
ETSI TS 125 213 V8.1.0 (2008-10)

Technical Specification

Universal Mobile Telecommunications System (UMTS); Spreading and modulation (FDD) (3GPP TS 25.213 version 8.1.0 Release 8)

Reference
RTS/TSGR-0125213v810

Keywords
UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u>

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2008. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM, **TIPHON**TM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**TM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intell	lectual Property Rights	2
Forev	word	2
Forev	word	5
1	Scope	6
	•	
2	References	6
3	Symbols and abbreviations	
3.1	Symbols	
3.2	Abbreviations	6
4	Uplink spreading and modulation	7
4.1	Overview	
4.2	Spreading	
4.2.1	Dedicated physical channels	
4.2.1.		
4.2.1.		
4.2.1.		
4.2.2	PRACH	
4.2.2. 4.2.2.	1 1	
4.2.2 4.2.3	Void	
4.2.3	Code generation and allocation	
4.3.1	Channelisation codes	
4.3.1.		
4.3.1.		
4.3.1.		
4.3.1.		
4.3.1.		
4.3.1.		
4.3.1.	4 Void	20
4.3.1.		
4.3.2	Scrambling codes	
4.3.2.		
4.3.2.		
4.3.2.	\mathcal{E} 1	
4.3.2.	1 1	
4.3.2.		
4.3.2.		
4.3.2.		
4.3.3	PRACH preamble codes	
4.3.3.		
4.3.3.3 4.3.3.		
4.3.3. 4.3.4	Void	
4.4	Modulation	
4.4.1	Modulating chip rate	
4.4.2	Modulation	
5	Downlink spreading and modulation	
5.1	Spreading	
5.1.1	Modulation mapper	
5.1.1.		
5.1.1.		
5.1.1.3 5.1.2	3 64QAM	
5.1.2	IO combining	27
./. 1)	IO COMBINE	

5.1.4	Scrambling	27
5.1.5	Channel combining	27
5.2	Code generation and allocation	28
5.2.1	Channelisation codes	28
5.2.2	Scrambling code	29
5.2.3	Synchronisation codes	
5.2.3.1	Code generation	30
5.2.3.2	Code allocation of SSC	
5.3	Modulation	33
5.3.1	Modulating chip rate	33
5.3.2	Modulation	33
Annex	A (informative): Generalised Hierarchical Golay Sequences	34
A.1 A	Alternative generation	34
Annex	B (informative): Change history	35
History	· · · · · · · · · · · · · · · · · · ·	37

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document describes spreading and modulation for UTRA Physical Layer FDD mode.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TS 25.201: "Physical layer general description".
 [2] 3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)."
 [3] 3GPP TS 25.101: "UE Radio transmission and Reception (FDD)".
 [4] 3GPP TS 25.104: "UTRA (BS) FDD; Radio transmission and Reception".
 [5] 3GPP TS 25.308: "UTRA High Speed Downlink Packet Access (HSDPA); Overall description".
 [6] 3GPP TS 25.214: "Physical layer procedures (FDD)".
- [7] 3GPP TS 25.212: "Multiplexing and channel coding (FDD)".

3 Symbols and abbreviations

3.1 Symbols

For the purposes of the present document, the following symbols apply:

C_{ch,SF,n}: n:th channelisation code with spreading factor SF

 $C_{pre,n,s}$: PRACH preamble code for n:th preamble scrambling code and signature s

 $C_{\text{sig,s}}$: PRACH signature code for signature s

 $S_{dpch,n}$: n:th DPCCH/DPDCH uplink scrambling code $S_{r-pre,n}$: n:th PRACH preamble scrambling code $S_{r-msg,n}$: n:th PRACH message scrambling code

 $S_{dl,n}$: DL scrambling code

 C_{psc} : PSC code $C_{ssc,n}$: n:th SSC code

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

16QAM64QAM64 Quadrature Amplitude Modulation64 Quadrature Amplitude Modulation

AICH Acquisition Indicator Channel
BCH Broadcast Control Channel

CCPCH Common Control Physical Channel

CPICH Common Pilot Channel DCH Dedicated Channel

DPCH Dedicated Physical Channel
DPCCH Dedicated Physical Control Channel
DPDCH Dedicated Physical Data Channel
E-AGCH E-DCH Absolute Grant Channel

E-DPCCH E-DCH Dedicated Physical Control Channel
E-DPDCH E-DCH Dedicated Physical Data Channel
E-HICH E-DCH Hybrid ARQ Indicator Channel
E-RGCH E-DCH Relative Grant Channel

FDD Frequency Division Duplex

F-DPCH Fractional Dedicated Physical Channel

HS-DPCCH Dedicated Physical Control Channel (uplink) for HS-DSCH

HS-DSCH High Speed Downlink Shared Channel

HS-PDSCH High Speed Physical Downlink Shared Channel
HS-SCCH Shared Control Physical Channel for HS-DSCH
MBSFN MBMS over a Single Frequency Network

Mcps Mega Chip Per Second MICH MBMS Indication Channel

OVSF Orthogonal Variable Spreading Factor (codes)

PICH Page Indication Channel

PRACH Physical Random Access Channel
PSC Primary Synchronisation Code
RACH Random Access Channel
SCH Synchronisation Channel

SSC Secondary Synchronisation Code

SF Spreading Factor UE User Equipment

4 Uplink spreading and modulation

4.1 Overview

Spreading is applied to the physical channels. It consists of two operations. The first is the channelisation operation, which transforms every data symbol into a number of chips, thus increasing the bandwidth of the signal. The number of chips per data symbol is called the Spreading Factor (SF). The second operation is the scrambling operation, where a scrambling code is applied to the spread signal.

With the channelisation, data symbols on so-called I- and Q-branches are independently multiplied with an OVSF code. With the scrambling operation, the resultant signals on the I- and Q-branches are further multiplied by complex-valued scrambling code, where I and Q denote real and imaginary parts, respectively.

4.2 Spreading

4.2.1 Dedicated physical channels

The possible combinations of the maximum number of respective dedicated physical channels which may be configured simultaneously for a UE in addition to the DPCCH are specified in table 0. The actual UE capability may be lower than the values specified in table 0; the actual dedicated physical channel configuration is indicated by higher layer signalling. The actual number of configured DPDCHs, denoted $N_{max\text{-dpdch}}$, is equal to the largest number of DPDCHs from all the TFCs in the TFCS. $N_{max\text{-dpdch}}$ is not changed by frame-by-frame TFCI change or temporary TFC restrictions.

Table 0: Maximum number of simultaneously-configured uplink dedicated channels

	DPDCH	HS-DPCCH	E-DPDCH	E-DPCCH
Case 1	6	1	-	-
Case 2	1	1	2	1
Case 3	-	1	4	1

Figure 1 illustrates the principle of the spreading of uplink dedicated physical channels (DPCCH, DPDCHs, HSDPCCH, E-DPDCHs).

In case of BPSK modulation, the binary input sequences of all physical channels are converted to real valued sequences, i.e. the binary value "0" is mapped to the real value +1, the binary value "1" is mapped to the real value -1, and the value "DTX" (HS-DPCCH only) is mapped to the real value 0.

In case of 4PAM modulation, the binary input sequences of all E-DPDCH physical channels are converted to real valued sequences, i.e. a set of two consecutive binary symbols n_k , n_{k+1} (with $k \mod 2 = 0$) in each binary sequence is converted to a real valued sequence following the mapping described in Table 0A.

Table 0A: Mapping of E-DPDCH with 4PAM modulation

n_k , n_{k+1}	Mapped real value
00	0.4472
01	1.3416
10	-0.4472
11	-1.3416

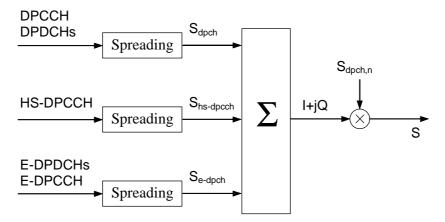


Figure 1: Spreading for uplink dedicated channels

The spreading operation is specified in subclauses 4.2.1.1 to 4.2.1.3 for each of the dedicated physical channels; it includes a spreading stage, a weighting stage, and an IQ mapping stage. In the process, the streams of real-valued chips on the I and Q branches are summed; this results in a complex-valued stream of chips for each set of channels.

As described in figure 1, the resulting complex-valued streams S_{dpch} , $S_{\text{hs-dpcch}}$ and $S_{\text{e-dpch}}$ are summed into a single complex-valued stream which is then scrambled by the complex-valued scrambling code $S_{\text{dpch,n}}$. The scrambling code shall be applied aligned with the radio frames, i.e. the first scrambling chip corresponds to the beginning of a radio frame.

NOTE: Although subclause 4.2.1 has been reorganized in this release, the spreading operation for the DPCCH, DPDCH remains unchanged as compared to the previous release.

4.2.1.1 DPCCH/DPDCH

Figure 1a illustrates the spreading operation for the uplink DPCCH and DPDCHs.

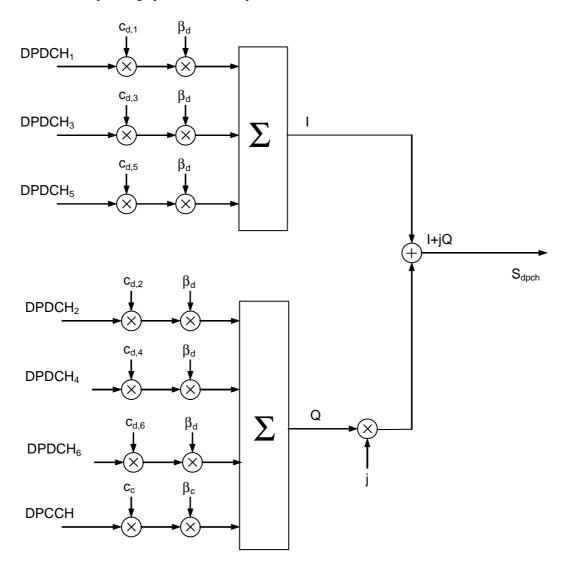


Figure 1A: Spreading for uplink DPCCH/DPDCHs

The DPCCH is spread to the chip rate by the channelisation code c_c . The n:th DPDCH called DPDCH_n is spread to the chip rate by the channelisation code $c_{d,n}$.

After channelisation, the real-valued spread signals are weighted by gain factors, β_c for DPCCH, β_d for all DPDCHs.

The β_c and β_d values are signalled by higher layers or derived as described in [6] 5.1.2.5 and 5.1.2.5C. At every instant in time, at least one of the values β_c and β_d has the amplitude 1.0. The β_c and β_d values are quantized into 4 bit words. The quantization steps are given in table 1.

Signalled values for $\beta_c \;$ and β_d	Quantized amplitude ratios β_c and β_d
15	1.0
14	14/15
13	13/15
12	12/15
11	11/15
10	10/15
9	9/15
8	8/15
7	7/15
6	6/15
5	5/15
4	4/15
3	3/15
2	2/15
1	1/15
0	Switch off

Table 1: The quantization of the gain parameters

4.2.1.2 HS-DPCCH

Figure 1b illustrates the spreading operation for the HS-DPCCH.

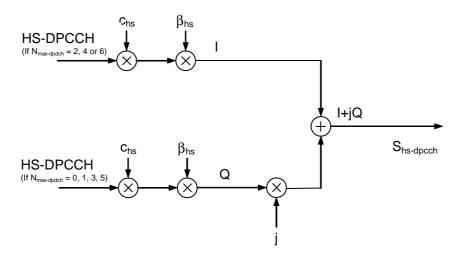


Figure 1B: Spreading for uplink HS-DPCCH

The HS-DPCCH shall be spread to the chip rate by the channelisation code chs.

After channelisation, the real-valued spread signals are weighted by gain factor β_{hs}

The β_{hs} values are derived from the quantized amplitude ratios A_{hs} which are translated from Δ_{ACK} , Δ_{NACK} and Δ_{CQI} signalled by higher layers as described in [6] 5.1.2.5A.

The translation of Δ_{ACK} , Δ_{NACK} and Δ_{CQI} into quantized amplitude ratios $A_{hs} = \beta_{hs}/\beta_c$ is shown in Table 1A.

Signalled values for Δ ACK, Δ_{NACK} and Δ_{CQI}	Quantized amplitude ratios $A_{hs} = \beta_{hs}/\beta_c$
9	38/15
8	30/15
7	24/15
6	19/15
5	15/15
4	12/15
3	9/15
2	8/15
1	6/15
0	5/15

Table 1A: The quantization of the power offset

HS-DPCCH shall be mapped to the I branch in case $N_{max-dpdch}$ is 2, 4 or 6, and to the Q branch otherwise ($N_{max-dpdch}$ = 0, 1, 3 or 5).

4.2.1.3 E-DPDCH/E-DPCCH

Figure 1C illustrates the spreading operation for the E-DPDCHs and the E-DPCCH.

