ETSITS 125 221 V3.11.0 (2002-09) Technical Specification Universal Mobile Telecommunications System (UMTS); Physical channels and mapping of transport channels onto physical channels (TDD) (3GPP TS 25.221 version 3.11.0 Release 1999) # Reference RTS/TSGR-0125221v3b0 Keywords UMTS #### **ETSI** 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 #### Important notice Individual copies of the present document can be downloaded from: <u>http://www.etsi.org</u> The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, send your comment to: editor@etsi.fr #### **Copyright Notification** No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2002. All rights reserved. **DECT**TM, **PLUGTESTS**TM and **UMTS**TM are Trade Marks of ETSI registered for the benefit of its Members. **TIPHON**TM and the **TIPHON logo** are Trade Marks currently being registered by ETSI for the benefit of its Members. **3GPP**TM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. ## Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp). Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document. #### **Foreword** This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP). The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables. The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key. ## Contents | Intelle | ectual Property Rights | 2 | |------------------|---|----| | Forew | vord | 2 | | Forew | vord | 5 | | 1 | Scope | 6 | | 2 | References | 6 | | 3 | Abbreviations | 7 | | 4 | Services offered to higher layers | 8 | | 4.1 | Transport channels | | | 4.1.1 | Dedicated transport channels | | | 4.1.2 | Common transport channels | 8 | | 4.1.2.1 | BCH - Broadcast Channel | 8 | | 4.1.2.2 | FACH – Forward Access Channel | 8 | | 4.1.2.3 | PCH – Paging Channel | 8 | | 4.1.2.4 | RACH – Random Access Channel | 8 | | 4.1.2.5 | | | | 4.1.2.6 | | | | 4.2 | Indicators | 9 | | 5 | Physical channels | Ω | | 5.1 | Frame structure | | | 5.2 | Dedicated physical channel (DPCH) | | | 5.2.1 | Spreading | | | 5.2.1
5.2.1.1 | | | | 5.2.1.2 | | | | 5.2.2 | Burst Types | | | 5.2.2.1 | · · · · · · · · · · · · · · · · · · · | | | 5.2.2.2 | | | | 5.2.2.3 | 71 | | | 5.2.2.4 | 71 | | | 5.2.2.5 | | | | 5.2.2.6 | | | | 5.2.2.6 | | | | 5.2.2.6 | | | | 5.2.3 | Training sequences for spread bursts | | | 5.2.4 | Beamforming | | | 5.3 | Common physical channels | 19 | | 5.3.1 | Primary common control physical channel (P-CCPCH) | 19 | | 5.3.1.1 | | | | 5.3.1.2 | P-CCPCH Burst Types | 20 | | 5.3.1.3 | | | | 5.3.2 | Secondary common control physical channel (S-CCPCH) | 20 | | 5.3.2.1 | S-CCPCH Spreading | 20 | | 5.3.2.2 | | 20 | | 5.3.2.3 | | | | 5.3.3 | The physical random access channel (PRACH) | 20 | | 5.3.3.1 | 1 0 | 20 | | 5.3.3.2 | 71 | | | 5.3.3.3 | | 20 | | 5.3.3.4 | | | | 5.3.3.5 | C 1 | | | 5.3.4 | The synchronisation channel (SCH) | | | 5.3.5 | Physical Uplink Shared Channel (PUSCH) | | | 5.3.5.1 | | | | 5.3.5.2 | PUSCH Burst Types | 24 | | 5.3.5.3 | \mathcal{E} 1 | | |--------------------|--|---------------| | 5.3.5.4 | | | | 5.3.6 | Physical Downlink Shared Channel (PDSCH) | | | 5.3.6.1
5.3.6.2 | 1 & | | | 5.3.6.3 | | | | 5.3.6.4 | | | | 5.3.7 | The Paging Indicator Channel (PICH) | | | 5.3.7.1 | | | | 5.3.7.2 | | | | 5.3.7.3 | PICH Training sequences | 26 | | 5.4 | Transmit Diversity for DL Physical Channels | | | 5.5 | Beacon characteristics of physical channels | | | 5.5.1 | Location of beacon channels | | | 5.5.2 | Physical characteristics of beacon channels | | | 5.6 | Midamble Allocation for Physical Channels | | | 5.6.1 | Midamble Allocation for DL Physical Channels | | | 5.6.1.1 | | | | 5.6.1.2 | 3 3 | | | 5.6.1.2
5.6.1.2 | | | | 5.6.1.2
5.6.2 | 2.2 Common Midamble | | | 5.0.2
5.7 | Midamble Transmit Power | | | | | | | | Mapping of transport channels to physical channels | | | 6.1 | Dedicated Transport Channels | | | 6.2 | Common Transport Channels | | | 6.2.1 | The Broadcast Channel (BCH) | | | 6.2.2 | The Paging Channel (PCH) | | | 6.2.2.1
6.2.3 | | | | 6.2.4 | The Forward Channel (FACH) | | | 6.2.5 | The Validon Access Channel (WACH) The Uplink Shared Channel (USCH) | | | 6.2.6 | The Downlink Shared Channel (DSCH) | | | | ex A (normative): Basic Midamble Codes | | | | | | | | Basic Midamble Codes for Burst Type 1 and 3 | | | A.2 | Basic Midamble Codes for Burst Type 2 | 37 | | A.3 | Association between Midambles and Channelisation Codes | 41 | | A.3.1 | Association for Burst Type 1/3 and K _{Cell} =16 Midambles | | | A.3.2 | Association for Burst Type 1/3 and K _{Cell} =8 Midambles | | | A.3.3 | Association for Burst Type 1/3 and K _{Cell} = 4 Midambles | 42 | | A.3.4 | Association for Burst Type 2 and K _{Cell} =6 Midambles | | | A.3.5 | Association for Burst Type 2 and K _{Cell} = 3 Midambles | 44 | | Annex | ex B (normative): Signalling of the number of channelisation codes for t | the DL common | | | midamble case | | | B.1 | Mapping scheme for Burst Type 1 and K _{Cell} =16 Midambles. | | | B.2 | Mapping scheme for Burst Type 1 and K _{Cell} =8 Midambles | | | B.3 | Mapping scheme for Burst Type 1 and K _{Cell} =4 Midambles | 45 | | B.4 | Mapping scheme for beacon timeslots and K _{Cell} =16 Midambles | 46 | | B.5 | Mapping scheme for beacon timeslots and K _{Cell} =8 Midambles | 46 | | B.6 | Mapping scheme for beacon timeslots and K _{Cell} =4 Midambles | | | B.7 | Mapping scheme for Burst Type 2 and K _{Cell} =6 Midambles. | | | B.8 | Mapping scheme for Burst Type 2 and K _{Cell} =3 Midambles | 47 | | Annex | ex C (informative): CCPCH Multiframe Structure | 48 | | Annex | ex D (informative): Change history | 50 | | Histor | · | 51 | ## **Foreword** This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP). The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows: Version x.y.z #### where: - x the first digit: - 1 presented to TSG for information; - 2 presented to TSG for approval; - 3 or greater indicates TSG approved document under change control. - y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc. - z the third digit is incremented when editorial only changes have been incorporated in the document. ## 1 Scope The present document describes the characteristics of the physicals channels and the mapping of the transport channels to physical channels in the TDD mode of UTRA. ## 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. - References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific. - For a specific reference, subsequent revisions do not apply. - For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*. - [1] 3GPP TS 25.201: "Physical layer - general description". [2] 3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)". 3GPP TS 25.212: "Multiplexing and channel coding (FDD)". [3] [4] 3GPP TS 25.213: "Spreading and modulation (FDD)". [5] 3GPP TS 25.214: "Physical layer procedures (FDD)". 3GPP TS 25.215: "Physical layer – Measurements (FDD)". [6] [7] 3GPP TS 25.222: "Multiplexing and channel coding (TDD)". 3GPP TS 25.223: "Spreading and modulation (TDD)". [8] [9] 3GPP
TS 25.224: "Physical layer procedures (TDD)". 3GPP TS 25.225: "Physical layer – Measurements (TDD)". [10] 3GPP TS 25.301: "Radio Interface Protocol Architecture". [11] 3GPP TS 25.302: "Services Provided by the Physical Layer". [12] 3GPP TS 25.401: "UTRAN Overall Description". [13] 3GPP TS 25.402: "Synchronisation in UTRAN, Stage 2". [14] 3GPP TS 25.304: " UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected [15] Mode". 3GPP TS 25.427: "UTRAN Iur and Iub interface user plane protocols for DCH data streams". [16] [17] 3GPP TS 25.435: "UTRAN I_{ub} Interface User Plane Protocols for Common Transport Channel Data Streams". ## 3 Abbreviations For the purposes of the present document, the following abbreviations apply: BCH Broadcast Channel CCPCH Common Control Physical Channel CCTrCH Coded Composite Transport Channel CDMA Code Division Multiple Access DCH Dedicated Channel DL Downlink DPCH Dedicated Physical Channel DRX Discontinuous Reception DSCH Downlink Shared Channel DTX Discontinuous Transmission FACH Forward Access Channel FDD Frequency Division Duplex FEC Forward Error Correction GP Guard Period GSM Global System for Mobile Communication NRT Non-Real Time OVSF Orthogonal Variable Spreading Factor P-CCPCH Primary CCPCH PCH Paging Channel PDSCH Physical Downlink Shared Channel PI Paging Indicator (value calculated by higher layers) PICH Page Indicator Channel P_a Paging Indicator (indicator set by physical layer) PRACH Physical Random Access Channel PUSCH Physical Uplink Shared Channel RACH Random Access Channel RF Radio Frame RT Real Time S-CCPCH Secondary CCPCH SCH Synchronisation Channel SCTD Space Code Transmit Diversity SF Spreading Factor SFN Cell System Frame Number TCH Traffic Channel TDD Time Division Duplex TDMA Time Division Multiple Access TFC Transport Format Combination TFCI Transport Format Combination Indicator TFI Transport Format Indicator TPC Transmitter Power Control TrCH Transport Channel TSTD Time Switched Transmit Diversity TTI Transmission Time Interval UE User Equipment UL Uplink UMTS Universal Mobil Telecommunications System USCH Uplink Shared Channel UTRAN UMTS Terrestrial Radio Access Network ## 4 Services offered to higher layers ## 4.1 Transport channels Transport channels are the services offered by layer 1 to the higher layers. A transport channel is defined by how and with what characteristics data is transferred over the air interface. A general classification of transport channels is into two groups: - Dedicated Channels, using inherent addressing of UE - Common Channels, using explicit addressing of UE if addressing is needed General concepts about transport channels are described in [12]. #### 4.1.1 Dedicated transport channels The Dedicated Channel (DCH) is an up- or downlink transport channel that is used to carry user or control information between the UTRAN and a UE. #### 4.1.2 Common transport channels There are six types of transport channels: BCH, FACH, PCH, RACH, USCH, DSCH #### 4.1.2.1 BCH - Broadcast Channel The Broadcast Channel (BCH) is a downlink transport channel that is used to broadcast system- and cell-specific information. #### 4.1.2.2 FACH – Forward Access Channel The Forward Access Channel (FACH) is a downlink transport channel that is used to carry control information to a mobile station when the system knows the location cell of the mobile station. The FACH may also carry short user packets. #### 4.1.2.3 PCH – Paging Channel The Paging Channel (PCH) is a downlink transport channel that is used to carry control information to a mobile station when the system does not know the location cell of the mobile station. #### 4.1.2.4 RACH – Random Access Channel The Random Access Channel (RACH) is an up link transport channel that is used to carry control information from mobile station. The RACH may also carry short user packets. #### 4.1.2.5 USCH – Uplink Shared Channel The uplink shared channel (USCH) is an uplink transport channel shared by several UEs carrying dedicated control or traffic data. #### 4.1.2.6 DSCH – Downlink Shared Channel The downlink shared channel (DSCH) is a downlink transport channel shared by several UEs carrying dedicated control or traffic data. #### 4.2 Indicators Indicators are means of fast low-level signalling entities which are transmitted without using information blocks sent over transport channels. The meaning of indicators is implicit to the receiver. The indicator(s) defined in the current version of the specifications are: Paging Indicator. ## 5 Physical channels All physical channels take three-layer structure with respect to timeslots, radio frames and system frame numbering (SFN), see [14]. Depending on the resource allocation, the configuration of radio frames or timeslots becomes different. All physical channels need a guard period in every timeslot. The time slots are used in the sense of a TDMA component to separate different user signals in the time domain. The physical channel signal format is presented in figure 1. A physical channel in TDD is a burst, which is transmitted in a particular timeslot within allocated Radio Frames. The allocation can be continuous, i.e. the time slot in every frame is allocated to the physical channel or discontinuous, i.e. the time slot in a subset of all frames is allocated only. A burst is the combination of two data parts, a midamble part and a guard period. The duration of a burst is one time slot. Several bursts can be transmitted at the same time from one transmitter. In this case, the data parts must use different OVSF channelisation codes, but the same scrambling code. The midamble parts are either identically or differently shifted versions of a cell-specific basic midamble code, see section 5.2.3. Figure 1: Physical channel signal format The data part of the burst is spread with a combination of channelisation code and scrambling code. The channelisation code is a OVSF code, that can have a spreading factor of 1, 2, 4, 8, or 16. The data rate of the physical channel is depending on the used spreading factor of the used OVSF code. The midamble part of the burst can contain two different types of midambles: a short one of length 256 chips, or a long one of 512 chips. The data rate of the physical channel is depending on the used midamble length. So a physical channel is defined by frequency, timeslot, channelisation code, burst type and Radio Frame allocation. The