-09					Version 7.5 .1 created by MCC to correct styles	7.5.0	7.5.1	
2006-12	CP-34	CP-060655	1502	-	RFC reference update	7.5.1	7.6 .0	C1-061977
2006-12	CP-34	CP-060655	1506	-	SDP group attribute correction	7.5.1	7.6 .0	C1-061981
2006-12	CP-34	CP-060655	1504	1	Addressing editor's notes relating to trust domains	7.5.1	7.6 .0	C1-062304
2006-12	CP-34	CP-060655	1546	-	Join header correction	7.5.1	7.6 .0	C1-062205
2006-12	CP-34	CP-060655	1508	2	Processing the successful response at S-CSCF	7.5.1	7.6 .0	C1-062434
2006-12	CP-34	CP-060655	1449	2	Correction of S-CSCF construction and UE interpretation of registration event notification	7.5.1	7.6 .0	C1-062317
2006-12	CP-34	CP-060655	1514	1	Removal of more Editor's notes in 24.229, rel-6	7.5.1	7.6 .0	C1-062310
2006-12	CP-34	CP-060659	1491	2	Location handling for emergency	7.5.1	7.6 .0	C1-062437
2006-12	CP-34	CP-060659	1521	1	Location information for IMS emergency	7.5.1	7.6 .0	C1-062293
2006-12	CP-34	CP-060659	1529	2	Emergency re-registration due to mobility	7.5.1	7.6 .0	C1-062436
2006-12	CP-34	CP-060659	1515	1	Removal of Editor's notes on emergency call in clause 4	7.5.1	7.6.0	C1-062292
2006-12	CP-34	CP-060659	1484	1	Corrections to emergency call procedures for P -Asserted-Identity header	7.5.1	7.6.0	C1-062289
2006-12	CP-34	CP-060659	1543	-	Next hop is the BGCF	7.5.1	7.6 .0	C1-062181
2006-12	CP-34	CP-060659	1536	-	Editorial corrections to emergency call text	7.5.1	7.6 .0	C1-062142
2006-12	CP-34	CP-060659	1542	1	minor correction to EMC of UE and PCSCF	7.5.1	7.6 .0	C1-062299
2006-12	CP-34	CP-060659	1490	2	Emergency call on existing registration	7.5.1	7.6 .0	C1-062435

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2006-12	CP-34	CP-060660	1486	2	Introduction of communication service concept in TS 24229	7.5.1	7.6.0	C1-062451
2006-12	CP-34	CP-060662	1494	1	Tel URI translation	7.5.1	7.6.0	C1-062325
2006-12	CP-34	CP-060662	1523	1	I-CSCF procedure	7.5.1	7.6.0	C1-062333
2006-12	CP-34	CP-060662	1544	-	Clarification of UEs initial SDP offer	7.5.1	7.6.0	C1-062189
2006-12	CP-34	CP-060662	1493	1	Alias URI	7.5.1	7.6.0	C1-062324
2006-12	CP-34	CP-060662	1525	1	Clarification of iFC execution for UE-terminated requests at S-CSCF	7.5.1	7.6.0	C1-062334
2006-12	CP-34	CP-060662	1533	1	SIP response code to unknown method	7.5.1	7.6.0	C1-062336
2006-12	CP-34	CP-060662	1537	-	Originating requests on behalf of an unregistered user	7.5.1	7.6.0	C1-062143
2006-12	CP-34	CP-060662	1538	-	Treatment by S-CSCF of profile changes for registered PUls	7.5.1	7.6.0	C1-062144
2006-12	CP-34	CP-060662	1547	-	Corrections to Profile table for RFC 4320 compliance	7.5.1	7.6.0	C1-062210
2006-12	CP-34	CP-060662	1539	-	Miscellaneous editorial corrections	7.5.1	7.6.0	C1-062145
2006-12	CP-34	CP-060662	1509	1	No-forking at AS	7.5.1	7.6.0	C1-062329
2006-12	CP-34	CP-060662	1528	2	P-Visited-Network-ID on ISC interface	7.5.1	7.6.0	C1-062442
2006-12	CP-34	CP-060662	1487	1	Introduction of P-Profile Key in TS 24.229	7.5.1	7.6.0	C1-062322
2006-12	CP-34	CP-060662	1522	1	Local numbering	7.5.1	7.6.0	C1-062338
2006-12	CP-34	CP-060662	1495	2	BGCF procedures	7.5.1	7.6.0	C1-062440
2006-12	CP-34	CP-060662	1498	2	AS acting as PSI	7.5.1	7.6.0	C1-062441
2006-12	CP-34	CP-060662	1524	-	Clarification of the URI in UE-terminating requests at the P-CSCF	7.5.1	7.6.0	C1-062061
2006-12	CP-34	CP-060662	1549	1	Core Network Service Authorizatrion	7.5.1	7.6.0	C1-062339
2006-12	CP-34	CP-060663	1527	3	Align with GRUU IETF draft 11	7.5.1	7.6.0	C1-062512
2006-12	CP-34	CP-060663	1496	1	I-CSCF processing GRUU	7.5.1	7.6.0	C1-062340
2006-12	CP-34	CP-060663	1497	1	S-CSCF processing GRUU	7.5.1	7.6.0	C1-062341
2006-12	CP-34	CP-060663	1422	3	GRUU processing by non-UE User Agents	7.5.1	7.6.0	C1-062343
