ETSI TS 131121 v6.7.0 (2007-03)

Universal Mobile Telecommunications System (UMTS); UICC-terminal interface; Universal Subscriber Identity Module (USIM) application test specification (3GPP TS 31.121 version 6.7.0 Release 6)

ETS

Reference
RTS/TSGC-0631121v670
Keywords
ETSI
F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 492944200 Fax: +334936547 16

Siret No 34862356200017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N ${ }^{\circ} 7803 / 88$
\qquad
Important notice
Individual copies of the present document can be downloaded from:

> http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.
© European Telecommunications Standards Institute 2007.
All rights reserved.
DECT $^{\top M}$, PLUGTESTS ${ }^{\text {TM }}$ and UMTS ${ }^{\text {TM }}$ are Trade Marks of ETSI registered for the benefit of its Members. TIPHON ${ }^{\top M}$ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPP ${ }^{\text {TM }}$ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).
The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intellectual Property Rights 2
Foreword 2
Foreword 12
Introduction 12
1 Scope 13
2 References 13
3 Definitions, symbols, abbreviations and coding. 14
3.1 Definitions 14
3.2 Symbols 15
3.3 Abbreviations 15
3.4 Coding Conventions 16
3.5 Generic procedures for UTRAN/GERAN 17
3.6 Applicability 17
3.6.1 Applicability of the present document 17
3.6.2 Applicability to terminal equipment 17
3.6.3 Applicability of the individual tests 17
3.7 Table of optional features 18
3.8 Applicability table 19
4 Default Values 21
4.1 Definition of default values for USIM-Terminal interface testing (Default UICC) 22
4.1.1 Values of the EF's (Default UICC) 22
4.1.1.1 $\quad \mathrm{EF}_{\text {IMSI }}$ (IMSI) 22
4.1.1.2 $\quad \mathrm{EF}_{\mathrm{AD}}$ (Administrative Data) 22
4.1.1.3 $\quad \mathrm{EF}_{\text {Locl }}$ (Location Information) 22
4.1.1. $\quad \mathrm{EF}_{\text {Keys }}$ (Ciphering and Integrity Keys) 22
4.1.1.5 $\quad \mathrm{EF}_{\text {KeysP }}$ (Ciphering and Integrity Keys for Packet Switched domain). 22
4.1.1.6 $\quad \mathrm{EF}_{\text {AcC }}$ (Access Control Class) 23
4.1.1.7 $\quad \mathrm{EF}_{\text {FpLMN }}$ (Forbidden PLMNs) 23
4.1.1.8 $\quad \mathrm{EF}_{\text {UST }}$ (USIM Service Table) 23
4.1.1.9 $\quad \mathrm{EF}_{\text {EST }}$ (Enable Service Table). 23
4.1.1.10 $\quad \mathrm{EF}_{\mathrm{ADN}}$ (Abbreviated Dialling Number) 23
4.1.1.11 $\quad \mathrm{EF}_{\text {PLMNwact }}$ (User Controlled PLMN Selector with Access Technology) 24
4.1.1.12 \quad EF $_{\text {oplMnwact }}$ (Operator Controlled PLMN Selector with Access Technology) 24
4.1.1.13 Void. 25
4.1.1.14 PIN 25
4.1.1.15 PIN2 25
4.1.1.16 Unblock PIN 25
4.1.1.17 Unblock PIN2 25
4.1.1.18 Other Values of the USIM 26
4.1.1.19 \quad EF $_{\text {PSLocl }}$ (Packet Switch Location Information) 26
4.1.1.20 Universal PIN 26
4.1.1.21 Unblock Universal PIN 26
4.2 Definition of FDN UICC 26
4.2.1 Values of the EF's (FDN UICC) 27
4.2.1.1 $\quad \mathrm{EF}_{\text {UST }}$ (USIM Service Table) 27
4.2.1.2 $\quad \mathrm{EF}_{\text {EST }}$ (Enable Service Table). 27
4.2.1.3 $\quad \mathrm{EF}_{\mathrm{FDN}}$ (Fixed Dialling Numbers) 27
4.2.1.4 $\quad \mathrm{EF}_{\mathrm{ECC}}$ (Emergency Call Codes). 28
4.2.1.5 Other Values of the USIM 28
4.3 Void. 28
5 Subscription related tests 28
5.1 IMSI / TMSI handling. 28
5.1.1 UE identification by short IMSI 28
5.1.1.1 Definition and applicability 28
5.1.1.2 Conformance requirement 28
5.1.1.3 Test purpose 29
5.1.1.4 Method of test 29
5.1.1.4.1 Initial conditions 29
5.1.1.4.2 Procedure 29
5.1.1.5 Acceptance criteria 29
5.1.2 UE identification by short IMSI using a 2 digit MNC 30
5.1.2.1 Definition and applicability 30
5.1.2.2 Conformance requirement. 30
5.1.2.3 Test purpose 30
5.1.2.4 Method of test 30
5.1.2.4.1 Initial conditions 30
5.1.2.4.2 Procedure 31
5.1.2.5 Acceptance criteria. 31
5.1.3 UE identification by "short" TMSI 315.1.3.1
5.1.3.2315.1.3.3 Test purpose3132
5.1.3.4 Method of test 325.1.3.4.1
Initial conditions 32
5.1.3.4.2 Procedure 32
5.1.3.5 Acceptance criteria. 32
5.1.4 UE identification by "long" TMSI 335.1.4.15.1.4.233
5.1.4.3Conformance requirement33
5.1.4.4Test purpose33
5.1.4.4.1 Initial conditions 33Method of test33
5.1.4.4.2 Procedure 34
5.1.4.5 Acceptance criteria. 34
5.1.5 UE identification by long IMSI, TMSI updating and key set identifier assignment. 345.1.5.1
5.1.5.2
5.1.5.2 Conformance requirement 3534
5.1.5.3 Test purpose 35
5.1.5.4 Method of test 35
5.1.5.4.1 Initial conditions 35
5.1.5.4.2 Procedure 36
5.1.5.5 Acceptance criteria 37
5.2 Access Control handling 37
5.2.1 Access Control information handling 37
5.2.1. Definition and applicability. 37
5.2.1.2 Conformance requirement. 38
5.2.1.3 Test purpose 38
5.2.1.4 Method of test 38
5.2.1.4.1 Initial conditions 38
5.2.1.4.2 Coding details 39
5.2.1.4.3 Procedure 39
5.2.1.5 Acceptance criteria 39
6 Security related Tests 51
6.1 PIN handling 51
6.1.1 Entry of PIN 51
6.1.1.1 Definition and applicability 51
6.1.1.2 Conformance requirement. 51
6.1.1.3 Test purpose 51
6.1.1.4 Method of test 51
6.1.1.4.1 Initial conditions 51
6.1.1.4.2 Procedure. 51
6.1.1.5 Acceptance criteria 51
6.1.2 Change of PIN 51
6.1.2.1 Definition and applicability 51
6.1.2.2 Conformance requirement 52
6.1.2.3 Test purpose 52
6.1.2.4 Method of test 52
6.1.2.4.1 Initial conditions 52
6.1.2.4.2 Procedure 52
6.1.2.5 Acceptance criteria 52
6.1.3 Unblock PIN 52
6.1.3.1 Definition and applicability 52
6.1.3.2 Conformance requirement 52
6.1.3.3 Test purpose 53
6.1.3.4 Method of test 53
Initial conditions 53
Procedure 53
6.1.3.4.2
Acceptance criteria 53
6.1.4 Entry of PIN2 536.1.4.16.1.4.6.1.4.36.1.4.4
6.1.4.4.16.1.4.4.2
Definition and applicability 53
Conformance requirement. 54
Test purpose 54
Method of test 54
Initial conditions 54
Procedure 546.1.56.1.5.16.1.5.26.1.5.3
6.1.5.46.1.5.4.16.1.5.4.26.1.5.5
6.1.66.1.6.16.1.6.26.1.6.3
6.1.6.4
6.1.6.4.16.1.6.4.26.1.6.5
6.1.7
6.1.7.16.1.7.26.1.7.3
6.1.7.46.1.7.4.16.1.7.4.26.1.7.56.1.86.1.8.16.1.8.26.1.8.36.1.8.46.1.8.4.16.1.8.4.26.1.8.5Acceptance criteria54Change of PIN254
Definition and applicability 54
Conformance requirement 54
Test purpose 55
Method of test 55
Initial conditions 55
Procedure 55
Acceptance criteria 55
Unblock PIN2 55
Definition and applicability 55
Conformance requirement 55
Test purpose 56
Method of test 56
Initial conditions 56
Procedure 56
Acceptance criterias 56
Replacement of PIN. 57
Definition and applicability 57
Conformance requirement 57
Test purpose 57
Method of test 57
Initial conditions 57
Procedure 57
Acceptance criteria 57
Change of Universal PIN 58
Definition and applicability 58
Conformance requirement. 58
Test purpose 58
Method of test 58
Initial conditions 58
Procedure 58
6.1 .9Acceptance criteria586.1.9.1Unblock Universal PIN59
Definition and applicability 59
6.1 .9
6.1.9. Conformance requirement. 59
6.1.9.3 Test purpose 59
6.1.9.4 Method of test 59
6.1.9.4.1 Initial conditions 59
6.1.9.4.2 Procedure 59
6.1.9.5 Acceptance criteria 59
6.1.10 Entry of PIN on multi-verification capable UICCs 60
6.1.10.1 Definition and applicability 60
6.1.10.2 Conformance requirement. 60
6.1.10.3 Test purpose 60
6.1.10.4 Method of test 60
6.1.10.4.1 Initial conditions 60
6.1.10.4.2 Procedure 61
6.1.10.5 Acceptance criteria 61
6.1.11 Change of PIN on multi-verification capable UICCs 61
6.1.11.1 Definition and applicability. 61
6.1.11.2 Conformance requirement 61
Test purpose 61
6.1.11.4 Method of test 626.1.11.4.16.1.11.4.2Initial conditions62
Procedure6.1.11.56.1.1262
63Acceptance criteria
6.1.12.1Unblock PIN on multi-verification capable UICCs63
63
6.1.12.2 Conformance requirement 63
Test purpose 63
6.1.12.4 Method of test 63
6.1.12.4.1 Initial conditions 63
6.1.12.4.2 Procedure 64
6.1.12.5 Acceptance criteria 64
6.1.13 Entry of PIN2 on multi-verification capable UICCs 64
6.1.13.1 Definition and applicability 64
6.1.13.2 Conformance requirement. 65
6.1.13.3 Test purpose 65
6.1.13.4 Method of test 656.1.13.4.1
Initial conditions 656.1.13.4.2
Procedure 666.1.13.56.1.14Acceptance criteria66
6.1.14.1Change of PIN2 on multi-verification capable UICCs66
Definition and applicability 666.1.14.2
66
6.1.14.3 Test purpose 66
6.1.14.4 Method of test 66
6.1.14.1 Initial conditions 66
6.1.14.4.2 Procedure 67
6.1.14.5 Acceptance criteria 68
6.1.15 Unblock PIN2 on multi-verification capable UICCs 68
6.1.15.1 Definition and applicability 68
6.1.15.2 Conformance requirement. 68
6.1.15.3 Test purpose 68
6.1.15.4 Method of test 68
6.1.15.4.1 Initial conditions 68
6.1.15.4.2 Procedure 69
6.1.15.5 Acceptance criterias 69
6.1.16 Replacement of PIN with key reference "07" 70
6.1.16.1 Definition and applicability. 70
6.1.16.2 Conformance requirement. 70
6.1.16.3 Test purpose 70
6.1.16.4 Method of test 70
6.1.16.4.1 Initial conditions 70
6.1.16.4.2 Procedure 71
6.1.16.5 Acceptance criteria 71
6.2 Fixed Dialling Numbers (FDN) handling 72
6.2.1 Terminal and USIM with FDN enabled, $\mathrm{EF}_{\mathrm{ADN}}$ readable and updateable 72
6.2.1.1 Definition and applicability 72
6.2.1.2 Conformance requirement. 72
6.2.1.3 72
6.2.1.4 Method of test 73
6.2.1.4.1 Initial conditions 73
6.2.1.4.2 Procedure 73
6.2.1.5 Acceptance criteria 73
6.2.2 Terminal and USIM with FDN disabled. 74
6.2.2.1 Definition and applicability 74
6.2.2.2 Conformance requirement 74
6.2.2.3 Test purpose 74
6.2.2.4 Method of test 74
6.2.2.4.1 Initial conditions 74
6.2.2.4.2 Procedure 75
6.2.2.5 Acceptance criteria. 75
6.2.3 Enabling, disabling and updating of FDN 756.2.3.1
6.2.3.2Definition and applicability756.2.3.3Conformance requirement756.2.3.46.2.3.4.1Test purpose75
Initial conditions 76Method of test76
Procedure 76
6.2.3.5 Acceptance criteria 76
6.2.4
6.2.4.1Terminal and USIM with FDN enabled, $\mathrm{EF}_{\mathrm{ADN}}$ readable and updateable (Rel-4 and onwards) .76
Definition and applicability 76
6.2.4.2 Conformance requirement 76
6.2.4.3 Test purpose 77
6.2.4.4 Method of test 77
Initial conditions 77
6.2.4.4.1
Procedure 77
6.2.4.5 Acceptance criteria 78
6.3 Void. 78
6.4 Advice of charge (AoC) handling78
6.4.1 AoC not supported by USIM 78
6.4.1.1 Definition and applicability78
6.4.1.2 Conformance requirement. 78
6.4.1.3 Test purpose 79
6.4.1.4 Method of test 79
6.4.1.4.1 Initial conditions 79
6.4.1.4.2 Procedure 79
6.4.1.5 Acceptance criteria 80
6.4.2 Maximum frequency of ACM updating 80
6.4.2.1 Definition and applicability 80
6.4.2.2 Conformance requirement. 80
6.4.2.3 Test purpose 80
6.4.2.4 Method of test 80
6.4.2.4.1 Initial conditions 80
6.4.2.4.2 Procedure 81
6.4.2.5 Acceptance criteria83
6.4.3 Call terminated when ACM greater than ACMmax 83
6.4.3.1 Definition and applicability 83
6.4.3.2 Conformance requirement.83
6.4.3.3 Test purpose 83
6.4.3.4 Method of test 84
6.4.3.4.1 Initial conditions 84
6.4.3.4.2 Procedure 84
6.4.3.5 Acceptance criteria 86
6.4.4 Response codes of increase command of ACM 86
6.4.4.1 Definition and applicability 86
6.4.4.2 Conformance requirement. 87
6.4.4.3 Test purpose 87
6.4.4.4 Method of test 87
6.4.4.4.1 Initial conditions 87
6.4.4.4.2 Procedure 88
6.4.4.5 Acceptance criteria 90
$7 \quad$ PLMN related tests 91
7.1 FPLMN handling 91
7.1.1 Adding FPLMN to the Forbidden PLMN list 91
7.1.1.1 Definition and applicability 91
7.1.1.2 Conformance requirement 91
7.1.1.3 Test purpose 93
7.1.1.4 Method of test 93
7.1.1.4.1 Initial conditions 93
7.1.1.4.2 Procedure 94
7.1.1.5 Acceptance criteria 97
7.1.2 UE updating forbidden PLMNs 98
7.1.2.1 Definition and applicability 98
7.1.2.2 Conformance requirement. 99
7.1.2.3 Test purpose99
7.1.2.4 Method of test 99
7.1.2.4.1 Initial conditions 99
7.1.2.4.2 Procedure 100
7.1.2.5 Acceptance criteria 100
7.1.3 UE deleting forbidden PLMNs 101
7.1.3.1 Definition and applicability 101
7.1.3.2 Conformance requirement. 101
7.1.3.3 Test purpose 102
7.1.3.4 Method of test 102
7.1.3.4.1 Initial conditions 102
7.1.3.4.2 Procedure 103
7.1.3.5 Acceptance criteria 104
7.2 User controlled PLMN selector handling 105
7.2.1 UE updating the User controlled PLMN selector list 105
7.2.1.1 Definition and applicability 105
7.2.1.2 Conformance requirement. 105
7.2.1.3 Test purpose 106
7.2.1.4 Method of test 106
7.2.1.4.1 Initial conditions 106
7.2.1.4.2 Procedure 106
7.2.1.5 Acceptance criteria 106
7.2.2 UE recognising the priority order of the User controlled PLMN selector list with the same access technology. 107
7.2.2.1 Definition and applicability 107
7.2.2.2 Conformance requirement. 107
7.2.2.3 Test purpose 107
7.2.2.4 Method of test 107
7.2.2.4.1 Initial conditions 107
7.2.2.4.2 Procedure. 108
7.2.2.5 Acceptance criteria 110
7.2.3 UE recognising the priority order of the User controlled PLMN selector list using an ACT preference 110
7.2.3.1 Definition and applicability 110
7.2.3.2 Conformance requirement. 111
7.2.3.3 Test purpose 111
7.2.3.4 Method of test 111
7.2.3.4.1 Initial conditions 111
7.2.3.4.2 Procedure 111
7.2.3.5 Acceptance criteria 111
7.2.4 Void 112
7.3 Operator controlled PLMN selector handling 112
7.3.1 UE recognising the priority order of the Operator controlled PLMN selector list. 112
7.3.1.1 Definition and applicability 112
7.3.1.2 Conformance requirement 112
7.3.1.3 Test purpose 112
7.3.1.4 Method of test 113
7.3.1.4.1 Initial conditions 113
7.3.1.4.2 Procedure 114
7.3.1.5 Acceptance criteria 115
7.3.2 UE recognising the priority order of the User controlled PLMN selector over the Operator controlled PLMN selector list 116
7.3.2.1 Definition and applicability 116
7.3.2.2 Conformance requirement. 116
7.3.2.3 Test purpose 116
7.3.2.4 Method of test 117
7.3.2.4.1 Initial conditions 117
7.3.2.4.2 Procedure 118
7.3.2.5 Acceptance criteria 119
7.4 Higher priority PLMN search handling 120
7.4.1 UE recognising the search period of the Higher priority PLMN 120
7.4.1.1 Definition and applicability 120
7.4.1.2 Conformance requirement 120
7.4.1.3 Test purpose 120
7.4.1.4 Method of test 121
7.4.1.4.1 Initial conditions 121
7.4.1.4.2 Procedure 121
7.4.1.5 Acceptance criteria 124
7.4.2 GSM/UMTS dual mode UEs recognising the search period of the Higher priority PLMN 125
7.4.2.1 Definition and applicability 125
7.4.2.2 Conformance requirement 125
7.4.2.3 Test purpose 125
7.4.2.4 Method of test 125
7.4.2.4.1 Initial conditions 125
7.4.2.4.2 Procedure 126
7.4.2.5 Acceptance criteria 127
7.5 Void 128
8 Subscription independent tests 128
8.1 Phone book procedures 128
8.1.1 Recognition of a previously changed phonebook 128
8.1.1.1 Definition and applicability 128
8.1.1.2 Conformance requirement 129
8.1.1.3 Test purpose 129
8.1.1.4 Method of test 129
8.1.1.4.1 Initial conditions 129
8.1.1.4.2 Procedure 129
8.1.1.5 Acceptance criteria 130
8.1.2 Update of the Phonebook Synchronisation Counter (PSC) 130
8.1.2.1 Definition and applicability 130
8.1.2.2 Conformance requirement. 130
8.1.2.3 Test purpose 130
8.1.2.4 Method of test 130
8.1.2.4.1 Initial conditions 130
8.1.2.4.2 Procedure 131
8.1.2.5 Acceptance criteria 131
8.1.3 Phonebook content handling 132
8.1.3.1 Handling of BCD number/ SSC content extension 132
Definition and applicability 132
8.1.3.1.1
Conformance requirement 132
8.1.3.1.3 Test purpose 132
8.1.3.1.4 Method of test 132
8.1.3.1.5 Acceptance criteria 135
8.1.4 Phonebook selection 136
8.1.4.1 Definition and applicability 136
8.1.4.2 Conformance requirement 136
8.1.4.3 Test purpose 136
8.1.4.4 Method of test 136
8.1.4.4.1 Initial conditions 136
8.1.4.4.2 Procedure 139
8.1.4.5 Acceptance criteria 139
8.1.5 Local Phonebook handling 140
8.1.5.1 Definition and applicability 140
8.1.5.2 Conformance requirement 140
8.1.5.3 Test purpose 140
8.1.5.4 Method of test 140
8.1.5.4.1 Initial conditions 140
8.1.5.4.2 Procedure 141
8.1.5.5 Acceptance criteria 141
8.2 Short message handling report 142
8.2.1 Correct storage of a SM on the USIM 142
8.2.1.1 Definition and applicability 142
8.2.1.2 Conformance requirement 142
8.2.1.3 Test purpose 142
8.2.1.4 \quad Method of test 142
8.2.1.4.1 Initial conditions 142
8.2.1.4.2 Procedure 145
8.2.1.5 Acceptance criteria 145
8.2.2 Correct reading of a SM on the USIM 146
8.2.2.1 Definition and applicability 146
8.2.2.2 Conformance requirement 146
8.2.2.3 Test purpose 147
8.2.2.4 Method of test 147
8.2.2.4.1 Initial conditions 147
8.2.2.4.2 Procedure 148
8.2.2.5 Acceptance criteria 148
8.3 MMS related tests 148
8.3.1 UE recognising the priority order of MMS Issuer Connectivity Parameters 148
8.3.1.1 Definition and applicability 148
8.3.1.2 Conformance requirement. 149
8.3.1.3 Test purpose 149
8.3.1.4 Method of test 149
8.3.1.4.1 Initial conditions 149
8.3.1.4.2 Procedure 153
8.3.1.5 Acceptance criteria 154
8.3.2 UE recognising the priority order of MMS User Connectivity Parameters 154
8.3.2.1 Definition and applicability 154
8.3.2.2 Conformance requirement. 154
8.3.2.3 Test purpose 154
8.3.2.4 Method of test 155
8.3.2.4.1 Initial conditions 155
8.3.2.4.2 Procedure 159
8.3.2.5 Acceptance criteria 159
8.3.3 UE recognising the priority order of MMS Issuer Connectivity Parameters over the MMS User Connectivity Parameters 159
8.3.3.1 Definition and applicability 159
8.3.3.2 Conformance requirement 160
8.3.3.3 Test purpose 160
8.3.3.4 Method of test 160
8.3.3.4.1 Initial conditions 160
8.3.3.4.2 Procedure 166
8.3.3.5 Acceptance criteria 166
8.3.4 Usage of MMS notification 1668.3.4.18.3 .4Definition and applicability166
Conformance requirement 166
8.3.4.3 Test purpose 167
8.3.4.4 Method of test 167
8.3.4.4.1 Initial conditions 167
8.3.4.4.2 Procedure 171
8.3.4.5 Acceptance criteria 171
8.4 UICC presence detection. 172
8.4.1 Definition and applicability 172
8.4.2 Conformance requirement 172
8.4.3 Test purpose 172
8.4.4 Method of test 173
8.4.4.1 Initial conditions 173
8.4.4.2 Procedure 173
8.4.5 Acceptance criteria 173
9 USIM service handling. 173
9.1 Access Point Name Control List handling 173
9.1.1 Access Point Name Control List handling for terminals supporting ACL 173
9.1.1.1 Definition and applicability 173
9.1.1.2 Conformance requirement 173
9.1.1.3 Test purpose 173
9.1.1.4 Method of test 174
9.1.1.4.1 Initial conditions 174
9.1.1.4.2 Procedure 174
9.1.1.5 Acceptance criteria 175
9.1.2 Network provided APN handling for terminals supporting ACL 175
9.1.2.1 Definition and applicability 175
9.1.2.2 Conformance requirement. 175
9.1.2.3 Test purpose 175
9.1.2.4 Method of test 176
9.1.2.4.1 Initial conditions 176
9.1.2.4.2 Procedure 176
9.1.2.5 Acceptance criteria 177
9.1.3 Access Point Name Control List handling for terminals not supporting ACL 177
9.1.3.1 Definition and applicability 177
9.1.3.2 Conformance requirement. 177
9.1.3.3 Test purpose 177
9.1.3.4.1 Initial conditions 177
9.1.3.4.2 Procedure 178
9.1.3.5 Acceptance criteria 178
9.2 Service Dialling Numbers handling 178
9.2.1 Definition and applicability 178
9.2.2 Conformance requirement 178
9.2.3 Test purpose 178
9.2.4 Method of test 179
9.2.4.1 Initial conditions 179
9.2.4.2 Procedure 181
9.2.5 Acceptance criteria 181
Annex A (informative): Change history 182
History 183

Foreword

This Technical Specification (TS) has been produced by the $3^{\text {rd }}$ Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document defines the application test specification.
The aim of the present document is to ensure interoperability between an UICC and a terminal independently of the respective manufacturer, card issuer or operator. The present document does not define any aspects related to the administrative management phase of the UICC. Any internal technical realisation of either the UICC or the Terminal is only specified where these are reflected over the interface.

Application specific details for applications residing on an UICC are specified in the respective application specific documents. The logical and physical Characteristics of the UICC Terminal interface is specified in document TS 102221 [5]. The Universal Subscriber Identity Module (USIM)-application for 3G telecommunication networks is specified in document TS 31.102 [4].

1 Scope

The present document provides the UICC -Terminal Interface Conformance Test Specification between the $3^{\text {rd }}$ Generation Terminal and USIM (Universal Subscriber Identity Module) as an application on the UICC and the Terminal for 3G telecom network operation and between a GERAN Terminal and USIM (Universal Subscriber Identity Module) as an application on the UICC and the GERAN Terminal for 2G telecom network operation:

- the default setting of the USIM;
- the applicability of each test case;
- the test configurations;
- the conformance requirement and reference to the core specifications;
- the test purposes; and
- a brief description of the test procedure and the specific acceptance criteria.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version in same release as the implementation release of the terminal under test applies.
[1] Void
[2] Void
[3] 3GPP TS 23.038: "Alphabets and language-specific information".
[4] 3GPP TS 31.102: "Characteristics of the USIM application".
ETSI TS 102 221: "UICC-Terminal interface; Physical and logical characteristics".
[6] 3GPP TS 22.011: "Service accessibility".
[7] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[8] 3GPP TS 22.024: "Description of Charge Advice Information (CAI)".
[9] 3GPP TS 23.086: "Advice of Charge (AoC) Supplementary Service - Stage 2".
[10] 3GPP TS 24.086: "Advice of Charge (AoC) Supplementary Service - Stage 3".
3GPP TS 22.101: "Service aspects; Service principles".
3GPP TS 22.030: "Man-Machine Interface (MMI) of the User Equipment (UE)".
3GPP TS 23.040: "Technical realization of the Short Message Service (SMS)".
3GPP TS 23.003: "Numbering, Addressing and Identification".
3GPP TS 44.018: "Mobile radio interface layer 3 specification; Radio Resource Control Protocol".
3GPP TS 24.008: "Mobile radio interface Layer 3 specification; Core Network protocols; Stage 3".
[17] 3GPP TS 24.080: "Mobile radio Layer 3 supplementary service specification; Formats and coding".
[18] 3GPP TS 22.086: "Advice of Charge (AoC) supplementary services; Stage 1". 3GPP TS 21.111: "USIM and IC card requirements". 3GPP TS 25.331 "Radio Resource Control (RRC); Protocol Specification". 3GPP TS 34.108 "Common test environments for User Equipment (UE) conformance testing". 3GPP TS 51.010-1 "Mobile Station (MS) conformance specification; Part1: Conformance specification". 3GPP TS 23.140 "Multimedia Messaging Service (MMS); Functional description; Stage 2". 3GPP TS 24.002 " GSM - UMTS Public Land Mobile Network (PLMN) Access Reference Configuration". 3GPP TS 23.060 "General Packet Radio Service (GPRS); Service description; Stage 2".

3 Definitions, symbols, abbreviations and coding

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply.
Application DF (ADF): entry point to an application
access conditions: set of security attributes associated with a file
access technology: Radio Access Technology of the Terminal (e.g. UTRAN or GSM)
application: consists of a set of security mechanisms, files, data and protocols (excluding transmission protocols)
application protocol: set of procedures required by the application
card session: link between the card and the external world starting with the ATR and ending with a subsequent reset or a deactivation of the card
current directory: latest MF or DF or ADF selected
current EF: latest EF selected
data object: information coded as TLV objects, i.e. consisting of a Tag, a Length and a Value part
Dedicated File (DF): file containing access conditions and, optionally, Elementary Files (EFs) or other Dedicated Files (DFs)
directory: general term for MF, DF and ADF
Elementary File (EF): file containing access conditions and data and no other files
file: directory or an organised set of bytes or records in the UICC
file identifier: 2 bytes which address a file in the UICC
function: function contains a command and a response pair
GSM session: that part of the card session dedicated to the GSM operation
Master File (MF): unique mandatory file containing access conditions and optionally DFs and/or EFs
MMS Relay/Server: MMS-specific network entity/application that is under the control of the MMS service provider

NOTE: An MMS Relay/Server transfers messages, provides operations of the MMS that are specific or required by the mobile environment and provides (temporary and/or persistent) storage services to the MMS

MMS User Agent: application residing on a UE or an external device that performs MMS-specific operations on a user's behalf
normal USIM operation: relating to general, PIN related, 3G and or GSM security and subscription related procedures record: string of bytes within an EF handled as a single entity
record number: number, which identifies a record within an EF
record pointer: pointer, which addresses one record in an EF
terminal: device into which a UICC can be inserted and which is capable of providing access to 3GPP system services to users, either alone or in conjunction with a UICC

User Equipment (UE): terminal with a UICC inserted with one or several Universal Subscriber Identity Module(s) (USIM) available for access either UTRAN or GERAN or both.

USIM session: USIM session is a selectable application session for a USIM application

3.2 Symbols

For the purposes of the present document, the following symbols apply:

bx	Bit x of byte (leftmost bit is MSB)
Bn	Byte No. n

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

2 G	$2^{\text {nd }}$ Generation
3G	$3^{\text {rd }}$ Generation
3GPP	$3^{\text {rd }}$ Generation Partnership Project
ACC	ACcess Class
ACL	APN Control List
ACM	Accumulated Call Meter
ACMmax	ACM maximal value
ACT	ACcess Technology
ADF	Application Dedicated File
AoC	Advice of Charge
AoCC	Advice of Charge Charging
APN	Access Point Name
ATR	Answer To Reset
BCCH	Broadcast Control Channel
BCD	Binary Coded Decimal
BDN	Barred Dialling Number
CCI	Capability / Configuration1 Identifier
CCI2	Capability / Configuration(2) Identifier
CCM	Current Call Meter
CK	Cipher key
CN	Core Network
CS	Circuit switched
DF	Dedicated File
EF	Elementary File
EMMI	Electrical Man Machine Interface
Ext n	Extension n
FDN	Fixed Dialling Number
FPLMN	Forbidden PLMN
GSM	Global System for Mobile communications

HPLMN	Home PLMN
ICC	Integrated Circuit Card
ID	IDentifier
IEC	International Electrotechnical Commission
IK	Integrity key
IMSI	International Mobile Subscriber Identity
ISO	International Organization for Standardization
KSI	Key Set Identifier
LAC	Location Area Code
LAI	Location Area Information
LSB	Least Significant Bit
MCC	Mobile Country Code
MF	Master File
MM	Multimedia Message
MMI	Man Machine Interface
MMS	Multimedia Messaging Service
MNC	Mobile Network Code
MS	Mobile Station
MSB	Most Significant Bit
NAS	Non Acess Stratum
NPI	Numbering Plan Identifier
OFM	Operational Feature Monitor
OSI	Open System Interconnection
P1	Parameter 1
P2	Parameter 2
P3	Parameter 3
PIN	Personal Identification Number
PLMN	Public Land Mobile Network
PS	Packet switched
RACH	Random Access Channel
RFU	Reserved for Future Use
RRC	Radio Resource Control
SFI	Short File Identifier
SM	Short Message
SMS	Short Message Service
SS	System Simulator (GSM)
TE	Terminal Equipment
TLV	Tag Length Value
TMSI	Temporary Mobile Subscriber Identity
TON	Type Of Number
UE	User Equipment
USIM	Universal Subscriber Identity Module
USS	UMTS System Simulator
UTRAN	UMTS Terrestrial Radio Access Network
VPLMN	Visitor PLMN

3.4 Coding Conventions

For the purposes of the present document, the following coding conventions apply:
All lengths are presented in bytes, unless otherwise stated. Each byte B is represented by eight bits b8 to b1, where b8 is the most significant bit (MSB) and b1 is the least significant bit (LSB). In each representation, the leftmost bit is the MSB.

In the UICC, all bytes specified as RFU shall be set to ' 00 ' and all bits specifies as RFU shall be set to ' 0 '. If the GSM and/or USIM application exists on a UICC or is built on a generic telecommunications card, then other values may apply for the non- GSM or non-USIM applications. The values will be defined in the appropriate specifications for such cards and applications. These bytes and bits shall not be interpreted by a Terminal in a GSM or 3G session.

The coding of all data objects in the present document is according to TS 102221 [5]. All data objects are BER-TLV except if otherwise defined.

3.5 Generic procedures for UTRAN/GERAN

If a test case contains the statement "This test applies to Terminals accessing UTRAN", the procedures defined in 3GPP TS 34. 108 [21], subclause 7.2 shall be the basis for all performed procedures during the test. The procedures in subclause 7 describe the default behaviour of a conformant UE regarding the specified protocols to be used for UTRAN and the required procedures from the NAS.

If a test case contains the statement "This test applies to Terminals accessing GERAN", the procedures defined in 3GPP TS 51. 010 [22], subclause 10 shall be the basis for all performed procedures during the test. The procedures in subclause 10 describe the default behaviour of a conformant UE regarding the specified protocols to be used for GERAN and the required procedures from the NAS.

3.6 Applicability

3.6.1 Applicability of the present document

The present document applies to a terminal equipment supporting the USIM.

3.6.2 Applicability to terminal equipment

The applicability to terminal equipment supporting the USIM is specified in table B.1, unless otherwise specified in the specific clause.

3.6.3 Applicability of the individual tests

Table B. 1 lists the optional, conditional or mandatory features for which the supplier of the implementation states the support. As pre-condition the supplier of the implementation shall state the support of possible options in table A.1.

The "Release XY ME" columns shows the status of the entries as follows:
The following notations, defined in ISO/IEC 9646-7 [19], are used for the status column:
M mandatory - the capability is required to be supported.
O optional - the capability may be supported or not.
N/A not applicable - in the given context, it is impossible to use the capability.
X prohibited (excluded) - there is a requirement not to use this capability in the given context.
O.i qualified optional - for mutually exclusive or selectable options from a set. "i" is an integer which identifies an unique group of related optional items and the logic of their selection which is defined immediately following the table.

Ci conditional - the requirement on the capability ("M", "O", "X" or "N/A") depends on the support of other optional or conditional items. " i " is an integer identifying an unique conditional status expression which is defined immediately following the table. For nested conditional expressions, the syntax "IF ... THEN (IF ... THEN ... ELSE...) ELSE ..." shall be used to avoid ambiguities.

References to items

For each possible item answer (answer in the support column) there exists a unique reference, used, for example, in the conditional expressions. It is defined as the table identifier, followed by a solidus character "/", followed by the item number in the table. If there is more than one support column in a table, the columns shall be discriminated by letters (a, b, etc.), respectively.

EXAMPLE: A. $1 / 4$ is the reference to the answer of item 4 in table A.1.

3.7 Table of optional features

Support of several features is optional or release dependent for the terminal equipment. However, if an ME states conformance with a specific 3GPP release, it is mandatory for the ME to support all mandatory functions of that release, as stated in table A.1.

The supplier of the implementation shall state the support of possible options in table A.1.
Table A.1: Options

$\begin{gathered} \hline \text { Item } \\ 1 \end{gathered}$	Support of CS	Status 0	Support	Mnemonic 0 CS
2	Support of a feature requiring PIN2 entry (such as e.g. AoC or FDN)	0		$\begin{gathered} \text { O_PIN2_ENTRY_F } \\ \text { EAT } \end{gathered}$
3	Support of UTRAN access	C001		O_UTRAN
	Support of GERAN access	C002		O_GERAN
5	Support of Fixed Dialling Numbers	0		O_FDN
6	Support of Advice of Charge Charging	0		O_AoCC
7	Support of Higher priority PLMN selector with Access Technology service (Implementation is optional in Rel-6 and onwards)	C003		O_HPLMNwACT
8	Support of local phonebook	C004		O_Local_PB
9	Support of global phonebook	C004		O_Global_PB
10	Support of "Receive SMS" functionality	O		O_Receive_SMS
11	Support of MMS	0		O_MMS
12	Support of usage of MMS related data stored on the USIM	C005		$\underset{\text { TA_MMS_USIM_DA }}{\text { O_M }}$
13	Supported of unselected user MMS connectivity parameters	O		O NO USER MM S_CONF SELEC
14	Support of MMS notification storage on the USIM	O		$\begin{gathered} \text { O_MMS_NOTIF_S } \\ \text { TORAGE } \end{gathered}$
15	Support of ACL	0		O_ACL
16	Support of SDN	0		O_SDN
17	Support of numerical entry of PLMN codes in EF PLMNwACT	O		O_EFPLMNwACT numerical entry
C001	If terminal is 3G terminal then M else N / A			
C002	If terminal is 2 G terminal then M else O			
C003	If Higher priority PLMN selector with Access Technology service is implemented according to Rel-6 or later then O else M			
$\begin{array}{\|l\|l} \mathrm{C} 004 \\ \mathrm{C} 005 \end{array}$	If terminal is implemented according to R99 then N/A else if terminal is implemented according to Rel-4 then O else M			

3.8 Applicability table

Table B.1: Applicability of tests

Item	Description	Tested feature defined in Release	$\begin{array}{c\|} \hline \text { Test } \\ \text { sequence(s) } \end{array}$	R99 ME	$\begin{gathered} \text { Rel-4 } \\ \text { ME } \end{gathered}$	$\begin{gathered} \text { Rel-5 } \\ \text { ME } \end{gathered}$	$\begin{gathered} \text { Rel-6 } \\ \text { ME } \end{gathered}$	Support
1	UE identification by short IMSI	R99	5.1.1	M	M	M	M	
2	UE identification by short IMSI using 2 digit MNC	R99	5.1.2	M	M	M	M	
3	UE identification by "short" TMSI	R99	5.1.3	C004	C004	C004	C004	
4	UE identification by "long" TMSI	R99	5.1.4	C004	C004	C004	C004	
5	UE identification by long IMSI, TMSI updating after key set identifier assignment	R99	5.1.5	C004	C004	C004	C004	
6	Access Control information handling	R99	5.2.1	C004	C004	C004	C004	
7	Entry of PIN	R99	6.1.1	M	M	M	M	
8	Change of PIN	R99	6.1 .2	M	M	M	M	
9	Unblock PIN	R99	6.1 .3	M	M	M	M	
10	Entry of PIN2	R99	6.1.4	C005	C005	C005	C005	
11	Change of PIN2	R99	6.1.5	C005	C005	C005	C005	
12	Unblock PIN2	R99	6.1 .6	C005	C005	C005	C005	
13	Replacement of PIN	R99	6.1 .7	M	M	M	M	
14	Change of Universal PIN	R99	6.1 .8	M	M	M	M	
15	Unblock Univesal PIN	R99	6.1 .9	M	M	M	M	
16	Entry of PIN on multiverification capable UICCs	Rel-4	6.1.10	N/A	M	M	M	
17	Change of PIN on multiverification capable UICCs	Rel-4	6.1.11	N/A	M	M	M	
18	Unblock PIN on multiverification capable UICCs	Rel-4	6.1.12	N/A	M	M	M	
19	Entry of PIN2 on multiverification capable UICCs	Rel-4	6.1.13	N/A	C005	C005	C005	
20	Change of PIN2 on multiverification capable UICCs	Rel-4	6.1.14	N/A	C005	C005	C005	
21	Unblock PIN2 on multiverification capable UICCs	Rel-4	6.1 .15	NA/	C005	C005	C005	
22	Replacement of PIN with key reference "07"	Rel-4	6.1.16	N/A	M	M	M	
23	Terminal and USIM with FDN enabled, ${E F_{\text {ADN }} \text { readable and }}$ updateable	R99	6.2.1	C006	N/A	N/A	N/A	
24	Terminal and USIM with FDN disabled	R99	6.2.2	C006	C006	C006	C006	
25	Enabling, disabling and updating FDN	R99	6.2.3	C006	C006	C006	C006	
26	Terminal and USIM with FDN enabled, $E F_{\text {ADN }}$ readable and updateable (Rel-4 and onwards)	Rel-4	6.2.4	N/A	C006	C006	C006	
27	AoC not supported by USIM	R99	6.4 .1	C007	C007	C007	C007	
28	Maximum frequency of ACM updating	R99	6.4.2	C008	C008	C008	C008	
29	Call terminated when ACM greater than ACMmax	R99	6.4.3	C008	C008	C008	C008	
30	Response codes of increase command of ACM	R99	6.4.4	C008	C008	C008	C008	
31	Adding FPLMN to the forbidden PLMN list	R99	7.1.1	M	M	M	M	
32	UE updating forbidden PLMNs	R99	7.1.2	M	M	M	M	
33	UE deleting forbidden PLMNs	R99	7.1.3	M	M	M	M	

Item	Description	Tested feature defined in Release	$\begin{gathered} \text { Test } \\ \text { sequence(s) } \end{gathered}$	R99 ME	$\begin{gathered} \text { Rel-4 } \\ \text { ME } \end{gathered}$	Rel-5 ME	$\begin{gathered} \hline \text { Rel-6 } \\ \text { ME } \end{gathered}$	Support
34	User controlled PLMN selector handling	R99	7.2.1	C022	C022	C022	C022	
35	UE recognising the priority order of the User controlled PLMN selector list with the same access technology	R99	7.2.2	M	M	M	M	
36	UE recognising the priority order of the User controlled PLMN selector list using an ACT preference	R99	7.2.3	C009	C009	C009	C009	
37	UE recognising the priority order of the Operator controlled PLMN selector list	R99	7.3.1	M	M	M	M	
38	UE recognising the priority order of the User controlled PLMN selector over the Operator controlled PLMN selector list	R99	7.3.2	M	M	M	M	
39	UE recognising the search period of the Higher priority PLMN	R99	7.4.1	C010	C010	C010	C010	
40	GSM/UMST dual mode UEs recognising the search period of the Higher priority PLMN	R99	7.4.2	C011	C011	C011	C011	
41	Recognition of a previously changed phonebook	R99	8.1.1	C012	C012	C012	M	
42	Update of the Phonebook Synchronisation counter (PSC)	R99	8.1.2	C012	C012	C012	M	
43	Handling of BCD number/ SSC content extension	R99	8.1.3.1	N/A	N/A	C013	M	
44	Phonebook selection	R99	8.1.4	N/A	N/A	C014	M	
45	Local Phonebook handling	R99	8.1 .5	N/A	N/A	C012	M	
46	Correct storage of a SM on the USIM	R99	8.2.1	C015	C015	C015	C015	
47	Correct reading of a SM on the USIM	R99	8.2.2	C015	C015	C015	C015	
48	UE recognising the priority order of MMS Issuer Connectivity Parameters	Rel-4	8.3.1	N/A	C016	C017	C017	
49	UE recognising the priority order of MMS User Connectivity Parameters	Rel-4	8.3.2	N/A	C016	C017	C017	
50	UE recognising the priority order of MMS Issuer Connectivity Parameters over the MMS User Connectivity Parameters	Rel-4	8.3.3	N/A	C016	C017	C017	
51	Usage of MMS notification	Rel-4	8.3.4	N/A	C018	C018	C018	
52	UICC presence detection	Rel-5	8.4	N/A	N/A	M	M	
53	Access Point Control List handling for terminals supporting ACL	R99	9.1.1	N/A	N/A	C019	C019	
54	Network provided APN handling for terminals supporting ACL	R99	9.1.2	N/A	N/A	C019	C019	
55	Access Point Control List handling for terminals not supporting ACL	R99	9.1.3	N/A	N/A	C020	C020	
56	Service Dialling Numbers handling	R99	9.2	N/A	N/A	N/A	C021	

4 Default Values

All tests defined in the subsequent clauses apply to Terminals using card types specified in TS 102221 [5], unless otherwise stated.