scrambling code and the basic midamble code are broadcast and may be constant within a cell. When a physical channel is established, a start frame is given. The physical channels can either be of infinite duration, or a duration for the allocation can be defined. #### 5.1 Frame structure The TDMA frame has a duration of 10 ms and is subdivided into 15 time slots (TS) of 2560*T_c duration each. A time slot corresponds to 2560 chips. The physical content of the time slots are the bursts of corresponding length as described in subclause 5.2.2. Each 10 ms frame consists of 15 time slots, each allocated to either the uplink or the downlink (figure 2). With such a flexibility, the TDD mode can be adapted to different environments and deployment scenarios. In any configuration at least one time slot has to be allocated for the downlink and at least one time slot has to be allocated for the uplink. Figure 2: The TDD frame structure Examples for multiple and single switching point configurations as well as for symmetric and asymmetric UL/DL allocations are given in figure 3. Multiple-switching-point configuration (symmetric DL/UL allocation) Multiple-switching-point configuration (asymmetric DL/UL allocation) Single-switching-point configuration (symmetric DL/UL allocation) Single-switching-point configuration (asymmetric DL/UL allocation) Figure 3: TDD frame structure examples ## 5.2 Dedicated physical channel (DPCH) The DCH as described in subclause 4.1.1 is mapped onto the dedicated physical channel. ## 5.2.1 Spreading Spreading is applied to the data part of the physical channels and consists of two operations. The first is the channelisation operation, which transforms every data symbol into a number of chips, thus increasing the bandwidth of the signal. The number of chips per data symbol is called the Spreading Factor (SF). The second operation is the scrambling operation, where a scrambling code is applied to the spread signal. Details on channelisation and scrambling operation can be found in [8]. #### 5.2.1.1 Spreading for Downlink Physical Channels Downlink physical channels shall use SF = 16. Multiple parallel physical channels can be used to support higher data rates. These parallel physical channels shall be transmitted using different channelisation codes, see [8]. These codes with SF = 16 are generated as described in [8]. Operation with a single code with spreading factor 1 is possible for the downlink physical channels. #### 5.2.1.2 Spreading for Uplink Physical Channels The range of spreading factor that may be used for uplink physical channels shall range from 16 down to 1. For each physical channel an individual minimum spreading factor SF_{min} is transmitted by means of the higher layers. There are two options that are indicated by UTRAN: - 1. The UE shall use the spreading factor SF_{min}, independent of the current TFC. - 2. The UE shall autonomously increase the spreading factor depending on the current TFC. If the UE autonomously changes the SF, it shall always vary the channelisation code along the branch with the higher code numbering of the allowed OVSF sub tree, as depicted in [8]. For multicode transmission a UE shall use a maximum of two physical channels per timeslot simultaneously. These two parallel physical channels shall be transmitted using different channelisation codes, see [8]. #### 5.2.2 Burst Types Three types of bursts for dedicated physical channels are defined. All of them consist of two data symbol fields, a midamble and a guard period, the lengths
of which are different for the individual burst types. Thus, the number of data symbols in a burst depends on the SF and the burst type, as depicted in table 1. Spreading factor (SF) **Burst Type 1 Burst Type 2** Burst Type 3 2208 1952 1856 2 976 1104 928 4 488 552 464 244 232 8 276 16 122 138 116 Table 1: Number of data symbols (N) for burst type 1, 2, and 3 The support of all three burst types is mandatory for the UE. The three different bursts defined here are well suited for different applications, as described in the following sections. #### 5.2.2.1 Burst Type 1 The burst type 1 can be used for uplink and downlink. Due to its longer midamble field this burst type supports the construction of a larger number of training sequences, see 5.2.3. The maximum number of training sequences depend on the cell configuration, see annex A. For the burst type 1 this number may be 4, 8, or 16. The data fields of the burst type 1 are 976 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 above. The midamble of burst type 1 has a length of 512 chips. The guard period for the burst type 1 is 96 chip periods long. The burst type 1 is shown in Figure 4. The contents of the burst fields are described in table 2. Table 2: The contents of the burst type 1 fields | Chip number (CN) | Length of field in chips | Length of field in symbols | Contents of field | |------------------|--------------------------|----------------------------|-------------------| | 0-975 | 976 | Cf table 1 | Data symbols | | 976-1487 | 512 | - | Midamble | | 1488-2463 | 976 | Cf table 1 | Data symbols | | 2464-2559 | 96 | - | Guard period | | Data symbols
976 chips | Midamble
512 chips | Data symbols
976 chips | GP
96
CP | |---------------------------|-----------------------|---------------------------|----------------| | 4 | 2560*T _c | | — | Figure 4: Burst structure of the burst type 1. GP denotes the guard period and CP the chip periods Guard period #### 5.2.2.2 Burst Type 2 The burst type 2 can be used for uplink and downlink. It offers a longer data field than burst type 1 on the cost of a shorter midamble. Due to the shorter midamble field the burst type 2 supports a maximum number of training sequences of 3 or 6 only, depending on the cell configuration, see annex A. The data fields of the burst type 2 are 1104 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 above. The guard period for the burst type 2 is 96 chip periods long. The burst type 2 is shown in Figure 5. The contents of the burst fields are described in table 3. Chip number (CN) Length of field in Length of field in **Contents of** field chips symbols 1104 0-1103 cf table 1 Data symbols 1104-1359 256 Midamble 1360-2463 1104 Data symbols cf table 1 Table 3: The contents of the burst type 2 fields Figure 5: Burst structure of the burst type 2. GP denotes the guard period and CP the chip periods #### 5.2.2.3 Burst Type 3 2464-2559 The burst type 3 is used for uplink only. Due to the longer guard period it is suitable for initial access or access to a new cell after handover. It offers the same number of training sequences as burst type 1. The data fields of the burst type 3 have a length of 976 chips and 880 chips, respectively. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 above. The midamble of burst type 3 has a length of 512 chips. The guard period for the burst type 3 is 192 chip periods long. The burst type 3 is shown in Figure 6. The contents of the burst fields are described in table 4. Table 4: The contents of the burst type 3 fields | Chip number (CN) | Length of field in chips | Length of field in symbols | (| Contents of field | |------------------|--------------------------|----------------------------|---|-------------------| | 0-975 | 976 | Cf table 1 | | Data symbols | | 976-1487 | 512 | - | | Midamble | | 1488-2367 | 880 | Cf table 1 | | Data symbols | | 2368-2559 | 192 | - | | Guard period | Figure 6: Burst structure of the burst type 3. GP denotes the guard period and CP the chip periods #### 5.2.2.4 Transmission of TFCI All burst types 1, 2 and 3 provide the possibility for transmission of TFCI. 96 The transmission of TFCI is negotiated at call setup and can be re-negotiated during the call. For each CCTrCH it is indicated by higher layer signalling, which TFCI format is applied. Additionally for each allocated timeslot it is signalled individually whether that timeslot carries the TFCI or not. The TFCI is always present in the first timeslot in a radio frame for each CCTrCH. If a time slot contains the TFCI, then it is always transmitted using the physical channel with the lowest physical channel sequence number (p) in that timeslot. Physical channel sequence numbering is determined by the rate matching function and is described in [7]. The transmission of TFCI is done in the data parts of the respective physical channel. In DL the TFCI code word bits and data bits are subject to the same spreading procedure as depicted in [8]. In UL, independent of the SF that is applied to the data symbols in the burst, the data in the TFCI field are always spread with SF=16 using the channelisation code in the branch with the highest code numbering of the allowed OVSF sub tree, as depicted in [8]. Hence the midamble structure and length is not changed. The TFCI code word is to be transmitted directly adjacent to the midamble, possibly after the TPC. Figure 7 shows the position of the TFCI code word in a traffic burst in downlink. Figure 8 shows the position of the TFCI code word in a traffic burst in uplink. Figure 7: Position of the TFCI code word in the traffic burst in case of downlink Figure 8: Position of the TFCI code word in the traffic burst in case of uplink Two examples of TFCI transmission in the case of multiple DPCHs used for a connection are given in the Figure 9 and Figure 10 below. Combinations of the two schemes shown are also applicable. Figure 9: Example of TFCI transmission with physical channels multiplexed in code domain Figure 10: Example of TFCI transmission with physical channels multiplexed in time domain In case the Node B receives an invalid TFI combination on the DCHs mapped to one CCTrCH the procedure described in [16] shall be applied. According to this procedure DTX shall be applied to all DPCHs to which the CCTrCH is mapped to. #### 5.2.2.5 Transmission of TPC All burst types 1, 2 and 3 for dedicated channels provide the possibility for transmission of TPC in uplink. The transmission of TPC is done in the data parts of the traffic burst. Independent of the SF that is applied to the data symbols in the burst, the data in the TPC field are always spread with SF=16 using the channelisation code in the branch with the highest code numbering of the allowed OVSF sub tree, as depicted in [8]. Hence the midamble structure and length is not changed. The TPC information is to be transmitted directly after the midamble. Figure 11 shows the position of the TPC in a traffic burst. For every user the TPC information shall be transmitted at least once per transmitted frame. If a TFCI is applied for a CCTrCH, TPC shall be transmitted with the same channelization codes and in the same timeslots as the TFCI. If no TFCI is applied for a CCTrCH, TPC shall be transmitted using the physical channel corresponding to physical channel sequence number p=1. Physical channel sequence numbering is determined by the rate matching function and is described in [7]. Figure 11: Position of TPC information in the traffic burst The length of the TPC command is one symbol. The relationship between the TPC symbol and the TPC command is shown in table 4a. Table 4a: TPC bit pattern | TPC Bits | TPC command | Meaning | |----------|-------------|-------------------| | 00 | 'Down' | Decrease Tx Power | | 11 | 'Up' | Increase Tx Power | #### 5.2.2.6 Timeslot formats #### 5.2.2.6.1 Downlink timeslot formats The downlink timeslot format depends on the spreading factor, midamble length and on the number of the TFCI code word bits, as depicted in the table 5a. Table 5a: Time slot formats for the Downlink | Slot Format
| Spreading
Factor | Midamble
length
(chips) | N _{TFCI code} word (bits) | Bits/slot | N _{Data/Slot}
(bits) | N _{data/data} field
(bits) | |------------------|---------------------|-------------------------------|------------------------------------|-----------|----------------------------------|--| | 0 | 16 | 512 | 0 | 244 | 244 | 122 | | 1 | 16 | 512 | 4 | 244 | 240 | 120 | | 2 | 16 | 512 | 8 | 244 | 236 | 118 | | 3 | 16 | 512 | 16 | 244 | 228 | 114 | | 4 | 16 | 512 | 32 | 244 | 212 | 106 | | 5 | 16 | 256 | 0 | 276 | 276 | 138 | | 6 | 16 | 256 | 4 | 276 | 272 | 136 | | 7 | 16 | 256 | 8 | 276 | 268 | 134 | | 8 | 16 | 256 | 16 | 276 | 260 | 130 | | 9 | 16 | 256 | 32 | 276 | 244 | 122 | | 10 | 1 | 512 | 0 | 3904 | 3904 | 1952 | | 11 | 1 | 512 | 4 | 3904 | 3900 | 1950 | | 12 | 1 | 512 | 8 | 3904 | 3896 | 1948 | | 13 | 1 | 512 | 16 | 3904 | 3888 | 1944 | | 14 | 1 | 512 | 32 | 3904 | 3872 | 1936 | | 15 | 1 | 256 | 0 | 4416 | 4416 | 2208 | | 16 | 1 | 256 | 4 | 4416 | 4412 | 2206 | | 17 | 1 | 256 | 8 | 4416 | 4408 | 2204 | | 18 | 1 | 256 | 16 | 4416 | 4400 | 2200 | | 19 | 1 | 256 | 32 | 4416 | 4384 | 2192 | #### 5.2.2.6.2 Uplink timeslot formats The uplink timeslot format depends on the spreading factor, midamble length, guard period length and on the number of the TFCI code word bits. Due to TPC, different amount of bits are mapped to the two data fields. The timeslot formats are depicted in the table 5b. Table 5b: Timeslot formats for the Uplink | Slot
Format | Spreadin
g Factor | Midambl
e length | Guard
Period | N _{TFCI} | N _{TPC} (bits) | Bits/sl
ot | N _{Data/Slo}
t (bits) | N _{data/data} | N _{data/data} |
----------------|----------------------|-----------------------|-----------------|-------------------|-------------------------|---------------|-----------------------------------|------------------------|------------------------| | 0 | 16 | (chips)