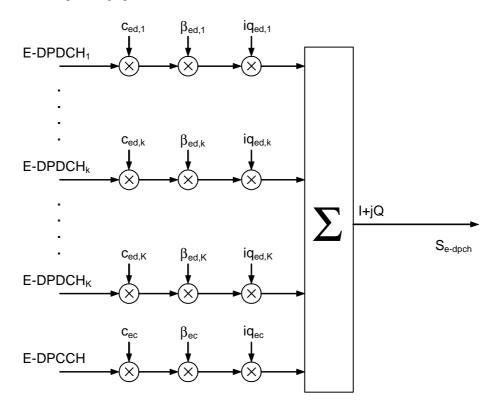


Figure 1C: Spreading for E-DPDCH/E-DPCCH

The E-DPCCH shall be spread to the chip rate by the channelisation code c_{ec} . The k:th E-DPDCH, denominated E-DPDCH_k, shall be spread to the chip rate using channelisation code $c_{ed,k}$.

After channelisation, the real-valued spread E-DPCCH and E-DPDCH_k signals shall respectively be weighted by gain factor β_{ec} and $\beta_{ed,k}$.

When E-TFCI \leq *E-TFCI*_{ec,boost}, where *E-TFCI*_{ec,boost} is signalled by higher layers, the value of β_{ec} shall be derived as specified in [6] based on the quantized amplitude ratio A_{ec} which is translated from $\Delta_{E-DPCCH}$ signalled by higher layers. The translation of $\Delta_{E-DPCCH}$ into quantized amplitude ratios $A_{ec} = \beta_{ec}/\beta_c$ is specified in Table 1B.

Table 1B: Quantization for $\Delta_{E-DPCCH}$ for E-TFCI ≤ $E-TFCI_{ec,boost}$

Signalled values for $\Delta_{E ext{-DPCCH}}$	Quantized amplitude ratios $A_{ec} = \beta_{ec}/\beta_c$
8	30/15
7	24/15
6	19/15
5	15/15
4	12/15
3	9/15
2	8/15
1	6/15
0	5/15

When E-TFCI > E-TFCI_{ec,boost}, in order to provide an enhanced phase reference, the value of β_{ec} shall be derived as specified in [6] based on a traffic to total pilot power offset Δ_{T2TP} , configured by higher layers as specified in Table 1B.0 and the quantization of the ratio β_{ec}/β_c as specified in Table 1B.0A.

Table 1B.0: Δ_{T2TP}

Signalled values for Δ_{T2TP}	Power offset values Δ _{T2TP} [dB]
6	16
5	15
4	14
3	13
2	12
1	11
0	10

Table 1B.0A: Quantization for β_{ed}/β_c for E-TFCI > E-TFCI_{ec,boost}

Overtine demoditor de notice	E DDD CH 111' 1
Quantized amplitude ratios	E-DPDCH modulation schemes
$eta_{ m ec}/eta_c$	which may be used in the same
	subframe
239/15	4PAM
190/15	4PAM
151/15	4PAM
120/15	BPSK, 4PAM
95/15	BPSK, 4PAM
76/15	BPSK, 4PAM
60/15	BPSK, 4PAM
48/15	BPSK, 4PAM
38/15	BPSK, 4PAM
30/15	BPSK, 4PAM
24/15	BPSK, 4PAM
19/15	BPSK, 4PAM
15/15	BPSK, 4PAM
12/15	BPSK, 4PAM
9/15	BPSK
8/15	BPSK, 4PAM
6/15	BPSK, 4PAM
5/15	BPSK

The value of $\beta_{\text{ed,k}}$ shall be computed as specified in [6] subclause 5.1.2.5B.2, based on the reference gain factors, the spreading factor for E-DPDCH_k, the HARQ offsets, and the quantization of the ratio $\beta_{\text{ed,k}}/\beta_c$ into amplitude ratios specified in Table 1B.2 for the case when E-TFCI \leq *E-TFCI*_{ec,boost} and Table 1.B.2B, for the case when E-TFCI > *E-TFCI*_{ec,boost}.

The reference gain factors are derived from the quantised amplitude ratios A_{ed} which is translated from $\Delta_{E\text{-DPDCH}}$ signalled by higher layers. The translation of $\Delta_{E\text{-DPDCH}}$ into quantized amplitude ratios $A_{ed} = \beta_{ed}/\beta_c$ is specified in Table 1B.1 for the case when E-TFCI \leq E-TFCI_{ec,boost} and Table 1.B.2A for the case when E-TFCI > E-TFCI_{ec,boost}

Table 1B.1: Quantization for $\Delta_{E-DPDCH}$ for E-TFCI $\leq E-TFCI_{ec,boost}$

Signalled values for Δ E-DPDCH	Quantized amplitude ratios $A_{ed} = \beta_{ed}/\beta_c$	E-DPDCH modulation schemes which may be used in the same
E-DPDCH	~ea − Peα·Pc	subframe
29	168/15	BPSK
28	150/15	BPSK
27	134/15	BPSK
26	119/15	BPSK
25	106/15	BPSK
24	95/15	BPSK
23	84/15	BPSK
22	75/15	BPSK
21	67/15	BPSK
20	60/15	BPSK
19	53/15	BPSK, 4PAM
18	47/15	BPSK, 4PAM
17	42/15	BPSK, 4PAM
16	38/15	BPSK, 4PAM
15	34/15	BPSK, 4PAM
14	30/15	BPSK, 4PAM
13	27/15	BPSK, 4PAM
12	24/15	BPSK, 4PAM
11	21/15	BPSK, 4PAM
10	19/15	BPSK, 4PAM
9	17/15	BPSK
8	15/15	BPSK
7	13/15	BPSK
6	12/15	BPSK
5	11/15	BPSK
4	9/15	BPSK
3	8/15	BPSK
2	7/15	BPSK
1	6/15	BPSK
0	5/15	BPSK

Table 1B.2: Quantization for $\beta_{ed,k}/\beta_c$ for E-TFCI \leq *E-TFCI*_{ec,boost}

Quantized amplitude ratios	E-DPDCH modulation schemes
$oldsymbol{eta_{ m ed,k}}oldsymbol{eta_c}$	which may be used in the
<i>- 50,11-7-0</i>	same subframe
168/15	BPSK
150/15	BPSK
134/15	BPSK
119/15	BPSK
106/15	BPSK
95/15	BPSK
84/15	BPSK
75/15	BPSK
67/15	BPSK
60/15	BPSK
53/15	BPSK, 4PAM
47/15	BPSK, 4PAM
42/15	BPSK, 4PAM
38/15	BPSK, 4PAM
34/15	BPSK, 4PAM
30/15	BPSK, 4PAM
27/15	BPSK, 4PAM
24/15	BPSK, 4PAM
21/15	BPSK, 4PAM
19/15	BPSK, 4PAM
17/15	BPSK
15/15	BPSK
13/15	BPSK
12/15	BPSK
11/15	BPSK
9/15	BPSK
8/15	BPSK
7/15	BPSK
6/15	BPSK
5/15	BPSK

Table 1B.2A: Quantization for $\Delta_{\text{E-DPDCH}}$ for E-TFCI > *E-TFCI*_{ec,boost}

Signalled values for \$\Delta_{E-DPDCH}\$	Quantized amplitude ratios $A_{ed} = \beta_{ed}/\beta_c$	E-DPDCH modulation schemes which may be used in the same subframe
31	377/15	4PAM
30	336/15	4PAM
29	299/15	4PAM
28	267/15	BPSK, 4PAM
27	237/15	BPSK, 4PAM
26	212/15	BPSK, 4PAM
25	189/15	BPSK, 4PAM
24	168/15	BPSK, 4PAM
23	150/15	BPSK, 4PAM
22	134/15	BPSK, 4PAM
21	119/15	BPSK, 4PAM
20	106/15	BPSK, 4PAM
19	95/15	BPSK, 4PAM
18	84/15	BPSK, 4PAM
17	75/15	BPSK, 4PAM
16	67/15	BPSK, 4PAM
15	60/15	BPSK, 4PAM
14	53/15	BPSK, 4PAM
13	47/15	BPSK, 4PAM
12	42/15	BPSK, 4PAM
11	38/15	BPSK
10	34/15	BPSK
9	30/15	BPSK
8	27/15	BPSK
7	24/15	BPSK
6	21/15	BPSK
5	19/15	BPSK
4	17/15	BPSK
3	15/15	BPSK
2	13/15	BPSK
1	11/15	BPSK
0	8/15	BPSK

Table 1B.2B: Quantization for $\beta_{ed,k}/\beta_c$ for E-TFCI > E-TFCI_{ec,boost}

Quantized amplitude ratios	E-DPDCH modulation schemes				
$eta_{ m ed,} M eta_{ m c}$	which may be used in the				
<i></i>	same subframe				
377/15	4PAM				
336/15	4PAM				
299/15	4PAM				
267/15	BPSK, 4PAM				
237/15	BPSK, 4PAM				
212/15	BPSK, 4PAM				
189/15	BPSK, 4PAM				
168/15	BPSK, 4PAM				
150/15	BPSK, 4PAM				
134/15	BPSK, 4PAM				
119/15	BPSK, 4PAM				
106/15	BPSK, 4PAM				
95/15	BPSK, 4PAM				
84/15	BPSK, 4PAM				
75/15	BPSK, 4PAM				
67/15	BPSK, 4PAM				
60/15	BPSK, 4PAM				
53/15	BPSK, 4PAM				
47/15	BPSK, 4PAM				
42/15	BPSK, 4PAM				
38/15	BPSK				
34/15	BPSK				
30/15	BPSK				
27/15	BPSK				
24/15	BPSK				
21/15	BPSK				
19/15	BPSK				
17/15	BPSK				
15/15	BPSK				
13/15	BPSK				
11/15	BPSK				
8/15	BPSK				

The HARQ offsets Δ_{harq} to be used for support of different HARQ profile are configured by higher layers as specified in Table 1B.3.

Table 1B.3: HARQ offset Δ_{harq}

Signalled values for	Power offset values
$\Delta_{ m harq}$	$\Delta_{\mathrm{harq}} \left[\mathrm{dB} \right]$
6	6
5	5
4	4
3	3
2	2
1	1
0	0

After weighting, the real-valued spread signals shall be mapped to the I branch or the Q branch according to the iq_{ec} value for the E-DPCCH and to $iq_{ed,k}$ for E-DPDCH_k and summed together.

The E-DPCCH shall always be mapped to the I branch, i.e. $iq_{ec} = 1$.

The IQ branch mapping for the E-DPDCHs depends on $N_{\text{max-dpdch}}$ and on whether an HS-DSCH is configured for the UE; the IQ branch mapping shall be as specified in table 1C.

N _{max-dpdch}	HS-DSCH configured	E-DPDCH _k	iq _{ed,k}
0	No/Yes	E-DPDCH ₁	1
		E-DPDCH ₂	j
		E-DPDCH ₃	1
		E-DPDCH₄	j
1	No	E-DPDCH ₁	j
		E-DPDCH ₂	1
1	Yes	E-DPDCH ₁	1
		E-DPDCH ₂	j

Table 1C: IQ branch mapping for E-DPDCH

NOTE: In case the UE transmits more than 2 E-DPDCHs, the UE then always transmits E-DPDCH₃ and E-DPDCH₄ simultaneously.

4.2.2 PRACH

4.2.2.1 PRACH preamble part

The PRACH preamble part consists of a complex-valued code, described in subclause 4.3.3.

4.2.2.2 PRACH message part

Figure 2 illustrates the principle of the spreading and scrambling of the PRACH message part, consisting of data and control parts. The binary control and data parts to be spread are represented by real-valued sequences, i.e. the binary value "0" is mapped to the real value +1, while the binary value "1" is mapped to the real value -1. The control part is spread to the chip rate by the channelisation code c_c , while the data part is spread to the chip rate by the channelisation code c_d .

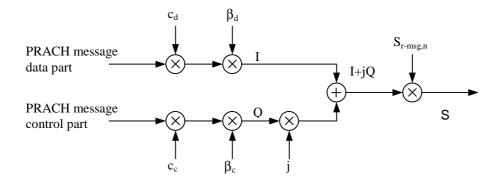


Figure 2: Spreading of PRACH message part

After channelisation, the real-valued spread signals are weighted by gain factors, β_c for the control part and β_d for the data part. At every instant in time, at least one of the values β_c and β_d has the amplitude 1.0. The β -values are quantized into 4 bit words. The quantization steps are given in subclause 4.2.1.

After the weighting, the stream of real-valued chips on the I- and Q-branches are treated as a complex-valued stream of chips. This complex-valued signal is then scrambled by the complex-valued scrambling code $S_{r-msg,n}$. The 10 ms scrambling code is applied aligned with the 10 ms message part radio frames, i.e. the first scrambling chip corresponds to the beginning of a message part radio frame.

4.2.3 Void

4.3 Code generation and allocation

4.3.1 Channelisation codes

4.3.1.1 Code definition

The channelisation codes of figure 1 are Orthogonal Variable Spreading Factor (OVSF) codes that preserve the orthogonality between a user"s different physical channels. The OVSF codes can be defined using the code tree of figure 4.