2006-12	CP-34	CP-060667	1426	3	Allowing an asserted display name to be conveyed with a Public Identity	7.5.1	7.6.0	C1-062427
2006-12	CP-34	CP-060667	1429	4	Update to NAT Traversal procedures in support of Outbound and ICE	7.5.1	7.6.0	C1-062515
2006-12	CP-34	CP-060667	1540	2	Annex I (Transit IMS) improvements	7.5.1	7.6.0	C1-062516
2007-03	CP-35	CP-070130	1566	-	Session Establishment Interworking with Rel-5 UEs	7.6 .0	7.7.0	C1-070052
2007-03	CP-35	CP-070130	1638	-	Inclusion of draft-ietf-sip-uri-list-message in SIP profile	7.6.0	7.7.0	C1-070266
2007-03	CP-35	CP-070130	1619	-	Clarifications on resource reservation	7.6 .0	7.7.0	C1-070180
2007-03	CP-35	CP-070130	1621	1	Routeing B2BUA handling of Replaces header	7.6.0	7.7.0	C1-070439
2007-03	CP-35	CP-070132	1609	-	Establishing an emergency session	7.6.0	7.7.0	C1-070147
2007-03	CP-35	CP-070132	1575	-	Deletion of editors note in subclause 5.1.6.5	7.6.0	7.7.0	C1-070068

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2007-03	CP-35	CP-070132	1639	-	Identification of emergency calls	7.6.0	7.7 .0	C1-070276
2007-03	CP-35	CP-070132	1593	1	Limitation on Emergency Registration	7.6 .0	7.7 .0	C1-070424
2007-03	CP-35	CP-070132	1586	1	Tidyup UE clause	7.6 .0	7.7 .0	C1-070418
2007-03	CP-35	CP-070132	1654	1	Double reference removal	7.6 .0	7.7 .0	C1-070381
2007-03	CP-35	CP-070132	1605	1	Emergency PUID	7.6 .0	7.7 .0	C1-070419
2007-03	CP-35	CP-070132	1569	1	Handling of parallel emergency registration	7.6 .0	7.7 .0	C1-070413
2007-03	CP-35	CP-070132	1574	1	Deletion of editors note in subclause 5.1.6.2	7.6 .0	7.7 .0	C1-070414
2007-03	CP-35	CP-070132	1568	1	Connecting to an Emergency APN	7.6 .0	7.7 .0	C1-070409
2007-03	CP-35	CP-070132	1581	1	Deletion of Editor's notes in 5.2.10	7.6 .0	7.7 .0	C1-070416
2007-03	CP-35	CP-070132	1641	-	Correction of service-urn	7.6 .0	7.7 .0	C1-070278
2007-03	CP-35	CP-070132	1589	-	Correction of CR\#1484r1 implementation error (subclause 5.1.6.8.3)	7.6.0	7.7.0	C1-070111
2007-03	CP-35	CP-070132	1610	-	Emergency session-no registration	7.6 .0	7.7 .0	C1-070148
2007-03	CP-35	CP-070134	1612	2	Emergency treatment at P-CSCF	7.6 .0	7.7 .0	C1-070563
2007-03	CP-35	CP-070134	1635	1	Remove the term ESRP	7.6 .0	7.7 .0	C1-070430
2007-03	CP-35	CP-070134	1607	2	Emergency call at P-CSCF	7.6 .0	7.7 .0	C1-070443
2007-03	CP-35	CP-070134	1632	1	Backward compatibility for using 380 response	7.6 .0	7.7 .0	C1-070429
2007-03	CP-35	CP-070134	1653	3	Location for emergency	7.6 .0	7.7 .0	C1-070618
2007-03	CP-35	CP-070134	1626	1	Handling of re-registration when user redial emergency number	7.6.0	7.7.0	C1-070426
2007-03	CP-35	CP-070134	1582	2	Deletion of editors notes in 5.11 and 5.4.8	7.6 .0	7.7 .0	C1-070615
2007-03	CP-35	CP-070134	1567	3	Home Network Indication for Emergency Calls	7.6 .0	7.7 .0	C1-070640
2007-03	CP-35	CP-070134	1631	2	Correction to emergency call procedure with nonemergency registration for P -Asserted-Identity header	7.6 .0	7.7.0	C1-070617
2007-03	CP-35	CP-070137	1634	1	Profile definition for CSI application server	7.6 .0	7.7 .0	C1-070469
2007-03	CP-35	CP-070138	1660	1	Format of dsl-location	7.6 .0	7.7 .0	C1-070552
2007-03	CP-35	CP-070138	1595	1	Deletion of EN's in clause 5.10	7.6 .0	7.7 .0	C1-070547
2007-03	CP-35	CP-070138	1594	-	Deletion of EN's in Annex G	7.6 .0	7.7 .0	C1-070132
2007-03	CP-35	CP-070139	1613	2	Annex K NAT Traversal Procedural and References Updates	7.6.0	7.7.0	C1-070626
2007-03	CP-35	CP-070139	1617	1	Routing of SIP URI "user=phone" when domain doesn't own target user	7.6.0	7.7.0	C1-070551
2007-03	CP-35	CP-070139	1614	1	Annex A updates for Annex K NAT Traversal Procedurals	7.6.0	7.7.0	C1-070550
2007-03	CP-35	CP-070140	1598	1	Forked MESSAGE request	7.6 .0	7.7 .0	C1-070451