512 | (chips)
96 | (bits) | 0 | 244 | 244 | (bits)
122 | (bits)
122 | | 1 | 16 | 512 | 96 | 0 | 2 | 244 | 242 | 122 | 120 | | 2 | 16 | 512 | 96 | 4 | 2 | 244 | 238 | 120 | 118 | | 3 | 16 | 512 | 96 | 8 | 2 | 244 | 234 | 118 | 116 | | 4 | 16 | 512 | 96 | 16 | 2 | 244 | 226 | 114 | 112 | | 5 | 16 | 512 | 96 | 32 | 2 | 244 | 210 | 106 | 104 | | 6 | 16 | 256 | 96 | 0 | 0 | 276 | 276 | 138 | 138 | | 7 | 16 | 256 | 96 | 0 | 2 | 276 | 274 | 138 | 136 | | 8 | 16 | 256 | 96 | 4 | 2 | 276 | 270 | 136 | 134 | | 9 | 16 | 256 | 96 | 8 | 2 | 276 | 266 | 134 | 132 | | 10 | 16 | 256 | 96 | 16 | 2 | 276 | 258 | 130 | 128 | | 11 | 16 | 256 | 96 | 32 | 2 | 276 | 242 | 122 | 120 | | 12 | 8 | 512 | 96 | 0 | 0 | 488 | 488 | 244 | 244 | | 13 | 8 | 512 | 96 | 0 | 2 | 486 | 484 | 244 | 240 | | 14 | 8 | 512 | 96 | 4 | 2 | 482 | 476 | 240 | 236 | | 15 | 8 | 512 | 96 | 8 | 2 | 478 | 468 | 236 | 232 | | 16 | 8 | 512 | 96 | 16 | 2 | 470 | 452 | 228 | 224 | | 17 | 8 | 512 | 96 | 32 | 2 | 454 | 420 | 212 | 208 | | 18 | 8 | 256 | 96 | 0 | 0 | 552 | 552 | 276 | 276 | | 19 | 8 | 256 | 96 | 0 | 2 | 550 | 548 | 276 | 272 | | 20 | 8 | 256 | 96 | 4 | 2 | 546 | 540 | 272 | 268 | | 21 | 8 | 256 | 96 | 8 | 2 | 542 | 532 | 268 | 264 | | 22 | 8 | 256 | 96 | 16 | 2 | 534 | 516 | 260 | 256 | | 23 | 8 | 256 | 96 | 32 | 2 | 518 | 484 | 244 | 240 | | 24 | 4 | 512 | 96 | 0 | 0 | 976 | 976 | 488 | 488 | | 25 | 4 | 512 | 96 | 0 | 2 | 970 | 968 | 488 | 480 | | 26 | 4 | 512 | 96 | 4 | 2 | 958 | 952 | 480 | 472 | | 27 | 4 | 512 | 96 | 8 | 2 | 946 | 936 | 472 | 464 | | 28 | 4 | 512 | 96 | 16 | 2 | 922 | 904 | 456 | 448 | | 29 | 4 | 512 | 96 | 32 | 2 | 874 | 840 | 424 | 416 | | 30 | 4 | 256 | 96 | 0 | 0 | 1104 | 1104 | 552 | 552 | | 31 | 4 | 256 | 96 | 0 | 2 | 1098 | 1096 | 552 | 544 | | 32 | 4 | 256 | 96 | 4 | 2 | 1086 | 1080 | 544 | 536 | | 33 | 4 | 256 | 96 | 8 | 2 | 1074 | 1064 | 536 | 528 | | 34 | 4 | 256 | 96 | 16 | 2 | 1050 | 1032 | 520 | 512 | | 35 | 4 | 256 | 96 | 32 | 2 | 1002 | 968 | 488 | 480 | | 36 | 2 | 512 | 96 | 0 | 0 | 1952 | 1952 | 976 | 976 | | 37 | 2 | 512 | 96 | 0 | 2 | 1938 | 1936 | 976 | 960 | | 38 | 2 | 512 | 96 | 4 | 2 | 1910 | 1904 | 960 | 944 | | 39 | 2 | 512 | 96 | 8 | 2 | 1882 | 1872 | 944 | 928 | | 40 | 2 | 512 | 96 | 16 | 2 | 1826 | 1808 | 912 | 896 | | 41 | 2 | 512 | 96 | 32 | 2 | 1714 | 1680 | 848 | 832 | | 42 | 2 | 256 | 96 | 0 | 0 | 2208 | 2208 | 1104 | 1104 | | 43 | 2 | 256 | 96 | 0 | 2 | 2194 | 2192 | 1104 | 1088 | | 44 | 2 | 256 | 96 | 4 | 2 | 2166 | 2160 | 1088 | 1072 | | 45 | 2 | 256 | 96 | 8 | 2 | 2138 | 2128 | 1072 | 1056 | | 46 | 2 | 256 | 96 | 16 | 2 | 2082 | 2064 | 1040 | 1024 | | 47 | 2 | 256 | 96 | 32 | 2 | 1970 | 1936 | 976 | 960 | | Slot
Format
| Spreadin
g Factor | Midambl
e length
(chips) | Guard
Period
(chips) | N _{TFCI} code word (bits) | N _{TPC} (bits) | Bits/sl
ot | N _{Data/Slo}
t (bits) | N _{data/data} field(1) (bits) | N _{data/data} field(2) (bits) | |---------------------|----------------------|--------------------------------|----------------------------|------------------------------------|-------------------------|---------------|-----------------------------------|--|--| | 48 | 1 | 512 | 96 | 0 | 0 | 3904 | 3904 | 1952 | 1952 | | 49 | 1 | 512 | 96 | 0 | 2 | 3874 | 3872 | 1952 | 1920 | | 50 | 1 | 512 | 96 | 4 | 2 | 3814 | 3808 | 1920 | 1888 | | 51 | 1 | 512 | 96 | 8 | 2 | 3754 | 3744 | 1888 | 1856 | | 52 | 1 | 512 | 96 | 16 | 2 | 3634 | 3616 | 1824 | 1792 | | 53 | 1 | 512 | 96 | 32 | 2 | 3394 | 3360 | 1696 | 1664 | | 54 | 1 | 256 | 96 | 0 | 0 | 4416 | 4416 | 2208 | 2208 | | 55 | 1 | 256 | 96 | 0 | 2 | 4386 | 4384 | 2208 | 2176 | | 56 | 1 | 256 | 96 | 4 | 2 | 4326 | 4320 | 2176 | 2144 | | 57 | 1 | 256 | 96 | 8 | 2 | 4266 | 4256 | 2144 | 2112 | | 58 | 1 | 256 | 96 | 16 | 2 | 4146 | 4128 | 2080 | 2048 | | 59 | 1 | 256 | 96 | 32 | 2 | 3906 | 3872 | 1952 | 1920 | | 60 | 16 | 512 | 192 | 0 | 0 | 232 | 232 | 122 | 110 | | 61 | 16 | 512 | 192 | 0 | 2 | 232 | 230 | 122 | 108 | | 62 | 16 | 512 | 192 | 4 | 2 | 232 | 226 | 120 | 106 | | 63 | 16 | 512 | 192 | 8 | 2 | 232 | 222 | 118 | 104 | | 64 | 16 | 512 | 192 | 16 | 2 | 232 | 214 | 114 | 100 | | 65 | 16 | 512 | 192 | 32 | 2 | 232 | 198 | 106 | 92 | | 66 | 8 | 512 | 192 | 0 | 0 | 464 | 464 | 244 | 220 | | 67 | 8 | 512 | 192 | 0 | 2 | 462 | 460 | 244 | 216 | | 68 | 8 | 512 | 192 | 4 | 2 | 458 | 452 | 240 | 212 | | 69 | 8 | 512 | 192 | 8 | 2 | 454 | 444 | 236 | 208 | | 70 | 8 | 512 | 192 | 16 | 2 | 446 | 428 | 228 | 200 | | 71 | 8 | 512 | 192 | 32 | 2 | 430 | 396 | 212 | 184 | | 72 | 4 | 512 | 192 | 0 | 0 | 928 | 928 | 488 | 440 | | 73 | 4 | 512 | 192 | 0 | 2 | 922 | 920 | 488 | 432 | | 74 | 4 | 512 | 192 | 4 | 2 | 910 | 904 | 480 | 424 | | 75 | 4 | 512 | 192 | 8 | 2 | 898 | 888 | 472 | 416 | | 76 | 4 | 512 | 192 | 16 | 2 | 874 | 856 | 456 | 400 | | 77 | 4 | 512 | 192 | 32 | 2 | 826 | 792 | 424 | 368 | | 78 | 2 | 512 | 192 | 0 | 0 | 1856 | 1856 | 976 | 880 | | 79 | 2 | 512 | 192 | 0 | 2 | 1842 | 1840 | 976 | 864 | | 80 | 2 | 512 | 192 | 4 | 2 | 1814 | 1808 | 960 | 848 | | 81 | 2 | 512 | 192 | 8 | 2 | 1786 | 1776 | 944 | 832 | | 82 | 2 | 512 | 192 | 16 | 2 | 1730 | 1712 | 912 | 800 | | 83 | 2 | 512 | 192 | 32 | 2 | 1618 | 1584 | 848 | 736 | | 84 | 1 | 512 | 192 | 0 | 0 | 3712 | 3712 | 1952 | 1760 | | 85 | 1 | 512 | 192 | 0 | 2 | 3682 | 3680 | 1952 | 1728 | | 86 | 1 | 512 | 192 | 4 | 2 | 3622 | 3616 | 1920 | 1696 | | 87 | 1 | 512 | 192 | 8 | 2 | 3562 | 3552 | 1888 | 1664 | | 88 | 1 | 512 | 192 | 16 | 2 | 3442 | 3424 | 1824 | 1600 | | 89 | 1 | 512 | 192 | 32 | 2 | 3202 | 3168 | 1696 | 1472 | ## 5.2.3 Training sequences for spread bursts In this subclause, the training sequences for usage as midambles in burst type 1, 2 and 3 (see subclause 5.2.2) are defined. The training sequences, i.e. midambles, of different users active in the same cell and same time slot are cyclically shifted versions of one cell-specific single basic midamble code. The applicable basic midamble codes are given in Annex A.1 and A.2. As different basic midamble codes are required for different burst formats, the Annex A.1 shows the basic midamble codes \mathbf{m}_{PL} for burst type 1 and 3, and Annex and A.2 shows \mathbf{m}_{PS} for burst type 2. It should be noted that burst type 2 must not be mixed with burst type 1 or 3 in the same timeslot of one cell. The basic midamble codes in Annex A.1 and A.2 are listed in hexadecimal notation. The binary form of the basic midamble code shall be derived according to table 6 below. Table 6: Mapping of 4 binary elements m_i on a single hexadecimal digit | 4 binary elements m_i | Mapped on hexadecimal digit | |-------------------------|-----------------------------| | -1 -1 -1 | 0 | | -1 -1 -1 1 | 1 | | -1 -1 1 –1 | 2 | | -1 -1 1 1 | 3 | | -1 1-1-1 | 4 | | -1 1 -1 1 | 5 | | -1 1 1 –1 | 6 | | -1 1 1 1 | 7 | | 1 -1 -1 –1 | 8 | | 1 -1 -1 1 | 9 | | 1 -1 1 –1 | Α | | 1 -1 1 1 | В | | 1 1 -1 -1 | С | | 1 1 -1 1 | D | | 1 1 1 –1 | E | | 1 1 1 1 | F | For each particular basic midamble code, its binary representation can be written as a vector \mathbf{m}_p : $$\mathbf{m}_{\mathbf{p}} = \left(m_1, m_2, ..., m_p\right) \tag{1}$$ According to Annex A.1, the size of this vector \mathbf{m}_P is P=456 for burst type 1 and 3. Annex A.2 is setting P=192 for burst type 2. As QPSK modulation is used, the training sequences are transformed into a complex form, denoted as the complex vector \mathbf{m}_P : $$\underline{\mathbf{m}}_{P} = (\underline{m}_{1}, \underline{m}_{2}, ..., \underline{m}_{P})$$ (2) The elements \underline{m}_i of $\underline{\mathbf{m}}_P$ are derived from elements m_i of \mathbf{m}_P using equation (3): $$\underline{m}_i = (\mathbf{j})^i \cdot m_i \text{ for all } i = 1, ..., P$$ (3) Hence, the elements m_i of the complex basic midamble code are alternating real and imaginary. To derive the required training sequences (different shifts), this vector $\underline{\mathbf{m}}_P$ is periodically extended to the size: $$i_{\text{max}} = L_m + (K'-1)W + \lfloor P/K \rfloor \tag{4}$$ Notes on equation (4): - L_m: Midamble length - K': Maximum number of different midamble shifts in a cell, when no intermediate shifts are used. This value depends on the midamble length. - K: Maximum number of different midamble shifts in a cell, when intermediate shifts are used, K=2K'. This value depends on the midamble length. - W: Shift between the midambles, when the number of midambles is K'. - \[\lambda \right] denotes the largest integer smaller or equal to x Allowed values for L_m, K' and W are given in Annex A.1 and A.2. So we obtain a new vector $\mathbf{\underline{m}}$ containing the periodic basic midamble sequence: $$\underline{\mathbf{m}} = \left(\underline{m}_1, \underline{m}_2, \dots, \underline{m}_{i_{\text{max}}}\right) = \left(\underline{m}_1, \underline{m}_2, \dots, \underline{m}_{L_{\text{m}} + (K'-1)W + |P/K|}\right) \tag{5}$$ The first P elements of this vector \mathbf{m} are the same ones as in vector $\mathbf{m}_{\rm p}$, the following elements repeat the beginning: $$\underline{m}_{i} = \underline{m}_{i-P} \text{ for the subset } i = (P+1), \dots, i_{\text{max}}$$ (6) Using this periodic basic midamble sequence $\underline{\mathbf{m}}$ for each shift k a midamble $\underline{\mathbf{m}}^{(k)}$ of length L_m is derived, which can be written as a shift specific vector: $$\underline{\mathbf{m}}^{(k)} = \left(\underline{m}_1^{(k)}, \underline{m}_2^{(k)}, \dots, \underline{m}_{L_m}^{(k)}\right) \tag{7}$$ The L_m midamble elements $\underline{m}_i^{(k)}$ are generated for each midamble of the first K' shifts (k = 1,...,K') based on:
$$\underline{m}_{i}^{(k)} = \underline{m}_{i+(K'-k)W} \text{ with } i = 1,...,L_{m} \text{ and } k = 1,...,K'$$ (8) The elements of midambles for the second K' shifts (k = (K'+1),...,K = (K'+1),...,2K') are generated based on a slight modification of this formula introducing intermediate shifts: $$\underline{m}_{i}^{(k)} = \underline{m}_{i+(K-k-1)W+|P/K|} \text{ with } i = 1,..., L_{m} \text{ and } k = K'+1,..., K-1$$ (9) $$\underline{m}_{i}^{(k)} = \underline{m}_{i+(K'-1)W+|P/K|} \text{ with } i = 1,..., L_{m} \text{ and } k = K$$ (10) The number K_{Cell} of midambles that is supported in each cell can be smaller than K, depending on the cell size and the possible delay spreads, see annex A. The number K_{Cell} is signalled by higher layers. The midamble sequences derived according to equations (7) to (10) have complex values and are not subject to channelisation or scrambling process, i.e. the elements $\underline{m}_i^{(k)}$ represent complex chips for usage in the pulse shaping process at modulation. The term 'a midamble code set' or 'a midamble code family' denotes K specific midamble codes $\underline{\mathbf{m}}^{(k)}$; k=1,...,K, based on a single basic midamble code \mathbf{m}_{P} according to (1). ## 5.2.4 Beamforming When DL beamforming is used, at least that user to which beamforming is applied and which has a dedicated channel shall get one individual midamble according to subclause 5.2.3, even in DL. ## 5.3 Common physical channels ## 5.3.1 Primary common control physical channel (P-CCPCH) The BCH as described in subclause 4.1.2 is mapped onto the Primary Common Control Physical Channel (P-CCPCH). The position (time slot / code) of the P-CCPCH is known from the Physical Synchronisation Channel (PSCH), see subclause 5.3.4. #### 5.3.1.1 P-CCPCH Spreading The P-CCPCH uses fixed spreading with a spreading factor SF = 16 as described in subclause 5.2.1.1. The P-CCPCH always uses channelisation code $c_{O=16}^{(k=1)}$. #### 5.3.1.2 P-CCPCH Burst Types The burst type 1 as described in subclause 5.2.2 is used for the P-CCPCH. No TFCI is applied for the P-CCPCH. #### 5.3.1.3 P-CCPCH Training sequences The training sequences, i.e. midambles, as described in subclause 5.2.3 are used for the P-CCPCH. #### 5.3.2 Secondary common control physical channel (S-CCPCH) PCH and FACH as described in subclause 4.1.2 are mapped onto one or more secondary common control physical channels (S-CCPCH). In this way the capacity of PCH and FACH can be adapted to the different requirements. #### 5.3.2.1 S-CCPCH Spreading The S-CCPCH uses fixed spreading with a spreading factor SF = 16 as described in subclause 5.2.1.1. #### 5.3.2.2 S-CCPCH Burst Types The burst types 1 or 2 as described in subclause 5.2.2 are used for the S-CCPCHs. TFCI may be applied for S-CCPCHs. #### 5.3.2.3 S-CCPCH Training sequences The training sequences, i.e. midambles, as described in subclause 5.2.3 are used for the S-CCPCH. #### 5.3.3 The physical random access channel (PRACH) The RACH as described in subclause 4.1.2 is mapped onto one uplink physical random access channel (PRACH). #### 5.3.3.1 PRACH Spreading The uplink PRACH uses either spreading factor SF=16 or SF=8 as described in subclause 5.2.1.2. The set of admissible spreading codes for use on the PRACH and the associated spreading factors are broadcast on the BCH (within the RACH configuration parameters on the BCH). #### 5.3.3.2 PRACH Burst Type The UEs send uplink access bursts of type 3 randomly in the PRACH. TFCI and TPC are not applied for the PRACH. #### 5.3.3.3 PRACH Training sequences The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of a single periodic basic code. The basic midamble codes for burst type 3 are shown in Annex A. The necessary time shifts are