The following sequence of tests confirms:
a) the correct interpretation of data read from the USIM (Universal Subscriber Identification Module) by the Terminal;
b) the correct writing of data to the USIM by the Terminal;
c) the initiation of appropriate procedures by the Terminal;
d) High level protocols.

All tests apply to the USIM application on the UICC.
A USIM simulator will be required as part of the USS. Alternatively, to perform the logical tests, USIMs programmed with specific data may be used. The USIM data is not defined within the initial conditions of the tests unless it differs from the default values defined below.

4.1 Definition of default values for USIM-Terminal interface testing (Default UICC)

A USIM containing the following default values is used for all tests of this present document unless otherwise stated.
For each data item, the logical default values and the coding within the elementary files (EF) of the USIM follow.
NOTE 1: Bx represents byte x of the coding.
NOTE 2: Unless otherwise defined, the coding values are hexadecimal.

4.1.1 Values of the EF's (Default UICC)

4.1.1.1	$\mathrm{EF}_{\text {IMSI }}(\mathrm{IMSI})$
Logically:	2460813579

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	06	21	64	80	31	75	F9	FF	FF

4.1.1.2	$\mathrm{EF}_{\mathrm{AD}}$ (Administrative Data)
Logically: \quadNormal operation MNC to be deactivated by the Terminal 3 digit	

Coding:	B1	B2	B3	B4
Hex	00	00	00	03

4.1.1.3	EF	
Logically: (Location Information)		
	LAI-MCC: 246	
	LAI-MNC: 081	
	LAI-LAC:	0001
	TMSI:	"FF .. FF"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	FF	FF	FF	FF	42	16	80	00	01	FF	00

4.1.1.5		ey	ip	ng	Integ	Ke			-		
Logi			dent	KSI:	0x						
		Ciph	Key		xx						
			Keys		XX						
Coding:	B1	B2	B3	...	B16	B17	B18	\ldots	B31	B32	B33
Hex	0x	xx	xx	\ldots	xx	xx	xx	...	xx	xx	xx

4.1.1.6 $\quad \mathrm{EF}_{\mathrm{ACC}}$ (Access Control Class)

Logically: One and only one access class from $0-9$, e.g. class 7 for which the coding is " 0080 ".

4.1.1.7 $\quad E_{\text {FPLMN }}$ (Forbidden PLMNs)

Besides of the 4 mandatory $\mathrm{EF}_{\text {FPLMN }} 2$ optional $\mathrm{EF}_{\text {FPLMN }}$ are defined according to TS 31.102 [4], subclause 4.2.16.

Logically:				234001 (MCC MNC)								
		PLMN2:		234002								
		PLMN3:		234003								
		PLMN4:		234004								
		PLMN5:		234005								
		PLMN6:		234006								
Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Hex	32	14	00	32	24	00	32	34	00	32	44	00
	B13	B14	B15	B16	B17	B18						
	32	54	00	32	64	00						

4.1.1.8	EFUST (USIM Service Table)
Logically:	Local Phone Book available
	User controlled PLMN selector available
	Fixed dialling numbers available
	Barred dialling numbers available
	The GSM Access available
	The Group Identifier level 1 and level 2 not available
	Service n 33 (Packed Switched Domain) shall be set to '1'
Enabled Services Table available	

Coding:	B1	B2	B3	B4	B5
binary	xx1x xx11	xxxx xxxx	xxxx 1×00	xxxx x1xx	xxxx xx11

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.

The coding of $\mathrm{EF}_{\mathrm{EST}}$ shall conform with the capabilities of the USIM, unused Bits are set to ' 0 '.

4.1.1.10 $\quad \mathrm{EF}_{\mathrm{ADN}}$ (Abbreviated Dialling Number)

Logically:
At least 10 records, each non empty record unique.
Record 1: Length of alpha identifier: 32 characters;
Alpha identifier: "ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEF";
Length of BCD number: "03";
TON and NPI: Telephony and Unknown;
Dialled number: 123;
CCI: None;
Ext1: None.

Record 1:

Coding:	B1	B2	B3	\ldots	B32	B33	B34	B35	B36	B37	B38	B39	\ldots	B46
Hex	41	42	43	\ldots	46	03	81	21	F3	FF	FF	FF	...	FF

4.1.1.11 EF PLMNwact (User Controlled PLMN Selector with Access Technology)

Besides of the 8 mandatory PLMNwACT entries 4 optional PLMNwACT entries are defined according to TS 31.102 [4], subclause 4.2.5. The Radio Access Technology identifier for the first two PLMN ($1^{\text {st }}$ PLMN and $2^{\text {nd }}$ PLMN) are set to both UTRAN and GSM, all other PLMN to UTRAN only.

Logically:	$1^{\text {st }}$ PLMN:	244081 (MCC MNC)
	$1^{\text {st }}$ ACT:	UTRAN
	$2^{\text {nd }}$ PLMN:	244081
	$2^{\text {nd }}$ ACT:	GSM
	$3^{\text {rd }}$ PLMN:	244082
	$3^{\text {rd }}$ ACT:	UTRAN
	$4^{\text {th }}$ PLMN:	244082
	$4^{\text {th }}$ ACT:	GSM
	$5^{\text {th }}$ PLMN:	244003
	$5^{\text {th }}$ ACT:	UTRAN
	$6^{\text {th }}$ PLMN:	244004
	$6^{\text {th }}$ ACT:	UTRAN
	$7^{\text {th }}$ PLMN:	244005
	$7^{\text {th }}$ ACT:	UTRAN
	$8^{\text {th }}$ PLMN:	244006
	$8^{\text {th }}$ ACT:	UTRAN
	$9^{\text {th }}$ PLMN:	244007
	$9^{\text {th }}$ ACT:	UTRAN
	$10^{\text {th }}$ PLMN:	244008
	$10^{\text {th }}$ ACT:	UTRAN
	$11^{\text {th }}$ PLMN:	244009
	$11^{\text {th }}$ ACT:	UTRAN
	$12^{\text {th }}$ PLMN:	244010
	$12^{\text {th }}$ ACT:	UTRAN

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15
Hex	42	14	80	80	00	42	14	80	00	80	42	24	80	80	00
	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30
	42	24	80	00	80	42	34	00	80	00	42	44	00	80	00
	B31	B32	B33	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45
	42	54	00	80	00	42	64	00	80	00	42	74	00	80	00
	B46	B47	B48	B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
	42	84	00	80	00	42	94	00	80	00	42	04	10	80	00

4.1.1.12 EFopLMNwact (Operator Controlled PLMN Selector with Access Technology)

The Radio Access Technology identifier for the first PLMN is set to both UTRAN and GSM, the other remaining PLMNs to UTRAN only.

Logically:	$1^{\text {st }}$ PLMN:	254001 (MCC MNC)
	$1^{\text {st }}$ ACT:	UTRAN
	$2^{\text {nd }}$ PLMN:	254001
	$2^{\text {nd }}$ ACT:	GSM
	$3^{\text {rd }}$ PLMN:	254002
	$3^{\text {rd }}$ ACT:	UTRAN
	$4^{\text {th }}$ PLMN:	254003
	$4^{\text {th }}$ ACT:	UTRAN

$$
\begin{array}{ll}
5^{\text {th }} \text { PLMN: } & 254004 \\
5^{\text {th }} \text { ACT: } & \text { UTRAN } \\
6^{\text {th }} \text { PLMN: } & 254005 \\
6^{\text {th }} \text { ACT: } & \text { UTRAN } \\
7^{\text {th }} \text { PLMN: } & 254006 \\
7^{\text {th }} \text { ACT: } & \text { UTRAN } \\
8^{\text {th }} \text { PLMN: } & 254007 \\
8^{\text {th }} \text { ACT: } & \text { UTRAN }
\end{array}
$$

Coding:	B01	B02	B03	B04	B05	B06	B07	B08	B09	B10
Hex	52	14	00	80	00	52	14	00	00	80
	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20
	52	24	00	80	00	52	34	00	80	00
	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30
	52	44	00	80	00	52	54	00	80	00
	B31	B32	B33	B34	B35	B36	B37	B38	B39	B40
	52	64	00	80	00	52	74	00	80	00

4.1.1.13 Void

4.1.1.14 PIN

Key reference: 01
Logically: 2468

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	32	34	36	38	FF	FF	FF	FF

4.1.1.15 PIN2

Key reference: 81
Logically: 3579

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	33	35	37	39	FF	FF	FF	FF

4.1.1.16 Unblock PIN

Key reference: 01
Logically: 13243546

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	31	33	32	34	33	35	34	36

4.1.1.17 Unblock PIN2

Key reference: 81
Logically: 08978675

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	30	38	39	37	38	36	37	35

4.1.1.18 Other Values of the USIM

All other values of EFs provided by the USIM shall be set to the default values defined in the annex E of TS 31.102 [4]. Some EFs (like the GSM Access files) may necessary for some tests and apply only to those test cases.

4.1.1.19 EF $\mathrm{PSLOCI}^{\text {(Packet }}$ Switch Location Information)											
Logically:		RAI-MCC: 246 RAI-MNC: 081 RAI-LAC: 0001 RAI-RAC: 05 P-TMSI: P-TMSI signature value:			$\begin{aligned} & \text { "FF. } \\ & \text { "FF. } \end{aligned}$						
Coding: Hex	$\begin{aligned} & \text { B1 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B3 } \\ & \text { FF } \end{aligned}$	B4 FF	B5 FF	B6 FF	B7 FF	B8 42	B9 16	$\begin{aligned} & \text { B10 } \\ & 80 \end{aligned}$	$\begin{aligned} & \text { B11 } \\ & 00 \end{aligned}$
Coding: Hex	$\begin{aligned} & \text { B12 } \\ & 01 \end{aligned}$	$\begin{aligned} & \text { B13 } \\ & 05 \end{aligned}$	$\begin{aligned} & \text { B14 } \\ & 00 \end{aligned}$								

4.1.1.20 Universal PIN

Key reference: 11
Logically: 2839

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	32	38	33	39	FF	FF	FF	FF

4.1.1.21 Unblock Universal PIN

Key reference: 11
Logically: 0203040506

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	30	32	30	33	30	34	30	35

4.2 Definition of FDN UICC

The FDN test cases require a different configuration than the one described in subclause 4.1. For that purpose a default FDN UICC is defined. In general the values of the FDN UICC are identical to the default UICC, with the following exceptions.

4.2.1 Values of the EF's (FDN UICC)

$\left.\begin{array}{ll}\text { 4.2.1.1 } & \text { EF UST (USIM Service Table) } \\ \text { Logically: } & \\ \text { Local Phone Book available } \\ \text { User controlled PLMN selector available } \\ & \text { Fixed dialling numbers available } \\ \text { Barred dialling numbers available } \\ \text { The GSM Access available }\end{array}\right]$

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.

4.2.1.2 $\quad E_{\text {EST }}$ (Enable Service Table)
 Logically: Fixed Dialling Numbers enabled.
 Barred Dialling Numbers disabled.
 APN Control list (ACL) disabled.
 Coding: B1
 binary 00000001

The coding of $\mathrm{EF}_{\mathrm{EST}}$ shall conform with the capabilities of the USIM, unused Bits are set to ' 0 '..

4.2.1.3 $\quad E_{F D N}$ (Fixed Dialling Numbers)

Logically:
Record 1: Length of alpha identifier: 6 characters;
Alpha identifier: "FDN111";
Length of BCD number: "06";
TON and NPI: Telephony and International;
Dialled number: $\quad+1357924680$;
CCI2: None;
Ext2: None.
Coding for record 1 :

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	46	44	4E	31	31	31	06	91	31	75	29	64	08
	$\begin{aligned} & \text { B14 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B15 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B16 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B17 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B18 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B19 } \\ & \text { FF } \end{aligned}$	B2						
Record 2:		Length of alpha identifier: Alpha identifier: Length of BCD number: TON and NPI: Dialled number: CCI2: Ext2:				6 characters; "FDN222"; "04"; Telephony and Unknown; 24680; None; None.							

Coding for record 2 :

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	46	44	4E	32	32	32	04	81	42	86	F0	FF	FF
	B14	B15	B16	B17	B18	B19	B20						
	FF												

Record 3: Length of alpha identifier: 6 characters;
Alpha identifier: "FDN333";
Length of BCD number: "0B";
TON and NPI:
Dialled number:
Telephony and International;
CCI2:
+12345678901234567890;
None;
Ext2: None.
Coding for record 3 :

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	46	44	$4 E$	33	33	33	OB	91	21	43	65	87	09
	B14	B15	B16	B17	B18	B19	B20						
	21	43	65	87	09	FF	FF						

4.2.1.4 $\quad \mathrm{EF}_{\mathrm{ECC}}$ (Emergency Call Codes)

Logically: Emergency call code: "122";
Emergency call code alpha identifier: "TEST";
Emergency call Service Category: Mountain Rescue.

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	21	F2	FF	54	45	53	54	10

4.2.1.5 Other Values of the USIM

All other values of EFs provided by the USIM shall be set to the default values defined in the annex E of TS 31.102 [4]. Some EFs (like the GSM Access files) may necessary for some tests and apply only to those test cases.

4.3 Void

5 Subscription related tests

5.1 IMSI / TMSI handling

5.1.1 UE identification by short IMSI

5.1.1.1 Definition and applicability

The IMSI is used for unique identification of the UE by UTRAN/ a GERAN. The IMSI is stored in the USIM and read during the UICC-Terminal initialisation procedure.

5.1.1.2 Conformance requirement

After successful completion of the RRC Connection Establishment procedure (in case of Terminals accessing UTRAN) respectively after receipt of an IMMEDIATE ASSIGNMENT message (in case of a Terminal accessing a GERAN) the UE shall send PAGING RESPONSE containing the IMSI of the USIM, which is less than the maximum length.

Reference:

- TS 31.102 [4], subclauses 5.1.1 and 5.2.2;
- TS 24.008 [16], subclause 10.5.1.4;
- TS 102221 [5], subclause 14.1.1.

5.1.1.3 Test purpose

1) To verify that the Terminal uses the IMSI of the USIM.
2) To verify that the Terminal can handle an IMSI of less than the maximum length.
3) To verify that the READ $E F_{\text {IMSI }}$ command is performed correctly by the terminal

5.1.1.4 Method of test

5.1.1.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN) / SS (in case of a Terminal accessing a GERAN)transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

The default UICC is installed into the Terminal and the UE is powered on.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN
"Expected Sequence B" shall be performed.

5.1.1.4.2 Procedure

Expected Sequence A:
a) The USS sends PAGING TYPE 1 to the UE using the IMSI stored in the USIM.
b) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) After receipt of a PAGING RESPONSE from the UE, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.

Expected Sequence B:
a) The SS sends PAGING REQUEST to the UE using the IMSI stored in the USIM.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a PAGING RESPONSE from the UE, the SS sends CHANNEL RELEASE to the UE.

5.1.1.5 Acceptance criteria

After step b) the UE shall send PAGING RESPONSE to the USS/SS containing the IMSI stored in the USIM.

5.1.2 UE identification by short IMSI using a 2 digit MNC

5.1.2.1 Definition and applicability

In some networks the IMSI identifying the UTRAN/ GERAN can be consistence of a 2 digit MNC. The IMSI is stored in the USIM and read during the UICC-Terminal initialisation procedure.

5.1.2.2 Conformance requirement

After successful completion of the RRC Connection Establishment procedure (in case of Terminals accessing UTRAN) respectively after receipt of an IMMEDIATE ASSIGNMENT message (in case of a Terminal accessing a GERAN) the UE shall send PAGING RESPONSE containing the IMSI of the USIM.

Reference:

- TS 31.102 [4], subclause 4.2.18;
- TS 24.008 [16], subclause 10.5.1.4.

5.1.2.3 Test purpose

1) To verify that the Terminal can handle an IMSI consistence of a 2 digit MNC.

5.1.2.4 Method of test

5.1.2.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN) / SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/81/0001.
- Access control: unrestricted.

The default UICC is used with the following exception:

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)		
Logically:	LAI-MCC:	246
	LAI-MNC:	81
	LAI-LAC:	0001
	TMSI:	"FF .. FF"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	FF	FF	FF	FF	42	F6	18	00	01	FF	00

$\mathbf{E F}_{\text {IMSI }}$ (IMSI)
Logically: 246813579

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	05	29	64	18	53	97	FF	FF	FF

$\mathrm{EF}_{\mathrm{AD}}$ (Administrative Data)

Logically: Normal operation
OFM to be deactivated by the Terminal
MNC: 2 digit

Coding:	B1	B2	B3	B4
Hex	00	00	00	02

The UICC is installed into the Terminal and the UE is powered on.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

5.1.2.4.2 Procedure

Expected Sequence A:
a) The USS sends PAGING TYPE 1 to the UE using the IMSI stored in the USIM.
b) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) After receipt of a PAGING RESPONSE from the UE, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.

Expected Sequence B:
a) The SS sends PAGING REQUEST to the UE using the IMSI stored in the USIM.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a PAGING RESPONSE from the UE, the SS sends CHANNEL RELEASE to the UE.

5.1.2.5 Acceptance criteria

After step b) the UE shall send PAGING RESPONSE to the USS/SS containing the IMSI stored in the USIM.

5.1.3 UE identification by "short" TMSI

5.1.3.1 Definition and applicability

The TMSI is temporarily used for identification of the UE by UTRAN/ a GERAN. It will have been previously assigned by the network. The TMSI is stored in the USIM by the Terminal and read during the USIM-Terminal initialisation procedure.

NOTE: According to TS 23.003 [14], subclause 2.4, a TMSI always consists of 8 digits (4 bytes). With this tests the handling of a TMSI with leading zeros will be tested. The term "short" TMSI is used in order to distinguish between the tests as defined in subclauses 5.1.3 and 5.1.4.

5.1.3.2 Conformance requirement

After successful completion of the RRC Connection Establishment procedure (in case of Terminals accessing UTRAN) respectively after receipt of an IMMEDIATE ASSIGNMENT message (in case of a Terminal accessing a GERAN) the UE shall send PAGING RESPONSE containing the TMSI of the USIM. According to subclause 10.3.1.17 in TS 25.331 [20] the TMSI has a fixed length of 32 bit (8 digits) when used inside the PAGING TYPE 1/ PAGING REQUEST message.

Reference:

- TS 31.102 [4], subclauses 5.1.1 and 5.2.2;
- TS 24.008 [16], subclause 10.5.1.4.
- TS 25.331 [20], subclause 10.3.1.17

5.1.3.3 Test purpose

1) To verify that the Terminal uses the TMSI stored in the USIM.
2) To verify that the Terminal can handle a TMSI of less than maximum length.

5.1.3.4 Method of test

5.1.3.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN) / SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC):

246/081/0001.

- Access control: unrestricted.

The default UICC is used with the following exception:

The UICC is installed into the Terminal and the UE is powered on.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN
"Expected Sequence B" shall be performed.

5.1.3.4.2 Procedure

Expected Sequence A:
a) The USS sends PAGING TYPE 1 to the UE using the TMSI stored in the USIM matching the required length of 8 digits.
b) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) After receipt of a PAGING RESPONSE from the UE, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.

Expected Sequence B:
a) The SS sends PAGING REQUEST to the UE using the TMSI stored in the USIM matching the required length of 8 digits.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a PAGING RESPONSE from the UE, the SS sends CHANNEL RELEASE to the UE.

5.1.3.5 Acceptance criteria

After step b) the UE shall send PAGING RESPONSE to the USS/SS containing the TMSI stored in the USIM.

5.1.4 UE identification by "long" TMSI

5.1.4.1 Definition and applicability

The TMSI is temporarily used for identification of the UE by UTRAN/ a GERAN. It will have been previously assigned by the network. The TMSI is stored in the USIM by the Terminal and read during the USIM-Terminal initialisation procedure.

NOTE: According to TS 23.003 [14], subclause 2.4, a TMSI always consists of 8 digits (4 bytes). With this tests the handling of a new assigned TMSI will be tested. The term "long" TMSI is used in order to distinguish between the tests as defined in subclauses 5.1.3 and 5.1.4.

5.1.4.2 Conformance requirement

After successful completion of the RRC Connection Establishment procedure (in case of Terminals accessing UTRAN) respectively after receipt of an IMMEDIATE ASSIGNMENT message (in case of a Terminal accessing a GERAN) the UE shall send PAGING RESPONSE containing the correct TMSI stored in the USIM.

According to subclause 10.3.1.17 in TS 25.331 [20] the TMSI has a fixed length of 32 bit (8 digits) when used inside the PAGING TYPE 1/PAGING REQUEST message.

Reference:

- TS 31.102 [4], subclauses 5.1.1 and 5.2.2;
- TS 24.008 [16], subclause 10.5.1.4.
- TS 25.331 [20], subclause 10.3.1.17

5.1.4.3 Test purpose

1) To verify that the Terminal uses the TMSI stored in the USIM.
2) To verify that the Terminal can handle a TMSI of maximum length.
3) To verify that the Terminal does not respond to page requests containing a previous TMSI.

5.1.4.4 Method of test

5.1.4.4.1 Initial conditions

Prior to this test, the Terminal shall have been operated with a USIM containing TMSI " 2143 ". This may be achieved by executing the previous test (5.1.3) prior to this test. Only under this condition will test purpose 3) be verified.

The USS (in case of a Terminal accessing UTRAN) / SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC):

246/081/0001.

- Access control: unrestricted.

The default UICC is used with the following exception:

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)		
Logically:	LAI-MCC:	246
	LAI-MNC:	081
	LAI-LAC:	0001
	TMSI:	$" 21430000 "$

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	21	43	00	00	42	16	80	00	01	FF	00

The UICC is installed into the Terminal and the UE is powered on.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

5.1.4.4.2 Procedure

Expected Sequence A:
a) The USS sends PAGING TYPE 1 to the UE using the TMSI "00002143".
b) The USS sends PAGING TYPE 1 to the UE using the TMSI stored in the USIM.
c) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
d) After receipt of a PAGING RESPONSE from the UE, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.

Expected Sequence B:
a) The SS sends PAGING REQUEST to the UE using the TMSI "00002143".
b) The SS sends PAGING REQUEST to the UE using the TMSI stored in the USIM.
c) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
d) After receipt of a PAGING RESPONSE from the UE, the SS sends CHANNEL RELEASE to the UE.

5.1.4.5 Acceptance criteria

1) After step a) the UE shall not respond to the PAGING TYPE 1 respectively to the PAGING REQUEST.
2) After step c) the UE shall send PAGING RESPONSE to the USS/ SS containing the TMSI stored in the USIM.

5.1.5 UE identification by long IMSI, TMSI updating and key set identifier assignment

5.1.5.1 Definition and applicability

The IMSI and TMSI are used for identification of the UE by UTRAN/ a GERAN. They are read from the USIM during the USIM-Terminal initialisation procedure. Within the authentication procedure the UTRAN sends a key set identifier respectively a GERAN sends a ciphering key sequence number to the UE. In addition the network may allocate a new TMSI to the UE. Key set identifier and TMSI are stored in the USIM after UTRAN call termination and/or at a 3G session termination. Ciphering key sequence number and TMSI are stored in the USIM after GERAN call termination and/or at a 3G session termination.

NOTE: According to TS 24.008 [16] the term KSI may be used instead of the term ciphering key sequence number which is used inside the MM message AUTHENTICATION REQUEST.

5.1.5.2 Conformance requirement

1) After successful completion of the RRC Connection Establishment procedure (in case of Terminals accessing UTRAN) respectively after receipt of an IMMEDIATE ASSIGNMENT message (in case of a Terminal accessing a GERAN) the UE shall send PAGING RESPONSE containing the correct IMSI stored in the USIM.

Reference:

- TS 31.102 [4], subclauses 5.1.1 and 5.2.2;
- TS 24.008 [16], subclause 10.5.1.4.

2) After call termination the USIM shall contain the key set identifier (ciphering key sequence number) and TMSI received by the UE during the authentication and TMSI reallocation procedures.

Reference:

- TS 31.102 [4], subclauses 5.1.2, 5.2.5 and 5.2.6;
- TS 21.111 [19], subclause 10.1.
- TS 24.008 [16], subclause 4.3.2.4.

3) After call termination the Terminal shall have updated EFLOCI.

Reference:

- TS 102221 [5], subclause 14.1.2.

5.1.5.3 Test purpose

1) To verify that the Terminal uses the IMSI stored in the USIM.
2) To verify that the Terminal does not respond to page requests containing a previous IMSI.
3) To verify that the Terminal can handle an IMSI of maximum length.
4) To verify that the Terminal correctly updates the key set identifier respectively the ciphering key sequence number at call termination.
5) To verify that the Terminal correctly updates the TMSI at call termination.
6) To verify that the UPDATE $\mathrm{EF}_{\text {LOCI }}$ command is performed correctly by the terminal

5.1.5.4 Method of test

5.1.5.4.1 Initial conditions

Prior to this test, the Terminal shall have been operated with a USIM containing IMSI " 2460813579 ". This may be achieved by executing the previous test (5.1.4) prior to this test. Only under this condition will test purpose 2) be verified.

The USS (in case of a Terminal accessing UTRAN) / SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

The default UICC is used with the following exception:
$\mathbf{E F}_{\text {IMSI }}$ (IMSI)

```
Logically: 246081111111111
```

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	08	29	64	80	11	11	11	11	11

$\mathbf{E F}_{\text {Kc }}$ (GSM Ciphering Key Kc)

Logically: Ciphering key Kc: xx
Ciphering key sequence number n : 01

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	xx	01							

The UICC is installed into the Terminal and the UE is powered on.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

5.1.5.4.2 Procedure

Expected Sequence A:
a) The USS sends PAGING TYPE 1 to the UE using the IMSI "2460813579".
b) The USS sends PAGING TYPE 1 to the UE using the IMSI stored in the USIM.
c) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
d) After receipt of a PAGING RESPONSE from the UE, the USS sends AUTHENTICATION REQUEST to the UE containing Key Set Identifier KSI (ciphering key sequence number) set to binary 010.
e) After receipt of AUTHENTICATION RESPONSE from the UE and subsequent completion of the security procedure on RRC, the USS sends TMSI REALLOCATION COMMAND to the UE containing TMSI " 32547698 ".
f) Within 5 s after receipt of TMSI REALLOCATION COMPLETE from the UE, the USS sends RRC CONNECTION RELEASE to the UE.
g) To allow examination of the values in the USIM after connection termination the UE shall not be soft powered down. If the test is performed with a USIM simulator, the simulation is stopped. If the test is performed with a USIM, the UICC is removed without soft powering down the UE. If this is not possible, the power supply of the Terminal is removed and then the UICC removed.

Expected sequence B:
a) The SS sends PAGING REQUEST to the UE using the IMSI "2460813579".
b) The SS sends PAGING REQUEST to the UE using the IMSI stored in the USIM.
c) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
d) After receipt of a PAGING RESPONSE from the UE, the SS sends AUTHENTICATION REQUEST to the UE containing ciphering key sequence number set to binary 010.
e) After receipt of AUTHENTICATION RESPONSE from the UE, the SS sends TMSI REALLOCATION COMMAND to the UE containing TMSI "32547698".
f) Within 5 s after receipt of TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
g) To allow examination of the values in the USIM after connection termination the UE shall not be soft powered down. If the test is performed with a USIM simulator, the simulation is stopped. If the test is performed with a

USIM, the UICC is removed without soft powering down the UE. If this is not possible, the power supply of the Terminal is removed and then the UICC removed.

5.1.5.5 Acceptance criteria

1) After step a) the UE shall not respond to the PAGING TYPE 1/ PAGING REQUEST.
2) After step c) the UE shall send PAGING RESPONSE to the USS/SS containing the IMSI stored in the USIM.
3) After step e) the UE shall send TMSI REALLOCATION COMPLETE to the USS/SS.
4) After step g) the USIM shall contain the following values:

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)									
Logically:	LAI-MCC: LAI-MNC: TMSI:	$\begin{aligned} & 246 \\ & 081 \\ & \text { "32547698 } \end{aligned}$							
Coding: B1	B2 B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex 32	5476	98	42	16	80	xx	xx	xx	00

In case of a Terminal accessing UTRAN:
$\mathbf{E F}_{\text {Keys }}$ (Ciphering and Integrity Keys)
Logically: Key Set Identifier KSI: 02
Ciphering Keys CK: $\quad \mathrm{xx}$ (result of the authentication algorithm)
Integrity Keys IK: $\quad \mathrm{xx}$ (result of the authentication algorithm)

Coding:	B1	B2	B3	\ldots	B16	B17	B18	\ldots	B31	B32	B33
Hex	02	xx	xx	\ldots	xx	xx	xx	\ldots	xx	xx	xx

In case of a Terminal accessing a GERAN:
$\mathbf{E F}_{\text {Kc }}$ (GSM Ciphering Key Kc)
Logically: Ciphering key Kc: $\quad \mathrm{xx}$ (result of the authentication algorithm)
Ciphering key sequence number n : 02

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	xx	02							

5.2 Access Control handling

5.2.1 Access Control information handling

5.2.1.1 Definition and applicability

Access Control allows restriction of call access attempts. All User Equipments are assigned to one out of ten randomly allocated classes, and optionally (for priority uses) also to one or more special categories.

An Access Class of the special Categories is only valid in the HPLMN or HPLMN country. Otherwise, the randomly allocated class is used.

The classes are programmed on the USIM. The network controls which classes at any time may be barred.
In addition, there is a separate mechanism for control of network access for emergency call attempts.

5.2.1.2 Conformance requirement

1. The Terminal shall read the access control value as part of the USIM-Terminal initialisation procedure, and subsequently adopt this value.

Reference:

- TS 31.102 [4], subclause 5.1.1.

2. If the UE is a member of at least one access class which corresponds to the permitted classes as signalled over the air interface, and the access class is applicable in the serving network,access attempts are allowed .
Otherwise access attempts are not allowed.
3. If access class 10 is barred, then the UEs of classes 0-9 and the Terminals without UICCs shall not make emergency call attempts.
4. UE of classes 11-15 are not allowed to make emergency call attempts if access class 10 and the relevant access class(es) between 11 and 15 are barred. Otherwise, emergency call attempts are allowed irrespective of the conditions of access class 10 .

All options are shown in figure 5-1 and are referenced to the tests.

Reference:

- TS 22.011 [6], subclauses 4.3 and 4.4.

5.2.1.3 Test purpose

1) To verify that the Terminal reads the access control value as part of the USIM-Terminal initialisation procedure, and subsequently adopts this value.
2) To verify that the UE controls its network access in accordance with its access control class and the conditions imposed by the serving network.

The tests verify Terminal performance for the following:
Tests (a) and (b) No UICC in Terminal.
Tests (c) to (e) UE with access class 0 to 9 .
Test (f) UE with access class 11 and 15 not in HPLMN, and UE with access class 12,13 and 14 not in HPLMN country.

Test (g) and (h) UE with access class 11 and 15 in HPLMN, and UE with access class 12,13 and 14 in HPLMN country.

Each of the above are tested against all relevant combinations of access control and emergency call bits signalled by the network, as shown in table 5-1.

5.2.1.4 Method of test

5.2.1.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a GERAN Terminal) transmits on the BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): see table 5-1.
- Access control: see table 5-1.
- RACH: see table 5-1.

The default UICC is installed in the Terminal containing IMSI and access control values as given in table 5-1 and the UE is powered on.

NOTE: Depending on the initial value of the $\mathrm{EF}_{\text {LOCI }}$, the UE may perform a location update. This shall be accepted by the USS/SS.

5.2.1.4.2 Coding details

USIM IMSI EF IMSI: Data Field "6F 07"
Logically: IMSI: "2460813579"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	06	21	64	80	31	75	F9	FF	FF

Logically: IMSI: "24608135x9"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	06	21	64	80	31	x5	F9	FF	FF

Access Control class $\mathrm{EF}_{\mathrm{ACC}}$: Data field "6F 78"
Reference:

- See TS 31.102 [4].

NETWORK (USS in case of a Terminal accessing UTRAN)
Access Class Barred List in SIB 3 should be set as table 5.1a:
Reference

- TS 25.331 clause 10.3.2.1

NOTE: The first instance of the parameter corresponds to Access Class 0, the second to Access Class 1 and so on up to Access Class 15.

NETWORK (SS in case of a Terminal accessing GERAN)
RACH: As defined in TS 44.018 subclause 10.5.2.29.
NOTE: TS 44.018 also apply for the Radio Resource management for UMTS (see TS 24.008, subclause 10.5.2).
Octet $1 \quad 01111000$
Octet 200001000
Octet 3 \}
Octet $4 \quad\}$ as table 5-1b

5.2.1.4.3 Procedure

a) Using the MMI or EMMI a normal call set-up is attempted.
b) Using the MMI or EMMI an emergency call set-up is attempted.
c) The test is repeated for each set of values in table 5-1.

5.2.1.5 Acceptance criteria

After steps a) and b) the UE shall access the network, or shall make no access attempt, in accordance with table 5-1.
NOTE: For conformance testing, to limit testing, in tests (c), (d) and (e) it is only necessary that one of the access classes is tested. This access class may randomly chosen.