2007-03	CP-35	CP-070140	1558	1	Removal of notes for screening functionality	7.6 .0	7.7 .0	C1-070441
2007-03	CP-35	CP-070140	1556	1	Handling of special characters in the local service number	7.6.0	7.7.0	C1-070458
2007-03	CP-35	CP-070140	1655	2	Forwarding a request by transit functions in the SCSCF	7.6.0	7.7.0	C1-070586

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2007-03	CP-35	CP-070140	1587	1	Terminating case in S-CSCF	7.6.0	7.7.0	C1-070449
2007-03	CP-35	CP-070140	1559	-	Completion of SIP timers functionality	7.6.0	7.7.0	C1-070039
2007-03	CP-35	CP-070140	1588	1	P-User-Database	7.6.0	7.7 .0	C1-070450
2007-03	CP-35	CP-070140	1560	1	Removal of notes for SIGCOMP functionality	7.6.0	7.7 .0	C1-070442
2007-03	CP-35	CP-070140	1557	-	Removal of normative statements in NOTEs	7.6.0	7.7 .0	C1-070037
2007-03	CP-35	CP-070140	1604	1	Forwarding P-Charging-Vector outside the home network	7.6.0	7.7.0	C1-070453
2007-03	CP-35	CP-070140	1555	1	Removal of Editor's notes for message bodies	7.6.0	7.7 .0	C1-070440
2007-03	CP-35	CP-070140	1652	-	Correction for local numbers	7.6.0	7.7.0	C1-070341
2007-03	CP-35	CP-070140	1601	-	Tel URI translation	7.6.0	7.7 .0	C1-070139
2007-03	CP-35	CP-070140	1646	1	Align definition of Alias URI with the description in 23.228	7.6.0	7.7.0	C1-070455
2007-03	CP-35	CP-070140	1600	2	Dual IP addresses	7.6.0	7.7.0	C1-070584
2007-03	CP-35	CP-070142	1642	-	SIP extensions covering URI-lists	7.6.0	7.7 .0	C1-070279
2007-03	CP-35	CP-070148	1564	1	Network Initiated / Modified Media PDP Contexts	7.6.0	7.7 .0	C1-070447
2007-03	CP-35	CP-070149	1643	-	SDP usage in association with BFCP (additions to SDP profile)	7.6.0	7.7.0	C1-070282
2007-03	CP-35	CP-070151	1648	2	S-CSCF inserts P-Called-Party-ID before forwarding request towards served user	7.6.0	7.7.0	C1-070588
2007-03	CP-35	CP-070151	1597	1	Instance ID	7.6.0	7.7 .0	C1-070461
2007-03	CP-35	CP-070151	1615	1	Signaling Public User Identity to AS when request URI is Temp-GRUU	7.6.0	7.7.0	C1-070463
2007-03	CP-35	CP-070214	1640	3	Location conveyance revisions	7.6.0	7.7 .0	
2007-03	CP-35	CP-070242	1576	3	Deletion of editors notes in subclauses 5.1.6.8.2, 5.1.6.8.3, 5.1.6.8.4	7.6.0	7.7.0	
2007-03	CP-35	CP-070252	1658	4	Profile for IBCF	7.6.0	7.7.0	
2007-03	CP-35	CP-070254	1580	3	PCC introduction to TS 24.229	7.6.0	7.7 .0	
2007-03	CP-35	CP-070255	1630	3	Corrections for the handling of target refresh requests at the S-CSCF	7.6.0	7.7.0	
2007-03	CP-35	CP-070271	1623	5	Further alignment with phonebcp draft	7.6.0	7.7 .0	
2007-06	CP-36	CP-070370	1749	1	Correction of coding rules of P-Access-Network-Info header	7.7.0	7.8.0	C1-071435
2007-06	CP-36	CP-070370	1689	2	Inclusion of "addressing an amplification vulnerability in session initiation protocol forking proxies" (draft-ietf-sip-fork-loop-fix) in the SIP profile	7.7.0	7.8 .0	C1-071409
2007-06	CP-36	CP-070373	1666	2	Protocol between E-CSCF and LRF	7.7.0	7.8 .0	C1-071040
2007-06	CP-36	CP-070373	1690	-	Further alignment with phonebcp draft	7.7.0	7.8 .0	C1-070779
2007-06	CP-36	CP-070373	1763	1	Emergency registration clarification	7.7.0	7.8 .0	C1-071441
2007-06	CP-36	CP-070373	1665	1	Definition of identities used for emergency call	7.7.0	7.8 .0	C1-070957
2007-06	CP-36	CP-070374	1714	1	Alignment of layout of access technology specific annexes	7.7.0	7.8.0	C1-071032
2007-06	CP-36	CP-070374	1715	1	GPRS IP-CAN change of normative requirement out	7.7 .0	7.8 .0	C1-071033

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
					of scope to informative			
2007-06	CP-36	CP-070374	1732	2	Clarification on iFC execution	7.7.0	7.8.0	C1-071460
2007-06	CP-36	CP-070374	1721	1	UE un-subscribing to reg-event	7.7.0	7.8 .0	C1-071419