obtained by choosing either *all* k=1,2,3...,K' (for cells with small radius) or *uneven* $k=1,3,5,... \le K'$ (for cells with large radius). Different cells use different periodic basic codes, i.e. different midamble sets. For cells with large radius additional midambles may be derived from the time-inverted Basic Midamble Sequence. Thus, the second Basic Midamble Code m_2 is the time inverted version of Basic Midamble Code m_1 . In this way, a joint channel estimation for the channel impulse responses of all active users within one time slot can be performed by a maximum of two cyclic correlations (in cells with small radius, a single cyclic correlator suffices). The different user specific channel impulse response estimates are obtained sequentially in time at the output of the cyclic correlators. #### 5.3.3.4 PRACH timeslot formats For the PRACH the timeslot format is only spreading factor dependent. The timeslot formats 60 and 66 of table 5b are applicable for the PRACH. #### 5.3.3.5 Association between Training Sequences and Channelisation Codes For the PRACH there exists a fixed association between the training sequence and the channelisation code. The generic rule to define this association is based on the order of the channelisation codes $\mathbf{c}_{\mathbf{Q}}^{(k)}$ given by k and the order of the midambles $\mathbf{m}_{j}^{(k)}$ given by k, firstly, and j, secondly, with the constraint that the midamble for a spreading factor Q is the same as in the upper branch for the spreading factor 2Q. The index j=1 or 2 indicates whether the original Basic Midamble Sequence (j=1) or the time-inverted Basic Midamble Sequence is used (j=2). - For the case that all *k* are allowed and only one periodic basic code m₁ is available for the RACH, the association depicted in figure 12 is straightforward. - For the case that only odd *k* are allowed the principle of the association is shown in figure 13. This association is applied for one and two basic periodic codes. Figure 12: Association of Midambles to Channelisation Codes in the OVSF tree for all k Figure 13: Association of Midambles to Channelisation Codes in the OVSF tree for odd k #### 5.3.4 The synchronisation channel (SCH) In TDD mode code group of a cell can be derived from the synchronisation channel. In order not to limit the uplink/downlink asymmetry the SCH is mapped on one or two downlink slots per frame only. There are two cases of SCH and P-CCPCH allocation as follows: - Case 1) SCH and P-CCPCH allocated in TS#k, k=0....14 - Case 2) SCH allocated in two TS: TS#k and TS#k+8, k=0...6; P-CCPCH allocated in TS#k. The position of SCH (value of k) in frame can change on a long term basis in any case. Due to this SCH scheme, the position of P-CCPCH is known from the SCH. Figure 14 is an example for transmission of SCH, k=0, of Case 2. Time slot = $2560*T_c$ $b_i \in \{\pm 1, \pm j\}, C_{s,i} \in \{C_0, C_1, C_3, C_4, C_5, C_6, C_8, C_{10}, C_{12}, C_{13}, C_{14}, C_{15}\}, i=1,2,3; see [8]$ Figure 14: Scheme for Synchronisation channel SCH consisting of one primary sequence C_p and 3 parallel secondary sequences $C_{s,i}$ in slot k and k+8 (example for k=0 in Case 2) As depicted in figure 14, the SCH consists of a primary and three secondary code sequences each 256 chips long. The primary and secondary code sequences are defined in [8] clause 7 'Synchronisation codes'. Due to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning SCH can arise. The time offset $t_{\text{offset},n}$ enables the system to overcome the capture effect. The time offset $t_{offset,n}$ is one of 32 values, depending on the code group of the cell, n, cf. 'table 6 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and t_{offset} ' in [8]. Note that the cell parameter will change from frame to frame, cf. 'Table 7 Alignment of cell parameter cycling and system frame number' in [8], but the cell will belong to only one code group and thus have one time offset $t_{offset,n}$. The exact value for $t_{offset,n}$, regarding column 'Associated t_{offset} ' in table 6 in [8] is given by: $$t_{offset,n} = \begin{cases} n \cdot 48 \cdot T_c & n < 16 \\ (720 + n \cdot 48)T_c & n \ge 16 \end{cases}; \quad n = 0,, 31$$ ## 5.3.5 Physical Uplink Shared Channel (PUSCH) The USCH as desribed in subclause 4.1.2 is mapped onto one or more physical uplink shared channels (PUSCH). Timing advance, as described in [9], subclause 4.3, is applied to the PUSCH. #### 5.3.5.1 PUSCH Spreading The spreading factors that can be applied to the PUSCH are SF = 1, 2, 4, 8, 16 as described in subclause 5.2.1.2. #### 5.3.5.2 PUSCH Burst Types Burst types 1, 2 or 3 as described in subclause 5.2.2 can be used for PUSCH. TFCI and TPC can be transmitted on the PUSCH. #### 5.3.5.3 PUSCH Training Sequences The training sequences as desribed in subclause 5.2.3 are used for the PUSCH. #### 5.3.5.4 UE Selection The UE that shall transmit on the PUSCH is selected by higher layer signalling. #### 5.3.6 Physical Downlink Shared Channel (PDSCH) The DSCH as desribed in subclause 4.1.2 is mapped onto one or more physical downlink shared channels (PDSCH). #### 5.3.6.1 PDSCH Spreading The PDSCH uses either spreading factor SF = 16 or SF = 1 as described in subclause 5.2.1.1. #### 5.3.6.2 PDSCH Burst Types Burst types 1 or 2 as described in subclause 5.2.2 can be used for PDSCH. TFCI can be transmitted on the PDSCH. #### 5.3.6.3 PDSCH Training Sequences The training sequences as described in subclause 5.2.3 are used for the PDSCH. #### 5.3.6.4 UE Selection To indicate to the UE that there is data to decode on the DSCH, three signalling methods are available: - 1) using the TFCI field of the associated channel or PDSCH; - 2) using on the DSCH user specific midamble derived from the set of midambles used for that cell; - 3) using higher layer signalling. When the midamble based method is used, the UE specific midamble allocation method shall be employed (see subclause 5.6), and the UE shall decode the PDSCH if the PDSCH was
transmitted with the midamble assigned to the UE by UTRAN. For this method no other physical channels may use the same time slot as the PDSCH and only one UE may share the PDSCH time slot within one TTI. Note: From the above mentioned signalling methods, only the higher layer signalling method is supported by higher layers in R99. ## 5.3.7 The Paging Indicator Channel (PICH) The Paging Indicator Channel (PICH) is a physical channel used to carry the paging indicators. #### 5.3.7.1 Mapping of Paging Indicators to the PICH bits Figure 15 depicts the structure of a PICH burst and the numbering of the bits within the burst. The same burst type is used for the PICH in every cell. N_{PIB} bits in a normal burst of type 1 or 2 are used to carry the paging indicators, where N_{PIB} depends on the burst type: N_{PIB} =240 for burst type 1 and N_{PIB} =272 for burst type 2. The bits s_{NPIB+1} ,..., s_{NPIB+4} adjacent to the midamble are reserved for possible future use. Figure 15: Transmission and numbering of paging indicator carrying bits in a PICH burst Each paging indicator P_q in one time slot is mapped to the bits $\{s_{2Lpi^*q+1},...,s_{2Lpi^*(q+1)}\}$ within this time slot. Thus, due to the interleaved transmission of the bits half of the symbols used for each paging indicator are transmitted in the first data part, and the other half of the symbols are transmitted in the second data part, as exemplary shown in figure 16 for a paging indicator length L_{PI} of 4 symbols. Figure 16: Example of mapping of paging indicators on PICH bits for L_{PI}=4 The setting of the paging indicators and the corresponding PICH bits (including the reserved ones) is described in [7]. N_{PI} paging indicators of length L_{PI} =2, L_{PI} =4 or L_{PI} =8 symbols are transmitted in each radio frame that contains the PICH. The number of paging indicators N_{PI} per radio frame is given by the paging indicator length and the burst type, which are both known by higher layer signalling. In table 7 this number is shown for the different possibilities of burst types and paging indicator lengths. Table 7: Number N_{Pl} of paging indicators per time slot for the different burst types and paging indicator lengths L_{Pl} | | L _{PI} =2 | L _{PI} =4 | L _{PI} =8 | |--------------|---------------------|---------------------|---------------------| | Burst Type 1 | N _{PI} =60 | N _{PI} =30 | N _{PI} =15 | | Burst Type 2 | N _{PI} =68 | N _{PI} =34 | N _{PI} =17 | #### 5.3.7.2 Structure of the PICH over multiple radio frames As shown in figure 17, the paging indicators of N_{PICH} consecutive frames form a PICH block, N_{PICH} is configured by higher layers. Thus, $N_P = N_{PICH} * N_{PI}$ paging indicators are transmitted in each PICH block. Figure 17: Structure of a PICH block The value PI (PI = 0, ..., N_{P} -1) calculated by higher layers for use for a certain UE, see [15], is associated to the paging indicator P_q in the nth frame of one PICH block, where q is given by $$q = PI \mod N_{PI}$$ and n is given by $$n = PI \text{ div } N_{PI}$$. The PI bitmap in the PCH data frames over Iub contains indication values for all possible higher layer PI values, see [17]. Each bit in the bitmap indicates if the paging indicator P_q associated with that particular PI shall be set to 0 or 1. Hence, the calculation in the formulas above is to be performed in Node B to make the association between PI and P_q . #### 5.3.7.3 PICH Training sequences The training sequences, i.e. midambles for the PICH are generated as described in subclause 5.2.3. The allocation of midambles depends on whether SCTD is applied to the PICH. - If no antenna diversity is applied the PICH the midambles can be allocated as described in subclause 5.6. - If SCTD antenna diversity is applied to the PICH the allocation of midambles shall be as described in [9]. ## 5.4 Transmit Diversity for DL Physical Channels Table 8 summarizes the different transmit diversity schemes for different downlink physical channel types that are described in [9]. Table 8: Application of Tx diversity schemes on downlink physical channel types "X" – can be applied, "–" – must not be applied | Physical channel type | Physical channel type Open loop TxDiversity | | Closed loop TxDiversity | |-----------------------|---|---------------------|-------------------------| | | TSTD | SCTD ^(*) | 1 | | P-CCPCH | _ | X | _ | | S-CCPCH | | X | | | SCH | Х | _ | - | | DPCH | _ | _ | X | | PDSCH | - | X | X | | PICH | _ | Х | _ | (*) Note: SCTD may only be applied to physical channels when they are allocated to beacon locations ## 5.5 Beacon characteristics of physical channels For the purpose of measurements, common physical channels that are allocated to particular locations (time slot, code) shall have particular physical characteristics, called beacon characteristics. Physical channels with beacon characteristics are called beacon channels. The locations of the beacon channels are called beacon locations. The ensemble of beacon channels shall provide the beacon function, i.e. a reference power level at the beacon locations, regularly existing in each radio frame. Thus, beacon channels must be present in each radio frame. #### 5.5.1 Location of beacon channels The beacon locations are determined by the SCH and depend on the SCH allocation case, see subclause 5.3.4: - Case 1) The beacon function shall be provided by the physical channels that are allocated to channelisation code $c_{O=16}^{(k=1)}$ and to TS#k, k=0,...,14. - Case 2) The beacon function shall be provided by the physical channels that are allocated to channelisation code $c_{Q=16}^{(k=1)}$ and to TS#k and TS#k+8, k=0,...,6. Note that by this definition the P-CCPCH always has beacon characteristics. #### 5.5.2 Physical characteristics of beacon channels The beacon channels shall have the following physical characteristics. They: - are transmitted with reference power; - are transmitted without beamforming; - use burst type 1; - use midamble m⁽¹⁾ and m⁽²⁾ exclusively in this time slot; and - midambles m⁽⁹⁾ and m⁽¹⁰⁾ are always left unused in this time slot, if 16 midambles are allowed in that cell. Note that in the time slot where the P-CCPCH is transmitted only the midambles $m^{(1)}$ to $m^{(8)}$ shall be used, see 5.6.1. Thus, midambles $m^{(9)}$ and $m^{(10)}$ are always left unused in this time slot. The reference power corresponds to the sum of the power allocated to both midambles $m^{(1)}$ and $m^{(2)}$. Two possibilities exist: - If SCTD antenna diversity is not applied to beacon channels all the reference power of any beacon channel is allocated to m⁽¹⁾. - If SCTD antenna diversity is applied to beacon channels, for any beacon channel midambles m⁽¹⁾ and m⁽²⁾ are each allocated half of the reference power. ## 5.6 Midamble Allocation for Physical Channels Midambles are part of the physical channel configuration which is performed by higher layers. Three different midamble allocation schemes exist: - UE specific midamble allocation: A UE specific midamble for DL or UL is explicitly assigned by higher layers. - Default midamble allocation: The midamble for DL or UL is allocated by layer 1 depending on the associated channelisation code. - Common midamble allocation: The midamble for the DL is allocated by layer 1 depending on the number of channelisation codes currently being present in the DL time slot. If a midamble is not explicitly assigned and the use of the common midamble allocation scheme is not signalled by higher layers, the midamble shall be allocated by layer 1, based on the default midamble allocation scheme. This default midamble allocation scheme is given by a fixed association between midambles and channelisation codes, see clause A.3, and shall be applied individually to all channelisation codes within one time slot. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles. ## 5.6.1 Midamble Allocation for DL Physical Channels Beacon channels shall always use the reserved midambles $m^{(1)}$ and $m^{(2)}$, see 5.5. For DL physical channels that are located in the same time slot as the P-CCPCH, midambles shall be allocated based on the default midamble allocation scheme, using the association for burst type 1 and K_{Cell} =8 midambles. For all other DL physical channels, the midamble is explicitly assigned by higher layers or allocated by layer 1. #### 5.6.1.1 Midamble Allocation by signalling from higher layers UE specific midambles may be signalled by higher layers to UE's as a part of the physical channel configuration, if: - multiple UEs use the physical channels in one DL time slot; and - beamforming is applied to all of these DL physical channels; and - no closed loop TxDiversity is applied to any of these DL physical channels; or - PDSCH physical layer signalling based on the midamble is used. #### 5.6.1.2 Midamble Allocation by layer 1 #### 5.6.1.2.1 Default midamble If a midamble is not explicitly assigned and the use of the common midamble allocation scheme is not signalled by higher layers, the UE shall derive the midambles from the allocated channelisation codes and shall use an individual midamble for each channelisation code group containing one primary and a set of secondary channelisation codes. The association between midambles and channelisation code groups is given in annex A.3. All the secondary channelisation codes within a set use the same midamble as the primary channelisation code to which they are associated. Higher layers shall allocate the channelisation codes in a particular order. Secondary codes shall only be allocated if the associated primary code is also allocated. If midambles are reserved for the beacon channels, all primary and secondary channelisation codes that are associated with the reserved midambles shall not be used. Channelisation codes of
one channelisation code group shall not be allocated to different UE's. In the case that secondary channelisation codes are used, secondary channelisation codes of one channelisation code group shall be allocated in ascending order, with respect to their numbering, and beginning with the lowest code index in this channelisation code group. The UE shall assume different channel estimates for each of the individual midambles. The default midamble allocation shall not apply for those downlink channels that are intended for a UE which will be the only UE assigned to a given time slot or slots for the duration of the assigned channel's existence (as in the case of high rate services). #### 5.6.1.2.2 Common Midamble The use of the common midamble allocation scheme is signalled to the UE by higher layers as a part of the physical channel configuration. A common midamble may be assigned by layer 1 to all physical channels in one DL time slot, if: - a single UE uses all physical channels in one DL time slot (as in the case of high rate service); or - multiple UEs use the physical channels in one DL time slot; and - no beamforming is applied to any of these DL physical channels; and - no closed loop TxDiversity is applied to any of these DL physical channels; and - midambles are not used for PDSCH physical layer signalling. The number of channelisation codes currently employed in the DL time slot is associated with the use of a particular common midamble. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles, see annex B. ## 5.6.2 Midamble Allocation for UL Physical Channels If the midamble is explicitly assigned by higher layers, an individual midamble shall be assigned to all UE's in one UL time slot. If no midamble is explicitly assigned by higher layers, the UE shall derive the midamble from the channelisation code that is used for the data part (except for TFCI/TPC) of the burst. The associations between midamble and channelisation code are the same as for DL physical channels. #### 5.7 Midamble Transmit Power There shall be no offset between the sum of the powers allocated to all midambles in a timeslot and the sum of the powers allocated to the data symbol fields. The transmit power within a timeslot is hence constant. The midamble transmit power of beacon channels is equal to the reference power. If SCTD is used for beacon channels, the reference power is equally divided between the midambles $m^{(1)}$ and $m^{(2)}$. The midamble transmit power of all other physical channels depends on the midamble allocation scheme used. The following rules apply - In case of Default Midamble Allocation, every midamble is transmitted with the same power as the associated codes - In case of Common Midamble Allocation in the downlink, the transmit power of this common midamble is such that there is no power offset between the data parts and the midamble part of the overall transmit signal within one time slot. - In case of UE Specific Midamble Allocation, the transmit power of the UE specific midamble is such that there is no power offset between the data parts and the midamble part of every user within one time slot. The following figure depicts the midamble powers for the different channel types and midamble allocation schemes. Note 1: In figure 18, the codes c(1) to c(16) represent the set of usable codes and not the set of used codes. Note 2: The common midamble allocation and the midamble allocation by higher layers are not applicable in those beacon time slots, in which the P-CCPCH is located, see section 5.6.1. Figure 18: Midamble powers for the different midamble allocation schemes ## 6 Mapping of transport channels to physical channels This clause describes the way in which transport channels are mapped onto physical resources, see figure 19. | Transport Channels DCH | Physical Channels Dedicated Physical Channel (DPCH) | |------------------------|---| | BCH | Primary Common Control Physical Channel (P-CCPCH) | | PCH | Secondary Common Control Physical Channel (S-CCPCH) | | RACH | Physical Random Access Channel (PRACH) | | USCH | Physical Uplink Shared Channel (PUSCH) | | DSCH | Physical Downlink Shared Channel (PDSCH) | | | Paging Indicator Channel (PICH) | | | Synchronisation Channel (SCH) | | | | Figure 19: Transport channel to physical channel mapping ## 6.1 Dedicated Transport Channels A dedicated transport channel is mapped onto one or more physical channels. An interleaving period is associated with each allocation. The frame is subdivided into slots that are available for uplink and downlink information transfer. The mapping of transport blocks on physical channels is described in TS 25.222 ("multiplexing and channel coding"). Figure 20: Mapping of Transport Blocks onto the physical bearer For NRT packet data services, shared channels (USCH and DSCH) can be used to allow efficient allocations for a short period of time. ## 6.2 Common Transport Channels ## 6.2.1 The Broadcast Channel (BCH) The BCH is mapped onto the P-CCPCH. The secondary SCH codes indicate in which timeslot a mobile can find the P-CCPCH containing BCH. #### 6.2.2 The Paging Channel (PCH) The PCH is mapped onto one or several S-CCPCHs so that capacity can be matched to requirements. The location of the PCH is indicated on the BCH. It is always transmitted at a reference power level. To allow an efficient DRX, the PCH is divided into PCH blocks, each of which comprising N_{PCH} paging sub-channels. N_{PCH} is configured by higher layers. Each paging sub-channel is mapped onto 2 consecutive PCH frames within one PCH block. Layer 3 information to a particular UE is transmitted only in the paging sub-channel, that is assigned to the UE by higher layers, see [15]. The assignment of UEs to paging sub-channels is independent of the assignment of UEs to page indicators. #### 6.2.2.1 PCH/PICH Association As depicted in figure 21, a paging block consists of one PICH block and one PCH block. If a paging indicator in a certain PICH block is set to '1' it is an indication that UEs associated with this paging indicator shall read their corresponding paging sub-channel within the same paging block. The value $N_{GAP}>0$ of frames between the end of the PICH block and the beginning of the PCH block is configured by higher layers. Figure 21: Paging Sub-Channels and Association of PICH and PCH blocks #### 6.2.3 The Forward Channel (FACH) The FACH is mapped onto one or several S-CCPCHs. The location of the FACH is indicated on the BCH and both, capacity and location can be changed, if required. FACH may or may not be power controlled. ## 6.2.4 The Random Access Channel (RACH) The RACH has intraslot interleaving only and is mapped onto PRACH. The same slot may be used for PRACH by more than one cell. Multiple transmissions using different spreading codes may be received in parallel. More than one slot per frame may be administered for the PRACH. The location of slots allocated to PRACH is broadcast on the BCH. The PRACH uses open loop power control. The details of the employed open loop power control algorithm may be different from the corresponding algorithm on other channels. ## 6.2.5 The Uplink Shared Channel (USCH) The uplink shared channel is mapped on one or several PUSCH, see subclause 5.5. ## 6.2.6 The Downlink Shared Channel (DSCH) The downlink shared channel is mapped on one or several PDSCH, see subclause 5.6. # Annex A (normative): Basic Midamble Codes ## A.1 Basic Midamble Codes for Burst Type 1 and 3 In the case of burst type 1 or 3 (see subclause 5.2.2) the midamble has a length of Lm=512, which is corresponding to: K'=8; W=57; P=456. Depending on the possible delay spread cells are configured to use K_{Cell} midambles which are generated from the Basic Midamble Codes (see table A-1) - for all k=1,2,...,K; K=2K' or - for k=1,2,...,K', only, or - for odd $k=1,3,5,..., \le K'$, only. Depending on the cell size midambles for PRACH are generated from the Basic Midamble Codes (see table A-1) - for k=1,2,...,K' or - for odd $k=1,3,5,..., \le K'$, only. The cell configuration is broadcast on BCH. The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS 25.223. Table A-1: Basic Midamble Codes $\,m_{_{\rm P}}\,$ according to equation (5) from subclause 5.2.3 for case of burst type 1 and 3 | Code ID | Basic Midamble Codes m _{PL} of length <i>P</i> =456 | |-------------------|--| | m _{PL0} | 8DF65B01E4650910A4BF89992E48F43860B07FE55FA0028E454EDCD1F0A09A6F029668F55427 | | . 20 | 253FB8A71E5EF2EF360E539C489584413C6DC4 | | M _{PL1} | 4C63F9BC3FD7B655D5401653BE75E1018DC26D271AADA1CF13FD348386759506270F2F953E9
3A44468E0A76605EAE8526225903B1201077602 | | m _{PL2} | 8522611FFCAEB55A5F07D966036C852E7B15B893B3ABA9672C327380283D168564B8E1200F0E
2205AF1BB23A58679899785CFA2A6C131CFDC4 | | m _{PL3} | F58107E6B777C221999BDE9340E192DC6C31AB8AE85E70AA9BBEB39727435412A5A27C0EF7
3AB453ED0D28E5B032B94306EC1304736C91E922 | | m _{PL4} | 89670985013DFD2223164B68A63BD58C7867E97316742D3ABD6CBDA4FC4E08C0B0CBE44451
575C72F887507956BD1F27C466681800B4B016EE | | m _{PL5} | FCDEF63500D6745CDB962594AF171740241E982E9210FC238C4DD85541F08C1A010F7B3161A
7F4DF19BAD916FD308AB1CED2A32538C184E92C | | m _{PL6} | DB04CE77A5BA7C0E09B6D3551072B11A7A43B6A355C1D6FDCF725D587874999895748DD098 32ABC35CEC3008338249612E6FE5005E13B03103 | | M _{PL7} | D2F61A622D0BA9E448CD29587D398EF8CDC3B6582B6CDD50E9E20BF5FE2B3258041E14D608
21DC6725132C22D787CD5D497780D4241E3B420D | | m _{PL8} | 7318524E62D806FA149ECC5435058A2B74111524B84727FE9A7923B4A1F0D8FCD89208F34BE
E5CADEB90130F9954BB30605A98C11045FF173D | | m _{PL9} |
8E832B4FA1A11E0BF318E84F54725C8052E0D099EF0AF54BC342BEE44976C9F38DE701623C7
BF6474DF90D2E2222A4915C8080E7CD3EC84DAC | | m _{PL10} | CFA5BAC90780876C417933C43103B55699A8AD51164E590AF9DA6AF0C18804E1F74862F00CE
7ECC899C85B6ABB0CAD5E50836AD7A39878FE2F | | M _{PL11} | AD539094A19858A75458F1B98E286A4F7DC3A117083D04724CBE83F34102817C5531329CDB43
7FFF712241B644BDF0C1FEC8598A63C2F21BD7 | | M _{PL12} | BEB8483139529BDE23E42DA6AB8170DD0BFBB30CE28A4502FAF3C8EDA219B9A6D5B849D9C 9E4451F74E2408EA046061201E0C1D69CF48F3A94 | | m _{PL13} | C482462CA7846266060D21688BA00B72E1EC84A3D5B7194C8DA39E21A3CE12BF512C8AAB6A
7079F73C0D3E4F40AC555A4BCC453F1DFE3F6C82 | | m _{PL14} | 9663373935FD5C213AC58C0670206683D579D2526C05B0A81030DDF61A221D8A68EAD8D6F7A
A0D662C07C6DCD0115A54D39F03F7122B0675AC | | m _{PL15} | 387397AE5CD3F2B3912C26B8F87CE82CEFEC55507DB08FB0C4CF2FD6858896201ACA726428
1D0298440DD3481E5E9DDB24C16F30EB7A22948A | | m _{PL16} | AFE9266843C892571B6230D808788C63B9065EA3BDFF687B92B8734A8D7099559FEA22C94165
76D0C087EB4503E87E356471B330182A24A3E6 | | M _{PL17} | 6E6C550A4CB74010F6C3E0328651DF421C456D9A5E8AE9D3946C10189D72B579184552EE3E7
99970969C870FE8A37B6C4BA890992103486DC0 | | m _{PL18} | D803CA71B6F99CFB3105D40F4695D61EB0B62E803F79302EE3D2A6BF12EA70D304B181E8B3
8B3B74F5022B67EB8109808C62532688C563D4BE | | m _{PL19} | E599ED48D01772055DBE9D343A4EA5EABE643DA38F06904FC7523B08C4101F021B199AF759A | | m _{PL20} | 9F30AC4162CE5D185953705F3D45F026F38E9B5721AEFE07370214D526A2C4B344B508B57BF