Table 5-1a

$\begin{aligned} & \hline \text { USIM } \\ & \text { IMSI } \end{aligned}$			RACH SIB3: Access Class Barred List	Network Informative: Cell Barred for:	$\begin{gathered} \text { BCCH/ } \\ \text { LAI } \end{gathered}$	Normal Call	Test Results Emergency Call
		Access Class	$\begin{aligned} & \text { AC15- } \\ & \text { AC08 } \\ & \text { AC07- } \\ & \text { AC00 } \end{aligned}$	Emergency Call Normal Call	MCC MNC		
Test (a)	No UICC in Terminal	N/A	$\begin{aligned} & 00000100 \\ & 00000000 \end{aligned}$	Yes No	$\begin{aligned} & 234 \\ & 001 \end{aligned}$	No	No
Test (b)	No UICC in Terminal	N/A	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 234 \\ & 001 \end{aligned}$	No	Yes
Test (c)	"2460813579"	0	$\begin{aligned} & 00000100 \\ & 00000001 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	1	$\begin{aligned} & 00000100 \\ & 00000010 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	2	$\begin{aligned} & 00000100 \\ & 00000100 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	3	$\begin{aligned} & 00000100 \\ & 00001000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	4	$\begin{aligned} & 00000100 \\ & 00010000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	5	$\begin{aligned} & 00000100 \\ & 00100000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	6	$\begin{aligned} & 00000100 \\ & 01000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	7	$\begin{aligned} & 00000100 \\ & 10000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	8	$\begin{aligned} & 00000101 \\ & 00000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	9	$\begin{aligned} & 00000110 \\ & 00000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
Test (d)	"2460813579"	0	$\begin{aligned} & 00000000 \\ & 00000001 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
	"2460813579"	1	$\begin{aligned} & 00000000 \\ & 00000010 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
	"2460813579"	2	$\begin{aligned} & 00000000 \\ & 00000100 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes

"2460813579"	3	$\begin{aligned} & 00000000 \\ & 00001000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
"2460813579"	4	$\begin{aligned} & 00000000 \\ & 00010000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
"2460813579"	5	$\begin{aligned} & 00000000 \\ & 00100000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
"2460813579"	6	$\begin{aligned} & 00000000 \\ & 01000000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
"2460813579"	7	$\begin{aligned} & 00000000 \\ & 10000000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
"2460813579"	8	$\begin{aligned} & 00000001 \\ & 00000000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
"2460813579"	9	$\begin{aligned} & 00000010 \\ & 00000000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes

Test (e)	"2460813579"	0	$\begin{aligned} & 11111011 \\ & 11111110 \end{aligned}$	No All, except ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	"2460813579"	1	11111011	No	246	Yes	Yes
			11111101	All, except ACC on USIM	081		
	"2460813579"	2	11111011	No	246	Yes	Yes
			11111011	All, except ACC on USIM	081		
	"2460813579"	3	11111011	No	246	Yes	Yes
			11110111	All, except ACC on USIM	081		
	"2460813579"	4	11111011	No	246	Yes	Yes
			11101111	All, except ACC on USIM	081		
	"2460813579"	5	11011011	No	246	Yes	Yes
			11011111	All, except ACC on USIM	081		
	"2460813579"	6	11111011	No	246	Yes	Yes
			10111111	All, except ACC on USIM	081		
	"2406813579"	7	11111011	No	246	Yes	Yes
			01111111	All, except ACC on USIM	081		
	"2460813579"	8	11111010	No	246	Yes	Yes
			11111111	All, except ACC on USIM	081		
	"2460813579"	9	11111001	No	246	Yes	Yes
			11111111	All, except ACC on USIM	081		
Test (f)	"24608135x9"	11 \& x	00000111	Yes	246	No	No
			11111111	All, except ACC greater than 11	082		
	"	11 \& x	00000011	No	246	No	Yes
			11111111	All, except ACC greater than 11	082		
	"	11 \& x	00000000	No	246	Yes	Yes
			00000000	None	082		
	"24608135x9"	12 \& x	00000111	Yes	244	No	No
			11111111	All, except ACC greater than 11	001		
	"	12 \& x	00000011	No	244	No	Yes
			11111111	All, except ACC greater than 11	001		
	${ }^{\prime}$	12 \& x	00000000	No	244	Yes	Yes
			00000000	None	001		
	"24608135x9"	13 \& x	00000111	Yes	244	No	No
			11111111	All, except ACC greater than 11	001		
	"	13 \& x	00000011	No	244	No	Yes

	Set "x" to an arbitrary value in the range 0 to 9	15 \& x	$\begin{aligned} & 10000011 \\ & 11111111 \end{aligned}$	No All normal ACC and ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
Test (h)	"2460813579"	11 \& x	$\begin{aligned} & 11110011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	"	11 \& x	$\begin{aligned} & 11110111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	"2460813579"	12 \& x	$\begin{aligned} & 11101011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"	12 \& x	$\begin{aligned} & 11101111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"2460813579"	13 \& x	$\begin{aligned} & 11011011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"	13 \& x	$\begin{aligned} & 11011111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"2460813579"	14 \& x	$\begin{aligned} & 10111011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"	14 \& x	$\begin{aligned} & 10111111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"2460813579"	15 \& x	$\begin{aligned} & 01111011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	Set "x" to an arbitrary value in the range 0 to 9	15 \& x	$\begin{aligned} & 01111111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes

Table 5-1b

$\begin{aligned} & \hline \text { USIM } \\ & \text { IMSI } \end{aligned}$			RACH	Network Informative: Cell Barred for:	$\begin{gathered} \text { BCCH/ } \\ \text { LAI } \end{gathered}$	Normal Call	Test Results Emergency Call
		Access Class	Octet 3 Octet 4	Emergency Call Normal Call	$\begin{aligned} & \text { MCC } \\ & \text { MNC } \end{aligned}$		
Test (a)	No UICC in Terminal	N/A	$\begin{aligned} & 00000100 \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 234 \\ & 001 \end{aligned}$	No	No
Test (b)	No UICC in Terminal	N/A	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 234 \\ & 001 \end{aligned}$	No	Yes
Test (c)	"2460813579"	0	$\begin{aligned} & \hline 00000100 \\ & 00000001 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	1	$\begin{aligned} & 00000100 \\ & 00000010 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	2	$\begin{aligned} & 00000100 \\ & 00000100 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	3	$\begin{aligned} & 00000100 \\ & 00001000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	4	$\begin{aligned} & 00000100 \\ & 00010000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	5	$\begin{aligned} & 00000100 \\ & 00100000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	6	$\begin{aligned} & 00000100 \\ & 01000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	7	$\begin{aligned} & 00000100 \\ & 10000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	8	$\begin{aligned} & 00000101 \\ & 00000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	No
	"2460813579"	9	$\begin{aligned} & 00000110 \\ & 00000000 \end{aligned}$	Yes No, except for ACC	$\begin{aligned} & 246 \\ & 081 \\ & \hline \end{aligned}$	No	No
Test (d)	"2460813579"	0	$\begin{aligned} & 00000000 \\ & 00000001 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
	"2460813579"	1	$\begin{aligned} & 00000000 \\ & 00000010 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
	"2460813579"	2	$\begin{aligned} & 00000000 \\ & 00000100 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
	"2460813579"	3	$\begin{aligned} & 00000000 \\ & 00001000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
	"2460813579"	4	$\begin{aligned} & 00000000 \\ & 00010000 \end{aligned}$	No None, except for ACC	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
	"2460813579"	5	00000000	No	246	No	Yes

		00100000	None, except for ACC	081		
"2460813579"	6	00000000	No	246	No	Yes
		01000000	None, except for ACC	081		
"2460813579"	7	00000000	No	246	No	Yes
		10000000	None, except for ACC	081		
"2460813579"	8	00000001	No	246	No	Yes
		00000000	None, except for ACC	081		
"2460813579"	9	00000010	No	246	No	Yes
		00000000	None, except for ACC	081		

Test (e)	"2460813579"	0	$\begin{aligned} & 11111011 \\ & 11111110 \end{aligned}$	No All, except ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	"2460813579"	1	11111011	No	246	Yes	Yes
			11111101	All, except ACC on USIM	081		
	"2460813579"	2	11111011	No	246	Yes	Yes
			11111011	All, except ACC on USIM	081		
	"2460813579"	3	11111011	No	246	Yes	Yes
			11110111	All, except ACC on USIM	081		
	"2460813579"	4	11111011	No	246	Yes	Yes
			11101111	All, except ACC on USIM	081		
	"2460813579"	5	11011011	No	246	Yes	Yes
			11011111	All, except ACC on USIM	081		
	"2460813579"	6	11111011	No	246	Yes	Yes
			10111111	All, except ACC on USIM	081		
	"2406813579"	7	11111011	No	246	Yes	Yes
			01111111	All, except ACC on USIM	081		
	"2460813579"	8	11111010	No	246	Yes	Yes
			11111111	All, except ACC on USIM	081		
	"2460813579"	9	11111001	No	246	Yes	Yes
			11111111	All, except ACC on USIM	081		
Test (f)	"24608135x9"	11 \& x	00000111	Yes	246	No	No
			11111111	All, except ACC greater than 11	082		
	"	11 \& x	00000011	No	246	No	Yes
			11111111	All, except ACC greater than 11	082		
	"	11 \& x	00000000	No	246	Yes	Yes
			00000000	None	082		
	"24608135x9"	12 \& x	00000111	Yes	244	No	No
			11111111	All, except ACC greater than 11	001		
	"	12 \& x	00000011	No	244	No	Yes
			11111111	All, except ACC greater than 11	001		
	"	12 \& x	00000000	No	244	Yes	Yes
			00000000	None	001		
	"24608135x9"	13 \& x	00000111	Yes	244	No	No
			11111111	All, except ACC greater than 11	001		
	"	13 \& x	00000011	No	244	No	Yes

"		13 \& x	11111111	All, except ACC greater than 11	001	Yes	Yes	
		00000000	No	244				
		00000000	None	001				
	"24608135x9"		14 \& x	00000111	Yes	244	No	No
				11111111	All, except ACC greater than 11	001		
	"	14 \& x	00000011	No	244	No	Yes	
			11111111	All, except ACC greater than 11	001			
	"	14 \& x	00000000	No	244	Yes	Yes	
			00000000	None	001			
	"24608135x9"	15 \& x	00000111	Yes	246	No	No	
			11111111	All, except ACC greater than 11	082			
	${ }^{\prime}$	15 \& x	00000011	No	246	No	Yes	
			11111111	All, except ACC greater than 11	082			
	Set "x" to an arbitrary value in the range 0 to 9		00000000	No	246	Yes	Yes	
			00000000	None	082			
Test (g)	"2460813579"	11 \& x	00001111	Yes	246	No	No	
			11111111	All normal ACC and ACC on USIM	081			
	"	11 \& x	00001011	No	246	No	Yes	
			11111111	All normal ACC and ACC on USIM	081			
	"2460813579"	12 \& x	00010111	Yes	246	No	No	
			11111111	All normal ACC and ACC on USIM	082			
	"	12 \& x	00010011	No	246	No	Yes	
			11111111	All normal ACC and ACC on USIM	082			
	"2460813579"	13 \& x	00100111	Yes	246	No	No	
			11111111	All normal ACC and ACC on USIM	082			
	"	13 \& x	00100011	No	246	No	Yes	
			11111111	All normal ACC and ACC on USIM	082			
	"2460813579"	14 \& x	01000111	Yes	246	No	No	
			11111111	All normal ACC and ACC on USIM	082			
	${ }^{\prime}$	14 \& x	01000011	No	246	No	Yes	
			11111111	All normal ACC and ACC on USIM	082			
	"2460813579"	15 \& x	10000111	Yes	246	No	No	
			11111111	All normal ACC and ACC on USIM	081			

	Set "x" to an arbitrary value in the range 0 to 9	15 \& x	$\begin{aligned} & 10000011 \\ & 11111111 \end{aligned}$	No All normal ACC and ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	No	Yes
Test (h)	"2460813579"	11 \& x	$\begin{aligned} & 11110011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	"	11 \& x	$\begin{aligned} & 11110111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	"2460813579"	12 \& x	$\begin{aligned} & 11101011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"	12 \& x	$\begin{aligned} & 11101111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"2460813579"	13 \& x	$\begin{aligned} & 11011011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"	13 \& x	$\begin{aligned} & 11011111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"2460813579"	14 \& x	$\begin{aligned} & 10111011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"	14 \& x	$\begin{aligned} & 10111111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 082 \end{aligned}$	Yes	Yes
	"2460813579"	15 \& x	$\begin{aligned} & 01111011 \\ & 11111111 \end{aligned}$	No All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes
	Set "x" to an arbitrary value in the range 0 to 9	15 \& x	$\begin{aligned} & 01111111 \\ & 11111111 \end{aligned}$	Yes All, except "special" ACC on USIM	$\begin{aligned} & 246 \\ & 081 \end{aligned}$	Yes	Yes

NOTE: UE adopts Access Class 0-9, based on IMSI, see TS 22.011 [6].
ECs: Emergency Calls.
EC Bit: In case of GERAN:
Bit 3 of Octet 3 of RACH Control Parameters, See TS 44.018 Section 10.5.2.29.
In case of UTRAN
Access Class 10 defined in TS 22.011 clause 4.4.
AC Bit: \quad See Access Class Barred List defined in TS 25.331 clause 10.3.2.1.
HPLMN: Country means that the MCC of the VPLMN is the same as the MCC of the HPLMN.
Figure 5-1: Access control information

6 Security related Tests

6.1 PIN handling

6.1.1 Entry of PIN

6.1.1.1 Definition and applicability

The PIN is a number used to authenticate the user to the UICC for security. Entry of the correct PIN allows PINprotected data to be accessed over the UICC-Terminal interface.

6.1.1.2 Conformance requirement

Following insertion of the UICC and switching on the UE, the Terminal shall check the state of the PIN. If the PIN is enabled, the Terminal asks the user for PIN verification.

The VERIFY PIN function verifies the PIN presented by the Terminal to the UICC.

Reference:

- TS 102221 [5], subclauses 9 and 11.1.9;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.1.

6.1.1.3 Test purpose

1) To verify that the PIN verification procedure is performed by the Terminal correctly.
2) To verify that the basic public MMI string is supported.

6.1.1.4 Method of test

6.1.1.4.1 Initial conditions

The Terminal is connected to a UICC or UICC simulator with the PIN enabled, and powered off.
The default UICC is used.

6.1.1.4.2 Procedure

a) The Terminal is powered on.
b) When the UE is in the "PIN check" mode, the sequence " 2468 \#" shall be entered.

6.1.1.5 Acceptance criteria

1) After step b) the Terminal shall send a VERIFY PIN command to the UICC, with parameter $\mathrm{P} 2=$ " 01 ".
2) After step b) the UE shall give an indication "OK", following a successful execution of the command.

6.1.2 Change of PIN

6.1.2.1 Definition and applicability

The PIN may be changed by the user, by entering the old and new PIN. The length of the PIN is between 4 and 8 digits.

6.1.2.2 Conformance requirement

The Terminal shall support the change of PIN procedure as defined in TS 102221 [5], subclause 11.1.10.
Reference:

- TS 102221 [5], subclauses 9 and 11.1.10;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.2.

6.1.2.3 Test purpose

1) To verify that the PIN substitution procedure is performed correctly by the Terminal.
2) To verify that the basic public MMI string is supported.

6.1.2.4 Method of test

6.1.2.4.1 Initial conditions

The Terminal is connected to a UICC or UICC simulator with the PIN enabled.
The default UICC is used.
The Terminal is powered-on, with the correct PIN entered.

6.1.2.4.2 Procedure

a) Enter "**04*2468*01234567*01234567\#".
b) The UE is switched off and on.
c) When the UE is in the "PIN check" mode, the sequence "2468\#" shall be entered.
d) The UE is switched off and on.
e) When the UE is in the "PIN-check", mode the sequence " 01234567 \#" shall be entered.

6.1.2.5 Acceptance criteria

1) After step a), the Terminal shall send a CHANGE PIN command to the UICC, with the parameter P2 set to "01".
2) Following the successful execution of the command, the UE shall give an indication that the new PIN is accepted.
3) After step c), the UE shall give an indication that the entered PIN is not accepted.
4) After step e), the UE shall give an indication "OK".

6.1.3 Unblock PIN

6.1.3.1 Definition and applicability

After three consecutive wrong entries of the PIN, the PIN shall become blocked. The Unblock PIN command is used to unblock the PIN. This function may be performed whether or not the PIN is blocked.

6.1.3.2 Conformance requirement

The Terminal shall support the Unblock PIN command, as defined in TS 102221 [5], subclause 11.1.13.

Reference:

- TS 102221 [5], subclause 11.1.13;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.3.

6.1.3.3 Test purpose

1) To verify that the PIN unblocking procedure is performed correctly.
2) To verify that the basic public MMI string is supported.

6.1.3.4 Method of test

6.1.3.4.1 Initial conditions

The Terminal is connected to the UICC simulator.
The default UICC is used.

6.1.3.4.2 Procedure

a) The Terminal is powered on and the correct PIN is entered.
b) Enter "**05*13243546*1234*1234\#"
c) The Terminal is powered off and on.
d) Enter the new PIN: "1234\#".
e) The Terminal is powered off and on.
f) Enter a wrong PIN three times.
g) Enter "**05*13243546*2468*2468\#".
h) The Terminal is powered off and on.
i) Enter the new PIN: "2468\#".

6.1.3.5 Acceptance criteria

1) After step b), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = " 01 ".
2) After step d), the Terminal shall indicate that the PIN has been accepted.
3) After step f), the Terminal shall indicate that the PIN has been blocked.
4) After step g), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = " 01 ".
5) After step i), the Terminal shall indicate that the PIN has been accepted.

6.1.4 Entry of PIN2

6.1.4.1 Definition and applicability

The PIN2 is a number used to authenticate the user to the UICC for security. Entry of the correct PIN2 allows PIN2-protected data to be accessed over the UICC-Terminal interface.

6.1.4.2 Conformance requirement

Before allowing the access to PIN2 protected data, the Terminal shall ask the user for PIN2 verification. Only after presenting the PIN2, the user shall get access to these data.

The VERIFY PIN function verifies the PIN2 presented by the Terminal to the UICC.

Reference:

- TS 102221 [5], subclauses 9 and 11.1.9;
- TS 31.102 [4], clause 6;
- TS 22.030 [12], subclause 6.6.1.

6.1.4.3 Test purpose

1) To verify that the PIN2 verification procedure is performed by the Terminal correctly.
2) To verify that the basic public MMI string is supported.

6.1.4.4 Method of test

6.1.4.4. Initial conditions

The Terminal is connected to a UICC or UICC simulator with the PIN enabled, and powered off.
The default UICC is used.
NOTE: To perform the UPDATE FDN data (as described in the procedure below), the default FDN UICC may be used.

6.1.4.4.2 Procedure

a) The Terminal is powered on and the correct PIN is entered.
b) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN)
c) When the UE is in the "PIN2 check" mode, the sequence " 3579 \#" shall be entered.

6.1.4.5 Acceptance criteria

1) After step c) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = "81".
2) After step c) the UE shall give an indication "OK", following a successful execution of the command.

6.1.5 Change of PIN2

6.1.5.1 Definition and applicability

The PIN2 may be changed by the user, by entering the old and new PIN2. The length of the PIN2 is between 4 and 8 digits.

6.1.5.2 Conformance requirement

The Terminal shall support the change of PIN2 procedure as defined in TS 102221 [5], subclause 11.1.10.
Reference:

- TS 102221 [5], subclauses 9 and 11.1.10;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.2.

6.1.5.3 Test purpose

1) To verify that the PIN2 substitution procedure is performed correctly by the Terminal.
2) To verify that the basic public MMI string is supported.

6.1.5.4 Method of test

6.1.5.4.1 Initial conditions

The Terminal is connected to a UICC or UICC simulator with the PIN2 enabled.
The default UICC is used.
NOTE: To perform the UPDATE FDN data (as described in the procedure below), the default FDN UICC may be used.

The Terminal is powered-on, with the correct PIN entered.

6.1.5.4.2 Procedure

a) Enter "**042*3579*12345678*12345678\#".
b) The UE is switched off and on and the correct PIN is entered.
c) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
d) When the UE is in the "PIN2 check" mode, the sequence "3579\#" shall be entered.
e) The UE is switched off and on and the correct PIN is entered.
f) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
g) When the UE is in the "PIN2 check", mode the sequence "12345678\#" shall be entered.

6.1.5.5 Acceptance criteria

1) After step a), the Terminal shall send a CHANGE PIN2 command to the UICC, with the parameter P2 set to " 81 ".
2) Following the successful execution of the command, the UE shall give an indication that the new PIN2 is accepted.
3) After step d), the UE shall give an indication that the entered PIN2 is not accepted.
4) After step g), the UE shall give an indication "OK".

6.1.6 Unblock PIN2

6.1.6.1 Definition and applicability

After three consecutive wrong entries of the PIN2, the PIN2 shall become blocked. The Unblock PIN2 command is used to unblock the PIN2. This function may be performed whether or not the PIN2 is blocked.

6.1.6.2 Conformance requirement

The Terminal shall support the Unblock PIN2 command, as defined in TS 102221 [5], subclause 11.1.13.
Reference:

- TS 102 221[5], subclauses 9 and 11.1.13;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.3.

6.1.6.3 Test purpose

1) To verify that the PIN2 unblocking procedure is performed correctly.
2) To verify that the basic public MMI string is supported.

6.1.6.4 Method of test

6.1.6.4.1 Initial conditions

The Terminal is connected to the UICC simulator.
The default UICC is used.
NOTE: To perform the UPDATE FDN data (as described in the procedure below), the default FDN UICC may be used.

6.1.6.4.2 Procedure

a) The Terminal is powered on and the correct PIN is entered.
b) Enter "**052*08978675*1234*1234\#"
c) The Terminal is powered off and on and the correct PIN is entered.
d) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
e) Enter the new PIN2: "1234\#".
f) The Terminal is powered off and on and the correct PIN is entered.
g) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
h) Enter a wrong PIN2 three times.
i) Enter "**052*08978675*3579*3579\#".
j) The Terminal is powered off and on and the correct PIN is entered.
k) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).

1) Enter the new PIN2: "3579\#".

6.1.6.5 Acceptance criterias

1) After step b), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = "81".
2) After step e), the Terminal shall indicate that the PIN2 has been accepted.
3) After step h), the Terminal shall indicate that the PIN2 has been blocked.
4) After step i), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = " 81 ".
5) After step 1), the Terminal shall indicate that the PIN2 has been accepted.

6.1.7 Replacement of PIN

6.1.7.1 Definition and applicability

The Universal PIN may be used to replace a PIN used to authenticate the user to the UICC for security. In this case entry of the correct Universal PIN allows PIN-protected data to be accessed over the UICC-Terminal interface. TS 102 $221[5]$ defines the range of " 01 " to " 08 " as key reference of the PIN on a multi-verification capable UICC.

6.1.7.2 Conformance requirement

The Terminal shall support the usage of the Universal PIN as replacement PIN and the replacement procedure as defined in TS 102221 [5], subclause 11.1.11, as well as the procedure to disable the replacement defined in TS 102221 [5], subclause 11.1.12.

Reference:

- TS 102221 [5], subclauses 9, 11.1.11 and 11.1.12;
- TS 31.102 [4], clause 6.

6.1.7.3 Test purpose

1) To verify that the PIN replacement is supported by the Terminal correctly.
2) To verify that the PIN replacement procedure is performed by the Terminal correctly.
3) To verify that the procedure to disable the PIN replacement is performed by the Terminal correctly.

6.1.7.4 Method of test

6.1.7.4.1 Initial conditions

The Terminal is connected to the UICC simulator with the PIN enabled, and powered off.
The default UICC is used.

6.1.7.4.2 Procedure

a) The Terminal is powered on.
b) When the Terminal is in the "PIN check" mode, the sequence " 2468 \#" shall be entered.
c) The user shall initiate an MMI dependent procedure to replace the PIN by the Universal PIN.
d) The Terminal is powered off and on and when the Terminal is in "PIN check" mode the sequence "2468\#" shall be entered.
e) The correct Universal PIN is entered.
f) The user shall initiate an MMI dependent procedure to disable the replacement of the PIN by the Universal PIN.
g) The Terminal is powered off and on and when the Terminal is in "PIN check" mode the sequence "2839\#" shall be entered.
h) The correct PIN is entered.

6.1.7.5 Acceptance criteria

1) After step b) the Terminal shall send a VERIFY PIN command to the UICC, with parameter $\mathrm{P} 2=$ " 01 ".
2) After step c), the Terminal shall send a DISABLE PIN command to the UICC, with parameter $\mathrm{P} 1=" 91$ " and $\mathrm{P} 2=$ "01".
3) After step d) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = " 11 " and after unsuccessful execution of the command the Terminal shall indicate that the PIN has not been accepted.
4) After step e) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = "11" and after successful execution of the command the Terminal shall indicate that the PIN has been accepted.
5) After step f$)$, the Terminal shall send an ENABLE PIN command to the UICC, with parameter $\mathrm{P} 2=" 01$.
6) After step g) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = "01" and after unsuccessful execution of the command the Terminal shall indicate that the PIN has not been accepted.
7) After step e) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = " 01 " and after successful execution of the command the Terminal shall indicate that the PIN has been accepted.

6.1.8 Change of Universal PIN

6.1.8.1 Definition and applicability

The Universal PIN may be changed by the user, by entering the old and new Universal PIN. The length of the Universal PIN is between 4 and 8 digits.

6.1.8.2 Conformance requirement

The Terminal shall support the change of PIN procedure as defined in TS 102221 [5], subclause 11.1.10.

Reference:

- TS 102221 [5], subclauses 9 and 11.1.10;
- TS 31.102 [4], clause 6.

6.1.8.3 Test purpose

To verify that the PIN substitution procedure is performed correctly by the Terminal.

6.1.8.4 Method of test

6.1.8.4.1 Initial conditions

The Terminal is connected to a UICC or UICC simulator with the PIN enabled.
The default UICC is used with the following exception:

- The Universal PIN is used as a replacement of the PIN.

The Terminal is powered-on, with the correct Universal PIN entered.

6.1.8.4.2 Procedure

a) The user shall initiate an MMI dependent procedure to change the Universal PIN to "01234567".
b) The UE is switched off and on.
c) When the UE is in the "PIN check" mode, the sequence "2839\#" shall be entered.
d) The UE is switched off and on.
e) When the UE is in the "PIN check", mode the sequence "01234567\#" shall be entered.

6.1.8.5 Acceptance criteria

1) After step a), the Terminal shall send a CHANGE PIN command to the UICC, with the parameter P2 set to " 11 ".
2) Following the successful execution of the command, the UE shall give an indication that the new (Universal) PIN is accepted.
3) After step c), the UE shall give an indication that the entered (Universal) PIN is not accepted.
4) After step e), the UE shall give an indication "OK".

6.1.9 Unblock Universal PIN

6.1.9.1 Definition and applicability

After three consecutive wrong entries of the PIN, the PIN shall become blocked. The Unblock PIN command is used to unblock the PIN. This function may be performed whether or not the PIN is blocked.

6.1.9.2 Conformance requirement

The Terminal shall support the Unblock PIN command, as defined in TS 102221 [5], subclause 11.1.13.
Reference:

- TS 102221 [5], subclause 11.1.13;
- TS 31.102 [4], clause 6.

6.1.9.3 Test purpose

To verify that the PIN unblocking procedure is performed correctly.

6.1.9.4 Method of test

6.1.9.4. Initial conditions

The Terminal is connected to the UICC simulator.
The default UICC is used.

6.1.9.4.2 Procedure

a) The Terminal is powered on and the correct PIN is entered.
b) The user shall initiate an MMI dependent procedure to unblock the Universal PIN and set the new Universal PIN value to "1234"
c) The Terminal is powered off and on.
d) Enter the new PIN: "1234\#".
e) The Terminal is powered off and on.
f) Enter a wrong PIN three times.
g) The user shall initiate an MMI dependent procedure to unblock the Universal PIN and set the new Universal PIN value to " 2839 ".
h) The Terminal is powered off and on.
i) Enter the new PIN: "2839\#".

6.1.9.5 Acceptance criteria

1) After step b), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = " 11 ".
2) After step d), the Terminal shall indicate that the (Universal) PIN has been accepted.
3) After step f), the Terminal shall indicate that the (Universal) PIN has been blocked.
4) After step g), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = " 11 ".
5) After step j), the Terminal shall indicate that the (Universal) PIN has been accepted.

6.1.10 Entry of PIN on multi-verification capable UICCs

6.1.10.1 Definition and applicability

The PIN is a number used to authenticate the user to the UICC for security. Entry of the correct PIN allows PINprotected data to be accessed over the UICC-Terminal interface. TS $102221[5]$ defines the range of " 01 " to " 08 " as key reference of the PIN on a multi-verification capable UICC.

6.1.10.2 Conformance requirement

Following insertion of the UICC and switching on the UE, the Terminal shall check the state of the PIN. If the PIN is enabled, the Terminal asks the user for PIN verification.

The VERIFY PIN function verifies the PIN presented by the Terminal to the UICC.
Reference:

- TS 102 221[5], subclauses 9 and 11.1.9;
- TS 31.102 [4], clause 6;
- TS 22.030 [12], subclause 6.6.1.

6.1.10.3 Test purpose

1) To verify that the PIN verification procedure is performed by the Terminal correctly.
2) To verify that the basic public MMI string is supported.
3) To verify that the Terminal supports key references in the range of " 01 " to " 08 " as PIN.

6.1.10.4 Method of test

6.1.10.4.1 Initial conditions

The Terminal is connected to the UICC simulator with the PIN enabled, and powered off.
The default UICC is used with the following exceptions:
The UICC shall be configured to use "07" as the key reference of the PIN and " 87 " as key reference of the PIN2 with the following values:

PIN
Key reference: 07
Logically: 8642

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	38	36	34	32	FF	FF	FF	FF

Unblock PIN

Key reference 07

Logically: 64534231

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	36	34	35	33	34	32	33	31

PIN2
Key reference 87
Logically: 9753

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	39	37	35	33	FF	FF	FF	FF

Unblock PIN2
Key reference 87
Logically: 57687980

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	35	37	36	38	37	39	38	30

6.1.10.4.2 Procedure

a) The Terminal is powered on.
b) When the UE is in the "PIN check" mode, the sequence "8642\#" shall be entered.

6.1.10.5 Acceptance criteria

1) After step b) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = "07".
2) After step b) the UE shall give an indication "OK", following a successful execution of the command.

6.1.11 Change of PIN on multi-verification capable UICCs

6.1.11.1 Definition and applicability

The PIN may be changed by the user, by entering the old and new PIN. The length of the PIN is between 4 and 8 digits. TS $102221[5]$ defines the range of " 01 " to " 08 " as key reference of the PIN on a multi-verification capable UICC.

6.1.11.2 Conformance requirement

The Terminal shall support the change of PIN procedure as defined in TS 102 221[5], subclause 11.1.10.

Reference:

- TS 102221 [5], subclauses 9 and 11.1.10;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.2.

6.1.11.3 Test purpose

1) To verify that the PIN substitution procedure is performed correctly by the Terminal.
2) To verify that the basic public MMI string is supported.
3) To verify that the Terminal supports key references in the range of " 01 " to " 08 " as PIN.

6.1.11.4 Method of test

6.1.11.4.1 Initial conditions

The Terminal is connected to the UICC simulator with the PIN enabled.
The default UICC is used with the following exceptions:
The UICC shall be configured to use " 07 " as the reference of the PIN and " 87 " as reference of the PIN2 with the following values:

PIN
Key reference: 07

Logically:								
Coding:	8642							
B1	B2	B3	B4	B5	B6	B7	B8	
Hex	38	36	34	32	FF	FF	FF	FF

Unblock PIN
Key reference 07
Logically: 64534231

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	36	34	35	33	34	32	33	31

PIN2
Key reference 87
Logically: 9753

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	39	37	35	33	FF	FF	FF	FF

Unblock PIN2
Key reference 87
Logically: 57687980

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	35	37	36	38	37	39	38	30

The Terminal is powered-on, with the correct PIN entered.

6.1.11.4.2 Procedure

a) Enter "**04*8642*01234567*01234567\#".
b) The UE is switched off and on.
c) When the UE is in the "PIN check" mode, the sequence "8642\#" shall be entered.
d) The UE is switched off and on.
e) When the UE is in the "PIN check", mode the sequence "01234567\#" shall be entered.

6.1.11.5 Acceptance criteria

1) After step a), the Terminal shall send a CHANGE PIN command to the UICC, with the parameter P2 set to "07".
2) Following the successful execution of the command, the UE shall give an indication that the new PIN is accepted.
3) After step c), the UE shall give an indication that the entered PIN is not accepted.
4) After step e), the UE shall give an indication "OK".

6.1.12 Unblock PIN on multi-verification capable UICCs

6.1.12.1 Definition and applicability

After three consecutive wrong entries of the PIN, the PIN shall become blocked. The Unblock PIN command is used to unblock the PIN. This function may be performed whether or not the PIN is blocked. TS 102 221[5] defines the range of " 01 " to " 08 " as key reference of the PIN on a multi-verification capable UICC.

6.1.12.2 Conformance requirement

The Terminal shall support the Unblock PIN command, as defined in TS 102221 [5], subclause 11.1.13.
Reference:

- TS 102221 [5], subclauses 9 and 11.1.13;
- TS 31.102 [4], clause 6;
- TS 22.030 [12], subclause 6.6.3.

6.1.12.3 Test purpose

1) To verify that the PIN unblocking procedure is performed correctly.
2) To verify that the basic public MMI string is supported.
3) To verify that the Terminal supports key references in the range of " 01 " to " 08 " as PIN.

6.1.12.4 Method of test

6.1.12.4.1 Initial conditions

The Terminal is connected to the UICC simulator.
The default UICC is used with the following exceptions:
The UICC shall be configured to use " 07 " as the reference of the PIN and " 87 " as reference of the PIN2 with the following values:

PIN
Key reference: 07
Logically: 8642

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	38	36	34	32	FF	FF	FF	FF

Unblock PIN

Key reference 07

Logically: 64534231

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	36	34	35	33	34	32	33	31

PIN2
Key reference 87
Logically: 9753

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	39	37	35	33	FF	FF	FF	FF

Unblock PIN2
Key reference 87
Logically: 57687980

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	35	37	36	38	37	39	38	30

6.1.12.4.2 Procedure

a) The Terminal is powered on and the correct PIN is entered.
b) Enter ${ }^{* * * 05 * 64534231 * 1234 * 1234 \# " ~}$
c) The Terminal is powered off and on.
d) Enter the new PIN: "1234\#".
e) The Terminal is powered off and on.
f) Enter a wrong PIN three times.
g) Enter "**05*64534231*8642*8642\#".
h) The Terminal is powered off and on.
i) Enter the new PIN: "8642\#".

6.1.12.5 Acceptance criteria

1) After step b), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = "07".
2) After step d), the Terminal shall indicate that the PIN has been accepted.
3) After step f), the Terminal shall indicate that the PIN has been blocked.
4) After step g), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = "07".
5) After step j), the Terminal shall indicate that the PIN has been accepted.

6.1.13 Entry of PIN2 on multi-verification capable UICCs

6.1.13.1 Definition and applicability

The PIN2 is a number used to authenticate the user to the UICC for security. Entry of the correct PIN2 allows PIN2-protected data to be accessed over the UICC-Terminal interface. TS 102 221[5] defines the range of " 81 " to " 88 " as key reference of the PIN2 on a multi-verification capable UICC.

6.1.13.2 Conformance requirement

Before allowing the access to PIN2 protected data, the Terminal shall ask the user for PIN2 verification. Only after presenting the PIN2, the user shall get access to these data.

The VERIFY PIN function verifies the PIN2 presented by the Terminal to the UICC.
Reference:

- TS 102 221[5], 9 and subclause 11.1.9;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.1.

6.1.13.3 Test purpose

1) To verify that the PIN2 verification procedure is performed by the Terminal correctly.
2) To verify that the basic public MMI string is supported.
3) To verify that the Terminal supports key references in the range of " 81 " to " 88 " as PIN2.

6.1.13.4 Method of test

6.1.13.4.1 Initial conditions

The Terminal is connected to the UICC simulator with the PIN enabled, and powered off.
The default UICC is used with the following exceptions:
The UICC shall be configured to use " 07 " as the reference of the PIN and " 87 " as reference of the PIN2 with the following values:

PIN
Key reference: 07
Logically: 8642

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	38	36	34	32	FF	FF	FF	FF

Unblock PIN

Key reference 07
Logically: 64534231

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	36	34	35	33	34	32	33	31
PIN2								

Key reference 87
Logically: 9753

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	39	37	35	33	FF	FF	FF	FF

Unblock PIN2
Key reference 87
Logically: 57687980

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	35	37	36	38	37	39	38	30

NOTE: To perform the UPDATE FDN data (as described in the procedure below), the default FDN UICC may be used. In this case the above mentioned exceptions shall apply.

6.1.13.4.2 Procedure

a) The Terminal is powered on and the correct PIN is entered.
b) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN)
c) When the UE is in the "PIN2 check" mode, the sequence "9753\#" shall be entered.

6.1.13.5 Acceptance criteria

1) After step b) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 $=$ " 87 ".
2) After step b) the UE shall give an indication "OK", following a successful execution of the command.

6.1.14 Change of PIN2 on multi-verification capable UICCs

6.1.14.1 Definition and applicability

The PIN2 may be changed by the user, by entering the old and new PIN2. The length of the PIN2 is between 4 and 8 digits. TS $102221[5]$ defines the range of " 81 " to " 88 " as key reference of the PIN2 on a multi-verification capable UICC.

6.1.14.2 Conformance requirement

The Terminal shall support the change of PIN2 procedure as defined in TS 102221 [5], subclause 11.1.10.
Reference:

- TS 102221 [5], subclauses 9 and 11.1.10;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.2.

6.1.14.3 Test purpose

1) To verify that the PIN2 substitution procedure is performed correctly by the Terminal.
2) To verify that the basic public MMI string is supported.
3) To verify that the Terminal supports key references in the range of " 81 " to " 88 " as PIN2.

6.1.14.4 Method of test

6.1.14.1 Initial conditions

The Terminal is connected to the UICC simulator with the PIN2 enabled.
The default UICC is used with the following exceptions:

The UICC shall be configured to use " 07 " as the reference of the PIN and " 87 " as reference of the PIN2 with the following values:

PIN
Key reference: 07
Logically: 8642

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	38	36	34	32	FF	FF	FF	FF

Unblock PIN

Key reference 07
Logically: 64534231

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	36	34	35	33	34	32	33	31

PIN2
Key reference 87
Logically: 9753

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	39	37	35	33	FF	FF	FF	FF

Unblock PIN2
Key reference 87
Logically: 57687980

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	35	37	36	38	37	39	38	30

NOTE: To perform the UPDATE FDN data (as described in the procedure below), the default FDN UICC may be used. In this case the above mentioned exceptions shall apply.

The Terminal is powered-on, with the correct PIN entered.

6.1.14.4.2 Procedure

a) Enter "**042*9753*12345678*12345678\#".
b) The UE is switched off and on and the correct PIN is entered.
c) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
d) When the UE is in the "PIN2 check" mode, the sequence "9753\#" shall be entered.
e) The UE is switched off and on and the correct PIN is entered.
f) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
g) When the UE is in the "PIN2-check", mode the sequence "12345678\#" shall be entered.

6.1.14.5 Acceptance criteria

1) After step a), the Terminal shall send a CHANGE PIN2 command to the UICC, with the parameter P2 set to " 87 ".
2) Following the successful execution of the command, the UE shall give an indication that the new PIN2 is accepted.
3) After step d), the UE shall give an indication that the entered PIN2 is not accepted.
4) After step g), the UE shall give an indication "OK".

6.1.15 Unblock PIN2 on multi-verification capable UICCs

6.1.15.1 Definition and applicability

After three consecutive wrong entries of the PIN2, the PIN2 shall become blocked. The Unblock PIN2 command is used to unblock the PIN2. This function may be performed whether or not the PIN2 is blocked. TS 102 221[5] defines the range of " 81 " to " 88 " as key reference of the PIN2 on a multi-verification capable UICC.

6.1.15.2 Conformance requirement

The Terminal shall support the Unblock PIN2 command, as defined in TS 102221 [5], subclause 11.1.13.

Reference:

- TS 102221 [5],subclauses 9 and 11.1.13;
- TS 31.102 [4], clause 6 ;
- TS 22.030 [12], subclause 6.6.3.

6.1.15.3 Test purpose

1) To verify that the PIN2 unblocking procedure is performed correctly.
2) To verify that the basic public MMI string is supported.
3) To verify that the Terminal supports key references in the range of " 81 " to " 88 " as PIN2.

6.1.15.4 Method of test

6.1.15.4.1 Initial conditions

The Terminal is connected to the UICC simulator.
The default UICC is used with the following exceptions:
The UICC shall be configured to use " 07 " as the reference of the PIN and " 87 " as reference of the PIN2 with the following values:

PIN
Key reference: 07

$$
\text { Logically: } 8642
$$

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	38	36	34	32	FF	FF	FF	FF

Unblock PIN

Key reference 07

Logically:								
Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	36	34	35	33	34	32	33	31

PIN2
Key reference 87
Logically: 9753

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	39	37	35	33	FF	FF	FF	FF

Unblock PIN2
Key reference 87
Logically: 57687980

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	35	37	36	38	37	39	38	30

NOTE: To perform the UPDATE FDN data (as described in the procedure below), the default FDN UICC may be used. In this case the above mentioned exceptions shall apply.

6.1.15.4.2 Procedure

a) The Terminal is powered on and the correct PIN is entered.
b) Enter "**052*57687980*1234*1234\#"
c) The Terminal is powered off and on and the correct PIN is entered.
d) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
e) Enter the new PIN2: "1234\#".
f) The Terminal is powered off and on and the correct PIN is entered.
g) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).
h) Enter a wrong PIN2 three times.
i) Enter "**052*57687980*9753*9753\#".
j) The Terminal is powered off and on and the correct PIN is entered.
k) The access to a PIN2 protected data field shall be performed (e.g. UPDATE FDN).

1) Enter the new PIN2: "9753\#".

6.1.15.5 Acceptance criterias

1) After step b), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = " 87 ".
2) After step e), the Terminal shall indicate that the PIN2 has been accepted.
3) After step h), the Terminal shall indicate that the PIN2 has been blocked.
4) After step i), the Terminal shall send an UNBLOCK PIN command to the UICC, with parameter P2 = " 87 ".
5) After step 1), the Terminal shall indicate that the PIN2 has been accepted.

6.1.16 Replacement of PIN with key reference "07"

6.1.16.1 Definition and applicability

The Universal PIN may be used to replace a PIN used to authenticate the user to the UICC for security. In this case entry of the correct Universal PIN allows PIN-protected data to be accessed over the UICC-Terminal interface.

6.1.16.2 Conformance requirement

The Terminal shall support the usage of the Universal PIN as replacement PIN and the replacement procedure as defined in TS 102221 [5], subclause 11.1.11, as well as the procedure to disable the replacement defined in TS 102221 [5], subclause 11.1.12.

Reference:

- TS 102221 [5], subclauses 9, 11.1.11 and 11.1.12;
- TS 31.102 [4], clause 6.

6.1.16.3 Test purpose

1) To verify that the PIN replacement is supported by the Terminal correctly.
2) To verify that the PIN replacement procedure is performed by the Terminal correctly.
3) To verify that the procedure to disable the PIN replacement is performed by the Terminal correctly.
4) To verify that the Terminal supports key references in the range of " 01 " to " 08 " as PIN.

6.1.16.4 Method of test

6.1.16.4.1 Initial conditions

The Terminal is connected to the UICC simulator with the PIN enabled, and powered off.
The default UICC is used with the following exceptions:
The UICC shall be configured to use " 07 " as the reference of the PIN and " 87 " as reference of the PIN2 with the following values:

PIN
Key reference: 07
Logically: 8642

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	38	36	34	32	FF	FF	FF	FF

Unblock PIN

Key reference 07
Logically: 64534231

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	36	34	35	33	34	32	33	31

PIN2

Key reference 87

Logically:								
Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	39	37	35	33	FF	FF	FF	FF

Unblock PIN2

Key reference 87
Logically: 57687980

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	35	37	36	38	37	39	38	30

6.1.16.4.2 Procedure

a) The Terminal is powered on.
b) When the Terminal is in the "PIN check" mode, the sequence " $8642 \#$ " shall be entered.
c) The user shall initiate an MMI dependent procedure to replace the PIN by the Universal PIN.
d) The Terminal is powered off and on and when the Terminal is in "PIN check" mode the sequence "8642\#" shall be entered.
e) The correct Universal PIN is entered.
f) The user shall initiate an MMI dependent procedure to disable the replacement of the PIN by the Universal PIN.
g) The Terminal is powered off and on and when the Terminal is in "PIN check" mode the sequence "2839\#" shall be entered.
h) The correct PIN is entered.

6.1.16.5 Acceptance criteria

1) After step b) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = "07".
2) After step c), the Terminal shall send a DISABLE PIN command to the UICC, with parameter $\mathrm{P} 1=" 91$ " and $\mathrm{P} 2=$ "07".
3) After step d) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = " 11 " and after unsuccessful execution of the command the Terminal shall indicate that the PIN has not been accepted.
4) After step e) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = " 11 " and after successful execution of the command the Terminal shall indicate that the PIN has been accepted.
5) After step f), the Terminal shall send an ENABLE PIN command to the UICC, with parameter P2 = "07".
6) After step g) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = " 07 " and after unsuccessful execution of the command the Terminal shall indicate that the PIN has not been accepted.
7) After step e) the Terminal shall send a VERIFY PIN command to the UICC, with parameter P2 = " 07 " and after successful execution of the command the Terminal shall indicate that the PIN has been accepted.