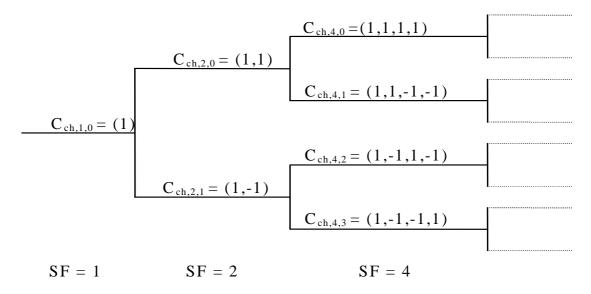


Figure 4: Code-tree for generation of Orthogonal Variable Spreading Factor (OVSF) codes

In figure 4, the channelisation codes are uniquely described as $C_{ch,SF,k}$, where SF is the spreading factor of the code and k is the code number, $0 \le k \le SF-1$.

Each level in the code tree defines channelisation codes of length SF, corresponding to a spreading factor of SF in figure 4.

The generation method for the channelisation code is defined as:

$$\begin{aligned} & C_{\mathrm{ch},1,0} = 1\,, \\ & \begin{bmatrix} C_{ch,2,0} \\ C_{ch,2,1} \end{bmatrix} = \begin{bmatrix} C_{ch,1,0} & C_{ch,1,0} \\ C_{ch,1,0} & -C_{ch,1,0} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \\ & \begin{bmatrix} C_{ch,2}(n+1)_{,0} \\ C_{ch,2}(n+1)_{,1} \\ C_{ch,2}(n+1)_{,2} \\ C_{ch,2}(n+1)_{,3} \\ \vdots \\ C_{ch,2}(n+1)_{,2}(n+1)_{-2} \\ C_{ch,2}(n+1)_{,2}(n+1)_{-1} \end{bmatrix} = \begin{bmatrix} C_{ch,2^n,0} & C_{ch,2^n,0} \\ C_{ch,2^n,0} & -C_{ch,2^n,0} \\ C_{ch,2^n,1} & C_{ch,2^n,1} \\ \vdots & \vdots \\ C_{ch,2^n,1} & -C_{ch,2^n,1} \\ \vdots & \vdots \\ C_{ch,2^n,2^n-1} & C_{ch,2^n,2^n-1} \\ C_{ch,2^n,2^n-1} & -C_{ch,2^n,2^n-1} \end{bmatrix}$$

The leftmost value in each channelisation code word corresponds to the chip transmitted first in time.

4.3.1.2 Code allocation for dedicated physical channels

NOTE: Although subclause 4.3.1.2 has been reorganized in this release, the spreading operation for DPCCH and DPDCH remains unchanged as compared to the previous release.

4.3.1.2.1 Code allocation for DPCCH/DPDCH

For the DPCCH and DPDCHs the following applies:

- The DPCCH shall always be spread by code $c_c = C_{ch,256,0}$
- When only one DPDCH is to be transmitted, DPDCH₁ shall be spread by code $c_{d,1} = C_{ch,SF,k}$ where SF is the spreading factor of DPDCH₁ and k = SF / 4.
- When more than one DPDCH is to be transmitted, all DPDCHs have spreading factors equal to 4. DPDCH_n shall be spread by the the code $c_{d,n} = C_{ch,4,k}$, where k = 1 if $n \in \{1, 2\}$, k = 3 if $n \in \{3, 4\}$, and k = 2 if $n \in \{5, 6\}$.

If a power control preamble is used to initialise a DCH, the channelisation code for the DPCCH during the power control preamble shall be the same as that to be used afterwards.

4.3.1.2.2 Code allocation for HS-DPCCH

The HS-DPCCH shall be spread with code c_{hs} as specified in table 1D.

Table 1D: channelisation code of HS-DPCCH

N _{max-dpdch} (as defined in subclause 4.2.1)	Channelisation code c _{hs}
0	C ch,256,33
1	C _{ch,256,64}
2,4,6	C _{ch,256,1}
3,5	C _{ch,256,32}

4.3.1.2.3 Code allocation for E-DPCCH/E-DPDCH

The E-DPCCH shall be spread with channelisation code $c_{ec} = C_{ch,256,1}$.

E-DPDCH $_k$ shall be spread with channelisation code $c_{ed,k}$. The sequence $c_{ed,k}$ depends on $N_{max\text{-}dpdch}$ and the spreading factor selected for the corresponding frame or sub-frame as specified in [7]; it shall be selected according to table 1E.

Table 1E: Channelisation code for E-DPDCH

N _{max-dpdch}	E-DPDCH _k	Channelisation code C _{ed,k}
0	E-DPDCH ₁	$\begin{array}{c} C_{\text{ch,SF,SF/4}} \text{ if SF} \geq 4 \\ C_{\text{ch,2,1}} \text{ if SF} = 2 \end{array}$
	E-DPDCH ₂	$C_{ch,4,1}$ if $SF = 4$ $C_{ch,2,1}$ if $SF = 2$
	E-DPDCH ₃ E-DPDCH ₄	C _{ch,4,1}
1	E-DPDCH₁	C _{ch,SF,SF/2}
	E-DPDCH ₂	$C_{ch,4,2}$ if SF = 4 $C_{ch,2,1}$ if SF = 2

NOTE: When more than one E-DPDCH is transmitted, the respective channelisation codes used for E-DPDCH₁ and E-DPDCH₂ are always the same.

4.3.1.3 Code allocation for PRACH message part

The preamble signature s, $0 \le s \le 15$, points to one of the 16 nodes in the code-tree that corresponds to channelisation codes of length 16. The sub-tree below the specified node is used for spreading of the message part. The control part is spread with the channelisation code c_c (as shown in subclause 4.2.2.2) of spreading factor 256 in the lowest branch of the sub-tree, i.e. $c_c = C_{ch,256,m}$ where $m = 16 \times s + 15$. The data part uses any of the channelisation codes from spreading factor 32 to 256 in the upper-most branch of the sub-tree. To be exact, the data part is spread by channelisation code $c_d = C_{ch,SF,m}$ and SF is the spreading factor used for the data part and $m = SF \times s/16$.

- 4.3.1.4 Void
- 4.3.1.5 Void

4.3.2 Scrambling codes

4.3.2.1 General

All uplink physical channels shall be scrambled with a complex-valued scrambling code. The dedicated physical channels may be scrambled by either a long or a short scrambling code, defined in subclause 4.3.2.4. The PRACH message part shall be scrambled with a long scrambling code, defined in subclause 4.3.2.5. There are 2²⁴ long and 2²⁴ short uplink scrambling codes. Uplink scrambling codes are assigned by higher layers.

The long scrambling code is built from constituent long sequences defined in subclause 4.3.2.2, while the constituent short sequences used to build the short scrambling code are defined in subclause 4.3.2.3.

4.3.2.2 Long scrambling sequence

The long scrambling sequences $c_{long,1,n}$ and $c_{long,2,n}$ are constructed from position wise modulo 2 sum of 38400 chip segments of two binary m-sequences generated by means of two generator polynomials of degree 25. Let x, and y be the two m-sequences respectively. The x sequence is constructed using the primitive (over GF(2)) polynomial $X^{25} + X^3 + I$. The y sequence is constructed using the polynomial $X^{25} + X^3 + X^2 + X + I$. The resulting sequences thus constitute segments of a set of Gold sequences.

The sequence $c_{long,2,n}$ is a 16777232 chip shifted version of the sequence $c_{long,1,n}$.

Let n_{23} ... n_0 be the 24 bit binary representation of the scrambling sequence number n with n_0 being the least significant bit. The x sequence depends on the chosen scrambling sequence number n and is denoted x_n , in the sequel. Furthermore, let $x_n(i)$ and y(i) denote the i:th symbol of the sequence x_n and y, respectively.

The *m*-sequences x_n and y are constructed as:

Initial conditions:

- $x_n(0)=n_0$, $x_n(1)=n_1$, ... = $x_n(22)=n_{22}$, $x_n(23)=n_{23}$, $x_n(24)=1$.
- y(0)=y(1)=...=y(23)=y(24)=1.

Recursive definition of subsequent symbols:

- $x_n(i+25) = x_n(i+3) + x_n(i)$ modulo 2, $i=0,..., 2^{25}-27$.
- y(i+25) = y(i+3)+y(i+2)+y(i+1)+y(i) modulo 2, $i=0,..., 2^{25}-27$.

Define the binary Gold sequence z_n by:

- $z_n(i) = x_n(i) + y(i)$ modulo 2, $i = 0, 1, 2, ..., 2^{25}$ -2.

The real valued Gold sequence Z_n is defined by:

$$Z_n(i) = \begin{cases} +1 & \text{if } z_n(i) = 0\\ -1 & \text{if } z_n(i) = 1 \end{cases} \quad \text{for } i = 0, 1, \dots, 2^{25} - 2.$$

Now, the real-valued long scrambling sequences $c_{long,1,n}$ and $c_{long,2,n}$ are defined as follows:

$$c_{\text{long},1,n}(i) = Z_n(i), \ i = 0, 1, 2, ..., 2^{25} - 2 \text{ and}$$

$$c_{\text{long},2,n}(i) = Z_n((i+16777232) \text{ modulo } (2^{25}-1)), \ i = 0, 1, 2, ..., 2^{25}-2.$$

Finally, the complex-valued long scrambling sequence C_{long, n}, is defined as:

$$C_{long,n}(i) = c_{long,1,n}(i) (1 + j(-1)^{i} c_{long,2,n} (2[i/2]))$$

where $i = 0, 1, ..., 2^{25} - 2$ and \square denotes rounding to nearest lower integer.

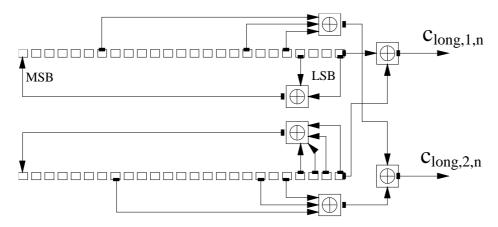


Figure 5: Configuration of uplink scrambling sequence generator

4.3.2.3 Short scrambling sequence

The short scrambling sequences $c_{\text{short},1,n}(i)$ and $c_{\text{short},2,n}(i)$ are defined from a sequence from the family of periodically extended S(2) codes.

Let $n_{23}n_{22}...n_0$ be the 24 bit binary representation of the code number n.

The n:th quaternary S(2) sequence $z_n(i)$, $0 \le n \le 16777215$, is obtained by modulo 4 addition of three sequences, a quaternary sequence a(i) and two binary sequences b(i) and d(i), where the initial loading of the three sequences is determined from the code number n. The sequence $z_n(i)$ of length 255 is generated according to the following relation:

-
$$z_n(i) = a(i) + 2b(i) + 2d(i)$$
 modulo 4, $i = 0, 1, ..., 254$;

where the quaternary sequence a(i) is generated recursively by the polynomial $g_0(x) = x^8 + 3x^5 + x^3 + 3x^2 + 2x + 3$ as:

- $a(0) = 2n_0 + 1 \mod 4$;
- $a(i) = 2n_i \text{ modulo } 4, i = 1, 2, ..., 7;$
- a(i) = 3a(i-3) + a(i-5) + 3a(i-6) + 2a(i-7) + 3a(i-8) modulo 4, i = 8, 9, ..., 254;

and the binary sequence b(i) is generated recursively by the polynomial $g_1(x) = x^8 + x^7 + x^5 + x + 1$ as

$$b(i) = n_{8+i} \text{ modulo } 2, i = 0, 1, ..., 7,$$

$$b(i) = b(i-1) + b(i-3) + b(i-7) + b(i-8)$$
 modulo 2, $i = 8, 9, ..., 254$,

and the binary sequence d(i) is generated recursively by the polynomial $g_2(x) = x^8 + x^7 + x^5 + x^4 + 1$ as:

$$d(i) = n_{16+i} \text{ modulo } 2, i = 0, 1, ..., 7;$$

$$d(i) = d(i-1) + d(i-3) + d(i-4) + d(i-8)$$
 modulo 2, $i = 8, 9, ..., 254$.

The sequence $z_n(i)$ is extended to length 256 chips by setting $z_n(255) = z_n(0)$.

The mapping from $z_n(i)$ to the real-valued binary sequences $c_{\text{short},1,n}(i)$ and $c_{\text{short},2,n}(i)$, , i = 0, 1, ..., 255 is defined in Table 2.

Table 2: Mapping from $z_n(i)$ to $c_{short,1,n}(i)$ and $c_{short,2,n}(i)$, i = 0, 1, ..., 255

$Z_n(i)$	C _{short,1,n} (i)	C _{short,2,n} (i)
0	+1	+1
1	-1	+1
2	-1	-1
3	+1	-1

Finally, the complex-valued short scrambling sequence $C_{\text{short, n}}$, is defined as:

$$C_{short,n}(i) = c_{short,1,n}(i \mod 256) (1 + j(-1)^i c_{short,2,n}(2 \lfloor (i \mod 256) / 2 \rfloor))$$

where $i = 0, 1, 2, \dots$ and $\lfloor \rfloor$ denotes rounding to nearest lower integer.

An implementation of the short scrambling sequence generator for the 255 chip sequence to be extended by one chip is shown in Figure 6.