2007-06	CP-36	CP-070374	1722	-	MO Record-Route at P-CSCF	7.7.0	7.8 .0	C1-071051
2007-06	CP-36	CP-070374	1723	1	MT Record-Route at P-CSCF	7.7 .0	7.8 .0	C1-071420
2007-06	CP-36	CP-070374	1727	1	Double registration	7.7.0	7.8 .0	C1-071422
2007-06	CP-36	CP-070374	1730	1	Inclusion of new mandatory elements of SigComp	7.7.0	7.8 .0	C1-071423
2007-06	CP-36	CP-070374	1731	1	Use of a presence specific dictionary in SigComp	7.7.0	7.8.0	C1-071424
2007-06	CP-36	CP-070374	1720	1	Registration and deregistration	7.7.0	7.8.0	C1-071418
2007-06	CP-36	CP-070374	1746	1	Correction to P-CSCF procedures for cancellation of a session currently being established	7.7.0	7.8.0	C1-071431
2007-06	CP-36	CP-070374	1762	1	Originating a terminating request in an AS	7.7.0	7.8.0	C1-071433
2007-06	CP-36	CP-070374	1769	2	Clarification to Original Dialog Identifier	7.7.0	7.8 .0	C1-071463
2007-06	CP-36	CP-070374	1761	-	Local numbering clarification	7.7 .0	7.8 .0	C1-071196
2007-06	CP-36	CP-070374	1760	1	PANI related corrections	7.7.0	7.8 .0	C1-071437
2007-06	CP-36	CP-070374	1743	1	The precondition mechanism may be required in subsequent SDP offer/answer exchanges	7.7.0	7.8 .0	C1-071430
2007-06	CP-36	CP-070374	1772	-	Minor miscellaneous clean-up	7.7.0	7.8 .0	C1-071231
2007-06	CP-36	CP-070374	1739	1	P-CSCF processing of P-Early-Media	7.7.0	7.8.0	C1-071428
2007-06	CP-36	CP-070374	1738	3	Originating UE sending of P-Early-Media	7.7.0	7.8.0	C1-071462
2007-06	CP-36	CP-070374	1737	2	Originating UE processing of P-Early-Media	7.7.0	7.8.0	C1-071461
2007-06	CP-36	CP-070375	1692	-	Profile support for a session initiation protocol event package and data format for various settings in support for the push-to-talk over cellular service (RFC4354)	7.7.0	7.8.0	C1-070781
2007-06	CP-36	CP-070375	1562	4	Completion of Phone-context parameter in rel-7	7.7.0	7.8.0	C1-071009
2007-06	CP-36	CP-070375	1700	-	Translation of non-international format numbers	7.7.0	7.8.0	C1-070810
2007-06	CP-36	CP-070375	1680	-	Outgoing Request URI=pres or IM URI processing clarification and misc clean-up	7.7.0	7.8.0	C1-070705
2007-06	CP-36	CP-070375	1691	1	Profile support for the P-Answer-State header extension to the session initiation protocol for the open mobile alliance push to talk over cellular (draft-allen-sipping-poc-p-answer-state-header)	7.7.0	7.8.0	C1-070987
2007-06	CP-36	CP-070375	1678	1	Qvalue	7.7.0	7.8 .0	C1-070984
2007-06	CP-36	CP-070375	1704	-	Minor miscellaneous clean-up	7.7.0	7.8 .0	C1-070824
2007-06	CP-36	CP-070375	1703	-	Filter criteria evaluation when the AS changes the P-Asserted-Identity	7.7.0	7.8.0	C1-070823
2007-06	CP-36	CP-070378	1718	1	Addition to network initiated PDP context	7.7.0	7.8 .0	C1-071346
2007-06	CP-36	CP-070380	1679	-	Cleanup of Signaling Public GRUU to AS	7.7.0	7.8.0	C1-070704
2007-06	CP-36	CP-070380	1663	-	Provide GRUU functionality in case of hosted NAT	7.7.0	7.8 .0	C1-070663
2007-06	CP-36	CP-070380	1756	1	GRUU Alignment with stage 2	7.7 .0	7.8 .0	C1-071456

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2007-06	CP-36	CP-070380	1686	2	Alternate GRUU for AS acting on behalf of Public User Identity	7.7 .0	7.8.0	C1-071010
2007-06	CP-36	CP-070380	1713	2	Cleanup of GRUU	7.7 .0	7.8.0	C1-071238
2007-06	CP-36	CP-070380	1766	1	Management of GRUU	7.7 .0	7.8.0	C1-071457
2007-06	CP-36	CP-070380	1711	2	Use of GRUU for Emergency Sessions	7.7 .0	7.8.0	C1-071458
2007-06	CP-36	CP-070383	1773	-	IMS Communication Service ID registration	7.7 .0	7.8.0	C1-071234
2007-06	CP-36	CP-070383	1645	6	IMS Communication Service ID 24.229	7.7 .0	7.8.0	C1-071475
2007-06	CP-36	CP-070388	1735	2	Correction on the handling of CPC parameter regarding trust domain	7.7.0	7.8.0	C1-071464
2007-06	CP-36	CP-070388	1662	-	Tidyup open issues from FBI work item	7.7 .0	7.8.0	C1-070662