6.2 Fixed Dialling Numbers (FDN) handling

6.2.1 Terminal and USIM with FDN enabled, $\mathrm{EF}_{\text {ADN }}$ readable and updateable

6.2.1.1 Definition and applicability

Fixed Dialling Numbers (FDN) is a service defined for the USIM. An enabled FDN service results in call restrictions for the UE. The call restrictions are controlled by the Terminal. To ascertain the type of USIM and state of FDN the UE runs the FDN capability request procedure during UICC-Terminal initialisation. During the initialisation the Terminal shall request the Emergency call codes of the USIM $\mathrm{EF}_{\mathrm{ECC}}$. At the time an emergency call is setup using the emergency call code read from the $\mathrm{EF}_{\mathrm{ECC}}$, the UE shall use the category of the emergency service indicated.

6.2.1.2 Conformance requirement

1) Recognising the state of the USIM (FDN enabled) the UE shall perform the UICC initialisation procedure as specified.
2) The UE allows call set-up to a directory number as stored in $\mathrm{EF}_{\mathrm{FDN}}$.
3) The UE allows call set-up to a directory number as stored in $\mathrm{EF}_{\mathrm{FDN}}$ and extended by digits in the end.
4) The UE does not allow call set-up to a directory number stored in $\mathrm{EF}_{\mathrm{FDN}}$ but with missing digits at the end.
5) The UE does not allow call set-up to a directory number having no reference in $\mathrm{EF}_{\mathrm{FDN}}$.
6) The UE does not allow call set-up of an emergency call using the emergency numbers stored in the Terminal except "112", "911", the emergency numbers stored on the SIM/USIM and emergency numbers downloaded from the serving network (if any).
7) The UE allows call set-up of an emergency call using the emergency number stored in the USIM.

Reference:

- TS 22.101 [11], clauses 8 and A.24;
- TS 31.102 [4], subclauses 4.4.2, 4.2.24, 5.1.1 and 5.3.2;
- TS 24.008 [16], subclause 10.5.4.33.

6.2.1.3 Test purpose

1) To verify that the Terminal allows call set-up to a FDN number.
2) To verify that the Terminal allows call set-up to a FDN number extended by some digits in the end.
3) To verify that the Terminal rejects call set-up to number having no reference in $\mathrm{EF}_{\text {FDN }}$.
4) To verify that the Terminal rejects call set-up to a FDN number not completely corresponding to an entry in $\mathrm{EF}_{\mathrm{FDN}}$.
5) To verify that the Terminal does not allow emergency call set-up using the emergency number stored in the Terminal except "112", "911", the emergency numbers stored on the SIM/USIM and emergency numbers downloaded from the serving network (if any).
6) To verify that the Terminal allows emergency call set-up using the emergency number stored in the UISM.

6.2.1.4 Method of test

6.2.1.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing GERAN) transmits on the BCCH , with the following network parameters

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

The default FDN UICC with FDN service enabled and $\mathrm{EF}_{\mathrm{ADN}}$ readable and updateable is installed into the Terminal.
The following expection applies:

$\mathbf{E F}_{\text {ECC }}$ (Emergency Call Codes)

Logically:	Emergency call code:	"122";
	Emergency call code alpha identifier:	"TEST";
	Emergency call Service Category:	RFU.

Coding:	B1	B2	B3	B4	B5	B6	B7	B8
Hex	21	F2	FF	54	45	53	54	00

6.2.1.4.2 Procedure

a) The UE is powered on and PIN is entered.
b) Using the MMI a call set-up to the fixed dialling number 1 (record 1) is attempted.
c) Using the MMI a call set-up to the fixed dialling number 2 (record 2) extended by " 123 " in the end is attempted.
d) Using the MMI a call set-up to a number which is equal to the fixed dialling number 3 (record 3) without the last digit is attempted, e.g. by recalling the fixed dialling number 3 and deleting the last digit (only in display).
e) Using the MMI a call set-up to the number " 1234567 " is attempted.
f) Using the MMI an emergency call set-up is attempted using an emergency call code stored in the Terminal, but not "112", "911" nor one of the emergency numbers stored on the SIM/USIM emergency numbers downloaded from the serving network (if any).
g) Using the MMI an emergency call set-up is attempted using either "112", "911" or an emergency number downloaded from the serving network (if any).
h) Using the MMI an emergency call set-up is attempted using the emergency call code stored in the USIM (i.e. "122").

NOTE: For step f) one of the emergency call codes according to TS 22.101 [11], subclause 10.1, except "112" and " 911 ", shall be used (i.e. "000", "08", "110", "118", "119" or "999").

6.2.1.5 Acceptance criteria

1) After step a) the UE is registered and in idle state.
2) After steps b) and c) the UE shall allow call set-up and send the requested number across the air interface.
3) After steps d), e) and f) the UE shall prevent call set-up.
4) After steps g) and h) the UE shall allow emergency call by indicating the call setup as "Emergency Call".

6.2.2 Terminal and USIM with FDN disabled

6.2.2.1 Definition and applicability

Fixed Dialling Numbers (FDN) is a service defined for the USIM. An enabled FDN service results in call restrictions for the UE. Only directory numbers which are stored in the $\mathrm{EF}_{\mathrm{FDN}}$ may be dialled by the UE. The call restrictions are controlled by the Terminal. To ascertain the type of USIM and state of FDN the UE runs the FDN capability request procedure during UICC-Terminal initialisation. Deactivation of the service by the subscriber is possible under the control of PIN2 and switches the USIM into a "normal", non restrictive USIM.

6.2.2.2 Conformance requirement

1) Recognising the state of the USIM (FDN disabled) the UE correctly performs the UICC initialisation procedure.
2) The UE allows call set-up to a directory number as stored in $\mathrm{EF}_{\mathrm{FDN}}$.
3) The UE allows call set-up to a directory number as stored in $E F_{\mathrm{ADN}}$.
4) The UE allows call set-up to a directory number given in manually.

Reference:

- R99: TS 22.101 [11], clauses 8 and A. 24
- Rel-4: TS 22.101 [11], clauses 9 and A. 25
- Rel-5, Rel-6: TS 22.101 [11], clauses 10 and A.25;
- TS 31.102 [4], subclauses 4.4.2.3, 4.2.24, 4.2.47, 5.1.1 and 5.3.2.

6.2.2.3 Test purpose

1) To verify that the Terminal as a result of the state of the USIM correctly performs the UICC-Terminal initialisation procedure.
2) To verify that the Terminal allows call set-up to a FDN number.
3) To verify that the Terminal allows call set-up to a ADN number.
4) To verify that the Terminal allows call set-up to manually given number.

6.2.2.4 Method of test

6.2.2.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN) /SS (in case of a Terminal accessing GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

The default FDN UICC is used with the following exception:

$\mathbf{E F}_{\text {EST }}$ (Enable Service Table)

Logically: Fixed Dialling Numbers disabled.
Barred Dialling Numbers disabled.
APN Control list (ACL) disabled.

```
Coding: B1
binary 0000 0000
```

The UICC is installed into the Terminal and the UE is powered on.

6.2.2.4.2 Procedure

a) Using the MMI a call set-up to the fixed dialling number 1 is attempted.
b) Using the MMI a call set-up to the abbreviated dialling number 1 is attempted.
c) Using the MMI a call set-up to the number " 1234567 " is attempted.

6.2.2.5 Acceptance criteria

After steps a), b) and c) the UE shall allow call set-up and send the requested number across the air interface.

6.2.3 Enabling, disabling and updating of FDN

6.2.3.1 Definition and applicability

FDN may be enabled and disabled by the subscriber under control of PIN2. Fixed dialling numbers are read with PIN and updated under control of PIN2.

6.2.3.2 Conformance requirement

1) Recognising the state of the USIM (FDN enabled) the UE shall perform the UICC initialisation procedure as specified.
2) The UE shall allow updating of $E F_{\text {FDN }}$ by the use of PIN2.
3) The UE provides means to disable the FDN service by the use of PIN2.
4) The UE shall allow the use of $E F_{A D N}$ after disabling of FDN.

Reference:

- R99: TS 22.101 [11], clauses 8 and A. 24
- Rel-4: TS 22.101 [11], clauses 9 and A. 25
- Rel-5, Rel-6: TS 22.101 [11], clause 10 and A.25;
- TS 31.102 [4], subclauses 4.4.2.3, 4.2.24, 4.2.47, 5.1.1 and 5.3.2.

6.2.3.3 Test purpose

1) To verify that the Terminal correctly performs the update of a number in $\mathrm{EF}_{\mathrm{FDN}}$.
2) To verify that the Terminal correctly disables FDN service.
3) To verify that the Terminal recognises disabling of FDN and allows access to $\mathrm{EF}_{\mathrm{ADN}}$.

6.2.3.4 Method of test

6.2.3.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/SS (in case of a Terminal accessing GERAN) transmits on the BCCH , with the following network parameters

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

The default FDN UICC with FDN service enabled is installed into the Terminal.

6.2.3.4.2 Procedure

a) The UE is powered on and PIN is entered.
b) Using the MMI the directory number " +876543210 " is stored in $\mathrm{EF}_{\mathrm{FDN}}$ as fixed dialling number 1 (record 1). The alpha identifier is not changed. On request of the UE PIN2 is entered.
c) Using the MMI the FDN disabling procedure is performed. On request of the UE PIN2 is entered.
d) Using the MMI a call set-up to the abbreviated dialling number 1 (record 1) is attempted.
e) The UE is soft-powered down.

6.2.3.5 Acceptance criteria

1) After step a) the UE is registered and in idle state.
2) After step c) the UE shall indicate that the FDN disabling procedure has been successful.
3) After step d) the UE shall allow call set-up and send the requested number across the air interface.
4) After step e) record 1 in $E F_{\text {FDN }}$, shall contain the following values:

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	46	44	4E	31	31	31	06	91	78	56	34	12	F0
	B14	B15	B16	B17	B18	B19	B20						
	FF												

6.2.4 Terminal and USIM with FDN enabled, $\mathrm{EF}_{\text {ADN }}$ readable and updateable (Rel-4 and onwards)

6.2.4.1 Definition and applicability

Fixed Dialling Numbers (FDN) is a service defined for the USIM. An enabled FDN service results in call restrictions for the UE. The call restrictions are controlled by the Terminal. To ascertain the type of USIM and state of FDN the UE runs the FDN capability request procedure during UICC-Terminal initialisation. During the initialisation the Terminal shall request the Emergency call codes of the USIM $\mathrm{EF}_{\mathrm{ECC}}$. At the time an emergency call is setup using the emergency call code read from the $\mathrm{EF}_{\mathrm{ECC}}$, the UE shall use the category of the emergency service indicated.

6.2.4.2 Conformance requirement

1) Recognising the state of the USIM (FDN enabled) the UE shall perform the UICC initialisation procedure as specified.
2) The UE allows call set-up to a directory number as stored in $\mathrm{EF}_{\mathrm{FDN}}$.
3) The UE allows call set-up to a directory number as stored in $\mathrm{EF}_{\text {FDN }}$ and extended by digits in the end.
4) The UE does not allow call set-up to a directory number stored in $\mathrm{EF}_{\mathrm{FDN}}$ but with missing digits at the end.
5) The UE does not allow call set-up to a directory number having no reference in $\mathrm{EF}_{\text {FDN }}$.
6) The UE does not allow call set-up of an emergency call using the emergency numbers stored in the Terminal except "112", "911", the emergency numbers stored on the SIM/USIM and emergency numbers downloaded from the serving network (if any).
7) The UE allows call set-up of an emergency call using the emergency number stored in the USIM.
8) The UE shall indicate the emergency service category as "Mountain Rescue", when using the emergency number stored in the USIM.

Reference:

- Rel-4: TS 22.101 [11], clauses 9 and A. 25
- Rel-5, Rel-6: TS 22.101 [11], clauses 10 and A.25;
- TS 31.102 [4], subclauses 4.4.2, 4.2.24, 5.1.1 and 5.3.2;
- TS 24.008 [16], subclause 10.5.4.33.

6.2.4.3 Test purpose

1) To verify that the Terminal allows call set-up to a FDN number.
2) To verify that the Terminal allows call set-up to a FDN number extended by some digits in the end.
3) To verify that the Terminal rejects call set-up to number having no reference in $E F_{\text {FDN }}$.
4) To verify that the Terminal rejects call set-up to a FDN number not completely corresponding to an entry in $\mathrm{EF}_{\text {FDN }}$.
5) To verify that the Terminal does not allow emergency call set-up using the emergency number stored in the Terminal except "112", "911", the emergency numbers stored on the SIM/USIM and emergency numbers downloaded from the serving network (if any).
6) To verify that the Terminal allows emergency call set-up using the emergency number stored in the UISM.
7) To verify that the Terminal reads correctly the emergency service category.

6.2.4.4 Method of test

6.2.4.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing GERAN) transmits on the BCCH , with the following network parameters

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC):

246/081/0001.

- Access control: unrestricted.

The default FDN UICC with FDN service enabled and $\mathrm{EF}_{\mathrm{ADN}}$ readable and updateable is installed into the Terminal.

6.2.4.4.2 Procedure

a) The UE is powered on and PIN is entered.
b) Using the MMI a call set-up to the fixed dialling number 1 (record 1) is attempted.
c) Using the MMI a call set-up to the fixed dialling number 2 (record 2) extended by " 123 " in the end is attempted.
d) Using the MMI a call set-up to a number which is equal to the fixed dialling number 3 (record 3) without the last digit is attempted, e.g. by recalling the fixed dialling number 3 and deleting the last digit (only in display).
e) Using the MMI a call set-up to the number "1234567" is attempted.
f) Using the MMI an emergency call set-up is attempted using an emergency call code stored in the Terminal, but not "112", "911" nor one of the emergency numbers stored on the SIM/USIM emergency numbers downloaded from the serving network (if any).
g) Using the MMI an emergency call set-up is attempted using either "112", "911" or an emergency number downloaded from the serving network (if any).
h) Using the MMI an emergency call set-up is attempted using the emergency call code stored in the USIM (i.e. "122").

NOTE: For step f) one of the emergency call codes according to TS 22.101 [11], subclause 10.1, except "112" and "911", shall be used (i.e. "000", "08", "110", "118", "119" or "999").

6.2.4.5 Acceptance criteria

1) After step a) the UE is registered and in idle state.
2) After steps b) and c) the UE shall allow call set-up and send the requested number across the air interface.
3) After steps d), e) and f) the UE shall prevent call set-up.
4) After steps g) and h) the UE shall allow emergency call by indicating the call setup as "Emergency Call".
5) After step h) the UE shall send the emergency service category correctly as "Mountain Rescue".

6.3 Void

6.4 Advice of charge (AoC) handling

6.4.1 AoC not supported by USIM

6.4.1.1 Definition and applicability

If the Terminal under test supports Advice of Charge Charging, it shall still look at the capability of the USIM, before responding to any AoCC information from the network.

6.4.1.2 Conformance requirement

1) An UE not supporting AoCC and in the outgoing call / U4 call delivered state, on receipt of a CONNECT message containing AoCC information shall acknowledge the CONNECT message but ignore and not acknowledge the AoCC information sent within the CONNECT.
2) An UE not supporting AoCC and in the outgoing call / U4 call delivered state, on receipt of a FACILITY message containing AoCC information shall ignore and not acknowledge the AoCC information sent within the FACILITY.
3) An UE not supporting AoCC and in the incoming call / U9 call confirmed state, on receipt of a FACILITY message containing AoCC information shall ignore and not acknowledge the AoCC information sent within the FACILITY.
4) An UE not supporting AoCC and in the U10 call active state, on receipt of a FACILITY message containing AoCC information, shall ignore and not acknowledge the AoCC information sent within the FACILITY.

References:

- TS 24.008 [16], subclause 5.1.2.1;
- TS 23.086 [9], subclauses 1.2, 1.3, 2.2 and 2.3;
- TS 24.086 [10], clause 2.

6.4.1.3 Test purpose

1) To verify that an UE not supporting AoCC (where the Terminal does support AoCC but the USIM does not) and in the outgoing call / U4 call delivered state, on receipt of a CONNECT message containing AoCC information shall acknowledge the CONNECT message but ignore and not acknowledge the AoCC information sent within the CONNECT.
2) To verify that an UE not supporting AoCC (where the Terminal does support AoCC but the USIM does not) and in the outgoing call / U4 call delivered state, on receipt of a FACILITY message containing AoCC information shall ignore and not acknowledge the AoCC information sent within the FACILITY.
3) To verify that an UE not supporting AoCC (where the Terminal does support AoCC but the USIM does not) and in the incoming call / U9 call confirmed state, on receipt of a FACILITY message containing AoCC information shall ignore and not acknowledge the AoCC information sent within the FACILITY.
4) To verify that an UE not supporting AoCC (where the Terminal does support AoCC but the USIM does not) and in the U10 call active state, on receipt of a FACILITY message containing AoCC information, shall ignore and not acknowledge the AoCC information sent within the FACILITY.

6.4.1.4 Method of test

6.4.1.4.1 Initial conditions

The Terminal shall be installed with a UICC or USIM simulator, with all elementary files coded as for the default UICC, with the exception of:

EF $_{\text {UST }}$ (USIM Service Table)

Logically: Local Phone Book available;
User controlled PLMN selector available;
Fixed dialling numbers available;
The GSM Access available;
The Group Identifier level 1 and level 2 not available;
AoC not available.
Service n 33 (Packed Switched Domain) shall be set to '1'
Enabled Services Table available

Coding:	B1	B2	B3	B4	B5
binary	xxxx xx11	xxx0 xxxx	xxxx 1x00	xxxx x1xx	xxxx xx11

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.
The generic call set up procedures for UTRAN defined in TS 34.108 [21], subclause 7.2.3.2.3 and 7.2.3.1.3 and defined in 51.010-1[22], clause 10 for GERAN are followed up to and including the reception, or transmission of the ALERTING message by the UE.

6.4.1.4.2 Procedure

a) For an MO call in the U 4 state the USS/SS transmits CONNECT containing AoCC information.
b) For an MO call in the U4 state the USS/SS transmits FACILITY containing AoCC information.
c) For an MT call in the U9 state the USS/SS transmits FACILITY containing AoCC information.
d) For an MO call in the U10 state the USS/SS transmits FACILITY containing AoCC information.

6.4.1.5 Acceptance criteria

In all cases, the UE shall ignore the AoCC information sent to it in the Facility information elements as part of the CONNECT/FACILITY messages and not send any AoCC information acknowledgement. It shall be checked for 15 s that the UE does not transmit any AoCC information acknowledgement after the receipt of AoCC information.

6.4.2 Maximum frequency of ACM updating

6.4.2.1 Definition and applicability

During a call, the ACM shall be updated at the end of every interval. The interval length is the greater of either 5 s or the value given by parameter e2 (part of the Facility Information Element).

6.4.2.2 Conformance requirement

The ACM shall be incremented when the CCM is incremented or once every 5 s , whichever is the longer period.
When used the value ' 1 C ' shall be used as SFI for $\mathrm{EF}_{\mathrm{ACM}}$, for compatibility reasons the terminal shall accept other values.

Reference:

- TS 22.024 [8], subclause 4.3, part h;
- TS 31.102 [4], subclauses 4.2.9, 5.3.4 and Annex H.1.

6.4.2.3 Test purpose

1) To verify that the Terminal, during a call, increments the ACM every 5 s when e 2 is less or equal to 5 s .
2) To verify that the Terminal is able to handle other values than ' 1 C ' as SFI of $\mathrm{EF}_{\mathrm{ACM}}$.

6.4.2.4 Method of test

6.4.2.4.1 Initial conditions

The Terminal shall be connected to the USIM simulator, with all elementary files coded as default with the exception of:

EF $_{\text {UST }}$ (USIM Service Table)

Logically: Local Phone Book available;
User controlled PLMN selector available;
Fixed dialling numbers available;
The GSM Access available;
The Group Identifier level 1 and level 2 not available;
AoC available.
Service n 33 (Packed Switched Domain) shall be set to '1'
Enabled Services Table available

Coding:	B1	B2	B3	B4	B5
binary	x $x x x \times x 11$	xxx1 xxxx	xxxx 1x00	xxxx x1xx	xxxx xx11

The coding of $\mathrm{EF}_{\mathrm{UST}}$ shall conform with the capabilities of the USIM used.
$\mathbf{E F}_{\mathrm{ACM}}$ (Accumulated call meter)
Logically: 50 units
The SFI of $\mathrm{EF}_{\mathrm{ACM}}$ shall be set to ' 18 '.

$\mathbf{E F}_{\text {ACMmax }}$ (Accumulated call meter maximum)

Logically: 150 units
The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

User Equipment:
The UE is in MM-state "idle, updated".
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

6.4.2.4.2 Procedure

a) The UE is made to initiate a call. The call establishment shall be performed according to the procedures defined in TS 34.108 [21], subclause 7.2.3.2.3 extended by the messages of the AoCC. The call is established with AoCC e-parameters sent in a Facility IE in the CONNECT message, as given below. The UE returns the AoCC acknowledgement after the reception of the CONNECT message. It is an implementation option whether the AoCC acknowledge is sent by the UE before or after the CONNECT ACKNOWLEDGE.
b) The call is maintained for 90 s , then terminated by the USS. During the call, the USIM-simulator monitors the time intervals between successive INCREMENT commands. As the final INCREMENT command will have occurred as a result of call termination, the time interval calculated since the prior INCREMENT command shall be ignored.

Maximum Duration of Test:
2 minutes.
Expected Sequence A:

Step	Direction	Message	Comments
1	UE		The UE is made to initiate a call
2	UE -> USS	RRC CONNECTION REQUEST	
3	USS -> UE	RRC CONNECTION SETUP	
4	UE -> USS	RRC CONNECTION SETUP	
5	UE -> USS	CM SERVICE REQUEST	
6	USS -> UE	AUTHENTICATION REQUEST	MM procedure, to ensure the successful start of integrity in step 8
7	UE -> USS	AUTHENTICATION RESPONSE	
8	USS -> UE	SECURITY MODE COMMAND	RRC procedure, start of integrity is mandatory during call setup
9	UE -> USS	SECURITY MODE COMPLETE	
10	UE -> USS	SETUP	
11	USS -> UE	CALL PROCEEDING	
12	USS -> UE	RADIO BEARER SETUP	To a supported channel type
13	UE -> USS	RADIO BEARER SETUPCOMPLETE	
14	USS -> UE	ALERTING	
15	USS -> UE	CONNECT	As default message except contains Facility IE with contents as indicated in i) below
			Either A or B branch is taken
A16	UE -> USS	CONNECT ACKNOWLEDGE	
A17	UE -> USS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B16	UE -> USS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B17	UE -> USS	CONNECT ACKNOWLEDGE	
18			call duration 90 s after CAI information sent by USS,
19	USS -> UE	DISCONNECT	
20	UE -> USS	RELEASE	
21	USS -> UE	RELEASE COMPLETE	
22	USS -> UE	RRC CONNECTION RELEASE	All connections of RRC are released.
23	UE -> USS	RRC CONNECTION RELEASE COMPLETE	

Expected Sequence B:

Step	Direction	Message	
1	UE		Comments
2	UE -> SS	CHANNEL REQUEST	The UE is made to initiate a call
3	SS -> UE	IMMEDIATE ASSIGNMENT	
4	UE -> SS	CM SERVICE REQUEST	
5	SS -> UE	CM SERVICE ACCEPT	
6	UE -> SS	SETUP	
7	SS -> UE	CALL PROCEEDING	To a supported channel type
8	SS -> UE	ASSIGNMENT COMMAND	
9	UE -> SS	ASSIGNMENT COMPLETE	As default message except contains Facility IE with
10	SS -> UE	ALERTING	contents as indicated in i) below
11	SS -> UE	CONNECT	Aither A or B branch is taken
			As default message except contains Facility IE with
A12	UE -> SS	CONNECT ACKNOWLEDGE	As default message except contains Facility IE with
A13	UE -> SS	FACILITY	contents as indicated in ii) below
B12	UE -> SS	FACILITY	call duration 90 s after CAl information sent by SS,
B13	UE -> SS	CONNECT ACKNOWLEDGE	
14			
15	SS -> UE	DISCONNECT	The main signalling link is released.
16	UE -> SS	RELEASE	
17	SS -> UE	RELEASE COMPLETE	
18	SS -> UE	CHANNEL RELEASE	

Specific Message Contents:
i) FACILITY Information Element with Invoke $=$ ForwardChargeInformation component type as defined in TS 24.080 [17], subclause 3.6.1 table 3.3.

For ASN. 1 description see default message contents in TS 51.010-1 [22], subclause 31.6.4.
The values of the e-parameters within the parameter part of the Facility Information Element shall be set as below:
e-parameters:

parameter:	e 1	e 2	e 3	e 4	e 5	e 6	E 7
value	1	1	1	0	0	0	0

Values shown in table are in the format and have units as in TS 22.024 [8], clause 3.
ii) FACILITY Information Element with Return Result component type as defined in TS 24.080 [17], subclause 3.6.1 table 3.4.

For ASN. 1 description see default message contents in TS 51.010-1 [22], subclause 31.6.4.

6.4.2.5 Acceptance criteria

The UE shall, during a call, send INCREMENT commands to the USIM every 5 s .

6.4.3 Call terminated when ACM greater than ACMmax

6.4.3.1 Definition and applicability

ACMmax gives the maximum value of ACM, at which the current chargeable calls shall be terminated and no further calls may be made (except emergency calls).

6.4.3.2 Conformance requirement

ACM shall be incremented by the value of CCM.
If the ACMmax is valid, and the ACM becomes equal to or exceeds the value of the ACMmax, then all calls in progress, chargeable to the user, shall be terminated by the UE, once the chargeable interval determined by the CAI has elapsed, (except emergency calls).

When used the value ' 1 C ' shall be used as SFI for $\mathrm{EF}_{\mathrm{ACM}}$, for compatibility reasons the terminal shall accept other values.

Reference:

- TS 22.024 [8], subclauses 4.2.2 and 4.3 (part h);
- TS 102221 [5], subclause 14.1.3;
- TS 31.102 [4], subclause 4.2.9, 5.3.4 and Annex H.1.

6.4.3.3 Test purpose

1) To verify that the Terminal increments the ACM by the correct number of units, even though this may take ACM above ACMmax.
2) To verify that the Terminal terminates the call.
3) To verify that the INCREMENT $\mathrm{EF}_{\mathrm{ACM}}$ command is performed correctly by the terminal.
4) To verify that the Terminal is able to handle other values than ' 1 C ' as SFI of $\mathrm{EF}_{\mathrm{ACM}}$.

6.4.3.4 Method of test

6.4.3.4.1 Initial conditions

The Terminal shall be connected to a UICC or the USIM simulator, with all elementary files coded as default with the exception of:

$\mathbf{E F}_{\text {UST }}$ (USIM Service Table)

Logically: Local Phone Book available; User controlled PLMN selector available; Fixed dialling numbers available; The GSM Access available; The Group Identifier level 1 and level 2 not available; AoC available. Service n 33 (Packed Switched Domain) shall be set to '1' Enabled Services Table available

Coding:	B1	B2	B3	B4	B5
binary	xxxx xx11	xxx1 xxxx	xxxx 1x00	xxxx x1xx	xxxx xx11

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.
$\mathbf{E F}_{\mathrm{ACM}}$ (Accumulated call meter)
Logically: 80 units

Coding:	B1	B2	B3
binary	00000000	00000000	01010000

The SFI of $\mathrm{EF}_{\mathrm{ACM}}$ shall be set to ' 18 '.

$\mathbf{E F}_{\text {ACMmax }}$ (Accumulated call meter maximum)

Logically: 94 units

Coding:	B1	B2	B3
binary	00000000	00000000	01011110

The USS transmits on the BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

User Equipment:
The UE is in MM-state "idle, updated".
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN
"Expected Sequence B" shall be performed.

6.4.3.4.2 Procedure

a) The UE is made to initiate a call. The call establishment shall be performed according to the procedures defined in TS 34.108 [21], subclause 7.2.3.2.3 extended by the messages of the AoCC. The call is established with AoCC e-parameters sent in a Facility IE in the CONNECT message, as given below. The UE returns the AoCC acknowledgement after the reception of the CONNECT message. It is an implementation option whether the AoCC acknowledge is sent by the UE before or after the CONNECT ACKNOWLEDGE.
b) The call is maintained until cleared by the UE (after 30 s).
c) The contents of ACM are checked.

Maximum Duration of Test:
2 minutes.
Expected Sequence A:

Step	Direction	Message	Comments
1	UE		The UE is made to initiate a call
2	UE -> USS	RRC CONNECTION REQUEST	
3	USS -> UE	RRC CONNECTION SETUP	
4	UE -> USS	RRC CONNECTION SETUP COMPLETE	
5	USS -> UE	AUTHENTICATION REQUEST	MM procedure, to ensure the successful start of integrity in step 8
6	UE -> USS	AUTHENTICATION RESPONSE	
7	USS -> UE	SECURITY MODE COMMAND	RRC procedure, start of integrity is mandatory during call setup
8	UE -> USS	SECURITY MODE COMPLETE	
9	UE -> USS	SETUP	
10	USS -> UE	CALL PROCEEDING	
11	USS -> UE	RADIO BEARER SETUP	To a supported channel type
12	UE -> USS	RADIO BEARER SETUP COMPLETE	
13	USS -> UE	ALERTING	
14	USS -> UE	CONNECT	As default message except contains Facility IE with contents as indicated in i) below
			Either A or B branch is taken
A15	UE -> USS	CONNECT ACKNOWLEDGE	
A16	UE -> USS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B15	UE \rightarrow USS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B16	UE -> USS	CONNECT ACKNOWLEDGE	
17			call duration 30 s after CAI information sent by USS
18	UE -> USS	DISCONNECT	
19	USS -> UE	RELEASE	
20	UE -> USS	RELEASE COMPLETE	
21	USS -> UE	RRC CONNECTION RELEASE	All connections of RRC are released.
22	UE -> USS	RRC CONNECTION RELEASE COMPLETE	

Expected Sequence B:

Step	Direction	Message	Comments
1	UE		The UE is made to initiate a call
2	UE -> SS	CHANNEL REQUEST	
3	SS -> UE	IMMEDIATE ASSIGNMENT	
4	UE -> SS	CM SERVICE REQUEST	
5	SS -> UE	CM SERVICE ACCEPT	
6	UE -> SS	SETUP	
7	SS -> UE	CALL PROCEEDING	
8	SS -> UE	ASSIGNMENT COMMAND to a supported channel type	
9	UE -> SS	ASSIGNMENT COMPLETE	
10	SS -> UE	ALERTING	
11	SS -> UE	CONNECT	As default message except contains Facility IE with contents as indicated in i) below
			Either A or B branch is taken
A12	UE -> SS	CONNECT ACKNOWLEDGE	
A13	UE -> SS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B12 B13	UE -> SS UE $->$ SS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B13	UE -> SS	CONNECT ACKNOWLEDGE	
14			call duration 30 s after CAI information sent by SS
15	UE -> SS	DISCONNECT	
16	SS -> UE	RELEASE	
17	UE -> SS	RELEASE COMPLETE	
18	SS -> UE	CHANNEL RELEASE	The main signalling link is released.

Specific Message Contents:
i) FACILITY Information Element with Invoke = ForwardChargeInformation component type as defined in TS 24.080 [17], subclause 3.6.1 table 3.3.

For ASN. 1 description see default message contents in TS 51.010-1 [22], subclause 31.6.4.
The values of the e-parameters within the parameter part of the Facility Information Element shall be set as below:
e-parameters:

parameter:	$e 1$	$e 2$	$e 3$	$e 4$	$e 5$	$e 6$	$e 7$
value	10	10	1	0	0	0	0

Values shown in table are in the format and have units as in TS 22.024 [8], clause 3.
ii) FACILITY Information Element with Return Result component type as defined in TS 24.080 [17], subclause 3.6.1 table 3.4.

For ASN. 1 description see default message contents in TS 51.010-1 [22], subclause 31.6.4.

6.4.3.5 Acceptance criteria

1) The UE shall terminate the call correctly 30 s after CAI was sent.
2) The value of ACM shall be 100 units.

6.4.4 Response codes of increase command of ACM

6.4.4.1 Definition and applicability

ACM has a maximum value in terms of coding, and an attempt by the Terminal to exceed that value by sending an INCREASE command shall result in an error message from the USIM. As the maximum of the ACM is equal to the maximum value of ACMmax, all current chargeable calls shall be terminated and no further calls may be made (except emergency calls).

6.4.4.2 Conformance requirement

The Terminal shall perform the increasing procedure, sending the amount to be increased.
The running accumulated charge shall be stored in the ACM of the USIM.
Where this charge cannot be stored in the UE, use of the telecommunications service shall be prevented.
At the time ACM exceeds it's maximum value, then all calls in progress, chargeable to the user, shall be terminated by the UE, once the chargeable interval determined by the CAI has elapsed, (except emergency calls).

When used the value ' 1 C ' shall be used as SFI for $\mathrm{EF}_{\mathrm{ACM}}$, for compatibility reasons the terminal shall accept other values.

References:

- TS 31.102 [4], subclauses 4.2.9, 5.3.4 and Annex H.1;
- TS 22.086 [18], subclauses 2.1 and 2.2.1.

6.4.4.3 Test purpose

1) To verify that the Terminal clears a charged call if the USIM indicates that the ACM cannot be increased.
2) To verify that the Terminal is able to handle other values than " 1 C " as SFI of $\mathrm{EF}_{\mathrm{ACM}}$.

6.4.4.4 Method of test

6.4.4.4.1 Initial conditions

The Terminal shall be connected to the USIM simulator, with all elementary files coded as default with the exception of:

$\mathbf{E F}_{\text {UST }}$ (USIM Service Table)

Logically: Local Phone Book available; User controlled PLMN selector available; Fixed dialling numbers available; The GSM Access available; The Group Identifier level 1 and level 2 not available; AoC available. Service n 33 (Packed Switched Domain) shall be set to '1' Enabled Services Table available

Coding:	B1	B2	B3	B4	B5
binary	xxxx xx11	xxx1 xxxx	xxxx 1x00	xxxx x1xx	xxxx xx11

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.

$\mathbf{E F}_{\mathrm{ACM}}$ (Accumulated call meter)

Logically: (Maximum value - 10) units

Coding:	B1	B2	B3
binary	11111111	11111111	11110101

The SFI of $\mathrm{EF}_{\mathrm{ACM}}$ shall be set to " 18 ".

$\mathbf{E F}_{\text {ACMmax }}$ (Accumulated call meter maximum)

Logically: (Maximum value - 2) units

Coding:	B1	B2	B3
binary	11111111	11111111	11111101

The USS transmits on the BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

User Equipment:
The UE is in MM-state "idle, updated".
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

6.4.4.4.2 Procedure

a) The UE is made to initiate a call. The call establishment shall be performed according to the procedures defined in TS 34.108 [21], subclause 7.2.3.2.3 extended by the messages of the AoCC. The call is established with AoCC e-parameters sent in a Facility IE in the CONNECT message, as given below. The UE returns the AoCC acknowledgement after reception of the CONNECT message. It is an implementation option whether the AoCC acknowledge is sent by the UE before or after the CONNECT ACKNOWLEDGE.
b) After an interval has elapsed, the Terminal increments the ACM. When an INCREASE command is received, the USIM-simulator sends back the error " 98 50".
c) Conditions are reset to those described in the initial conditions. Steps a) and b) of the test are repeated, except that the error code sent by the USIM simulator at step b) is now " $6 \mathrm{~F} x$ ".
d) Conditions are reset to those described in the initial conditions. Steps a) and b) of the test are repeated, except that the error code sent by the USIM simulator at step b) is now " 6581 ".

References:

- TS 102221 [5], subclause 10.2.1.

Maximum Duration of Test:
3 minutes.

Expected Sequence A:

Step	Direction	Message	Comments
1	UE		The UE is made to initiate a call
2	UE -> USS	RRC CONNECTION REQUEST	
3	USS -> UE	RRC CONNECTION SETUP	
4	UE -> USS	RRC CONNECTION SETUP COMPLETE	
5	USS -> UE	AUTHENTICATION REQUEST	MM procedure, to ensure the successful start of integrity in step 8
6	UE -> USS	AUTHENTICATION RESPONSE	
7	USS -> UE	SECURITY MODE COMMAND	RRC procedure, start of integrity is mandatory during call setup
8	UE -> USS	SECURITY MODE COMPLETE	
9	UE -> USS		
11	USS -> UE	CALL PROCEEDING	
12	USS -> UE	RADIO BEARER SETUP	To a supported channel type
13	UE -> USS	RADIO BEARER SETUP COMPLETE	
14	USS -> UE	ALERTING	
15	USS -> UE	CONNECT	As default message except contains Facility IE with contents as indicated in i) below
			Either A or B branch is taken
A16	UE -> USS	CONNECT ACKNOWLEDGE	
A17	UE -> USS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B16	UE -> USS	FACILITY	As default message except contains Facility IE with contents as indicated in ii) below
B17	UE -> USS	CONNECT ACKNOWLEDGE	
18			call duration 10s after CAI information sent by USS
19	UE -> USS	DISCONNECT	
20	USS -> UE	RELEASE	
21	UE -> USS	RELEASE COMPLETE	
22	USS -> UE	RRC CONNECTION RELEASE	All connections of RRC are released.
23	UE -> USS	RRC CONNECTION RELEASE COMPLETE	

Expected Sequence B:

Step	Direction	Message	
1	UE		Comments
2	UE -> SS	CHANNEL REQUEST	The UE is made to initiate a call
3	SS -> UE	IMMEDIATE ASSIGNMENT	
4	UE -> SS	CM SERVICE REQUEST	
5	SS -> UE	CM SERVICE ACCEPT	
6	UE -> SS	SETUP	
7	SS -> UE	CALL PROCEEDING	
8	SS -> UE	ASSIGNMENT COMMAND	
9	UE -> SS	to a supported channel type	
10	ASSIGNMENT COMPLETE		
11	SS $->$ UE	ALERTING	CONNECT

Specific Message Contents:
i) FACILITY Information Element with Invoke = ForwardChargeInformation component type as defined in TS 24.080 [17], subclause 3.6.1 table 3.3.

For ASN. 1 description see default message contents in TS 51.010-1 [22], subclause 31.6.4.
The values of the e-parameters within the parameter part of the Facility Information Element shall be set as below:
e-parameters:
$\begin{array}{llllllll}\text { parameter: } & \text { e1 } & \text { e2 } & \text { e3 } & \text { e4 } & \text { e5 } & \text { e6 } & \text { e7 } \\ \text { value } & 20 & 10 & 1 & 0 & 0 & 0 & 0\end{array}$

Values shown in table are in the format and have units as in TS 22.024 [8], clause 3.
ii) FACILITY Information Element with Return Result component type as defined in TS 24.080 [17], subclause 3.6.1 table 3.4.

For ASN. 1 description see default message contents in TS 51.010-1 [22], subclause 31.6.4.

6.4.4.5 Acceptance criteria

1) The UE shall terminate the call correctly 10 s after CAI was sent.
2) In each of the three cases, as described in steps b), c) and d) of the procedure, the UE shall terminate the call correctly when it receives an indication from the USIM that the ACM cannot be incremented.

$7 \quad$ PLMN related tests

7.1 FPLMN handling

7.1.1 Adding FPLMN to the Forbidden PLMN list

7.1.1.1 Definition and applicability

A list of forbidden PLMNs stored in the USIM and providing storage for at least 4 entries is managed by the UE. In automatic PLMN selection mode the UE controls registration attempts to appropriate networks with respect to this list of forbidden PLMNs. As a result of a registration reject with the cause "PLMN not allowed" the UE stores the PLMN which rejected the update request in the USIM.

The registration attempts initiated by the 3G UE depends on UEs capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

7.1.1.2 Conformance requirement

In case of a 2G terminal:

1) In automatic PLMN selection mode the UE shall only attempt a LOCATION UPDATE if it receives a BCCH containing a LAI that is not indicated in the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM.

Reference:

- TS 22.011 [6], subclause 2.3;
- TS 31.102 [4], subclauses 5.1.1 and 5.2.7.

2) After receipt of a LOCATION UPDATING REJECT message with the cause "PLMN not allowed" the Terminal shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM.

Reference:

- TS 22.011 [6], subclause 2.3;
- TS 31.102 [4], subclauses 5.1.1 and 5.2.7.

3) After call termination the USIM shall contain the correct Key Set Identifier.

Reference:

- TS 31.102 [4], subclauses 5.1.2, 5.2.5 and 5.2.6;
- TS 21.111 [19], subclause 10.1.

4) After call termination the USIM shall contain the correct TMSI and location information received by the UE.

Reference:

- TS 31.102 [4], subclauses 5.1.2, 5.2.5 and 5.2.6;
- TS 21.111 [19], subclause 10.1.

In case of a 3G terminal:

1) Depending on which domain the UE is going to be registered on, one of the following requirements should be fulfilled:
I. In automatic PLMN selection mode the UE shall only attempt a LOCATION UPDATING REQUEST during registration on CS if it receives a BCCH containing a PLMN(MCC,MNC) that is not indicated in the EF fPLMN in the USIM or
II. in automatic PLMN selection mode the UE shall only attempt a ATTACH REQUEST during registration on PS if it receives a BCCH containing a PLMN(MCC,MNC) that is not indicated in the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM or
III. in automatic PLMN selection mode the UE shall only attempt a LOCATION UPDATING REQUEST and/or ATTACH REQUEST during registration on CS/PS if it receives a BCCH containing a PLMN(MCC,MNC) that is not indicated in the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM.