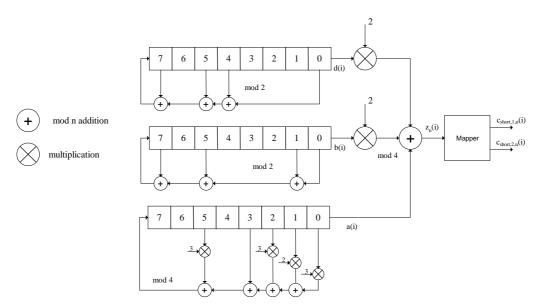


Figure 6: Uplink short scrambling sequence generator for 255 chip sequence

4.3.2.4 Dedicated physical channels scrambling code

The code used for scrambling of the uplink dedicated physical channels may be of either long or short type. The n:th uplink scrambling code, denoted $S_{dpch, n}$, is defined as:

$$S_{dpch,n}(i) = C_{long,n}(i), i = 0, 1, ..., 38399$$
, when using long scrambling codes;

where the lowest index corresponds to the chip transmitted first in time and C_{long,n} is defined in subclause 4.3.2.2.

The n:th uplink scrambling code, denoted $S_{dpch, n}$, is defined as:

$$S_{dpch,n}(i) = C_{short,n}(i), i = 0, 1, ..., 38399$$
, when using short scrambling codes;

where the lowest index corresponds to the chip transmitted first in time and $C_{short,n}$ is defined in subclause 4.3.2.3.

4.3.2.5 PRACH message part scrambling code

The scrambling code used for the PRACH message part is 10 ms long, and there are 8192 different PRACH scrambling codes defined.

The n:th PRACH message part scrambling code, denoted $S_{r-msg,n}$, where n = 0, 1, ..., 8191, is based on the long scrambling sequence and is defined as:

$$S_{r-msg,n}(i) = C_{long,n}(i + 4096), i = 0, 1, ..., 38399$$

where the lowest index corresponds to the chip transmitted first in time and C_{long,n} is defined in subclause 4.3.2.2.

The message part scrambling code has a one-to-one correspondence to the scrambling code used for the preamble part. For one PRACH, the same code number is used for both scrambling codes, i.e. if the PRACH preamble scrambling code used is $S_{r-pre,m}$ then the PRACH message part scrambling code is $S_{r-msg,m}$, where the number m is the same for both codes.

- 4.3.2.6 Void
- 4.3.2.7 Void

4.3.3 PRACH preamble codes

4.3.3.1 Preamble code construction

The random access preamble code $C_{\text{pre},n}$, is a complex valued sequence. It is built from a preamble scrambling code $S_{r\text{-pre},n}$ and a preamble signature $C_{\text{sig},s}$ as follows:

-
$$C_{\text{pre,n,s}}(k) = S_{\text{r-pre,n}}(k) \times C_{\text{sig,s}}(k) \times e^{j(\frac{\pi}{4} + \frac{\pi}{2}k)}, k = 0, 1, 2, 3, ..., 4095;$$

where k=0 corresponds to the chip transmitted first in time and $S_{r-pre,n}$ and $C_{sig,s}$ are defined in 4.3.3.2 and 4.3.3.3 below respectively.

4.3.3.2 Preamble scrambling code

The scrambling code for the PRACH preamble part is constructed from the long scrambling sequences. There are 8192 PRACH preamble scrambling codes in total.

The *n*:th preamble scrambling code, n = 0, 1, ..., 8191, is defined as:

$$S_{r-pre,n}(i) = c_{long,1,n}(i), i = 0, 1, ..., 4095;$$

where the sequence $c_{long,1,n}$ is defined in subclause 4.3.2.2.

The 8192 PRACH preamble scrambling codes are divided into 512 groups with 16 codes in each group. There is a one-to-one correspondence between the group of PRACH preamble scrambling codes in a cell and the primary scrambling code used in the downlink of the cell. The k:th PRACH preamble scrambling code within the cell with downlink primary scrambling code m, k = 0, 1, 2, ..., 15 and m = 0, 1, 2, ..., 511, is $S_{r-pre,n}(i)$ as defined above with $n = 16 \times m + k$.

4.3.3.3 Preamble signature

The preamble signature corresponding to a signature s consists of 256 repetitions of a length 16 signature $P_s(n)$, n=0...15. This is defined as follows:

- $C_{\text{sig},s}(i) = P_s(i \text{ modulo } 16), i = 0, 1, ..., 4095.$

The signature $P_s(n)$ is from the set of 16 Hadamard codes of length 16. These are listed in table 3.

Preamble Value of n signature 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 $P_0(n)$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 $P_1(n)$ 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 $P_2(n)$ -1 1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 $P_3(n)$ 1 1 -1 1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 -1 $P_4(n)$ 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 $P_5(n)$ 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 $P_6(n)$ 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 $P_7(n)$ 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 P₈(n) 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 P₉(n) 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 $P_{10}(n)$ 1 -1 1 -1 -1 1 1 P₁₁(n) 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 $P_{12}(n)$ 1 1 1 1 -1 -1 -1 -1 1 1 1 1 P₁₃(n) 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 P₁₄(n) 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1 P₁₅(n) -1 -1

Table 3: Preamble signatures

4.3.4 Void

4.4 Modulation

4.4.1 Modulating chip rate

The modulating chip rate is 3.84 Mcps.

4.4.2 Modulation

Modulation of the complex-valued chip sequence generated by the spreading process is shown in Figure 7 below:

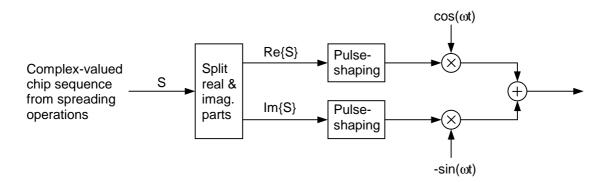


Figure 7: Uplink modulation

The pulse-shaping characteristics are described in [3].

5 Downlink spreading and modulation

5.1 Spreading

Figure 8 illustrates the spreading operation for all physical channel except SCH. The spreading operation includes a modulation mapper stage successively followed by a channelisation stage, an IQ combining stage and a scrambling stage. All the downlink physical channels are then combined as specified in sub subclause 5.1.5.

The non-spread downlink physical channels, except SCH, AICH, E-HICH and E-RGCH consist of a sequence of 3-valued digits taking the values 0, 1 and "DTX". Note that "DTX" is only applicable to those downlink physical channels that support DTX transmission.

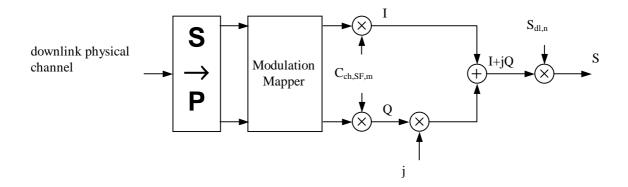


Figure 8: Spreading for all downlink physical channels except SCH

NOTE: Although subclause 5.1 has been reorganized in this release, the spreading operation as specified for the DL channels in the previous release remains unchanged.

5.1.1 Modulation mapper

Table 3A defines which of the IQ mapping specified in subclauses 5.1.1.1 and 5.1.1.2 may be used for the physical channel being processed.

Physical channel IQ mapping

HS-PDSCH, QPSK, 16QAM or 64QAM

All other channels (except the SCH)

Table 3A: IQ mapping

5.1.1.1 QPSK

For all channels, except AICH, E-HICH and E-RGCH, the input digits shall be mapped to real-valued symbols as follows: the binary value "0" is mapped to the real value +1, the binary value "1" is mapped to the real value -1 and "DTX" is mapped to the real value 0.

For the indicator channels using signatures (AICH), the real-valued input symbols depend on the exact combination of the indicators to be transmitted as specified in [2] subclauses 5.3.3.7, 5.3.3.8 and 5.3.3.9. For the E-HICH and the E-RGCH the input is a real valued symbol sequence as specified in [2]

Each pair of two consecutive real-valued symbols is first converted from serial to parallel and mapped to an I and Q branch. The definition of the modulation mapper is such that even and odd numbered symbols are mapped to the I and Q branch respectively. For all QPSK channels except the indicator channels using signatures, symbol number zero is

^{*} For MBSFN FACH transmissions, QPSK and 16QAM can be used.

defined as the first symbol in each frame or sub-frame. For the indicator channels using signatures, symbol number zero is defined as the first symbol in each access slot.

5.1.1.2 16QAM

In case of 16QAM, a set of four consecutive binary symbols n_k , n_{k+1} , n_{k+2} , n_{k+3} (with $k \mod 4 = 0$) is serial-to-parallel converted to two consecutive binary symbols ($i_I = n_k$, $i_2 = n_{k+2}$) on the I branch and two consecutive binary symbols ($q_I = n_{k+1}$, $q_2 = n_{k+3}$) on the Q branch and then mapped to 16QAM by the modulation mapper as defined in table 3B.

The I and Q branches are then both spread to the chip rate by the same real-valued channelisation code $C_{ch,16,m}$. The channelisation code sequence shall be aligned in time with the symbol boundary. The sequences of real-valued chips on the I and Q branch are then treated as a single complex-valued sequence of chips. This sequence of chips from all multicodes is summed and then scrambled (complex chip-wise multiplication) by a complex-valued scrambling code $S_{dl,n}$. The scrambling code is applied aligned with the scrambling code applied to the P-CCPCH.

Q branch I branch $i_1q_1i_2q_2$ 0.4472 0.4472 0000 0001 0.4472 1.3416 0010 1.3416 0.4472 0011 1.3416 1.3416 0100 0.4472 -0.44720101 0.4472 -1.3416-0.4472 1.3416 0110 1.3416 0111 -1.3416 1000 -0.4472 0.4472 1001 -0.4472 1.3416 -1.3416 0.4472 1010 1011 -1.3416 1.3416 1100 -0.4472 -0.4472 -1.3416 1101 -0.4472 1110 -1.3416 -0.4472 1111 -1.3416 -1.3416

Table 3B: 16QAM modulation mapping

5.1.1.3 64QAM

In case of 64QAM, a set of six consecutive binary symbols n_k , n_{k+1} , n_{k+2} , n_{k+3} , n_{k+4} , n_{k+5} (with $k \mod 6 = 0$) is serial-to-parallel converted to three consecutive binary symbols ($i_1 = n_k$, $i_2 = n_{k+2}$, $i_3 = n_{k+4}$) on the I branch and three consecutive binary symbols ($q_1 = n_{k+1}$, $q_2 = n_{k+3}$, $q_3 = n_{k+5}$) on the Q branch and then mapped to 64QAM by the modulation mapper as defined in table 3C.

The I and Q branches are then both spread to the chip rate by the same real-valued channelisation code $C_{\text{ch,16,m}}$. The channelisation code sequence shall be aligned in time with the symbol boundary. The sequences of real-valued chips on the I and Q branch are then treated as a single complex-valued sequence of chips. This sequence of chips from all multicodes is summed and then scrambled (complex chip-wise multiplication) by a complex-valued scrambling code $S_{dl,n}$. The scrambling code is applied aligned with the scrambling code applied to the P-CCPCH.

I branch Q branch i1q1i2q2 i3q3 I branch Q branch i1q1i2q2 i3q3 0.6547 0.6547 -0.6547 0.6547 000000 100000 0.6547 100001 000001 0.2182 -0.6547 0.2182 000010 0.2182 0.6547 100010 -0.2182 0.6547 000011 0.2182 0.2182 100011 -0.21820.2182 000100 0.6547 1.0911 100100 -0.6547 1.0911 000101 0.6547 1.5275 100101 -0.65471.5275 0.2182 000110 -0.2182 1.0911 100110 1.0911 0.2182 -0.2182 000111 1.5275 1.5275 100111 001000 1.0911 0.6547 101000 -1.0911 0.6547 001001 1.0911 0.2182 101001 -1.0911 0.2182 001010 1.5275 0.6547 101010 -1.5275 0.6547 1.5275 -1.5275 0.2182 001011 0.2182 101011 001100 1.0911 1.0911 101100 -1.0911 1.0911 001101 1.0911 1.5275 101101 -1.0911 1.5275 001110 1.0911 -1.5275 1.0911 1.5275 101110 001111 1.5275 1.5275 -1.5275 1.5275 101111 010000 -0.6547 110000 0.6547 -0.6547 -0.6547 010001 0.6547 -0.2182 110001 -0.6547 -0.2182 010010 0.2182 -0.6547110010 -0.2182-0.6547 010011 0.2182 -0.2182 110011 -0.2182 -0.2182010100 0.6547 -1.0911 110100 -0.6547-1.0911 010101 0.6547 -1.5275 110101 -0.6547 -1.5275 0.2182 -1.0911 010110 -1.0911 110110 -0.21820.2182 -0.2182 -1.5275 010111 -1.5275 110111 011000 1.0911 -0.6547 111000 -1.0911 -0.6547 011001 1.0911 -0.2182 111001 -1.0911 -0.2182 1.5275 111010 -1.5275 -0.6547 011010 -0.6547011011 1.5275 -0.2182 111011 -1.5275 -0.2182 011100 1.0911 -1.0911 111100 -1.0911 -1.0911 011101 1.0911 -1.5275 111101 -1.0911 -1.5275 -1.5275 011110 1.5275 -1.0911 111110 -1.0911 -1.5275 -1.5275 011111 1.5275 111111 -1.5275

Table 3C: 64QAM modulation mapping

5.1.2 Channelisation

For all physical channels (except SCH) the I and Q branches shall be spread to the chip rate by the same real-valued channelisation code $C_{\text{ch},SF,m}$, i.e. the output for each input symbol on the I and the Q branches shall be a sequence of SF chips corresponding to the channelisation code chip sequence multiplied by the real-valued symbol. The channelisation code sequence shall be aligned in time with the symbol boundary.