2007-06	CP-36	CP-070388	1596	5	Update to NAT Traversal procedures in support of Outbound and ICE	7.7.0	7.8.0	C1-071400
2007-06	CP-36	CP-070388	1740	1	IBCF processing of P-Early-Media	7.7 .0	7.8.0	C1-071404
2007-06	CP-36	CP-070388	1742	1	IBCF Path header	7.7 .0	7.8.0	C1-071405
2007-06	CP-36	CP-070436	1696	3	Endorsement of P-Early-Media header draft	7.7 .0	7.8.0	
2007-06	CP-36	CP-070447	1698	3	Report of new transit scenario documented in stage 2	7.7.0	7.8.0	-
2007-06	CP-36	CP-070450	1771	3	THIG processing correction to ensure conformity to RFC 3261	7.7.0	7.8.0	-
2007-06	CP-36	CP-070496	1717	4	PCC impact	7.7 .0	7.8.0	-
2007-09	CP-37	CP-070578	1810		Integrity param in De- and ReREGISTER	7.8 .0	7.9.0	C1-071572
2007-09	CP-37	CP-070578	1944		Correction of the Authorization Header in the Profile Table	7.8 .0	7.9.0	C1-072084
2007-09	CP-37	CP-070579	1904	2	Clarification of DTD	7.8 .0	7.9.0	C1-072149
2007-09	CP-37	CP-070580	1875		IETF reference updates	7.8 .0	7.9.0	C1-071771
2007-09	CP-37	CP-070580	1921	1	Optional rport parameter in UE	7.8 .0	7.9.0	C1-072038
2007-09	CP-37	CP-070580	1923	1	P-Access-Network-Info header clarification	7.8 .0	7.9.0	C1-072041
2007-09	CP-37	CP-070580	1794	1	Unprotected registration at UE	7.8 .0	7.9.0	C1-072048
2007-09	CP-37	CP-070580	1796	1	Unprotected registration at S-CSCF	7.8 .0	7.9.0	C1-072051
2007-09	CP-37	CP-070584	1865		Emergency Registration without eAPN	7.8 .0	7.9.0	C1-071727
2007-09	CP-37	CP-070585	1877		IETF reference updates relating to emergency call feature	7.8 .0	7.9.0	C1-071775
2007-09	CP-37	CP-070585	1893		Emergency registration timer in visited network	7.8 .0	7.9.0	C1-071807
2007-09	CP-37	CP-070585	1914		Contents of From header when initiating an emergency session within a emergency registration	7.8.0	7.9.0	C1-071844
2007-09	CP-37	CP-070585	1891	1	Correction of emergency procedures unregistered user case	7.8 .0	7.9.0	C1-072017
2007-09	CP-37	CP-070586	1839		Correction of application server handling of ICSI and IARI values	7.8.0	7.9.0	C1-071675
2007-09	CP-37	CP-070586	1825	1	Cleanup of text related to contact header dealing with ICSI	7.8 .0	7.9.0	C1-071941
2007-09	CP-37	CP-070586	1833	1	ICSI Alignments with reqs 2, 3 and 11	7.8 .0	7.9.0	C1-071946

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2007-09	CP-37	CP-070586	1841	1	S-CSCF option to add P-Asserted-Service in UEoriginated case	7.8 .0	7.9.0	C1-071951
2007-09	CP-37	CP-070586	1862	1	Correction for the URNs of IMS Communication Service Identifier and IMS Application Reference Identifier	7.8 .0	7.9.0	C1-071955
2007-09	CP-37	CP-070586	1906	2	Definition of feature tag for IARI/ICSI	7.8 .0	7.9.0	C1-072005
2007-09	CP-37	CP-070586	1837	2	Description of the ICSI as an assigned identifier	7.8 .0	7.9.0	C1-072158
2007-09	CP-37	CP-070586	1908	2	Completing UE ICSI/IARI procedures	7.8 .0	7.9.0	C1-072161
2007-09	CP-37	CP-070586	1910	2	Completing S-CSCF ICSI/IARI procedures	7.8 .0	7.9.0	C1-072163
2007-09	CP-37	CP-070586	1941	1	UE usage of ServidelD received from the network	7.8 .0	7.9.0	C1-072180
2007-09	CP-37	CP-070590	1855		Clarification on P-Profile-Key	7.8 .0	7.9.0	C1-071701
2007-09	CP-37	CP-070590	1880		IETF SigComp reference updates	7.8 .0	7.9.0	C1-071778
2007-09	CP-37	CP-070590	1933		SIP related reference update	7.8 .0	7.9.0	C1-071887
2007-09	CP-37	CP-070590	1792	1	Protected registration	7.8 .0	7.9.0	C1-072045
2007-09	CP-37	CP-070590	1798	1	Unprotected registration at P-CSCF	7.8 .0	7.9.0	C1-072053
2007-09	CP-37	CP-070590	1803	1	No multiple simultanous Registration	7.8 .0	7.9.0	C1-072055
2007-09	CP-37	CP-070590	1831	1	Essential corrections to P-Early-Media header procedures	7.8 .0	7.9.0	C1-072061
