# ETSI TS 136 101 V11.9.0 (2014-08)



LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 11.9.0 Release 11)



Reference RTS/TSGR-0436101vb90

Keywords

LTE

#### ETSI

#### 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

#### Important notice

The present document can be downloaded from: http://www.etsi.org

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services: <u>http://portal.etsi.org/chaircor/ETSI\_support.asp</u>

#### **Copyright Notification**

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014. All rights reserved.

**DECT<sup>™</sup>**, **PLUGTESTS<sup>™</sup>**, **UMTS<sup>™</sup>** and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP<sup>™</sup>** and **LTE<sup>™</sup>** are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

# Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

## Foreword

This Technical Specification (TS) has been produced by the ETSI 3<sup>rd</sup> Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under <a href="http://webapp.etsi.org/key/queryform.asp">http://webapp.etsi.org/key/queryform.asp</a> .

# Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "may not", "need", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

# Contents

| Intelle          | ectual Property Rights                                          | 2     |
|------------------|-----------------------------------------------------------------|-------|
| Forew            | /ord                                                            | 2     |
| Moda             | l verbs terminology                                             | 2     |
| Forew            | /ord                                                            | 15    |
| 1                | Scope                                                           | 16    |
| 2                | References                                                      | 16    |
| 3                | Definitions, symbols and abbreviations                          | 16    |
| 3.1              | Definitions                                                     | 16    |
| 3.2              | Symbols                                                         |       |
| 3.3              | Abbreviations                                                   | 19    |
| 4                | General                                                         | 20    |
| 4<br>4.1         | Relationship between minimum requirements and test requirements |       |
| 4.1              | Applicability of minimum requirements                           |       |
| 4.2<br>4.3       | Void                                                            |       |
| 4.3A             | Applicability of minimum requirements (CA, UL-MIMO, eDL-MIMO)   | 21 21 |
| 4.4              | RF requirements in later releases                               |       |
| 7.7              | -                                                               |       |
| 5                | Operating bands and channel arrangement                         | 22    |
| 5.1              | General                                                         |       |
| 5.2              | Void                                                            |       |
| 5.3              | Void                                                            |       |
| 5.4              | Void                                                            |       |
| 5.5              | Operating bands                                                 |       |
| 5.5A             | Operating bands for CA                                          |       |
| 5.5B             | Operating bands for UL-MIMO                                     |       |
| 5.6              | Channel bandwidth                                               |       |
| 5.6.1            | Channel bandwidths per operating band                           |       |
| 5.6A             | Channel bandwidth for CA.                                       |       |
| 5.6A.1           |                                                                 |       |
| 5.6B             | Channel bandwidth for UL-MIMO                                   |       |
| 5.6B.1           |                                                                 |       |
| 5.7              | Channel arrangement                                             |       |
| 5.7.1            | Channel spacing for CA                                          |       |
| 5.7.1A<br>5.7.2  | Channel spacing for CA<br>Channel raster                        |       |
| 5.7.2A           |                                                                 |       |
| 5.7.2A           | Carrier frequency and EARFCN                                    |       |
| 5.7.4            | TX-RX frequency separation                                      |       |
| 5.7.4A           |                                                                 |       |
|                  |                                                                 |       |
| 6                | Transmitter characteristics                                     |       |
| 6.1              | General                                                         |       |
| 6.2              | Transmit power                                                  |       |
| 6.2.1            | Void                                                            |       |
| 6.2.2            | UE maximum output power                                         |       |
| 6.2.2A           |                                                                 |       |
| 6.2.2B           |                                                                 |       |
| 6.2.3            | UE maximum output power for modulation / channel bandwidth      |       |
| 6.2.3A<br>6.2.3B |                                                                 |       |
| 6.2.3B<br>6.2.4  | 1 1                                                             |       |
| 6.2.4<br>6.2.4A  | UE maximum output power with additional requirements            |       |
| 6.2.4A           |                                                                 |       |
| 0.2.4A           | $A - WIF K 101 CA_NS_01 101 CA_1 C \dots$                       |       |

| 6.2.4A.2   | A-MPR for CA_NS_02 for CA_1C                                     | 49 |
|------------|------------------------------------------------------------------|----|
| 6.2.4A.3   | A-MPR for CA_NS_03 for CA_1C                                     |    |
| 6.2.4A.4   | A-MPR for CA_NS_04                                               |    |
| 6.2.4A.5   | A-MPR for CA_NS_05 for CA_38C                                    |    |
| 6.2.4A.6   | A-MPR for CA_NS_06                                               |    |
| 6.2.4B     | UE maximum output power with additional requirements for UL-MIMO |    |
| 6.2.5      | Configured transmitted power                                     |    |
| 6.2.5A     | Configured transmitted power for CA                              |    |
| 6.2.5R     | Configured transmitted power for UL-MIMO                         |    |
|            | Output power dynamics                                            |    |
| 6.3.1      | (Void)                                                           |    |
| 6.3.2      | Minimum output power                                             |    |
| 6.3.2.1    | Minimum output power                                             |    |
| 6.3.2A     | UE Minimum output power for CA                                   |    |
|            |                                                                  |    |
| 6.3.2A.1   | Minimum requirement for CA                                       |    |
| 6.3.2B     | UE Minimum output power for UL-MIMO                              |    |
| 6.3.2B.1   | Minimum requirement                                              |    |
| 6.3.3      | Transmit OFF power                                               |    |
| 6.3.3.1.   | Minimum requirement                                              |    |
| 6.3.3A     | UE Transmit OFF power for CA                                     |    |
| 6.3.3A.1   | Minimum requirement for CA                                       |    |
| 6.3.3B     | UE Transmit OFF power for UL-MIMO                                |    |
| 6.3.3B.1   | Minimum requirement                                              |    |
| 6.3.4      | ON/OFF time mask                                                 |    |
| 6.3.4.1    | General ON/OFF time mask                                         |    |
| 6.3.4.2    | PRACH and SRS time mask                                          |    |
| 6.3.4.2.1  | PRACH time mask                                                  |    |
| 6.3.4.2.2  | SRS time mask                                                    | 60 |
| 6.3.4.3    | Slot / Sub frame boundary time mask                              |    |
| 6.3.4.4    | PUCCH / PUSCH / SRS time mask                                    | 62 |
| 6.3.4A     | ON/OFF time mask for CA                                          | 63 |
| 6.3.4B     | ON/OFF time mask for UL-MIMO                                     | 63 |
| 6.3.5      | Power Control                                                    | 63 |
| 6.3.5.1    | Absolute power tolerance                                         | 63 |
| 6.3.5.1.1  | Minimum requirements                                             |    |
| 6.3.5.2    | Relative Power tolerance                                         |    |
| 6.3.5.2.1  | Minimum requirements                                             |    |
| 6.3.5.3    | Aggregate power control tolerance                                |    |
| 6.3.5.3.1  | Minimum requirement.                                             |    |
| 6.3.5A     | Power control for CA                                             |    |
| 6.3.5A.1   | Absolute power tolerance                                         |    |
| 6.3.5A.1.1 | 1                                                                |    |
| 6.3.5A.2   | Relative power tolerance                                         |    |
| 6.3.5A.2.1 | 1                                                                |    |
| 6.3.5A.3   | Aggregate power control tolerance                                |    |
| 6.3.5A.3.1 |                                                                  |    |
| 6.3.5B     | Power control for UL-MIMO                                        |    |
|            |                                                                  |    |
| 6.4        | Void                                                             |    |
|            | Transmit signal quality                                          |    |
| 6.5.1      | Frequency error                                                  |    |
| 6.5.1A     | Frequency error for CA                                           |    |
| 6.5.1B     | Frequency error for UL-MIMO                                      |    |
| 6.5.2      | Transmit modulation quality                                      |    |
| 6.5.2.1    | Error Vector Magnitude                                           |    |
| 6.5.2.1.1  | Minimum requirement                                              |    |
| 6.5.2.2    | Carrier leakage                                                  |    |
| 6.5.2.2.1  | Minimum requirements                                             |    |
| 6.5.2.3    | In-band emissions                                                |    |
| 6.5.2.3.1  | Minimum requirements                                             |    |
| 6.5.2.4    | EVM equalizer spectrum flatness                                  |    |
| 6.5.2.4.1  | Minimum requirements                                             |    |
| 6.5.2A     | Transmit modulation quality for CA                               | 71 |

| 6.5.2A.1   | Error Vector Magnitude                                                      | 71 |
|------------|-----------------------------------------------------------------------------|----|
| 6.5.2A.2   | Carrier leakage for CA                                                      |    |
| 6.5.2A.2.1 | Minimum requirements                                                        |    |
| 6.5.2A.3   | In-band emissions                                                           |    |
| 6.5.2A.3.1 | Minimum requirement for CA.                                                 |    |
| 6.5.2B     | Transmit modulation quality for UL-MIMO                                     |    |
| 6.5.2B.1   | Error Vector Magnitude                                                      |    |
| 6.5.2B.2   | Carrier leakage                                                             |    |
| 6.5.2B.3   | In-band emissions                                                           |    |
| 6.5.2B.4   | EVM equalizer spectrum flatness for UL-MIMO                                 |    |
|            | Output RF spectrum emissions                                                |    |
| 6.6.1      | Occupied bandwidth                                                          |    |
| 6.6.1A     | Occupied bandwidth for CA                                                   |    |
| 6.6.1B     | Occupied bandwidth for UL-MIMO                                              |    |
| 6.6.2      | Out of band emission                                                        |    |
| 6.6.2.1    | Spectrum emission mask                                                      |    |
| 6.6.2.1.1  | Minimum requirement.                                                        |    |
| 6.6.2.1A   | Spectrum emission mask for CA                                               |    |
| 6.6.2.2    | Additional spectrum emission mask                                           |    |
| 6.6.2.2.1  | Minimum requirement (network signalled value "NS_03", "NS_11", and "NS_20") |    |
| 6.6.2.2.2  | Minimum requirement (network signalled value "NS_04")                       |    |
| 6.6.2.2.3  | Minimum requirement (network signalled value "NS_06" or "NS_07")            |    |
| 6.6.2.2A   | Additional Spectrum Emission Mask for CA                                    |    |
| 6.6.2.2A.1 | Minimum requirement (network signalled value "CA_NS_04")                    |    |
| 6.6.2.3    | Adjacent Channel Leakage Ratio                                              |    |
| 6.6.2.3.1  | Minimum requirement E-UTRA                                                  |    |
| 6.6.2.3.1A | •                                                                           |    |
| 6.6.2.3.2  | Minimum requirements UTRA                                                   |    |
| 6.6.2.3.2A | Minimum requirement UTRA for CA                                             |    |
| 6.6.2.3.3A | Minimum requirements for CA E-UTRA                                          |    |
| 6.6.2.4    | Void                                                                        |    |
| 6.6.2.4.1  | Void                                                                        |    |
| 6.6.2A     | Void                                                                        |    |
| 6.6.2B     | Out of band emission for UL-MIMO                                            |    |
| 6.6.3      | Spurious emissions                                                          |    |
| 6.6.3.1    | Minimum requirements                                                        |    |
| 6.6.3.1A   | Minimum requirements for CA                                                 |    |
| 6.6.3.2    | Spurious emission band UE co-existence                                      |    |
| 6.6.3.2A   | Spurious emission band UE co-existence for CA                               |    |
| 6.6.3.3    | Additional spurious emissions                                               |    |
| 6.6.3.3.1  | Minimum requirement (network signalled value "NS_05")                       |    |
| 6.6.3.3.2  | Minimum requirement (network signalled value "NS_07")                       |    |
| 6.6.3.3.3  | Minimum requirement (network signalled value "NS_08")                       |    |
| 6.6.3.3.4  | Minimum requirement (network signalled value "NS_09")                       |    |
| 6.6.3.3.5  | Minimum requirement (network signalled value "NS_12")                       |    |
| 6.6.3.3.6  | Minimum requirement (network signalled value "NS_13")                       |    |
| 6.6.3.3.7  | Minimum requirement (network signalled value "NS_14")                       |    |
| 6.6.3.3.8  | Minimum requirement (network signalled value "NS_15")                       |    |
| 6.6.3.3.9  | Minimum requirement (network signalled value "NS_16")                       |    |
| 6.6.3.3.10 | Minimum requirement (network signalled value "NS_17")                       |    |
| 6.6.3.3.11 | Minimum requirement (network signalled value "NS_18")                       |    |
| 6.6.3.3.12 | Minimum requirement (network signalled value "NS_19")                       |    |
| 6.6.3.3.13 | Minimum requirement (network signalled value "NS_11")                       |    |
| 6.6.3.3.14 | Minimum requirement (network signalled value " NS_20")                      | 94 |
| 6.6.3.3.15 | Minimum requirement (network signalled value "NS_22")                       | 94 |
| 6.6.3.3.16 | Minimum requirement (network signalled value " NS_23")                      | 94 |
| 6.6.3.3A   | Additional spurious emissions for CA                                        |    |
| 6.6.3.3A.1 | Minimum requirement for CA_1C (network signalled value "CA_NS_01")          | 95 |
| 6.6.3.3A.2 | Minimum requirement for CA_1C (network signalled value "CA_NS_02")          |    |
| 6.6.3.3A.3 | Minimum requirement for CA_1C (network signalled value "CA_NS_03")          |    |
| 6.6.3.3A.4 | Minimum requirement for CA_38C (network signalled value "CA_NS_05")         |    |
| 6.6.3.3A.5 | Minimum requirement for CA_7C (network signalled value "CA_NS_06")          |    |

| 6.6.3A              | Void                                    | 96  |
|---------------------|-----------------------------------------|-----|
| 6.6.3B              | Spurious emission for UL-MIMO           |     |
| 6.6A                | Void                                    |     |
| 6.6B                | Void                                    |     |
| 6.7                 | Transmit intermodulation                |     |
| 6.7.1               | Minimum requirement                     |     |
| 6.7.1A              | Minimum requirement for CA              |     |
| 6.7.1B              | Minimum requirement for UL-MIMO         |     |
| 6.8                 | Void                                    |     |
| 6.8.1               | Void                                    |     |
| 6.8A                | Void                                    |     |
| 6.8B                | Time alignment error for UL-MIMO        |     |
| 6.8B.1              | Minimum Requirements                    |     |
|                     |                                         |     |
| 7 Re                | eceiver characteristics                 |     |
| 7.1                 | General                                 | 98  |
| 7.2                 | Diversity characteristics               | 99  |
| 7.3                 | Reference sensitivity power level       | 99  |
| 7.3.1               | Minimum requirements (QPSK)             |     |
| 7.3.1A              | Minimum requirements (QPSK) for CA      |     |
| 7.3.1B              | Minimum requirements (QPSK) for UL-MIMO |     |
| 7.3.2               | Void                                    |     |
| 7.4                 | Maximum input level                     |     |
| 7.4.1               | Minimum requirements                    |     |
| 7.4.1A              | Minimum requirements for CA             |     |
| 7.4.1B              | Minimum requirements for UL-MIMO        |     |
| 7.4A                | Void                                    |     |
| 7.4A.1              | Void                                    |     |
| 7.5                 | Adjacent Channel Selectivity (ACS)      |     |
| 7.5.1               | Minimum requirements.                   |     |
| 7.5.1A              | Minimum requirements for CA             |     |
| 7.5.1R              | Minimum requirements for UL-MIMO        |     |
| 7.6                 | Blocking characteristics                |     |
| 7.6.1               | In-band blocking                        |     |
| 7.6.1.1             | Minimum requirements                    |     |
| 7.6.1.1A            | Minimum requirements for CA             |     |
| 7.6.2               | Out-of-band blocking                    |     |
| 7.6.2.1             | e e e e e e e e e e e e e e e e e e e   |     |
| 7.6.2.1<br>7.6.2.1A | Minimum requirements                    |     |
|                     | 1                                       |     |
| 7.6.3               | Narrow band blocking                    |     |
| 7.6.3.1             | Minimum requirements                    |     |
| 7.6.3.1A            | Minimum requirements for CA             |     |
| 7.6A                | Void                                    |     |
| 7.6B                | Blocking characteristics for UL-MIMO    |     |
| 7.7                 | Spurious response                       |     |
| 7.7.1               | Minimum requirements                    |     |
| 7.7.1A              | Minimum requirements for CA             |     |
| 7.7.1B              | Minimum requirements for UL-MIMO        |     |
| 7.8                 | Intermodulation characteristics         |     |
| 7.8.1               | Wide band intermodulation               |     |
| 7.8.1.1             | Minimum requirements                    |     |
| 7.8.1A              | Minimum requirements for CA             |     |
| 7.8.1B              | Minimum requirements for UL-MIMO        |     |
| 7.8.2               | Void                                    |     |
| 7.9                 | Spurious emissions                      |     |
| 7.9.1               | Minimum requirements                    |     |
| 7.10                | Receiver image                          |     |
| 7.10.1              | Void                                    |     |
| 7.10.1A             | Minimum requirements for CA             | 123 |
| 8 Pe                | rformance requirement                   | 124 |
| 8.1                 | General                                 |     |
| 0.1                 |                                         | 124 |

| 8.1.1                           | Dual-antenna receiver capability                                                               | .124   |
|---------------------------------|------------------------------------------------------------------------------------------------|--------|
| 8.1.1.1                         | Simultaneous unicast and MBMS operations                                                       |        |
| 8.1.1.2                         | Dual-antenna receiver capability in idle mode                                                  |        |
| 8.2                             | Demodulation of PDSCH (Cell-Specific Reference Symbols)                                        |        |
| 8.2.1                           | FDD (Fixed Reference Channel)                                                                  |        |
| 8.2.1.1                         | Single-antenna port performance                                                                |        |
| 8.2.1.1                         | Minimum Requirement                                                                            |        |
| 8.2.1.1.1                       |                                                                                                |        |
|                                 | Void                                                                                           |        |
| 8.2.1.1.3                       | Void                                                                                           |        |
| 8.2.1.1.4                       | Minimum Requirement 1 PRB allocation in presence of MBSFN                                      |        |
| 8.2.1.2                         | Transmit diversity performance                                                                 |        |
| 8.2.1.2.1                       | Minimum Requirement 2 Tx Antenna Port                                                          |        |
| 8.2.1.2.2                       | Minimum Requirement 4 Tx Antenna Port                                                          | .128   |
| 8.2.1.2.3                       | Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor          |        |
|                                 | cell ABS)                                                                                      | .129   |
| 8.2.1.2.3A                      |                                                                                                |        |
|                                 | cell ABS and CRS assistance information are configured)                                        | .131   |
| 8.2.1.2.4                       | Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference             |        |
|                                 | model                                                                                          |        |
| 8.2.1.3                         | Open-loop spatial multiplexing performance                                                     | .134   |
| 8.2.1.3.1                       | Minimum Requirement 2 Tx Antenna Port                                                          | .134   |
| 8.2.1.3.1A                      | Soft buffer management test                                                                    | .135   |
| 8.2.1.3.2                       | Minimum Requirement 4 Tx Antenna Port                                                          | .137   |
| 8.2.1.3.3                       | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor           |        |
|                                 | cell ABS)                                                                                      | .137   |
| 8.2.1.3.4                       | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor           |        |
|                                 | cell ABS and CRS assistance information are configured)                                        | .141   |
| 8.2.1.4                         | Closed-loop spatial multiplexing performance                                                   |        |
| 8.2.1.4.1                       | Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port                        |        |
| 8.2.1.4.1A                      |                                                                                                |        |
| 8.2.1.4.1B                      |                                                                                                |        |
| 0.2.1.1.11                      | Antenna Port with TM4 interference model                                                       | 145    |
| 8.2.1.4.10                      |                                                                                                | .145   |
| 0.2.1.4.10                      | subframe overlaps with aggressor cell ABS and CRS assistance information are configured)       | 147    |
| 8.2.1.4.2                       | Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port                         |        |
| 8.2.1.4.3                       | Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port                         |        |
| 8.2.1.4.5                       | Multimum Requirement Multi-Layer Spatial Multiplexing 4 TX Antenna Fort                        |        |
| 8.2.1.5                         | [Control channel performance: D-BCH and PCH]                                                   |        |
|                                 | Carrier aggregation with power imbalance                                                       |        |
| 8.2.1.7                         |                                                                                                |        |
| 8.2.1.7.1                       | Minimum Requirement                                                                            |        |
| 8.2.2                           | TDD (Fixed Reference Channel)                                                                  |        |
| 8.2.2.1                         | Single-antenna port performance                                                                |        |
| 8.2.2.1.1                       | Minimum Requirement                                                                            |        |
| 8.2.2.1.2                       | Void                                                                                           |        |
| 8.2.2.1.3                       | Void                                                                                           |        |
| 8.2.2.1.4                       | Minimum Requirement 1 PRB allocation in presence of MBSFN                                      |        |
| 8.2.2.2                         | Transmit diversity performance                                                                 |        |
| 8.2.2.2.1                       | Minimum Requirement 2 Tx Antenna Port                                                          |        |
| 8.2.2.2.2                       | Minimum Requirement 4 Tx Antenna Port                                                          | .158   |
| 8.2.2.2.3                       | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS) | 158    |
| 8.2.2.2.3A                      |                                                                                                |        |
| 5.2.2.2.51                      | cell ABS and CRS assistance information are configured)                                        | .160   |
| 8.2.2.2.4                       | Enhanced Performance Requirement Type $A - 2$ Tx Antenna Ports with TM3 interference           |        |
| 0.2.2.2.7                       | model                                                                                          | 167    |
| 8.2.2.3                         | Open-loop spatial multiplexing performance                                                     |        |
| 8.2.2.3.1                       | Minimum Requirement 2 Tx Antenna Port                                                          |        |
| 8.2.2.3.1<br>8.2.2.3.1A         |                                                                                                |        |
| 8.2.2.3.1 <i>P</i><br>8.2.2.3.2 | Minimum Requirement 4 Tx Antenna Port                                                          |        |
| 8.2.2.3.2                       | Minimum Requirement 4 TX Antenna Port                                                          | .104   |
| 0.2.2.3.3                       |                                                                                                | .165   |
|                                 |                                                                                                | . 10.1 |