5.1.3 IQ combining

The real valued chip sequence on the Q branch shall be complex multiplied with j and summed with the corresponding real valued chip sequence on the I branch, thus resulting in a single complex valued chip sequence.

5.1.4 Scrambling

The sequence of complex valued chips shall be scrambled (complex chip-wise multiplication) by a complex-valued scrambling code $S_{\text{dl,n}}$. In case of P-CCPCH, the scrambling code shall be applied aligned with the P-CCPCH frame boundary, i.e. the first complex chip of the spread P-CCPCH frame is multiplied with chip number zero of the scrambling code. In case of other downlink channels, the scrambling code shall be applied aligned with the scrambling code applied to the P-CCPCH. In this case, the scrambling code is thus not necessarily applied aligned with the frame boundary of the physical channel to be scrambled.

5.1.5 Channel combining

Figure 9 illustrates how different downlink channels are combined. Each complex-valued spread channel, corresponding to point S in Figure 8, may be separately weighted by a weight factor G_i. The complex-valued P-SCH

and S-SCH, as described in [2], subclause 5.3.3.5, may be separately weighted by weight factors G_p and G_s . All downlink physical channels shall then be combined using complex addition.

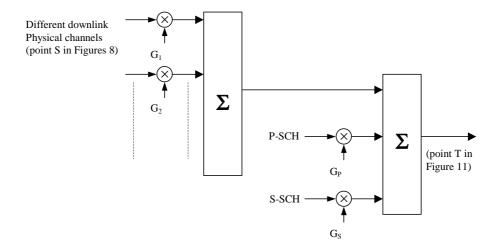


Figure 9: Combining of downlink physical channels

5.2 Code generation and allocation

5.2.1 Channelisation codes

The channelisation codes of figure 8 are the same codes as used in the uplink, namely Orthogonal Variable Spreading Factor (OVSF) codes that preserve the orthogonality between downlink channels of different rates and spreading factors. The OVSF codes are defined in figure 4 in subclause 4.3.1.

The channelisation code for the Primary CPICH is fixed to $C_{ch,256,0}$ and the channelisation code for the Primary CCPCH is fixed to $C_{ch,256,1}$. The channelisation codes for all other physical channels are assigned by UTRAN.

With the spreading factor 512 a specific restriction is applied. When the code word $C_{\text{ch},512,n}$, with n=0,2,4....510, is used in soft handover, then the code word $C_{\text{ch},512,n+1}$ is not allocated in the cells where timing adjustment is to be used. Respectively if $C_{\text{ch},512,n}$, with n=1,3,5....511 is used, then the code word $C_{\text{ch},512,n-1}$ is not allocated in the cells where timing adjustment is to be used. This restriction shall not apply in cases where timing adjustments in soft handover are not used with spreading factor 512.

When compressed mode is implemented by reducing the spreading factor by 2, the OVSF code used for compressed frames is:

- C_{ch,SF/2} n/2 if ordinary scrambling code is used.
- $C_{ch,SF/2,n \text{ mod } SF/2}$ if alternative scrambling code is used (see subclause 5.2.2);

where $C_{\text{ch},\text{SF},n}$ is the channelisation code used for non-compressed frames.

For F-DPCH, the spreading factor is always 256.

For HS-PDSCH, the spreading factor is always 16.

For HS-SCCH, the spreading factor is always 128.

Channelisation-code-set information over HS-SCCH is mapped in following manner: the OVSF codes shall be allocated in such a way that they are positioned in sequence in the code tree. That is, for P multicodes at offset O the following codes are allocated:

$$C_{ch.16.O} \dots C_{ch.16. O+P-1}$$

The number of multicodes and the corresponding offset for HS-PDSCHs mapped from a given HS-DSCH is signalled by HS-SCCH.

For E-HICH and for E-RGCH, the spreading factor shall always be 128. In each cell, the E-RGCH and E-HICH assigned to a UE shall be configured with the same channelisation code.

For E-AGCH, the spreading factor shall always be 256.

5.2.2 Scrambling code

A total of 2^{18} -1 = 262,143 scrambling codes, numbered 0...262,142 can be generated. However not all the scrambling codes are used. The scrambling codes are divided into 512 sets each of a primary scrambling code and 15 secondary scrambling codes.

The primary scrambling codes consist of scrambling codes n=16*i where i=0...511. The i:th set of secondary scrambling codes consists of scrambling codes 16*i+k, where k=1...15.

There is a one-to-one mapping between each primary scrambling code and 15 secondary scrambling codes in a set such that i:th primary scrambling code corresponds to i:th set of secondary scrambling codes.

Hence, according to the above, scrambling codes $k=0,1,\ldots,8191$ are used. Each of these codes are associated with a left alternative scrambling code and a right alternative scrambling code, that may be used for compressed frames. The left alternative scrambling code corresponding to scrambling code k is scrambling code number k+8192, while the right alternative scrambling code corresponding to scrambling code k is scrambling code number k+16384. The alternative scrambling codes can be used for compressed frames. In this case, the left alternative scrambling code is used if $n \le SF/2$ and the right alternative scrambling code is used if $n \ge SF/2$, where $c_{ch,SF,n}$ is the channelisation code used for non-compressed frames. The usage of alternative scrambling code for compressed frames is signalled by higher layers for each physical channel respectively.

In case F-DPCH is configured in the downlink, the same scrambling code and OVSF code shall be used in F-DPCH compressed frames and normal frames.

The set of primary scrambling codes is further divided into 64 scrambling code groups, each consisting of 8 primary scrambling codes. The j:th scrambling code group consists of primary scrambling codes 16*8*j+16*k, where j=0..63 and k=0..7.

Each cell is allocated one and only one primary scrambling code. The primary CCPCH, primary CPICH, PICH, MICH, AICH and S-CCPCH carrying PCH shall always be transmitted using the primary scrambling code. The other downlink physical channels may be transmitted with either the primary scrambling code or a secondary scrambling code from the set associated with the primary scrambling code of the cell.

In MBSFN operations, the S-CCPCH carries FACH only and shall always be transmitted using the primary scrambling code. The same primary CCPCH, primary CPICH, MICH and S-CCPCH may be transmitted from multiple cells using the same primary scrambling code when part of MBSFN operations.

The mixture of primary scrambling code and no more than one secondary scrambling code for one CCTrCH is allowable. In compressed mode during compressed frames, these can be changed to the associated left or right scrambling codes as described above, i.e. in these frames, the total number of different scrambling codes may exceed two.

In the case of CCTrCH of type of HS-DSCH then all the HS-PDSCH channelisation codes and HS-SCCH that a single UE may receive shall be under a single scrambling code (either the primary or a secondary scrambling code).

In each cell, the F-DPCH, E-RGCH, E-HICH and E-AGCH assigned to a UE shall be configured with same scrambling code as the assigned phase reference (primary or secondary CPICH).

In each cell the UE may be configured simultaneously with at most two scrambling codes.

The scrambling code sequences are constructed by combining two real sequences into a complex sequence. Each of the two real sequences are constructed as the position wise modulo 2 sum of 38400 chip segments of two binary m-sequences generated by means of two generator polynomials of degree 18. The resulting sequences thus constitute segments of a set of Gold sequences. The scrambling codes are repeated for every 10 ms radio frame. Let x and y be the two sequences respectively. The x sequence is constructed using the primitive (over GF(2)) polynomial $1+X^7+X^{18}$. The y sequence is constructed using the polynomial $1+X^5+X^{7}+X^{10}+X^{18}$.

The sequence depending on the chosen scrambling code number n is denoted z_n , in the sequel. Furthermore, let x(i), y(i) and $z_n(i)$ denote the i:th symbol of the sequence x, y, and z_n , respectively.

The *m*-sequences *x* and *y* are constructed as:

Initial conditions:

- x is constructed with x(0)=1, x(1)=x(2)=...=x(16)=x(17)=0.
- y(0)=y(1)=...=y(16)=y(17)=1.

Recursive definition of subsequent symbols:

- $x(i+18) = x(i+7) + x(i) \text{ modulo } 2, i=0,...,2^{18}-20.$
- y(i+18) = y(i+10)+y(i+7)+y(i+5)+y(i) modulo 2, $i=0,..., 2^{18}-20$.

The n:th Gold code sequence z_n , $n=0,1,2,...,2^{18}-2$, is then defined as:

- $z_n(i) = x((i+n) \text{ modulo } (2^{18} - 1)) + y(i) \text{ modulo } 2, i=0,..., 2^{18}-2.$

These binary sequences are converted to real valued sequences Z_n by the following transformation:

$$Z_n(i) = \begin{cases} +1 & \text{if } z_n(i) = 0\\ -1 & \text{if } z_n(i) = 1 \end{cases} \quad \text{for} \quad i = 0, 1, \dots, 2^{18} - 2.$$

Finally, the n:th complex scrambling code sequence $S_{dl,n}$ is defined as:

- $S_{dl,n}(i) = Z_n(i) + j Z_n((i+131072) \text{ modulo } (2^{18}-1)), i=0,1,...,38399.$

Note that the pattern from phase 0 up to the phase of 38399 is repeated.



Figure 10: Configuration of downlink scrambling code generator

5.2.3 Synchronisation codes

5.2.3.1 Code generation

The primary synchronisation code (PSC), C_{psc} is constructed as a so-called generalised hierarchical Golay sequence. The PSC is furthermore chosen to have good aperiodic auto correlation properties.

Define:

$$a = \langle x_1, x_2, x_3, ..., x_{16} \rangle = \langle 1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1 \rangle$$

The PSC is generated by repeating the sequence a modulated by a Golay complementary sequence, and creating a complex-valued sequence with identical real and imaginary components. The PSC C_{psc} is defined as:

-
$$C_{psc} = (1 + j) \times \langle a, a, a, -a, -a, a, -a, -a, a, a, -a, a, -a, a, -a, a, a \rangle$$
;

where the leftmost chip in the sequence corresponds to the chip transmitted first in time.

The 16 secondary synchronization codes (SSCs), $\{C_{ssc,1},...,C_{ssc,16}\}$, are complex-valued with identical real and imaginary components, and are constructed from position wise multiplication of a Hadamard sequence and a sequence z, defined as:

- $b = \langle x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, -x_9, -x_{10}, -x_{11}, -x_{12}, -x_{13}, -x_{14}, -x_{15}, -x_{16} \rangle$ and $x_1, x_2, \dots, x_{15}, x_{16}$, are same as in the definition of the sequence a above.

The Hadamard sequences are obtained as the rows in a matrix H_8 constructed recursively by:

$$H_{0} = (1)$$

$$H_{k} = \begin{pmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{pmatrix}, \quad k \ge 1$$

The rows are numbered from the top starting with row θ (the all ones sequence).

Denote the n:th Hadamard sequence as a row of H_8 numbered from the top, n = 0, 1, 2, ..., 255, in the sequel.

Furthermore, let $h_n(i)$ and z(i) denote the i:th symbol of the sequence h_n and z, respectively where i = 0, 1, 2, ..., 255 and i = 0 corresponds to the leftmost symbol.

The k:th SSC, $C_{ssc,k}$, k = 1, 2, 3, ..., 16 is then defined as:

-
$$C_{\text{ssc.k}} = (1+j) \times \langle h_m(0) \times z(0), h_m(1) \times z(1), h_m(2) \times z(2), \dots, h_m(255) \times z(255) \rangle$$
;

where $m = 16 \times (k - 1)$ and the leftmost chip in the sequence corresponds to the chip transmitted first in time.

5.2.3.2 Code allocation of SSC

The 64 secondary SCH sequences are constructed such that their cyclic-shifts are unique, i.e., a non-zero cyclic shift less than 15 of any of the 64 sequences is not equivalent to some cyclic shift of any other of the 64 sequences. Also, a non-zero cyclic shift less than 15 of any of the sequences is not equivalent to itself with any other cyclic shift less than 15. Table 4 describes the sequences of SSCs used to encode the 64 different scrambling code groups. The entries in table 4 denote what SSC to use in the different slots for the different scrambling code groups, e.g. the entry "7" means that SSC $C_{ssc,7}$ shall be used for the corresponding scrambling code group and slot.