Reference:

- TS 22.011 [6], subclause 2.3;
- TS 31.102 [4], subclauses 5.1.1 and 5.2.7.

2) Depending on which domain the UE is going to be on, one of the following requirements should be fulfilled:
I. After after receipt of a LOCATION UPDATING REJECT message during registration on CS with the cause "PLMN not allowed" the Terminal shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM or.
II. after receipt of a ATTACH REJECT message during registration on PS with the cause "PLMN not allowed" the Terminal shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM or
III. after receipt of a LOCATION UPDATING REJECT and/or ATTACH REJECT message during registration on CS/PS with the cause "PLMN not allowed" the Terminal shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM.

Reference:

- TS 22.011 [6], subclause 3.2.2 2.3;
- TS 31.102 [4], subclauses 5.1.1 and 5.2.7.

3) After call termination the USIM shall contain the correct Key Set Identifier.
4) Depending on which domain the UE is going to be registered on, one of the following requirements should be fulfilled:
I. after registration on CS the USIM shall contain the correct TMSI and location information received by the UE or
II. after registration on PS the USIM shall contain the correct P-TMSI and routing information received by the UE or
III. after registration on CS/PS the USIM shall contain the correct TMSI, P-TMSI, location information and routing information received by the UE.

Reference:

- TS 31.102 [4], subclauses 5.1.2, 5.2.5 and 5.2.6;
- TS 21.111 [6], subclause 10.1.

5) After call termination the USIM shall contain the correct TMSI and location information received by the UE.

Reference:

- TS 31.102 [4], subclauses 5.1.2, 5.2.5 and 5.2.6;
- TS 21.111 [6], subclause 10.1.

7.1.1.3 Test purpose

In case of a 2 G terminal:

1) To verify that in automatic PLMN selection mode the UE does not attempt to access PLMNs stored in EF $_{\text {FPLMN }}$ on the USIM.
2) To verify that the $E F_{\text {FPLMN }}$ is correctly updated by the Terminal after receipt of a LOCATION UPDATING REJECT message with cause "PLMN not allowed".
3) To verify that the $\mathrm{EF}_{\text {Keys }}$ has been correctly updated by the Terminal.
4) To verify that the $\mathrm{EF}_{\text {LOCI }}$ has been correctly updated by the Terminal.

In case of a 3G terminal:

1) To verify that in automatic PLMN selection mode the UE does not attempt to access PLMNs stored in $E_{\text {FPLMN }}$ on the USIM.
2) To verify that the $E F_{\text {FPLMN }}$ is correctly updated by the Terminal after receipt of a
I. LOCATION UPDATING REJECT message with cause "PLMN not allowed" during registration on CS or.
II. ATTACH REJECT message with cause "PLMN not allowed" during registration on PS or.
III. LOCATION UPDATING REJECT and/or ATTACH REJECT message with cause "PLMN not allowed" during registration on CS/PS.
3) To verify that
I. the $\mathrm{EF}_{\text {LOCI }}$ has been correctly updated by the Terminal during registration on CS or.
II. the $\mathrm{EF}_{\text {PSLOCI }}$ has been correctly updated by the Terminal during registration on PS or.
III. the the $\mathrm{EF}_{\text {LOCI }}$ and $\mathrm{EF}_{\text {PSLOCI }}$ have been correctly updated by the Terminal during registration on CS/PS.

7.1.1.4 Method of test

7.1.1.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 234/002/0001.
- RAI (MCC/MNC/LAC/RAC): 234/002/0001/05. (only for UTRAN cell)
- Access control: unrestricted.

NOTE: In case of a GERAN no packet system information is transmitted
The default UICC is used with the following exception:

$\mathbf{E F}_{\text {IMSI }}$ (IMSI)

Logically: 246081111111111

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9
Hex	08	29	64	80	11	11	11	11	11

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)

Logically: LAI-MCC: 234
LAI-MNC: 007

```
LAI-LAC: 0000
TMSI: "32547698"
```

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	32	54	76	98	32	74	00	00	00	FF	00

$\mathbf{E F}_{\text {PSLOCI }}$ (Packet Switched location Information)
Logically: RAI-MCC: 234
RAI-MNC: 007
RAI-LAC: 0000
RAI-RAC: 05
P-TMSI: "32547698"
P-TMSI signature value:"112233"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	32	54	76	98	11	22	33	32	74	00	00
	B12	B13	B14								

The UICC is installed into the Terminal and the UE is set to automatic PLMN selection mode.

In case of a Terminal accessing GERAN:

$\mathbf{E F}_{\text {Keys }}$ (Ciphering and Integrity Keys)

Logically:		Key Set Identifier KSI: Ciphering Keys CK: Integrity Keys IK:			02 undefined undefined						
Coding:	B1	B2	B3	...	B16	B17	B18	\ldots	B31	B32	B33
Hex	02	xx	xx	\ldots	xx	xx	xx		xx	xx	xx

In case of a Terminal accessing UTRAN "Expected Sequence A" shall be performed and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

7.1.1.4.2 Procedure

Expected Sequence A:
a) The UE is powered on.
b) The USS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

```
PLMN (MCC/MNC):
234/003
```

The USS then resumes RF output on the BCCH.
c) The USS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

```
PLMN (MCC/MNC): 234/004
```

The USS then resumes RF output on the BCCH.
d) The USS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

```
PLMN (MCC/MNC): 234/005
```

The USS then resumes RF output on the BCCH.
e) The USS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

LAI (MCC/MNC/LAC):234/007/0001
RAI (MCC/MNC/LAC/RAC): 234/007/0001/05
The USS then resumes RF output on the BCCH.
f) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
g) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS sends LOCATION UPDATING REJECT to the UE with cause "PLMN Not Allowed", followed by RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS sends ATTACH REJECT to the UE with cause "PLMN Not Allowed", followed by RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or
III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS sends LOCATION UPDATING REJECT and/or ATTACH REJECT to the UE with cause "PLMN Not Allowed", followed by RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.

The USS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

LAI (MCC/MNC): 234/008/0001

RAI (MCC/MNC/LAC/RAC): 234/008/0001/05
The USS then resumes RF output on the BCCH.
h) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
i) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC/LAC):234/008/0001
TMSI: "43658709"
II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ATTACH ACCEPT to the UE with :

RAI (MCC/MNC/LAC/RAC): 234/008/000/05
P-TMSI: "43658709"
P-TMSI signature value "443322"
III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ATTACH ACCEPT with some of the following values to the UE with :

LAI (MCC/MNC/LAC):234/008/0001

TMSI: "43658709"
RAI (MCC/MNC/LAC/RAC): 234/008/000/05
P-TMSI: "43658709"
P-TMSI signature value "443322"
j) After passing through the authentication procedure and after receipt of
I. TMSI REALLOCATION COMPLETE during registration on CS from the UE the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
II. ATTACH COMPLETE during registration on PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE during registration on CS/PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
k) The UE is soft powered down.

Expected Sequence B:
a) The UE is powered on.
b) The SS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

PLMN (MCC/MNC): 234/003
The SS then resumes RF output on the BCCH.
c) The SS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

PLMN (MCC/MNC): 234/004
The SS then resumes RF output on the BCCH.
d) The SS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

PLMN (MCC/MNC): 234/005
The SS then resumes RF output on the BCCH.
e) The SS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

PLMN (MCC/MNC): 234/007/0001
RAI (MCC/MNC/LAC/RAC): 234/007/0001/05
The SS then resumes RF output on the BCCH.
f) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
g) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING REJECT to the UE with cause "PLMN Not Allowed", followed by CHANNEL RELEASE.

The SS stops all RF output on the BCCH for a long enough period of time to cause a cell reselection procedure in the UE. The BCCH is changed to contain:

PLMN (MCC/MNC): 234/008/0001

RAI (MCC/MNC/LAC/RAC): 234/008/0001/05
The SS then resumes RF output on the BCCH.
h) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
i) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC/LAC): 234/008/0001
TMSI: "43658709"
to the UE.
j) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
k) The UE is soft powered down.

7.1.1.5 Acceptance criteria

1) After each of the steps a) to d) the UE shall not attempt a LOCATION UPDATING and not a ATTACH procedure.
2) After step f) the 2G UE shall send LOCATION UPDATING REQUEST to the SS and a 3 G terminal shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
3) After step h) the 2G UE shall send LOCATION UPDATING REQUEST to the SS and a 3 G terminal shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
4) After step i) the 2G UE shall respond with TMSI REALLOCATION COMPLETE to the SS and a 3 G terminal shall respond with
I. TMSI REALLOCATION COMPLETE to the USS during registration on CS or
II. ATTACH COMPLETE during registration on PS or
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE to the USS during registration on CS/PS..
5) After step k) the USIM shall contain the following values:
$\mathbf{E F}_{\text {FPLMN }}$ (Forbidden PLMNs)

Logically:	PLMN1:	234002 (MCC MNC)
	PLMN2:	234003
	PLMN3:	234004
	PLMN4:	234005
	PLMN5:	234006
	PLMN6:	234007

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Hex	32	24	00	32	34	00	32	44	00	32	54	00
	B13	B14	B15	B16	B17	B18						
	32	64	00	32	74	00						

For 2G terminals and 3G terminals supporting (CS and PS) or (CS only):

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)		
Logically:	LAI-MCC:	234
	LAI-MNC:	008
	TMSI:	$" 43658709 "$

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	43	65	87	09	32	84	00	xx	xx	xx	00

For 3G terminals supporting (CS and PS) or (PS only):

$\mathbf{E F}_{\text {PSLoCI }}$ (Location Information)

Logically: RAI-MCC: 234
RAI-MNC: 008
P-TMSI: "43658709"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	43	65	87	09	$x x$	xx	xx	32	84	00	xx
Coding:	B12	B13	B14								
Hex	xx	xx	00								

In case of a Terminal accessing GERAN:
$\mathbf{E F}_{\text {Keys }}$ (Ciphering and Integrity Keys)
$\begin{array}{lll}\text { Logically: } & \text { Key Set Identifier KSI: } & 07 \text { (not available) } \\ & \text { Ciphering Keys CK: } & \text { xx }\end{array}$
Integrity Keys IK: xx

Coding:	B1	B2	B3	\ldots	B16	B17	B18	\ldots	B31	B32	B33
Hex	07	xx	xx	\ldots	xx	xx	xx	\ldots	xx	xx	Xx

7.1.2 UE updating forbidden PLMNs

7.1.2.1 Definition and applicability

A list of forbidden PLMNs stored in the USIM provides storage for at least 4 entries, and is managed by the UE. In automatic PLMN selection mode the UE controls registration attempts to appropriate networks with respect to this list of forbidden PLMNs. As a result of a registration reject with the cause "PLMN not allowed" the UE stores the PLMN which rejected the update request in the USIM.

The registration attempts initiated by the 3G UE depends on UEs capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

7.1.2.2 Conformance requirement

In case of a 2 G terminal:
After the receipt of a LOCATION UPDATING REJECT message with the cause "PLMN not allowed" the UE shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM.

Reference:

- TS 22.011 [6], subclause 3.2.2.4.
- TS 31.102 [4], subclauses 5.1.1 and 5.2.7.

In case of a 3G terminal:
Depending on which domain the UE will be registered on, one of the following requirements should be fulfilled:
I. After the receipt of a LOCATION UPDATING REJECT message during registration on CS with the cause "PLMN not allowed" the UE shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM or
II. after receipt of a ATTACH REJECT message during registration on PS with the cause "PLMN not allowed" the Terminal shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM or
III. after receipt of a LOCATION UPDATING REJECT and/or ATTACH REJECT message during registration on CS/PS with the cause "PLMN not allowed" the Terminal shall update the $\mathrm{EF}_{\text {FPLMN }}$ in the USIM.

Reference:

- TS 22.011 [6], subclause 3.2.2.4.
- TS 31.102 [4], subclauses 5.1.1 and 5.2.7.

7.1.2.3 Test purpose

To verify that the UE correctly updates the $\mathrm{EF}_{\text {FPLMN }}$, i.e. fill up existing gaps in the elementary file before overwriting any existing entries.

7.1.2.4 Method of test

7.1.2.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 234/002/0001.
- RAI (MCC/MNC/LAC/RAC): 234/002/0001/05 (only for UTRAN cell)
- Access control: unrestricted.

NOTE: In case of a GERAN no packet system information is transmitted
The default UICC is used with the following exception:
$\mathbf{E F}_{\text {fPLMN }}$ (Forbidden PLMNs)
Logically: PLMN1: 234001 (MCC MNC)
PLMN2: empty
PLMN3: 234003
PLMN4: 234004
PLMN5: 234005
PLMN6: 234006

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Hex	32	14	00	FF	FF	FF	32	34	00	32	44	00
	B13	B14	B15	B16	B17	B18						
	32	54	00	32	64	00						

The UICC is installed into the Terminal and the UE is set to automatic PLMN selection mode.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

7.1.2.4.2 Procedure

Expected Sequence A:
a) The UE is powered on.
b) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:

During registration on CS and after After receipt of a LOCATION UPDATING REQUEST from the UE, the USS sends LOCATION UPDATING REJECT to the UE with the cause "PLMN not allowed", followed by RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
d) The UE is soft powered down.

Expected Sequence B:
a) The UE is powered on.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS sends LOCATION UPDATING REJECT to the UE with the cause "PLMN not allowed", followed by RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or
II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS sends ATTACH REJECT to the UE with cause "PLMN Not Allowed", followed by RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or
III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS sends LOCATION UPDATING REJECT and/or ATTACH REJECT to the UE with cause "PLMN Not Allowed", followed by RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
d) The UE is soft powered down.

7.1.2.5 Acceptance criteria

1) After step b) the 2 G UE shall send LOCATION UPDATING REQUEST to the SS and the 3 G terminal shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
2) After step d) the USIM shall contain:

EF $_{\text {FPLMN }}$ (Forbidden PLMNs)

Logically:		PLM		234001 (MCC MNC)								
		PLMN2:		234002								
		PLMN3:		234003								
		PLMN4:		234004								
		PLMN5:		234005								
		PLMN6:		234006								
Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Hex	32	14	00	32	24	00	32	34	00	32	44	00
	B13	B14	B15	B16	B17	B18						
	32	54	00	32	64	00						

or
EF $_{\text {FPLMN }}$ (Forbidden PLMNs)

Logically:		PLM		234001 (MCC MNC)								
		PLMN2:		234003								
		PLMN3:		234004								
		PLMN4:		234005								
		PLMN5:		234006								
		PLMN6:		234002								
Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Hex	32	14	00	32	34	00	32	44	00	32	54	00
	B13	B14	B15	B16	B17	B18						
	32	64	00	32	24	00						

7.1.3 UE deleting forbidden PLMNs

7.1.3.1 Definition and applicability

In manual PLMN selection mode the UE allows registration attempts to all available PLMNs, including forbidden PLMNs (as indicated by the forbidden PLMN list on the USIM). As a result of a successful registration procedure onto a PLMN which is in the forbidden PLMN list, the forbidden PLMN list is automatically updated by the UE.

The registration attempts initiated by the 3G UE depends on UEs capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

7.1.3.2 Conformance requirement

In case of a 2 G terminal:

1) In manual PLMN selection mode the UE shall be able to perform a LOCATION UPDATING attempt to a PLMN which is in the forbidden PLMN list.

- TS 22.011 [6], subclause 3.2.2.2.

2) After receipt of LOCATION UPDATING ACCEPT the UE shall delete the forbidden PLMN from the forbidden PLMN list.

- TS 22.011 [6], subclause 3.2.2.4.

In case of a 3G terminal:

1) Depending on which domain the UE will be registered on, one of the following requirements should be fulfilled:
I. In manual PLMN selection mode the UE shall be able to perform a LOCATION UPDATING attempt during registration on CS to a PLMN which is in the forbidden PLMN list or
II. In manual PLMN selection mode the UE shall be able to perform a ATTACH attempt during registration on PS to a PLMN which is in the forbidden PLMN list or
III. In manual PLMN selection mode the UE shall be able to perform a LOCATION UPDATING and/or ATTACH attempt during registration on CS/PS to a PLMN which is in the forbidden PLMN list.

- TS 22.011 [6], subclause 3.2.2.2.
- TS 31.102 [4], subclauses 5.1.1 and 5.2.7.

2) Depending on which domain the UE is going to be registered on, one of the following requirements should be fulfilled:
I. After receipt of LOCATION UPDATING ACCEPT message during registration on CS the UE shall delete the forbidden PLMN from the forbidden PLMN list OR
II. after receipt of ATTACH ACCEPT message during registration on PS the UE shall delete the forbidden PLMN from the forbidden PLMN list or
III. after receipt of LOCATION UPDATING ACCEPT and/or ATTCH ACCEPT message during registration on CS/PS the UE shall delete the forbidden PLMN from the forbidden PLMN list.

- TS 22.011 [6], subclause 3.2.2.4.

7.1.3.3 Test purpose

1) To verify that the 2G UE is able to perform a LOCATION UPDATING on a forbidden PLMN in manual PLMN selection mode or to verify that the 3 G UE is able to perform
I. a LOCATION UPDATING REQUEST during registration on CS on a forbidden PLMN in manual PLMN selection mode or
II. a ATTACH REQUEST during registration on PS on a forbidden PLMN in manual PLMN selection mode or
III. a LOCATION UPDATING REQUEST and/or ATTACH REQUEST during registration on CS/PS on a forbidden PLMN in manual PLMN selection mode.
2) To verify that the UE after a successful registration attempt deletes the PLMN in the $\mathrm{EF}_{\text {FPLMN }}$ on the USIM.

7.1.3.4 Method of test

7.1.3.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 234/005/0001.
- RAI (MCC/MNC/LAC/RAC): 234/005/0001/05 (only for UTRAN cell).
- Access control: unrestricted.

NOTE: In case of a GERAN no packet system information is transmitted
The default UICC is used with the following exception:

$\mathbf{E F F}_{\text {FPLMN }}$ (Forbidden PLMNs)												
Logically:		$\begin{aligned} & \text { PLM } \\ & \text { PLM } \end{aligned}$		empty empty empty empty 234005 (MCC MNC) empty								
Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Hex	FF											
	$\begin{aligned} & \text { B13 } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { B14 } \\ & 54 \end{aligned}$	$\begin{aligned} & \text { B15 } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { B16 } \\ & \text { FF } \end{aligned}$	B17	$\begin{aligned} & \text { B18 } \\ & \text { FF } \end{aligned}$						

The UICC is installed into the Terminal and the UE is set to manual PLMN selection mode.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

7.1.3.4.2 Procedure

Expected Sequence A:
a) The UE is powered on.
b) PLMN with MCC/MNC of 234/005 is manually selected.
c) After receipt of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
d) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT with to the UE:

```
LAI (MCC/MNC/LAC): 234/005/0001
TMSI: "12345678"
```

II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ATTACH ACCEPT with to the UE:

RAI (MCC/MNC/LAC): 234/005/0001/05
P-TMSI: "12345678"
P-TMSI signature value "AB1234"
III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ATTACH ACCEPT with some of the following values to the UE with:

LAI (MCC/MNC/LAC): 234/005/0001
TMSI: "12345678"

```
RAI (MCC/MNC/LAC): 234/005/0001/05
P-TMSI: "12345678"
P-TMSI signature value "AB1234"
```

e) After passing through the authentication procedure and after receipt of
I. TMSI REALLOCATION COMPLETE during registration on CS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or
II. ATTACH COMPLETE during registration on PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE during registration on CS/PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
f) The UE is soft powered down.

Expected Sequence B:
a) The UE is powered on.
b) PLMN with MCC/MNC of 234/005 is manually selected.
c) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
d) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC): 234/005
TMSI: "12345678"
to the UE.
e) After receipt of TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE.
f) The UE is soft powered down.

7.1.3.5 Acceptance criteria

1) After step c) the 2 G UE shall send LOCATION UPDATING REQUEST to the SS and the 3 G terminal shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
2) After step d) the 2 G UE shall respond with TMSI REALLOCATION COMPLETE and the 3G terminal shall respond with
I. TMSI REALLOCATION COMPLETE to the USS during registration on CS or
II. ATTACH COMPLETE during registration on PS or
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE to the USS during registration on CS/PS.
3) After step f) the USIM shall contain the following values:

$\mathbf{E F}_{\text {FPLMN }}$ (Forbidden PLMNs)												
Logically:		$\begin{aligned} & \text { PLM } \\ & \text { PLM } \end{aligned}$		empty empty empty empty empty empty								
Coding: Hex	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
	FF											
	B13	B14	B15	B16	B17	B18						
	FF	FF	FF	FF	FF	FF						

For 2G terminals and 3G terminals supporting CS only or CS/PS :

For UEs supporting PS only or CS/PS :
$\mathbf{E F}_{\text {PSLOCI }}$ (Location Information)

Logically:	RAI-MCC:	234
	RAI-MNC:	005
	P-TMSI:	$" 12345678 "$

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	12	34	56	78	$x x$	xx	xx	32	54	00	xx

7.2 User controlled PLMN selector handling

7.2.1 UE updating the User controlled PLMN selector list

7.2.1.1 Definition and applicability

The User controlled PLMN selector list gives in priority order the preferred UPLMNs on which the UE shall register. The Radio Access Technology identifier defines the Radio network in which the UE shall register. The list is stored on the USIM in the $\mathrm{EF}_{\text {PLMNwact. }}$. Update and deletion of PLMNs may be performed by the subscriber.

7.2.1.2 Conformance requirement

The UE shall correctly replace the selected UPLMN in the User controlled PLMN selector list.

- TS 31.102 [4], subclause 5.3.6.

7.2.1.3 Test purpose

To verify that the UE correctly updates the $\mathrm{EF}_{\text {PLMNwact }}$.

7.2.1.4 Method of test

7.2.1.4.1 Initial conditions

No USS/SS is required for this test.
The default UICC is used.
The UICC is installed into the Terminal and the UE is powered on.

7.2.1.4.2 Procedure

a) The user shall initiate an MMI dependent procedure to change the second UPLMN in the User controlled PLMN selector list to MCC/MNC of 567/02, the ACT identifier shall set to UTRAN only.
b) The UE is soft powered down.

7.2.1.5 Acceptance criteria

After step b) the USIM shall contain the following values:

```
EF
    Logically: 1 1 Pt PLMN: 244081 (MCC MNC)
    1 st ACT: UTRAN
    2 nd PLMN: }5670
    2 nd ACT UTRAN
    3 rd PLMN: }24408
    3 rd ACT UTRAN
    4 th PLMN: }24408
    4 th ACT GSM
    5 th PLMN: }24400
    5 th ACT UTRAN
    6 th PLMN: }24400
    6 th ACT UTRAN
    7 th PLMN: }24400
    7 th ACT UTRAN
    8 th PLMN: }24400
    8}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ ACT UTRAN
    9 th PLMN: }24400
    9 th ACT UTRAN
    10 th PLMN: 244008
    10 th ACT UTRAN
    11 th PLMN: 244009
    11 th ACT UTRAN
    12 th PLMN: }24401
12 ACT UTRAN
```

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15
Hex	42	14	80	80	00	65	F7	20	80	00	42	24	80	80	00
	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30
	42	24	80	00	80	42	34	00	80	00	42	44	00	80	00
	B31	B32	B33	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45
	42	54	00	80	00	42	64	00	80	00	42	74	00	80	00
	B46	B47	B48	B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
	42	84	00	80	00	42	94	00	80	00	42	04	10	80	00

7.2.2 UE recognising the priority order of the User controlled PLMN selector list with the same access technology.

7.2.2.1 Definition and applicability

The User controlled PLMN selector list gives in priority order the preferred UPLMNs on which the UE shall register. The Radio Access Technology identifier defines the Radio network in which the UE shall register. The list is stored on the USIM in the $E_{\text {PLMNwACT }}$. Update and deletion of UPLMNs may be performed by the subscriber by the use of the PIN.

The registration attempts initiated by the terminal accessing UTRAN depends on terminal's capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

7.2.2.2 Conformance requirement

When registering onto a VPLMN the UE shall take into account the priority order of the UPLMNs in the preferred list on the USIM.

- TS 22.011 [6], subclause 3.2.2.

7.2.2.3 Test purpose

To verify that the UPLMN with the higher priority (defined by its position in $\mathrm{EF}_{\text {PLMNwACT }}$) takes precedence over the UPLMN with the lower priority when the UE performs a network selection.

7.2.2.4 Method of test

7.2.2.4.1 Initial conditions

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing a GERAN) transmits on two BCCHs , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/033/0001.
- RAI (MCC/MNC/LAC/RAC): 244/033/0001/05 (only for UTRAN cell).
- Access control: unrestricted.
- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/034/0001.
- RAI (MCC/MNC/LAC/RAC): 244/034/0001/05 (only for UTRAN cell).
- Access control: unrestricted.

NOTE: In case of a GERAN no packet system information is transmitted
The default UICC is used with the following exception:

EF Plmnwact $^{\text {(UPLMN Selector with Access Technology) }}$		
Logically:	$1^{\text {st }}$ PLMN:	244081 (MCC MNC)
	$1{ }^{\text {st }}$ ACT:	UTRAN
	$2{ }^{\text {nd }}$ PLMN:	244081
	$2^{\text {nd }}$ ACT	GSM
	$3{ }^{\text {rd }}$ PLMN:	244082
	$3{ }^{\text {rd }} \mathrm{ACT}$	UTRAN
	$3{ }^{\text {rd }}$ PLMN:	244082
	$3^{\text {rd }} \mathrm{ACT}$	GSM
	
	$8^{\text {th }}$ PLMN:	244034
	$8^{\text {th }}$ ACT	GSM
	$9^{\text {th }}$ PLMN:	244033
	$9^{\text {th }}$ ACT	GSM
	$10^{\text {th }}$ PLMN:	244008
	$10^{\text {th }} \mathrm{ACT}$	UTRAN
	$11^{\text {th }}$ PLMN:	244034
	$11^{\text {th }}$ ACT	UTRAN
	$12^{\text {th }}$ PLMN:	244033
	$12^{\text {th }} \mathrm{ACT}$	UTRAN

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15
Hex	42	14	80	80	00	42	14	80	00	80	42	24	80	80	00
	B16	B17	B18	B19	B20	$\ldots .$.	$\ldots .$.	\ldots.	$\ldots .$.						
	42	24	80	00	80	$\ldots .$.	\ldots.	\ldots.	$\ldots .$.						
				$\ldots .$.	$\ldots .$.	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45
				\ldots	\ldots	42	44	30	00	80	42	34	30	00	80
	B46	B47	B48	B49	B50	B51	B52		B53	B54	B55	B56	B57	B58	B59
B60															
	42	84	00	80	00	42	44	30	80	00	42	34	30	80	00

The UICC is installed into the Terminal and the UE is set to automatic PLMN selection mode.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

7.2.2.4.2 Procedure

Expected Sequence A:
a) The UE is powered on.
b) After receipt on the cell related to the BCCH transmitting MCC/MNC 244/034 of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT to the UE with the following values:

LAI (MCC/MNC/LAC): 244/034/0001
TMSI: "34567890"
II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ATTACH ACCEPT to the UE with the following values :

```
RAI (MCC/MNC/LAC/RAC) 244/034/0001/05
P-TMSI "34567890"
P-TMSI signature value "AB1234"
```

III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ATTACH ACCEPT to the UE with some of the following values :

```
LAI (MCC/MNC/LAC): 244/034/0001
TMSI:"34567890"
RAI (MCC/MNC/LAC/RAC) 244/034/0001/05
P-TMSI "34567890"
P-TMSI signature value "AB1234"
```

d) After passing through the authentication procedure and after receipt of
I. TMSI REALLOCATION COMPLETE during registration on CS from the UE, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or
II. ATTACH COMPLETE during registration on PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE during registration on CS/PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
e) The UE is soft powered down.

Expected Sequence B:
a) The UE is powered on.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC): 244/034
TMSI: "34567890"
to the UE
d) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
e) The UE is soft powered down.

7.2.2.5 Acceptance criteria

1) After step a) the UE accessing a GERAN shall send CHANNEL REQUEST on the cell related to the BCCH transmitting MCC/MNC 244/034 to the SS and the UE accessing UTRAN shall send an RRC CONNECTION REQUEST on the cell related to the BCCH transmitting MCC/MNC 244/034 to the USS.
2) After step b) the UE accessing a GERAN shall send LOCATION UPDATING REQUEST to the SS and the UE accessing UTRAN shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST to the USS during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
3) After step c) the UE accessing a GERAN shall respond with TMSI REALLOCATION COMPLETE and the UE accessing UTRAN shall respond with
I. TMSI REALLOCATION COMPLETE to the USS during registration on CS or
II. ATTACH COMPLETE during registration on PS or
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE to the USS during registration on CS/PS.
4) After step e) the USIM shall contain the following values:

For UEs accessing GERAN and UEs accessing UTRAN and supporting (CS and PS) or (CS only):

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)										
Logically:	LAI-MCC: LAI-MNC: TMSI:		$\begin{aligned} & 244 \\ & 034 \\ & \text { " } 34567890 \text { " } \end{aligned}$							
Coding: B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex 34	56	78	90	42	44	30	xx	xx	xx	00

For UEs accessing UTRAN and supporting (CS and PS) or (PS only):
$\mathbf{E F}_{\text {PSLOCI }}$ (Location Information)
Logically: RAI-MCC: 244
RAI-MNC: 034
P-TMSI: "34567890"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	34	56	78	90	$x x$	xx	xx	42	44	30	xx
Coding:	B12	B13	B14								
Hex	xx	xx	00								

7.2.3 UE recognising the priority order of the User controlled PLMN selector list using an ACT preference.

7.2.3.1 Definition and applicability

The User controlled PLMN selector list gives in priority order the preferred PLMNs of the User on which the UE shall register. The Radio Access Technology identifier defines the Radio network in which the UE shall register. The list is stored on the USIM in the $\mathrm{EF}_{\text {PLMNwact }}$. Update and deletion of User controlled PLMNs may be performed by the subscriber by the use of the PIN.

7.2.3.2 Conformance requirement

When registering onto a VPLMN the UE shall take into account the priority of the ACT identifier in the preferred list on the USIM.

- TS 22.011 [6], subclause 3.2.2;
- TS 31.102 [4], subclauses 4.2.5 and 5.1.2.

7.2.3.3 Test purpose

To verify that the ACT with the higher priority (defined by its position in $\mathrm{EF}_{\mathrm{PLMNwACT}}$) takes precedence over the UPLMN with the lower priority when the UE performs a network selection.

7.2.3.4 Method of test

7.2.3.4.1 Initial conditions

For this test both a GSM SS and an UTRAN USS is needed.
The GSM SS transmits on BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/081/0001.
- Access control: unrestricted.

The UMTS USS transmits on BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC):

244/082/0001.

- Access control: unrestricted.

The default UICC is used.
The UICC is installed into the Terminal and the UE is set to automatic PLMN selection mode.

7.2.3.4.2 Procedure

a) The UE is powered on.
b) After receipt of a CHANNEL REQUEST from the UE on the GSM-cell related to the BCCH transmitting MCC/MNC 244/081, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC): 244/081
TMSI: "34567890"
to the UE.
d) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
e) The UE is soft powered down.

7.2.3.5 Acceptance criteria

1.) After step a) the UE shall send a CHANNEL REQUEST on the GSM-cell related to the BCCH transmitting MCC/MNC 244/081 to the SS.
2) After step b) the UE shall send LOCATION UPDATING REQUEST to the SS.
3) After step c) the UE shall respond with TMSI REALLOCATION COMPLETE.
4) After step e) the USIM shall contain the following values:

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)										
Logically:	LAI-MCC: LAI-MNC: TMSI:		244 081 "3456789							
Coding: B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex 34	56	78	90	42	14	80	xx	xx	xx	00

7.2.4 Void

7.3 Operator controlled PLMN selector handling

7.3.1 UE recognising the priority order of the Operator controlled PLMN selector list.

7.3.1.1 Definition and applicability

The Operator controlled PLMN selector list gives in priority order the preferred OPLMNs on which the UE shall register if no network of the User controlled PLMN selector list is available. The Radio Access Technology identifier defines the Radio network in which the UE shall register. The list is stored on the USIM in the EF OPLmNwact . Update and deletion of OPLMNs shall not be possible by the subscriber by the use of the PIN.

The registration attempts initiated by the UE accessing UTRAN depends on UE's capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

7.3.1.2 Conformance requirement

When registering onto a VPLMN the UE shall take into account the priority of OPLMNs in the preferred list on the USIM.

- TS 22.011 [6], subclause 3.2.2;
- TS 31.102 [4], subclause 4.2.53.

7.3.1.3 Test purpose

To verify that the OPLMN with the higher priority (defined by its position in $\mathrm{EF}_{\mathrm{OPLMNwACT}}$) takes precedence over the OPLMN with the lower priority when the UE performs a network selection.

7.3.1.4 Method of test

7.3.1.4.1 Initial conditions

For this test a USS (in case of a Terminal accessing UTRAN) or a SS (in case of a Terminal accessing a GERAN) is needed.

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing a GERAN)transmits on two BCCHs, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 254/011/0001.
- RAI (MCC/MNC/LAC/RAC): 254/011/0001/05 (for UTRAN cell only).
- Access control: unrestricted.
- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/012/0001.
- RAI (MCC/MNC/LAC/RAC): 254/012/0001/05 (for UTRAN cell only).
- Access control: unrestricted.

NOTE: In case of a GERAN no packet system information is transmitted.
The default UICC is used with the following exceptions:

EF $_{\text {UST }}$ (USIM Service Table)

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.

EF $_{\text {OPLMNwact }}$ (OPLMN Selector)

Logically: $\quad 1^{\text {st }}$ PLMN: 254012 (MCC MNC)
$1^{\text {st }}$ ACT UTRAN
$2^{\text {nd }}$ PLMN: 254011
$2^{\text {nd }}$ ACT UTRAN
$3^{\text {rd }}$ PLMN: 254002
$3^{\text {rd }}$ ACT: UTRAN
$4^{\text {th }}$ PLMN: 254012
$4^{\text {th }}$ ACT: GSM
$5^{\text {th }}$ PLMN: 254011
$5^{\text {th }}$ ACT: GSM
$6^{\text {th }}$ PLMN: 254005
$6^{\text {th }}$ ACT: UTRAN
$7^{\text {th }}$ PLMN: 254006
$7{ }^{\text {th }}$ ACT: UTRAN
$8^{\text {th }}$ PLMN: 254007

$$
8^{\text {th }} \text { ACT: UTRAN }
$$

Coding:	B01	B02	B03	B04	B05	B06	B07	B08	B09	B10
Hex	52	24	10	80	00	52	14	10	80	00
	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20
	52	24	00	80	00	52	14	10	00	80
	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30
	52	14	10	00	80	52	54	00	80	00
	B31	B32	B33	B34	B35	B36	B37	B38	B39	B40
	52	64	00	80	00	52	74	00	80	00

The UICC is installed into the Terminal and the UE is set to automatic PLMN selection mode.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

7.3.1.4.2 Procedure

Expected Sequence A:
a) The UE is powered on.
b) After receipt on the cell related to the BCCH transmitting MCC/MNC 254/012 of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) Depending on which domain the UE is going to be registered on, one of the following requirements should be fulfilled:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT to the UE with the following values:

```
LAI (MCC/MNC/LAC): 254/012/001
TMSI: "34567890"
```

II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ATTACH ACCEPT to the UE.with following values :

```
RAI (MCC/MNC/LAC/RAC) 254/012/0001/05
P-TMSI "34567890"
P-TMSI signature value "AB1234"
```

III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ATTACH ACCEPT to the UE.with some of the following values :
LAI (MCC/MNC): $254 / 012 / 0001$
TMSI: "34567890"
RAI (MCC/MNC/LAC/RAC)
254/012/0001/05
P-TMSI "34567890"
P-TMSI signature value "AB1234"
d) After receipt of a
I. TMSI REALLOCATION COMPLETE during registration on CS from the UE, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
II. ATTACH COMPLETE during registration on PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE during registration on CS/PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
e) The UE is soft powered down.

Expected Sequence B:
a) The UE is powered on.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC): 254/012
TMSI: "34567890"
to the UE.
d) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
e) The UE is soft powered down.

7.3.1.5 Acceptance criteria

1) After step a) the UE accessing a GERAN shall send CHANNEL REQUEST on the cell related to the BCCH transmitting MCC/MNC 254/012 to the SS and the UE accessing UTRAN shall send an RRC CONNECTION REQUEST on the cell related to the BCCH transmitting MCC/MNC 254/012 to the USS.
2) After step b) the UE accessing a GERAN shall send LOCATION UPDATING REQUEST to the SS and the UE accessing UTRAN shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST. to the USS during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
3) After step c) the UE accessing GERAN shall respond with TMSI REALLOCATION COMPLETE and the UE accessing UTRAN shall respond with
I. TMSI REALLOCATION COMPLETE during registration on CS or
II. ATTACH COMPLETE during registration on PS or
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE to the USS during registration on CS/PS.
4) After step e) the USIM shall contain the following values:

For UEs accessing GERAN and UEs accessing UTRAN and supporting (CS and PS) or (CS only):

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)											
Logically:		LAI-MCC: LAI-MNC: TMSI:		$\begin{aligned} & 254 \\ & 012 \\ & \text { " } 34567890 \text { " } \end{aligned}$							
Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	34	56	78	90	52	24	10	XX	xX	xX	00

For UEs supporting (CS and PS) or (PS only):

$\mathbf{E F}_{\text {PSLOCI }}$ (Location Information)

Logically: RAI-MCC: 254 RAI-MNC: 012
P-TMSI: "34567890"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	34	56	78	90	xx	xx	xx	52	24	10	xx
Coding:	B12	B13	B14								
Hex	xx	xx	00								

7.3.2 UE recognising the priority order of the User controlled PLMN selector over the Operator controlled PLMN selector list.

7.3.2.1 Definition and applicability

The User controlled PLMN selector list has a higher priority as the OPLMN selector list on which the UE shall register. The Radio Access Technology identifier defines the Radio network in which the UE shall register. The list is stored on the USIM in the $\mathrm{EF}_{\text {PLMnwact }}$.

The registration attempts initiated by the terminal accessing UTRAN depends on terminal's capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

7.3.2.2 Conformance requirement

When registering onto a VPLMN the UE shall take into account the priority of UPLMNs first before the OPLMNs in the preferred list on the USIM.

- TS 22.011 [6], subclause 3.2.2.2;
- TS 31.102 [4], subclauses 4.2.5 and 4.2.53.

7.3.2.3 Test purpose

To verify that the User controlled PLMN with a lower priority (defined by its position in $\mathrm{EF}_{\text {PLMNwACT }}$) takes precedence over the OPLMN with a higher priority when the UE performs a network selection.

7.3.2.4 Method of test

7.3.2.4.1 Initial conditions

For this test a USS (in case of a Terminal accessing UTRAN) or a SS (in case of a Terminal accessing a GERAN)is needed.

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of a Terminal accessing a GERAN)transmits on two BCCHs, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 254/001/0001.
- RAI (MCC/MNC/LAC/RAC): 254/001/0001/05 (only for UTRAN cell).- Access control: unrestricted.
- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/010/0001.
- RAI (MCC/MNC/LAC/RAC): 244/010/0001/05 (only for UTRAN cell)..
- Access control: unrestricted.

NOTE: In case of a GERAN no packet system information is transmitted
The default UICC is used with the following exception:

$\mathbf{E F}_{\text {UST }}$ (USIM Service Table)

Logically: Local Phone Book available
User controlled PLMN selector available
Fixed dialling numbers available
Barred dialling numbers available
The GSM Access available
The Group Identifier level 1 and level 2 not available
Service n 33 (Packed Switched Domain) shall be set to '1'
Enabled Services Table available
Operator controlled PLMN selector available

Coding:	B1	B2	B3	B4	B5	B6
binary	xx1x xx11	xxxx xxxx	xxxx 1×00	xxxx x1xx	xxxx xx11	xxxx xx1x

The coding of $\mathrm{EF}_{\mathrm{UST}}$ shall conform with the capabilities of the USIM used.
$\mathbf{E F}_{\text {PLMNwact }}$ (UPLMN Selector with Access Technology)
Logically: $\quad 1^{\text {st }}$ PLMN: 244081 (MCC MNC)
$1^{\text {st }}$ ACT: UTRAN
$2^{\text {nd }}$ PLMN: 244081
$2^{\text {nd }}$ ACT: GSM
$3^{\text {rd }}$ PLMN: 244082
$3^{\text {rd }}$ ACT: UTRAN
$4^{\text {th }}$ PLMN: 244082
$4^{\text {th }}$ ACT: GSM
$5^{\text {th }}$ PLMN: 244003
$5^{\text {th }}$ ACT: UTRAN
$6^{\text {th }}$ PLMN: 244004
$6^{\text {th }}$ ACT: UTRAN
$7^{\text {th }}$ PLMN: 244005
$7^{\text {th }}$ ACT: UTRAN
$8^{\text {th }}$ PLMN: 244006
$8^{\text {th }}$ ACT: UTRAN

			MN: CT: PLMN: ACT: PLMN: ACT: PLMN: ACT:	244 UTR 244 UTR 244 UTR 244 GSM											
Coding: Hex	$\begin{aligned} & \mathrm{B} 1 \\ & 42 \end{aligned}$	B2 14	B3 80	$\begin{aligned} & \text { B4 } \\ & 80 \end{aligned}$	$\begin{aligned} & \text { B5 } \\ & 00 \end{aligned}$	B6 42	$\begin{aligned} & \text { B7 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { B8 } \\ & 80 \end{aligned}$	$\begin{aligned} & \text { B9 } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { B10 } \\ & 80 \end{aligned}$	$\begin{aligned} & \text { B11 } \\ & 42 \end{aligned}$	$\begin{aligned} & \text { B12 } \\ & 24 \end{aligned}$	$\begin{aligned} & \text { B13 } \\ & 80 \end{aligned}$	$\begin{aligned} & \text { B14 } \\ & 80 \end{aligned}$	$\begin{aligned} & \text { B15 } \\ & 00 \end{aligned}$
	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30
	42	24	80	00	80	42	24	00	80	00	42	44	00	80	00
	B31	B32	B33	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45
	42	54	00	80	00	42	64	00	80	00	42	74	00	80	00
	B46	B47	B48	B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
	42	84	00	80	00	42	04	10	80	00	42	04	10	00	80

The UICC is installed into the Terminal and the UE is set to automatic PLMN selection mode.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN
"Expected Sequence B" shall be performed.