2007-09	CP-37	CP-070590	1863	1	Corrections of tables in Annex A	7.8 .0	7.9.0	C1-072064
2007-09	CP-37	CP-070590	1716	5	Removal of IBCF Route Headers Editors Note	7.8 .0	7.9.0	C1-072072
2007-09	CP-37	CP-070590	1806	2	Trust Domain in IMS	7.8 .0	7.9.0	C1-072175
2007-09	CP-37	CP-070592	1816		Resolve FFS for AS-GRUU	7.8 .0	7.9.0	C1-071580
2007-09	CP-37	CP-070596	1884	2	Update Emergency NAT Traversal Procedures Annex K	7.8 .0	7.9.0	C1-072077
2007-09	CP-37	CP-070596	1888	2	Update ICE/Outbound draft references and Annex K	7.8 .0	7.9.0	C1-072079
2007-09	CP-37	CP-070651	1882	2	Update GRUU NAT Traversal Procedures Annex-K	7.8 .0	7.9.0	
2007-09	CP-37	CP-070674	1790	2	Emergency registration	7.8 .0	7.9.0	C1-072015
2007-09	CP-37	CP-070674	1946	1	Priority in emergency calls	7.8 .0	7.9.0	C1-072155
2007-09	CP-37	CP-070676	1850	4	P-CSCF behaviour upon loss of SIP signalling transport	7.8 .0	7.9.0	C1-072177
2007-09	CP-37	CP-070690	1925	5	UE setting of IARI	7.8 .0	7.9.0	C1-072165
2007-12	CP-38	CP-070734	2076	1	Update P-Early-Media Reference	7.9.0	7.10.0	C1-072749
2007-12	CP-38	CP-070785	2040	1	Corrections for re-authenticating user	7.9.0	7.10 .0	C1-072552
2007-12	CP-38	CP-070785	2114		Proxy profile corrections	7.9.0	7.10.0	C1-072921
2007-12	CP-38	CP-070785	2110		Corrections to RFC 3329 entries in profile	7.9.0	7.10.0	C1-072917
2007-12	CP-38	CP-070785	2048	3	Introduction of versioning and conventions	7.9.0	7.10.0	C1-072988
2007-12	CP-38	CP-070785	2064		Authenticating with AKAv1-MD5	7.9.0	7.10.0	C1-072532
2007-12	CP-38	CP-070788	2016	2	Action on missing "integrity-protected" parameter	7.9 .0	7.10.0	C1-073178
2007-12	CP-38	CP-070788	2034	1	MGCF does not act as a proxy	7.9 .0	7.10 .0	C1-072564

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2007-12	CP-38	CP-070788	2069	1	Correction to subclause 7.2A.5.2.2	7.9.0	7.10 .0	C1-073051
2007-12	CP-38	CP-070788	2075		Coverage of access technology specific text	7.9.0	7.10 .0	C1-072745
2007-12	CP-38	CP-070791	2119		Introductory text for emergency service	7.9.0	7.10 .0	C1-072929
2007-12	CP-38	CP-070791	2061	2	Miscellaneous EMC1 corrections	7.9.0	7.10 .0	C1-072747
2007-12	CP-38	CP-070791	1998	1	380 at normal call setup	7.9.0	7.10 .0	C1-072669
2007-12	CP-38	CP-070794	1989		Correct sub-section references in Annex-K	7.9.0	7.10 .0	C1-072294
2007-12	CP-38	CP-070794	2022		Correction of outbound and ice option tag support in profile tables	7.9.0	7.10 .0	C1-072382
2007-12	CP-38	CP-070795	1985	1	Align with draft-gruu-reg-ev-09	7.9.0	7.10 .0	C1-072751
2007-12	CP-38	CP-070795	2042	1	Addition of GRUU to emergency set-up when registration exists	7.9.0	7.10 .0	C1-072598
2007-12	CP-38	CP-070799	2066	1	P-CSCF Releases/Rejects session due to PCRF responses	7.9.0	7.10 .0	C1-073066
2007-12	CP-38	CP-070805	1950	1	Correction to the examples for ICSI and IARI values	7.9.0	7.10 .0	C1-072489
2007-12	CP-38	CP-070805	1962	1	Change of name for feature tag g.ims.app_ref	7.8.0	7.10 .0	C1-072491
2007-12	CP-38	CP-070805	1968	1	One ICSI value per P-Preferred-Service header	7.8.0	7.10 .0	C1-072495
2007-12	CP-38	CP-070805	2013	2	Encoding of ICSI and IARI within the g.ims.app_ref feature tag	7.9.0	7.10 .0	C1-072703
2007-12	CP-38	CP-070805	2020	1	Correction to digest and TLS Procedures for Annex K	7.9.0	7.10 .0	C1-072507
2007-12	CP-38	CP-070805	2052	2	Terminating UE ICSI procedures	7.9.0	7.10 .0	C1-072707
2007-12	CP-38	CP-070805	2050	1	Multiple IARI/ICSI values in g.ims.app_ref feature tag	7.9.0	7.10.0	C1-072511
2007-12	CP-38	CP-070806	2087		ICSI in Annex F	7.9.0	7.10 .0	C1-072840
2007-12	CP-38	CP-070806	1964	3	Minor corrections to P-Preferred and P-Asserted Service headers	7.9.0	7.10 .0	C1-073101