Table 4: Allocation of SSCs for secondary SCH

Scrambling							slo	num	ber						
Code Group	#0	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14
Group 0	1	1	2	8	9	10	15	8	10	16	2	7	15	7	16
Group 1	1	1	5	16	7	3	14	16	3	10	5	12	14	12	10
Group 2	1	2	1	15	5	5	12	16	6	11	2	16	11	15	12
Group 3	1	2	3	1	8	6	5	2	5	8	4	4	6	3	7
Group 4	1	2	16	6	6	11	15	5	12	1	15	12	16	11	2
Group 5	1	3	4	7	4	1	5	5	3	6	2	8	7	6	8
Group 6	1	4	11	3	4	10	9	2	11	2	10	12	12	9	3
Group 7	1	5	6	6	14	9	10	2	13	9	2	5	14	1	13
Group 8	1	6	10	10	4	11	7	13	16	11	13	6	4	1	16
Group 9	1	6	13	2	14	2	6	5	5	13	10	9	1	14	10
Group 10	1	7	8	5	7	2	4	3	8	3	2	6	6	4	5
Group 11	1	7	10	9	16	7	9	15	1	8	16	8	15	2	2
Group 12	1	8	12	9	9	4	13	16	5	1	13	5	12	4	8
Group 13	1	8	14	10	14	1	15	15	8	5	11	4	10	5	4
Group 14	1	9	2	15	15	16	10	7	8	1	10	8	2	16	9
Group 15	1	9	15	6	16	2	13	14	10	11	7	4	5	12	3
Group 16	1	10	9	11	15	7	6	4	16	5	2	12	13	3	14
Group 17	1	11	14	4	13	2	9	10	12	16	8	5	3	15	6
Group 18	1	12	12	13	14	7	2	8	14	2	1	13	11	8	11
Group 19	1	12	15	5	4	14	3	16	7	8	6	2	10	11	13
Group 20	1	15	4	3	7	6	10	13	12	5	14	16	8	2	11
Group 21	1	16	3	12	11	9	13	5	8	2	14	7	4	10	15
Group 22	2	2	5	10	16	11	3	10	11	8	5	13	3	13	8
Group 23	2	2	12	3	15	5	8	3	5	14	12	9	8	9	14
Group 24	2	3	6	16	12	16	3	13	13	6	7	9	2	12	7
Group 25	2	3	8	2	9	15	14	3	14	9	5	5	15	8	12
Group 26	2	4	7	9	5	4	9	11	2	14	5	14	11	16	16
Group 27	2	4	13	12	12	7	15	10	5	2	15	5	13	7	4
Group 28	2	5	9	9	3	12	8	14	15	12	14	5	3	2	15
Group 29	2	5	11	7	2	11	9	4	16	7	16	9	14	14	4
Group 30	2	6	2	13	3	3	12	9	7	16	6	9	16	13	12
Group 31	2	6	9	7	7	16	13	3	12	2	13	12	9	16	6
Group 32	2	7	12	15	2	12	4	10	13	15	13	4	5	5	10
Group 33	2	7	14	16	5	9	2	9	16	11	11	5	7	4	14
Group 34	2	8	5	12	5	2	14	14	8	15	3	9	12	15	9
Group 35	2	9	13	4	2	13	8	11	6	4	6	8	15	15	11
Group 36	2	10	3	2	13	16	8	10	8	13	11	11	16	3	5
Group 37	2	11	15	3	11	6	14	10	15	10	6	7	7	14	3
Group 38	2	16	4	5	16	14	7	11	4	11	14	9	9	7	5
Group 39	3	3	4	6	11	12	13	6	12	14	4	5	13	5	14
Group 40	3	3	6	5	16	9	15	5	9	10	6	4	15	4	10
Group 41	3	4	5	14	4	6	12	13	5	13	6	11	11	12	14
Group 42	3	4	9	16	10	4	16	15	3	5	10	5	15	6	6
Group 43	3	4	16	10	5	10	4	9	9	16	15	6	3	5	15
Group 44	3	5	12	11	14	5	11	13	3	6	14	6	13	4	4
Group 45	3	6	4	10	6	5	9	15	4	15	5	16	16	9	10
Group 46	3	7	8	8	16	11	12	4	15	11	4	7	16	3	15
Group 47	3	7	16	11	4	15	3	15	11	12	12	4	7	8	16
Group 48	3	8	7	15	4	8	15	12	3	16	4	16	12	11	11
Group 49	3	8	15	4	16	4	8	7	7	15	12	11	3	16	12
Oloup 40		U	.0	_	.0	7	U	'	'	10	12	''	J	.0	14

Scrambling		slot number													
Code Group	#0	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14
Group 50	3	10	10	15	16	5	4	6	16	4	3	15	9	6	9
Group 51	3	13	11	5	4	12	4	11	6	6	5	3	14	13	12
Group 52	3	14	7	9	14	10	13	8	7	8	10	4	4	13	9
Group 53	5	5	8	14	16	13	6	14	13	7	8	15	6	15	7
Group 54	5	6	11	7	10	8	5	8	7	12	12	10	6	9	11
Group 55	5	6	13	8	13	5	7	7	6	16	14	15	8	16	15
Group 56	5	7	9	10	7	11	6	12	9	12	11	8	8	6	10
Group 57	5	9	6	8	10	9	8	12	5	11	10	11	12	7	7
Group 58	5	10	10	12	8	11	9	7	8	9	5	12	6	7	6
Group 59	5	10	12	6	5	12	8	9	7	6	7	8	11	11	9
Group 60	5	13	15	15	14	8	6	7	16	8	7	13	14	5	16
Group 61	9	10	13	10	11	15	15	9	16	12	14	13	16	14	11
Group 62	9	11	12	15	12	9	13	13	11	14	10	16	15	14	16
Group 63	9	12	10	15	13	14	9	14	15	11	11	13	12	16	10

5.3 Modulation

5.3.1 Modulating chip rate

The modulating chip rate is 3.84 Mcps.

5.3.2 Modulation

Modulation of the complex-valued chip sequence generated by the spreading process is shown in Figure 11 below.

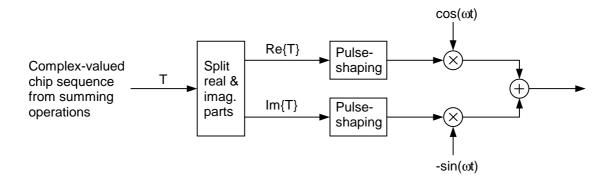


Figure 11: Downlink modulation

The pulse-shaping characteristics are described in [4].

Annex A (informative): Generalised Hierarchical Golay Sequences

A.1 Alternative generation

The generalised hierarchical Golay sequences for the PSC described in 5.2.3.1 may be also viewed as generated (in real valued representation) by the following methods:

Method 1.

The sequence y is constructed from two constituent sequences x_1 and x_2 of length n_1 and n_2 respectively using the following formula:

- $y(i) = x_2(i \mod n_2) * x_1(i \operatorname{div} n_2), i = 0 ... (n_1 * n_2) - 1.$

The constituent sequences x_1 and x_2 are chosen to be the following length 16 (i.e. $n_1 = n_2 = 16$) sequences:

- x_1 is defined to be the length 16 (N⁽¹⁾=4) Golay complementary sequence obtained by the delay matrix D⁽¹⁾ = [8, 4, 1,2] and weight matrix W⁽¹⁾ = [1, -1, 1,1].
- x₂ is a generalised hierarchical sequence using the following formula, selecting s=2 and using the two Golay complementary sequences x₃ and x₄ as constituent sequences. The length of the sequence x₃ and x₄ is called n₃ respectively n₄.
- $x_2(i) = x_4(i \mod s + s*(i \operatorname{div} sn_3)) * x_3((i \operatorname{div} s) \mod n_3), i = 0 \dots (n_3*n_4) 1.$
- x_3 and x_4 are defined to be identical and the length 4 ($N^{(3)} = N^{(4)} = 2$) Golay complementary sequence obtained by the delay matrix $D^{(3)} = D^{(4)} = [1, 2]$ and weight matrix $W^{(3)} = W^{(4)} = [1, 1]$.

The Golay complementary sequences x_1, x_3 and x_4 are defined using the following recursive relation:

$$a_0(k) = \delta(k) \text{ and } b_0(k) = \delta(k);$$

$$a_n(k) = a_{n-1}(k) + W^{(j)}_{n} \cdot b_{n-1}(k - D^{(j)}_{n});$$

$$b_n(k) = a_{n-1}(k) - W^{(j)}_{n} \cdot b_{n-1}(k - D^{(j)}_{n});$$

$$k = 0, 1, 2, ..., 2^{**}N^{(j)} - 1;$$

$$n = 1, 2, ..., N^{(j)}.$$

The wanted Golay complementary sequence x_j is defined by a_n assuming $n=N^{(j)}$. The Kronecker delta function is described by δ , k,j and n are integers.

Method 2

The sequence y can be viewed as a pruned Golay complementary sequence and generated using the following parameters which apply to the generator equations for a and b above:

(a) Let
$$j = 0$$
, $N^{(0)} = 8$.

(b)
$$[D_1^0, D_2^0, D_3^0, D_4^0, D_5^0, D_6^0, D_7^0, D_8^0] = [128, 64, 16, 32, 8, 1, 4, 2].$$

(c)
$$[W_1^0, W_2^0, W_3^0, W_4^0, W_5^0, W_6^0, W_7^0, W_8^0] = [1, -1, 1, 1, 1, 1, 1, 1, 1]$$
.

(d) For
$$n = 4$$
, 6, set $b_4(k) = a_4(k)$, $b_6(k) = a_6(k)$.