7.3.2.4.2 Procedure

Expected Sequence A:
a) The UE is powered on.
b) After receipt of a RRC CONNECTION REQUEST from the UE on the cell related to the BCCH transmitting MCC/MNC 244/010, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) Depending on which domain the UE is going to be registered on, one of the following requirements should be fulfilled:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT to the UE with the following values:

LAI (MCC/MNC/LAC): 244/010/0001
TMSI: "34567890"
II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ATTACH ACCEPT with the following values :

RAI (MCC/MNC/LAC/RAC) 244/010/0001/05
P-TMSI "34567890"
P-TMSI signature value " AB 1234 "
III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ATTACH ACCEPT with some of the following values :

LAI (MCC/MNC/LAC): 244/010/0001
TMSI: "34567890"

```
RAI (MCC/MNC/LAC/RAC) 244/010/0001/05
P-TMSI "34567890"
P-TMSI signature value "AB1234"
```

d) After receipt of a
I. TMSI REALLOCATION COMPLETE during registration on CS from the UE, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
II. ATTACH COMPLETE during registration on PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE during registration on CS/PS from the UE, the USS sends RRC CONNECTION RELEASE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
e) The UE is soft powered down.

Expected Sequence B:
a) The UE is powered on.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC):	$244 / 010$
TMSI:	$" 34567890 "$

to the UE.
d) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
e) The UE is soft powered down.

7.3.2.5 Acceptance criteria

1) After step a) the UE accessing a GERAN shall send CHANNEL REQUEST on the cell related to the BCCH transmitting MCC/MNC 244/010 to the SS and the UE accessing UTRAN shall send an RRC CONNECTION REQUEST on the cell related to the BCCH transmitting MCC/MNC 244/010 to the USS.
2) After step b) the UE accessing a GERAN shall send LOCATION UPDATING REQUEST to the SS and the UE accessing UTRAN shell send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
3) After step c) the UE accessing GERAN shall respond with TMSI REALLOCATION COMPLETE and the UE accessing UTRAN shall respond with
I. TMSI REALLOCATION COMPLETE during registration on CS or
II. ATTACH COMPLETE during registration on PS or
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE to the USS during registration on CS/PS..
4) After step e) the USIM shall contain the following values:

For UEs accessing GERAN and UEs accessing UTRAN and supporting (CS and PS) or (CS only):

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)										
Logically:	LAI-MCC: LAI-MNC: TMSI:		$\begin{aligned} & 244 \\ & 010 \\ & \text { "34567890" } \end{aligned}$							
Coding: B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
34	56	78	90	42	04	10	xx	xx	xx	00

For UEs supporting (CS and PS) or (PS only):

$\mathbf{E F}_{\text {PSLOCI }}$ (Location Information)

Logically:
RAI-MNC: 010
P-TMSI: "34567890"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	34	56	78	90	$x x$	xx	xx	42	04	10	xx
Coding:	B12	B13	B14								
Hex	xx	xx	00								

7.4 Higher priority PLMN search handling

7.4.1 UE recognising the search period of the Higher priority PLMN

7.4.1.1 Definition and applicability

The Higher priority PLMN list gives in priority order the Higher priority PLMN on which the UE shall register first. The Higher priority PLMN search period gives the time interval in which the UE shall search for a possible Higher priority PLMN registration.

The registration attempts initiated by the terminal accessing UTRAN depends on terminal's capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

7.4.1.2 Conformance requirement

After registered onto a VPLMN the UE shall take into account the Higher priority PLMN search period timer and the priority order of the Higher priority PLMNs in the preferred list on the USIM.

- TS 22.011 [6], subclauses 3.2.2 and 3.2.2.5.
- TS 24.008 [16], subclause 4.7.5

7.4.1.3 Test purpose

To verify that the Higher priority PLMN timer is read and the Higher priority PLMN takes precedence over the VPLMN in which the UE is currently registered in.

7.4.1.4 Method of test

7.4.1.4.1 Initial conditions

For this test an UTRAN USS (in case of a Terminal accessing UTRAN) or a SS (in case of Terminal accessing a GERAN) is needed.

The USS (in case of a Terminal accessing UTRAN)/ SS (in case of Terminal accessing a GERAN) transmits on BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/082/0001.
- RAI (MCC/MNC/LAC/RAC): 244/082/0001/05 (only for UTRAN cell).
- Access control: unrestricted.

After the registration of UE the USS (in case of a Terminal accessing UTRAN) or a SS (in case of Terminal accessing a GERAN) transmits on a second BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/081/0001.
- RAI (MCC/MNC/LAC/RAC): 244/081/0001/05. (only for UTRAN cell)
- Access control: unrestricted.

NOTE: In case of a GERAN no packet system information is transmitted
The default UICC shall be used with the following exception:

EF $_{\text {HPPLMN }}$ (Higher Priority PLMN Search period)

Logically: set to 6 minutes
Coding: B1
Hex 01

The UICC shall be installed into the Terminal and the UE shall be set to automatic PLMN selection mode.
In case of a Terminal accessing UTRAN "Expected Sequence A" and in case of a Terminal accessing a GERAN "Expected Sequence B" shall be performed.

7.4.1.4.2 Procedure

Expected sequence A:
a) The UE shall be powered on.
b) After receipt of a RRC CONNECTION REQUEST from the UE, the USS shall send RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS.
c) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT to the UE with the following values:

LAI (MCC/MNC/LAC): 244/082/0001
TMSI: "34567890"
II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ATTACH ACCEPT with the following values to the UE:

```
RAI (MCC/MNC/LAC/RAC): 244/082/0001/05
P-TMSI: "34567890"
P-TMSI signature value: "AB1234"
```

III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ATTACH ACCEPT with some of the following values to the UE:

LAI (MCC/MNC/LAC): 244/082/0001
TMSI: "34567890"
RAI (MCC/MNC/LAC/RAC)244/082/0001/05
P-TMSI "34567890"
P-TMSI signature value "AB1234"
d) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. After receipt of a TMSI REALLOCATION COMPLETE from the UE during registration on CS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
II. After receipt of a ATTACH COMPLETE from the UE during registration on PS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. After receipt of a TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE from the UE during registration on CS/PS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
e) The USS starts to send on the second BCCH with the MCC/MNC 244/081. An internal timer shall start to run.
f) After receipt on the cell related to the BCCH transmitting MCC/MNC 244/081 of a RRC CONNECTION REQUEST from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS. The internal timer is stopped.
g) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT to the UE with following values:

LAI (MCC/MNC/LAC): 244/081/0001
TMSI: "12345678"
II. During registration on PS and after receipt of a ROUTING AREA UPDATE REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ROUTING AREA UPDATE ACCEPT with the following values to the UE:

RAI (MCC/MNC/LAC/RAC): 244/081/0001/05
P-TMSI "12345678"
P-TMSI signature value "AB1234"
III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ROUTING AREA UPDATE REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ROUTING AREA UPDATE ACCEPT with some of the following values to the UE:

LAI (MCC/MNC/LAC): 244/081/0001
TMSI: "12345678"
RAI (MCC/MNC/LAC/RAC)244/081/0001/05
P-TMSI "12345678"
P-TMSI signature value "AB1234"
h) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. After receipt of a TMSI REALLOCATION COMPLETE from the UE during registration on CS, the USS sends RRC CONNECTION RELEASE to the UE followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or
II. After receipt of a ROUTING AREA UPDATE COMPLETE from the UE during registration on PS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. After receipt of a TMSI REALLOCATION COMPLETE and/or ROUTING AREA UPDATE COMPLETE from the UE during registration on CS/PS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
i) The UE is soft powered down.

Expected sequence B:
a) The UE shall be powered on.
b) After receipt of a CHANNEL REQUEST from the UE, the SS shall send IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC):	$244 / 081$
TMSI:	$" 34567890 "$

to the UE.
d) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
e) The SS starts to send on the second BCCH with the MCC/MNC 244/081. An internal timer shall start to run.
f) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE. The internal timer is stopped.
g) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC):	$246 / 081$
TMSI:	$" 12345678 "$

to the UE.
h) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
i) The UE is soft powered down.

7.4.1.5 Acceptance criteria

1) After step e) the UE accessing a GERAN shall send CHANNEL REQUEST on the cell related to the BCCH transmittingMCC/MNC 244/081 to the SS and the UE accessing UTRAN shall send an RRC CONNECTION REQUEST on the cell related to the BCCH transmitting MCC/MNC 246/081 to the USS
2) After.step e) the UE accessing a GERAN shall send LOCATION UPDATING REQUEST to the SS and the UE accessing UTRAN shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ROUTING AREA UPDATE REQUEST during registration on PS or
III. LOCATION UPDATING REQUEST and/or ROUTING AREA UPDATE REQUEST to the USS during registration on CS/PS.
3) After step g) the UE accessing a GERAN shall respond with TMSI REALLOCATION COMPLETE and the UE accessing UTRAN shall respond with
I. TMSI REALLOCATION COMPLETE to the USS during registration on CS or
II. ROUTING AREA UPDATE COMPLETE during registration on PS or
III. TMSI REALLOCATION COMPLETE and/or ROUTING AREA UPDATE COMPLETE to the USS during registration on CS/PS.
4) The value of the internal timer shall not exceed 6 minutes.

NOTE: To take the systems processing time into account, the value of the internal timer may allowed to be a guard time of 10% greater than the required 6 minutes.
5) After step i) the USIM shall contain the following values:

For UEs accessing GERAN and UEs accessing UTRAN and supporting (CS and PS) or (CS only):

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)

Logically: LAI-MCC: 244
LAI-MNC: 081
TMSI: "12345678"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	12	34	56	78	42	14	80	xx	xx	xx	00

For UEs supporting (CS and PS) or (PS only):

$\mathbf{E F}_{\text {PSLOCI }}$ (Location Information)

Logically: RAI-MCC: 244
RAI-MNC: 081
P-TMSI: "12345678"

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	12	34	56	78	xx	xx	xx	42	14	80	xx

Coding: B12 B13 B14

Hex xx xx 00

7.4.2 GSM/UMTS dual mode UEs recognising the search period of the Higher priority PLMN

7.4.2.1 Definition and applicability

The Higher priority PLMN list gives in priority order the Higher priority PLMN on which the UE shall register first. The Radio Access Technology identifier defines the Radio network in which the UE shall register. The list is stored on the USIM in the $\mathrm{EF}_{\text {HPLMNwact }}$. The Higher priority PLMN search period gives the time interval in which the UE shall search for a possible Higher priority PLMN registration.

The registration attempts initiated by the UE depends on UEs capabilities and can be one of the following:
I. registration procedures for UEs supporting CS or
II. registration procedures for UEs supporting PS or
III. registration procedures for UEs supporting CS/PS

To avoid a duplication of tests, this test supersede the previous test case (7.4.1).

7.4.2.2 Conformance requirement

After registered onto a VPLMN the UE shall take into account the Higher priority PLMN search period timer and the priority order of the Higher priority PLMNs in the preferred list on the USIM including the Access Technology Identifier.

- TS 22.011 [6], subclauses 3.2.2 and 3.2.2.5.

7.4.2.3 Test purpose

To verify that the Higher priority PLMN timer is read and the Higher priority PLMN with the higher priority (defined by its position in $\mathrm{EF}_{\text {HPLMNwACT }}$) takes precedence over the VPLMN in which the UE is currently registered in.

7.4.2.4 Method of test

7.4.2.4.1 Initial conditions

For this test both a GSM SS and an UTRAN USS are needed.
The GSM SS transmits on BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC):

244/082/0001.

- Access control: unrestricted.

After the registration of UE the GSM SS transmits on a second BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC):

244/081/0001.

- Access control: unrestricted.

At the same time as the SS sends on a second BCCH, the UMTS USS transmits on BCCH, with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 244/081/0001.
- RAI (MCC/MNC/LAC/RAC): 244/081/0001/05.
- Access control: unrestricted.

The default UICC is used with the following exception:

$\mathbf{E F}_{\text {HPLMnwact }}$ (HPLMN selector with Access Technology)					
Logi		Set to MCC 244 and MNC 081 Set to UTRAN			
Coding:	B1	B2	B3	B4	B5
Hex	42	14	80	80	00

EF $_{\text {HPPLMN }}$ (Higher Priority HPLMN Search period)

Logically: set to 6 minutes
Coding: B1
Hex 01
$\mathbf{E F}_{\text {UST }}$ (USIM Service Table)
Logically: Local Phone Book available
User controlled PLMN selector available
Fixed dialling numbers available
Barred dialling numbers available
The GSM Access available The Group Identifier level 1 and level 2 not available Service n 33 (Packed Switched Domain) shall be set to '1' Enabled Services Table available HPLMN selector with access technology available

Coding:	B1	B2	B3	B4	B5	B6
binary	xx1x xx11	xxxx xxxx	xxxx 1×00	xxxx x1xx	xxxx xx11	xxxx x1xx

The UICC is installed into the Terminal and the UE is set to automatic PLMN selection mode.

7.4.2.4.2 Procedure

a) The UE is powered on.
b) After receipt of a CHANNEL REQUEST from the UE, the SS sends IMMEDIATE ASSIGNMENT to the UE.
c) After receipt of a LOCATION UPDATING REQUEST from the UE, the SS sends LOCATION UPDATING ACCEPT with:

LAI (MCC/MNC): 244/082
TMSI: "34567890"
to the UE.
d) After receipt of a TMSI REALLOCATION COMPLETE from the UE, the SS sends CHANNEL RELEASE to the UE.
e) The SS starts to send on the second BCCH with the MCC/MNC 244/081 and the USS starts to send with the Same MCC/MNC. An internal timer shall start to run.
f) After receipt of a RRC CONNECTION REQUEST on the UTRAN-cell related to the BCCH transmitting MCC/MNC 244/081 from the UE, the USS sends RRC CONNECTION SETUP to the UE, followed by RRC CONNECTION SETUP COMPLETE sent by the UE to the USS. The internal timer is stopped.
g) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. During registration on CS and after receipt of a LOCATION UPDATING REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT with the following values to the UE:

LAI (MCC/MNC/LAC): 244/081/0001
TMSI: "12345678"
II. During registration on PS and after receipt of a ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends ATTACH ACCEPT with the following values to the UE:

RAI (MCC/MNC/LAC/RAC)244/081/0001/05
P-TMSI "12345678"
P-TMSI signature value "AB1234"
III. During registration on CS/PS and after receipt of a LOCATION UPDATING REQUEST and/or ATTACH REQUEST from the UE, the USS initiates authentication, starts integrity by using the security procedure and sends LOCATION UPDATING ACCEPT and/or ATTACH ACCEPT with some of the following values to the UE:

LAI (MCC/MNC/LAC): 244/081/0001
TMSI: "12345678"
RAI (MCC/MNC/LAC/RAC)244/081/0001/05
P-TMSI "12345678"
P-TMSI signature value "AB1234"
h) Depending on which domain the UE is going to be registered on, one of the following sequences will be passed through:
I. After receipt of a TMSI REALLOCATION COMPLETE from the UE during registration on CS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or
II. After receipt of a ATTACH COMPLETE from the UE during registration on PS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS or.
III. After receipt of a TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE from the UE during registration on CS/PS, the USS sends RRC CONNECTION RELEASE to the UE, followed by RRC CONNECTION RELEASE COMPLETE sent by the UE to the USS.
i) The UE is soft powered down.

7.4.2.5 Acceptance criteria

1) After step e) the UE shall send an RRC CONNECTION REQUEST on the UTRAN-cell related to the BCCH transmitting MCC/MNC 244/081 to the USS.
2) After step e) the UE shall send
I. LOCATION UPDATING REQUEST to the USS during registration on CS or
II. ATTACH REQUEST during registration on PS or
III. LOCATION UPDATING REQUEST and/or ATTACH REQUEST to the USS during registration on CS/PS.
3) After step g) the UE shall respond with
I. TMSI REALLOCATION COMPLETE during registration on CS or
II. ATTACH COMPLETE during registration on PS or
III. TMSI REALLOCATION COMPLETE and/or ATTACH COMPLETE to the USS during registration on CS/PS.
4) The value of the internal timer shall not exceed 6 minutes.

NOTE: To take the systems processing time into account, the value of the internal timer may allowed to be a guard time of 10% greater than the required 6 minutes.
5) After step i) the USIM shall contain the following values:

For UEs supporting (CS and PS) or (CS only):

$\mathbf{E F}_{\text {LOCI }}$ (Location Information)										
Logically:	LAI	C:	244 081 "12345678							
Coding: B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex 12	34	56	78	42	14	80	xx	xx	xx	00

For UEs supporting (CS and PS) or (PS only):

$\mathbf{E F}_{\text {PSLOCI }}$ (Location Information)											
Logically:		RAI-MCC: 244 RAI-MNC: 081 P-TMSI: "12345678"									
Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Hex	12	34	56	78	xx	xx	xx	42	14	80	xx
Coding:	B12	B13	B14								
Hex	xx	xx	00								

7.5 Void

8 Subscription independent tests

8.1 Phone book procedures

8.1.1 Recognition of a previously changed phonebook

8.1.1.1 Definition and applicability

If the UICC is inserted into a GERAN Rel-4 or earlier terminal, the phonebook may have been altered in this GSM session. If the ADN entry has been changed or deleted, the GSM terminal will not be able to change the appropriate additional phonebook entries (e.g. $\mathrm{EF}_{\mathrm{ANR}}$ Additional Number). In that case the UICC shall set a flag in the appropriate $E F_{P B C}$ (phonebook Control). If the UICC is inserted in a 3G or GERAN Terminal, the 3G or GERAN Terminal shall recognise the flag and the phonebook shall be synchronised by the Terminal. Once the Terminal recognise the set flag in the $\mathrm{EF}_{\mathrm{PBC}}$, the Terminal shall update the Change Counter in the $\mathrm{EF}_{\mathrm{CC}}$.

8.1.1.2 Conformance requirement

The 3G or GERAN Terminal shall recognise the set flag in the $E F_{P B C}$ and then synchronise the phonebook. The Terminal shall also update $\mathrm{EF}_{\mathrm{CC}}$ (Change Counter).

- TS 31.102 [4], subclause 4.4.2.

8.1.1.3 Test purpose

1) To verify that the Terminal has recognised that the phonebook has been altered by a GSM Terminal.
2) To verify that the Terminal does the synchronising of the changed phonebook entries.
3) To verify that the Terminal updates the $E F_{P B C}$ and $E F_{C C}$.

8.1.1.4 Method of test

8.1.1.4.1 Initial conditions

No USS is needed for this test.
The default UICC is used with the following exception:
$\mathbf{E F}_{\text {ADN }}$ (Abbreviated Dialling Number)
Logically:
Record 1: Length of alpha identifier: 32 characters;
Alpha identifier: "ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEF";
Length of BCD number: "03";
TON and NPI: Telephony and Unknown;
Dialled number: 123;
CCI: None;
Ext1: None.
Record 1:

Coding:	B1	B2	B3	\ldots	B32	B33	B34	B35	B36	B37	B38	B39	\ldots	B46
Hex	41	42	43	\ldots	46	03	81	21	F3	FF	FF	FF	...	FF

$\mathbf{E F}_{\text {PBC }}$ (Phonebook Control)
Logically:
Record 1: The ADN Record No. 1 has been hanged by a GSM terminal. Related ADN record is not hidden.

Coding:	B1	B2
Hex	01	00

$\mathbf{E F}_{\text {CC }}$ (Change Counter)
Logically: "000F"
$\begin{array}{lll}\text { Coding: } & \text { B1 } & \text { B2 } \\ \text { Hex } & 00 & 0 F\end{array}$

The UICC is installed into the Terminal
8.1.1.4.2 Procedure
a) The Terminal is powered on.
b) The Terminal shall stay powered on until the phonebook synchronisation procedures are finished. If the synchronisation is indicated by the Terminal, the Terminal shall only powered down after this indication is vanished.

8.1.1.5 Acceptance criteria

After step b) the USIM shall contain the following values:

```
EF PBC (Phonebook Control)
```

Logically:
Record 1: The entry control information is reset.
Related ADN record is not hidden.

Coding:	B1	B2
Hex	00	00

$\mathbf{E F}_{\text {CC }}$ (Change Counter)

Logically: The counter is incremented to "0010"
$\begin{array}{lll}\text { Coding: } & \text { B1 } & \text { B2 } \\ \text { Hex } & 00 & 10\end{array}$
Hex 0010

8.1.2 Update of the Phonebook Synchronisation Counter (PSC)

8.1.2.1 Definition and applicability

The phonebook synchronisation Counter is used to unambiguously identify the status of the phonebook. Every time the phonebook is reset/deleted or the UID and/or the CC has run out of range, the PSC shall be regenerated.

The PSC is a part of the phonebook identifier.

8.1.2.2 Conformance requirement

Every time either the UID or the CC is incremented by the Terminal, the value of the contend of the appropriate EF shall be tested. If either UID or CC has reached "FF FF", the related EF shall be set to "00 01" and the PSC is incremented.

- TS 31.102 [4], subclause 4.4.2.12.2.

8.1.2.3 Test purpose

1) To verify that the Terminal has recognised that the values of UID and CC has changed.
2) To verify that the Terminal resets the value of $E F_{\text {UID }}$ and $E F_{C C}$.
3) To verify that the Terminal updates $E F_{\text {PSC }}$.

8.1.2.4 Method of test

8.1.2.4.1 Initial conditions

No USS is needed for this test.
The default UICC is used with the following exception:

$\mathbf{E F}_{\text {UID }}$ (Unique Identifier)

Logically: one record is set to "FF FF"

Coding:	B1	B2
Hex	FF	FF

$\mathbf{E F}_{\text {PUID }}$ (Previous Unique Identifier)

Logically: is set to "FF FF"

Coding:	B1	B2
Hex	FF	FF

$\mathbf{E F}_{\text {CC }}$ (Change Counter)
Logically: set to "FF FF"

Coding:	B1	B2
Hex	FF	FF

$\mathbf{E F}_{\text {PSC }}$ (Phonebook Synchronisation Counter)
Logically: set to "00 00 FF FF"

Coding:	B1	B2	B3	B4
Hex	00	00	FF	FF

At least one phonebook entry shall be empty and available for creating a new entry (e.g. an appropriate ADN record).
The UICC is installed into the Terminal and the UE is powered on and the correct PIN is entered.

8.1.2.4.2 Procedure

a) A new phonebook entry shall be created.

NOTE 1: This may be done by storing a new telephone number in an empty ADN record.
b) The UE shall have given the time to perform the regeneration of the UID records.

NOTE 2: It is assumed that the UE will indicate the time it needs to perform the regeneration by displaying a busy signal to the user.

8.1.2.5 Acceptance criteria

After step b) the USIM shall contain the following values:
The $\mathrm{EF}_{\text {UID }}$ (Unique Identifier) shall have been regenerated with UID values starting with "00 01 ". The UID values may be stored in any order, but shall be unique. The entry in $\mathrm{EF}_{\text {UID }}$ with value FF FF (the maximum value) shall have been replaced by an appropriate value which shall be distinguishable to the maximum value. $\mathrm{EF}_{\text {PUID }}$ shall contain a UID value (other than FFFF) that is present in $\mathrm{EF}_{\text {UID. }}$.

$\mathbf{E F}_{\text {CC }}$ (Change Counter)

Logically: set to "00 01"

Coding:	B1	B2
Hex	00	01

$\mathbf{E F}_{\text {PSC }}$ (Phonebook Synchronisation Counter)

```
    Logically: set to "00 0100 00"
```

Coding:	B1	B2	B3	B4
Hex	00	01	00	00

8.1.3 Phonebook content handling

8.1.3.1 Handling of BCD number/ SSC content extension

8.1.3.1.1 Definition and applicability

The length of BCD number/SSC contents in $\mathrm{EF}_{\mathrm{ADN}}$ byte gives the number of bytes of the following two data items containing actual BCD number/SSC information. This means that the maximum value is 11 , even when the actual ADN/SSC information length is greater than 11. When an ADN/SSC has extension, it is indicated by the extension1 identifier being unequal to ' FF '. The remainder is stored in the $\mathrm{EF}_{\text {EXT1 }}$ with the remaining length of the additional data being coded in the appropriate additional record itself.

8.1.3.1.2 Conformance requirement

The terminal shall support the BCD number/ SSC extension for $\mathrm{EF}_{\mathrm{ADN}}$ as defined in 3GPP TS 31.102[4], subclauses 4.4.2.3 and 4.4.2.4.

Reference:

- 3GPP TS 31.102[4], subclauses 4.4.2.3 and 4.4.2.4.

8.1.3.1.3 Test purpose

1) To verify that the terminal is able to read and update BCD numbers/ SSC content with and without extension correctly in $\mathrm{EF}_{\mathrm{ADN}}$ and $\mathrm{EF}_{\mathrm{EXTI} 1}$.

8.1.3.1.4 Method of test

8.1.3.1.4.1 Initial conditions

The terminal is connected to the USIM Simulator.
Prior to the test execution the terminal manufacturer shall state the maximum number of BCD digits (excluding TON/NPI), which are supported by the terminal for global phonebook updating.

The default USIM is used with the following exceptions:
Only the global phonebook is present.
The global phonebook shall contain:

$\mathbf{E F}_{\text {PBR }}$ (Phonebook reference file)

Logically: Only $\mathrm{EF}_{\mathrm{ADN}}$ and $\mathrm{EF}_{\mathrm{EXT1}}$ are present in the global phonebook.

$\mathbf{E F}_{\text {ADN }}$ (Abbreviated dialling numbers)

Logically:
10 records, each record non-empty and unique. Unless otherwise stated, the ADN records shall not use extended BCD numbers/SSC strings.

Record 1: Length of alpha identifier: 32 characters;
Alpha identifier: "Contact001";
Length of BCD number: 11;
TON and NPI: Telephony and International;
Dialled number: "00112233445566778899";

CCI:
'FF';
Ext1:
01.

Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6 F	6E	74	61	63	74	30	30	31	FF	\cdots	FF	OB
	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	
	91	00	11	22	33	44	55	66	77	88	99	FF	01	

Record 2: Length of alpha identifier: 32 characters;
Alpha identifier: "Contact002";
Length of BCD number: 11;
TON and NPI: Telephony and International;
Dialled number: "01234567890123456789";
CCI: 'FF';
Ext1: 'FF'.
Record 2:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\cdots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	32	FF	\cdots	FF	OB
	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	
	91	10	32	54	76	98	10	32	54	76	98	FF	FF	

Record 3: Length of alpha identifier: 32 characters;
Alpha identifier: "Contact003";
Length of BCD number: 11;
TON and NPI: Telephony and International;
Dialled number: "99887766554433221100";
CCI: 'FF';
Ext1: '02'.
Record 3:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	$6 F$	6E	74	61	63	74	30	30	33	FF	\ldots	FF	OB
	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	
	91	99	88	77	66	55	44	33	22	11	00	FF	02	

Record 4: Length of alpha identifier:
32 characters;
Alpha identifier: "Contact004";
Length of BCD number: 9 ;
TON and NPI: Telephony and International;
Dialled number: "1212121212121212";
CCI: 'FF';
Ext1: 'FF'.
Record 4:

Coding: Hex	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11		B32	B33
	43	6F	6E	74	61	63	74	30	30	34	FF	\ldots	FF	09
	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	
	91	21	21	21	21	21	21	21	21	FF	FF	FF	FF	
Record 7:		Length of alpha identifier: Alpha identifier: Length of BCD number:				32 characters; "Contact007"; 3;								

TON and NPI:	Telephony and International;
Dialled number:	"678";
CCI:	'FF';
Ext1:	'FF'.

Record 7:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	37	FF	\ldots	FF	03
	B34	B35	B36	B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	
	91	76	F8	FF										

$\mathbf{E F}_{\text {EXT1 }}$ (Extension 1)
Logically: 4 records

Record 1:	Record type:	'02'
	Extension data:	"01234567890123456789";
	Identifier:	'FF'.

Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	02	OA	10	32	54	76	98	10	32	54	76	98	FF

Record 2:	Record type:	'02'
	Extension data:	"99887766554433221100";
	Identifier:	'03'.

Record 2:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	02	OA	99	88	77	66	55	44	33	22	11	00	03

Record 3:	Record type:	'02'
	Extension data:	"11p12345";
	Identifier:	'FF'.

Record 3:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	02	04	11	1C	32	54	FF						

Record 4

Record type:	'00'
Extension data:	empty;
Identifier:	'FF'.

Record 4:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	00	FF											

8.1.3.1.4.2

Procedure
a) The terminal is switched on and the USIM application shall be activated.
b) The user shall use an MMI dependent procedure to select the global phonebook.
c) The user shall change the BCD number of the entry "Contact002" to "22446622446622446600777888999". If the maximum number of BCD digits supported for the global phonebook update is less than in the requested input BCD number string, then the user shall enter the BCD number string as requested, but only up to the maximum number of BCD digits which are supported for updating.
d) The user shall extend the BCD number of the entry "Contact007" to "01234567890123456789777888999".. If the maximum number of BCD digits supported for the global phonebook update is less than in the requested input BCD number string, then the user shall enter the BCD number string as requested, but only up to the maximum number of BCD digits which are supported for updating.
e) The user shall delete the phonebook entry "Contact001".
f) The user shall set the BCD number of the entry "Contact002" to "22446622446600"
g) The user shall create the new phonebook entry "NewContact" with the BCD number " 1234567890123456789012345678901234567890123456789012 ".. If the maximum number of BCD digits supported for the global phonebook update is less than in the requested input BCD number string, then the user shall enter the BCD number string as requested, but only up to the maximum number of BCD digits which are supported for updating.
h) The user shall delete the phonebook entry "Contact003".
i) The terminal is switched off.

8.1.3.1.5 Acceptance criteria

1) After step a) the terminal shall have activated the USIM application.
2) After step b) the terminal shall have selected the global phonebook and shall have read $E F_{P B R}$ in the global phonebook.
3) After step c) the global phonebook shall contain a record with " 22446622446622446600 " as BCD number and " 04 " as extension record identifier. $\mathrm{EF}_{\text {EXT1 }}$ shall contain a record with "Additional data" as record type, the BCD number extension "777888999" and "FF" as identifier to indicate the end of the chain. If the maximum number of BCD digits supported for global phonebook updating is less than in the requested input BCD number, then $\mathrm{EF}_{\mathrm{ADN}}$ and $\mathrm{EF}_{\text {EXT1 }}$ shall contain the BCD number as entered on the MMI.
4) After step d) the terminal shall have taken action to prevent storage of the extended BCD number, e.g. by giving an indication to the user or not allowing to enter the extended number. $\mathrm{EF}_{\text {EXT1 }}$ shall have not been updated and the extension record identifier of the entry "Contact007"shall remain as "FF".
5) After step e) records of $E F_{A D N}$ and $E F_{E X T 1}$ which were used to store the data for the phonebook entry "Contact001" shall be empty, i.e. the $\mathrm{EF}_{\mathrm{ADN}}$ record shall be "FF... FF " and the $\mathrm{EF}_{\mathrm{EXT1}}$ record shall be "00FF... FF."
6) After step f) the record of $E F_{E X T 1}$ which was used to store the BCD number extension " 777888999 " shall be empty and the record used for storing the entry with the alpha identifier "Contact002" of $\mathrm{EF}_{\mathrm{ADN}}$ shall contain the BCD number " 22446622446600 " and the extension record identifier "FF".
7) After step g) a record of $\mathrm{EF}_{\mathrm{ADN}}$ shall contain "NewContact" as alpha identifier, "12345678901234567890" as BCD number and shall use an extension record identifier unequal to "FF".

The $\mathrm{EF}_{\text {EXT1 }}$ record which was indicated in the $\mathrm{EF}_{\mathrm{ADN}}$ record used in this case shall contain "Additional data" as record type, "12345678901234567890" as BCD number and an extension record identifier unequal to "FF", while the $\mathrm{EF}_{\mathrm{EXT1}}$ record used to continue the chain inside $\mathrm{EF}_{\mathrm{EXT1} 1}$ shall contain "Additional data" as record type, "123456789012" as BCD number and "FF" as extension record identifier.

If the maximum number of BCD digits supported for global phonebook updating is less than the requested input BCD number, then $\mathrm{EF}_{\mathrm{ADN}}$ and $\mathrm{EF}_{\mathrm{EXT1}}$ shall contain the BCD number as entered on the MMI.
8) After step h) the record of $\mathrm{EF}_{\mathrm{ADN}}$ which was used to store the data for "Contact003" and the related records of $\mathrm{EF}_{\text {EXT1 }}$ shall be empty.

8.1.4 Phonebook selection

8.1.4.1 Definition and applicability

The UICC may contain a global phonebook, or application specific phonebooks, or both in parallel. When both phonebook types co-exist, they are independent and no data is shared. In this case, it shall be possible for the user to select which phonebook the user would like to access.

8.1.4.2 Conformance requirement

The terminal shall support the global and the application specific phonebooks as defined in 3GPP TS 31.102[4], subclause 4.4.2.

Reference:

- 3GPP TS 31.102[4], subclause 4.4.2.

8.1.4.3 Test purpose

1) To verify that the terminal offers a possibility to select which phonebook the user would like to select if both, the global and the local phonebook, co-exist.
2) To verify that the data contained in the local phonebook can be read and updated correctly.
3) To verify that the data contained in the global phonebook can be read and updated correctly.

8.1.4.4 Method of test

8.1.4.4.1 Initial conditions

The terminal is connected to the USIM Simulator.
The default USIM is used with the following exceptions:
The local and the global phonebook are both present.
The local phonebook shall contain:
$\mathbf{E F}_{\text {PBR }}$ (Phonebook reference file)
Logically: Only $\mathrm{EF}_{\mathrm{ADN}}$ and $\mathrm{EF}_{\mathrm{EXT} 1}$ are present in the local phonebook.

$\mathbf{E F}_{\text {ADN }}$ (Abbreviated dialling numbers)

Logically: 10 records, each record non-empty and unique.

Record 4:	Length of alpha identifier:	32 characters;
	Alpha identifier:	"Contact004";
	Length of BCD number:	"03";
	TON and NPI:	Telephony and International;
	Dialled number:	$004 ;$
	CCI:	'FF';
Ext1:	'FF'.	

Record 4:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	34	FF	\ldots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	00	F4	FF	FF	FF	\ldots	FF						

Record 5: Length of alpha identifier: 32 characters;
Alpha identifier: "Contact005";
Length of BCD number: "03";
TON and NPI: Teleph
Dialled number: 1234;
CCI: 'FF';
Ext1: None.
Record 5:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	35	FF	\cdots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	21	43	FF	FF	FF	\ldots	FF						

The global phonebook shall contain:

$\mathbf{E F}_{\text {PBR }}$ (Phonebook reference file)

Logically: Only $\mathrm{EF}_{\mathrm{ADN}}$ is present in the global phonebook.

$\mathbf{E F}_{\text {ADN }}$ (Abbreviated dialling numbers)

Logically: 8 records, records 3 and 6 empty, each non-empty record unique.

Record 1:	Length of alpha identifier:	32 characters;
	Alpha identifier:	"Contact001";
	Length of BCD number:	"03";
	TON and NPI:	Telephony and International;
	Dialled number:	$001 ;$
	CCI:	'FF';
	Ext1:	'FF'.

Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	31	FF	\ldots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	00	F1	FF	FF	FF	\ldots	FF						

Record 2: Length of alpha identifier:
32 characters;
Alpha identifier:
"Contact002";
Length of BCD number: "03";
TON and NPI: Telephony and International;
Dialled number: 002;
CCI: 'FF';
Ext1: 'FF'.
Record 2:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	32	FF	\cdots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	00	F2	FF	FF	FF	\ldots	FF						

Record 4: Length of alpha identifier: 32 characters;
Alpha identifier: "Contact004";
Length of BCD number: "03";

TON and NPI:	Telephony and International;
Dialled number:	$0041 ;$
CCI:	'FF';
Ext1:	'FF'.

Record 4:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	34	FF	\cdots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	00	14	FF	FF	FF	\ldots	FF						

$\begin{array}{lll}\text { Record 5: } & \text { Length of alpha identifier: } & 32 \text { characters; } \\ & \text { Alpha identifier: } & \text { "Contact } 005 \text { "; }\end{array}$
Alpha identifier: \quad " 03 ";
TON and NPI: Telephony and International;
Dialled number: 1234;
CCI: 'FF';
Ext1: 'FF'.
Record 5:

| Coding: | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | \ldots | B32 | B33 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Hex | 43 | FF | 6 E | 74 | 61 | 63 | 74 | 30 | 30 | 35 | FF | \ldots | FF | 03 |

Record 7:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11		B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	37	FF	\ldots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	00	F7	FF	FF	FF	...	FF						
Record 8:		Length of alpha identifier: 32 characters;												
		Alpha identifier:				"Conta	t008";							
		Length of BCD number:				"03";								
		TON and NPI:				Teleph	y and	nter	onal;					
		Dialled number:				008;								
		CCI:				'FF';								
		Ext1:				'FF'.								

Record 8:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	38	FF	\ldots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	00	F8	FF	FF	FF	\ldots	FF						

8.1.4.4.2 Procedure

a) The terminal is switched on and the USIM application shall be activated.
b) The user shall use an MMI dependent procedure to select the global phonebook.
c) The global phonebook record with the alpha identifier "Contact005" and the associated dialling number shall be read by the user.
d) The dialling number of the global phonebook record with the alpha identifier "Contact005" shall be set to "+1122330".
e) A new entry with the values "Contact006" as alpha identifier and " +9876543210 " as associated dialling number shall be added to the global phonebook.
f) The user shall use an MMI dependent procedure to select the local phonebook.
g) The local phonebook record with the alpha identifier "Contact005" and the associated dialling number shall be read by the user.
h) The dialling number of the local phonebook record with the alpha identifier "Contact005" shall be set to "+11223345".
i) The user shall try to add a new entry with the values "Contact007" as alpha identifier and "+007" as associated dialling number to the local phonebook.
j) The user shall delete the entry "Contact004" from the local phonebook.
k) The user shall add a new entry with the values "Contact007" as alpha identifier and "+007" as associated dialling number to the local phonebook.

1) The user shall use an MMI dependent procedure to select the global phonebook.
m) The user shall delete the entry "Contact007" from the global phonebook.
n) The terminal is switched off.

8.1.4.5 Acceptance criteria

1) After step a) the terminal shall have activated the USIM application, shall have read the status of the local Phonebook in $\mathrm{EF}_{\text {UST }}$.
2) After step b) the terminal shall have selected the global phonebook and shall have read $\mathrm{EF}_{\mathrm{PBR}}$ in the global phonebook.
3) After step c) the terminal shall have read the global phonebook record which is used to store the enrty "Contact005" and shall have presented the alpha identifier "Contact005" and the dialling number " +1234 " to the user.
4) After step d) $\mathrm{EF}_{\mathrm{ADN}}$ in the global phonebook shall contain a record with the alpha identifier "Contact005" with the new dialling number " +1122330 " and the terminal shall have given an indication to the user that the phonebook update has been performed successfully.
5) After step e) a new record shall have been added to $\mathrm{EF}_{\mathrm{ADN}}$ in the global phonebook with the alpha identifier "Contact006" and the dialling number string "+9876543210".
6) After step f) the terminal shall have selected the local phonebook and shall have read $E F_{P B R}$ in the local phonebook.
7) After step g) the terminal shall have read the local phonebook record which is used to store the entry "Contact005" and shall have presented the alpha identifier "Contact005" and the dialling number " +1234 " to the user.
8) After step h) $\mathrm{EF}_{\mathrm{ADN}}$ in the local phonebook shall contain a record with the alpha identifier "Conatct005" and with new dialling number " +11223345 " and the terminal shall have given an indication to the user that the phonebook update has been performed successfully.
9) After step i) the terminal shall have given an indication that update of the local phonebook can't be performed. $\mathrm{EF}_{\mathrm{ADN}}$ shall have not been updated.
10) After step j) the local phonebook record which was used to store the entry "Contact004" shall be empty and the terminal shall have indicated that the deletion of the phonebook entry was performed successfully.
11) After step k) a new record shall have been added to $\mathrm{EF}_{\mathrm{ADN}}$ in the local phonebook with the alpha identifier "Contact007" and the dialling number string "+007"
12) After step 1) the terminal shall have selected the global phonebook and shall have read $E F_{P B R}$ in the global phonebook.
13) After step m) the global phonebook record which was used to store the entry "Contact007" shall be empty and the terminal shall have indicated that the deletion of the phonebook entry was performed successfully.