2007-12	CP-38	CP-070806	2091	2	$\begin{aligned} & \text { S-CSCF Processing of P-Preferred-Service and P- } \\ & \text { Asserted-Service } \end{aligned}$	7.9.0	7.10 .0	C1-073203
2007-12	CP-38	CP-070806	1975	2	Correction to S-CSCF handling of IMS communication service	7.9.0	7.10 .0	C1-072699
2007-12	CP-38	CP-070806	2007	2	Handling of invalid and unauthorized media based on Communication Service Identifiers	7.9.0	7.10 .0	C1-072701
2007-12	CP-38	CP-070806	2018	2	Miscellaneous service identifier corrections	7.9.0	7.10 .0	C1-073105
2007-12	CP-38	CP-070806	2106	2	The received list of ICSIs from the Network	7.9.0	7.10 .0	C1-073205
2007-12	CP-38	CP-070807	1954	1	Update of the reference for P-Profile-Key Private Header (P-Header)	7.9.0	7.10 .0	C1-072486
2007-12	CP-38	CP-070807	1960	3	Route header verification at P-CSCF	7.9.0	7.10 .0	C1-072682
2007-12	CP-38	CP-070807	2054		Update of P-Answer-State header draft Reference	7.9.0	7.10 .0	C1-072445
2007-12	CP-38	CP-070807	2004	1	No SIPS	7.9.0	7.10 .0	C1-072592
2007-12	CP-38	CP-070807	2011		Reference alignment	7.9.0	7.10 .0	C1-072363
2007-12	CP-38	CP-070807	2036	1	AS does not subscribe to reg-event package when user is unregistered	7.9.0	7.10 .0	C1-072596

Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2007-12	CP-38	CP-070807	2044	2	Correction of mutually exclusive ICSI and GRUU	7.9.0	7.10 .0	C1-072705
2007-12	CP-38	CP-070808	2002	2	Service Profile Change	7.9.0	7.10 .0	C1-072717
2007-12	CP-38	CP-070808	2099	1	Access Network Info for I-WLAN	7.9.0	7.10 .0	C1-073074
2007-12	CP-38	CP-070808	2102	1	Access Network Info for 3GPP2/UMB	7.9.0	7.10 .0	C1-073056
2007-12	CP-38	CP-070808	1956	4	Correction to the IBCF subsection in relation with trusted domain	7.9.0	7.10 .0	C1-072686
2007-12	CP-38	CP-070808	2071	2	Correction to procedure when registration timer times out	7.9.0	7.10 .0	C1-073172
2007-12	CP-38	CP-070808	2056	2	Clarification of UE handling of the P-Early-Media header.	7.9.0	7.10 .0	C1-072722
2007-12	CP-38	CP-070863	1952	5	Clarifications on NW-init and resource reservation	7.9.0	7.10 .0	C1-073068
2007-12	CP-38	CP-070874	1996	4	Corrections for emergency procedures	7.9.0	7.10 .0	C1-072990
2008-03	CP-39	CP-080120	2148		Handling of the reason header in requests at the MGCF	7.10 .0	7.11 .0	C1-080044
2008-03	CP-39	CP-080126	2154	2	Clarification on the use of IARI in the contact header	7.10.0	7.11 .0	C1-080634
2008-03	CP-39	CP-080120	2161	1	Correction on handling of P-Charging-Vector at IBCF	7.10 .0	7.11.0	C1-080514
2008-03	CP-39	CP-080120	2173		Reference correction for RFC 4244	7.10 .0	7.11 .0	C1-080146
2008-03	CP-39	CP-080120	2175		SDP with precondition	7.10 .0	7.11 .0	C1-080148
2008-03	CP-39	CP-080120	2180	1	Correction of Alias	7.10.0	7.11 .0	C1-080516
2008-03	CP-39	CP-080126	2182	2	UE behaviour when no ICSI is contained in the Accept-Contact header	7.10 .0	7.11 .0	C1-080530
2008-03	CP-39	CP-080126	2200	2	Handling of Service ID in interworking cases	7.10.0	7.11 .0	C1-080629
2008-03	CP-39	CP-080198	2202	4	NAT traversal	7.10 .0	7.11 .0	C1-080627
2008-03	CP-39	CP-080200	2150	5	Handling of the reason header in responses	7.10 .0	7.11 .0	C1-080637
2008-06	CP-40	CP-080338	2271	1	Removal of Editor's notes from 24.229	7.11.0	7.12 .0	C1-081925
2008-06	CP-40	CP-080338	2229	1	Interaction IPSec with symmetric response routing	7.11 .0	7.12 .0	C1-081323
2008-06	CP-40	CP-080338	2287	1	Correction to de-registration procedure when registration expirated	7.11.0	7.12 .0	C1-081935
2008-06	CP-40	CP-080340	2214		Revision of references to documents from IETF ECRIT working group	7.11 .0	7.12 .0	C1-080853
2008-06	CP-40	CP-080341	2237	1	Removal of reason header annex	7.11.0	7.12.0	C1-081333
2008-06	CP-40	CP-080341	2242	1	Correction to P-CSCF session release procedures	7.11.0	7.12.0	C1-081335