| 8.2.2.3.4    | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor           |         |
|--------------|------------------------------------------------------------------------------------------------|---------|
|              | cell ABS and CRS assistance information are configured)                                        |         |
| 8.2.2.4      | Closed-loop spatial multiplexing performance                                                   |         |
| 8.2.2.4.1    | Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port                        |         |
| 8.2.2.4.14   |                                                                                                | 172     |
| 8.2.2.4.1E   |                                                                                                |         |
|              | Antenna Port with TM4 interference model                                                       | 172     |
| 8.2.2.4.10   | C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation       |         |
|              | subframe overlaps with aggressor cell ABS and CRS assistance information are configured)       | 174     |
| 8.2.2.4.2    | Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port                         | 176     |
| 8.2.2.4.3    | Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port                         | 177     |
| 8.2.2.5      | MU-MIMO                                                                                        | 179     |
| 8.2.2.6      | [Control channel performance: D-BCH and PCH]                                                   | 179     |
| 8.2.2.7      | Carrier aggregation with power imbalance                                                       |         |
| 8.2.2.7.1    | Minimum Requirement                                                                            |         |
| 8.3          | Demodulation of PDSCH (User-Specific Reference Symbols)                                        |         |
| 8.3.1        | FDD                                                                                            |         |
| 8.3.1.1      | Single-layer Spatial Multiplexing                                                              |         |
| 8.3.1.1A     | Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9           |         |
| 0.011111     | interference model                                                                             | 183     |
| 8.3.1.1B     | Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and  |         |
| 0.5.1.1D     | CRS assistance information are configured)                                                     | 185     |
| 8.3.1.2      | Dual-Layer Spatial Multiplexing                                                                |         |
| 8.3.1.3      | Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports              |         |
| 8.3.1.3.1    | Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)                        |         |
| 8.3.1.3.2    | Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resource)                     |         |
| 8.3.1.3.3    | Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS           | 190     |
| 0.5.1.5.5    | resource)                                                                                      | 102     |
| 022          | TDD                                                                                            |         |
| 8.3.2        |                                                                                                |         |
| 8.3.2.1      | Single-layer Spatial Multiplexing                                                              |         |
| 8.3.2.1A     | Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)                        | 196     |
| 8.3.2.1B     | Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9           | 100     |
| 0.0.0.10     | interference model                                                                             | 198     |
| 8.3.2.1C     | Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and  | • • • • |
|              | CRS assistance information are configured)                                                     |         |
| 8.3.2.2      | Dual-Layer Spatial Multiplexing                                                                |         |
| 8.3.2.3      | Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)                          |         |
| 8.3.2.4      | Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports              |         |
| 8.3.2.4.1    | Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)                        |         |
| 8.3.2.4.2    | Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)                    | 206     |
| 8.3.2.4.3    | Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS           |         |
|              | resource)                                                                                      |         |
| 8.4          | Demodulation of PDCCH/PCFICH                                                                   | 210     |
| 8.4.1        | FDD                                                                                            |         |
| 8.4.1.1      | Single-antenna port performance                                                                | 210     |
| 8.4.1.2      | Transmit diversity performance                                                                 | 210     |
| 8.4.1.2.1    | Minimum Requirement 2 Tx Antenna Port                                                          | 210     |
| 8.4.1.2.2    | Minimum Requirement 4 Tx Antenna Port                                                          |         |
| 8.4.1.2.3    | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS) | 211     |
| 8.4.1.2.4    | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor           |         |
|              | cell ABS and CRS assistance information are configured)                                        | 215     |
| 8.4.2        | TDD                                                                                            |         |
| 8.4.2.1      | Single-antenna port performance                                                                |         |
| 8.4.2.2      | Transmit diversity performance                                                                 |         |
| 8.4.2.2.1    | Minimum Requirement 2 Tx Antenna Port                                                          |         |
| 8.4.2.2.2    | Minimum Requirement 2 Tx Antenna Port                                                          |         |
| 8.4.2.2.3    | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor           | 0       |
| 52.2.3       | cell ABS)                                                                                      | 221     |
| 8.4.2.2.4    | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor           |         |
| 0.7.2.2.7    | cell ABS and CRS assistance information are configured)                                        | 225     |
| 8.5          | Demodulation of PHICH                                                                          |         |
| 8.5<br>8.5.1 | FDD                                                                                            |         |
| 0.5.1        | 1 00                                                                                           |         |

| 8.5.1.1   | Single-antenna port performance                                                      | 229 |
|-----------|--------------------------------------------------------------------------------------|-----|
| 8.5.1.2   | Transmit diversity performance                                                       |     |
| 8.5.1.2.1 | Minimum Requirement 2 Tx Antenna Port                                                |     |
| 8.5.1.2.2 | Minimum Requirement 4 Tx Antenna Port                                                |     |
| 8.5.1.2.3 |                                                                                      | 230 |
| 0.3.1.2.3 | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor | 220 |
| 05104     | cell ABS)                                                                            | 230 |
| 8.5.1.2.4 | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor |     |
|           | cell ABS and CRS assistance information are configured)                              |     |
| 8.5.2     | TDD                                                                                  |     |
| 8.5.2.1   | Single-antenna port performance                                                      |     |
| 8.5.2.2   | Transmit diversity performance                                                       |     |
| 8.5.2.2.1 | Minimum Requirement 2 Tx Antenna Port                                                | 235 |
| 8.5.2.2.2 | Minimum Requirement 4 Tx Antenna Port                                                | 236 |
| 8.5.2.2.3 | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor |     |
|           | cell ABS)                                                                            | 236 |
| 8.5.2.2.4 | Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor |     |
|           | cell ABS and CRS assistance information are configured)                              | 238 |
| 8.6       | Demodulation of PBCH                                                                 |     |
| 8.6.1     | FDD                                                                                  |     |
| 8.6.1.1   | Single-antenna port performance                                                      |     |
| 8.6.1.2   | Transmit diversity performance                                                       |     |
| 8.6.1.2.1 | Minimum Requirement 2 Tx Antenna Port                                                |     |
|           |                                                                                      |     |
| 8.6.1.2.2 | Minimum Requirement 4 Tx Antenna Port                                                | 241 |
| 8.6.1.2.3 | Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource         |     |
|           | Restriction with CRS Assistance Information                                          |     |
| 8.6.2     | TDD                                                                                  |     |
| 8.6.2.1   | Single-antenna port performance                                                      |     |
| 8.6.2.2   | Transmit diversity performance                                                       |     |
| 8.6.2.2.1 | Minimum Requirement 2 Tx Antenna Port                                                |     |
| 8.6.2.2.2 | Minimum Requirement 4 Tx Antenna Port                                                | 243 |
| 8.6.2.2.3 | Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource         |     |
|           | Restriction with CRS Assistance Information                                          | 244 |
| 8.7       | Sustained downlink data rate provided by lower layers                                | 245 |
| 8.7.1     | FDD                                                                                  | 245 |
| 8.7.2     | TDD                                                                                  | 247 |
| 8.7.3     | FDD (EPDCCH scheduling)                                                              |     |
| 8.7.4     | TDD (EPDCCH scheduling).                                                             |     |
| 8.8       | Demodulation of EPDCCH                                                               |     |
| 8.8.1     | Distributed Transmission                                                             |     |
| 8.8.1.1   | FDD.                                                                                 |     |
| 8.8.1.1.1 | Void                                                                                 |     |
| 8.8.1.2   | TDD                                                                                  |     |
| 8.8.1.2.1 |                                                                                      |     |
|           | Void                                                                                 |     |
| 8.8.2     | Localized Transmission with TM9                                                      |     |
| 8.8.2.1   | FDD                                                                                  |     |
| 8.8.2.1.1 | Void                                                                                 |     |
| 8.8.2.1.2 | Void                                                                                 |     |
| 8.8.2.2   | TDD                                                                                  |     |
| 8.8.2.2.1 | Void                                                                                 |     |
| 8.8.2.2.2 | Void                                                                                 | 257 |
| 8.8.3     | Localized transmission with TM10 Type B quasi co-location type                       | 257 |
| 8.8.3.1   | FDD                                                                                  | 257 |
| 8.8.3.2   | TDD                                                                                  | 259 |
|           |                                                                                      |     |
|           | eporting of Channel State Information                                                |     |
| 9.1       | General                                                                              |     |
| 9.2       | CQI reporting definition under AWGN conditions                                       |     |
| 9.2.1     | Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)                      | 262 |
| 9.2.1.1   | FDD                                                                                  |     |
| 9.2.1.2   | TDD                                                                                  | 262 |
| 9.2.1.3   | FDD (CSI measurements in case two CSI subframe sets are configured)                  | 263 |
| 9.2.1.4   | TDD (CSI measurements in case two CSI subframe sets are configured)                  | 265 |

| 9.2.1.5                                 | FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information) | 267 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------|-----|
| 9.2.1.6                                 | TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance              |     |
|                                         | information)                                                                                            |     |
| 9.2.2                                   | Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)                                         |     |
| 9.2.2.1                                 | FDD                                                                                                     |     |
| 9.2.2.2                                 | TDD                                                                                                     |     |
| 9.2.3                                   | Minimum requirement PUCCH 1-1 (CSI Reference Symbols)                                                   |     |
| 9.2.3.1                                 | FDD                                                                                                     | 273 |
| 9.2.3.2                                 | TDD                                                                                                     |     |
| 9.2.4                                   | Minimum requirement PUCCH 1-1 (With Single CSI Process)                                                 | 275 |
| 9.2.4.1                                 | FDD                                                                                                     | 275 |
| 9.2.4.2                                 | TDD                                                                                                     | 278 |
| 9.3                                     | CQI reporting under fading conditions                                                                   | 280 |
| 9.3.1                                   | Frequency-selective scheduling mode                                                                     | 280 |
| 9.3.1.1                                 | Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)                                         |     |
| 9.3.1.1.1                               | FDD                                                                                                     |     |
| 9.3.1.1.2                               | TDD                                                                                                     |     |
| 9.3.1.1.3                               | FDD (CSI measurements in case two CSI subframe sets are configured and with CRS                         |     |
| ,                                       | assistance information)                                                                                 | 282 |
| 9.3.1.1.4                               | TDD (CSI measurements in case two CSI subframe sets are configured and with CRS                         | 0_  |
| 7.5.1.1.1                               | assistance information)                                                                                 | 285 |
| 9.3.1.2                                 | Minimum requirement PUSCH 3-1 (CSI Reference Symbol)                                                    |     |
| 9.3.1.2.1                               | FDD                                                                                                     |     |
| 9.3.1.2.1                               | TDD                                                                                                     |     |
|                                         |                                                                                                         |     |
| 9.3.2                                   | Frequency non-selective scheduling mode                                                                 |     |
| 9.3.2.1                                 | Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)                                          |     |
| 9.3.2.1.1                               | FDD                                                                                                     |     |
| 9.3.2.1.2                               | TDD                                                                                                     |     |
| 9.3.2.2                                 | Minimum requirement PUCCH 1-1 (CSI Reference Symbol)                                                    |     |
| 9.3.2.2.1                               | FDD                                                                                                     |     |
| 9.3.2.2.2                               | TDD                                                                                                     |     |
| 9.3.3                                   | Frequency-selective interference                                                                        |     |
| 9.3.3.1                                 | Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)                                          |     |
| 9.3.3.1.1                               | FDD                                                                                                     |     |
| 9.3.3.1.2                               | TDD                                                                                                     |     |
| 9.3.3.2                                 | Void                                                                                                    |     |
| 9.3.3.2.1                               | Void                                                                                                    |     |
| 9.3.3.2.2                               | Void                                                                                                    |     |
| 9.3.4                                   | UE-selected subband CQI                                                                                 |     |
| 9.3.4.1                                 | Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)                                         |     |
| 9.3.4.1.1                               | FDD                                                                                                     | 299 |
| 9.3.4.1.2                               | TDD                                                                                                     | 300 |
| 9.3.4.2                                 | Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)                                         | 301 |
| 9.3.4.2.1                               | FDD                                                                                                     | 301 |
| 9.3.4.2.2                               | TDD                                                                                                     | 303 |
| 9.3.5                                   | Additional requirements for enhanced receiver Type A                                                    |     |
| 9.3.5.1                                 | Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)                                          | 305 |
| 9.3.5.1.1                               | FDD                                                                                                     | 305 |
| 9.3.5.1.2                               | TDD                                                                                                     | 306 |
| 9.3.5.2                                 | Minimum requirement PUCCH 1-1 (CSI Reference Symbol)                                                    | 309 |
| 9.3.5.2.1                               | FDD                                                                                                     |     |
| 9.3.5.2.2                               | TDD                                                                                                     |     |
| 9.3.6                                   | Minimum requirement (With multiple CSI processes)                                                       |     |
| 9.3.6.1                                 | FDD                                                                                                     |     |
| 9.3.6.2                                 | TDD                                                                                                     |     |
| 9.4                                     | Reporting of Precoding Matrix Indicator (PMI)                                                           |     |
| 9.4.1                                   | Single PMI                                                                                              |     |
| 9.4.1.1                                 | Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)                                         |     |
| 9.4.1.1.1                               | FDD                                                                                                     |     |
| 9.4.1.1.2                               | TDD                                                                                                     |     |
| 9.4.1.2                                 | Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)                                         |     |
| ~ • • • • • • • • • • • • • • • • • • • |                                                                                                         |     |

| 9.4.1.2.1            | FDD                                                                                        | 322 |
|----------------------|--------------------------------------------------------------------------------------------|-----|
| 9.4.1.2.2            | TDD                                                                                        | 324 |
| 9.4.1.3              | Minimum requirement PUSCH 3-1 (CSI Reference Symbol)                                       | 325 |
| 9.4.1.3.1            | FDD                                                                                        | 325 |
| 9.4.1.3.2            | TDD                                                                                        | 326 |
| 9.4.1a               | Void                                                                                       | 328 |
| 9.4.1a.1             | Void                                                                                       | 328 |
| 9.4.1a.1.1           | Void                                                                                       | 328 |
| 9.4.1a.1.2           | 2 Void                                                                                     | 328 |
| 9.4.2                | Multiple PMI                                                                               | 328 |
| 9.4.2.1              | Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)                            | 328 |
| 9.4.2.1.1            | FDD                                                                                        |     |
| 9.4.2.1.2            | TDD                                                                                        | 329 |
| 9.4.2.2              | Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)                            | 330 |
| 9.4.2.2.1            | FDD                                                                                        | 330 |
| 9.4.2.2.2            | TDD                                                                                        | 331 |
| 9.4.2.3              | Minimum requirement PUSCH 1-2 (CSI Reference Symbol)                                       | 332 |
| 9.4.2.3.1            | FDD                                                                                        | 332 |
| 9.4.2.3.2            | TDD                                                                                        | 334 |
| 9.4.3                | Void                                                                                       | 336 |
| 9.4.3.1              | Void                                                                                       | 336 |
| 9.4.3.1.1            | Void                                                                                       | 336 |
| 9.4.3.1.2            | Void                                                                                       | 336 |
| 9.5                  | Reporting of Rank Indicator (RI)                                                           | 336 |
| 9.5.1                | Minimum requirement (Cell-Specific Reference Symbols)                                      | 336 |
| 9.5.1.1              | FDD                                                                                        |     |
| 9.5.1.2              | TDD                                                                                        | 337 |
| 9.5.2                | Minimum requirement (CSI Reference Symbols)                                                | 338 |
| 9.5.2.1              | FDD                                                                                        |     |
| 9.5.2.2              | TDD                                                                                        | 341 |
| 9.5.3                | Minimum requirement (CSI measurements in case two CSI subframe sets are configured)        |     |
| 9.5.3.1              | FDD                                                                                        | 343 |
| 9.5.3.2              | TDD                                                                                        | 345 |
| 9.5.4                | Minimum requirement (CSI measurements in case two CSI subframe sets are configured and CRS |     |
|                      | assistance information are configured)                                                     | 347 |
| 9.5.4.1              | FDD                                                                                        | 347 |
| 9.5.4.2              | TDD                                                                                        | 349 |
| 9.5.5                | Minimum requirement (with CSI process)                                                     | 351 |
| 9.5.5.1              | FDD                                                                                        | 351 |
| 9.5.5.2              | TDD                                                                                        | 354 |
| 9.6                  | Additional requirements for carrier aggregation                                            | 356 |
| 9.6.1                | Periodic reporting on multiple cells (Cell-Specific Reference Symbols)                     | 356 |
| 9.6.1.1              | FDD                                                                                        | 356 |
| 9.6.1.2              | TDD                                                                                        | 357 |
| 10 D                 | urformen en requirement (MDMS)                                                             | 250 |
|                      | rformance requirement (MBMS)<br>FDD (Fixed Reference Channel)                              |     |
| 10.1                 |                                                                                            |     |
| 10.1.1               | Minimum requirement                                                                        |     |
| 10.2                 | TDD (Fixed Reference Channel)                                                              |     |
| 10.2.1               | Minimum requirement                                                                        |     |
| Annex A              | (normative): Measurement channels                                                          | 361 |
|                      | eneral                                                                                     | 361 |
|                      | L reference measurement channels                                                           |     |
| A.2. U.<br>A.2.1     | General                                                                                    |     |
| A.2.1<br>A.2.1.1     | Applicability and common parameters                                                        |     |
| A.2.1.1<br>A.2.1.2   | Determination of payload size                                                              |     |
| A.2.1.2<br>A.2.1.3   | Overview of UL reference measurement channels                                              |     |
| A.2.1.5<br>A.2.2     | Reference measurement channels for FDD                                                     |     |
| A.2.2.1              | Full RB allocation                                                                         |     |
| A.2.2.1<br>A.2.2.1.1 | QPSK                                                                                       |     |
|                      | ×- ~                                                                                       |     |

| A.2.2.1.2 | 16-QAM                                                                                   |     |
|-----------|------------------------------------------------------------------------------------------|-----|
| A.2.2.1.3 | 64-QAM                                                                                   |     |
| A.2.2.2   | Partial RB allocation                                                                    |     |
| A.2.2.2.1 | QPSK                                                                                     |     |
| A.2.2.2.2 | 16-QAM                                                                                   |     |
| A.2.2.3   | 64-QAM                                                                                   |     |
| A.2.2.3   | Reference measurement channels for sustained downlink data rate provided by lower layers |     |
| A.2.3     | Reference measurement channels for TDD                                                   |     |
| A.2.3.1   | Full RB allocation                                                                       |     |
| A.2.3.1.1 | QPSK                                                                                     |     |
| A.2.3.1.2 | 16-QAM                                                                                   |     |
| A.2.3.1.3 | 64-QAM                                                                                   |     |
| A.2.3.2   | Partial RB allocation                                                                    |     |
| A.2.3.2.1 | QPSK                                                                                     |     |
| A.2.3.2.2 | 16-QAM                                                                                   |     |
| A.2.3.2.3 | 64-QAM                                                                                   |     |
| A.2.3.3   | Reference measurement channels for sustained downlink data rate provided by lower layers |     |
| A.3 DI    | _ reference measurement channels                                                         |     |
| A.3.1     | General                                                                                  |     |
| A.3.1.1   | Overview of DL reference measurement channels                                            |     |
| A.3.2     | Reference measurement channel for receiver characteristics                               |     |
| A.3.3     | Reference measurement channels for PDSCH performance requirements (FDD)                  |     |
| A.3.3.1   | Single-antenna transmission (Common Reference Symbols)                                   |     |
| A.3.3.2   | Multi-antenna transmission (Common Reference Symbols)                                    |     |
| A.3.3.2.1 | Two antenna ports                                                                        |     |
| A.3.3.2.2 | Four antenna ports                                                                       |     |
| A.3.3.3   | Reference Measurement Channel for UE-Specific Reference Symbols                          |     |
| A.3.3.3.1 | Two antenna port (CSI-RS)                                                                |     |
| A.3.3.3.2 | Four antenna ports (CSI-RS)                                                              |     |
| A.3.4     | Reference measurement channels for PDSCH performance requirements (TDD)                  |     |
| A.3.4.1   | Single-antenna transmission (Common Reference Symbols)                                   |     |
| A.3.4.2   | Multi-antenna transmission (Common Reference Signals)                                    |     |
| A.3.4.2.1 | Two antenna ports                                                                        |     |
| A.3.4.2.2 | Four antenna ports                                                                       |     |
| A.3.4.3   | Reference Measurement Channels for UE-Specific Reference Symbols                         |     |
| A.3.4.3.1 | Single antenna port (Cell Specific)                                                      |     |
| A.3.4.3.2 | Two antenna ports (Cell Specific)                                                        |     |
| A.3.4.3.3 | Two antenna ports (CSI-RS)                                                               |     |
| A.3.4.3.4 | Four antenna ports (CSI-RS)                                                              |     |
| A.3.4.3.5 | Eight antenna ports (CSI-RS)                                                             |     |
| A.3.5     | Reference measurement channels for PDCCH/PCFICH performance requirements                 |     |
| A.3.5.1   | FDD                                                                                      |     |
| A.3.5.2   | TDD                                                                                      |     |
| A.3.6     | Reference measurement channels for PHICH performance requirements                        |     |
| A.3.7     | Reference measurement channels for PBCH performance requirements                         |     |
| A.3.8     | Reference measurement channels for MBMS performance requirements                         |     |
| A.3.8.1   | FDD                                                                                      |     |
| A.3.8.2   | TDD                                                                                      |     |
| A.3.9     | Reference measurement channels for sustained downlink data rate provided by lower layers |     |
| A.3.9.1   | FDD                                                                                      |     |
| A.3.9.2   | TDD.                                                                                     |     |
| A.3.9.3   | FDD (EPDCCH scheduling)                                                                  |     |
| A.3.9.4   | TDD (EPDCCH scheduling).                                                                 |     |
| A.3.10    | Reference Measurement Channels for EPDCCH performance requirements                       |     |
| A.3.10.1  | FDD                                                                                      |     |
| A.3.10.2  | TDD                                                                                      |     |
| A.4 CS    | SI reference measurement channels                                                        | 429 |
| A.5 OI    | FDMA Channel Noise Generator (OCNG)                                                      | 449 |
| A.5.1     | OCNG Patterns for FDD                                                                    |     |
| A.5.1.1   | OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern                                   |     |
|           | $\mathbf{r}$ $\mathbf{r}$                                                                |     |