B2492320C05903C79CBEE08C6E7F218B57E14D6 | | m _{PL21} | B5971060DA84685B4D042ED0189FAF13C961B2EF61CC164E363B22AAB14AC8AF607906C1C6
E04F2054C687AA6741A9E70639857DA02B6FFFFA | | M _{PL22} | 97135FC2226C4B4A5CBA5FCA3732763B87455F73A1148006F3DF214BD4C936D061E04045160
E2CE33B9CD09D08FDE2A37F4E998322B4401D27 | | m _{PL23} | 4D256D57C861B9791151A78D5299C56D116B6178B2A2D04BB95FB76540AF28341DC6EC4E7E
D3BF9E508478D9C8F44914805DA82429E1CF320E | | m _{PL24} | 858EF5C84CE32D18D9ABA110EEA7474CF0CD70254D2928C3F4DFF6BB3A518587CADA190290
78AC90A8336C8178203BE3289E601F07D089CB64 | | M _{PL25} | 920A8796A511650AEF32F93DD3C39C624E07AE03CE8C96139973F54DCB9803C5164ADB502D
4FF561564D607037FCD172921F1982B102C3312C | | m _{PL26} | 485C5DAE76B360A9C56E20B8422EA3E6ACF07CB093B5587CB0E6A5498A4714081EA98DBCD
B0482B26E0D097C03444473D233BEF3C8E440DEBF | | m _{PL27} | 565A9D54EA789892B024F97E728E8EE112411942C48BD0C5BC8AA457D8DC9941F0F7424B386
43FFE6521CD306FBC56FE10F1428D4C245B5606 | | m _{PL28} | 5AEF2C0C2C378179A1AC36242E6B3EDB72C42D3624437674F8D51260C0898C201837CBA14E9
E23D1EF6451C4ACF27AB031F457A8A1BFD148AE | | | 87D8FE685417822A23D925307E6C11081ADAC4702BCCD9BE448E78984D109B50DEF5B7C58B | | Code ID | Basic Midamble Codes m _{PL} of length P=456 | |-------------------|--| | m _{PL30} | 84802B72AF27B5BE724D1FB629E0E627BDB0D9061292562F98350C1D0C9D4B9D8E2BF71123C
82EBB161003AE9829E07244D78F19926F8847A2 | | m _{PL31} | 8CCB5128238BCB088E30972D62792AEF02B9BBDDCAD68C9916C00BF91CBE788B0F03851FA
AF88605534FD73436C259D270B1013CB14226F658 | | m _{PL32} | 62F4E6FAC2BF1979CE6854AA2D33534BFB2F946519101A6589131C3640707D40E67ED804AF8
736AD213CAF5935741900061967E8285C27E34C | | m _{PL33} | 4095E5B4EEAFCDF68A34B267EEA28D8444FA533900F41499E260D2E65C256A52E1DD5861F52
27C98E00687D107233F51A1167BCF72FB184654 | | M _{PL34} | 5630E9A79FCAD303404D9E5A802299162657AAC734761C6E90DA8BCE4F61A763E0BB48D3FE
B3F78468C828ABA4828DAD06E0F904CFD40421DC | | m _{PL35} | CD12B24C0BCA8AAC1FCBF0500A3BC684A180E863D888F2506B48C68ECF17F76CB285991FB
A18EB6397211FAD002F482D57A258CD45DE3FF1A6 | | m _{PL36} | AFCF2A50877286CD3405442730C45514F082D9EC296B367C0F64F04C4E0007DCA9E50BEED5
C102126E319ACBC64F1729272F2F72C9397029FE | | m _{PL37} | 18F89EE8589D20882A72A44DCCDF0050F0A3D88DBA6531614973D26905FDF41E3F779FF0648
E8AF1540928511BCF4C25D9C64AF34AC31B8965 | | m _{PL38} | F890D550F33F032ECDA3A51FED427D634F64EB29AF1332A23CD961258E4BAED040E7B33691
8E250EC272A12816B9EBFFA1E0AE401185F08C10 | | m _{PL39} | ACE5DD61506047E80FB7D41BD3992DF4D7F18EB46CC145C0E9105428C2F8F299141F5D6669
1904A7DC2513A3B83994ACB1292246B32818FE9D | | m _{PL40} | 150680FF900C9B46E1E24D54BE2238CB950A934E5CCDE9BC3939EB51CB0AE202B7D339EEC 2018B33A0AB9B63DA5D512D64FB58C0E51A1C82C2 | | m _{PL41} | 51A579EED2663A002D32D10A0753173612F4D5BA167D1807C61F25C4D42C063682E8E9DD019
F79D446A046EB3F75E50FEB228DC52F08E694B6 | | m _{PL42} | CDC644FE4C0C6897604F9D14D714123BF16FFF0E49F35F674908CA60653702FE27BCCA2A470
98453AF8661055C8C549EB6A951A8396AD4B94D | | m _{PL43} | 750A10366C595373C5001CA3E4239764B1409D602CF6052B39BC6A3255A15FE06C782C4C5F8
47026A7E79838A2933A61C77BB6CBF5915B2DA5 | | m _{PL44} | B7490686D78E409082C4C48FE18D4C35429C20AADF96076B92FC4E85490664753DB0891A0B2
7FD849BB7FCA99E3B38F22F8C662852C0D35AA6 | | m _{PL45} | D86E1B575B47D23DA811806A54C231281F03317830E7BD305D3CAA7D6382A5233104CFD54D2
2DF9F34535E5B390D9040CF1375FEA44CEC29E2 | | m _{PL46} | 828655960C026EC67B683480992AC2ED2C43ABC606F5220C2945F373470BE7ED5BCCF7C1AA
0986BBCCC84F11F1658AA568FAA0A60C5F0B5BFA | | M _{PL47} | D76230E02C8533653AAB99B288AA2ADE25A1C1BF28516C04239240EAF1EFC0B98974B51F886
861D8A1E9F5D62CFFEC309F071A9716B325101B | | m _{PL48} | EA207662865B8A07D69648964DED818EE474A90B94473408871880E63EF0596B9FCFEC3C06B
86EA6AD2B06C91672EFB33C70241A5450B59B8A | | m _{PL49} | 9CB5459549909835FAB22F0D99298C120ACF479F814CCE749079D40688F28101037762F125C7
76DA9C5FA1FCE0E76E452F8185354FDCDE94E2 | | m _{PL50} | 227506304AEC1D6F93569B51FDC3405A0F38194F65BE17163A3CB9827A35AECEA757D020FE2
49377ECD561428A38FEED004EC859C272563185 | | m _{PL51} | 96B9AEC9938910F0E533422A3977519B05CD4AD3909BC15A7502D48D49C124FA192A8E57027
CFEB11DF542010603CE5C9FDF8E626D4FBF8CF4 | | m _{PL52} | A6AAD06E095A9BE0BD9F8A2ED40C3CBDBAE91C700CBB778C8696CC06F3A675C16BDB2918
E5F2111005A8727206DC6A9684E05655185C398EEB | | m _{PL53} | CD168D384A78DA172991AD333EE2A9880905AFE59E2A2A4AC4414C40F82874F98A3CBE7B44
F4C7F4710B35FD88AFC0399FAEB070EB9CA4D30A | | m _{PL54} | 22016CA87AD1549174A8699DD65599697871091457E83E0912E7E77A06531C209394D283D18A 38662B73681DD9C5BF330FED978BDA7D487CA8 | | m _{PL55} | B9401B0843AA6F7827A13BD66C922287E8886C31EB5B90B82B472CCD6DA3D8D4FBF78B8F84
96DFA8252B06429D5DD17142F1C908ACCD70EA0C | | m _{PL56} | E42B9EFDC5D09AC27B3C7DA28D02493A70521223B9D7A76A9D13E9C171017964D16A70C08E
AD02C3DC948889C23E365AFCF01BF20B89B0BF5C | | m _{PL57} | 9DA0180168DB915E9F3597B59312198E1B5CC00D743C2ECB0DBAADA3E35A2465ED1EAA9D7
4734D49A313CE4DFF020D0760E3153DC485603943 | | m _{PL58} | B6C966619ECB98191D719C187C07BD503425650CAA3A2D1F2DF5212B1441D7A0C1D36A4C9C
2550240AD17CA43BB3943DFFFBF1E283D81299CC | | m _{PL59} | DB0E8C41F08A03D477C1AA548799274C4BF3EB68F2636166FDC8D4B1E7132539930297E228B
A232BB5C279FA5ECA3AC10E24361AF050A453B8 | | m _{PL60} | 89BCE2DE2974EEBA833CF32F224C85A2891484478527DB48FA6ECEA84C5E288CC3914CB54A
DA0476278750187F68FBEA41017E1E58DF1A5A3D | | m _{PL61} | 70A457D1314A278625443EEB52520815EC92CEF17417B97440DCB531BC1CE83212F63270418
D0FBDE71F6DB9E0EA88772E1E4535B6633E4425 | | Code ID | Basic Midamble Codes m _{PL} of length P=456 | |-------------------|--| | m _{PL62} | C388460AD54B36C4452CF0433BD347100ACCC24C79C535AD3E1F23FE0425E93A044C553BFA
116E09AA4BB32F13CFA76FBA1BC17520F45EFD44 | | m _{PL63} | 0BAFCADCDF9AA2846681782CD3B90CA036A863C78EE1507620BC394D0C6804B4C97A15BC9
C0D7B79E6892EA1BFF1A0DD9573A9213AB140D0D2 | | M _{PL64} | 833B0226789A62882FCD27A30885E67872B1A1C2FA484AD498011599DD57E8E2A07A560B4716
7AA5F60EF47177DBB1632D5387A2896348640B | | m _{PL65} | 8F52820323ABA5E6C6B465821B621600B980E59F53A599DA5646BA103214336836CF17E3386C
E4FB2BC5F25CCB30CF7F500546828EC8786B8E | | m _{PL66} | E2E9A29C3C8207B9A4508FD2F667A159F068EEE8D00686F46EA904C3692C1D79DFF1B32E510
3720D47B4B58AC35384A26087027E141B3126A8 | | m _{PL67} | 70E7C39FD2D3AE1DCE341699A544D801A8688A6EE47C5CB3630022147DDC06241FC5337A34
8A462B2472DEC5E104DD520ADA5114DB065D4B0D | | m _{PL68} | 9E3483CAB164BD053C4971D4D87494CC689033D589EF80E5453376E4A8DCC02183B98C36B0
FF7DDC0AD07FCE8B4D5164371BD03A2110AD1247 | | m _{PL69} | 04DA1C649B0608938DAADD3FE920A4F681690C54505429DBDCDCF10067AB5714BCDDFE1F2
8692710F794765781C1D233344E119BEE8A8416DC | | m _{PL70} | 7A18D6D30BDF44410714C3DCA27D8F9EA8A542D87122205640B98313C91AD9A0B993A5A7BC
3E035F93B88BBE6D4204BC82A9FA8D4C1A7618CF | | m _{PL71} | EB9525E10265A48733C8E0E77E459310112A71DCA680F68AC044B64BC0A31D02EEA0F7ACAA
AB7F1E574E94FEA2D1301CB14B03263DA8122B76 | | m _{PL72} | E706C6ED2D6F89153835079BE0C6D45310845EF2F9F6C6AE91B7419810508BA501C0148BF09
955BAD90D6391BA8EBA5CEFBD23221CC75143D7 | | m _{PL73} | DF071A10AC4120CD1431590BEDCFF9483CA7047B19590D035D309240BDB4264E9A3A2761402
EC97FD8BC51B4AF32E37FBC47162A2357D18751 | | M _{PL74} | F0F952B2238139F46D8254D1A2C1C22A16BA71EC0C0C900ED1442452D7F44C798BC65FF4067
1B88074BA0B74C6510996EEAC495C5B49C37DEB | | M _{PL75} | 1C86BD82EDA81FD65418D3837B5552A853791456D93B06C62C650D86CFBEC269AFFD772763
064062C03751B9428C6DA2E60383025F9E404B70 | | m _{PL76} | B390978DD2552C88AABA7838489A6F5A8E9C41E95FFA2215819BF8A5BFE39C8A706CC658E5
49E966611B843A1468406C41C09D1560BEDA4F1B | | m _{PL77} | 1A69EC9D053C7E84BAE7A48CCC71857D0C6B06D1065E3EA4633B133AA022B8104F6EE7C69B
6184B746C8822958B0A16686F27C8A0E3B4EFEAD | | m _{PL78} | C95B2070816DC97C6D8DD2583263E73F9AAAFD13F0548D2EBD835824418F11E54111005FB71
3AB234BE412347358281C7DE331EDD21B8BEA52 | | m _{PL79} | 56D6408399F23C2ED85EE0F68111D69A91A3AD9A732AC57CA08F86CC28B3CF4E4B02EBBA0
BCE5CAE5BACC4D52004070797C04093A84BB18DBA | | m _{PL80} |
E662E7043867BE250764DA0596D34A582A619B408B505E6211DD6286E93A37F95B1EA680C0C
5F3E777E3F71E8D75495D59043217FC0E222E16 | | m _{PL81} | 27D5E681C222297AD478A079EF12F1A98F744B66335303322EF8880B931FEBF8322F4302944E
80BED468A0A516D410B183D863795992DA7DDB | | m _{PL82} | 5100336C05F9E5BF35201906C1C588858E0DAF56130DF5554B9AB21CA15311A90290624CD63
E03F5EDA49DB7A0C32AB5F1CA427A2D5635FDA5 | | m _{PL83} | C696DC993BFAEA9A61B781B9C5C3F5CFAA4C8339D8B03A9B0387883D0482A41AC78D652242
5959846E561D26A30FF79A205C801A85889736B2 | | m _{PL84} | D562297561AFF42D3168296C1153E4E39BE7B2EB0348BC704625AA08391235075EE0DE0A79A
B03222FEDB27218C56F96EAC2F91CC8FCE64B12 | | m _{PL85} | DD0B6768FC01CC0A551F8ACC36907129623E975AB8B3FF58037F1859E2FA8C62C2D9D1E850
6916029A2C3F8CAD9A26AE2CC652F48800859F5C | | m _{PL86} | 923920696EB3AB413786C41854822282BB83F6900D33A232D470BE198BBF086067B72613300C
593B74251E2F079857ADBBCD86583A9DCAA6DC | | m _{PL87} | B8EF30C797D8D2C4EF11244F137D806E556A436626D0115A621C92C34D166A68BCEDFA0040
DA8FD6F987B1CD5C2AA1C1B045E64475F0F8DABD | | m _{PL88} | E1887001D414405ED6419E9EE1D1D346D924ED57ADF04B31B7948099976B2D1501A60DFFB28
7AD44C8783DF0C1EA5AA5D273D1389C8EA22DCC | | m _{PL89} | 8C2E379A58AA96748141CA84C35987905F984A49D3AD9BFF7807AC244C16C1DF74343C2E1F2
5514F5A0954CFBB3C92E25EF783136844998AC5 | | m _{PL90} | 78F8A99E0A54E27F51C0726FE7A11EB26B1E29FE65F55AC8AC58011465900B958488A90F6DF
614A58431DC8B6C6B9A6F032EE0E0B1306EC4B4 | | m _{PL91} | 88F7A31B7B20E0F05CA26E729B4F8A1933962D7BD7BE3E1EB130B28C794C0B4D01CADE0900
6FF97E80117509733F3A9DC225413A0AE08CA662 | | m _{PL92} | BE4DFCEAC18905AC8D5DA27A794F88A4D3058D2EFA3B075A819DEAE688EAF8940A653ED71
04E7B403D490F0A9030264E1F12B8922C75775E61 | | m _{PL93} | 5BA4B79FC4550234D8922963BF3537485E3C8745A5DB90D3E2E454B30FF61112F508155B7C2B
3C4C628AF846240C2021ACDE547E5A41F666B8 | | | 100.00.00.00.00.00.00.00.00.00.00.00.00. | | Code ID | Basic Midamble Codes m _{PL} of length <i>P</i> =456 | |--------------------|--| | m _{PL94} | 00556D35649F7610AB24A43C4F16D6AC0571FD126F11880C5CD72100D730E4E4D6BB73C33F8 | | | 37FAF1072743B249ADA2E09598B1EB23F1180A7 | | m_{PL95} | 7A0CC9F21BD69CF3023E944545C2176EF0D4F450B765C28359FB8A32137D043D0E5713E67B3 | | | F61320985D2C6106605081F87D2296321468A2F | | m _{PL96} | DA669880995B0671201172BABFF141D5854A245E211879EF3038A7C84170DADBD368455F2465 | | | 3161E7886E15B253F93E3A3C568EFB17CDEB1A
4E294E53D1661C1F6F748302A7723DA951C00FDB8BEBBF67A68710BA0F1A255DFB1627059D4 | | M _{PL97} | 1A23D3961726DE6FEB10E5D209CC4505B209812 | | m _{PL98} | 73385DF701414E144768A67EF72924B1653479E962FB1554B7E54BC5284D9B3E41C0C133F878 | | 1117198 | 972230721918AA425501B920B204FECE0C7F8A | | m _{PL99} | F4492160805F258CE592DF4D1200566F81D173458D78EA3ABED79A14AF88170DB1D4A9A5931 | | . = | D2B80C58C27FE17D806E3E6A66CDAAD09F118D4 | | m_{PL100} | 44D562D9012D8B07B8F44596467C11A163982BB7EAEAC184078B6B8CE46B5D7E17C39CEF57 | | | 6A025491183017FA09931D070B307B86524B03FF | | m _{PL101} | FCAEEFCC49A13B4FFA12C0CC6A2B90CF4F57D78B1E98294B04675C2F0991661FDC61A452A2 | | | 47F8C29E0284AA21026F368307375AA2C3F1E12C | | M _{PL102} | C486DF0510DCAD5AB86E178A686D398E11A0ECFAC5A326C10129257E5456B22FB8E147E919
0D9929A5DFFE44715FA47D62F04CFC9B1C201414 | | m _{PL103} | C10AF383DC708E257E15A8AB337BCE684A2F4AC7A22DC2C25C277F8E8D0858E79317CDDD9 | | 11191103 | AA2EA6CBE604D24AC0945026103E7B4126FD361A4 | | m _{PL104} | A5C60A181148D9A931B2DDDB9D169648BA54F366B4EFAE88F6861909EE0F07C037EE349D0E | | | C59A823286E366CA3943589EEA7F828C3728085F | | m _{PL105} | 96136AEBD5E28462B0421DF292BA899FFA660D80EA01620D2C7490E5347127884AA3C3D1FF4 | | | 4BCEEF6C29EC589CDEF200C5742C5964F8B2B52 | | m _{PL106} | 40F63C04ACAD986255D1E16B769A6D4C11A1D075E804BDC0AC61923E9A67F5D741775632807 | | | 2455F6E22B1C64E06F367D1B0808295C2D90E22
F4B82D413578C4888C5F002CF6D0E03778134A860436551FD57537E4CED334B3C9CEBACE615 | | m _{PL107} | 238271717AA762448B86FA53D2074BCE35658A7 | | m _{PL108} | BCCC92D72C920E685530591FC351743D1E23DE044BF81D32650406113E23ECC757FDE4E386 | | 2100 | B6E2E7195EE4969717A7BD0812AC312B33A54308 | | m _{PL109} | 6ED59DE0D44370A861CE2B42CF5E578E764A682AB5777905EE027D7160490EDC6C28989B238 | | | 05AA697FCD215CB401BC5E4D430624C01B16192 | | m _{PL110} | DE80C0E273B92CC3C5034F7A20DB3914643C430B425C8B9249EAF73ACE8C3BCF17957242CF | | | 534D87A67D4DC0252275262E737F4095450CFA14 | | M _{PL111} | 9505C4FEF2A397D5059F4729D013292A8321FFFA929ACB0A210D0A13E13061227C44A68FBD8 | | m _{PL112} | E8BE90D7F954B14D8002A4CAC20765ABEED80634498C836D79B0F9338DBC17B28F05CF4E79 | | IIIPLI12 | 136779E1C55AA30B6215F890882887B3B53C23E2 | | m _{PL113} | 9F4B622C1358AE5468DC31E4B2CA320E5E20458C1DE5405BF4F9AD7D45A5BCAA39EC0626FF | | | FC698C16A009CCCB7A18A64E85E70BA71731BA24 | | m _{PL114} | B91B2624843CF48299AFC2B1442570B41F28F578530D1E322E0B54282372131C71ACB924E707 | | | 68A243EEC3200E7A5EBFA77111D9FB07FEA8AE | | M _{PL115} | 965F42DDA3A4650FE2F5103932B68F166FA424B9F0F7045311D962C2A9F66B9BC6C66FB480F | | m _{PL116} | 9800354E0C54A72251071422CF1DFC44F94C00C
08ADCE48699FC30FA0788073BDAADB9177BBB4C1CED41F93085218364B8BAD8488561EF0FE | | IIIPLIIO | 1B0DDAA403C602494CB35697D62AA0A2B93A64CF | | m _{PL117} | 9A313BED80B1220D77C8ADA4B2E0B3D284A5120A94B741380923C78D3AD32BC3E71EC6EEA | | | 520E9D447D8727697598BB987F17506F482003ABD | | m _{PL118} | 24C9AD4C14EFEC002A3473FCAB04E492F2E269161A2960BA8AF09FD710B444A40C4E8B1384 | | | 18E62301E91FBA97AFDC58759A76D00F676736C7 | | m _{PL119} | 6514C7733711CE4942CD2123AB37186EB7FECB7E78ABB28744864942FCF4C0F810054AF55B1 | | m _{PL120} | 042EB53064F0857C61D85B2CF0D2DC5826AF22F