8.1.5 Local Phonebook handling

8.1.5.1 Definition and applicability

The UICC may contain a global phonebook, or application specific phonebooks, or both in parallel.

8.1.5.2 Conformance requirement

The terminal shall support the local phonebook as defined in 3GPP TS 31.102[4], subclause 4.4.2.

Reference:

- 3GPP TS 31.102[4], subclause 4.4.2.

8.1.5.3 Test purpose

1) To verify that the terminal supports the local phonebook without existence of the global phonebook.
2) To verify that the data contained in the local phonebook can be read and updated correctly.

8.1.5.4 Method of test

8.1.5.4.1 Initial conditions

The terminal is connected to the USIM Simulator.
The default USIM is used with the following exceptions:
The local phonebook is present, the global phonebook is not present.
The local phonebook shall contain:

$\mathbf{E F}_{\text {PBR }}$ (Phonebook reference file)

Logically: Only $\mathrm{EF}_{\mathrm{ADN}}$ and $\mathrm{EF}_{\mathrm{EXT} 1}$ are present in the local phonebook.

$\mathbf{E F}_{\text {ADN }}$ (Abbreviated dialling numbers)

Logically: 10 records, each record non-empty and unique.

Record 4:	Length of alpha identifier:	32 characters;
	Alpha identifier:	"Contact004";
	Length of BCD number:	"03";
	TON and NPI:	Telephony and International;
	Dialled number:	$004 ;$
	CCI:	'FF';
Ext:	'FF'.	

Record 4:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	6F	6E	74	61	63	74	30	30	34	FF	\ldots	FF	03
	B34	B35	B36	B37	B38	B39	\ldots	B46						
	91	00	F4	FF	FF	FF	\ldots	FF						

Record 5:	Length of alpha identifier:	32 characters;
	Alpha identifier:	"Contact005";
	Length of BCD number:	"03";
	TON and NPI:	Telephony and International;
	Dialled number:	$1234 ;$
	CCI:	'FF';
Ext1:	'FF'.	

Record 5:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots	B32	B33
Hex	43	$6 F$	6 E	74	61	63	74	30	30	35	FF	\ldots	FF	03

8.1.5.4.2 Procedure

a) The terminal is switched on and the USIM application shall be activated.
b) The user shall use an MMI dependent procedure to select the phonebook on the USIM (local phonebook).
c) The local phonebook record with the alpha identifier "Contact005" and the associated dialling number shall be read by the user.
d) The dialling number of the local phonebook record with the alpha identifier "Contact005" shall be set to " +11223345 " and the alpha identifier shall be changed to "Contact8901234567890123456789012".
e) The user shall try to add a new entry with the values "Contact007" as alpha identifier and "+007" as associated dialling number to the local phonebook.
f) The user shall delete the entry "Contact004" from the local phonebook.
g) The user shall add a new entry with the values "Contact007" as alpha identifier and "+007" as associated dialling number to the local phonebook.
h) The terminal is switched off.

8.1.5.5 Acceptance criteria

1) After step a) the terminal shall have activated the USIM application, shall have read the status of the local Phonebook in $\mathrm{EF}_{\mathrm{UST}}$.
2) After step b) the terminal shall have selected the local phonebook and shall have read $E F_{P B R}$ in the local phonebook.
3) After step c) the terminal shall have read the local phonebook record which is used to store the entry
"Contact 005 " and shall have presented the alpha identifier "Contact005" and the dialling number " +1234 " to the user.
4) After step d) $\mathrm{EF}_{\mathrm{ADN}}$ in the local phonebook shall contain a record with the new alpha identifier
"Contact8901234567890123456789012" and the dialling number " +11223345 " and the terminal shall have given an indication to the user that the phonebook update has been performed successfully.
5) After step e) the terminal shall have given an indication that update of the local phonebook can't be performed. $\mathrm{EF}_{\mathrm{ADN}}$ shall have not been updated.
6) After step f) the local phonebook record which was used to store the entry "Contact004" in the local phonebook shall be empty and the terminal shall have indicated that the deletion of the phonebook entry was performed successfully.
7) After step g) a new record shall have been added to $\mathrm{EF}_{\mathrm{ADN}}$ in the local phonebook with the alpha identifier "Contact 007 " and the dialling number string " +007 "

8.2 Short message handling report

8.2.1 Correct storage of a SM on the USIM

8.2.1.1 Definition and applicability

Once a SMS is received by the UE, the Terminal shall store the SM on the USIM, if this is indicated by the class 2 of the SMS (USIM specific SM). For this it is assumed, that at least one relevant SMS field are available on the USIM and they are indicated as empty. If all SMS data field are full and furthermore all memory capacity reserved for SMS inside the ME is filled up to maximum and a SM was rejected, then this shall be indicated in the SMS Status file.

8.2.1.2 Conformance requirement

The received class 2 SMS shall be stored on the USIM in $\mathrm{EF}_{\text {SMS }}$. The status of a received SMS, which has not been read yet, shall be set to "3" (SMS to be read). If the terminal notifies the network that the terminal has been unable to accept a short message because its memory capacity has been exceeded, then the ME shall set the Memory Capacity Exceeded Notification Flag in the $\mathrm{EF}_{\text {SMSS }}$.

- TS 23.038 [3], clause 4.
- TS 23.040 [13], subclause 10.1, operation 6;
- TS 24.011, subclauses 8.2.2, 8.2.3 and 8.2.5.4, Table 8.4 (part 2)
- TS 31.102 [4], subclauses 4.2.25 and 4.2.28.

8.2.1.3 Test purpose

1) To verify that the Terminal stored correctly the class 2 SMS on the USIM.
2) To verify that the Terminal sets the status of a received, and not yet read SMS to "3" (SMS to be read).
3) To verify that the Terminal sets the memory full flag in $\mathrm{EF}_{\text {SMSS }}$ if the terminal notifies the network that the terminal has been unable to accept a short message because its memory capacity has been exceeded.

8.2.1.4 Method of test

8.2.1.4.1 Initial conditions

The default UICC is used with the following exception:

EF $_{\text {UST }}$ (USIM Service Table)

Logically:	Local Phone Book available
User controlled PLMN selector available	
Fixed dialling numbers available	
Barred dialling numbers available	
The GSM Access available	
The Group Identifier level 1 and level 2 not available	

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.

$\mathbf{E F}_{\text {SMS }}$ (Short Message Service)

At least 10 records.
Record 1 shall be empty.
Logically: Status byte set to empty.
Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	\ldots	B176
Hex	00	FF	\ldots	FF										

All other Record shall be full.
Logically: Status byte set to SMS read.
The text body of the record shall be filled with any appropriate text.
Records:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	\ldots	B176
Hex	01	xx	\ldots	xx										

NOTE: "xx" shall be the appropriate text using the SMS default 7-bit coded alphabet as defined in 3G TS 23.038 [3] which represents the received SMS.

$\mathbf{E F}_{\text {SMSS }}$ (SMS Status)

Logically: Last used TP-MR not defined. Memory capacity available (flag unset $\mathrm{b} 1=" 1$ ").

Coding:	B1	B2
Hex	FF	FF

The USS (in case of a Terminal accessing UTRAN) /SS (in case of a Terminal accessing a GERAN) transmits on the BCCH , with the following network parameters:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC): 246/081/0001.
- Access control: unrestricted.

The USS/ SS transmits the short messages with the following parameters:
Logically:
Class 2 SM:TS-Service Centre Address:
Bit 8:

Type-Of-Number:	International number
Numbering-Plan-Identification:	ISDN/telephony numbering plan
Address value:	112233445566

SMS TPDU:

TP-Message-Type-Indicator:
TP-More-Messages-to-Send:
TP-Reply-Path:
TP-User-Data-Header-Indicator:
TP-Status-Report-Indication:
Bits 4-3:
TP-Originating-Address:
Bit 8:
Type-Of-Number:
Numbering-Plan-Identification:
Address value:
TP-Protocol-Identifier:
TP-Data-Coding-Scheme:
Bits 8-7:
Bit 6:
Bit 5:
Bits 4-3:
Bits 2-1:
TP-Service-Centre-Time-Stamp: 02-03-04 09:13:06 GMT + 1
TP-User-Data-Length: 160
TP-User-Data:
"Once a SMS is received by the UE, the Terminal shall store the SMS on the USIM, if this is indicated by the class 2 of the SMS (USIM specific SMS). For this..."

Class 1 SM: M:

The same content as for the Class 2 SMS except :
SMS TPDU:
TP-More-Messages-to-Send:
More messages are waiting for the MS in this SC
TP-Data-Coding-Scheme:

1
International number
ISDN/telephony numbering plan
012344556677
No interworking, but SME-to-SME protocol

General Data Coding
Text is uncompressed
Bits 2-1 have a message class meaning
GSM 7 bit default alphabet
Class 2: (U)SIM specific message

Bits 2-1:
TP-Service-Centre-Time-Stamp:
TP-Service-Centre-Time-Stamp:

Class 1: default meaning: ME-specific

Always set to current time of the system simulator

User Equipment:

The UE is in MM-state "idle, updated". If there is ME storage capacity available the storage for SMS inside the ME shall be able to allow for at least one more mobile terminated (e.g. Class 1) SM.

8.2.1.4.2 Procedure

a) After the UE is set to idle mode, the defined class 2 SM defined in 8.2.1.4.1 with 160 characters shall be sent to the UE.
b) After the UE has indicated that a SM was received, the SM shall not be read.
c) The USS starts sending Class 1 SMs as defined in 8.2.1.4.1 until the UE sends an RP-ERROR message with cause "Memory capacity exceeded".
d) The UE is powered off.

8.2.1.5 Acceptance criteria

1) After step b) the record of the $E F_{\text {SMS }}$ which was empty, shall contain the following values:

Logically: \quad Status byte set to SMS to be read The text of the received SMS shall be present in the record.

Record 1:

Logically:
Status:

RFU bits 8-6:
Status:

TS-Service Centre Address:

Bit 8: 1

Type-Of-Number: International number
Numbering-Plan-Identification:
Address value:
SMS TPDU:
TP-Message-Type-Indicator:
TP-More-Messages-to-Send: No more messages are waiting for the UE in this SC
TP-Reply-Path: TP-Reply-Path parameter is not set in this SMS-DELIVER
TP-User-Data-Header-Indicator: The TP-UD field contains only the short message
TP-Status-Report-Indication: A status report shall be returned to the SME
Bits 4-3:
00
TP-Originating-Address:
Bit 8:
Type-Of-Number:
Numbering-Plan-Identification:
Address value:
1
International number
ISDN/telephony numbering plan
012344556677
TP-Protocol-Identifier:
No interworking, but SME-to-SME protocol

TP-Data-Coding-Scheme:
Bits 8-7:
General Data Coding
Bit 6:
Bit 5:
Text is uncompressed
Bits 2-1 have a message class meaning
GSM 7 bit default alphabet
Class 2: (U)SIM specific message
Bits 2-1:
TP-Service-Centre-Time-Stamp: 02-03-04 09:13:06 GMT + 1
TP-User-Data-Length: 160
TP-User-Data:
"Once a SMS is received by the UE, the Terminal shall store the SMS on the USIM, if this is indicated by the class 2 of the SMS (USIM specific SMS). For this ..."

Coding:																
Hex	03	07	91	11	22	33	44	55	66	24	OC	91	10	32	44	55
	66	77	00	12	20	30	40	90	31	60	40	A0	4F	F7	B8	0 C
	OA	83	A6	CD	29	28	3D	07	C9	CB	E3	72	DA	5E	26	83
	C4	79	10	1D	5D	06	55	8B	2 C	10	1D	5D	06	51	CB	F2
	76	DA	1D	66	83	E6	E8	30	9B	OD	9A	D3	DF	F2	32	88
	8E	2E	83	A6	CD	29	E8	ED	06	D1	D1	65	50	75	9A	6 C
	B2	40	69	33	88	8E	4E	CF	41	E9	39	28	ED	26	A7	C7
	61	7A	99	OC	12	E7	41	74	74	19	34	66	87	E7	73	90
	0 C	F4	36	83	E8	E8	32	68	DA	9 C	82	50	D5	69	B2	09
	9A	C3	CB	E3	B4	39	3D	06	4D	9 B	D3	94	0B	64	7C	CB
	41	74	74	7A	OE	72	B9	5 C								

2) After step d) the Memory Capacity Exceeded Notification Flag in the $E F_{\text {SMSS }}$ shall be set to exceeded.
$\mathbf{E F}_{\text {SMSS }}$ (SMS Status)
Logically: Last used TP-MR shall be set to any appropriate value. Memory capacity exceeded (flag set bl="0").
$\begin{array}{lll}\text { Coding: } & \text { B1 } & \text { B2 } \\ \text { Hex } & \text { xx } & \text { FE }\end{array}$

8.2.2 Correct reading of a SM on the USIM

8.2.2.1 Definition and applicability

A SM which is stored but not yet read, is indicated as Status "3" (SMS to be read) on $\mathrm{EF}_{\text {SMS }}$. The Terminal may indicate the user this status. After the SMS is read by the user, the status of the SMS shall be changed to "1" (SMS read).

8.2.2.2 Conformance requirement

A received SM was stored on the USIM in $\mathrm{EF}_{\text {SMS }}$. At the time the SMS is read by the user, the status of a received SMS, shall be changed to "1" (SMS read).

- TS 23.038 [3], clause 4.
- TS 23.040 [13];
- TS 31.102 [4], subclauses 4.2.25 and 4.2.28.

8.2.2.3 Test purpose

1) To verify that the Terminal read correctly the SMS on the USIM.
2) To verify that the Terminal changes the status of a read SMS to "1" (SMS read).

8.2.2.4 Method of test

8.2.2.4.1 Initial conditions

The default UICC is used with the following exception:
$\left.\begin{array}{lll}\text { EF }_{\text {UST }} \text { (USIM Service Table) } \\ \text { Logically: } & \text { Local Phone Book available } \\ \text { User controlled PLMN selector available } \\ & \text { Fixed dialling numbers available } \\ \text { Barred dialling numbers available } \\ \text { The GSM Access available }\end{array}\right]$

The coding of $\mathrm{EF}_{\text {UST }}$ shall conform with the capabilities of the USIM used.
$\mathbf{E F}_{\text {SMSS }}$ (SMS Status)
Logically: Last used TP-MR not set.
Memory capacity available (flag unset $\mathrm{b} 1=$ " 1 ").

Coding:	B1	B2
Hex	FF	FF

$\mathbf{E F}_{\text {SMS }}$ (Short Message Service)
Logically: \quad Status byte set to SMS to be read. A chosen test is written in the text body of the $\mathrm{EF}_{\text {SMS }}$.

Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12		B176
Hex	03	xx		xx										

NOTE: "xx" shall be the appropriate text using the SMS default 7-bit coded alphabet as defined in 3G TS 23.038 [3] which represents the stored SMS.

At least 9 records.
Logically: Status byte set to empty
no text is written (Remainder Bytes set to "FF").
Record:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	\ldots	B176
Hex	00	FF	\ldots	FF										

A USS (in case of a Terminal accessing UTRAN) or a SS (in case of a Terminal accessing GERAN) is only needed to bring the UE into a defined idle mode. The USS/SS transmits on the BCCH:

- Attach/detach: disabled.
- LAI (MCC/MNC/LAC):
- Access control: unrestricted.

User Equipment:

The UE is in MM-state "idle, updated".

8.2.2.4.2 Procedure

a) After the UE has brought in idle state, the SMS shall be read.
b) The UE is powered off.

8.2.2.5 Acceptance criteria

1) After a) the correct text of the SMS shall be read from the UE display.
2) After step b) the $E F_{\text {SMS }}$ record 1 shall contains the following values:

Logically: Status byte set to SMS read. The entire content of the SMS shall be unchanged.

Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	\ldots	B176
Hex	01	xx	\ldots	xx										

NOTE: "xx" shall be the appropriate text using the SMS default 7-bit coded alphabet as defined in TS 23.038 [3] which represents the stored SMS.

8.3 MMS related tests

8.3.1 UE recognising the priority order of MMS Issuer Connectivity Parameters

8.3.1.1 Definition and applicability

An MMS User Agent shall use the MMS related information stored in the USIM, if present, unless otherwise specified by the user. Some of these sets of MMS connectivity parameters are preset by the issuer of the USIM with the first supported set being the default. This information is used to connect to the network for purpose of accessing the MMS Relay/Server.

The MMS connectivity information on the USIM includes preferences for the selection of Interface to Core Network and Bearer parameters. If these are stored on the USIM the MMS-capable UE shall automatically select the Interface to Core Network and Bearer parameters based on their order of precedence defined on the USIM unless otherwise specified by the user.

MMS user preferences information, which is stored on the USIM, shall be used by an MMS User Agent for user assistance in preparation of terminal-originated MMs (e.g. default values for parameters that are often used).

8.3.1.2 Conformance requirement

The Terminal's MMS User Agent shall use the MMS connectivity parameters stored first in the supported parameter sets of $E F_{\text {MMSICP }}$ as default parameters to connect to the network for MMS purposes (i.e. sending an User generated MM).

- TS 31.102 [4], subclauses 4.2.69 and 5.3.30;
- TS 23.140 [23], subclause 7.1.14 and Annex F.

MMS user preferences information, which is stored on the USIM, shall be used by an MMS User Agent for user assistance in preparation of terminal-originated MMs.

- TS 31.102 [4], subclauses 4.2.70 and 5.3.31;
- TS 23.140 [23], subclause 7.1.14 and Annex F.

8.3.1.3 Test purpose

1) To verify that the Terminal's MMS User Agent uses the MMS connectivity parameter stored on the USIM to connect to the network for MMS purposes.
2) To verify that the Terminal's MMS User Agent uses the first stored set of supported parameters in $E F_{\text {MMSICP }}$ as default.
3) To verify that the Terminal's MMS User Agent uses the MMS user preference information stored on the USIM for user assistance in preparation of terminal-originated MMs.

8.3.1.4 Method of test

8.3.1.4.1 Initial conditions

Four MMS Relays/Servers are available:
MMS Relay/Server 1:

- MMS Connectivity Parameters

MMS implementation information:
MMS Relay/Server
MMS Relay/Server information:
Interface to Core Network and Bearer
Bearer:
Address:
Type of address:
Speed:
Call type:
Authentication type:
Authentication id:
Authentication pw:
Gateway
Address:
Type of address:
Port:
Service:
Authentication type:
Authentication id:
Authentication pw:
MMS Relay/Server 2:
"WAP"
"http://mms-operator1.com"
"GSM-CSD"
"+496998625"
"E164"
"Autobauding"
"ANALOG_MODEM"
"PAP"
"B2B_OTS1"
"B2B_password1"
"170.187.51.3"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user1"
"gateway_password1"

```
- MMS Connectivity Parameters
            MMS implementation information:
    MMS Relay/Server
        MMS Relay/Server information:
    Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Speed:
        Call type:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway
        Address:
        Type of address:
        Port :
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
MMS Relay/Server 3:
- MMS Connectivity Parameters
    MMS implementation information:
    MMS Relay/Server
        MMS Relay/Server information:
    Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway
        Address:
        Type of address:
        Port :
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
            "WAP"
    "http://mms-operator1.com"
    "GSM-CSD"
    "+496998626"
    "E164"
    "Autobauding"
    "ANALOG_MODEM"
"PAP"
"B2C_OTS2"
"B2C_password2"
"170.187.51.3"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user1"
"gateway_password1"
    "WAP"
    "http://mms-operator1.com"
    "GSM-GPRS"
    "wap.B2B-operator1.com"
    "APN"
    "ANALOG_MODEM"
    "No"
    " 1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
    "PAP"
"B2B_OTS1"
"B2B_password1"
"170.187.51.3"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user1"
"gateway_password1"
```

MMS Relay/Server 4:

```
- MMS Connectivity Parameters
        MMS implementation information: "WAP"
    MMS Relay/Server
        MMS Relay/Server information:
    Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway
        Address:
        Type of address:
        Port :
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
    "http://mms-operator1.com"
    "GSM-GPRS"
    "wap.B2C-operator1.com"
    "APN"
    "ANALOG_MODEM"
    "No"
    "1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
"PAP"
"B2C_OTS2"
"B2C_password2"
"170.187.51.3"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user1"
"gateway_password1"
```

The default UICC is used with the following exceptions:
$\mathbf{E F}_{\text {UST }}$ (USIM Service Table)
Logically: Local Phone Book available
User controlled PLMN selector available
Fixed dialling numbers available
Barred dialling numbers available
The GSM Access available
The Group Identifier level 1 and level 2 not available SMS available SMS Status available Service no. 33 (Packed Switched Domain) shall be set to '1' Service no. 52 Multimedia Messaging Service available Service no. 55 MMS User Connectivity Parameters not available


```
Logically:
    MMS Connectivity Parameters
    MMS Implementation
        MMS Implementation Information :
    MMS Relay/Server
        MMS Relay/Server Address
    "http://mms-operator1.com"
    1 st Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Speed:
        Call type:
        Authentication type:
        Authentication id:
        Authentication pw:
    2 nd Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Speed:
        Call type:
        Authentication type:
        Authentication id:
        Authentication pw:
    3 rd Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    4 th Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway:
        Address:
        Type of address:
        Port:
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
                            "GSM-CSD"
                            "+496998625"
                            "E164"
                            "Autobauding"
                            "ANALOG_MODEM"
    "PAP"
    "B2B_OTS1"
    "B2B_password1"
        "GSM-CSD"
    "+496998626"
    "E164"
    "Autobauding"
    "ANALOG_MODEM"
    "PAP"
    "B2C_OTS2"
    "B2C_password2"
        "GSM-GPRS"
    "wap.B2B-operator1.com"
    "APN"
    "ANALOG_MODEM"
    "No"
    "1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
    "PAP"
    "B2B_OTS1"
    "B2B_password1"
        "GSM-GPRS"
                            "wap.B2C-operator1.com"
                            "APN"
                            "ANALOG_MODEM"
                            "No"
    "1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
    "PAP"
    "B2C_OTS2"
    "B2C_password2"
    "170.187.51.3"
    "IPv4"
    "9201"
    "CO-WSP"
    "HTTP BASIC"
    "gateway_user1"
    "gateway_password1"
```

Coding:	AB	82	01	47	80	01	01	81	18	68	74	74
	70	3A	2F	2F	6D	6D	73	2E	6F	70	65	72
	61	74	6F	72	31	2E	63	6F	6D	82	2F	10
	AA	08	2B	34	39	36	39	39	38	36	32	35
	00	09	87	25	C5	0A	90	0C	9A	0D	42	32
	42	11	4F	54	53	31	00	OE	42	32	42	11
	70	61	73	73	77	6F	72	64	31	00	82	2 F
	10	AA	08	2B	34	39	36	39	39	38	36	32
	36	00	09	87	25	C5	0A	90	0C	9A	0D	42
	32	43	11	4F	54	53	32	00	OE	42	32	43
	11	70	61	73	73	77	6F	72	64	32	00	82
	43	10	AB	08	03	77	61	70	OD	42	32	42
	2D	6F	70	65	72	61	74	6F	72	31	03	63
	6F	6D	00	09	89	0A	90	31	03	37	70	38
	06	33	60	36	08	OC	9A	OD	42	32	42	11
	4F	54	53	31	00	OE	42	32	42	11	70	61
	73	73	77	6F	72	64	31	00	82	43	10	AB
	08	03	77	61	70	0D	42	32	43	2D	6F	70
	65	72	61	74	6F	72	31	03	63	6F	6D	00
	09	89	0A	90	31	03	37	70	38	06	33	60
	36	08	OC	9A	0D	42	32	43	11	4F	54	53
	32	00	OE	42	32	43	11	70	61	73	73	77
	6F	72	64	32	00	83	43	20	31	37	30	2E
	31	38	37	2E	35	31	2E	33	00	21	85	23
	39	32	30	31	00	24	CB	19	9C	1A	67	61
	74	65	77	61	79	11	75	73	65	72	31	00
	1B	67	61	74	65	77	61	79	11	70	61	73
	73	77	6F	72	64	31	00					

EF $_{\text {MMSUP }}$

Logically:
MMS Implementation
MMS implementation information: "WAP"
MMS User Preference Profile Name: "Greeting cards"
MMS User Information Preference Information

Visibility:
Delivery report:
Read-reply:
Priority:
Delivery-Time:
Value (absolute):
Expiry:
Value (relative):
"hide"
"yes"
"yes"
"normal"
"1-Jan-2003, 12:00:00 AM GMT"
1104537600 seconds

Coding:	80	01	01	81	0 E	47	72	65	65	74	69	6 E
	67	20	63	61	72	64	73	82	19	14	80	06
	80	10	80	0 F	81	07	07	80	05	00	3 E	12
	2 F	80	08	06	81	04	41	D 5	E 8	00		

The UICC is installed into the Terminal and the user has indicated the data stored in $\mathrm{EF}_{\text {MMSICP }}$ as default.

8.3.1.4.2 Procedure

a) The Terminal is powered on and the PIN shall be entered.
b) When the Terminal is in idle mode the user shall generate an MM using the MMS User Agent on the Terminal with the default MMS connectivity settings provided by the card issuer and the MMS user preference information stored in the card and send it to "+0123456789".

8.3.1.5 Acceptance criteria

1) After step b) the Terminal shall have read the set of supported MMS connectivity parameters stored first in $\mathrm{EF}_{\text {MMSICP. }}$
2) After step b) the Terminal shall have sent the MM to "+0123456789" using the MMS connectivity parameters stored first in the supported parameter sets in $\mathrm{EF}_{\text {MMSICP }}$.
3) After step b) the Terminal shall have sent the MM to " +0123456789 " using the MMS user preference information stored in $\mathrm{EF}_{\text {MMSUP }}$.

8.3.2 UE recognising the priority order of MMS User Connectivity Parameters

8.3.2.1 Definition and applicability

An MMS User Agent shall use the MMS related information stored in the USIM, if present, unless otherwise specified by the user. The MMS connectivity parameters determined by the user, with the first supported set being the default, shall be used to connect to the network for purpose of accessing the MMS Relay/Server.

The MMS connectivity information on the USIM includes preferences for the selection of Interface to Core Network and Bearer parameters. If these are stored on the USIM the MMS-capable UE shall automatically select the Interface to Core Network and Bearer parameters based on their order of precedence defined on the USIM unless otherwise specified by the user.

MMS user preferences information, which is stored on the USIM, shall be used by an MMS User Agent for user assistance in preparation of terminal-originated MMs (e.g. default values for parameters that are often used).

8.3.2.2 Conformance requirement

When using the MMS User Connectivity Parameters to connect to the network for MMS purposes (i.e. sending an User generated MM), the Terminal's MMS User Agent shall use the MMS User Connectivity Parameters with the highest priority (as defined by its position in $\mathrm{EF}_{\mathrm{MMSUCP}}$) unless otherwise specified by the user.

- TS 31.102 [4], subclauses 4.2.71 and 5.3.32;
- TS 23.140 [23], subclause 7.1.14 and Annex F.

MMS user preferences information, which is stored on the USIM, shall be used by an MMS User Agent for user assistance in preparation of terminal-originated MMs.

- TS 31.102 [4], subclauses 4.2.70 and 5.3.31;
- TS 23.140 [23], subclause 7.1.14 and Annex F.

8.3.2.3 Test purpose

1) To verify that the Terminal's MMS User Agent uses the MMS connectivity parameter stored on the USIM to connect to the network for MMS purposes.
2) To verify that when using the MMS User Connectivity Parameters to connect to the network for MMS purposes the Terminal's MMS User Agent uses the set of supported parameters in EF MMSUCP with the highest priority (as defined by its position in $\mathrm{EF}_{\text {MMSUCP }}$).
3) To verify that the Terminal's MMS User Agent uses the MMS user preference information stored on the USIM for user assistance in preparation of terminal-originated MMs.

8.3.2.4 Method of test

8.3.2.4.1 Initial conditions

Four MMS Relays/Servers are available:
MMS Relay/Server 1:

- MMS Connectivity Parameters

MMS implementation information:
MMS Relay/Server
MMS Relay/Server information:
Interface to Core Network and Bearer
Bearer:
Address:
Type of address:
Speed:
Call type:
Authentication type:
Authentication id:
Authentication pw:
Gateway
Address:
Type of address:
Port:
Service:
Authentication type:
Authentication id:
Authentication pw:
"WAP"
"http://mms-operator2.com"
"GSM-CSD"
"+495251699"
"E164"
"Autobauding"
"ANALOG_MODEM"
"PAP"
"UDO_OTS1"
"Udo_password1"
"170.187.51.4"
"IPv4"
"9203"
"CO-WSP"
"HTTP BASIC"
"gateway_user7"
"gateway_password7"

MMS Relay/Server 2:

- MMS Connectivity Parameters

MMS implementation information:
MMS Relay/Server
MMS Relay/Server information:
Interface to Core Network and Bearer
Bearer:
Address:
Type of address:
Speed:
Call type:
Authentication type:
Authentication id:
Authentication pw:
Gateway
Address:
Type of address:
Port:
Service:
Authentication type:
Authentication id:
Authentication pw:
"WAP"
"http://mms-operator2.com"
"GSM-CSD"
"+495251700"
"E164"
"Autobauding"
"ANALOG_MODEM"
"PAP"
"UDO_OTS2"
"Udo_password2"
"170.187.51.4"
"IPv4"
"9203"
"CO-WSP"
"HTTP BASIC"
"gateway_user7"
"gateway_password7"

MMS Relay/Server 3:

```
- MMS Connectivity Parameters
    MMS implementation information: "WAP"
    MMS Relay/Server
        MMS Relay/Server information:
    Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway
        Address:
        Type of address:
        Port :
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
    "http://mms-operator2.com"
    "GSM-GPRS"
    "wap.B2B-operator2.com"
    "APN"
    "ANALOG_MODEM"
    "No"
    "1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
    "PAP"
    "UDO_OTS1"
    "Udo_password1"
    "170.187.51.4"
    "IPv4"
    "9203"
    "CO-WSP"
    "HTTP BASIC"
    "gateway_user7"
    "gateway_password7"
MMS Relay/Server 4:
- MMS Connectivity Parameters
    MMS implementation information:
    MMS Relay/Server
        MMS Relay/Server information:
        Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
        Gateway
            Address: "170.187.51.4"
            Type of address: "IPv4"
            Port :
            Service:
            Authentication type:
            Authentication id:
            Authentication pw:
"WAP"
    "http://mms-operator2.com"
            "9203"
            "CO-WSP"
            "HTTP BASIC"
            "gateway_user7"
                    "gateway_password7"
```

The default UICC is used with the following exceptions:

EF $_{\text {uSt }}$ (USIM Service Table)

Logically:	Local Phone Book available
	User controlled PLMN selector available
	Fixed dialling numbers available
	Barred dialling numbers available

The GSM Access available
The Group Identifier level 1 and level 2 not available SMS available
SMS Status available
Service no. 33 (Packed Switched Domain) shall be set to '1'
Service no. 52 Multimedia Messaging Service available
Service no. 55 MMS User Connectivity Parameters available

EF $_{\text {MMSup }}$
Logically:
MMS Implementation
MMS implementation information: "WAP"
MMS User Preference Profile Name: "Greeting cards"
MMS User Information Preference Information
Visibility:
Delivery report:
Read-reply:
Priority:
Delivery-Time:
Value (absolute): "1-Jan-2003, 12:00:00 AM GMT"
Expiry:
Value (relative): 1104537600 seconds

Coding:	80	01	01	81	0 E	47	72	65	65	74	69	6 E
	67	20	63	61	72	64	73	82	19	14	80	06
	80	10	80	0 F	81	07	07	80	05	00	3 E	12
	2 F	80	08	06	81	04	41	D 5	E 8	00		

```
EF
    Logically:
        MMS Connectivity Parameters
            MMS Implementation
                MMS Implementation Information :
        MMS Relay/Server
            MMS Relay/Server Address
        1 st Interface to Core Network and Bearer
            Bearer:
            Address:
            Type of address:
            Speed:
            Call type:
            Authentication type:
            Authentication id:
            Authentication pw:
        2 nd Interface to Core Network and Bearer
            Bearer:
            Address:
            Type of address:
                Speed:
                Call type:
                Authentication type:
                Authentication id:
                Authentication pw:
        3 rd Interface to Core Network and Bearer
                Bearer:
                Address:
                Type of address:
                Call type:
                Delivery of erroneous SDU:
                Residual Bit Error Rate:
                SDU-Error-Ratio:
                Traffic-class:
                Maximum bit rate for downlink:
                Authentication type:
                Authentication id:
                Authentication pw:
            4 th Interface to Core Network and Bearer
                Bearer:
                Address:
                Type of address:
                Call type:
                Delivery of erroneous SDU:
                Residual Bit Error Rate:
                SDU-Error-Ratio:
                Traffic-class:
                Maximum bit rate for downlink:
                Authentication type:
                Authentication id:
                Authentication pw:
            Gateway:
                Address:
                Type of address:
                Port:
                Service:
                Authentication type:
                Authentication id:
            Authentication pw:
                            "GSM-GPRS"
                            "wap.B2C-operator2.com"
                            "APN"
                            "ANALOG_MODEM"
                            "No"
                            "1*10-5"
                            "1*10-6"
                            "Interactive class"
                            "8 kbps"
                            "PAP"
                            "UDO_OTS2"
                            "Udo_password2"
                                    "170.187.51.4"
                                    "IPv4"
                                    "9203"
                                    "CO-WSP"
                                    "HTTP BASIC"
                                    "gateway_user7"
                                    "gateway_password7"
```

Coding:	AB	82	01	47	80	01	01	81	18	68	74	74
	70	3 A	2 F	2 F	6 D	6 D	73	2 E	6 F	70	65	72
	61	74	6 F	72	32	2 E	63	6 F	6 D	82	2 F	10
	AA	08	2 B	34	39	35	32	35	31	36	39	39
	00	09	87	25	C 5	0 A	90	0 C	9 A	0 D	55	44
	4 F	11	4 F	54	53	31	00	0 E	55	64	6 F	11
	70	61	73	73	77	6 F	72	64	31	00	82	2 F
	10	AA	08	2 B	34	39	35	32	35	31	37	30
	30	00	09	87	25	C 5	0 A	90	0 C	9 A	0 D	55
44	4 F	11	4 F	54	53	32	00	0 E	55	64	6 F	
11	70	61	73	73	77	6 F	72	64	32	00	82	
43	10	AB	08	03	77	61	70	0 D	42	32	42	
2 D	6 F	70	65	72	61	74	6 F	72	32	03	63	
6 F	6 D	00	09	89	0 A	90	31	03	37	70	38	
06	33	60	36	08	0 C	9 A	0 D	55	44	4 F	11	
4 F	54	53	31	00	0 E	55	64	6 F	11	70	61	
73	73	77	6 F	72	64	31	00	82	43	10	AB	
08	03	77	61	70	0 D	42	32	43	2 D	6 F	70	
65	72	61	74	6 F	72	32	03	63	6 F	6 D	00	
09	89	0 A	90	31	03	37	70	38	06	33	60	
36	08	0 C	9 A	0 D	55	44	4 F	11	4 F	54	53	
32	00	0 E	55	64	6 F	11	70	61	73	73	77	
6 F	72	64	32	00	83	3 B	20	31	37	30	2 E	
31	38	37	2 E	35	31	2 E	34	00	21	85	23	
39	32	30	31	00	24	CB	19	9 C	1 A	67	61	
74	65	77	61	79	11	75	73	65	72	37	00	
1 B	67	61	74	65	77	61	79	11	70	61	73	

The UICC is installed into the Terminal and the user has indicated the data stored in $\mathrm{EF}_{\text {MMSUCPas }}$ default.

8.3.2.4.2 Procedure

a) The Terminal is powered on and the PIN shall be entered.
b) When the Terminal is in idle mode the user shall generate an MM using the MMS User Agent on the Terminal with the default MMS User Connectivity Parameters and the MMS user preference information stored in the card and send it to "+0123456789".

8.3.2.5 Acceptance criteria

1) After step b) the Terminal shall have read the first supported set of MMS connectivity parameters stored in $\mathrm{EF}_{\text {masucp }}$.
2) After step b) the Terminal shall have sent the MM to "+0123456789" using the MMS User Connectivity Parameter set with the highest priority (as defined by its position in $\mathrm{EF}_{\mathbf{M M S U C P}}$), which can be used to access an available MMS Relay/Server.
3) After step b) the Terminal shall have sent the MM to "+0123456789" using the MMS user preference information stored in $\mathrm{EF}_{\text {MMSUCP }}$.

8.3.3 UE recognising the priority order of MMS Issuer Connectivity Parameters over the MMS User Connectivity Parameters

8.3.3.1 Definition and applicability

An MMS User Agent shall use the MMS related information stored in the USIM, if present, unless otherwise specified by the user. This information comprises MMS connectivity information, MMS user preferences and MMS notifications.

MMS user preferences information, which is stored on the USIM, shall be used by an MMS User Agent for user assistance in preparation of terminal-originated MMs (e.g. default values for parameters that are often used).

8.3.3.2 Conformance requirement

MMS connectivity information, on the USIM includes a number of sets of MMS connectivity parameters. Some of these sets of MMS connectivity parameters are preset by the issuer of the USIM with the first set being the default. Such default preset MMS connectivity parameter set shall be selected unless otherwise specified by the user.

- TS 31.102 [4], subclauses 4.2.69, 4.7.71, 5.3.30 and 5.3.32;
- TS 23.140 [23], subclause 7.1.14 and Annex F

8.3.3.3 Test purpose

1) To verify that the Terminal's MMS User Agent uses the MMS connectivity parameter stored on the USIM to connect to the network for MMS purposes.
2) To verify that a MMS Issuer Connectivity Parameter set with lower priority (as defined by its position in $E F_{\text {MMSICP }}$) takes precedence over a MMS User Connectivity Parameter set with a higher priority.