| A.5.1.         | 2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern                                 |     |
|----------------|------------------------------------------------------------------------------------------|-----|
| A.5.1.         |                                                                                          |     |
| A.5.1.4        |                                                                                          |     |
| A.5.1.         |                                                                                          |     |
| A.5.1.         |                                                                                          |     |
| A.5.1.         |                                                                                          |     |
|                | blocks                                                                                   | 453 |
| A.5.1.         | 8 OCNG FDD pattern 8: One sided dynamic OCNG FDD pattern for TM10 transmission           | 454 |
| A.5.2          | OCNG Patterns for TDD                                                                    | 455 |
| A.5.2.         |                                                                                          |     |
| A.5.2.         | 2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern                                 | 455 |
| A.5.2.         | 3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz                         | 456 |
| A.5.2.4        | 4 OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission           | 457 |
| A.5.2.         |                                                                                          | 457 |
| A.5.2.         |                                                                                          | 458 |
| A.5.2.         |                                                                                          |     |
|                | blocks                                                                                   |     |
| A.5.2.         | 8 OCNG TDD pattern 8: One sided dynamic OCNG TDD pattern for TM10 transmission           | 459 |
| Anno           | x B (normative): Propagation conditions                                                  | 461 |
| Anne           |                                                                                          |     |
| B.1            | Static propagation condition                                                             | 461 |
| B.2            | Multi-path fading propagation conditions                                                 | 461 |
| B.2.1          | Delay profiles                                                                           |     |
| B.2.2          | Combinations of channel model parameters                                                 | 462 |
| B.2.3          | MIMO Channel Correlation Matrices                                                        |     |
| B.2.3.         |                                                                                          |     |
| B.2.3.         |                                                                                          |     |
| B.2.3A         |                                                                                          |     |
| B.2.3A         |                                                                                          |     |
| B.2.3A         |                                                                                          |     |
| B.2.37         |                                                                                          |     |
| B.2.37         | 1                                                                                        |     |
| B.2.3 <i>F</i> | 1                                                                                        |     |
| B.2.4          | Propagation conditions for CQI tests                                                     |     |
| B.2.4          |                                                                                          |     |
| B.2.5          | Void                                                                                     |     |
| B.2.5<br>B.2.6 | MBSFN Propagation Channel Profile                                                        |     |
|                |                                                                                          |     |
| B.3            | High speed train scenario                                                                | 470 |
| B.4            | Beamforming Model                                                                        | 471 |
| B.4.1          | Single-layer random beamforming (Antenna port 5, 7, or 8)                                |     |
| B.4.2          | Dual-layer random beamforming (antenna ports 7 and 8)                                    |     |
| B.4.3          | Generic beamforming model (antenna ports 7-14).                                          |     |
| B.4.4          | Random beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)        |     |
| B.4.5          | Random beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110) |     |
|                |                                                                                          |     |
| B.5            | Interference models for enhanced performance requirements Type-A                         |     |
| B.5.1          | Dominant interferer proportion                                                           |     |
| B.5.2          | Transmission mode 3 interference model                                                   |     |
| B.5.3          | Transmission mode 4 interference model                                                   |     |
| B.5.4          | Transmission mode 9 interference model                                                   | 475 |
| Anne           | x C (normative): Downlink Physical Channels                                              | 476 |
| C.1            | General                                                                                  | 476 |
| C.2            | Set-up                                                                                   | 476 |
|                | •                                                                                        |     |
| C.3            | Connection                                                                               |     |
| C.3.1          | Measurement of Receiver Characteristics                                                  |     |
| C.3.2          | Measurement of Performance requirements                                                  | 477 |

| C.3.3                                            | Aggressor cell power allocation for Measurement of Performance Requirements when ABS is<br>Configured                                      | 478                      |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| C.3.4                                            | Power Allocation for Measurement of Performance Requirements when Quasi Co-location Type B:                                                |                          |
|                                                  | same Cell ID                                                                                                                               | 479                      |
| Anne                                             | ex D (normative): Characteristics of the interfering signal                                                                                | 480                      |
| D.1                                              | General                                                                                                                                    | 480                      |
| D.2                                              | Interference signals                                                                                                                       | 480                      |
| Anne                                             | ex E (normative): Environmental conditions                                                                                                 | 481                      |
| E.1                                              | General                                                                                                                                    | 481                      |
| E.2<br>E.2.1<br>E.2.2<br>E.2.3                   | Environmental<br>Temperature<br>Voltage<br>Vibration.                                                                                      | 481<br>481               |
| Anne                                             | ex F (normative): Transmit modulation                                                                                                      | 483                      |
| F.1                                              | Measurement Point                                                                                                                          | 483                      |
| F.2                                              | Basic Error Vector Magnitude measurement                                                                                                   | 483                      |
| F.3                                              | Basic in-band emissions measurement                                                                                                        | 484                      |
| F.4                                              | Modified signal under test                                                                                                                 | 484                      |
| F.5<br>F.5.1<br>F.5.2<br>F.5.3<br>F.5.4<br>F.5.5 | Window length<br>Timing offset<br>Window length<br>Window length for normal CP<br>Window length for Extended CP<br>Window length for PRACH | 486<br>486<br>486<br>487 |
| F.6                                              | Averaged EVM                                                                                                                               | 488                      |
| F.7                                              | Spectrum Flatness                                                                                                                          | 489                      |
| Anne                                             | ex G (informative): Reference sensitivity level in lower SNR                                                                               | 490                      |
| G.1                                              | General                                                                                                                                    | 490                      |
| G.2                                              | Typical receiver sensitivity performance (QPSK)                                                                                            | 490                      |
| G.3                                              | Reference measurement channel for REFSENSE in lower SNR                                                                                    | 493                      |
| Anne                                             | ex H (informative): Change history                                                                                                         | 495                      |
|                                                  | ry                                                                                                                                         |                          |
|                                                  | -                                                                                                                                          |                          |

# Foreword

This Technical Specification (TS) has been produced by the 3<sup>rd</sup> Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

Where:

- x the first digit:
  - 1 presented to TSG for information;
  - 2 presented to TSG for approval;
  - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

## 1 Scope

. The present document establishes the minimum RF characteristics and minimum performance requirements for E-UTRA User Equipment (UE).

# 2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.

- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain"
- [3] ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] 3GPP TS 36.211: "Physical Channels and Modulation".
- [5] 3GPP TS 36.212: "Multiplexing and channel coding".
- [6] 3GPP TS 36.213: "Physical layer procedures".
- [7] 3GPP TS 36.331: " Requirements for support of radio resource management ".
- [8] 3GPP TS 36.307: " Requirements on User Equipments (UEs) supporting a release-independent frequency band".
- [9] 3GPP TS 36.423: "X2 application protocol (X2AP) ".

# 3 Definitions, symbols and abbreviations

#### 3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply in the case of a single component carrier. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Aggregated Transmission Bandwidth Configuration: The number of resource block allocated within the aggregated channel bandwidth.

**Carrier aggregation:** Aggregation of two or more component carriers in order to support wider transmission bandwidths.

**Carrier aggregation band:** A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

**Carrier aggregation bandwidth class:** A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

**Carrier aggregation configuration**: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

**Channel bandwidth:** The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

**Contiguous carriers:** A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

**Contiguous resource allocation:** A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Enhanced performance requirements type A: This defines performance requirements assuming as baseline receiver reference symbol based linear minimum mean square error interference rejection combining.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

**Lower** sub-block **edge:** The frequency at the lower edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

Non-contiguous spectrum: Spectrum consisting of two or more sub-blocks separated by sub-block gap(s).

**Sub-block:** This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

**Sub-block gap:** A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

Synchronized operation: Operation of TDD in two different systems, where no simultaneous uplink and downlink occur.

**Unsynchronized operation:** Operation of TDD in two different systems, where the conditions for synchronized operation are not met.

**Upper sub-block edge:** The frequency at the upper edge of one sub-block. It is used as a frequency reference point for both transmitter and receiver requirements.

## 3.2 Symbols

For the purposes of the present document, the following symbols apply:

| BW <sub>Channel</sub>       | Channel bandwidth                                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| BW <sub>Channel,block</sub> | Sub-block bandwidth, expressed in MHz. BW <sub>Channel,block</sub> = F <sub>edge,block,high</sub> - F <sub>edge,block,low</sub> . |
| $BW_{Channel_CA}$           | Aggregated channel bandwidth, expressed in MHz.                                                                                   |
| $BW_{GB}$                   | Virtual guard band to facilitate transmitter (receiver) filtering above / below edge CCs.                                         |

| F                                                   |                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{RS}$                                            | Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.                                                                                                                                                                                                    |
|                                                     | excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B transmit antenna connector                                                                                                                                                                   |
| $\hat{E}_s$                                         | The averaged received energy per RE of the wanted signal during the useful part of the symbol,                                                                                                                                                                                                |
|                                                     | i.e. excluding the cyclic prefix, at the UE antenna connector; average power is computed within a set of REs used for the transmission of physical channels (including user specific RSs when present), divided by the number of REs within the set, and normalized to the subcarrier spacing |
| $F_{F_{Interferer}}(offset)$                        | Frequency<br>Frequency offset of the interferer                                                                                                                                                                                                                                               |
| F <sub>Interferer</sub>                             | Frequency of the interferer                                                                                                                                                                                                                                                                   |
| F <sub>C</sub><br>F <sub>C,block, high</sub>        | Frequency of the carrier centre frequency<br>Center frequency of the highest transmitted/received carrier in a sub-block.                                                                                                                                                                     |
| $F_{C,block, low}$                                  | Center frequency of the lowest transmitted/received carrier in a sub-block.                                                                                                                                                                                                                   |
| F <sub>CA_low</sub>                                 | The centre frequency of the <i>lowest carrier</i> , expressed in MHz.                                                                                                                                                                                                                         |
| F <sub>CA_high</sub>                                | The centre frequency of the highest carrier, expressed in MHz.                                                                                                                                                                                                                                |
| $F_{DL_{low}}$                                      | The lowest frequency of the downlink operating band                                                                                                                                                                                                                                           |
| F <sub>DL_high</sub>                                | The highest frequency of the downlink operating band                                                                                                                                                                                                                                          |
| $\mathrm{F}_{\mathrm{UL\_low}}$                     | The lowest frequency of the uplink operating band                                                                                                                                                                                                                                             |
| F <sub>UL_high</sub><br>F <sub>edge,block,low</sub> | The highest frequency of the uplink operating band<br>The lower sub-block edge, where $F_{edge,block,low} = F_{C,block,low} - F_{offset.}$                                                                                                                                                    |
| $F_{edge,block,high}$                               | The upper sub-block edge, where $F_{edge,block,low} = F_{C,block,low} + F_{offset}$ .                                                                                                                                                                                                         |
| $F_{edge_low}$                                      | The <i>lower edge</i> of aggregated channel bandwidth, expressed in MHz.                                                                                                                                                                                                                      |
| $F_{edge_high}$                                     | The higher edge of aggregated channel bandwidth, expressed in MHz.                                                                                                                                                                                                                            |
| F <sub>offset</sub>                                 | Frequency offset from $F_{C_{high}}$ to the <i>higher edge</i> or $F_{C_{low}}$ to the <i>lower edge</i> .                                                                                                                                                                                    |
| $F_{\rm offset, block, low}$                        | Separation between lower edge of a sub-block and the center of the lowest component carrier                                                                                                                                                                                                   |
| $F_{\text{offset,block,high}}$                      | within the sub-block<br>Separation between higher edge of a sub-block and the center of the highest component carrier<br>within the sub-block                                                                                                                                                 |
| F <sub>OOB</sub>                                    | The boundary between the E-UTRA out of band emission and spurious emission domains.                                                                                                                                                                                                           |
| $I_o$                                               | The power spectral density of the total input signal (power averaged over the useful part of the                                                                                                                                                                                              |
| 0                                                   | symbols within the transmission bandwidth configuration, divided by the total number of RE for                                                                                                                                                                                                |
|                                                     | this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal                                                                                                                                                              |
| I <sub>or</sub>                                     | The total transmitted power spectral density of the own-cell downlink signal (power averaged over                                                                                                                                                                                             |
|                                                     | the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector                                                                  |
| $\hat{I}_{or}$                                      | The total received power spectral density of the own-cell downlink signal (power averaged over                                                                                                                                                                                                |
|                                                     | the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector                                                                                |
| $I_{ot}$                                            | The received power spectral density of the total noise and interference for a certain RE (average                                                                                                                                                                                             |
|                                                     | power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE                                                                                                                                                                                                  |
| <b>x</b>                                            | antenna connector                                                                                                                                                                                                                                                                             |
| L <sub>CRB</sub>                                    | Transmission bandwidth which represents the length of a contiguous resource block allocation                                                                                                                                                                                                  |
| N <sub>cp</sub>                                     | expressed in units of resources blocks<br>Cyclic prefix length                                                                                                                                                                                                                                |
| N <sub>DL</sub>                                     | Downlink EARFCN                                                                                                                                                                                                                                                                               |
| $N_{oc}$                                            | The power spectral density of a white noise source (average power per RE normalised to the                                                                                                                                                                                                    |
| oc                                                  | subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as                                                                                                                                                                                          |
| N <sub>oc1</sub>                                    | measured at the UE antenna connector<br>The power spectral density of a white noise source (average power per RE normalized to the                                                                                                                                                            |
| 0.1                                                 | subcarrier spacing), simulating interference in non-CRS symbols in ABS subframe from cells that                                                                                                                                                                                               |
|                                                     | are not defined in a test procedure, as measured at the UE antenna connector.                                                                                                                                                                                                                 |
| $N_{oc2}$                                           | The power spectral density of a white noise source (average power per RE normalized to the                                                                                                                                                                                                    |
|                                                     | subcarrier spacing), simulating interference in CRS symbols in ABS subframe from all cells that are not defined in a test procedure, as measured at the UE antenna connector.                                                                                                                 |
|                                                     |                                                                                                                                                                                                                                                                                               |

#### 3GPP TS 36.101 version 11.9.0 Release 11

19

| $N_{oc3}$               | The power spectral density of a white noise source (average power per RE normalised to the                                                                                                                                                                                                                                                 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 005                     | subcarrier spacing), simulating interference in non-ABS subframe from cells that are not defined                                                                                                                                                                                                                                           |
|                         | in a test procedure, as measured at the UE antenna connector                                                                                                                                                                                                                                                                               |
| $N_{oc}$                | The power spectral density (average power per RE normalised to the subcarrier spacing) of the                                                                                                                                                                                                                                              |
| N <sub>Offs-DL</sub>    | summation of the received power spectral densities of the strongest interfering cells explicitly defined in a test procedure plus, as measured at the UE antenna connector. The respective power spectral density of each interfering cell relative to is defined by its associated DIP value. Offset used for calculating downlink EARFCN |
| N <sub>Offs-UL</sub>    | Offset used for calculating uplink EARFCN                                                                                                                                                                                                                                                                                                  |
| $N_{otx}$               | The power spectral density of a white noise source (average power per RE normalised to the                                                                                                                                                                                                                                                 |
|                         | subcarrier spacing) simulating eNode B transmitter impairments as measured at the eNode B transmit antenna connector                                                                                                                                                                                                                       |
| N <sub>RB</sub>         | Transmission bandwidth configuration, expressed in units of resource blocks                                                                                                                                                                                                                                                                |
| $N_{RB\_agg}$           | Aggregated Transmission Bandwidth Configuration The number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth.                                                                                                                                                                                                  |
| $N_{RB\_alloc}$         | Total number of simultaneously transmitted resource blocks in Channel bandwidth or Aggregated Channel Bandwidth.                                                                                                                                                                                                                           |
| N <sub>UL</sub>         | Uplink EARFCN.                                                                                                                                                                                                                                                                                                                             |
| Rav                     | Minimum average throughput per RB.                                                                                                                                                                                                                                                                                                         |
| P <sub>CMAX</sub>       | The configured maximum UE output power.                                                                                                                                                                                                                                                                                                    |
| $P_{CMAX}$ , $c$        | The configured maximum UE output power for serving cell c.                                                                                                                                                                                                                                                                                 |
| P <sub>EMAX</sub>       | Maximum allowed UE output power signalled by higher layers. Same as IE <i>P-Max</i> , defined in [7].                                                                                                                                                                                                                                      |
| P <sub>EMAX, c</sub>    | Maximum allowed UE output power signalled by higher layers for serving cell <i>c</i> . Same as IE <i>P-Max</i> , defined in [7].                                                                                                                                                                                                           |
| PInterferer             | Modulated mean power of the interferer                                                                                                                                                                                                                                                                                                     |
| P <sub>PowerClass</sub> | P <sub>PowerClass</sub> is the nominal UE power (i.e., no tolerance).                                                                                                                                                                                                                                                                      |
| P <sub>UMAX</sub>       | The measured configured maximum UE output power.                                                                                                                                                                                                                                                                                           |
| Puw                     | Power of an unwanted DL signal                                                                                                                                                                                                                                                                                                             |
| Pw                      | Power of a wanted DL signal                                                                                                                                                                                                                                                                                                                |
| RB <sub>start</sub>     | Indicates the lowest RB index of transmitted resource blocks.                                                                                                                                                                                                                                                                              |
| RB <sub>end</sub>       | Indicates the highest RB index of transmitted resource blocks.                                                                                                                                                                                                                                                                             |
| $\Delta f_{OOB}$        | $\Delta$ Frequency of Out Of Band emission.                                                                                                                                                                                                                                                                                                |
| $\Delta R_{IB,c}$       | Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving cell <i>c</i> .                                                                                                                                                                                                                           |
| $\Delta T_{IB,c}$       | Allowed maximum configured output power relaxation due to support for inter-band CA operation, for serving cell c.                                                                                                                                                                                                                         |
| $\Delta T_{C}$          | Allowed operating band edge transmission power relaxation.                                                                                                                                                                                                                                                                                 |
| $\Delta T_{C,c}$        | Allowed operating band edge transmission power relaxation for serving cell c.                                                                                                                                                                                                                                                              |
| σ                       | Test specific auxiliary variable used for the purpose of downlink power allocation, defined in                                                                                                                                                                                                                                             |
|                         | Annex C.3.2.                                                                                                                                                                                                                                                                                                                               |
| $\mathbf{W}_{gap}$      | Sub-block gap size                                                                                                                                                                                                                                                                                                                         |
|                         |                                                                                                                                                                                                                                                                                                                                            |

## 3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

| ABS    | Almost Blank Subframe                                                                   |
|--------|-----------------------------------------------------------------------------------------|
| ACLR   | Adjacent Channel Leakage Ratio                                                          |
| ACS    | Adjacent Channel Selectivity                                                            |
| A-MPR  | Additional Maximum Power Reduction                                                      |
| AWGN   | Additive White Gaussian Noise                                                           |
| BS     | Base Station                                                                            |
| CA     | Carrier Aggregation                                                                     |
| CA_X   | CA for band X where X is the applicable E-UTRA operating band                           |
| CA_X-X | Non-contiguous intra band CA for band X where X is the applicable E-UTRA operating band |
| CA_X-Y | CA for band X and Band Y where X and Y are the applicable E-UTRA operating band         |
| CC     | Component Carriers                                                                      |

| CPE      | Customer Premise Equipment                                                                 |
|----------|--------------------------------------------------------------------------------------------|
| CPE X    | Customer Premise Equipment for E-UTRA operating band X                                     |
| CW       | Continuous Wave                                                                            |
| DL       | Downlink                                                                                   |
| DIP      | Dominant Interferer Proportion                                                             |
| eDL-MIMO | Down Link Multiple Antenna transmission                                                    |
| EARFCN   | E-UTRA Absolute Radio Frequency Channel Number                                             |
| EPRE     | Energy Per Resource Element                                                                |
| E-UTRA   | Evolved UMTS Terrestrial Radio Access                                                      |
| EUTRAN   | Evolved UMTS Terrestrial Radio Access Network                                              |
| EVM      | Error Vector Magnitude                                                                     |
| FDD      | Frequency Division Duplex                                                                  |
| FRC      | Fixed Reference Channel                                                                    |
| HD-FDD   | Half- Duplex FDD                                                                           |
| MCS      | Modulation and Coding Scheme                                                               |
| MOP      | Maximum Output Power                                                                       |
| MPR      | Maximum Power Reduction                                                                    |
| MSD      | Maximum Sensitivity Degradation                                                            |
| OCNG     | OFDMA Channel Noise Generator                                                              |
| OFDMA    | Orthogonal Frequency Division Multiple Access                                              |
| OOB      | Out-of-band                                                                                |
| PA       | Power Amplifier                                                                            |
| PCC      | Primary Component Carrier                                                                  |
| P-MPR    | Power Management Maximum Power Reduction                                                   |
| PSS      | Primary Synchronization Signal                                                             |
| PSS_RA   | PSS-to-RS EPRE ratio for the channel PSS                                                   |
| RE       | Resource Element                                                                           |
| REFSENS  | Reference Sensitivity power level                                                          |
| r.m.s    | Root Mean Square                                                                           |
| SCC      | Secondary Component Carrier                                                                |
| SINR     | Signal-to-Interference-and-Noise Ratio                                                     |
| SNR      | Signal-to-Noise Ratio                                                                      |
| SSS      | Secondary Synchronization Signal                                                           |
| SSS_RA   | SSS-to-RS EPRE ratio for the channel SSS                                                   |
| TDD      | Time Division Duplex                                                                       |
| UE       | User Equipment                                                                             |
| UL       | Uplink                                                                                     |
| UL-MIMO  | Up Link Multiple Antenna transmission                                                      |
| UMTS     | Universal Mobile Telecommunications System                                                 |
| UTRA     | UMTS Terrestrial Radio Access                                                              |
| UTRAN    | UMTS Terrestrial Radio Access Network                                                      |
| xCH_RA   | xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS |
| xCH_RB   | xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols containing RS     |
|          |                                                                                            |

# 4 General

# 4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.521-1 Annex F defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

## 4.2 Applicability of minimum requirements

- a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The reference sensitivity power levels defined in subclause 7.3 are valid for the specified reference measurement channels.
- d) Note: Receiver sensitivity degradation may occur when:
  - 1) The UE simultaneously transmits and receives with bandwidth allocations less than the transmission bandwidth configuration (see Figure 5.6-1), and
  - 2) Any part of the downlink transmission bandwidth is within an uplink transmission bandwidth from the downlink center subcarrier.
- e) The spurious emissions power requirements are for the long term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

### 4.3 Void

## 4.3A Applicability of minimum requirements (CA, UL-MIMO, eDL-MIMO)

The requirements in clauses 5, 6 and 7 which are specific to CA, UL-MIMO, and eDL-MIMO are specified as suffix A, B, C, D where;

- a) Suffix A additional requirements need to support CA
- b) Suffix B additional requirements need to support UL-MIMO
- c) Suffix C additional requirements need to support TBD
- d) Suffix D additional requirements need to support eDL-MIMO

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional subclause (suffix A, B, C and D) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffix A, B, C and D) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature (CA, UL-MIMO, and eDL-MIMO) in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal supporting CA, compliance with minimum requirements for non-contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for contiguous intraband carrier aggregation in the same operating band.

For a terminal supporting CA, compliance with minimum requirements for contiguous intra-band carrier aggregation in any given operating band does not imply compliance with minimum requirements for non- contiguous intra-band carrier aggregation in the same operating band.

## 4.4 RF requirements in later releases

The standardisation of new frequency bands may be independent of a release. However, in order to implement a UE that conforms to a particular release but supports a band of operation that is specified in a later release, it is necessary to

specify some extra requirements. TS 36.307 [8] specifies requirements on UEs supporting a frequency band that is independent of release.

NOTE: For terminals conforming to the 3GPP release of the present document, some RF requirements in later releases may be mandatory independent of whether the UE supports the bands specified in later releases or not. The set of requirements from later releases that is also mandatory for UEs conforming to the 3GPP release of the present document is determined by regional regulation.