2008-06	CP-40	CP-080341	2216	-	Revision of references to documents from IETF	7.11 .0	7.12 .0	C1-080857
2008-06	CP-40	CP-080341	2257	1	Correction on identifiers distinguishing the dialog	7.11.0	7.12.0	C1-081337
2008-06	CP-40	CP-080341	2274	2	Addition of AVPF support	7.11.0	7.12 .0	C1-082021
2008-06	CP-40	CP-080341	2276	1	Addition of the SDP Capability Negotiaion mechanism	7.11.0	7.12 .0	C1-081931
2008-06	CP-40	CP-080343	2157	6	Handling of SDP at the terminating UE	7.11.0	7.12 .0	C1-082048
2008-06	CP-40	CP-080344	2289		Correction of GRUU references	7.11 .0	7.12 .0	C1-081798
2008-06	CP-40	CP-080349	2283	2	Annex K Technical Corrections	7.11.0	7.12 .0	C1-082042

Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	WG doc
2008-06	CP-40	CP-080349	2235		Revision of references to documents from IETF SIP working group	7.11.0	7.12 .0	C1-080859
2008-06	CP-40	CP-080354	2279		Annex A : SIP Record-Route header table correction	7.11.0	7.12 .0	C1-081604
2008-06	CP-40	CP-080401	2295		IARI and ICSI in different feature tags	7.11.0	7.12.0	
2008-09	CP-41	CP-080515	2305	1	Annex A: Correction of SDP connection information	7.12.0	7.13 .0	C1-082610
2008-09	CP-41	CP-080517	2313		Addition of AVPF support and SDP capability negotiation mechanism	7.12 .0	7.13 .0	C1-082267
2008-09	CP-41	CP-080520	2315		Profile corrections for outbound	7.12.0	7.13 .0	C1-082269
2008-09	CP-41	CP-080520	2334		Update Outbound Reference	7.12 .0	7.13 .0	C1-082627
2008-09	CP-41	CP-080516	2335		Emergency PUID	7.12.0	7.13 .0	C1-082863
2008-09	CP-41	CP-080666	2339	3	Initial emergency registration	7.12 .0	7.13 .0	
2008-09	CP-41	CP-080516	2341	2	Emergency session set-up	7.12.0	7.13 .0	C1-083531
2008-09	CP-41	CP-080521	2343	1	P-CSCF handling of emergency sessions	7.12.0	7.13 .0	C1-083390
2008-09	CP-41	CP-080516	2345	2	S-CSCF handling of emergency registration	7.12.0	7.13 .0	C1-083533
2008-09	CP-41	CP-080514	2349	1	One contact address per UE	7.12.0	7.13.0	C1-083348
2008-09	CP-41	CP-080515	2361		SDP referencing error for IBCF (IMS-ALG)	7.12 .0	7.13 .0	C1-082926
2008-09	CP-41	CP-080515	2380		Alignment with current version of draft-ietf-sip-fork-loop-fix	7.12.0	7.13 .0	C1-083245
2008-09					Editorial change done by MCC	7.13.0	7.13.1	
2008-12	CP-42	CP-080843	2401	2	Reauthentification	7.13 .1	7.14.0	C1-084416
2008-12	CP-42	CP-080843	2422	1	Aligning initial INVITE request usage of Accept header field and profile tables	7.13.1	7.14.0	C1-084235
2008-12	CP-42	CP-080870	2433	1	SMSIP related changes for the profile tables	7.13 .1	7.14.0	C1-084201
2008-12	CP-42	CP-080856	2439	2	Adding reference to Internet Draft on sos URI parameter for emergency calls	7.13 .1	7.14.0	C1-085259
2008-12	CP-42	CP-080835	2445		Emergency call	7.13.1	7.14.0	C1-084648
2008-12	CP-42	CP-080843	2447	1	Deregistration in 200 (OK)	7.13.1	7.14 .0	C1-085434
2008-12	CP-42	CP-080869	2455		Correction of ICSI and IARI feature tag name	7.13.1	7.14 .0	C1-084688
2008-12	CP-42	CP-080841	2468		Reference updates (release 6 ietf dependencies)	7.13.1	7.14 .0	C1-084897
2008-12	CP-42	CP-080843	2470		Reference updates (release 7 ietf dependencies)	7.13.1	7.14 .0	C1-084902
2008-12	CP-42	CP-080843	2478		Inclusion of missing RFC 3351 reference	7.13 .1	7.14.0	C1-085010
2008-12	CP-42				Editorial cleanup by ETSI EditHelp! and MCC	7.13.1	7.14.0	

History

Document history		
V7.2.0	December 2005	Publication
V7.3.0	March 2006	Publication
V7.4.0	June 2006	Publication
V7.5.1	October 2006	Publication
V7.6.0	December 2006	Publication
V7.7.0	March 2007	Publication
V7.8.0	June 2007	Publication
V7.9.0	October 2007	Publication
V7.10.0	January 2008	Publication
V7.11.0	April 2008	Publication
V7.12.0	June 2008	Publication
V7.13.1	October 2008	Publication
V7.14.0	January 2009	Publication