B2C80CDC83E48C36BC6FDAB8661208EAD392F3A0571BE41DFAD765E744932ADEA50061E66 | | TTPL120 | C05498A5381B2A1F1B446587089DC4E4A2DF03D82 | | m _{PL121} | 639368BA75CC709A3D9F28EDA237E32C2017A9BF1E382045B9426AEE0A4049DCB4E1D7EBE4 | | | 647B855212824557497CFA039885A3BA42F98F63 | | m _{PL122} | 6A70DDC17D0C8024B1C853F0C1948561EF32510151BE0C63BCA9171F20217891D1021EE7258 | | | 6CAFF557F8973336913A94A2A699B8740B054B8 | | m _{PL123} | 2E32E3A35CCD001172CE310B63B4E406126045A0FA3795BE3E3D9B56F72405FC94FD8994681 | | m _{ni} | 8BAECD24A61BABBBE2D23052AB01EF73CA0CF4A
829395C35205A480AC1351C25E234BF52D384A3DE1C5138A650A6F82F739757D812D9C38231 | | m _{PL124} | AB9FD81AA0648B11F6F6113F9312C57624FC746 | | m _{PL125} | D98FFE19C0AAAAB0571A9075ECDFD3E7373F5255DC669116A8C6913F0123E598F930934C5F6 | | | A601C37C529C371A0C391B59AC5A9E286D04011 | | | | | Code ID | Basic Midamble Codes m _{PL} of length P=456 | |--------------------|--| | m _{PL126} | C1A108192BCE96C2430A63C189BB33856BE6B8B524703FCB205DAEF37EF544CD43CA09B618 | | | 1B417398083FF2F781BA4AE89A5CA291DB928D71 | | m _{PL127} | 42568DF9F61849BF9E7DEE750604BE2E0BC16CC464B1CDE15015E01D6498E9F3E6D6950E58 | | | 24651F212BA0057CE9529B9CCAB88D8136B8545E | ### A.2 Basic Midamble Codes for Burst Type 2 In the case of burst type 2 (see subclause 5.2.2) the midamble has a length of Lm=256, which is corresponding to: K'=3; W=64; P=192. Depending on the possible delay spread cells are configured to use K_{Cell} midambles which are generated from the Basic Midamble Codes (see table A-2) - for all k=1,2,...,K; K=2K' or - for k=1,2,...,K', only. The cell configuration is broadcast on BCH. The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS 25.223. Table A-2: Basic Midamble Codes $\,m_{_{\rm P}}\,$ according to equation (5) from subclause 6.2.3 for case of burst type 2 | Code ID | Basic Midamble Codes m _{PS} of length P=192 | |--|--| | m _{PS0} | 5D253744435A24EF0ECC21F43AA5B8144FBDB348C746080C | | m _{PS1} | 9D7174187201B5CE0136B7A6D85D39A9DD8D4B00E23835E4 | | m _{PS2} | AE90B477C294E55D28467476C6011029CDE29B7325DF0683 | | m _{PS3} | BC8A44125F823E51E568641EC12A6C68EAFDFA2350E3233C | | m _{PS4} | 898B7317B830D207C9BC7B521D5715680824DC08347B2943 | | m _{PS5} | 466C7482C8827655BC13F479C7C1417290679A9841297C4A | | m _{PS6} | AC0734C27C7DC1B818A8492744290DFE866B0EBA62B0B56E | | m _{PS7} | 0A92106325B15A8C15FC3764724CE67A5056D50A77F9360E | | m _{PS8} | AE69F62E23035083E6094B89493D33E06FDB6532D473A280 | | m _{PS9} | B485D4E3614C9C373EA1365FA6FA890E9844084EBA90EB0C | | m _{PS10} | 66182885E2D28360D2FEAB842C65304FFC956CE8DC8A90C7 | | m _{PS11} | CC30A9B0A742FCC1E9A408415368391F1299AEA3CB6509FE | | m _{PS12} | 673928915886947F464FDDAAD29A07D182328EBC5839089A | | m _{PS13} | 4418861C14D62B46EE6D70D4BF05A3ED801A01BD6CDC5235 | | m _{PS14} | DAD62DC88F52F2D140062C2330BE6540E6F86192322AFB04 | | m _{PS15} | A2122BAF24529CEA9855FB43CE40923E7CA7B30D92E40702 | | m _{PS16} | 6C44AB41E11F54B0929DF65673BD231F92A380132D9F1712 | | M _{PS17} | 1DC2742E756CDA6421340D0087DD087A615E4B8688CB2F75 | | m _{PS18} | 2E0105328B56E9E07D9B5A62F38B08AF8D8C2817B54F3302 | | m _{PS19} | 88315EC30A94CA4EDB2C77079D9BD810A2E280B50DABB213 | | m _{PS20} | 440E0093D28CB2B2B0A95D18CEB4AB934C33FA45C1CFC7B0 | | m _{PS21} | CC9BF85D41A96A6EC314F9611D5E1C0672556C8850801BB4 | | m _{PS22} | 1ABEA04C99BC26972715F01957C0B6B959CC71CD88120817 | | m _{PS23} | EC5A33DA0BA4470442C5CB324A8E47B0A9F7968FC8108EE8 | | m _{PS24} | F82086290271DB446B5B1DC15D9BE96414B19B3D5E0F540C | | m _{PS25} | 11A1A790D6958FD3A9157DF1E05D1378248CA201EBCC7592 | | m _{PS26} | AA8564882231907BCE78092DC6C9DD4F5A0E4A34AFCFB809 | | M _{PS27} | 912EE2238212F87BC7CDA7F30441ED184A6AA954EC4D20C8 | | m _{PS28} | 2D200D8B8891B804673E380A1AF5AB875986E29D37D3FDC9 | | m _{PS29} | 75E086B6C818423491BF9D6365C52FD1C5E42A576E268170
50ADBF27DA2A3701470186B699118E16DDB0D10F705607B1 | | m _{PS30} | 656C0692B4E22023590A906D2A74DFD471C883A7B1E0B3A2 | | m _{PS31}
m _{PS32} | C21FDACD09A3CDCE74C4794010A3E45769B142505C56A0E6 |
 m _{PS33} | CD9392A87C2D4D7CE5801CDDA8A76339B6F900F008B290E2 | | m _{PS34} | 956426FEFD8B8D52073E87984E10C4D255064E1372C04A24 | | m _{PS35} | C4F4D6DF1B754AD6063FD10C331C1428ABB27B0700134B94 | | m _{PS36} | B65548082B34E9FAF43F33C4070F79099758CFD41B491A11 | | m _{PS37} | C8317EA111A82B04E78B88B864B1EF5D711BBEB4A0527036 | | m _{PS38} | 8FB7AD1188E8D1A5219845013672560FD38904E70537403B | | m _{PS39} | B41A324E0D80AA0598A8D391C1D7FFC82B4A075218E98EC3 | | m _{PS40} | 49A6350A62E208B011E86528B9A481A0E76D723F6675FF82 | | m _{PS41} | C344C8C23C42A7B7442E6022E95AE4B08A4BFA786F35F911 | | m _{PS42} | 28F430CF67D69C9DF60E25656413BC5F932A022DB1406C44 | | m _{PS43} | 2FA5D70CF0FED4213F32116051450391C2A627D9B670C428 | | m _{PS44} | 959537D988FDD4F1360B4E84701AE5409229C30EDF8BC404 | | M _{PS45} | CDD2E0450F9EC12F81391AD4633CB29F315B4A0A890A9A22 | | m _{PS46} | 158776A20B4B82C563EC08F086830EA66DBD2DCCB4DF6026 | | M _{PS47} | 431FCACBE48208975950342709D11F19AD5FB047F3B440C9 | | m _{PS48} | 86B141AC571BA6B42653B12FF04D4F0E6C81F3EB608660A2 | | m _{PS49} | 86D297ABD34E8510F6CDB0EA617F1F1051C8799117B02211 | | m _{PS50} | 80B2D9530B34E781311D95CFA3857F277CC07014D324AF5A | | m _{PS51} | 2B607B93FD8B45601C1E574E14CFC6912C22AEC1045ADC49 | | m _{PS52} | D234C5C45E105A837E6DD74BC4E534523A20317BA0625A29 | | m _{PS53} | 768CCDB3E2A7A2B863128382590946B25472BE2BFFC40641
3DA38212E0A987EE1F665D4E13C2AA4446E00A76C948A073 | | m _{PS54} | 09173135E4A2CFC8F2678750AB5257110906F013587BDE82 | | M _{PS55} | 522E070B266F35E99C1F3C42D2017F8E415550492B72F086 | | M _{PS56} | D63E4BD805262A3DEF05C7D86C422E5048921E5531784132 | | MPS57 | 564AF806E28131611E5F884229265D446A50E1E488EAFBBA | | m _{PS58} | OUTAL OUGLECTO TO LEGI COMEZES COUDANOMO LE LENCOLATEDRA | | Code ID | Basic Midamble Codes m _{PS} of length P=192 | |--|--| | m _{PS59} | A2603E009D3D30147727B750C35C62299AF754D3E4A54E1C | | m _{PS60} | 938504B02599D33E28246E4271C375AE81A3BBE8D3F8A920 | | m _{PS61} | 461516B2CAC6FC42A4B707CC6073BBE573C014892C811776 | | m _{PS62} | 29186DE4CCAAB2CD0100BB19EA595879D63F0F0CFA881AA5 | | m _{PS63} | A064B449CB784A91B803369CDC5EF61A670AAAC044BA3E68 | | m _{PS64} | 8719C454D88FF5149DB943CB6CADA01D0B9664B357A18203 | | m _{PS65} | A27EC68720F00A714AA2C45A7EF232286984D7B193F5C916 | | m _{PS66} | AC8361676AB424E48F0789082B0CD2EFB8D2E627D041DD66 | | M _{PS67} | ABA1BEB0064733A0620906BF2B29C95883F069D7E4C35D39 | | m _{PS68} | 9E22EEDED47D92CA1D0B7530EC6062287BD83A04874AE00C | | | 0BADEF288B20F5686C5DE3A71219AC2172054326BE831696 | | m _{PS69} | 953801EB2AF58C2F80E49A6CC46085CB554243E3B3BBEC8C | | m _{PS70}
m _{PS71} | 333A504C51C8FAC5025994565C3F600F154F64FAEF4EA484 | | m _{PS72} | A6583E19647662005474153A6F8DD88A473853E94B720CE7 | | | 90ACAF707D18AF34F5848C58166830AF620ACDC1B2DFDDA8 | | MPS73 | 39C5C598A374EA82F3F83378258248DAD3808812DD0E74BB | | M _{PS74} | F79525DE694629346D73F6256CC0F140F82603197AAA1844 | | m _{PS75} | B8C2A8F139097699A693022E78588D4058DB0A65FF52F813 | | m _{PS76} | 449B50C2A52996FA5A828A907F30F9F460EE3D99930DF890 | | MPS77 | 62CEC9574D30184BCB4F94EECF0CC23D2D2A8D0003F0AA33 | | MPS78 | B56D258889703F76A0738EE3A7D355994159A4851833E198 | | m _{PS79} | 65894AA54C0F6C9A206521C9FC379A8AAF6E621C03CF849C | | MPS80 | 2D47F3414E30CC02C6835D95C9BA204488F0FFCB4852677D | | m _{PS81} | 12BE4DD8B906B584010F8A330AB67B278E8642FA33D51B68 | | M _{PS82} | BC928A90A4B10906CAEE638BF768E08542F48F1676006DF0 | | m _{PS83} | | | m _{PS84} | 30C544E437C8ADA143566CD1BC4E9E7BA84139A08505C2F4
84FD5B05506192B753FBA2C719B584E0EDA01814999867D2 | | M _{PS85} | 191F14DD00034E03AB5BB4342F1138B2CD33784E60CFD75A | | m _{PS86} | B8ACE7990B6A98A80A61162C4D2D5F88F24E8F7DE4207590 | | m _{PS87} | EC1DBE72E8EED0C61054FC2695422AC0AD2D888265B21AB0 | | m _{PS88} | 9A1B4CA467AB7E082AF4278E44D177EA78424508C23E8B08 | | m _{PS89} | 999EE541C608164AC975214F3A37A677FC2CA03E2C2A4B20 | | m _{PS90} | 1BDCC20265031432917A2EB828FB356A22DF9CB609C0F8F3 | | m _{PS91} | EB4A81859C93338B8A1B87C02C815AE09D765F6F2249B958 | | MPS92 | E6A5D1629F4CF09A1F280DE0C480D4C73B26ADE321A50AEE | | MPS93 | BAAB7286DD24C80B15A7958039B904F1CA83C310C8C7AFF2 | | M _{PS94} | 12220F72619E983717C68FFE1C4148F2354B7B1955B65620 | | MPS95 | A198706E24FAA08BD09EE392414816038E667BB34307D6B2 | | m _{PS96}
m _{PS97} | 30B3493B4C035881A7A722E4546527AAE787FA2C0893AC46 | | m _{PS98} | 5A7318126522843DCB7F00A2D9F9BA8F88963E4152BC923C | | m _{PS99} | 844844B0CACAB702C332CE2692B4166F4B0C63E62BF151BF | | m _{PS100} | B8297389526410313692F861DC60DA86A23607F7DDE24755 | | m _{PS101} | 6C1144CF8BC01538D655D29ED62DE6E74A3180EC905BF1E0 | | m _{PS102} | E9DB3221FACFC5C88691A7013EF09672A130D52C3413AAE2 | | m _{PS102} | 2FD0508615EC4CD4BF18ADD46D777078869130C8921A4F0E | | m _{PS104} | 40911B4E0525AC874228F6EF642E59154730CB187C7E417A | | m _{PS105} | 2034C6A027D4D850F5184AA64C3153231F4651B616BBFCF9 | | m _{PS106} | 57833235451525A1DFA213FCE0B419B6494BC7B99F488410 | | m _{PS107} | 6DC3D57F2E39158D036825F8804810D77CA1ECA610ECD894 | | m _{PS108} | F5C50DE43AA7B731CAB7683524021701F97650499A7070E4 | | m _{PS109} | F2184D2699785442E09FA22CC2D60A5A13FFF22AE660A470 | | m _{PS110} | EF0029DE0D79207205458CF4D7328E81A93518D93C9A74BD | | m _{PS111} | 9D6D8992482FB885AA5E878C3BA2045538B09886C23CDC2D | | m _{PS112} | C0A5AB67D1CEA126F6476C75443F0A11CBE749412EF03104 | | m _{PS113} | 1853A5C20CDF968C5A180D8EB5E72BF15517D06680D98412 | | m _{PS114} | 8CEA1223227ADF37D0DAAB320906E1C79029F480D25181A7 | | m _{PS115} | 5561038E96A658EF3EC665612FF92B064065D1ACC1F54812 | | m _{PS116} | C55A6263F08D664A1E53584560DFF5E611640D8281D9A843 | | m _{PS117} | 4386A8EA59124D043F29056A4598735A4FC7BC11119B90C1 | | m _{PS118} | D6571B20668BED50BD7C80388C162632BCB069AA67C7FC22 | | m _{PS119} | 4F9F09ABBC1391EC2CCA5359FB52250E533BF04324154106 | | m _{PS120} | 662659F42188C9453F6E6DF00C579627045DA1461A3A0EA5 | | m _{PS121} | 8DCC9274C0C2A9BA6096BF27FACA542CD01CA8653D60A80F | | _ | | | Code ID | Basic Midamble Codes m _{PS} of length P=192 | |--------------------|--| | m _{PS122} | 5C1210A1E50E505F6B73C90156C9D9F19AE2310BBD820DF0 | | m _{PS123} | B1E0A7CE26202E223D4FC06D5C9BBA4E5F6D98204D2D5286 | | m _{PS124} | DB506776958E34552F7E60E4B400D836153218F918E22FA6 | | m _{PS125} | ECAA60300439B2360B2AC3C43FB6241ACDE5055B295FA71C | | m _{PS126} | BF1E6D9AA9CA4AC092BE60500C77D0DC7A6A236520F86722 | | m _{PS127} | 051C5FA122845A30B4EC306B38016B45667C7754F92F13A0 | # A.3 Association between Midambles and Channelisation Codes The following mapping schemes apply for the association between midambles and channelisation codes if no midamble is allocated by higher layers. Secondary channelisation codes are marked with a *. These associations apply both for UL and DL. #### A.3.1 Association for Burst Type 1/3 and K_{Cell} =16 Midambles Figure A-1: Association of Midambles to Spreading Codes for Burst Type 1/3 and $K_{\text{Cell}} = 16$ #### A.3.2 Association for Burst Type 1/3 and K_{Cell} =8 Midambles Figure A-2: Association of Midambles to Spreading Codes for Burst Type 1/3 and K_{Cell} =8 #### A.3.3 Association for Burst Type 1/3 and K_{Cell} =4 Midambles Figure A-3: Association of Midambles to Spreading Codes for Burst Type 1/3 and K_{Cell} =4 #### A.3.4 Association for Burst Type 2 and K_{Cell} =6 Midambles Figure A-4: Association of Midambles to Spreading Codes for Burst Type 2 and K_{Cell} =6 #### A.3.5 Association for Burst Type 2 and K_{Cell} = 3 Midambles Figure A-5: Association of Midambles to Spreading Codes for Burst Type 2 and K_{Cell} =3 Note that the association for burst type 2 can be derived from the association for burst type 1 and 3, using the following table: | Burst Type 1/3 | m(1) | m(2) | m(3) | m(4) | m(5) | m(6) | m(7) | m(8) | |----------------|------|------|------|------|------|------|------|------| | Burst Type 2 | m(1) | m(5) | m(3) | m(6) | m(2) | m(4) | - | - | #### Annex B (normative): ## Signalling of the number of channelisation codes for the DL common midamble case The following mapping schemes shall apply for the association between the number of channelisation codes employed in a timeslot and the use of a particular midamble shift in the DL common midamble case. In the following tables the presence of a particular midamble shift is indicated by '1'. Midamble shifts marked with '0' are left unused. Mapping schemes B.4, B.5 and B.6 are not applicable to beacon timeslots where a P-CCPCH is present, because the default midamble allocation scheme is applied to these timeslots. Note that in mapping schemes B.4, B.5 and B.6, the fixed and pre-allocated channelisation code for the beacon channel is included into the number of indicated channelisation codes. #### B.1 Mapping scheme for Burst Type 1 and $K_{Cell} = 16$ Midambles. | m1 | m2 | m3 | m4 | m5 | m6 | m7 | M8 | m9 | m10 | m11 | m12 | m13 | m14 | m15 | m16 | | |----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|----------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 code | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 codes | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 codes | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 codes | | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 codes | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 10 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1