# 5 Operating bands and channel arrangement

## 5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

- NOTE: Other operating bands and channel bandwidths may be considered in future releases.
- 5.2 Void
- 5.3 Void
- 5.4 Void

## 5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1.

| E-UTRA<br>Operating<br>Band | Uplink (UL) operating band<br>BS receive<br>UE transmit<br>FuL_low – FuL_high                                        | Downlink (DL) operating band<br>BS transmit<br>UE receive<br>F <sub>DL_low</sub> – F <sub>DL_high</sub> | Duplex<br>Mode   |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|
| 1                           | 1920 MHz – 1980 MHz                                                                                                  | 2110 MHz – 2170 MHz                                                                                     | FDD              |
| 2                           | 1850 MHz – 1910 MHz                                                                                                  | 1930 MHz – 1990 MHz                                                                                     | FDD              |
| 3                           | 1710 MHz – 1785 MHz                                                                                                  | 1805 MHz – 1880 MHz                                                                                     | FDD              |
| 4                           | 1710 MHz – 1755 MHz                                                                                                  | 2110 MHz – 2155 MHz                                                                                     | FDD              |
| 5                           | 824 MHz – 849 MHz                                                                                                    | 869 MHz – 894MHz                                                                                        | FDD              |
| 6 <sup>1</sup>              | 830 MHz – 840 MHz                                                                                                    | 875 MHz – 885 MHz                                                                                       | FDD              |
| 7                           | 2500 MHz – 2570 MHz                                                                                                  | 2620 MHz – 2690 MHz                                                                                     | FDD              |
| 8                           | 880 MHz – 915 MHz                                                                                                    | 925 MHz – 960 MHz                                                                                       | FDD              |
| 9                           | 1749.9 MHz – 1784.9 MHz                                                                                              | 1844.9 MHz – 1879.9 MHz                                                                                 | FDD              |
| 10                          | 1710 MHz – 1770 MHz                                                                                                  | 2110 MHz – 2170 MHz                                                                                     | FDD              |
| 11                          | 1427.9 MHz – 1447.9 MHz                                                                                              | 1475.9 MHz – 1495.9 MHz                                                                                 | FDD              |
| 12                          | 699 MHz – 716 MHz                                                                                                    | 729 MHz – 746 MHz                                                                                       | FDD              |
| 13                          | 777 MHz – 787 MHz                                                                                                    | 746 MHz – 756 MHz                                                                                       | FDD              |
| 14                          | 788 MHz – 798 MHz                                                                                                    | 758 MHz – 768 MHz                                                                                       | FDD              |
| 15                          | Reserved                                                                                                             | Reserved                                                                                                | FDD              |
| 16                          | Reserved                                                                                                             | Reserved                                                                                                | FDD              |
| 17                          | 704 MHz – 716 MHz                                                                                                    | 734 MHz – 746 MHz                                                                                       | FDD              |
| 18                          | 815 MHz – 830 MHz                                                                                                    | 860 MHz – 875 MHz                                                                                       | FDD              |
| 19                          | 830 MHz – 845 MHz                                                                                                    | 875 MHz – 890 MHz                                                                                       | FDD              |
| 20                          | 832 MHz – 862 MHz                                                                                                    | 791 MHz – 821 MHz                                                                                       | FDD              |
| 21                          | 1447.9 MHz – 1462.9 MHz                                                                                              | 1495.9 MHz – 1510.9 MHz                                                                                 | FDD              |
| 22                          | 3410 MHz – 3490 MHz                                                                                                  | 3510 MHz – 3590 MHz                                                                                     | FDD              |
| 23                          | 2000 MHz – 2020 MHz                                                                                                  | 2180 MHz – 2200 MHz                                                                                     | FDD              |
| 24                          | 1626.5 MHz – 1660.5 MHz                                                                                              | 1525 MHz – 1559 MHz                                                                                     | FDD              |
| 25                          | 1850 MHz – 1915 MHz                                                                                                  | 1930 MHz – 1995 MHz                                                                                     | FDD              |
| 26                          | 814 MHz – 849 MHz                                                                                                    | 859 MHz – 894 MHz                                                                                       | FDD              |
| 27                          | 807 MHz – 824 MHz                                                                                                    | 852 MHz – 869 MHz                                                                                       | FDD              |
| 28                          | 703 MHz – 748 MHz                                                                                                    | 758 MHz – 803 MHz                                                                                       | FDD              |
| 29                          | N/A                                                                                                                  | 717 MHz – 728 MHz                                                                                       | FDD <sup>2</sup> |
| -                           |                                                                                                                      |                                                                                                         | 100              |
| 33                          | 1900 MHz – 1920 MHz                                                                                                  | 1900 MHz – 1920 MHz                                                                                     | TDD              |
| 34                          | 2010 MHz – 2025 MHz                                                                                                  | 2010 MHz – 2025 MHz                                                                                     | TDD              |
| 35                          | 1850 MHz – 1910 MHz                                                                                                  | 1850 MHz – 1910 MHz                                                                                     | TDD              |
| 36                          | 1930 MHz – 1990 MHz                                                                                                  | 1930 MHz – 1990 MHz                                                                                     | TDD              |
| 37                          | 1910 MHz – 1930 MHz                                                                                                  | 1910 MHz – 1930 MHz                                                                                     | TDD              |
| 38                          | 2570 MHz – 2620 MHz                                                                                                  | 2570 MHz – 2620 MHz                                                                                     | TDD              |
| 39                          | 1880 MHz – 1920 MHz                                                                                                  | 1880 MHz – 1920 MHz                                                                                     | TDD              |
| 40                          | 2300 MHz – 2400 MHz                                                                                                  | 2300 MHz – 2400 MHz                                                                                     | TDD              |
| 41                          | 2496 MHz 2690 MHz                                                                                                    | 2496 MHz 2690 MHz                                                                                       | TDD              |
| 42                          | 3400 MHz – 3600 MHz                                                                                                  | 3400 MHz – 3600 MHz                                                                                     | TDD              |
| 43                          | 3600 MHz – 3800 MHz                                                                                                  | 3600 MHz – 3800 MHz                                                                                     | TDD              |
| 44                          | 703 MHz – 803 MHz                                                                                                    | 703 MHz – 803 MHz                                                                                       | TDD              |
|                             | Band 6 is not applicable                                                                                             |                                                                                                         | 100              |
| NOTE 2:                     | Restricted to E-UTRA operation whe<br>downlink operating band is paired wi<br>carrier aggregation configuration that | th the uplink operating band (externation                                                               |                  |

Table 5.5-1 E-UTRA operating bands

# 5.5A Operating bands for CA

E-UTRA carrier aggregation is designed to operate in the operating bands defined in Tables 5.5A-1 and 5.5A-2.

| E-UTRA  | E-UTRA | RA Uplink (UL) operating band  |   |          | Downlink (D        | Duplex |               |      |
|---------|--------|--------------------------------|---|----------|--------------------|--------|---------------|------|
| CA Band | Band   | BS receive / UE transmit       |   |          | BS transi          | nit /  | UE receive    | Mode |
|         |        | $F_{UL_{low}} - F_{UL_{high}}$ |   |          | F <sub>DL_lo</sub> | w -    | $F_{DL_high}$ |      |
| CA_1    | 1      | 1920 MHz                       | Ι | 1980 MHz | 2110 MHz           | Ι      | 2170 MHz      | FDD  |
| CA_7    | 7      | 2500 MHz                       | Ι | 2570 MHz | 2620 MHz           | Ι      | 2690 MHz      | FDD  |
| CA_38   | 38     | 2570 MHz                       | Ι | 2620 MHz | 2570 MHz           | Ι      | 2620 MHz      | TDD  |
| CA_40   | 40     | 2300 MHz                       | Ι | 2400 MHz | 2300 MHz           | Ι      | 2400 MHz      | TDD  |
| CA_41   | 41     | 2496 MHz                       |   | 2690 MHz | 2496 MHz           |        | 2690 MHz      | TDD  |

| Table 5.5A-1: Intra-band of | contiguous CA c | perating bands |
|-----------------------------|-----------------|----------------|
|-----------------------------|-----------------|----------------|

## Table 5.5A-2: Inter-band CA operating bands

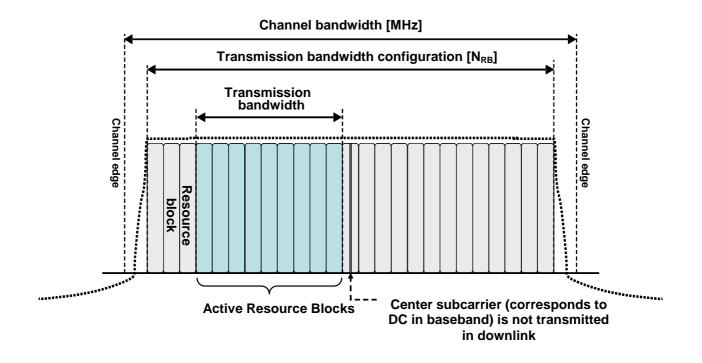
| E-UTRA   | E-UTRA         | Uplink (UL) operating band                 |         |            | Downlink (D        | L) c              | perating band | Duplex |  |
|----------|----------------|--------------------------------------------|---------|------------|--------------------|-------------------|---------------|--------|--|
| CA Band  | Band           | BS receive / UE transmit                   |         |            | BS transi          | Mode              |               |        |  |
|          |                | F <sub>UL_low</sub> – F <sub>UL_high</sub> |         |            | F <sub>DL_lo</sub> |                   |               |        |  |
| CA_1-5   | 1              | 1920 MHz                                   | -       | 1980 MHz   | 2110 MHz           | —                 | 2170 MHz      | FDD    |  |
| CA_1-5   | 5              | 824 MHz                                    |         | 849 MHz    | 869 MHz            | Ι                 | 894 MHz       | FDD    |  |
| CA_1-18  | 1              | 1920 MHz                                   | -       | 1980 MHz   | 2110 MHz           | I                 | 2170 MHz      | FDD    |  |
| CA_1-10  | 18             | 815 MHz                                    | -       | 830 MHz    | 860 MHz            | -                 | 875 MHz       | TDD    |  |
| CA_1-19  | 1              | 1920 MHz                                   | —       | 1980 MHz   | 2110 MHz           | -                 | 2170 MHz      | FDD    |  |
| CA_1-19  | 19             | 830 MHz                                    | —       | 845 MHz    | 875 MHz            | -                 | 890 MHz       | FDD    |  |
| CA_1-21  | 1              | 1920 MHz                                   | -       | 1980 MHz   | 2110 MHz           | -                 | 2170 MHz      | FDD    |  |
| 07_1-21  | 21             | 1447.9 MHz                                 | -       | 1462.9 MHz | 1495.9 MHz         | -                 | 1510.9 MHz    | TOD    |  |
| CA_2-17  | 2              | 1850 MHz                                   | —       | 1910 MHz   | 1930 MHz           | -                 | 1990 MHz      | FDD    |  |
| 0A_2-17  | 17             | 704 MHz                                    | -       | 716 MHz    | 734 MHz            | -                 | 746 MHz       | TDD    |  |
| CA_2-29  | 2              | 1850 MHz                                   | -       | 1910 MHz   | 1930 MHz           | -                 | 1990 MHz      | FDD    |  |
| CA_2-29  | 29             |                                            | N/A     |            | 717 MHz            | -                 | 728 MHz       | FDD    |  |
| CA_3-5   | 3              | 1710 MHz                                   | —       | 1785 MHz   | 1805 MHz           | -                 | 1880 MHz      | FDD    |  |
| CA_3-3   | 5              | 824 MHz                                    | -       | 849 MHz    | 869 MHz            | —                 | 894 MHz       | TDD    |  |
| CA_3-7   | 3              | 1710 MHz                                   | -       | 1785 MHz   | 1805 MHz           | 05 MHz – 1880 MHz |               | FDD    |  |
| CA_3-7   | 7              | 2500 MHz                                   | —       | 2570 MHz   | 2620 MHz           | -                 | 2690 MHz      | FDD    |  |
| CA_3-8   | 3              | 1710 MHz                                   |         | 1785 MHz   | 1805 MHz           |                   | 1880 MHz      | FDD    |  |
| CA_3-0   | 8              | 880 MHz                                    |         | 915 MHz    | 925 MHz            |                   | 960 MHz       | FDD    |  |
| CA_3-20  | 3              | 1710 MHz                                   | -       | 1785 MHz   | 1805 MHz           | Ι                 | 1880 MHz      | FDD    |  |
| CA_3-20  | 20             | 832 MHz                                    | -       | 862 MHz    | 791 MHz            | —                 | 821 MHz       |        |  |
| CA_4-5   | 4              | 1710 MHz                                   | -       | 1755 MHz   | 2110 MHz           | -                 | 2155 MHz      | FDD    |  |
| CA_4-5   | 5              | 824 MHz                                    | -       | 849 MHz    | 869 MHz            | Ι                 | 894 MHz       | FDD    |  |
| CA_4-7   | 4              | 1710 MHz                                   |         | 1755 MHz   | 2110 MHz           |                   | 2155 MHz      | FDD    |  |
| CA_4-7   | 7              | 2500 MHz                                   |         | 2570 MHz   | 2620 MHz           |                   | 2690 MHz      | FDD    |  |
| CA_4-12  | 4              | 1710 MHz                                   | -       | 1755 MHz   | 2110 MHz           | Ι                 | 2155 MHz      | FDD    |  |
| UA_4-12  | 12             | 699 MHz                                    | Ι       | 716 MHz    | 729 MHz            | -                 | 746 MHz       | FDD    |  |
| CA_4-13  | 4              | 1710 MHz                                   | -       | 1755 MHz   | 2110 MHz           | —                 | 2155 MHz      | FDD    |  |
| CA_4-13  | 13             | 777 MHz                                    | Ι       | 787 MHz    | 746 MHz            | -                 | 756 MHz       | FDD    |  |
| CA_4-17  | 4              | 1710 MHz                                   | Ι       | 1755 MHz   | 2110 MHz           | -                 | 2155 MHz      | FDD    |  |
| CA_4-17  | 17             | 704 MHz                                    | -       | 716 MHz    | 734 MHz            | Ι                 | 746 MHz       | FDD    |  |
| CA_4-29  | 4              | 1710 MHz                                   | Ι       | 1755 MHz   | 2110 MHz           | -                 | 2155 MHz      | FDD    |  |
| CA_4-29  | 29             |                                            | N/A     |            | 717 MHz            | Ι                 | 728 MHz       | FDD    |  |
| CA_5-12  | 5              | 824 MHz                                    | -       | 849 MHz    | 869 MHz            | Ι                 | 894 MHz       | FDD    |  |
| CA_5-12  | 12             | 699 MHz                                    | Ι       | 716 MHz    | 729 MHz            | -                 | 746 MHz       | FDD    |  |
| CA_5-17  | 5              | 824 MHz                                    | -       | 849 MHz    | 869 MHz            | -                 | 894 MHz       | FDD    |  |
| CA_0-17  | 17             | 704 MHz                                    | -       | 716 MHz    | 734 MHz            | -                 | 746 MHz       |        |  |
| CA_7-20  | 7              | 2500 MHz                                   | -       | 2570 MHz   | 2620 MHz           | -                 | 2690 MHz      | FDD    |  |
| 07_1-20  | 20 832 MHZ - 6 |                                            | 862 MHz | 791 MHz    | -                  | 821 MHz           | עטיז ן        |        |  |
| CA_8-20  | 8              | 880 MHz                                    | -       | 915 MHz    | 925 MHz            | -                 | 960 MHz       | FDD    |  |
| 07_0-20  | 20             | 832 MHz                                    | -       | 862 MHz    | 791 MHz            | -                 | 821 MHz       | FUU    |  |
| CA_11-18 | 11             | 1427.9 MHz                                 | -       | 1447.9 MHz | 1475.9 MHz         | -                 | 1495.9 MHz    | FDD    |  |
| 07_11-10 | 18             | 815 MHz                                    | -       | 830 MHz    | 860 MHz            | _                 | 875 MHz       |        |  |

| E-UTRA   | E-UTRA | Uplink (UL) operating band |                      |                    | Downlink (DL) operating band |               |            | Duplex |
|----------|--------|----------------------------|----------------------|--------------------|------------------------------|---------------|------------|--------|
| CA Band  | Band   | BS receive / UE transmit   |                      |                    | BS transi                    | nit /         | UE receive | Mode   |
|          |        | F <sub>UL_low</sub>        | F <sub>UL_high</sub> | F <sub>DL_lo</sub> | w -                          | $F_{DL_high}$ |            |        |
| CA_25-25 | 25     | 1850 MHz                   | -                    | 1915 MHz           | 1930 MHz                     | Ι             | 1995 MHz   | FDD    |
| CA_41-41 | 41     | 2496 MHz                   | -                    | 2690 MHz           | 2496 MHz                     | I             | 2690 MHz   | TDD    |

## 5.5B Operating bands for UL-MIMO

E-UTRA UL-MIMO is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5B-1: Void


## 5.6 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

#### Table 5.6-1: Transmission bandwidth configuration N<sub>RB</sub> in E-UTRA channel bandwidths

| Channel bandwidth<br>BW <sub>Channel</sub> [MHz]        | 1.4 | 3  | 5  | 10 | 15 | 20  |
|---------------------------------------------------------|-----|----|----|----|----|-----|
| Transmission bandwidth<br>configuration N <sub>RB</sub> | 6   | 15 | 25 | 50 | 75 | 100 |

Figure 5.6-1 shows the relation between the Channel bandwidth (BW<sub>Channel</sub>) and the Transmission bandwidth configuration (N<sub>RB</sub>). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at  $F_C$  +/- BW<sub>Channel</sub>/2.



#### Figure 5.6-1: Definition of channel bandwidth and transmission bandwidth configuration for one E-UTRA carrier

## 5.6.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.6.1-1. The transmission bandwidth configuration in Table 5.6.1-1 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

|                        | E-UTRA band / Channel bandwidth                                                             |                                                                              |                                                                                    |                                                                                                                       |                                                              |                                               |  |  |
|------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|--|--|
| E-UTRA<br>Band         | 1.4 MHz                                                                                     | 3 MHz                                                                        | 5 MHz                                                                              | 10 MHz                                                                                                                | 15 MHz                                                       | 20 MHz                                        |  |  |
| 1                      |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 2                      | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes <sup>1</sup>                                             | Yes <sup>1</sup>                              |  |  |
| 3                      | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes <sup>1</sup>                                             | Yes <sup>1</sup>                              |  |  |
| 4                      | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 5                      | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 6                      |                                                                                             |                                                                              | Yes                                                                                | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 7                      |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes <sup>3</sup>                                             | Yes <sup>1, 3</sup>                           |  |  |
| 8                      | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 9                      |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes <sup>1</sup>                                             | Yes <sup>1</sup>                              |  |  |
| 10                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 11                     |                                                                                             |                                                                              | Yes                                                                                | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 12                     | Yes                                                                                         | Yes                                                                          | Yes <sup>1</sup>                                                                   | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 13                     |                                                                                             |                                                                              | Yes <sup>1</sup>                                                                   | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 14                     |                                                                                             |                                                                              | Yes <sup>1</sup>                                                                   | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| <br>17                 |                                                                                             |                                                                              | Yes <sup>1</sup>                                                                   | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 18                     |                                                                                             |                                                                              | Yes                                                                                | Yes <sup>1</sup>                                                                                                      | Yes <sup>1</sup>                                             |                                               |  |  |
| 19                     |                                                                                             |                                                                              | Yes                                                                                | Yes <sup>1</sup>                                                                                                      | Yes <sup>1</sup>                                             |                                               |  |  |
| 20                     |                                                                                             |                                                                              | Yes                                                                                | Yes <sup>1</sup>                                                                                                      | Yes <sup>1</sup>                                             | Yes <sup>1</sup>                              |  |  |
| 21                     |                                                                                             |                                                                              | Yes                                                                                | Yes <sup>1</sup>                                                                                                      | Yes <sup>1</sup>                                             |                                               |  |  |
| 22                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes <sup>1</sup>                                             | Yes <sup>1</sup>                              |  |  |
| 23                     | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes <sup>1</sup>                                             | Yes <sup>1</sup>                              |  |  |
| 24                     | 100                                                                                         | 100                                                                          | Yes                                                                                | Yes                                                                                                                   | 100                                                          | 100                                           |  |  |
| 25                     | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes <sup>1</sup>                                             | Yes <sup>1</sup>                              |  |  |
| 26                     | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes <sup>1</sup>                                                                                                      | Yes <sup>1</sup>                                             |                                               |  |  |
| 27                     | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes <sup>1</sup>                                                                                                      |                                                              |                                               |  |  |
| 28                     |                                                                                             | Yes                                                                          | Yes                                                                                | Yes <sup>1</sup>                                                                                                      | Yes <sup>1</sup>                                             | Yes <sup>1, 2</sup>                           |  |  |
|                        |                                                                                             |                                                                              |                                                                                    |                                                                                                                       |                                                              |                                               |  |  |
| 33                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 34                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          |                                               |  |  |
| 35                     | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 36                     | Yes                                                                                         | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 37                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 38                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes <sup>3</sup>                                             | Yes <sup>3</sup>                              |  |  |
| 39                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 40                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 41                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 42                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 43                     |                                                                                             |                                                                              | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| 44                     |                                                                                             | Yes                                                                          | Yes                                                                                | Yes                                                                                                                   | Yes                                                          | Yes                                           |  |  |
| NOTE 2: 2<br>NOTE 3: 3 | sensitivity rec<br>For the 20 M<br>E-UTRA UL c<br>738 MHz<br>refers to the<br>pe restricted | uirement (su<br>AHz bandwid<br>carrier freque<br>bandwidth f<br>by the netwo | ubclause 7.3<br>ofth, the minine<br>encies confine<br>or which the<br>ork for some | elaxation of th<br>) is allowed.<br>num requiren<br>ed to either 7<br>uplink transm<br>channel assig<br>et unwanted 6 | nents are spo<br>13-723 MHz<br>nission bando<br>gnments in F | ecified for<br>or 728-<br>width can<br>DD/TDD |  |  |
| (                      | Clause 6.6.3                                                                                | .2).                                                                         |                                                                                    |                                                                                                                       |                                                              |                                               |  |  |

Table 5.6.1-1: E-UTRA channel bandwidth

b) The use of different (asymmetrical) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

## 5.6A Channel bandwidth for CA

For intra-band contiguous carrier aggregation *Aggregated Channel Bandwidth*, *Aggregated Transmission Bandwidth Configuration* and *Guard Bands* are defined as follows, see Figure 5.6A-1.