Annex B (informative): Change history

Date TSG TSG Doc. CR Rev Subject/Comment Old New April (14011/00 RAN_06 RP-99682 Os Approved at TSG RAN #5 and placed under Change 3.0.0 3.1.0 1.4011/00 RAN_06 RP-99683 Os Update of Tod Committs spreading description 3.0.0 3.1.0 1.4011/00 RAN_06 RP-99683 Os Update of Tod Committs Streaming Os Os 0.0 3.1.0 1.4011/00 RAN_06 RP-99683 Os Update of Tod Committs Os Os Os Os 0.0 3.1.0 1.4011/00 RAN_06 RP-99683 Os Update of Tod Committs Os Os Os Os Os Os Os		Change history										
Adv1100 RAN_06 RP-99883 006 Update of downlink spreading description 3.0.0 3.1.0 1401100 RAN_06 RP-99883 006 Update of downlink spreading description 3.0.0 3.1.0 1401100 RAN_06 RP-99883 006 Update of downlink spreading description 3.0.0 3.1.0 1401100 RAN_06 RP-99883 008 Update of downlink spreading description 3.0.0 3.1.0 1401100 RAN_06 RP-99883 009 Update of downlink spreading description 3.0.0 3.1.0 1401100 RAN_06 RP-99883 009 Restriction for spreading factor 512 allocation in the UTRA 3.0.0 3.1.0 1401100 RAN_06 RP-99883 012 Support of short codes in power control preamble 3.0.0 3.1.0 1401100 RAN_06 RP-99883 012 Support of short codes for CPCH 3.0.0 3.1.0 1401100 RAN_06 RP-99883 012 Support of short codes for CPCH 3.0.0 3.1.0 1401100 RAN_06 RP-99883 016 Channelization Code Allocation for USTS 3.0.0 3.1.0 1401100 RAN_06 RP-99883 017 Correction (Editorial Change 3.0.0 3.1.0 1401100 RAN_06 RP-99883 017 Correction (Editorial Change 3.0.0 3.1.0 1401100 RAN_06 RP-99883 019 Correction to code allocation for compressed mode 3.0.0 3.1.0 1401100 RAN_06 RP-99883 019 Correction to code allocation for compressed mode 3.0.0 3.1.0 1401100 RAN_06 RP-99883 019 Correction to code allocation for compressed mode 3.0.0 3.1.0 1401100 RAN_06 RP-99883 019 Correction to code allocation for compressed mode 3.0.1 3.1.				CR	Rev	•	Old					
1407100 RAN_06 RP-96883 006 Update of downlink spreading description 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 006 Update of downlink spreading description 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 007 Update of TS 25.213 uplink parts 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 008 Update of TS 25.213 uplink parts 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 009 Restriction for spreading factor 512 allocation in the UTRA 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 011 Update of TS 25.213 uplink parts 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 011 Update of TS 25.213 uplink parts 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 011 Update of TS 25.213 uplink parts 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 012 Support of short codes for CPCH 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 014 Update of TS 25.213 uplink parts 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 014 Update of TS 25.213 uplink parts 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 017 Correction (Editorial Change) 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 017 Correction (Editorial Change) 3.0.0 3.1.0 4.107100 RAN_06 RP-96883 019 Correction (Editorial Change) 3.0.0 3.1.0 4.107100 RAN_07 RP-000063 021 Consistent numbering of scrambling code groups 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 022 Uplink signal flow corrections 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 022 Uplink signal flow corrections 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 024 Editorial Changes to 25.213 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 027 Downlink signal flow corrections 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 027 Uplink signal flow corrections 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 027 Downlink signal flow corrections 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 027 Downlink signal flow corrections 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 027 Downlink signal flow corrections 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 027 Consistent numbering codes per cell 3.1.1 3.2.0 4.107100 RAN_07 RP-000063 027 Downlink signal flow corrections 3.1.1 3	14/01/00	RAN_05	RP-99589	1		, ·· · · · · · · · · · · · · · · · · ·	-	3.0.0				
1401/100 RAN_06 RP-99683 006 . Update of downlink spreading description 3.00 3.10 4401/100 RAN_06 RP-99683 007 1 Update of TS 25.213 uplink parts 3.00 3.10 14/01/100 RAN_06 RP-99683 009 . Restriction for spreading factor 512 allocation in the UTRA 3.00 3.10 14/01/100 RAN_06 RP-99683 009 . Restriction for spreading factor 512 allocation in the UTRA 3.00 3.10 14/01/100 RAN_06 RP-99683 011 . CPCH codes in power control preamble 3.00 3.10 14/01/100 RAN_06 RP-99683 012 2 support of short codes for CPCH 3.00 3.10 14/01/100 RAN_06 RP-99683 012 2 support of short codes for CPCH 3.00 3.10 14/01/100 RAN_06 RP-99683 016 . Channelization Code Allocation for USTS 3.00 3.10 14/01/100 RAN_06 RP-99683 016 . Channelization Code Allocation for USTS 3.00 3.10 14/01/100 RAN_06 RP-99683 016 . Channelization Code Allocation for USTS 3.00 3.10 14/01/100 RAN_06 RP-99683 017 . Correction to code allocation for compressed mode 3.00 3.10 14/01/100 3.00 3.10	14/01/00	RAN_06	RP-99682	005	1		3.0.0	3.1.0				
4401/00 RAN_06 RP-9682 007 1 Updated modulation description 3.0.0 3.1.0 4401/00 RAN_06 RP-9683 009 - Restriction for spreading factor 512 allocation in the UTRA 3.0.0 3.1.0 3	14/01/00	RAN_06	RP-99683	006	-		3.0.0	3.1.0				
1401/00 RAN_06 RP-99683 009 - Restriction for spreading factos 512 allocation in the UTRA 3.00 3.10 14/01/00 RAN_06 RP-99683 009 - Restriction for spreading factos 512 allocation in the UTRA 3.00 3.10 14/01/00 RAN_06 RP-99683 011 1 CPCH codes in power control preamble 3.00 3.10 14/01/00 RAN_06 RP-99683 012 2 Support of short codes for CPCH 3.00 3.10 14/01/00 RAN_06 RP-99683 012 2 Support of short codes for CPCH 3.00 3.10 14/01/00 RAN_06 RP-99683 015 2 Correction Code Allocation for USTS 3.00 3.10 14/01/00 RAN_06 RP-99683 016 - Channelization Code Allocation for USTS 3.00 3.10 14/01/00 RAN_06 RP-99683 017 1 Correction (Editorial Change) 3.00 3.10 3.10 14/01/00 RAN_06 RP-99683 019 - Correction to code allocation for compressed mode 3.00 3.10 3	14/01/00	RAN 06		007	1		3.0.0	3.1.0				
140100												
FDD Downlink					-							
140/100 RAN_06 RP-99683 012 2 Support of short codes for CPCH 3.00 3.10 14/01/00 RAN_06 RP-99683 014 1 Editorial Change 3.00 3.10 14/01/00 RAN_06 RP-99683 016 Channelization Code Allocation for USTS 3.00 3.1.0 14/01/00 RAN_06 RP-99683 017 Correction (Editorial Change) 3.00 3.1.0 14/01/00 RAN_06 RP-99683 019 Correction to code allocation for compressed mode 3.00 3.1.0 14/01/00 RAN_07 RP-90063 020 Correction to code allocation for compressed mode 3.10 3.1.0 3.1/03/00 RAN_07 RP-00063 021 Correction to code allocation for compressed mode 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-00063 021 Consistent numbering of scrambling code groups 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-00063 021 Downlink signal flow corrections 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-00063 022 Uplink signal flow corrections 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-00063 024 Editorial changes to 26.213 3.1/03/00 RAN_07 RP-00063 025 A typo correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-00063 025 A typo correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-00063 025 A typo correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-00063 028 Channelization code allocation method for PCPCH 3.1.1 3.2.0 2.2.1/03/00 RAN_08 RP-00063 028 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 3.1/03/00 RAN_08 RP-00063 028 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 3.0/03/00 RAN_08 RP-000663 038 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 3.0/03/00 RAN_08 RP-000669 033 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 3.0/03/00 RAN_08 RP-000669 035 Clarification of the Scrambling code of a power control preamble 3.00 3.00 3.00 3.00 3.00 3.	1.1/2.1/2.2	B.111.00				FDD Downlink						
1401/00 RAN_06 RP-99682 016												
14/01/00 RAN_06 RP-99683 016 Channelization Code Allocation for USTS 3.0.0 3.1.0 14/01/00 RAN_06 RP-99683 017 1 Correction (Editorial Change) 3.0.0 3.1.0 14/01/00 RAN_06 RP-99683 019 Correction to code allocation for compressed mode 3.0.0 3.1.0 3.1/04/01/00 Correction (RP-99683 019 Correction to code allocation for compressed mode 3.0.0 3.1.0 3.1/04/01/00 Correction (RP-900063 020 Correction to code allocation for compressed mode 3.0.0 3.1.0 3.1/04/01/00 RAN_07 RP-000063 021 Consistent numbering of scrambling code groups 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 022 Correction (RP-00063 023 Correction 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 023 Number of RACH scrambling codes 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 024 Editorial changes to 25.213 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 027 A typo correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 027 A typo correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 028 Channelization code allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 028 Channelization code allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 029 Channelization code allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_08 RP-00066 033 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 3.0.0												
14/01/00 RAN_06 RP-99683 017 1 Correction (Editorial Change) 3.0.0 3.1.0												
14/01/00					-		3.0.0					
1401/00 - - Change history was added by the editor 3.1.0 3.1.1 3.10 31/03/00 RAN_07 RP-000063 021 Consistent numbering of scrambling code groups 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 022 Downlink signal flow corrections 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 022 Uplink signal flow corrections 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 022 Uplink signal flow corrections 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 023 Downlink signal flow corrections 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 024 Editorial changes to 25.213 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 025 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 025 A type correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 028 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 029 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 31/03/00 RAN_08 RP-000067 033 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 32.0	14/01/00	RAN_06	RP-99683	017	1	Correction (Editorial Change)	3.0.0	3.1.0				
31/03/00 RAN_07 RP-000063 020 1 Consistent numbering of scrambling code groups 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 021 2 Downlink signal flow corrections 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 022 1 Downlink signal flow corrections 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 023 1 Number of RACH scrambling codes 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 024 1 Editorial changes to 25.213 3 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 025 3 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 025 3 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 025 2 Channelization code allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 028 2 Channelization code allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 029 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 25.213 3 3 3 3 3 3 3 3 3	14/01/00	RAN_06	RP-99683	019	-	Correction to code allocation for compressed mode	3.0.0	3.1.0				
31/03/00 RAN_07 RP-00063 021 Consistent numbering of scrambling code groups 3.1.1 3.2.0	14/01/00	-	-	-		Change history was added by the editor	3.1.0	3.1.1				
31/03/00 RAN_07 RP-000063 022 . Downlink signal flow corrections 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-000063 022 . Downlink signal flow corrections 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-000063 023 1 Number of RACH scrambling codes 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-000063 024 1 Editorial changes to 25.213 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-000063 025 3 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0 3.1/03/00 RAN_07 RP-000063 025 -	31/03/00	RAN_07	RP-000063	020	1		3.1.1	3.2.0				
31/03/00 RAN_07 RP-000063 022 . Uplink signal flow corrections 3.1.1 3.2.0 3.10/30/00 RAN_07 RP-000063 023 1 Number of RACH scrambling codes 3.1.1 3.2.0 3.10/30/00 RAN_07 RP-000063 024 1 Editorial changes to 25.213 3.1.1 3.2.0 3.1.0 3.2.0 3.2.0 3.2.0 3.2.0 3.3.0 3.2.0 3.3.0 3.2.0 3.3.0 3.2.0 3.3.0 3.2.0 3.3.0 3.2.0 3.3.0 3.2.0 3.3.0 3.2.0 3.3.0 3.2.0 3.3.0 3	31/03/00	RAN_07	RP-000063	021	-		3.1.1	3.2.0				
31/03/00 RAN_07 RP-000063 023 1 Number of RACH scrambling codes 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 024 1 Editorial changes to 25.213 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 025 3 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 025 3 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 028 2 Channelization code allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 029 Clarification scode allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 029 Clarification scode allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-000063 029 Clarification scode allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_08 RP-000063 032 Clarification scode allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_09 RP-000067 034 2 Numbering of the PCPCH access preamble and collision detection 3.2.0 3.3.0 3.0			RP-000063	022	-		3.1.1	3.2.0				
31/03/00 RAN_07 RP-000063 024 1 Editorial changes to 25.213 3.1.1 3.2.0 3.103/00 RAN_07 RP-000063 025 3 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0					1							
31/03/00 RAN_07 RP-00063 025 3 Number of PCPCH scrambling codes per cell 3.1.1 3.2.0 31/03/00 RAN_07 RP-00063 027 - A typo correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 31/03/00 RAN_07 RP-00063 028 2 Channelization code allocation method for PCPCH 3.1.1 3.2.0 31/03/00 RAN_07 RP-00063 029 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 3.3.0												
31/03/00 RAN_07 RP-00063 027 A typo correction for 5.2.2 and clarification for 5.2.3.1 of TS 3.1.1 3.2.0 25.213V3.1.1 3.2.0 25.213V3.1.1 3.2.0 3.1.1												
25.213V3.1.1 25.213V3.1.1 3.2.0 message part 3.1.1 3.2.0 message part 3.1.1 3.2.0 message part 3.1.1 3.2.0 25.213 3.1.1 3.2.0 message part 3.1.1 3.2.0 25.213 3.1.1 3.2.0 25.213 3.1.1 3.2.0 25.213 3.1.1 3.2.0 25.213 3.1.1 3.2.0 26.06(00 RAN_08 RP-000267 0.3.2 Clean up of USTS related specifications 3.1.1 3.2.0 3.3.0 3.3.0 3.3.0 RAN_08 RP-000267 0.3.3 Clarifications to power control preamble sections 3.2.0 3.3.0 3.												
31/03/00 RAN_07 RP-000063 029 Clarifications to DSCH scrambling and modulation in 25.213 25.213 25.213 25.213 25.213 25.213 25.213 25.213 26/06/00 RAN_08 RP-000067 033 Clarifications to power control preamble sections 3.2.0 3.3.0 26/06/00 RAN_08 RP-000267 034 2 Numbering of the PCPCH access preamble and collision detection 3.2.0 3.3.0 26/06/00 RAN_08 RP-000267 034 2 Numbering of the PCPCH access preamble and collision detection 3.2.0 3.3.0 26/06/00 RAN_08 RP-000267 035 DPDCH/DPCCH gain factors 0.2.0 0.3.0 0.3.0 0.2.0 0.3.0 0.3.0 0.2.0 0.3.0 0.3.0 0.3.0 0.2.0 0.3.0 0.3.0 0.2.0 0.3.0	31/03/00			027	-	25.213V3.1.1	3.1.1	3.2.0				
31/03/00 RAN_07 RP-00063 029 Clarifications to DSCH scrambling and modulation in 3.1.1 3.2.0 3.1.0 3.0.0 3.1.0 3.0.0 3.1.1 3.2.0 3.0.0 3	31/03/00	RAN_07	RP-000063	028	2		3.1.1	3.2.0				
26/06/00 RAN_08 RP-000267 033 Clarifications to power control preamble sections 3.2.0 3.3.0 26/06/00 RAN_08 RP-000267 034 2 Numbering of the PCPCH access preamble and collision detection preamble scrambling codes 3.2.0 3.3.0 26/06/00 RAN_08 RP-000267 035 - DPDCH/DPCCH gain factors 3.2.0 3.3.0 3.6/12/00 RAN_10 RP-000539 037 1 Proposed removal of the option of secondary scrambling code for some downlink common channels 3.4.0 4.0.0 16/03/01 RAN_11 RP-010059 038 - Clarification of channelization codes when SF=512 3.4.0 4.0.0 16/03/01 RAN_11 RP-010033 041 1 Clarification of the scrambling code of a power control preamble 3.4.0 4.0.0 16/03/01 RAN_12 RP-010333 041 1 Clarification of the scrambling code of a power control preamble 3.4.0 4.0.0 15/06/01 RAN_15 RP-010333 041 1 Clarification of the scrambling code of a power control preamble 4.0.0	31/03/00	RAN_07	RP-000063	029	-	Clarifications to DSCH scrambling and modulation in	3.1.1	3.2.0				
26/06/00 RAN_08 RP-000267 033 - Clarifications to power control preamble sections 3.2.0 3.3.0 26/06/00 RAN_08 RP-000267 034 2 Numbering of the PCPCH access preamble and collision detection 3.2.0 3.3.0 26/06/00 RAN_08 RP-000267 035 - DPDCH/DPCCH gain factors 3.2.0 3.3.0 3.4.0 16/03/01 RAN_10 RP-000539 037 1 Proposed removal of the option of secondary scrambling code for some downlink common channels 3.2.0 3.3.0 3.4.0 16/03/01 RAN_11 - - - Approved as Release 4 specification (v4.0.0) at TSG RAN #11 3.4.0 4.0.0 16/03/01 RAN_11 RP-010059 038 - Clarification of channelization codes when SF=512 3.4.0 4.0.0 15/06/01 RAN_12 RP-010033 041 1 Clarification of DL channelization code alignment 4.0.0 4.1.0 15/06/01 RAN_12 RP-010333 043 1 Clarification of PDSCH root channelization code definition 4.0.0 <td>31/03/00</td> <td>RAN_07</td> <td>RP-000063</td> <td>032</td> <td>-</td> <td>Clean up of USTS related specifications</td> <td>3.1.1</td> <td>3.2.0</td>	31/03/00	RAN_07	RP-000063	032	-	Clean up of USTS related specifications	3.1.1	3.2.0				
Preamble scrambling codes Preamble scrambling codes 26/06/00 RAN_08 RP-000267 035 - DPDCH/DPCCH gain factors 3.3.0 3.4.0 16/12/00 RAN_10 RP-000539 037 Proposed removal of the option of secondary scrambling code for some downlink common channels 16/03/01 RAN_11 RP-010059 038 - Clarification of channelization codes when SF=512 3.4.0 4.0.0 16/03/01 RAN_11 RP-010059 038 - Clarification of channelization codes when SF=512 3.4.0 4.0.0 15/06/01 RAN_11 RP-010039 039 1 Clarification of the scrambling code of a power control preamble 3.4.0 4.0.0 15/06/01 RAN_12 RP-010333 041 1 Clarification of PDSCH root channelisation code definition 4.0.0 4.1.0 4.1/12/01 RAN_12 RP-010333 047 Correction of Section number reference 4.1.0 4.2.0 6.0.0 4.1/03/02 RAN_15 RP-020058 049 - The inclusion of HSDPA into 25.213 4.2.0 5.0.0 6.0/06/02 RAN_16 RP-020316 056 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 054 - Clarification of uplink DTX handling and modulation 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.0.0 5.0/01/04 RAN_22 RP-030457 062 Clarification of floQAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of floQAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030727 067	26/06/00	RAN_08	RP-000267	033	-		3.2.0	3.3.0				
26/06/00	26/06/00	RAN_08	RP-000267	034	2		3.2.0	3.3.0				
16/12/00	26/06/00	RAN 08	RP-000267	035	-		3.2.0	3.3.0				
Some downlink common channels 16/03/01 RAN_11 RP-010059 038 - Clarification of channelization codes when SF=512 3.4.0 4.0.0					1							
16/03/01 RAN_11 RP-010059 038 - Clarification of channelization codes when SF=512 3.4.0 4.0.0 16/03/01 RAN_11 RP-010059 039 1 Clarification of the scrambling code of a power control preamble 3.4.0 4.0.0 15/06/01 RAN_12 RP-010333 041 1 Clarification of DL channelization code alignment 4.0.0 4.1.0 15/06/01 RAN_12 RP-010333 043 1 Clarification of PDSCH root channelisation code definition 4.0.0 4.1.0 14/12/01 RAN_14 RP-010738 047 - Correction of section number reference 4.1.0 4.2.0 08/03/02 RAN_15 RP-020058 049 - The inclusion of HSDPA into 25.213 4.2.0 5.0.0 07/06/02 RAN_16 RP-020316 050 - The inclusion of HSDPA into 25.213 4.2.0 5.0.0 07/06/02 RAN_16 RP-020316 055 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 5.1.0 5.2.0 26/03/03 RAN_17 RP-030457 062 Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of FeDCH 5.0.0 6.0.0 6.1.0 13/12/04 RAN_22 RP-030688 070 1 Introduction of F-DCH 6.0.		_										
16/03/01 RAN_11 RP-010059 039 1 Clarification of the scrambling code of a power control preamble 3.4.0 4.0.0 15/06/01 RAN_12 RP-010333 041 1 Clarification of DL channelization code alignment 4.0.0 4.1.0 15/06/01 RAN_12 RP-010333 043 1 Clarification of PDSCH root channelisation code definition 4.0.0 4.1.0 4.1.0 14/12/01 RAN_14 RP-010738 047 Correction of section number reference 4.1.0 4.2.0 08/03/02 RAN_15 RP-020058 049 The inclusion of HSDPA into 25.213 4.2.0 5.0.0 07/06/02 RAN_16 RP-020309 053 1 Downlink bit mapping 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 050 Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 054 Clarification of uplink DTX handling and modulation 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 057 Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 5.1.0 5.2.0 26/03/03 RAN_17 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 Clarification of 16QAM modulation description 5.3.0 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 064 1 Correction of 16QAM modulation description 5.3.0 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of 19QAM modulation description 5.3.0 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of 19QAM modulation description 5.3.0 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 C	16/03/01		-	-	-	Approved as Release 4 specification (v4.0.0) at TSG RAN #11	3.4.0	4.0.0				
15/06/01 RAN_12 RP-010333 041 1 Clarification of DL channelization code alignment 4.0.0 4.1.0 15/06/01 RAN_12 RP-010333 043 1 Clarification of PDSCH root channelisation code definition 4.0.0 4.1.0 14/12/01 RAN_14 RP-010738 047 - Correction of section number reference 4.1.0 4.2.0 08/03/02 RAN_15 RP-020058 049 - The inclusion of HSDPA into 25.213 4.2.0 5.0.0 07/06/02 RAN_16 RP-020309 053 1 Downlink bit mapping 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 050 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 054 - Clarification of uplink DTX handling and modulation 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_16 RP-020316 057 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 5.1.0 5.2.0 26/03/03 RAN_17 RP-020583 061 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 065 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of Tepence to calculation of HS-DPCCH 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 13/12/04 RAN_26 RP-040539 071 1 Introduction of F-DPCH	16/03/01			038	-		3.4.0	4.0.0				
15/06/01					1		3.4.0	4.0.0				
14/12/01 RAN_14 RP-010738 047 - Correction of section number reference 4.1.0 4.2.0 08/03/02 RAN_15 RP-020058 049 - The inclusion of HSDPA into 25.213 4.2.0 5.0.0 07/06/02 RAN_16 RP-020316 050 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 050 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.1.0 16/09/02 RAN_17 RP-020583												
08/03/02 RAN_15 RP-020058 049 - The inclusion of HSDPA into 25.213 4.2.0 5.0.0 07/06/02 RAN_16 RP-020309 053 1 Downlink bit mapping 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 050 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 054 - Clarification of uplink DTX handling and modulation 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.1.0 5.2.0					_							
07/06/02 RAN_16 RP-020309 053 1 Downlink bit mapping 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 050 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 054 - Clarification of uplink DTX handling and modulation 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 057 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Cor					-							
07/06/02 RAN_16 RP-020316 050 - Consistency of Signal Point Constellation for QPSK and 16QAM 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 054 - Clarification of uplink DTX handling and modulation 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 057 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1					-							
07/06/02 RAN_16 RP-020316 054 - Clarification of uplink DTX handling and modulation 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 057 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarifi					1							
07/06/02 RAN_16 RP-020316 055 - Removal of code mapping description over HS-SCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 057 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of					-							
07/06/02 RAN_16 RP-020316 056 3 I/Q mapping of HS-DPCCH 5.0.0 5.1.0 07/06/02 RAN_16 RP-020316 057 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
07/06/02 RAN_16 RP-020316 057 - Definition of the amplitude gain factor for HS-DPCCH 5.0.0 5.1.0 16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
16/09/02 RAN_17 RP-020583 058 1 Numbering corrections 5.1.0 5.2.0 16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_26 RP-040539					3							
16/09/02 RAN_17 RP-020583 059 Correction on the maximum DPDCH in Figure 1 5.1.0 5.2.0 16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_22 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 13/12/04 RAN_26 RP-040450					1							
16/09/02 RAN_17 RP-020592 060 Power offset values for HS-DPCCH 5.1.0 5.2.0 26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_22 - - - Created for M.1457 update 5.5.0 6.0.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of MICH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>ı</td> <td></td> <td></td>					<u> </u>	ı						
26/03/03 RAN_19 RP-030135 061 1 Removal of the tiny text in Figure 1 and minor corrections to 4.2.1 5.2.0 5.3.0 21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_22 - - - Created for M.1457 update 5.5.0 6.0.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0												
21/09/03 RAN_21 RP-030457 062 - Clarification of 16QAM modulation description 5.3.0 5.4.0 06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_22 - - - Created for M.1457 update 5.5.0 6.0.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0					1							
06/01/04 RAN_22 RP-030648 064 1 Correction of figure in combining of downlink physical channels 5.4.0 5.5.0 06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_22 - - - Created for M.1457 update 5.5.0 6.0.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 13/12/04 RAN_26 RP-040450 069 - Introduction of MICH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0												
06/01/04 RAN_22 RP-030648 065 1 Correction of reference to calculation of HS-DPCCH gain factor 5.4.0 5.5.0 06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_22 - - - Created for M.1457 update 5.5.0 6.0.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 13/12/04 RAN_26 RP-040450 069 - Introduction of MICH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0 6.2.0												
06/01/04 RAN_22 RP-030727 067 2 Restriction of DL secondary scrambling codes per CCTrCH 5.4.0 5.5.0 13/01/04 RAN_22 - - - Created for M.1457 update 5.5.0 6.0.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 13/12/04 RAN_26 RP-040450 069 - Introduction of MICH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0 6.2.0												
13/01/04 RAN_22 - - Created for M.1457 update 5.5.0 6.0.0 13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 13/12/04 RAN_26 RP-040450 069 - Introduction of MICH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0 6.2.0												
13/12/04 RAN_26 RP-040539 071 3 Introduction of E-DCH 6.0.0 6.1.0 13/12/04 RAN_26 RP-040450 069 - Introduction of MICH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0 6.2.0				-	-							
13/12/04 RAN_26 RP-040450 069 - Introduction of MICH 6.0.0 6.1.0 14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0 6.2.0			RP-040539	071	3							
14/03/05 RAN_27 RP-050088 070 1 Introduction of F-DPCH 6.1.0 6.2.0												
	14/03/05	RAN_27	RP-050046	072		Correction on E-DPCCH power offset		6.2.0				