 0 | 0 | 0 | 0 | 12 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 13 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 14 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 15 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 16 codes | #### B.2 Mapping scheme for Burst Type 1 and $K_{Cell} = 8$ Midambles. | M1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | | |----|----|----|----|----|----|----|----|---------------------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 code or 9 codes | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 codes or 10 codes | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 codes or 11 codes | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 4 codes or 12 codes | | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 5 codes or 13 codes | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 6 codes or 14 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 7 codes or 15 codes | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8 codes or 16 codes | #### B.3 Mapping scheme for Burst Type 1 and $K_{Cell} = 4$ Midambles. | m1 | m3 | m5 | m7 | | |----|----|----|----|--------------------------| | 1 | 0 | 0 | 0 | 1 or 5 or 9 or 13 codes | | 0 | 1 | 0 | 0 | 2 or 6 or 10 or 14 codes | | 0 | 0 | 1 | 0 | 3 or 7 or 11 or 15 codes | | 0 | 0 | 0 | 1 | 4 or 8 or 12 or 16 codes | ### B.4 Mapping scheme for beacon timeslots and K_{Cell} =16 Midambles. | m1 | m2 | m3 | M4 | m5 | m6 | m7 | M8 | m9 | m10 | m11 | M12 | m13 | m14 | m15 | m16 | | |----|-------------------------|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|----------------------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 code (see note 1) | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 codes (SCTD | | | | | | | | | | | | | | | | | | applied to beacon in | | | | | | | | | | | | | | | | | | this time slot, see | | | | | | | | | | | | | | | | | | note 2) | | 1 | X ^(*) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 codes | | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 codes (SCTD not | | | | | | | | | | | | | | | | | | applied to beacon in | | | | | | | | | | | | | | | | | | this time slot)or 14 | | | /=\ | | | | | | | | | | | | | | | codes | | 1 | x ^(*) | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 codes or 15 codes | | 1 | X ^(*) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 codes or 16 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 7 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 8 codes | | 1 | x ^(*) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 9 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 10 codes | | 1 | X ^(^) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 11 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 codes | ^(*) For the case of SCTD applied to beacon, midamble shift 2 is used by the diversity antenna. - Note 1: If only one code is present in a beacon time slot, this code is a beacon channel and the beacon channel is the only channel in this slot, by default. Therefore, only the beacon midamble(s) shall be used. - Note 2: If SCTD is applied to beacon and only two codes are present in a beacon time slot, the beacon channel is the only channel in this slot, by default. Therefore, only the beacon midambles shall be used. ### B.5 Mapping scheme for beacon timeslots and K_{Cell} =8 Midambles. | m1 | m2 | m3 | m4 | m5 | m6 | m7 | M8 | | |----|------------------|----|----|----|----|----|----|---------------------------------------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 code (see note 1) | | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 codes (SCTD applied to beacon in | | | | | | | | | | this time slot, see note 2) | | 1 | X ^(*) | 1 | 0 | 0 | 0 | 0 | 0 | 7 or 13 codes | | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 (SCTD not applied to beacon in this | | | | | | | | | | time slot) or 8 or 14 codes | | 1 | X ^(*) | 0 | 0 | 1 | 0 | 0 | 0 | 3 or 9 or 15 codes | | 1 | X ^(*) | 0 | 0 | 0 | 1 | 0 | 0 | 4 or 10 or 16 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 1 | 0 | 5 codes or 11 codes | | 1 | X ^(*) | 0 | 0 | 0 | 0 | 0 | 1 | 6 codes or 12 codes | ^(*) For the case of SCTD applied to beacon, midamble shift 2 is used by the diversity antenna. - Note 1: If only one code is present in a beacon time slot, this code is a beacon channel and the beacon channel is the only channel in this slot, by default. Therefore, only the beacon midamble(s) shall be used. - Note 2: If SCTD is applied to beacon and only two codes are present in a beacon time slot, the beacon channel is the only channel in this slot, by default. Therefore, only the beacon midambles shall be used. ## B.6 Mapping scheme for beacon timeslots and K_{Cell} =4 Midambles. | m1 | m3 | m5 | m7 | | |----|----|----|----|--------------------------------| | 1 | 0 | 0 | 0 | 1 code (see note 1) | | 1 | 1 | 0 | 0 | 4 or 7 or 10 or 13 or 16 codes | | 1 | 0 | 1 | 0 | 2 or 5 or 8 or 11 or 14 codes | | 1 | 0 | 0 | 1 | 3 or 6 or 9 or 12 or 15 codes | Note 1: If only one code is present in a beacon time slot, this code is a beacon channel and the beacon channel is the only channel in this slot, by default. Therefore, only the beacon midamble shall be used. #### B.7 Mapping scheme for Burst Type 2 and $K_{Cell} = 6$ Midambles. | m1 | m2 | m3 | m4 | m5 | m6 | | |----|----|----|----|----|----|---------------------| | 1 | 0 | 0 | 0 | 0 | 0 | 1 or 7 or 13 codes | | 0 | 1 | 0 | 0 | 0 | 0 | 2 or 8 or 14 codes | | 0 | 0 | 1 | 0 | 0 | 0 | 3 or 9 or 15 codes | | 0 | 0 | 0 | 1 | 0 | 0 | 4 or 10 or 16 codes | | 0 | 0 | 0 | 0 | 1 | 0 | 5 or 11 codes | | 0 | 0 | 0 | 0 | 0 | 1 | 6 or 12 codes | #### B.8 Mapping scheme for Burst Type 2 and $K_{Cell} = 3$ Midambles. | m1 | m2 | m3 | | |----|----|----|-------------------------------------| | 1 | 0 | 0 | 1 or 4 or 7 or 10 or 13 or 16 codes | | 0 | 1 | 0 | 2 or 5 or 8 or 11 or 14 codes | | 0 | 0 | 1 | 3 or 6 or 9 or 12 or 15 codes | ## Annex C (informative): CCPCH Multiframe Structure In the following figures B.1 to B.3 some examples for Multiframe Structures on Primary and Secondary CCPCH are given. The figures show the placement of Common Transport Channels on the Common Control Physical Channels. Additional S-CCPCH capacity can be allocated on other codes and timeslots of course, e.g. FACH capacity is related to overall cell capacity and can be configured according to the actual needs. Channel capacities in the annex are derived using bursts with long midambles (Burst format 1). Every TrCH-box in the figures is assumed to be valid for two frames (see row 'Frame #'), i.e. the transport channels in CCPCHs have an interleaving time of 20msec. The actual CCPCH Multiframe Scheme used in the cell is described and broadcast on BCH. Thus the system information structure has its roots in this particular transport channel and allocations of other Common Channels can be handled this way, i.e. by pointing from BCH. Figure C.1: Example for a multiframe structure for CCPCHs and PICH that is repeated every 64th frame Figure C.2: Example for a multiframe structure for CCPCHs and PICH that is repeated every 64th frame, n=1...7 # Annex D (informative): Change history | Change history | | | | | | | | |----------------------|----------|------------------------|------------|--------------|---|-------|--------| | Date | TSG # | TSG Doc. | CR | Rev | Subject/Comment | Old | New | | 14/01/00 | RAN_05 | RP-99591 | - | | Approved at TSG RAN #5 and placed under Change Control | - | 3.0.0 | | 14/01/00 | RAN_06 | RP-99691 | 001 | 02 | Primary and Secondary CCPCH in TDD | 3.0.0 | 3.1.0 | | 14/01/00 | RAN_06 | RP-99691 | 002 | 02 | Removal of Superframe for TDD | 3.0.0 | 3.1.0 | | 14/01/00 | RAN_06 | RP-99691 | 006 | - | Corrections to TS25.221 | 3.0.0 | 3.1.0 | | 14/01/00 | RAN_06 | RP-99691 | 007 | 1 | Clarifications for Spreading in UTRA TDD | 3.0.0 | 3.1.0 | | 14/01/00 | RAN_06 | RP-99691 | 800 | - | Transmission of TFCI bits for TDD | 3.0.0 | 3.1.0 | | 14/01/00 | RAN_06 | RP-99691 | 009 | - | Midamble Allocation in UTRA TDD | 3.0.0 | 3.1.0 | | 14/01/00 | RAN_06 | RP-99690 | 010 | - | Introduction of the timeslot formats to the TDD specifications | 3.0.0 | 3.1.0 | | 14/01/00 | - | - | - | | Change history was added by the editor | 3.1.0 | 3.1.1 | | 31/03/00 | | RP-000067 | 003 | 2 | Cycling of cell parameters | 3.1.1 | 3.2.0 | | 31/03/00 | | RP-000067 | 011 | - | Correction of Midamble Definition for TDD | 3.1.1 | 3.2.0 | | 31/03/00 | RAN_07 | RP-000067 | 012 | - | Introduction of the timeslot formats for RACH to the TDD | 3.1.1 | 3.2.0 | | | | | | | specifications | | | | 31/03/00 | | RP-000067 | 013 | - | Paging Indicator Channel reference power | 3.1.1 | 3.2.0 | | 31/03/00 | | RP-000067 | 014 | 1 | Removal of Synchronisation Case 3 in TDD | 3.1.1 | 3.2.0 | | 31/03/00 | | RP-000067 | 015 | 1 | Signal Point Constellation | 3.1.1 | 3.2.0 | | 31/03/00 | | RP-000067 | 016 | - | Association between Midambles and Channelisation Codes | 3.1.1 | 3.2.0 | | 31/03/00 | | RP-000067 | 017 | - | Removal of ODMA from the TDD specifications | 3.1.1 | 3.2.0 | | 26/06/00 | _ | RP-000271 | 018 | 1 | Removal of the reference to ODMA | 3.2.0 | 3.3.0 | | 26/06/00 | | RP-000271 | 019 | - | Editorial changes in transport channels section | 3.2.0 | 3.3.0 | | 26/06/00 | | RP-000271 | 020 | 1 | TPC transmission for TDD | 3.2.0 | 3.3.0 | | 26/06/00 | | RP-000271 | 021 | - | Editorial modification of 25.221 | 3.2.0 | 3.3.0 | | 26/06/00 | RAN_08 | RP-000271 | 023 | - | Clarifications on TxDiversity for UTRA TDD | 3.2.0 | 3.3.0 | | 26/06/00 | RAN_08 |
RP-000271 | 024 | - | Clarifications on PCH and PICH in UTRA TDD | 3.2.0 | 3.3.0 | | 23/0900 | RAN_09 | RP-000344 | 022 | 1 | Correction to midamble generation in UTRA TDD | 3.3.0 | 3.4.0 | | 23/0900 | RAN_09 | RP-000344 | 026 | 2 | Some corrections for TS25.221 | 3.3.0 | 3.4.0 | | 23/0900 | RAN_09 | RP-000344 | 028 | - | Terminology regarding the beacon function | 3.3.0 | 3.4.0 | | 23/0900 | RAN_09 | RP-000344 | 030 | 1 | TDD Access Bursts for HOV | 3.3.0 | 3.4.0 | | 23/0900 | RAN_09 | RP-000344 | 031 | 1 | Number of codes signalling for the DL common midamble case | 3.3.0 | 3.4.0 | | 15/12/00 | RAN_10 | RP-000542 | 034 | - | Correction on TFCI & TPC Transmission | 3.4.0 | 3.5.0 | | 15/12/00 | RAN_10 | RP-000542 | 035 | 1 | Clarifications on Midamble Associations | 3.4.0 | 3.5.0 | | 15/12/00 | RAN_10 | RP-000542 | 036 | - | Clarification on PICH power setting | 3.4.0 | 3.5.0 | | 16/03/01 | RAN_11 | RP-010062 | 033 | 2 | Correction to SCH section | 3.5.0 | 3.6.0 | | 16/03/01 | RAN_11 | RP-010062 | 037 | 1 | Bit Scrambling for TDD | 3.5.0 | 3.6.0 | | 16/03/01 | RAN_11 | RP-010062 | 039 | 1 | Corrections of PUSCH and PDSCH | 3.5.0 | 3.6.0 | | 16/03/01 | RAN_11 | RP-010062 | 040 | - | Alteration of SCH offsets to avoid overlapping Midamble | 3.5.0 | 3.6.0 | | 16/03/01 | RAN_11 | RP-010062 | 041 | - | Clarifications & Corrections for TS25.221 | 3.5.0 | 3.6.0 | | 16/03/01 | RAN_11 | RP-010062 | 045 | 1 | Corrections on the PRACH and clarifications on the midamble generation and the behaviour in case of an invalid TFI combination | 3.5.0 | 3.6.0 | | 16/02/01 | DAN 44 | DD 040060 | 046 | | on the DCHs | 250 | 260 | | 16/03/01
16/03/01 | | RP-010062
RP-010062 | 046
048 | - | Clarification of TFCI transmission Corrections to Table 5.b "Timeslot formats for the Uplink" | 3.5.0 | 3.6.0 | | | | RP-010062 | | 1 | | | | | 15/06/01
15/06/01 | | RP-010336 | | 2 | Clarification of Midamble Usage in TS25.221 Addition to the abbreviation list, correction of references to tables | 3.6.0 | 3.7.0 | | 13/00/01 | INMIN_1Z | 175-010330 | 030 | ~ | and figures | 3.0.0 | 3.7.0 | | 21/09/01 | RAN 13 | RP-010522 | 056 | - | TFCI Terminology | 3.7.0 | 3.8.0 | | 21/09/01 | | RP-010522 | | _ | Clarification of notations in TS25.221 and TS25.223 | 3.7.0 | 3.8.0 | | 21/09/01 | | RP-010522 | | - | Addition and correction of the reference | 3.7.0 | 3.8.0 | | 14/12/01 | | RP-010741 | | 1 | Transmit diversity for P-CCPCH and PICH | 3.8.0 | 3.9.0 | | 14/12/01 | | RP-010741 | 066 | - | Clarification of midamble transmit power in TS25.221 | 3.8.0 | 3.9.0 | | 08/03/02 | | RP-020049 | | 2 | Clarification of midamble transmit power in 1323.221 Clarification of spreading for UL physical channels | 3.9.0 | 3.10.0 | | 08/03/02 | | RP-020049 | | 1 | Common midamble allocation for beacon time slot | 3.9.0 | 3.10.0 | | 08/03/02 | | RP-020049 | | 3 | Correction to a transmission of paging indicators bits | | 3.10.0 | | 18/09/02 | | RP-020049 | | 1 | Corrections to channelisation code mappings for 3.84 Mcps TDD | | 3.11.0 | | 18/09/02 | | RP-020572 | 95 | 2 | Corrections to chainlessation code mappings to 3.64 Micps 12D Corrections to transmit diversity mode for TDD beacon-function physical channels | | 3.11.0 | | | | | | | рпузнан опаппев | ### History | Document history | | | | |------------------|----------------|-------------|--| | V3.1.1 | January 2000 | Publication | | | V3.2.0 | March 2000 | Publication | | | V3.3.0 | June 2000 | Publication | | | V3.4.0 | September 2000 | Publication | | | V3.5.0 | December 2000 | Publication | | | V3.6.0 | March 2001 | Publication | | | V3.7.0 | June 2001 | Publication | | | V3.8.0 | September 2001 | Publication | | | V3.9.0 | December 2001 | Publication | | | V3.10.0 | March 2002 | Publication | | | V3.11.0 | September 2002 | Publication | |