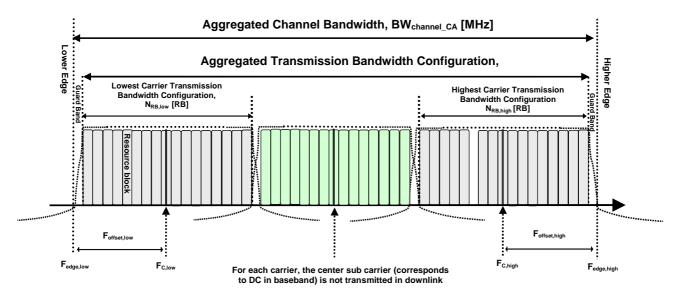



Figure 5.6A-1. Definition of Aggregated channel bandwidth and aggregated channel bandwidth edges

The aggregated channel bandwidth, BW<sub>Channel\_CA</sub>, is defined as

$$BW_{Channel_{CA}} = F_{edge,high} - F_{edge,low}$$
 [MHz]

The lower bandwidth edge  $F_{edge,low}$  and the upper bandwidth edge  $F_{edge,high}$  of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

 $F_{edge,low} = F_{C,low} - F_{offset,low}$   $F_{edge,high} = F_{C,high} + F_{offset,high}$ 

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

$$\begin{split} F_{offset,low} &= (0.18 N_{RB,low} + \Delta f_1)/2 + BW_{GB} \, [MHz] \\ F_{offset,high} &= (0.18 N_{RB,high} + \Delta f_1)/2 + BW_{GB} \, [MHz] \end{split}$$

where  $\Delta f_1 = \Delta f$  for the downlink with  $\Delta f$  the subcarrier spacing and  $\Delta f_1 = 0$  for the uplink, while N<sub>RB,low</sub> and N<sub>RB,high</sub> are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier, respectively. BW<sub>GB</sub> denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

NOTE: The values of BW<sub>Channel\_CA</sub> for UE and BS are the same if the lowest and the highest component carriers are identical.

Aggregated Transmission Bandwidth Configuration is the number of the aggregated RBs within the fully allocated Aggregated Channel bandwidth and is defined per CA Bandwidth Class (Table 5.6A-1).

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.6A-2.

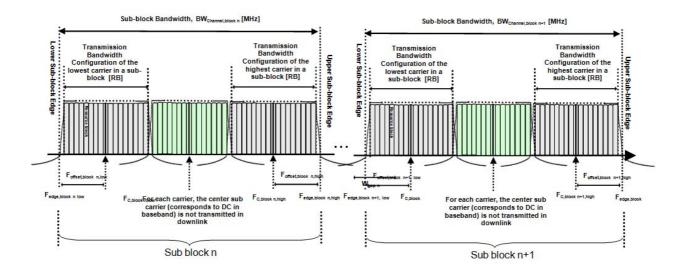



Figure 5.6A-2. Non-contiguous intraband CA terms and definitions

The lower sub-block edge of the Sub-block Bandwidth (BW<sub>Channel,block</sub>) is defined as

 $F_{edge,block, low} = F_{C,block,low} - F_{offset,block, low}$ 

The upper sub-block edge of the Sub-block Bandwidth is defined as

 $F_{edge,block,high} = F_{C,block,high} + F_{offset,block,high}$ .

The Sub-block Bandwidth, BW<sub>Channel.block</sub>, is defined as follows:

BWChannel,block = Fedge,block,high - Fedge,block,low [MHz]

The lower and upper frequency offsets F<sub>offset,block,low</sub> and F<sub>offset,block,high</sub> depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

$$\begin{split} F_{offset,block,low} &= (0.18 N_{RB,low} + \Delta f_1)/2 + BW_{GB} \, [MHz] \\ F_{offset,block,high} &= (0.18 N_{RB,high} + \Delta f_1)/2 + BW_{GB} \, [MHz] \end{split}$$

where  $\Delta f_1 = \Delta f$  for the downlink with  $\Delta f$  the subcarrier spacing and  $\Delta f_1 = 0$  for the uplink, while N<sub>RB,low</sub> and N<sub>RB,high</sub> are the transmission bandwidth configurations according to Table 5.6-1 for the lowest and highest assigned component carrier within a sub-block, respectively. BW<sub>GB</sub> denotes the *Nominal Guard Band* and is defined in Table 5.6A-1, and the factor 0.18 is the PRB bandwidth in MHz.

The sub-block gap size between two consecutive sub-blocks  $W_{gap}$  is defined as

 $W_{gap} = F_{edge,block n+1,low -} F_{edge,block n,high [MHz]}$ 

| CA Bandwidth<br>Class<br>Bandwidth<br>Configuration                                                                               |                                                                                                                        | Maximum<br>number of CC | Nominal Guard Band BW <sub>GB</sub>                          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|--|--|--|--|
| A                                                                                                                                 | N <sub>RB,agg</sub> ≤ 100                                                                                              | 1                       | a₁BW <sub>Channel(1)</sub> - 0.5∆f₁ (NOTE 2)                 |  |  |  |  |
| В                                                                                                                                 | N <sub>RB,agg</sub> ≤ 100                                                                                              | 2                       | FFS                                                          |  |  |  |  |
| С                                                                                                                                 | 100 < N <sub>RB,agg</sub> ≤ 200                                                                                        | 2                       | 0.05 $max(BW_{Channel(1)}, BW_{Channel(2)}) - 0.5\Delta f_1$ |  |  |  |  |
| D                                                                                                                                 | 200 < N <sub>RB,agg</sub> ≤ [300]                                                                                      | FFS                     | FFS                                                          |  |  |  |  |
| E                                                                                                                                 | [300] < N <sub>RB,agg</sub> ≤ [400]                                                                                    | FFS                     | FFS                                                          |  |  |  |  |
| F                                                                                                                                 | F [400] < N <sub>RB,agg</sub> ≤ [500]                                                                                  |                         | FFS                                                          |  |  |  |  |
| NOTE 1: BW <sub>Cha</sub>                                                                                                         | nnel(1) and BW <sub>Channel(2)</sub> are c                                                                             | hannel bandwidth        | s of two E-UTRA component carriers                           |  |  |  |  |
| according to Table 5.6-1 and $\Delta f_1 = \Delta f$ for the downlink with $\Delta f$ the subcarrier spacing while $\Delta f_1 =$ |                                                                                                                        |                         |                                                              |  |  |  |  |
| 0 for th                                                                                                                          | 0 for the uplink.                                                                                                      |                         |                                                              |  |  |  |  |
| NOTE 2: a <sub>1</sub> = 0.                                                                                                       | NOTE 2: $a_1 = 0.16/1.4$ for BW <sub>Channel(1)</sub> = 1.4 MHz whereas $a_1 = 0.05$ for all other channel bandwidths. |                         |                                                              |  |  |  |  |

Table 5.6A-1: CA bandwidth classes and corresponding nominal guard bands

The channel spacing between centre frequencies of contiguously aggregated component carriers is defined in subclause 5.7.1A.

#### 5.6A.1 Channel bandwidths per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations with associated bandwidth combination sets. For inter-band carrier aggregation, a *carrier aggregation configuration* is a combination of operating bands, each supporting a carrier aggregation bandwidth class. For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class.

For each carrier aggregation configuration, requirements are specified for all bandwidth combinations contained in a *bandwidth combination set*, which is indicated per supported band combination in the UE radio access capability. A UE can indicate support of several bandwidth combination sets per band combination. Furthermore, if the UE indicates support of a bandwidth combination set that is a superset of another applicable bandwidth combination set, the latter is supported by the UE even if not indicated.

Requirements for intra-band contiguous carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-1. Requirements for inter-band carrier aggregation are defined for the carrier aggregation configurations and bandwidth combination sets specified in Table 5.6A.1-2.

The DL component carrier combinations for a given CA configuration shall be symmetrical in relation to channel centre unless stated otherwise in Table 5.6A.1-1 or 5.6A.1-2.

| E-UTRA CA configuration / Bandwidth combination set |                                                                                         |                                                                                                   |                                  |                                 |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|--|--|
| E-UTRA CA configuration                             | Component carriers in c<br>freq                                                         | Maximum                                                                                           |                                  |                                 |  |  |
|                                                     | Allowed channel<br>bandwidths for carrier<br>[MHz]                                      | Allowed channel<br>bandwidths for carrier<br>[MHz]                                                | aggregated<br>bandwidth<br>[MHz] | Bandwidth<br>combination<br>set |  |  |
| CA 1C                                               | 15                                                                                      | 15                                                                                                | 40                               | 0                               |  |  |
| CA_1C                                               | 20                                                                                      | 20                                                                                                | 40                               |                                 |  |  |
| CA 70                                               | 15                                                                                      | 15                                                                                                | 40                               | 0                               |  |  |
| CA_7C                                               | 20                                                                                      | 20                                                                                                | - 40                             |                                 |  |  |
| CA 28C                                              | 15                                                                                      | 15                                                                                                | 40                               | 0                               |  |  |
| CA_38C                                              | 20                                                                                      | 20                                                                                                | - 40                             |                                 |  |  |
|                                                     | 10                                                                                      | 20                                                                                                |                                  | 0                               |  |  |
| CA_40C                                              | 15                                                                                      | 15                                                                                                | 40                               |                                 |  |  |
|                                                     | 20                                                                                      | 10, 20                                                                                            |                                  |                                 |  |  |
|                                                     | 10                                                                                      | 20                                                                                                |                                  | 0                               |  |  |
| CA_41C                                              | 15                                                                                      | 15, 20                                                                                            | 40                               |                                 |  |  |
|                                                     | 20                                                                                      | 10, 15, 20                                                                                        |                                  |                                 |  |  |
| 5.6A<br>supp                                        | -1 (the indexing letter). Absend<br>ort of all classes.<br>he supported CC bandwidth co | pperating band and a CA bandw<br>ce of a CA bandwidth class for<br>ombinations, the CC downlink a | an operating ba                  | nd implies                      |  |  |

# Table 5.6A.1-1: E-UTRA CA configurations and bandwidth combination sets defined for intra-band contiguous CA

| E-UTRA CA<br>Configuration                                                         | E-<br>UTRA<br>Bands                                 | E-UTRA C<br>1.4<br>MHz | 3<br>MHz               | 5<br>MHz                                 | 10<br>MHz            | 15<br>MHz               | 20<br>MHz  | Maximum<br>aggregated<br>bandwidth<br>[MHz] | Bandwidth<br>combination<br>set |
|------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|------------------------|------------------------------------------|----------------------|-------------------------|------------|---------------------------------------------|---------------------------------|
| CA_1A-5A                                                                           | 1                                                   |                        |                        |                                          | Yes                  |                         |            | 20                                          | 0                               |
|                                                                                    | 5                                                   |                        |                        | Yes                                      | Yes<br>Yes           | Yes                     | Yes        |                                             |                                 |
| CA_1A-18A                                                                          | 18                                                  |                        |                        | Yes                                      | Yes                  | Yes                     | res        | - 35                                        | 0                               |
|                                                                                    | 10                                                  |                        |                        | Yes                                      | Yes                  | Yes                     | Yes        |                                             |                                 |
| CA_1A-19A                                                                          | 19                                                  |                        |                        | Yes                                      | Yes                  | Yes                     | 105        | 35                                          | 0                               |
|                                                                                    | 1                                                   |                        |                        | Yes                                      | Yes                  | Yes                     | Yes        |                                             |                                 |
| CA_1A-21A                                                                          | 21                                                  |                        |                        | Yes                                      | Yes                  | Yes                     |            | 35                                          | 0                               |
| 01 01 171                                                                          | 2                                                   |                        |                        | Yes                                      | Yes                  |                         |            |                                             | <u>^</u>                        |
| CA_2A-17A                                                                          | 17                                                  |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
|                                                                                    | 2                                                   |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
| CA_2A-29A                                                                          | 29                                                  |                        | Yes                    | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
|                                                                                    | 3                                                   |                        |                        |                                          | Yes                  | Yes                     | Yes        | - 30                                        | 0                               |
| CA_3A-5A                                                                           | 5                                                   |                        |                        | Yes                                      | Yes                  |                         |            |                                             | U                               |
|                                                                                    | 3                                                   |                        |                        |                                          | Yes                  |                         |            | 20                                          | 1                               |
|                                                                                    | 5                                                   |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | •                               |
| CA_3A-7A                                                                           | 3                                                   |                        |                        | Yes                                      | Yes                  | Yes                     | Yes        | 40                                          | 0                               |
| •                                                                                  | 7                                                   |                        |                        | -                                        | Yes                  | Yes                     | Yes        |                                             | <u> </u>                        |
|                                                                                    | 3                                                   |                        |                        |                                          | Yes                  | Yes                     | Yes        | - 30<br>- 20                                | 0                               |
| CA_3A-8A                                                                           | 8                                                   |                        |                        | Yes                                      | Yes                  |                         |            |                                             |                                 |
|                                                                                    | 3                                                   |                        |                        | Vee                                      | Yes                  |                         |            |                                             | 1                               |
|                                                                                    | 8                                                   |                        |                        | Yes<br>Yes                               | Yes<br>Yes           | Yes                     | Yes        | - 30                                        | 0                               |
| CA_3A-20A                                                                          | 20                                                  |                        |                        | Yes                                      | Yes                  | Tes                     | 165        |                                             |                                 |
|                                                                                    | 4                                                   |                        |                        | Yes                                      | Yes                  |                         |            |                                             | 0                               |
| CA_4A-5A                                                                           | 5                                                   |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          |                                 |
|                                                                                    | 4                                                   |                        |                        | Yes                                      | Yes                  |                         |            |                                             |                                 |
| CA_4A-7A                                                                           | 7                                                   |                        |                        | Yes                                      | Yes                  | Yes                     | Yes        | 30                                          | 0                               |
| 0.0.4.0.0                                                                          | 4                                                   | Yes                    | Yes                    | Yes                                      | Yes                  |                         |            |                                             | 2                               |
| CA_4A-12A                                                                          | 12                                                  |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
|                                                                                    | 4                                                   |                        |                        | Yes                                      | Yes                  | Yes                     | Yes        | - 30                                        | 0                               |
| CA_4A-13A                                                                          | 13                                                  |                        |                        |                                          | Yes                  |                         |            |                                             | 0                               |
| CA_4A-13A                                                                          | 4                                                   |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 1                               |
|                                                                                    | 13                                                  |                        |                        |                                          | Yes                  |                         |            | 20                                          | 1                               |
| CA_4A-17A                                                                          | 4                                                   |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
| <u></u>                                                                            | 17                                                  |                        |                        | Yes                                      | Yes                  |                         |            |                                             |                                 |
| CA_4A-29A                                                                          | 4                                                   |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
|                                                                                    | 29                                                  |                        | Yes                    | Yes                                      | Yes                  |                         |            | -                                           | -                               |
| CA_5A -12A                                                                         | 5                                                   |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
|                                                                                    | 12<br>5                                             |                        |                        | Yes                                      | Yes                  |                         |            |                                             |                                 |
| CA_5A-17A                                                                          | 5<br>17                                             |                        |                        | Yes<br>Yes                               | Yes<br>Yes           |                         |            | 20                                          | 0                               |
|                                                                                    | 7                                                   |                        |                        | 162                                      | Yes                  | Yes                     | Yes        |                                             |                                 |
| CA_7A-20A                                                                          | 20                                                  |                        |                        | Yes                                      | Yes                  | 163                     | 169        | - 30                                        | 0                               |
|                                                                                    | 8                                                   |                        |                        | Yes                                      | Yes                  |                         |            |                                             |                                 |
| CA_8A-20A                                                                          | 20                                                  |                        |                        | Yes                                      | Yes                  |                         |            | 20                                          | 0                               |
| <b></b>                                                                            | 11                                                  |                        |                        | Yes                                      | Yes                  |                         |            |                                             | _                               |
| CA_11A-18A                                                                         | 18                                                  |                        |                        | Yes                                      | Yes                  | Yes                     |            | 25                                          | 0                               |
| NOTE 1: The CA<br>Table 5.0<br>all classe<br>NOTE 2: For each<br>NOTE 3: For the s | Configuratio<br>6A-1 (the inc<br>es.<br>h band comb | lexing lette           | er). Absen<br>combinat | ation of ar<br>ce of a CA<br>ions of inc | operating<br>bandwid | band and<br>th class fo | r an opera | ting band implie                            | es support of                   |

# Table 5.6A.1-2: E-UTRA CA configurations and bandwidth combination sets defined for inter-band CA

#### Table 5.6A.1-3: E-UTRA CA configurations and bandwidth combination sets defined for noncontiguous intra-band CA

|                         |                                                                          | ration / Bandwidth combinat | ion set                                     |                                 |
|-------------------------|--------------------------------------------------------------------------|-----------------------------|---------------------------------------------|---------------------------------|
|                         | Component carriers in o<br>frequ                                         |                             |                                             |                                 |
| E-UTRA CA configuration | Allowed channel Allowed channel<br>bandwidths for carrier<br>[MHz] [MHz] |                             | Maximum<br>aggregated<br>bandwidth<br>[MHz] | Bandwidth<br>combination<br>set |
| CA_25A-25A              | 5, 10                                                                    | 5, 10                       | 20                                          | 0                               |
| CA_41A-41A              | 10, 15, 20                                                               | 10, 15, 20                  | 40                                          | 0                               |

## 5.6B Channel bandwidth for UL-MIMO

The requirements specified in subclause 5.6 are applicable to UE supporting UL-MIMO.

#### 5.6B.1 Void

## 5.7 Channel arrangement

#### 5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing = 
$$(BW_{Channel(1)} + BW_{Channel(2)})/2$$

where  $BW_{Channel(1)}$  and  $BW_{Channel(2)}$  are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

#### 5.7.1A Channel spacing for CA

For intra-band contiguous carrier aggregation bandwidth class C, the nominal channel spacing between two adjacent E-UTRA component carriers is defined as the following:

Nominal channel spacing = 
$$\frac{BW_{Channel(1)} + BW_{Channel(2)} - 0.1 |BW_{Channel(1)} - BW_{Channel(2)}|}{0.6} = 0.3 \text{ [MHz]}$$

where  $BW_{Channel(1)}$  and  $BW_{Channel(2)}$  are the channel bandwidths of the two respective E-UTRA component carriers according to Table 5.6-1 with values in MHz. The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of 300 kHz less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation the channel spacing between two E-UTRA component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause.

#### 5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

## 5.7.2A Channel raster for CA

For carrier aggregation the channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

#### 5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where  $F_{DL_{low}}$  and  $N_{Offs-DL}$  are given in Table 5.7.3-1 and  $N_{DL}$  is the downlink EARFCN.

 $F_{DL} = F_{DL \text{ low}} + 0.1(N_{DL} - N_{Offs-DL})$ 

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where  $F_{UL\_low}$  and  $N_{Offs-UL}$  are given in Table 5.7.3-1 and  $N_{UL}$  is the uplink EARFCN.

 $F_{UL} = F_{UL\_low} + 0.1(N_{UL} - N_{Offs\text{-}UL})$ 

| E-UTRA            |                                        | Downlink                                          |                                                                                                 | Uplink                                   |                                       |                                 |  |
|-------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--|
| Operating<br>Band | F <sub>DL_low</sub> (MHz)              | $N_{Offs-DL}$                                     | Range of N <sub>DL</sub>                                                                        | F <sub>UL_low</sub> (MHz)                | N <sub>Offs-UL</sub>                  | Range of NUL                    |  |
| 1                 | 2110                                   | 0                                                 | 0 - 599                                                                                         | 1920                                     | 18000                                 | 18000 - 1859                    |  |
| 2                 | 1930                                   | 600                                               | 600 – 1199                                                                                      | 1850                                     | 18600                                 | 18600 - 1919                    |  |
| 3                 | 1805                                   | 1200                                              | 1200 - 1949                                                                                     | 1710                                     | 19200                                 | 19200 - 1994                    |  |
| 4                 | 2110                                   | 1950                                              | 1950 - 2399                                                                                     | 1710                                     | 19950                                 | 19950 - 2039                    |  |
| 5                 | 869                                    | 2400                                              | 2400 - 2649                                                                                     | 824                                      | 20400                                 | 20400 - 2064                    |  |
| 6                 | 875                                    | 2650                                              | 2650 - 2749                                                                                     | 830                                      | 20650                                 | 20650 - 2074                    |  |
| 7                 | 2620                                   | 2750                                              | 2750 - 3449                                                                                     | 2500                                     | 20750                                 | 20750 - 2144                    |  |
| 8                 | 925                                    | 3450                                              | 3450 - 3799                                                                                     | 880                                      | 21450                                 | 21450 - 2179                    |  |
| 9                 | 1844.9                                 | 3800                                              | 3800 - 4149                                                                                     | 1749.9                                   | 21800                                 | 21800 - 2214                    |  |
| 10                | 2110                                   | 4150                                              | 4150 - 4749                                                                                     | 1710                                     | 22150                                 | 22150 - 2274                    |  |
| 11                | 1475.9                                 | 4750                                              | 4750 - 4949                                                                                     | 1427.9                                   | 22750                                 | 22750 - 2294                    |  |
| 12                | 729                                    | 5010                                              | 5010 - 5179                                                                                     | 699                                      | 23010                                 | 23010 - 23179                   |  |
| 13                | 746                                    | 5180                                              | 5180 - 5279                                                                                     | 777                                      | 23180                                 | 23180 - 2327                    |  |
| 14                | 758                                    | 5280                                              | 5280 - 5379                                                                                     | 788                                      | 23280                                 | 23280 - 2337                    |  |
|                   |                                        |                                                   |                                                                                                 |                                          |                                       |                                 |  |
| 17                | 734                                    | 5730                                              | 5730 - 5849                                                                                     | 704                                      | 23730                                 | 23730 - 2384                    |  |
| 18                | 860                                    | 5850                                              | 5850 - 5999                                                                                     | 815                                      | 23850                                 | 23850 - 2399                    |  |
| 19                | 875                                    | 6000                                              | 6000 - 6149                                                                                     | 830                                      | 24000                                 | 24000 - 2414                    |  |
| 20                | 791                                    | 6150                                              | 6150 - 6449                                                                                     | 832                                      | 24150                                 | 24150 - 2444                    |  |
| 21                | 1495.9                                 | 6450                                              | 6450 - 6599                                                                                     | 1447.9                                   | 24450                                 | 24450 - 2459                    |  |
| 22                | 3510                                   | 6600                                              | 6600 - 7399                                                                                     | 3410                                     | 24600                                 | 24600 - 2539                    |  |
| 23                | 2180                                   | 7500                                              | 7500 - 7699                                                                                     | 2000                                     | 25500                                 | 25500 - 2569                    |  |
| 24                | 1525                                   | 7700                                              | 7700 - 8039                                                                                     | 1626.5                                   | 25700                                 | 25700 - 2603                    |  |
| 25                | 1930                                   | 8040                                              | 8040 - 8689                                                                                     | 1850                                     | 26040                                 | 26040 - 2668                    |  |
| 26                | 859                                    | 8690                                              | 8690 - 9039                                                                                     | 814                                      | 26690                                 | 26690 - 2703                    |  |
| 27                | 852                                    | 9040                                              | 9040 - 9209                                                                                     | 807                                      | 27040                                 | 27040 - 2720                    |  |
| 28                | 758                                    | 9210                                              | 9210 - 9659                                                                                     | 703                                      | 27210                                 | 27210 - 2765                    |  |
| 29 <sup>2</sup>   | 717                                    | 9660                                              | 9660 - 9769                                                                                     |                                          | N/A                                   | 1                               |  |
| 33                | 1900                                   | 36000                                             | 36000 - 36199                                                                                   | 1900                                     | 36000                                 | 36000 - 3619                    |  |
| 34                | 2010                                   | 36200                                             | 36200 - 36349                                                                                   | 2010                                     | 36200                                 | 36200 - 3634                    |  |
| 35                | 1850                                   | 36350                                             | 36350 - 36949                                                                                   | 1850                                     | 36350                                 | 36350 - 3694                    |  |
| 36                | 1930                                   | 36950                                             | 36950 - 37549                                                                                   | 1930                                     | 36950                                 | 36950 - 3754                    |  |
| 37                | 1910                                   | 37550                                             | 37550 - 37749                                                                                   | 1910                                     | 37550                                 | 37550 - 3774                    |  |
| 38                | 2570                                   | 37750                                             | 37750 – 38249                                                                                   | 2570                                     | 37750                                 | 37750 - 3824                    |  |
| 39                | 1880                                   | 38250                                             | 38250 - 38649                                                                                   | 1880                                     | 38250                                 | 38250 - 3864                    |  |
| 40                | 2300                                   | 38650                                             | 38650 - 39649                                                                                   | 2300                                     | 38650                                 | 38650 - 3964                    |  |
| 41                | 2496                                   | 39650                                             | 39650 - 41589                                                                                   | 2496                                     | 39650                                 | 39650 - 4158                    |  |
| 42                | 3400                                   | 41590                                             | 41590 - 43589                                                                                   | 3400                                     | 41590                                 | 41590 - 4358                    |  |
| 43                | 3600                                   | 43590                                             | 43590 - 45589                                                                                   | 3600                                     | 43590                                 | 43590 - 4558                    |  |
| 44                | 703                                    | 45590                                             | 45590 - 46589                                                                                   | 703                                      | 45590                                 | 45590 - 4658                    |  |
| с<br>7<br>с       | arrier extends bey<br>5 and 100 channe | ond the opera<br>I numbers at t<br>t the upper op | nate carrier frequenci<br>ting band edge shall<br>he lower operating ba<br>erating band edge sh | not be used. This in and edge and the la | plies that the fi<br>st 6, 14, 24, 49 | rst 7, 15, 25, 50,<br>74 and 99 |  |