8.3.3.4 Method of test

8.3.3.4.1 Initial conditions

Four MMS Relays/Servers are available:
MMS Relay/Server 1:

- MMS Connectivity Parameters

MMS implementation information:
MMS Relay/Server
MMS Relay/Server information:
Interface to Core Network and Bearer
Bearer:
Address:
Type of address:
Speed:
Call type:
Authentication type:
Authentication id:
Authentication pw:
Gateway
Address:
Type of address:
Port:
Service:
Authentication type:
Authentication id:
Authentication pw:
"WAP"
"http://mms-operator3.com"
"GSM-CSD"
"+495251699"
"E164"
"Autobauding"
"ANALOG_MODEM"
"PAP"
"UDO_OTS1"
"Udo_password1"
"170.187.51.5"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user9"
"gateway_password9"

MMS Relay/Server 2:

```
- MMS Connectivity Parameters
    MMS implementation information: "WAP"
    MMS Relay/Server
        MMS Relay/Server information:
    Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway
        Address:
        Type of address:
        Port :
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
    "http://mms-operator3.com"
    "GSM-GPRS"
    "wap.B2P-operator3.com"
    "APN"
    "ANALOG_MODEM"
    "No"
    "1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
"PAP"
"UDO_OTS1"
"Udo_password1"
"170.187.51.5"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user9"
"gateway_password9"
```

MMS Relay/Server 3:

- MMS Connectivity Parameters

MMS implementation information:
MMS Relay/Server
MMS Relay/Server information:
Interface to Core Network and Bearer Bearer:
Address:
Type of address:
Speed:
Call type:
Authentication type:
Authentication id:
Authentication pw:
Gateway
Address:
Type of address:
Port:
Service:
Authentication type:
Authentication id:
Authentication pw:
"WAP"
"http://mms-operator3.com"
"GSM-CSD"
"+496998626"
"E164"
"Autobauding"
"ANALOG_MODEM"
"PAP"
"B2C_OTS2"
"B2C_password2"
"170.187.51.5"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user9"
"gateway_password9"

MMS Relay/Server 4:

```
- MMS Connectivity Parameters
    MMS implementation information: "WAP"
    MMS Relay/Server
        MMS Relay/Server information:
    Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway
        Address:
        Type of address:
        Port :
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
    "http://mms-operator3.com"
    "GSM-GPRS"
    "wap.B2C-operator3.com"
    "APN"
    "ANALOG_MODEM"
    "No"
    " 1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
"PAP"
"B2C_OTS2"
"B2C_password2"
"170.187.51.5"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user9"
"gateway_password9"
```

The default UICC is used with the following exceptions:
$\mathbf{E F}_{\text {UST }}$ (USIM Service Table)
Logically: Local Phone Book available User controlled PLMN selector available Fixed dialling numbers available Barred dialling numbers available The GSM Access available The Group Identifier level 1 and level 2 not available SMS available SMS Status available Service no. 33 (Packed Switched Domain) shall be set to '1' Service no. 52 Multimedia Messaging Service available Service no. 55 MMS User Connectivity Parameters available

Coding: Binary	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{xx} 1 \end{aligned}$		$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{x} 11 \mathrm{x} x \mathrm{xxx} \end{aligned}$	$\begin{aligned} & \text { B3 } \\ & \text { xxxx 1x00 } \end{aligned}$	B4 $x x x x \text { x1xx }$	$\begin{aligned} & \text { B5 } \\ & \text { xxxx xxx1 } \end{aligned}$	$\begin{aligned} & \mathrm{B6} \\ & \text { xxxx xxxx } \end{aligned}$	$\begin{aligned} & \mathrm{B7} \\ & \mathrm{x} 1 \mathrm{xx} 1 \mathrm{xxx} \end{aligned}$
$\mathrm{EF}_{\text {MmSN }}$								
Logically MMS MMS MMS Exten	Statu Impl Noti ion	tation n: cord	number:	Free space "00" "FF FF ... FF" "FF"	251 bytes)			
Coding:	$\begin{aligned} & \mathrm{B} 1 \\ & 00 \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { B3 } \\ & 00 \end{aligned}$	$\begin{aligned} & \text { B4 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B5 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B254 } \\ & \text { FF } \end{aligned}$	$\begin{aligned} & \text { B255 } \\ & \text { FF } \end{aligned}$	

```
Logically:
    MMS Connectivity Parameters
    MMS Implementation
        MMS Implementation Information :
    MMS Relay/Server
        MMS Relay/Server Address
    "http://mms-operator3.com"
    1 st Interface to Core Network and Bearer
            Bearer:
            Address:
            Type of address:
            Speed:
            Call type:
            Authentication type:
            Authentication id:
            Authentication pw:
    2 nd Interface to Core Network and Bearer
            Bearer:
            Address:
            Type of address:
            Speed:
            Call type:
            Authentication type:
            Authentication id:
            Authentication pw:
    3 rd Interface to Core Network and Bearer
            Bearer:
            Address:
            Type of address:
            Call type:
            Delivery of erroneous SDU:
            Residual Bit Error Rate:
            SDU-Error-Ratio:
            Traffic-class:
            Maximum bit rate for downlink:
            Authentication type:
            Authentication id:
            Authentication pw:
            4 th Interface to Core Network and Bearer
            Bearer:
            Address:
            Type of address:
            Call type:
            Delivery of erroneous SDU:
            Residual Bit Error Rate:
            SDU-Error-Ratio:
            Traffic-class:
                Maximum bit rate for downlink:
            Authentication type:
            Authentication id:
            Authentication pw:
    Gateway:
        Address:
            Type of address:
        Port:
        Service:
            Authentication type:
            Authentication id:
        Authentication pw:
                            "GSM-CSD"
                            "+496998625"
                            "E164"
                            "Autobauding"
                            "ANALOG_MODEM"
                            "PAP"
                            "B2B_OTS1"
                            "B2B_password1"
                            "GSM-CSD"
                            "+496998626"
                            "E164"
                            "Autobauding"
                            "ANALOG_MODEM"
                            "PAP"
                            "B2C_OTS2"
                            "B2C_password2"
                    "GSM-GPRS"
                            "wap.B2B-operator3.com"
                            "APN"
                            "ANALOG_MODEM"
                            "No"
                            "1*10-5"
                            "1*10-6"
                            "Interactive class"
                            "8 kbps"
                            "PAP"
                            "B2B_OTS1"
                            "B2B_password1"
                            "GSM-GPRS"
                            "wap.B2C-operator3.com"
                            "APN"
                            "ANALOG_MODEM"
                            "No"
                            "1*10-5"
                            "1*10-6"
                            "Interactive class"
                            "8 kbps"
"PAP"
"B2C_OTS2"
"B2C_password2"
"170.187.51.5"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user9"
"gateway_password9"
```

Coding:	AB	82	01	47	80	01	01	81	18	68	74	74
	70	$3 A$	2 F	2 F	6 D	6 D	73	2 E	6 F	70	65	72
	61	74	6 F	72	33	2 E	63	6 F	6 D	82	2 F	10
	AA	08	2 B	34	39	36	39	39	38	36	32	35
	00	09	87	25	C 5	0 A	90	0 C	9 A	0 D	42	32
	42	11	4 F	54	53	31	00	0 E	42	32	42	11
	70	61	73	73	77	6 F	72	64	31	00	82	2 F
	10	AA	08	2 B	34	39	36	39	39	38	36	32
36	00	09	87	25	C 5	0 A	90	0 C	9 A	0 D	42	
	32	43	11	4 F	54	53	32	00	0 E	42	32	43
11	70	61	73	73	77	6 F	72	64	32	00	82	
43	10	AB	08	03	77	61	70	0 D	42	32	42	
2 D	6 F	70	65	72	61	74	6 F	72	33	03	63	
6 F	6 D	00	09	89	0 A	90	31	03	37	70	38	
06	33	60	36	08	0 C	9 A	0 D	42	32	42	11	
4 F	54	53	31	00	0 E	42	32	42	11	70	61	
73	73	77	6 F	72	64	31	00	82	43	10	AB	
08	03	77	61	70	0 D	42	32	43	2 D	6 F	70	
65	72	61	74	6 F	72	33	03	63	6 F	6 D	00	
09	89	0 A	90	31	03	37	70	38	06	33	60	
36	08	0 C	9 A	0 D	42	32	43	11	4 F	54	53	
32	00	0 E	42	32	43	11	70	61	73	73	77	
6 F	72	64	32	00	83	3 B	20	31	37	30	2 E	
31	38	37	2 E	35	31	2 E	35	00	21	85	23	
39	32	30	31	00	24	CB	19	9 C	1 A	67	61	
74	65	77	61	79	11	75	73	65	72	39	00	
1 B	67	61	74	65	77	61	79	11	70	61	73	

$\mathrm{EF}_{\text {MMSUP }}$
Logically:
MMS Implementation
MMS implementation information: "WAP"
MMS User Preference Profile Name: "Greeting cards"
MMS User Information Preference Information
Visibility:
Delivery report:
Read-reply:
Priority:
Delivery-Time:
Value (absolute):
Expiry:
Value (relative):
"hide"
"yes"
"yes"
"normal"
"1-Jan-2003, 12:00:00 AM GMT"
1104537600 seconds

Coding:	80	01	01	81	0 E	47	72	65	65	74	69	6 E
	67	20	63	61	72	64	73	82	19	14	80	06
	80	10	80	0 F	81	07	07	80	05	00	3 E	12
	2 F	80	08	06	81	04	41	D 5	E 8	00		

```
EF
    Logically:
        MMS Connectivity Parameters
            MMS Implementation
                MMS Implementation Information :
        MMS Relay/Server
            MMS Relay/Server Address
                            "http://mms-operator3.com"
        1 st Interface to Core Network and Bearer
            Bearer: "GSM-CSD"
            Address: "+495251699"
            Type of address:
            Speed:
            Call type:
            Authentication type:
            Authentication id:
            Authentication pw:
        2 nd Interface to Core Network and Bearer
            Bearer:
            Address:
                Type of address:
                Speed:
                Call type:
                Authentication type:
                Authentication id:
                Authentication pw:
        3 rd Interface to Core Network and Bearer
                Bearer:
                Address:
                Type of address:
                Call type:
                Delivery of erroneous SDU:
                Residual Bit Error Rate:
                SDU-Error-Ratio:
                Traffic-class:
                Maximum bit rate for downlink:
                Authentication type:
                Authentication id:
                Authentication pw:
            4 th Interface to Core Network and Bearer
                Bearer:
                Address:
                Type of address:
                Call type:
                Delivery of erroneous SDU:
                Residual Bit Error Rate:
                SDU-Error-Ratio:
                Traffic-class:
                Maximum bit rate for downlink:
                Authentication type:
                Authentication id:
                Authentication pw:
            Gateway:
                Address:
            Type of address:
            Port:
            Service:
                Authentication type:
                Authentication id:
                Authentication pw:
                    GSM-GPRS"
                            "wap.B2C-operator3.com"
                            "APN"
                            "ANALOG_MODEM"
                            "No"
                            "1*10-5"
                            "1*10-6"
                            "Interactive class"
                            "8 kbps"
                            "PAP"
                            "UDO_OTS2"
                            "Udo_password2"
                                    "170.187.51.5"
                                    "IPv4"
                                    "9201"
                                    "CO-WSP"
                                    "HTTP BASIC"
                                    "gateway_user9"
                                    "gateway_password9"
```

Coding:	AB	82	01	47	80	01	01	81	18	68	74	74
	70	3A	2F	2F	6D	6D	73	2D	6F	70	65	72
	61	74	6F	72	33	2E	63	6F	6D	82	2F	10
	AA	08	2B	34	39	35	32	35	31	36	39	39
	00	09	87	25	C5	0A	90	OC	9A	0D	55	44
	4F	11	4F	54	53	31	00	OE	55	64	6F	11
	70	61	73	73	77	6F	72	64	31	00	82	2F
	10	AA	08	2B	34	39	35	32	35	31	37	30
	30	00	09	87	25	C5	0A	90	OC	9A	0D	55
	44	4F	11	4F	54	53	32	00	OE	55	64	6F
	11	70	61	73	73	77	6F	72	64	32	00	82
	43	10	AB	08	03	77	61	70	0D	42	32	50
	2D	6F	70	65	72	61	74	6F	72	33	03	63
	6F	6D	00	09	89	0A	90	31	03	37	70	38
	06	33	60	36	08	OC	9A	0D	55	44	4F	11
	4F	54	53	31	00	OE	55	64	6F	11	70	61
	73	73	77	6F	72	64	31	00	82	43	10	AB
	08	03	77	61	70	0D	42	32	43	2D	6F	70
	65	72	61	74	6F	72	33	03	63	6F	6D	00
	09	89	0A	90	31	03	37	70	38	06	33	60
	36	08	OC	9A	0D	55	44	4F	11	4F	54	53
	32	00	OE	55	64	6F	11	70	61	73	73	77
	6F	72	64	32	00	83	3C	20	31	37	30	2E
	31	38	37	2E	35	31	2E	35	00	21	85	23
	39	32	30	31	00	24	CB	19	9C	1A	67	61
	74	65	77	61	79	11	75	73	65	72	39	00
	1B	67	61	74	65	77	61	79	11	70	61	73
	73	77	6F	72	64	39	00					

The UICC is installed into the Terminal and the user hasn't specified a default MMS connectivity parameter set.

8.3.3.4.2 Procedure

a) The Terminal is powered on and the PIN shall be entered.
b) When the Terminal is in idle mode the user shall generate an MM using the MMS User Agent on the Terminal with the default MMS connectivity parameter set and send it to " +0123456789 ". If no MMS Relay/Server is available for this parameter set, the next MMS connectivity parameter set offered by the MMS User Agent shall be used to send the MM.

8.3.3.5 Acceptance criteria

After step b) the Terminal shall have sent the MM to " +0123456789 " using the first supported MMS connectivity parameter set, which can be used to access an available MMS Relay/Server and is stored in $\mathrm{EF}_{\text {MMSICP }}$.

8.3.4 Usage of MMS notification

8.3.4.1 Definition and applicability

An MMS User Agent shall use the MMS related information stored in the USIM, if present, unless otherwise specified by the user. This information comprises MMS connectivity information, MMS user preferences and MMS notifications. MMS notifications should be stored on the USIM together with an associated status by a MMS User Agent according to TS 23.140 [23].

8.3.4.2 Conformance requirement

A Terminal supporting MMS notification storage on the USIM shall store MMS notifications together with an associated status on the USIM.

- TS 31.102 [4], subclauses 4.2.67 and 5.3.29;
- TS 23.140 [23], subclauses 7.1.12, 7.1.14, 8.1.4 and Annex F.

8.3.4.3 Test purpose

To verify that the Terminal stores and updates MMS notifications with the associated status on the USIM correctly.

8.3.4.4 Method of test

8.3.4.4.1 Initial conditions

Two MMS Relays/Servers are available:
MMS Relay/Server 1:
MMS Connectivity Parameters
MMS implementation information: "WAP"
MMS Relay/Server
MMS Relay/Server information:
Interface to Core Network and Bearer Bearer:
Address:
Type of address:
Speed:
Call type:
Authentication type:
Authentication id:
Authentication pw:
Gateway
Address:
Type of address:
Port:
Service:
Authentication type:
Authentication id:
Authentication pw:
"http://mms-operator1.com"
"GSM-CSD"
"+496998625"
"E164"
"Autobauding"
"ANALOG_MODEM"
"PAP"
"B2B_OTS1"
"B2B_password1"
"170.187.51.3"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user1"
"gateway_password1"

MMS Relay/Server 2:

```
- MMS Connectivity Parameters
    MMS implementation information: "WAP"
    MMS Relay/Server
        MMS Relay/Server information:
    Interface to Core Network and Bearer
        Bearer:
        Address:
        Type of address:
        Call type:
        Delivery of erroneous SDU:
        Residual Bit Error Rate:
        SDU-Error-Ratio:
        Traffic-class:
        Maximum bit rate for downlink:
        Authentication type:
        Authentication id:
        Authentication pw:
    Gateway
        Address:
        Type of address:
        Port:
        Service:
        Authentication type:
        Authentication id:
        Authentication pw:
    "WAP"
    "http://mms-operator1.com"
    "GSM-GPRS"
    "wap.B2B-operator1.com"
    "APN"
    "ANALOG_MODEM"
    "No"
    "1*10-5"
    "1*10-6"
    "Interactive class"
    "8 kbps"
    "PAP"
    "B2B_OTS1"
    "B2B_password1"
"170.187.51.3"
"IPv4"
"9201"
"CO-WSP"
"HTTP BASIC"
"gateway_user1"
"gateway_password1"
```

The default UICC is used with the following exceptions:

EF $_{\text {UST }}$ (USIM Service Table)

Logically: Local Phone Book available
User controlled PLMN selector available
Fixed dialling numbers available
Barred dialling numbers available
The GSM Access available
The Group Identifier level 1 and level 2 not available
SMS available
SMS Status available
Service no. 33 (Packed Switched Domain) shall be set to '1'
Service no. 52 Multimedia Messaging Service available
Service no. 53 Extension 8 available
Service no. 55 MMS User Connectivity Parameters not available

EF $_{\text {MMSUP }}$

Logically:

$\mathrm{EF}_{\text {MMSICP }}$	
Logically:	
MMS Connectivity Parameters	
MMS Implementation	
MMS Implementation Information :	"WAP"
MMS Relay/Server	
MMS Relay/Server Address	"http://mms-operator1.com"
$1^{\text {st }}$ Interface to Core Network and Bearer	
Bearer:	"GSM-CSD"
Address:	"+496998625"
Type of address:	"E164"
Speed:	"Autobauding"
Call type:	"ANALOG_MODEM"
Authentication type:	"PAP"
Authentication id:	"B2B_OTS1"
Authentication pw:	"B2B_password1"
$2^{\text {nd }}$ Interface to Core Network and Bearer	
Bearer:	"GSM-CSD"
Address:	"+496998626"
Type of address:	"E164"
Speed:	"Autobauding"
Call type:	"ANALOG_MODEM"
Authentication type:	"PAP"
Authentication id:	"B2C_OTS2"
Authentication pw:	"B2C_password2"
$3{ }^{\text {rd }}$ Interface to Core Network and Bearer	
Bearer:	"GSM-GPRS"
Address:	"wap.B2B-operator1.com"
Type of address:	"APN"
Call type:	"ANALOG_MODEM"
Delivery of erroneous SDU:	"No"
Residual Bit Error Rate:	" $1 * 10^{-5}$ "

$\mathrm{EF}_{\text {ExT8 }}$

Logically:
At least 10 records.
Record 1 to 10: Free space with 253 bytes for extension data

Record 1:

Coding:	B1	B2	B3	B4	\cdots	\ldots	B255
Hex	00	FF	FF	FF			FF

The UICC is installed into the Terminal and the user hasn't specified a default MMS connectivity parameter set.

8.3.4.4.2 Procedure

a) The terminal is powered on and the PIN shall be entered.
b) When the terminal is in idle mode a MM shall be sent to the terminal via the MMS Relay/Server 1 or 2, dependent on the bearer supported by the terminal. This MMS Relay/Server shall then generate a notification to the Terminal's MMS User Agent. With the MM notification the MMS User Agent shall receive a message reference that can be used for retrieving the MM from this MMS Relay/Server.

The MM shall result in a MMS notification with the following predefined values:

X-Mms Message Type:	"m-notification-ind" (0x82)
X-Mms-Transaction-ID:	$" 01 "$
X-Mms-MMS-Version:	$" 1.0 "$
From:	not present (hidden)
Subject:	"MM for you"
X-Mms-Content-Location:	"http://mms-operator1/MMBox/ID-007-12345678"

c) The user shall read the MMS notification stored on the USIM.
d) The user shall retrieve the MM stored on the MMS Relay/Server used in step b).
e) The user shall forward the MM to " +0123456789 " using the default MMS Issuer Connectivity Parameters stored on the USIM.
f) A MM shall be sent to the terminal via the same MMS Relay/Server as in step b). This MMS Relay/Server shall then generate a notification to the Terminal's MMS User Agent. With the MM notification the MMS User Agent shall receive a message reference that can be used for retrieving the MM from this MMS Relay/Server.

The MM shall result in a MMS notification with the following predefined values:

X-Mms Message Type:	"m-notification-ind" (0x82)
X-Mms-Transaction-ID:	$" 02 "$
X-Mms-MMS-Version:	$" 1.0 "$
From:	$"+0987123654 "$
Subject:	"Urgent MM"
X-Mms-Content-Location:	"http://mms-operator1/MMBox/ID-007-02468024"

g) The user shall read the MMS notification stored on the USIM.
h) The user shall reject the MM stored on the MMS Relay/Server used in step b).

8.3.4.5 Acceptance criteria

1) After step b) the MMS User Agent on the terminal shall have stored the MMS notification on the USIM with the values defined in step b) of 8.4.4.4.2, the associated status shall have been set to "Used space, notification not read, MM not retrieved" and the MMS User Agent shall indicate to the user that a MMS notification has been received.
2) After step c) the status of the MMS notification stored on the USIM shall have been set to "used space, notification read, MM not retrieved".
3) After step d) the MMS user agent shall have retrieved the MM from the MMS Relay/Server 1 and the status of the MMS notification stored on the USIM shall have either been set to "used space, notification read, MM retrieved" or the MMS notification shall have been deleted and the associated shall have been set to "Free space".
4) After step e) the terminal shall have read the set of MMS Issuer Connectivity Parameters stored first in $\mathrm{EF}_{\text {MMSICP }}$ and shall have forward the MM to " +0123456789 " using the MMS Relay/Server 1. The MMS notification shall have either been set to "used space, notification read, MM forwarded" or the MMS notification shall have been deleted and the associated shall have been set to "Free space".
5) After step f) the MMS User Agent on the terminal shall have stored the MMS notification on the USIM with the values defined in step f) of 8.4.4.4.2, the associated status shall have been set to "Used space, notification not read, MM not retrieved" and the MMS User Agent shall indicate to the user that a MMS notification has been received.
6) After step g) the status of the MMS notification stored on the USIM shall have been set to "used space, notification read, MM not retrieved".
7) After step h) the MMS user agent shall have not retrieved the MM from the MMS Relay/Server 1 and the status of the MMS notification stored on the USIM shall have either been set to "used space, notification read, MM rejected" or the MMS notification shall have been deleted and the associated shall have been set to "Free space".

8.4 UICC presence detection

8.4.1 Definition and applicability

To ensure that the UICC has not been removed during a card session, the Terminal sends in case of inactivity on the UICC-Terminal interface, at frequent intervals, a STATUS command during each call.

This procedure shall be used in addition to a mechanical or other devices used to detect the removal of a UICC.

8.4.2 Conformance requirement

A STATUS command shall be issued within all 30 second periods of inactivity on the UICC-Terminal interface during a call. Inactivity in this case is defined as starting at the end of the last communication or the last issued STATUS command. If no response data is received to this STATUS command, then the call shall be terminated as soon as possible but at least within 5 s after the STATUS command has been sent. If the DF indicated in response to a STATUS command is not the same as that which was indicated in the previous response, or accessed by the previous command, then the call shall be terminated as soon as possible but at least within 5 seconds after the response data has been received.

- TS 31.102 [4], subclauses 5.1.9
- TS 102221 [5], clause 14.5.2.

8.4.3 Test purpose

1) To verify that there are no periods of inactivity on the UICC-Terminal interface greater than 30 seconds during a call.
2) To verify that the terminal terminates a call within 5 s at the latest after having received an invalid response to the STATUS command.

8.4.4 Method of test

8.4.4.1 Initial conditions

The terminal shall be connected to the UICC simulator. All elementary files shall be coded as default.

8.4.4.2 Procedure

a) A call shall be set up using the generic call setup.
b) The UICC simulator shall monitor the time of periods of inactivity on the UICC-Terminal interface.
c) After 3 minutes, the call shall be cleared.
d) A call shall be set up using the generic call setup.
e) After one minute after the call was successfully set up, the UICC simulator shall respond to a STATUS command with the response data indicating a DF different from the current DF.

8.4.5 Acceptance criteria

1) During step b), the time of periods of inactivity on the UICC-Terminal interface shall not be longer than 30 seconds.
2) After step e), the Terminal shall terminate the call within 5 s at the latest after having received the wrong response to the STATUS command.

$9 \quad$ USIM service handling

9.1 Access Point Name Control List handling

9.1.1 Access Point Name Control List handling for terminals supporting ACL

9.1.1.1 Definition and applicability

This $\mathrm{EF}_{\mathrm{ACL}}$ contains the list of allowed APNs (Access Point Names). When the APN Control List service is enabled, the ME shall check that the entire APN of any PDP context is listed in $\mathrm{EF}_{\mathrm{ACL}}$ before requesting this PDP context activation from the network. If the APN is not present in $\mathrm{EF}_{\mathrm{ACL}}$, the ME shall not request the corresponding PDP context activation from the network.

9.1.1.2 Conformance requirement

The terminal shall support the APN Control List service as defined in 3GPP TS 31.102[4], subclauses 5.1.1.2 and 5.3.14.

Reference:

- 3GPP TS 31.102[4], subclauses 4.2.8, 4.2.48, 5.1.1.2 and 5.3.14;
- 3GPP TS 23.060[25], subclause 9.2.

9.1.1.3 Test purpose

1) To verify that the terminal takes into account the status of the APN Control List service as indicated in $\mathrm{EF}_{\text {UST }}$ and $\mathrm{EF}_{\mathrm{EST}}$.
2) To verify that the terminal checks that the entire $A P N$ of any PDP context is listed in $E F_{A C L}$ before requesting this PDP context activation from the network if the ACL service is enabled.
3) To verify that the terminal does not request the corresponding PDP context activation from the network if the ACL service is enabled and the APN is not present in $E F_{A C L}$.

9.1.1.4 Method of test

9.1.1.4.1 Initial conditions

The terminal is connected to the USIM Simulator and the (U)SS.
The default USIM is used with the following exceptions:
The APN Control List (ACL) shall be allocated and activated in the USIM Service Table and enabled in the Enabled Service Table.
$\mathrm{EF}_{\mathrm{ACL}}$ shall be present with the following values:

$\mathbf{E F}_{\text {ACL }}$ (Access Point Control List)

Logically: \quad Number of available bytes: 64
Number of APNs: 3

$1^{\text {st }}$ APN:	test.test
$2^{\text {nd }}$ APN:	3gpp.test
$3^{\text {rd }}$ APN:	2gpp.test

Byte:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Coding:	03	DD	0A	04	74	65	73	74	04	74	65	73
	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
	74	DD	OA	04	33	67	70	70	04	74	65	73
	B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
	74	DD	0A	04	32	67	70	70	04	74	65	73
	B37	B38	...	B64								
	74	FF	...	FF								

9.1.1.4.2 Procedure

a) The terminal is switched on and the USIM application shall be activated.
b) The user shall request a PDP context activation to "1gpp.test".
c) The user shall request a PDP context activation to "3gpp.test".
d) The user shall deactivate the PDP context.
e) The user shall disable the APN Control List service. When prompted to enter PIN2, the user shall present the correct PIN2 value.
f) The user shall request a PDP context activation to "1gpp.test".
g) The user shall deactivate the PDP context and shall switch the terminal off and then switch on again.
h) The user shall enable the APN Control List service. When prompted to enter PIN2, the user shall present the correct PIN2 value.
i) The user shall request a PDP context activation to "1ppp.net".
j) The terminal is switched off and on.
k) The user shall add the APN "1ppp.net" to the APN Control List. When prompted to enter PIN2, the user shall present the correct PIN2 value.

1) The user shall request a PDP context activation to "1ppp.net".
m) The user shall deactivate the PDP context and switch off the terminal.

9.1.1.5 Acceptance criteria

1) After step a) the terminal shall have activated the USIM application, shall have read the status of the ACL service in $E F_{\text {UST }}$ and $E F_{\text {EST }}$ and be in updated idle mode on the (U)SS.
2) The terminal shall have not requested a PDP context activation in step b).
3) After step c) the PDP context shall have been activated.
4) After step d) the PDP context shall have been deactivated.
5) After step e) the APN Control List service shall have been set to disabled in $E F_{\text {EST }}$.
6) After step f) the PDP context shall have been activated.
7) After step g) the PDP context shall have been deactivated.
8) After step h) the APN Control List service shall have been set to enabled in $\mathrm{EF}_{\text {EST }}$.
9) The terminal shall not have requested a PDP context activation in step i).
10) After step k) the APN "1ppp.net" shall have been added to the APN Control List in $\mathrm{EF}_{\mathrm{ACL}}$.
11) After step l) the PDP context shall have been activated.

9.1.2 Network provided APN handling for terminals supporting ACL

9.1.2.1 Definition and applicability

This $\mathrm{EF}_{\mathrm{ACL}}$ contains the list of allowed APNs (Access Point Names). When the APN Control List service is enabled, the ME shall check that the entire APN of any PDP context is listed in $\mathrm{EF}_{\mathrm{ACL}}$ before requesting this PDP context activation from the network. If the APN is not present in $\mathrm{EF}_{\mathrm{ACL}}$, the ME shall not request the corresponding PDP context activation from the network.

In the case that the APN Control List is enabled and no APN is indicated in the PDP context request, indicating that a network provided APN is to be used, then the ME shall only request the PDP context activation if "network provided APN" is contained within $E F_{A C L}$.

9.1.2.2 Conformance requirement

The terminal shall support the APN Control List service as defined in 3GPP TS 31.102[4], subclauses 5.1.1.2 and 5.3.14.

Reference:

- 3GPP TS 31.102[4], subclauses 4.2.8, 4.2.48, 5.1.1.2 and 5.3.14;
- 3GPP TS 23.060[25], subclause 9.2.

9.1.2.3 Test purpose

1) To verify that if ACL is enabled and if no APN is indicated in the PDP context the terminal request the PDP context activation only if "network provided APN" is contained within $\mathrm{EF}_{\mathrm{ACL}}$.
2) To verify that the user is able to set an $A P N$ in $E F_{A C L}$ entry to the value "network provided $A P N$ ".
3) To verify that the minimum set of APN entries in $E F_{A C L}$ is ensured when the user deletes APN entries.

9.1.2.4 Method of test

9.1.2.4.1 Initial conditions

The terminal is connected to the USIM Simulator and the (U)SS.
The default USIM is used with the following exceptions:
The APN Control List (ACL) shall be allocated and activated in the USIM Service Table and enabled in the Enabled Service Table.
$\mathrm{EF}_{\mathrm{ACL}}$ shall be present with the following values:
$\mathbf{E F}_{\text {ACL }}$ (Access Point Control List)
Logically: Number of available bytes: 64
Number of APNs: 3
$1^{\text {st }}$ APN: test.test $2^{\text {nd }} A P N: \quad 3 g p p . t e s t$ $3^{\text {rd }}$ APN: 2gpp.test

Byte:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
Coding:	03	DD	OA	04	74	65	73	74	04	74	65	73
	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
	74	DD	OA	04	33	67	70	70	04	74	65	73
	B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
	74	DD	OA	04	32	67	70	70	04	74	65	73
	B37	B38	...	B64								
	74	FF		FF								

9.1.2.4.2 Procedure

a) The terminal is switched on and the USIM application shall be activated.
b) The user shall add "network provided APN" to the APN Control List in $\mathrm{EF}_{\mathrm{ACL}}$ by using an MMI dependent option in the terminal. When prompted to enter PIN2, the user shall present the correct PIN2 value.
c) The user shall request a PDP context activation to "3gpp.test".
d) The user shall deactivate the PDP context.
e) The user shall request a PDP context activation without indicating an APN.
f) The user shall deactivate the PDP context.
g) The user shall delete "network provided APN" from the APN Control List in $\mathrm{EF}_{\mathrm{ACL}}$ by using an MMI dependent option in the terminal. When prompted to enter PIN2, the user shall present the correct PIN2 value.
h) The user shall request a PDP context activation to "3gpp.test".
i) The user shall deactivate the PDP context.
j) The user shall request a PDP context activation without indicating an APN.
k) The user shall try to delete all APNs from the APN Control List in $\mathrm{EF}_{\mathrm{ACL}}$ by using an MMI dependent option in the terminal. When the terminal indicates that at least one APN entry shall remain, the user shall set this entry to "network provided APN". When prompted to enter PIN2, the user shall present the correct PIN2 value.

1) The user shall switch off the terminal.

9.1.2.5 Acceptance criteria

1) After step a) the terminal shall have activated the USIM application, shall have read the status of the ACL service in $\mathrm{EF}_{\mathrm{UST}}$ and $\mathrm{EF}_{\mathrm{EST}}$ and be in updated idle mode on the (U)SS.
2) After step b) $E F_{A C L}$ shall contain an entry for "network provided APN".
3) After step c) the PDP context shall have been activated.
4) After step d) the PDP context shall have been deactivated.
5) After step e) the PDP context shall have been activated.
6) After step f) the PDP context shall have been deactivated.
7) After step g) $\mathrm{EF}_{\mathrm{ACL}}$ shall not contain an entry for "network provided APN".
8) After step h) the PDP context shall have been activated.
9) After step i) the PDP context shall have been deactivated.
10) The terminal shall have not requested a PDP context activation in step j).
11) After step k) $E F_{A C L}$ shall contain one APN entry with the value "network provided APN" and the corresponding number of APNs in $\mathrm{EF}_{\mathrm{ACL}}$ shall be 1 .

9.1.3 Access Point Name Control List handling for terminals not supporting ACL

9.1.3.1 Definition and applicability

This $\mathrm{EF}_{\mathrm{ACL}}$ contains the list of allowed APNs (Access Point Names). When the APN Control List service is enabled, the ME shall check that the entire APN of any PDP context is listed in $\mathrm{EF}_{\mathrm{ACL}}$ before requesting this PDP context activation from the network. If the APN is not present in $\mathrm{EF}_{\mathrm{ACL}}$, the ME shall not request the corresponding PDP context activation from the network.

If ACL is enabled, an ME which does not support ACL shall not send any APN to the network.

9.1.3.2 Conformance requirement

An ME which does not support ACL shall not send any APN to the network if ACL is enabled.
Reference:

- 3GPP TS 31.102[4], 5.1.1.2.

9.1.3.3 Test purpose

To verify that if ACL is enabled, an ME which does not support ACL, does not send any APN to the network to request a PDP context activation.9.1.3.4 Method of test

9.1.3.4.1 Initial conditions

The terminal is connected to the USIM Simulator and the (U)SS.
The default USIM is used with the following exceptions:
The APN Control List (ACL) shall be allocated and activated in the USIM Service Table and enabled in the Enabled Service Table.
$\mathrm{EF}_{\mathrm{ACL}}$ shall be present with the following values:
$\mathbf{E F}_{\text {ACL }}$ (Access Point Control List)

9.1.3.4.2 Procedure

a) The terminal is switched on and the USIM application shall be activated.
b) The user shall request a PDP context activation to "3gpp.test".
c) The terminal shall be switched off.

9.1.3.5 Acceptance criteria

1) After step a) the terminal shall have activated the USIM application, shall have read the status of the ACL service in $E F_{\text {UST }}$ and $E F_{\text {EST }}$ and be in updated idle mode on the (U)SS.
2) The terminal shall not have sent any APN to the network in step b).

9.2 Service Dialling Numbers handling

9.2.1 Definition and applicability

The Service Dialling Numbers feature allows for the storage of numbers related to services offered by the network operator/service provider in the SIM/USIM (e.g. customer care). The user can use these telephone numbers to make outgoing calls, but the access for updating of the numbers shall be under the control of the operator.

9.2.2 Conformance requirement

The terminal shall support the Service Dialling Numbers service as defined in 3GPP TS 31.102[4], subclauses 4.2.8 and 4.2.29.

Reference:

- 3GPP TS 31.102[4], subclauses 4.2.8, 4.2.29 and 4.2.31;
- 3GPP TS 22.101[11], subclause A.23.

9.2.3 Test purpose

1) To verify that the terminal takes into account the status of the Service Dialling Numbers service as indicated in $\mathrm{EF}_{\text {UST }}$.
2) To verify that the user can use the Service Dialling Numbers to make outgoing calls.
3) To verify that the terminal is able to handle SDNs with an extended dialling number string.
4) To verify that the terminal is able to handle an empty alpha identifier in $E F_{S D N}$.
5) To verify that the terminal is able to handle an alpha identifier of maximum length in $\mathrm{EF}_{\text {SDN }}$.

9.2.4 Method of test

9.2.4.1 Initial conditions

The terminal is connected to the USIM Simulator and the (U)SS.
The default USIM is used with the following exceptions:
The Service Dialling Numbers (SDN) shall be allocated and activated in the USIM Service Table.
$\mathrm{EF}_{\text {SDN }}$ shall be present with the following values:
$\mathbf{E F}_{\text {SDN }}$ (Service Dialling Numbers)
Logically:
6 records, 1 record shall be empty. Unless otherwise stated, the SDN records shall not use extendend BCD numbers/SSC strings. Access to update $\mathrm{EF}_{\mathrm{SDN}}$ shall be granted by usage of ADM1 only.

Record 1: Length of alpha identifier: 241 characters; Alpha identifier:
"Hotline001122334455667788ABCDEFGHIJKLMNOPQRSTUVW XYZ0123456789abcdefghijklmnopqrstuvwxyz0123456789ABCDEF GHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuv wxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456 789abcdefghijklmnopqrstuvwxyz0123456789";
Length of BCD number:
5;
TON and NPI: Telephony and International;
Dialled number: "22223333";
CCP: 'FF';
Ext3: 'FF'.
Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots
Hex	48	6F	74	6C	69	6E	65	30	30	31	\ldots	\ldots
	B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
	39	05	91	22	22	33	33	FF	FF	FF	FF	FF
	B253	B254	B255									
	FF	FF	FF									

Record 2: Length of alpha identifier: 241 characters;
Alpha identifier: "Hotline002";
Length of BCD number: 5 ;
TON and NPI: Telephony and International;
Dialled number: "44554455";
CCI2: 'FF';
Ext3: 'FF'.
Record 2:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots
Hex	48	6F	74	6C	69	6 E	65	30	30	32	FF	\ldots
	B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
	FF	05	91	44	55	44	55	FF	FF	FF	FF	FF
	B253	B254	B255									
	FF	FF	FF									

Record 3:	Length of alpha identifier:	241 characters;
	Alpha identifier:	"Hotline003";
	Length of BCD number:	$11 ;$
	TON and NPI:	Telephony and International;
	Dialled number:	"01234567890123456789";
CCI2:	'FF';	
	Ext3:	"01".

Record 3:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots
Hex	48	6F	74	6C	69	6E	65	30	30	33	FF	\ldots
	B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
	FF	OB	91	10	32	54	76	98	10	32	54	76
	B253	B254	B255									
	98	FF	01									

Record 4: Length of alpha identifier: 241 characters;
Alpha identifier: empty;
Length of BCD number: 03;
TON and NPI: Telephony and International;
Dialled number: "007";
CCI2: 'FF';
Ext3: 'FF'.
Record 4:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots
Hex	FF	\ldots										
	B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
	FF	O3	91	00	F7	FF						
	B253	B254	B255									
	FF	FF	FF									

Record 5: Length of alpha identifier:
Alpha identifier:
Length of BCD number:
TON and NPI:
Dialled number:
CCI2:
Ext3:
Record 5:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	\ldots
Hex	FF	\ldots										
	B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
	O3	91	00	F8	FF							
	B253	B254	B255									
	FF	FF	FF									

$\mathbf{E F}_{\text {Ext3 }}$ (Extension 3)

Logically: 5 records, 4 records empty. Access to update $\mathrm{EF}_{\mathrm{EXT}}$ shall be granted by usage of $\mathrm{ADM1}$ only.

Record 1:	Record type:	'02'
	Extension data:	"012345";
	Identifier:	'FF'.

Record 1:

Coding:	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
Hex	02	03	10	32	54	FF							

9.2.4.2 Procedure

a) The terminal is switched on and the USIM application shall be activated.
b) The user shall use an MMI dependent procedure to set up a call to the dialling number associated with the alpha identifier
"Hotline001122334455667788ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvw xyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz012345678 9ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789abcdefghijklmnopqrstuvwxyz0123456789" in record 1 of $\mathrm{EF}_{\text {SDN }}$.
c) The user shall end the call.
d) The user shall use an MMI dependent procedure to set up a call to the dialling number associated with the "Hotline003" in record 3 of $\mathrm{EF}_{\text {SDN }}$.
e) The user shall end the call.
f) The user shall use an MMI dependent procedure to select and to set up a call to the dialling number " +007 " stored in record 4 of $\mathrm{EF}_{\text {SDN }}$.
g) The user shall end the call and switch the terminal off.

9.2.5 Acceptance criteria

1) After step a) the terminal shall have activated the USIM application and shall have read the status of the SDN service in $\mathrm{EF}_{\text {UST }}$.
2) After step b) the terminal shall have read record 1 of $E F_{\text {SDN }}$ and a call to " +22223333 " shall have been established.
3) After step c) the call shall have been terminated.
4) After step d) the terminal shall have read record 3 of $\mathrm{EF}_{\mathrm{SDN}}$ and record 1 of $\mathrm{EF}_{\mathrm{EXTI}}$ and a call to "+01234567890123456789012345" shall have been established.
5) After step e) the call shall have been terminated.
6) After step f) the terminal shall have read record 4 of $\mathrm{EF}_{\text {SDN }}$ and a call to " +007 " shall have been established.

Annex A (informative): Change history

The table below indicates all change requests that have been incorporated into the present document since it was upgraded to Release 6.

TSG \# / Date	TSG Doc	$2^{\text {nd }} \text { level }$ doc	CR	$\begin{gathered} \mathbf{R e} \\ \mathbf{v} \end{gathered}$	Cat	Subject/Comment	New
CT-28	CP-050139	C6-050394	068		B	Introduction of BCD number/ SSC content extension tests	6.0.0
CT-28	CP-050139	C6-050396	072		B	Introduction of ACL tests	6.0 .0
CT-28	CP-050139	C6-050436	073		B	Introduction of SDN tests	6.0.0
CT-28	CP-050139	C6-050452	074		B	Introduction of phonebook selection/ local phonebook handling test	6.0.0
CT-29	CP-050325	C6-050658	080		A	Incorrect PUK2 value used in TC 6.1.6	6.1 .0
		C6-050711	088		A	Incorrect value used for EF SMS in TC 8.2.2	6.1 .0
	CP-050331	C6-050654	076		A	Incorrect MCC value used in TC 7.4.1	6.1 .0
	CP-050336	C6-050706	083		F	Clarification of BCD number/ SSC content extension tests	6.1 .0
		C6-050700	081		F	Numbering and minor corrections	6.1 .0
CT-30	CP-050494	C6-050853	090		F	CR to create combined R99 - Rel-6 version	6.2 .0
CT-31	CP-060020	C6-060178	095		F	Essential correction of TC 7.2.1	6.3.0
						Update of Change History by TB Officer	6.3.1
CT-32	CP-060285	C6-060224	0096		F	Essential correction of acceptance criteria in 6.1.3.5 and 6.1.4.5	6.4.0
	CP-060286	C6-060231	0097		F	Essential corrections on ACL TC 9.1.1	
CT-33	CP-060507	C6-060517	0098	1	F	Essential corrections on Applicability table	6.5.0
CT-34	CP-060543	C6-060792	0099	1	F	Essential corrections to 8.1.2	6.6.0
		C6-060793	0100	1	F	Essential correction of EF PLMNwACT coding	
CT-35	CP-070064	C6-070098	0101	1	F	Essential correction of UICC presence detection test	6.7.0

History

Document history		
V6.0.0	June 2005	Publication
V6.1.0	October 2005	Publication
V6.2.0	December 2005	Publication
V6.3.1	April 2006	Publication
V6.4.0	May 2006	Publication
V6.5.0	September 2006	Publication
V6.6.0	November 2006	Publication
V6.7.0	March 2007	Publication