	Change history								
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New		
14/03/05	RAN_27	RP-050047	073	1	Defining E-DPDCH power offset	6.1.0	6.2.0		
16/06/05	RAN_28	RP-050252	074	2	Power offset values for E-DPDCH/E-DPCCH	6.2.0	6.3.0		
16/06/05	RAN_28	RP-050252	075	3	Support of different HARQ profiles	6.2.0	6.3.0		
16/06/05	RAN_28	RP-050250	077	2	Feature Clean Up: Removal of 'CPCH'	6.2.0	6.3.0		
16/06/05	RAN_28	RP-050248	079	ı	Feature Clean Up: Removal of DSCH (FDD mode)	6.2.0	6.3.0		
16/06/05	RAN_28	RP-050256	080	ı	Correction to short scrambling code polynomial	6.2.0	6.3.0		
26/09/05	RAN_29	RP-050450	0081	-	Clarification on derivation of β_c and β_d	6.3.0	6.4.0		
26/09/05	RAN_29	RP-050450	0082	1	DL Scrambling Code and Phase Reference Combinations	6.3.0	6.4.0		
26/09/05	RAN_29	RP-050450	0083	1	Clarification on power offset quantization	6.3.0	6.4.0		
20/03/06	RAN_31	RP-060076	0084	1	Correction to number of configured DPDCHs when E-DPDCH is	6.4.0	6.5.0		
					configured				
20/03/06	RAN_31	-	-	-	Creation of Release 7 specification (v7.0.0) at RAN#31	6.5.0	7.0.0		
07/03/07	RAN_35	RP-070116	0085	2	Introduction of 64QAM for HSDPA	7.0.0	7.1.0		
30/05/07	RAN_36	RP-070388	0086	4	Introduction of 16-QAM for HSUPA	7.1.0	7.2.0		
30/05/07	RAN_36	RP-070384	0087	1	Support for DL only SFN operation for MBMS FDD	7.1.0	7.2.0		
30/05/07	RAN_36	RP-070387	0089	ı	CQI and ACK/NACK power setting for MIMO	7.1.0	7.2.0		
11/09/07	RAN_37	RP-070644	0090	-	Editorial changes in 25.213 for 16QAM specification	7.2.0	7.3.0		
27/11/07	RAN_38	RP-070944	0091	1	Editorial changes in 25.213 for 16QAM specification	7.3.0	7.4.0		
04/03/08	RAN_39	-	-	-	Release 8 version further to RAN_39 decision	7.4.0	8.0.0		
28/05/08	RAN_40	RP-080439	0093	1	Range of E-DCH amplitude ratios	8.0.0	8.1.0		

History

	Document history										
V8.1.0	October 2008 Publication										