#### Table 5.7.3-1: E-UTRA channel numbers

5.7.4

TX-RX frequency separation

a) The default E-UTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.7.4-1 for the TX and RX channel bandwidths defined in Table 5.6.1-1

| E-UTRA Operating Band | TX - RX                  |
|-----------------------|--------------------------|
|                       | carrier centre frequency |
|                       | separation               |
| 1                     | 190 MHz                  |
| 2                     | 80 MHz.                  |
| 3                     | 95 MHz.                  |
| 4                     | 400 MHz                  |
| 5                     | 45 MHz                   |
| 6                     | 45 MHz                   |
| 7                     | 120 MHz                  |
| 8                     | 45 MHz                   |
| 9                     | 95 MHz                   |
| 10                    | 400 MHz                  |
| 11                    | 48 MHz                   |
| 12                    | 30 MHz                   |
| 13                    | -31 MHz                  |
| 14                    | -30 MHz                  |
| 17                    | 30 MHz                   |
| 18                    | 45 MHz                   |
| 19                    | 45 MHz                   |
| 20                    | -41 MHz                  |
| 21                    | 48 MHz                   |
| 22                    | 100 MHz                  |
| 23                    | 180 MHz                  |
| 24                    | -101.5 MHz               |
| 25                    | 80 MHz                   |
| 26                    | 45 MHz                   |
| 27                    | 45 MHz                   |
| 28                    | 55 MHz                   |

| Table 5.7.4-1: Default UE TX-RX frequency separation | Table 5.7.4-1 | : Default UE | TX-RX free | quency se | paration |
|------------------------------------------------------|---------------|--------------|------------|-----------|----------|
|------------------------------------------------------|---------------|--------------|------------|-----------|----------|

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

### 5.7.4A TX-RX frequency separation for CA

For intra-band contiguous carrier aggregation, the same TX-RX frequency separation as specified in Table 5.7.4-1 is applied to PCC and SCC, respectively.

6 Transmitter characteristics

### 6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single or multiple transmit antenna(s). For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

- 6.2 Transmit power
- 6.2.1 Void

### 6.2.2 UE maximum output power

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth for non CA configuration and UL-MIMO unless otherwise stated. The period of measurement shall be at least one sub frame (1ms).

| EUTRA<br>band                 | Class 1<br>(dBm)                                                                               | Tolerance<br>(dB)                                                           | Class 2<br>(dBm)                                       | Tolerance<br>(dB)                               | Class 3<br>(dBm)                               | Tolerance<br>(dB)                                                                        | Class 4<br>(dBm)                          | Tolerance<br>(dB)      |
|-------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|
| 1                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 2                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $\pm 2^2$                                                                                |                                           |                        |
| 3                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $\pm 2^2$                                                                                |                                           |                        |
| 4                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | <u>+2</u>                                                                                |                                           |                        |
| 5                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 6                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             |                                                                                          |                                           |                        |
| 7                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $\frac{\pm 2}{\pm 2^2}$                                                                  |                                           |                        |
| 8                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $\pm 2^2$                                                                                |                                           |                        |
| 9                             |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 10                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2<br>±2                                                                                 |                                           |                        |
|                               |                                                                                                |                                                                             |                                                        |                                                 | 23                                             |                                                                                          |                                           |                        |
| 11                            |                                                                                                |                                                                             |                                                        |                                                 |                                                | $\frac{\pm 2}{\pm 2^2}$                                                                  |                                           |                        |
| 12                            |                                                                                                |                                                                             |                                                        | -                                               | 23                                             |                                                                                          | -                                         | -                      |
| 13                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 14                            | 31                                                                                             | +2/-3                                                                       |                                                        |                                                 | 23                                             | <u>+2</u>                                                                                |                                           |                        |
| 17                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | <u>+2</u>                                                                                |                                           |                        |
| 18                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2 <sup>5</sup>                                                                          |                                           |                        |
| 19                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 20                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $\pm 2^2$                                                                                |                                           |                        |
| 21                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | <u></u><br>±2                                                                            |                                           |                        |
| 22                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $+2/-3.5^{2}$                                                                            |                                           |                        |
| 23                            |                                                                                                |                                                                             |                                                        |                                                 | 23°                                            | ±2°                                                                                      |                                           |                        |
| 23                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | <u>+2</u>                                                                                |                                           |                        |
| 24                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $\pm 2^{2}$                                                                              |                                           |                        |
| 26                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | $\pm 2^{2}$                                                                              |                                           |                        |
| 20                            |                                                                                                |                                                                             |                                                        |                                                 |                                                | ±2<br>±2                                                                                 |                                           |                        |
|                               |                                                                                                |                                                                             |                                                        |                                                 | 23<br>23                                       |                                                                                          |                                           |                        |
| 28<br>                        |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | +2/-2.5                                                                                  |                                           |                        |
| 33                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 34                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 35                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 36                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 37                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | <u>+2</u>                                                                                |                                           |                        |
| 38                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | <u>+2</u>                                                                                |                                           |                        |
| 39                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | <br>±2                                                                                   |                                           |                        |
| 40                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | ±2                                                                                       |                                           |                        |
| 41                            | 1                                                                                              |                                                                             |                                                        | 1                                               | 23                                             | $\pm 2^2$                                                                                | 1                                         | 1                      |
| 42                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | +2/-3                                                                                    |                                           |                        |
| 42                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | +2/-3                                                                                    |                                           |                        |
| 43                            |                                                                                                |                                                                             |                                                        |                                                 | 23                                             | +2/[-3]                                                                                  |                                           |                        |
| NOTE 1:                       | Void                                                                                           | <u> </u>                                                                    |                                                        | 1                                               | 23                                             | T2/["J]                                                                                  | <u>I</u>                                  | 1                      |
| NOTE 2:<br>NOTE 3:<br>NOTE 4: | $^{2}$ refers to th<br>$F_{UL_high} - 4$<br>tolerance lin<br>For the UE<br>$P_{PowerClass}$ is | MHz and F <sub>UL_h</sub><br>nit by 1.5 dB<br>which supports<br>the maximum | <sub>igh</sub> , the max<br>s both Band<br>⊨UE power s | imum output p<br>11 and Band<br>specified witho | ower require<br>21 operating<br>out taking int | within F <sub>UL_low</sub> ar<br>ement is relaxe<br>g frequencies, t<br>to account the t | d by reducing<br>he tolerance<br>olerance | g the lower<br>is FFS. |
|                               | reducing the 818 MHz.                                                                          | e lower toleran                                                             | ce limit by 1                                          | .5 dB for trans                                 | smission bai                                   | m output power<br>ndwidths confin                                                        | ed within 815                             | 5 MHz and              |
| NOTE 6:                       | vvnen NS_2                                                                                     | 20 is signalled,                                                            | the total ou                                           | itput power wit                                 | nin 2000-20                                    | 05 MHz shall b                                                                           | e limited to /                            | abm.                   |

#### Table 6.2.2-1: UE Power Class

6.2.2A UE maximum output power for CA

The following UE Power Classes define the maximum output power for any transmission bandwidth within the aggregated channel bandwidth.

The maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the requirements in subclause 6.2.2 apply.

For intra-band contiguous carrier aggregation the maximum output power is specified in Table 6.2.2A-1.

| E-UTRA CA<br>Configuration                                                                      | Class 1<br>(dBm)                                                                                              | Tolerance<br>(dB) | Class 2<br>(dBm) | Tolerance<br>(dB) | Class 3<br>(dBm) | Tolerance<br>(dB) | Class 4<br>(dBm) | Tolerance<br>(dB) |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|--|
| CA_1C                                                                                           |                                                                                                               |                   |                  |                   | 23               | +2/-2             |                  |                   |  |
| CA_7C                                                                                           |                                                                                                               |                   |                  |                   | 23               | $+2/-2^{2}$       |                  |                   |  |
| CA_38C                                                                                          |                                                                                                               |                   |                  |                   | 23               | +2/-2             |                  |                   |  |
| CA_40C                                                                                          |                                                                                                               |                   |                  |                   | 23               | +2/-2             |                  |                   |  |
| CA_41C                                                                                          | 23 +2/-2 <sup>2</sup>                                                                                         |                   |                  |                   |                  |                   |                  |                   |  |
| NOTE 1: Void                                                                                    | NOTE 1: Void                                                                                                  |                   |                  |                   |                  |                   |                  |                   |  |
| NOTE 2: For tr                                                                                  |                                                                                                               |                   |                  |                   |                  |                   |                  |                   |  |
| F <sub>UL_hi</sub>                                                                              | <sub>gh</sub> , the maxin                                                                                     | num output po     | wer require      | ment is relaxe    | d by reducii     | ng the lower tole | erance limit l   | oy 1.5 dB         |  |
| NOTE 3: PPowerClass is the maximum UE power specified without taking into account the tolerance |                                                                                                               |                   |                  |                   |                  |                   |                  |                   |  |
|                                                                                                 | NOTE 4: For intra-band contiguous carrier aggregation the maximum power requirement should apply to the total |                   |                  |                   |                  |                   |                  |                   |  |
| transr                                                                                          | mitted power                                                                                                  | over all comp     | onent carrie     | ers (per UE).     |                  |                   |                  |                   |  |

Table 6.2.2A-1: CA UE Power Class

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in subclause 6.2.2 apply.

### 6.2.2B UE maximum output power for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the maximum output power for any transmission bandwidth within the channel bandwidth is specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. The period of measurement shall be at least one sub frame (1ms).

| EUTRA<br>band | Class 1<br>(dBm)                                                | Tolerance<br>(dB)                          | Class 2<br>(dBm)           | Tolerance<br>(dB) | Class 3<br>(dBm) | Tolerance<br>(dB)                                 | Class 4<br>(dBm) | Tolerance<br>(dB) |
|---------------|-----------------------------------------------------------------|--------------------------------------------|----------------------------|-------------------|------------------|---------------------------------------------------|------------------|-------------------|
| 1             |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 2             |                                                                 |                                            |                            |                   | 23               | +2/-3 <sup>2</sup>                                |                  |                   |
| 3             |                                                                 |                                            |                            |                   | 23               | +2/-32                                            |                  |                   |
| 4             |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 5             |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 6             |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 7             |                                                                 |                                            |                            |                   | 23               | +2/-3 <sup>2</sup>                                |                  |                   |
| 8             |                                                                 |                                            |                            |                   | 23               | +2/-3 <sup>2</sup>                                |                  |                   |
| 9             |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 10            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 11            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 12            |                                                                 |                                            |                            |                   | 23               | +2/-3 <sup>2</sup>                                |                  |                   |
| 13            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 14            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 17            |                                                                 |                                            |                            |                   | 20               | 12/0                                              |                  |                   |
| 17            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 18            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 10            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 20            |                                                                 |                                            |                            |                   | 23               | +2/-3 <sup>2</sup>                                |                  |                   |
| 20            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 21            |                                                                 |                                            |                            |                   | 23               | +2/-3<br>+2/-4.5 <sup>2</sup>                     |                  |                   |
| 22            |                                                                 |                                            |                            |                   |                  | +2/-4.3                                           |                  |                   |
|               |                                                                 |                                            |                            |                   |                  | .0/0                                              |                  |                   |
| 23            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 24            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 25            |                                                                 |                                            |                            |                   | 23               | $+2/-3^{2}$                                       |                  |                   |
| 26            |                                                                 |                                            |                            |                   | 23               | +2/-3 <sup>2</sup>                                |                  |                   |
| 27            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 28            |                                                                 |                                            |                            |                   | 23               | +2/[-3]                                           |                  |                   |
|               |                                                                 |                                            |                            |                   |                  |                                                   |                  |                   |
| 33            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 34            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 35            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 36            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 37            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 38            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 39            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 40            |                                                                 |                                            |                            |                   | 23               | +2/-3                                             |                  |                   |
| 41            |                                                                 |                                            |                            |                   | 23               | +2/-3 <sup>2</sup>                                |                  |                   |
| 42            |                                                                 |                                            |                            |                   | 23               | +2/-4                                             |                  |                   |
| 43            |                                                                 |                                            |                            |                   | 23               | +2/-4                                             |                  |                   |
| 44            |                                                                 |                                            |                            |                   | 23               | +2/[-3]                                           |                  |                   |
|               | $^{2}$ refers to th<br>F <sub>UL_high</sub> – 4 I tolerance lin | MHz and F <sub>∪L_t</sub><br>nit by 1.5 dB | <sub>high</sub> , the maxi | mum output p      | ower require     | within F <sub>UL_low</sub> ar<br>ement is relaxed | d by reducing    | the lower         |
|               |                                                                 |                                            |                            |                   |                  | to account the t                                  |                  |                   |

Table 6.2.2B-1: UE Power Class for UL-MIMO in closed loop spatial multiplexing scheme

#### Table 6.2.2B-2: UL-MIMO configuration in closed-loop spatial multiplexing scheme

| Transmission mode | DCI format   | Codebook Index   |  |  |
|-------------------|--------------|------------------|--|--|
| Mode 2            | DCI format 4 | Codebook index 0 |  |  |

For single-antenna port scheme, the requirements in subclause 6.2.2 apply.

### 6.2.3 UE maximum output power for modulation / channel bandwidth

For UE Power Class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

| Modulation | Cha        | MPR (dB)   |          |           |           |           |     |
|------------|------------|------------|----------|-----------|-----------|-----------|-----|
|            | 1.4<br>MHz | 3.0<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |     |
| QPSK       | > 5        | > 4        | > 8      | > 12      | > 16      | > 18      | ≤ 1 |
| 16 QAM     | ≤ 5        | ≤ 4        | ≤ 8      | ≤ 12      | ≤ 16      | ≤ 18      | ≤ 1 |
| 16 QAM     | > 5        | > 4        | > 8      | > 12      | > 16      | > 18      | ≤ 2 |

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

For PRACH, PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For transmissions with non-contiguous resource allocation in single component carrier, the allowed Maximum Power Reduction (MPR) for the maximum output power in table 6.2.2-1, is specified as follows

$$MPR = CEIL \{M_A, 0.5\}$$

Where M<sub>A</sub> is defined as follows

| $M_A =$ | [8.0]-[10.12]A   | ; $0 < A \le [0.33]$       |
|---------|------------------|----------------------------|
|         | [5.67] - [3.07]A | ; $[0.33] < A \leq [0.77]$ |
|         | [3.31]           | ; [0.77]< A ≤[1.0]         |

Where

 $A = N_{RB\_alloc} \ / \ N_{RB}$ 

CEIL{M<sub>A</sub>, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR  $\in$  [3.0, 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0]

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5 apply.

# 6.2.3A UE Maximum Output power for modulation / channel bandwidth for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1due to higher order modulation and contiguously aggregated transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3A-1. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

| Modulation |                   | MPR              |                  |                    |      |
|------------|-------------------|------------------|------------------|--------------------|------|
|            | 50 RB + 100<br>RB | 75 RB + 75<br>RB | 75 RB+100<br>RB  | 100 RB + 100<br>RB | (dB) |
| QPSK       | > 12 and ≤<br>50  | > 16 and ≤<br>75 | > 16 and ≤<br>75 | > 18 and ≤<br>100  | ≤ 1  |
| QPSK       | > 50              | > 75             | > 75             | > 100              | ≤2   |
| 16 QAM     | ≤ 12              | ≤ 16             | ≤ 16             | ≤ 18               | ≤1   |
| 16 QAM     | > 12 and ≤<br>50  | > 16 and ≤<br>75 | > 16 and ≤<br>75 | > 18 and ≤<br>100  | ≤2   |
| 16 QAM     | > 50              | > 75             | > 75             | > 100              | ≤ 3  |

Table 6.2.3A-1: Maximum Power Reduction (MPR) for Power Class 3

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

$$MPR = CEIL \{M_A, 0.5\}$$

Where MA is defined as follows

| $M_A =$ | 8.2          | ; $0 \le A < 0.025$        |
|---------|--------------|----------------------------|
|         | 9.2 - 40A    | ; $0.025\!\le\!A\!<\!0.05$ |
|         | 8 – 16A      | ; 0.05 $\leq A < 0.25$     |
|         | 4.83 - 3.33A | ; $0.25 \le A \le 0.4$ ,   |
|         | 3.83 - 0.83A | ; 0.4 $\leq$ A $\leq$ 1,   |

Where

 $A = N_{RB\_alloc} / N_{RB\_agg.}$ 

CEIL{ $M_{A, 0.5}$ } means rounding upwards to closest 0.5dB, i.e. MPR  $\in$  [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5]

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in subclause 6.2.3 apply.

# 6.2.3B UE maximum output power for modulation / channel bandwidth for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2B-1 is specified in Table 6.2.3-1. The requirements shall be met with UL-MIMO configurations defined in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5B apply.

For single-antenna port scheme, the requirements in subclause 6.2.3 apply.

### 6.2.4 UE maximum output power with additional requirements

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the output power as specified in Table 6.2.2-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For UE Power Class 1 and 3 the specific requirements and identified subclauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 to 6.2.4-15 are in addition to the allowed MPR requirements specified in subclause 6.2.3.

| Network<br>Signalling<br>value | Requirements<br>(subclause)      | E-UTRA Band                | Channel<br>bandwidth<br>(MHz) | Resources<br>Blocks ( <i>N</i> <sub>RB</sub> ) | A-MPR (dB)                    |
|--------------------------------|----------------------------------|----------------------------|-------------------------------|------------------------------------------------|-------------------------------|
| NS_01                          | 6.6.2.1.1                        | Table 5.5-1                | 1.4, 3, 5, 10,<br>15, 20      | Table 5.6-1                                    | N/A                           |
|                                |                                  |                            | 3                             | >5                                             | ≤ 1                           |
|                                |                                  | 2 4 40 22 25               | 5                             | >6                                             | ≤1                            |
| NS_03                          | 6.6.2.2.1                        | 2, 4,10, 23, 25,<br>35, 36 | 10                            | >6                                             | ≤ 1                           |
|                                |                                  | 35, 50                     | 15                            | >8                                             | ≤1                            |
|                                |                                  |                            | 20                            | >10                                            | ≤1                            |
|                                | 6.6.2.2.2                        | 41                         | 5                             | >6                                             | ≤ 1                           |
| NS_04                          | 0.0.2.2.2                        | 41                         | 10, 15, 20                    | Table                                          | 6.2.4-4                       |
| NS_05                          | 6.6.3.3.1                        | 1                          | 10,15,20                      | ≥ 50                                           | ≤ 1                           |
| NS_06                          | 6.6.2.2.3                        | 12, 13, 14, 17             | 1.4, 3, 5, 10                 | Table 5.6-1                                    | N/A                           |
| NS_07                          | 6.6.2.2.3<br>6.6.3.3.2           | 13                         | 10                            | Table 6.2.4-2                                  |                               |
| NS_08                          | 6.6.3.3.3                        | 19                         | 10, 15                        | > 44                                           | ≤ 3                           |
| NS_09                          | 6.6.3.3.4                        | 21                         | 10, 15                        | > 40<br>> 55                                   | ≤1<br>≤2                      |
| NS 10                          |                                  | 20                         | 15, 20                        |                                                | 6.2.4-3                       |
| NS_11                          | 6.6.2.2.1<br>6.6.3.3.13          | 23                         | 1.4, 3, 5, 10,<br>15, 20      |                                                | 6.2.4-5                       |
| NS_12                          | 6.6.3.3.5                        | 26                         | 1.4, 3, 5                     | Table                                          | 6.2.4-6                       |
| NS_13                          | 6.6.3.3.6                        | 26                         | 5                             | Table                                          | 6.2.4-7                       |
| NS_14                          | 6.6.3.3.7                        | 26                         | 10, 15                        | Table                                          | 6.2.4-8                       |
| NS_15                          | 6.6.3.3.8                        | 26                         | 1.4, 3, 5, 10,<br>15          |                                                | 6.2.4-9<br>6.2.4-10           |
| NS_16                          | 6.6.3.3.9                        | 27                         | 3, 5, 10                      |                                                | , Table 6.2.4-12,<br>6.2.4-13 |
| NS_17                          | 6.6.3.3.10                       | 28                         | 5, 10                         | Table 5.6-1                                    | N/A                           |
| NS_18                          | 6.6.3.3.11                       | 28                         | 5                             | ≥2                                             | ≤ 1                           |
|                                |                                  |                            | 10, 15, 20                    | ≥ 1                                            | ≤ 4                           |
| NS_19                          | 6.6.3.3.12                       | 44                         | 10, 15, 20                    | Table                                          | 6.2.4-14                      |
| NS_20                          | 6.2.2<br>6.6.2.2.1<br>6.6.3.3.14 | 23                         | 5, 10, 15, 20                 | Table                                          | 6.2.4-15                      |
| NS_22                          | 6.6.3.3.15                       | 42                         | 5, 10, 15, 20                 | Table 5.6-1                                    | [0]                           |
| NS_23                          | 6.6.3.3.16                       | 43                         | 5, 10, 15, 20                 | Table 5.6-1                                    | [0]                           |
| <br>NS_32                      | -                                | -                          | -                             | -                                              | -                             |

#### Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

| Parameters                                                                                                                                                                                                                                                                                                             | R   | egion A            | Regi                                     | Region C |                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|------------------------------------------|----------|----------------|--|--|
| RB <sub>start</sub>                                                                                                                                                                                                                                                                                                    |     | 0 - 12             | 13 – 18                                  | 19 – 42  | 43 – 49        |  |  |
| L <sub>CRB</sub> [RBs]                                                                                                                                                                                                                                                                                                 | 6-8 | 1 to 5 and<br>9-50 | ≥8                                       | ≥18      | ≤2             |  |  |
| A-MPR [dB]                                                                                                                                                                                                                                                                                                             | ≤ 8 | ≤ 12               | ≤ 12                                     | ≤ 6      | ≤ 3            |  |  |
| NOTE 1;       RB <sub>start</sub> indicates the lowest RB index of transmitted resource blocks         NOTE 2;       L <sub>CRB</sub> is the length of a contiguous resource block allocation         NOTE 3:       For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis. |     |                    |                                          |          |                |  |  |
| NOTE 4; For intra-<br>the two re                                                                                                                                                                                                                                                                                       |     |                    | ng between two re<br>both slots in the s | •        | A-MPR value of |  |  |

Table 6.2.4-2: A-MPR for "NS\_07"

Table 6.2.4-3: A-MPR for "NS\_10"

| Channel<br>bandwidth [MHz]                                                                                                                  | Parameters                  | Region A                                          |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------|--|--|--|--|
|                                                                                                                                             | RB <sub>start</sub>         | 0 – 10                                            |  |  |  |  |
| 15                                                                                                                                          | L <sub>CRB</sub> [RBs]      | 1 -20                                             |  |  |  |  |
|                                                                                                                                             | A-MPR [dB]                  | ≤2                                                |  |  |  |  |
|                                                                                                                                             | RB <sub>start</sub>         | 0 – 15                                            |  |  |  |  |
| 20                                                                                                                                          | L <sub>CRB</sub> [RBs]      | 1 -20                                             |  |  |  |  |
|                                                                                                                                             | A-MPR [dB]                  | ≤ 5                                               |  |  |  |  |
| NOTE 1: RB <sub>start</sub> inc                                                                                                             | licates the lowest RB index | of transmitted resource blocks                    |  |  |  |  |
| NOTE 2: LCRB is th                                                                                                                          | e length of a contiguous re | source block allocation                           |  |  |  |  |
| NOTE 3: For intra-                                                                                                                          | subframe frequency hoppir   | ng which intersects Region A, notes 1 and 2 apply |  |  |  |  |
| on a per                                                                                                                                    | on a per slot basis         |                                                   |  |  |  |  |
| NOTE 4: For intra-subframe frequency hopping which intersect Region A, the larger A-MPR value may be applied for both slots in the subframe |                             |                                                   |  |  |  |  |

| Channel<br>bandwidth<br>[MHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parameters                                   | Region A         | Region B | Region C         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|----------|------------------|--|--|
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB <sub>start</sub>                          | 0 – 12           | 13 – 36  | 37 – 49          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB <sub>start</sub> + L <sub>CRB</sub> [RBs] | N/A              | >37      | N/A <sup>3</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A-MPR [dB]                                   | ≤3dB             | ≤2dB     | ≤3dB             |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB <sub>start</sub>                          | 0 – 18           | 19 – 55  | 56 – 74          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB <sub>start</sub> + L <sub>CRB</sub> [RBs] | N/A              | >56      | N/A <sup>3</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A-MPR [dB]                                   | ≤3dB             | ≤2dB     | ≤3dB             |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB <sub>start</sub>                          | 0 – 24           | 25 – 74  | 75 – 99          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB <sub>start</sub> + L <sub>CRB</sub> [RBs] | N/A <sup>3</sup> | >75      | N/A <sup>3</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A-MPR [dB]                                   | ≤3dB             | ≤2dB     | ≤3dB             |  |  |
| <ul> <li>NOTE 1: RB<sub>start</sub> indicates the lowest RB index of transmitted resource blocks</li> <li>NOTE 2: L<sub>CRB</sub> is the length of a contiguous resource block allocation</li> <li>NOTE 3: <sup>3</sup> refers to any RB allocation that starts in Region A or C is allowed the specified A-MPR</li> <li>NOTE 4: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis</li> <li>NOTE 5: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe</li> </ul> |                                              |                  |          |                  |  |  |

| Channel<br>Bandwidth<br>[MHz] | Parameters             |                   |      |           |           |              |                                  |      |       |       |
|-------------------------------|------------------------|-------------------|------|-----------|-----------|--------------|----------------------------------|------|-------|-------|
|                               | Fc [MHz]               | <20               | 04   |           |           | ≥2004        |                                  |      |       |       |
| 3                             | L <sub>CRB</sub> [RBs] | 1-1               | 5    | >5        |           |              |                                  |      |       |       |
|                               | A-MPR [dB]             | ≤5 ≤ 1            |      |           |           |              |                                  |      |       |       |
|                               | Fc [MHz]               | <2004 2004 ≤ Fc < |      | )4 ≤ Fc < | 2007      |              | ≥20                              | 007  |       |       |
| 5                             | L <sub>CRB</sub> [RBs] | 1-2               | 25   |           |           | 6 &<br>-25   | 8-12                             |      | >     | 6     |
|                               | A-MPR [dB]             | ≤]                | 7    |           | <         | 4            | 0                                |      | <     | 1     |
|                               | Fc [MHz]               | 200               | )5 ≤ | Fc <2     | 015       | 5            |                                  | 2015 | 5     |       |
|                               | RB <sub>start</sub>    |                   | 0.   | -49       |           |              |                                  | 0-49 | 9     |       |
| 10                            | L <sub>CRB</sub> [RBs] |                   | 1.   | -50       |           |              |                                  | 1-50 |       |       |
|                               | A-MPR [dB]             | ≤ 12              |      |           |           | 0            |                                  |      |       |       |
|                               | Fc [MHz]               |                   |      |           |           | <2012        | 2.5                              |      |       |       |
|                               | RB <sub>start</sub>    | 0-4               | 5-21 |           | I         | 22           | -56                              |      | 57-74 |       |
|                               | L <sub>CRB</sub> [RBs] | ≥1                | 7-50 |           | 0-6 & ≥50 |              | ≤25                              | >2   | 5     | >0    |
|                               | A-MPR [dB]             | ≤15               | ≤7   |           | ≤10       |              | 0                                | ≤6   | ;     | ≤15   |
| 15                            | Fc [MHz]               |                   |      |           |           | 2012         | .5                               |      |       |       |
|                               | RB <sub>start</sub>    | 0-12              |      | 13-39     |           | -39          | 40-65                            |      |       | 66-74 |
|                               | L <sub>CRB</sub> [RBs] | ≥1                |      | ≥3        | ≥30 <30   |              | ≥ (69 –<br>RB <sub>start</sub> ) |      |       | ≥1    |
|                               | A-MPR [dB]             | ≤10 ≤6 0          |      | 0         | ≤2        | 2 ≤6.5       |                                  | ≤6.5 |       |       |
|                               | Fc [MHz]               |                   |      |           |           | 2010         | )                                |      |       |       |
|                               | RB <sub>start</sub>    | 0-12              |      | 1:        | 3-29      | 9            | 30-68                            |      |       | 69-99 |
| 20                            | L <sub>CRB</sub> [RBs] | ≥1                | 10   | -60       |           | 1-9 &<br>>60 | 1-24                             | ≥25  | 5     | ≥1    |
|                               | A-MPR [dB]             | ≤15               | ~    | ≦7        |           | ≤10          | 0                                | ≤7   | ,     | ≤15   |

Table 6.2.4-5: A-MPR for "NS\_11"

| Channel<br>bandwidth<br>[MHz] | Parameters             | Regic | Region B      |     |
|-------------------------------|------------------------|-------|---------------|-----|
|                               | RB <sub>start</sub>    | 0     | 1-2           |     |
| 1.4                           | L <sub>CRB</sub> [RBs] | ≤3 ≥4 |               | ≥4  |
|                               | A-MPR [dB]             | ≤3 ≤6 |               | ≤3  |
|                               | RB <sub>start</sub>    | 0-3   |               | 4-5 |
| 3                             | L <sub>CRB</sub> [RBs] | 4-9   | 1-3 and 10-15 | ≥9  |
|                               | A-MPR [dB]             | ≤4 ≤3 |               | ≤3  |
|                               | RB <sub>start</sub>    | 0-6   |               | 7-9 |
| 5                             | L <sub>CRB</sub> [RBs] | ≤8    | ≥9            | ≥15 |
|                               | A-MPR [dB]             | ≤5    | ≤3            | ≤3  |

Table 6.2.4-6: A-MPR for "NS\_12"

### Table 6.2.4-7: A-MPR for "NS\_13"

| Channel<br>bandwidth<br>[MHz] | Parameters             | Region A |     |  |
|-------------------------------|------------------------|----------|-----|--|
|                               | RB <sub>start</sub>    | 0-2      |     |  |
| 5                             | L <sub>CRB</sub> [RBs] | ≤5       | ≥18 |  |
|                               | A-MPR [dB]             | ≤3       | ≤2  |  |

#### Table 6.2.4-8: A-MPR for "NS\_14"

| Channel<br>bandwidth<br>[MHz] | Parameters             | Region A |     |
|-------------------------------|------------------------|----------|-----|
|                               | RB <sub>star</sub> t   | 0        |     |
| 10                            | L <sub>CRB</sub> [RBs] | ≤5       | ≥50 |
|                               | A-MPR [dB]             | ≤3       | ≤1  |
|                               | RB <sub>start</sub>    | 3≥       | 3   |
| 15                            | L <sub>CRB</sub> [RBs] | ≤16      | ≥50 |
|                               | A-MPR [dB]             | ≤3       | ≤1  |

#### Table 6.2.4-9: A-MPR for "NS\_15" for E-UTRA highest channel edge > 845 MHz and ≤ 849 MHz

| Channel<br>bandwidth<br>[MHz] | Parameters             | Region A | Region B | Region C |
|-------------------------------|------------------------|----------|----------|----------|
| 1.4                           | RB <sub>end</sub> [RB] |          |          | 4-5      |
| 1.4                           | A-MPR [dB]             |          |          | ≤3       |
|                               | RB <sub>end</sub> [RB] | 0-1      | 8-12     | 13-14    |
| 3                             | L <sub>CRB</sub> [RB]  | ≤2       | ≥8       | >0       |
|                               | A-MPR [dB]             | ≤4       | ≤4       | ≤9       |
|                               | RB <sub>end</sub> [RB] | 0-4      | 12-19    | 20-24    |
| 5                             | L <sub>CRB</sub> [RB]  | ≤2       | ≥8       | >0       |
|                               | A-MPR [dB]             | ≤4       | ≤5       | ≤9       |
|                               | RB <sub>end</sub> [RB] | 0-12     | 23-36    | 37-49    |
| 10                            | L <sub>CRB</sub> [RB]  | ≤2       | ≥15      | >0       |
|                               | A-MPR [dB]             | ≤4       | ≤6       | ≤9       |
|                               | RB <sub>end</sub> [RB] | 0-20     | 26-53    | 54-74    |
| 15                            | L <sub>CRB</sub> [RB]  | ≤2       | ≥20      | >0       |
|                               | A-MPR [dB]             | ≤4       | ≤5       | ≤9       |

| Channel<br>bandwidth<br>[MHz] | Parameters             | Region A | Region B | Region C |
|-------------------------------|------------------------|----------|----------|----------|
|                               | RB <sub>end</sub> [RB] |          |          | 19-24    |
| 5                             | L <sub>CRB</sub> [RB]  |          |          | ≥18      |
|                               | A-MPR [dB]             |          |          | ≤2       |
|                               | RB <sub>end</sub> [RB] | 0-4      | 29-44    | 45-49    |
| 10                            | L <sub>CRB</sub> [RB]  | ≤2       | ≥24      | >0       |
|                               | A-MPR [dB]             | ≤4       | ≤4       | ≤9       |
|                               | RB <sub>end</sub> [RB] | 0-12     | 44-61    | 62-74    |
| 15                            | L <sub>CRB</sub> [RB]  | ≤2       | ≥20      | >0       |
|                               | A-MPR [dB]             | ≤4       | ≤5       | ≤9       |

Table 6.2.4-10: A-MPR for "NS\_15" for E-UTRA highest channel edge ≤ 845 MHz

#### Table 6.2.4-11: A-MPR for "NS\_16" with channel lower edge at ≥807 MHz and <808.5 MHz

| Channel<br>bandwidth<br>[MHz] | Parameter              | Region A | Region B | Region C | Region D | Region E |
|-------------------------------|------------------------|----------|----------|----------|----------|----------|
|                               | RB <sub>start</sub>    | 0        | 1-2      |          |          |          |
| 3 MHz                         | L <sub>CRB</sub> [RBs] | ≥12      | 12       |          |          |          |
|                               | A-MPR [dB]             | ≤2       | ≤1       |          |          |          |
|                               | RB <sub>start</sub>    | 0-1      | 2        | 2-9      | 2-5      |          |
| 5 MHz                         | L <sub>CRB</sub> [RBs] | 1 - 25   | 12       | 15-18    | 20       |          |
|                               | A-MPR [dB]             | ≤5       | ≤1       | ≤2       | ≤3       |          |
|                               | RB <sub>start</sub>    | 0 - 8    | 0-       | 14       | 15-20    | 15-24    |
| 10 MHz                        | L <sub>CRB</sub> [RBs] | 1 - 12   | 15-20    | ≥24      | ≥30      | 24-27    |
|                               | A-MPR [dB]             | ≤5       | ≤3       | ≤7       | ≤3       | ≤1       |

| Table 6.2.4-12: A-MPR for "NS | _16" with channel lower edge at ≥808.5 MHz and <812 MHz |
|-------------------------------|---------------------------------------------------------|
|                               |                                                         |

| Channel<br>bandwidth<br>[MHz] | Parameter              | Region A | Region B | Region C | Region D | Region E |
|-------------------------------|------------------------|----------|----------|----------|----------|----------|
|                               | RB <sub>start</sub>    | 0        | 0-1      | 1-5      |          |          |
| 5 MHz                         | L <sub>CRB</sub> [RBs] | 16-20    | ≥24      | 16-20    |          |          |
|                               | A-MPR [dB]             | ≤2       | ≤3       | ≤1       |          |          |
|                               | RB <sub>start</sub>    | 0.       | -6       | 0-10     | 0-14     | 11-20    |
| 10 MHz                        | L <sub>CRB</sub> [RBs] | 1-12     | 15-20    | 24-32    | ≥36      | 24-32    |
|                               | A-MPR [dB]             | ≤5       | ≤2       | ≤4       | ≤5       | ≤1       |

| Table 6.2.4-13: A-MPR for "N | NS_16" | with channel | lower edge at ≥812 MHz |
|------------------------------|--------|--------------|------------------------|
|------------------------------|--------|--------------|------------------------|

| Channel<br>bandwidth<br>[MHz] | Parameter              | Region A | Region B | Region C | Region D |
|-------------------------------|------------------------|----------|----------|----------|----------|
|                               | RB <sub>start</sub>    | 0 - 9    | 0        | 1-14     | 0-5      |
| 10 MHz                        | L <sub>CRB</sub> [RBs] | 27-32    | 36-40    | 36-40    | ≥45      |
|                               | A-MPR [dB]             | ≤1       | ≤2       | ≤1       | ≤3       |

| Channel<br>bandwidth<br>[MHz] | Parameters             | Regi | on A | Region B |
|-------------------------------|------------------------|------|------|----------|
|                               | RB <sub>start</sub>    |      |      | 0-6      |
| 10                            | L <sub>CRB</sub> [RBs] |      |      | ≥40      |
|                               | A-MPR [dB]             |      |      | ≤1       |
|                               | RB <sub>start</sub>    | 0.   | -6   | 7-20     |
| 15                            | L <sub>CRB</sub> [RBs] | ≤18  | ≥36  | ≥42      |
|                               | A-MPR [dB]             | ≤2   | ≤3   | ≤2       |
|                               | RB <sub>start</sub>    | 0-   | 14   | 15-30    |
| 20                            | L <sub>CRB</sub> [RBs] | ≤40  | ≥45  | ≥50      |
|                               | A-MPR [dB]             | ≤2   | ≤3   | ≤2       |

#### Table 6.2.4-14: A-MPR for "NS\_19"

#### Table 6.2.4-15: A-MPR for "NS\_20"

| Channel<br>Bandwidth<br>[MHz]                                                                             | Parameters                                        |                         |                        |          |         |         |          |          |              |             |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|------------------------|----------|---------|---------|----------|----------|--------------|-------------|
|                                                                                                           | Fc [MHz]                                          | < 20                    | 07.5                   |          | 200     | 7.5 ≤ F | c < 201  | 2.5      | 2012.5 ≤ F   | c ≤ 2017.5  |
| 5                                                                                                         | RB <sub>start</sub>                               | ≤2                      | 24                     |          | 0       | -3      |          | 4-6      | ≤;           | 24          |
| 5                                                                                                         | L <sub>CRB</sub> [RBs]                            | >                       | ·0                     | 1:       | 5-19    | ≥20     |          | ≥18      | 1-           | 25          |
|                                                                                                           | A-MPR [dB]                                        | Ň                       | 17                     |          | ≤1      | ≤4      |          | ≤2       | ≤            | 0           |
|                                                                                                           | Fc [MHz]                                          |                         |                        |          |         | 20      | 005      |          |              |             |
|                                                                                                           | RB <sub>start</sub>                               |                         | 0-25                   |          |         | 2       | 6-34     |          | 35           | -49         |
|                                                                                                           | L <sub>CRB</sub> [RBs]                            |                         | >0                     |          | 8       | 3-15    | >        | >15      | >            | 0           |
| 10                                                                                                        | A-MPR [dB]                                        |                         | ≤16                    |          |         | ≤2      |          | ≤5       | ≤            | 6           |
| 10                                                                                                        | Fc [MHz]                                          | 2015                    |                        |          |         |         |          |          |              |             |
|                                                                                                           | RB <sub>start</sub>                               |                         | 0                      | -5       |         |         | 6-10     |          |              |             |
|                                                                                                           | L <sub>CRB</sub> [RBs]                            |                         | ≥;                     | 32       |         |         | ≥40      |          |              |             |
|                                                                                                           | A-MPR [dB]                                        |                         | 1                      | <u>4</u> |         |         | ≤2       |          |              |             |
|                                                                                                           | Fc [MHz]                                          |                         |                        |          |         | 20      | 12.5     |          |              |             |
| 15                                                                                                        | RB <sub>start</sub>                               |                         | 0-14                   |          |         |         | 15-24    |          | 25-39        | 61-74       |
| 15                                                                                                        | L <sub>CRB</sub> [RBs]                            | 1-9 & 4                 | 0-75                   | 10-3     | 39      | 24-29   | 9        | ≥30      | ≥36          | ≤6          |
|                                                                                                           | A-MPR [dB]                                        | ≤11                     |                        | ≤6       |         | ≤1      |          | ≤7       | ≤5           | ≤6          |
|                                                                                                           | Fc [MHz]                                          |                         |                        |          |         | 20      | 010      |          |              |             |
| 20                                                                                                        | RB <sub>start</sub>                               | 0-21                    | 0-21 22-31 32-38 39-49 |          | 50-69   | 70-99   |          |          |              |             |
| 20                                                                                                        | L <sub>CRB</sub> [RBs]                            | >0 1-9 & 31-75          |                        | 10-3     | 30      | ≥15     | ≥24      | ≥25      | >0           |             |
|                                                                                                           | A-MPR [dB]                                        | ≤17 ≤12 ≤6 ≤9 ≤7 ≤5 ≤16 |                        |          |         |         |          |          |              |             |
| NOTE 1: When NS_20 is signaled the minimum requirements for the 10 MHz bandwidth are specified for E-UTRA |                                                   |                         |                        |          |         |         |          |          |              |             |
| UL carrier center frequencies of 2005 MHz or 2015 MHz.                                                    |                                                   |                         |                        |          |         |         |          |          |              |             |
|                                                                                                           | n NS_20 is signaled th                            |                         |                        |          | for the | 9 15 M⊢ | lz chanı | hel band | width are sp | ecified for |
| E-01                                                                                                      | E-UTRA UL carrier center frequency of 2012.5 MHz. |                         |                        |          |         |         |          |          |              |             |

For PRACH, PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For each subframe, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5 apply.

### 6.2.4A UE maximum output power with additional requirements for CA

Additional ACLR, spectrum emission and spurious emission requirements for carrier aggregation can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction (A-MPR) is allowed for the CA Power Class as specified in Table 6.2.2A-1.

If for intra-band carrier aggregation the UE is configured for transmissions within an E-UTRA channel bandwidth, then subclauses 6.2.3 and 6.2.4 apply with the Network Signaling value indicated by the IE *additionalSpectrumEmission* of the PCC.

For intra-band contiguous aggregation with the UE configured for transmissions within the aggregated channel bandwidth, the maximum output power reductions specified in Table 6.2.4A-1 is allowed when the applicable CA network signalling value is indicated by the IE *additionalSpectrumEmissionSCell-r10*. Then clause 6.2.3A does not apply, i.e. carrier aggregation MPR = 0 dB.

| CA Network Signalling value | Requirements<br>(subclause) | Uplink CA Configuration | A-MPR [dB]<br>(subclause) |
|-----------------------------|-----------------------------|-------------------------|---------------------------|
| CA_NS_01                    | 6.6.3.3A.1                  | CA_1C                   | 6.2.4A.1                  |
| CA_NS_02                    | 6.6.3.3A.2                  | CA_1C                   | 6.2.4A.2                  |
| CA_NS_03                    | 6.6.3.3A.3                  | CA_1C                   | 6.2.4A.3                  |
| CA_NS_04                    | 6.6.2.2A.1                  | CA_41C                  | 6.2.4A.4                  |
| CA_NS_05                    | 6.6.3.3A.4                  | CA_38C                  | 6.2.4A.5                  |
| CA_NS_06                    | 6.6.3.3A.5                  | CA_7C                   | 6.2.4A.6                  |

Table 6.2.4A-1: Additional Maximum Power Reduction (A-MPR) for CA

For PUCCH and SRS transmissions, the allowed A-MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.

For intra-band carrier aggregation, the A-MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum A-MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by A-MPR specified in table 6.2.4A-1, the power limits specified in subclause 6.2.5A apply.

#### 6.2.4A.1 A-MPR for CA\_NS\_01 for CA\_1C

If the UE is configured to CA\_1C and it receives IE CA\_NS\_01 the allowed maximum output power reduction applied to transmissions on the PCC and the SCC for contiguously aggregated signals is specified in table 6.2.4A.1-1.

| CA_1C: CA_NS_01                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB <sub>start</sub>     | L <sub>CRB</sub> [RBs]    | RB <sub>start</sub> + L <sub>CRB</sub><br>[RBs] | A-MPR for QPSK and 16-<br>QAM [dB] |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|-------------------------------------------------|------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 – 23 and<br>176 – 199 | > 0                       | N/A                                             | ≤ 12.0                             |  |
| 100 RB / 100 RB                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24 – 105                | > 64                      | N/A                                             | ≤ 6.0                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106 – 175               |                           | > 175                                           | ≤ 5.0                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 – 6 and 143           | 0 < L <sub>CRB</sub> ≤ 10 | N/A                                             | ≤ 11.0                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 149                   | > 10                      | N/A                                             | ≤ 6.0                              |  |
| 75 RB / 75 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 – 90                  | > 44                      | N/A                                             | ≤ 5.0                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91 – 142                | N/A                       | > 142                                           | ≤ 2.0                              |  |
| <ul> <li>NOTE 1: RB_start indicates the lowest RB index of transmitted resource blocks</li> <li>NOTE 2: L_CRB is the length of a contiguous resource block allocation</li> <li>NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis</li> <li>NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-MPR value may be applied for both slots in the subframe</li> </ul> |                         |                           |                                                 |                                    |  |

Table 6.2.4A.1-1: Contiguous allocation A-MPR for CA\_NS\_01

If the UE is configured to CA\_1C and it receives IE CA\_NS\_01 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

A-MPR = CEIL 
$$\{M_{A}, 0.5\}$$

Where M<sub>A</sub> is defined as follows

$$\begin{split} \mathbf{M}_{A} = & -22.5 \ \mathbf{A} + 17 & ; \ 0 \leq \mathbf{A} < 0.20 \\ & -11.0 \ \mathbf{A} + 14.7 & ; \ 0.20 \leq \mathbf{A} < 0.70 \\ & -1.7 \ \mathbf{A} + 8.2 & ; \ 0.70 \leq \mathbf{A} \leq 1 \end{split}$$

Where  $A = N_{RB\_alloc} / N_{RB\_agg.}$ 

#### 6.2.4A.2 A-MPR for CA\_NS\_02 for CA\_1C

If the UE is configured to CA\_1C and it receives IE CA\_NS\_02 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.2-1.

| CA_1C: CA_NS_02 | RB <sub>end</sub> | L <sub>CRB</sub> [RBs]   | A-MPR for QPSK and<br>16 –QAM [dB] |
|-----------------|-------------------|--------------------------|------------------------------------|
|                 | 0 –20             | > 0                      | ≤ 4 dB                             |
|                 | 21 – 46           | > 0                      | ≤ 3 dB                             |
| 100 RB / 100 RB | 47 – 99           | > RB <sub>end</sub> - 20 | ≤ 3 dB                             |
|                 | 100 – 184         | > 75                     | ≤ 6 dB                             |
|                 | 185 – 199         | > 0                      | ≤ 10 dB                            |
|                 | 0 - 48            | > 0                      | ≤ 2 dB                             |
|                 | 49 - 80           | > RB <sub>end</sub> - 20 | ≤ 3 dB                             |
| 75 RB / 75 RB   | 81 – 129          | > 60                     | ≤ 5 dB                             |
|                 | 130 – 149         | > 84                     | ≤ 6 dB                             |
|                 | 130 – 149         | 1 – 84                   | ≤ 2 dB                             |

Table 6.2.4A.2-1: Contiguous allocation A-MPR for CA\_NS\_02

If the UE is configured to CA\_1C and it receives IE CA\_NS\_02 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL 
$$\{M_{A}, 0.5\}$$

Where MA is defined as follows

$$\begin{split} [M_A = & -22.5 \ A + 17 & ; \ 0 \leq A < 0.20 \\ & -11.0 \ A + 14.7 & ; \ 0.20 \leq A < 0.70 \\ & -1.7 \ A + 8.2 & ; \ 0.70 \leq A \leq 1] \end{split}$$

Where  $A = N_{RB\_alloc} / N_{RB\_agg.}$ 

#### 6.2.4A.3 A-MPR for CA\_NS\_03 for CA\_1C

If the UE is configured to CA\_1C and it receives IE CA\_NS\_03 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.3-1.

| CA_1C: CA_NS_03 | RB <sub>end</sub> | L <sub>CRB</sub> [RBs]   | A-MPR for QPSK and<br>16-QAM [dB] |
|-----------------|-------------------|--------------------------|-----------------------------------|
|                 | 0 – 26            | > 0                      | ≤ 10 dB                           |
|                 | 27 – 63           | ≥ RB <sub>end</sub> - 27 | ≤ 6 dB                            |
| 100 RB / 100 RB | 27 – 63           | < RB <sub>end</sub> - 27 | ≤ 1 dB                            |
|                 | 64 – 100          | > RB <sub>end</sub> - 20 | ≤ 4 dB                            |
|                 | 101 – 171         | > 68                     | ≤ 7 dB                            |
|                 | 172 – 199         | > 0                      | ≤ 10 dB                           |
|                 | 0 – 20            | > 0                      | ≤ 10 dB                           |
|                 | 21 – 45           | > 0                      | ≤ 4 dB                            |
| 75 RB / 75 RB   | 46 – 75           | > RB <sub>end</sub> – 13 | ≤ 2 dB                            |
| 13 KD / 13 KD   | 76 – 95           | > 45                     | ≤ 5 dB                            |
|                 | 96 – 149          | > 43                     | ≤ 8 dB                            |
|                 | 120 – 149         | 1 - 43                   | ≤ 6 dB                            |

Table 6.2.4A.3-1: Contiguous allocation A-MPR for CA\_NS\_03

If the UE is configured to CA\_1C and it receives IE CA\_NS\_03 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL 
$$\{M_{A}, 0.5\}$$

Where M<sub>A</sub> is defined as follows

$$\label{eq:main_state} \begin{split} [M_A = -23.33A + 17.5 & ; \ 0 \leq A < 0.15 \\ & -7.65A + 15.15 & ; \ 0.15 \leq A \leq 1] \end{split}$$

Where  $A = N_{RB\_alloc} / N_{RB\_agg.}$ 

#### 6.2.4A.4 A-MPR for CA\_NS\_04

If the UE is configured to CA\_41C and it receives IE CA\_NS\_04 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.4-1.

| CA Bandwidth<br>Class C                                                    | RB <sub>Start</sub>                                                                                                                                                   | L <sub>CRB</sub><br>[RBs] | RB <sub>start</sub> + L <sub>CRB</sub><br>[RBs] | A-MPR for<br>QPSK [dB] | A-MPR for<br>16QAM [dB] |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|------------------------|-------------------------|
| 50RB / 100 RB                                                              | 0 – 44 and 105 – 149                                                                                                                                                  | >0                        | N/A                                             | ≤4dB                   | ≤4dB                    |
|                                                                            | 45 – 104                                                                                                                                                              | N/A                       | >105                                            | ≤3dB                   | ≤4dB                    |
| 75 RB / 75 RB                                                              | 0 – 44 and 105 – 149                                                                                                                                                  | >0                        | N/A                                             | ≤4dB                   | ≤4dB                    |
|                                                                            | 45 – 104                                                                                                                                                              | N/A                       | >105                                            | ≤4dB                   | ≤4dB                    |
| 100 RB / 75 RB                                                             | 0 – 49 and 125 – 174                                                                                                                                                  | >0                        | N/A                                             | ≤4dB                   | ≤4dB                    |
|                                                                            | 50 - 124                                                                                                                                                              | N/A                       | >125                                            | ≤3dB                   | ≤4dB                    |
| 100 RB / 100 RB                                                            | 0 – 59 and 140 – 199                                                                                                                                                  | >0                        | N/A                                             | ≤3dB                   | ≤4dB                    |
|                                                                            | 60– 139                                                                                                                                                               | N/A                       | >140                                            | ≤3dB                   | ≤4dB                    |
| NOTE 2: L <sub>CRB</sub> is th<br>NOTE 3: For intra-<br>NOTE 4: For intra- | icates the lowest RB index of tran<br>e length of a contiguous resource<br>subframe frequency hopping whic<br>subframe frequency hopping whic<br>lots in the subframe | block alloc               | ation<br>regions, notes 1 a                     |                        |                         |

Table 6.2.4A.4-1: Contigous Allocation A-MPR for CA\_NS\_04

If the UE is configured to CA\_41C and it receives IE CA\_NS\_04 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

A-MPR = CEIL 
$$\{M_{A}, 0.5\}$$

Where M<sub>A</sub> is defined as follows

$$\begin{split} M_A &= 10.5, & 0 \leq A < 0.05 \\ &= -50.0A + 13.00, & 0.05 \leq A < 0.15 \\ &= -4.0A + 6.10, & 0.15 \leq A < 0.40 \\ &= -0.83A + 4.83, & 0.40 \leq A \leq 1 \end{split}$$

Where  $A = N_{RB\_alloc} / N_{RB\_agg.}$ 

#### 6.2.4A.5 A-MPR for CA\_NS\_05 for CA\_38C

If the UE is configured to CA\_38C and it receives IE CA\_NS\_05 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.5-1.

| CA_38C                                                                                                                                                                                                                                                                                                                                                                                                                    | $RB_{end}$ | L <sub>CRB</sub> [RBs]           | A-MPR for QPSK and<br>16-QAM [dB] |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------|-----------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 – 12     | >0                               | ≤ 5 dB                            |  |
| 40000/40000                                                                                                                                                                                                                                                                                                                                                                                                               | 13 – 79    | > RB <sub>end</sub> – 13         | ≤ 2 dB                            |  |
| 100RB/100RB                                                                                                                                                                                                                                                                                                                                                                                                               | 80 - 180   | >60                              | ≤ 6 dB                            |  |
| 181 – 199                                                                                                                                                                                                                                                                                                                                                                                                                 |            | > 0                              | ≤ 11 dB                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 - 70     | > max (0, RB <sub>end</sub> -10) | ≤ 2 dB                            |  |
| 71- 108                                                                                                                                                                                                                                                                                                                                                                                                                   |            | > 60                             | ≤ 5 dB                            |  |
| 75RB/75RB                                                                                                                                                                                                                                                                                                                                                                                                                 | 109 – 140  | >0                               | ≤ 5 dB                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                           | 140 – 149  | ≤ 70                             | ≤ 2 dB                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                           | 140 – 149  | >70                              | ≤ 6 dB                            |  |
| <ul> <li>NOTE 1: RB<sub>end</sub> indicates the highest RB index of transmitted resource blocks</li> <li>NOTE 2: L<sub>CRB</sub> is the length of a contiguous resource block allocation</li> <li>NOTE 3: For intra-subframe frequency hopping which intersects regions, notes 1 and 2 apply on a per slot basis</li> <li>NOTE 4: For intra-subframe frequency hopping which intersects regions, the larger A-</li> </ul> |            |                                  |                                   |  |

Table 6.2.4A.5-1: Contigous Allocation A-MPR for CA\_NS\_05

If the UE is configured to CA\_38C and it receives IE CA\_NS\_05 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows

$$A-MPR = CEIL \{M_{A, 0.5}\}$$

Where MA is defined as follows

$$\begin{split} M_A &= -14.17 \; A + 16.50 \qquad ; \; 0 \leq A < 0.60 \\ &- 2.50 \; A + 9.50 \qquad ; \; 0.60 \leq A \leq 1 \end{split}$$

Where  $A = N_{RB\_alloc} / N_{RB\_agg}$ 

#### 6.2.4A.6 A-MPR for CA\_NS\_06

If the UE is configured to CA\_7C and it receives IE CA\_NS\_06 the allowed maximum output power reduction applied to transmission on the PCC and the SCC for contiguously aggregated signals is specified in Table 6.2.4A.6-1.

| CA Bandwidth<br>Class C | $RB_{end}$ | L <sub>CRB</sub> [RBs]   | A-MPR for QPSK and<br>16-QAM [dB] |
|-------------------------|------------|--------------------------|-----------------------------------|
|                         | 0 –22      | >0                       | ≤[4 dB                            |
|                         | 23 – 105   | > RB <sub>end</sub> – 10 | ≤ 2 dB                            |
| 100RB/100RB             | 106 – 142  | > 75                     | ≤ 3 dB                            |
|                         | 143 – 177  | >70                      | ≤ 5 dB                            |
|                         | 178 – 199  | > 0                      | ≤ 10 dB                           |
|                         | 0 – 7      | >0                       | ≤ 5 dB                            |
|                         | 20- 74     | > RB <sub>end</sub> – 10 | ≤ 2 dB                            |
| 75RB/75RB               | 75 – 109   | >64                      | ≤ 2 dB                            |
|                         | 110 – 144  | >35                      | ≤ 6 dB                            |
|                         | 145 – 149  | >0                       | ≤ 10 dB                           |

Table 6.2.4A.6-1: Contiguous Allocation A-MPR for CA\_NS\_06

If the UE is configured to CA\_7C and it receives IE CA\_NS\_06 the allowed maximum output power reduction applied to transmissions on the PCell and the SCell with non-contiguous resource allocation is defined as follows:

A-MPR = CEIL  $\{M_{A}, 0.5\}$ 

Where MA is defined as follows

 $\begin{array}{rl} M_A = & -23.33A + 17.5 & ; \ 0 \leq A < 0.15 \\ & -7.65A + 15.15 & ; \ 0.15 \leq A \leq 1 \end{array}$ 

Where  $A = N_{RB\_alloc} / N_{RB\_agg.}$ 

### 6.2.4B UE maximum output power with additional requirements for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the A-MPR values specified in subclause 6.2.4 shall apply to the maximum output power specified in Table 6.2.2B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UE supporting UL-MIMO, the maximum output power is measured as the sum of the maximum output power at each UE antenna connector. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5B apply.

For single-antenna port scheme, the requirements in subclause 6.2.4 apply.

### 6.2.5 Configured transmitted power

The UE is allowed to set its configured maximum output power  $P_{CMAX,c}$  for serving cell *c*. The configured maximum output power  $P_{CMAX,c}$  is set within the following bounds:

$$P_{CMAX\_L,c} \leq P_{CMAX,c} \leq P_{CMAX\_H,c}$$

with

$$P_{CMAX\_L,c} = MIN \{P_{EMAX,c} - \Delta T_{C,c}, P_{PowerClass} - MAX(MPR_c + A-MPR_c + \Delta T_{IB,c} + \Delta T_{C,c}, P-MPR_c)\}$$

 $P_{CMAX_H,c} = MIN \{P_{EMAX,c}, P_{PowerClass}\}$ 

where

- P<sub>EMAX,c</sub> is the value given by IE *P*-*Max* for serving cell *c*, defined in [7];

- P<sub>PowerClass</sub> is the maximum UE power specified in Table 6.2.2-1 without taking into account the tolerance specified in the Table 6.2.2-1;
- MPR<sub>c</sub> and A-MPR<sub>c</sub> for serving cell c are specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- $\Delta T_{IB,c}$  is the additional tolerance for serving cell c as specified in Table 6.2.5-2;  $\Delta T_{IB,c} = 0$  dB otherwise;
- $\Delta T_{C,c} = 1.5$  dB when Note 2 in Table 6.2.2-1 applies;
- $\Delta T_{C,c} = 0$  dB when Note 2 in Table 6.2.2-1 does not apply.

P-MPR<sub>c</sub> is the allowed maximum output power reduction for

- a) ensuring compliance with applicable electromagnetic energy absorption requirements and addressing unwanted emissions / self desense requirements in case of simultaneous transmissions on multiple RAT(s) for scenarios not in scope of 3GPP RAN specifications;
- b) ensuring compliance with applicable electromagnetic energy absorption requirements in case of proximity detection is used to address such requirements that require a lower maximum output power.

The UE shall apply P-MPR<sub>c</sub> for serving cell c only for the above cases. For UE conducted conformance testing P-MPR shall be 0 dB

NOTE 1: P-MPR<sub>c</sub> was introduced in the  $P_{CMAX,c}$  equation such that the UE can report to the eNB the available maximum output transmit power. This information can be used by the eNB for scheduling decisions.

NOTE 2: P-MPR<sub>c</sub> may impact the maximum uplink performance for the selected UL transmission path.

For each subframe, the  $P_{CMAX\_L,c}$  for serving cell *c* is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum  $P_{CMAX\_L,c}$  over the two slots is then applied for the entire subframe.  $P_{PowerClass}$  shall not be exceeded by the UE during any period of time.

The measured configured maximum output power P<sub>UMAX,c</sub> shall be within the following bounds:

 $P_{CMAX\_L,c} - MAX\{T_L, T(P_{CMAX\_L,c})\} \leq P_{UMAX,c} \leq P_{CMAX\_H,c} + T(P_{CMAX\_H,c})$ 

where  $T(P_{CMAX,c})$  is defined by the tolerance table below and applies to  $P_{CMAX_L,c}$  and  $P_{CMAX_L,c}$  separately, while  $T_L$  is the absolute value of the lower tolerance in Table 6.2.2-1 for the applicable operating band.

| Р <sub>СМАХ,с</sub><br>(dBm)  | Tolerance T(P <sub>CMAX,c</sub> )<br>(dB) |
|-------------------------------|-------------------------------------------|
| $23 < P_{CMAX,c} \le 33$      | 2.0                                       |
| $21 \le P_{CMAX,c} \le 23$    | 2.0                                       |
| $20 \le P_{CMAX,c} < 21$      | 2.5                                       |
| 19 ≤ P <sub>CMAX,c</sub> < 20 | 3.5                                       |
| 18 ≤ P <sub>CMAX,c</sub> < 19 | 4.0                                       |
| 13 ≤ P <sub>CMAX,c</sub> < 18 | 5.0                                       |
| $8 \le P_{CMAX,c} < 13$       | 6.0                                       |
| $-40 \le P_{CMAX,c} < 8$      | 7.0                                       |

#### Table 6.2.5-1: PCMAX.c tolerance

For the UE which supports inter-band carrier aggregation configurations with uplink assigned to one E-UTRA band the  $\Delta T_{IB,c}$  is defined for applicable bands in Table 6.2.5-2.

| Inter-band CA | E-UTRA Band                                                                                                    | ΔT <sub>IB,c</sub> [dB]            |  |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|--|
| Configuration |                                                                                                                |                                    |  |  |  |  |  |
| CA_1A-5A      | 1                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 5                                                                                                              | 0.3                                |  |  |  |  |  |
| CA_1A-18A     | 1                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 18                                                                                                             | 0.3                                |  |  |  |  |  |
| CA_1A-19A     | 1                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 19                                                                                                             | 0.3                                |  |  |  |  |  |
| CA_1A-21A     |                                                                                                                |                                    |  |  |  |  |  |
|               | <u>21</u> <u>0.3</u><br>2 <u>0.3</u>                                                                           |                                    |  |  |  |  |  |
| CA_2A-17A     | 17                                                                                                             | 0.8                                |  |  |  |  |  |
| CA_2A-29A     | 2                                                                                                              | 0.3                                |  |  |  |  |  |
|               |                                                                                                                |                                    |  |  |  |  |  |
|               | 3                                                                                                              | 0.3                                |  |  |  |  |  |
| CA_3A-5A      | 5                                                                                                              | 0.3                                |  |  |  |  |  |
| CA_3A-7A      | 3                                                                                                              | 0.5                                |  |  |  |  |  |
| CA_3A-7A      | 7                                                                                                              | 0.5                                |  |  |  |  |  |
| CA_3A-8A      | 3                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 8                                                                                                              | 0.3                                |  |  |  |  |  |
| CA_3A-20A     | 3                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 20                                                                                                             | 0.3                                |  |  |  |  |  |
| CA_4A-5A      | 4                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 5                                                                                                              | 0.3                                |  |  |  |  |  |
| CA_4A-7A      | 4                                                                                                              | 0.5                                |  |  |  |  |  |
|               | 7                                                                                                              | 0.5                                |  |  |  |  |  |
| CA_4A-12A     | 4                                                                                                              | 0.3                                |  |  |  |  |  |
| _             | 12                                                                                                             | 0.8                                |  |  |  |  |  |
| CA_4A-13A     | 4                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 13                                                                                                             | 0.3                                |  |  |  |  |  |
| CA_4A-17A     | 4                                                                                                              | 0.3 0.8                            |  |  |  |  |  |
| CA_4A-29A     | 4                                                                                                              | 0.3                                |  |  |  |  |  |
|               | 5                                                                                                              | 0.8                                |  |  |  |  |  |
| CA_5A-12A     | 12                                                                                                             | 0.4                                |  |  |  |  |  |
|               | 5                                                                                                              | 0.8                                |  |  |  |  |  |
| CA_5A-17A     | 17                                                                                                             | 0.4                                |  |  |  |  |  |
| 04 74 004     | 7                                                                                                              | 0.3                                |  |  |  |  |  |
| CA_7A-20A     | 20                                                                                                             | 0.3                                |  |  |  |  |  |
|               | 8                                                                                                              | 0.4                                |  |  |  |  |  |
| CA_8A-20A     | 20                                                                                                             | 0.4                                |  |  |  |  |  |
| CA_11A-18A    | 11                                                                                                             | 0.3                                |  |  |  |  |  |
|               | 18                                                                                                             | 0.3                                |  |  |  |  |  |
| bands         | bove additional tolerances are only ap<br>that belong to the supported inter-ban                               |                                    |  |  |  |  |  |
|               | urations                                                                                                       | n non aggragated exerction for the |  |  |  |  |  |
|               | ove additional tolerances also apply in ted E-LITRA operating bands that believed                              |                                    |  |  |  |  |  |
|               | supported E-UTRA operating bands that belong to the supported inter-band<br>carrier aggregation configurations |                                    |  |  |  |  |  |
|               | e the UE supports more than one of the                                                                         | e above inter-band carrier         |  |  |  |  |  |
|               | ation configurations and a E-UTRA of                                                                           |                                    |  |  |  |  |  |
|               | er-band carrier aggregation configura                                                                          |                                    |  |  |  |  |  |
|               | en the E-UTRA operating band freque                                                                            |                                    |  |  |  |  |  |
|               | licable additional tolerance shall be th                                                                       |                                    |  |  |  |  |  |
|               | cated to one decimal place for that op                                                                         |                                    |  |  |  |  |  |
|               | configurations. In case there is a harn                                                                        |                                    |  |  |  |  |  |
|               | and high band DL, then the maximum                                                                             |                                    |  |  |  |  |  |
|               | ported carrier aggregation configuration                                                                       |                                    |  |  |  |  |  |
| appl          |                                                                                                                | 6                                  |  |  |  |  |  |
|               | en the E-UTRA operating band freque                                                                            | ency range is $>1$ GHz. the        |  |  |  |  |  |
|               | licable additional tolerance shall be th                                                                       |                                    |  |  |  |  |  |
|               | lies for that operating band among the                                                                         |                                    |  |  |  |  |  |
| սթբ           | and for the operating build unlong the                                                                         | supported on comparations          |  |  |  |  |  |

Table 6.2.5-2: ΔT<sub>IB,c</sub>

- NOTE: The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and another band is >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.
- NOTE: To meet the  $\Delta T_{IB,c}$  requirements for CA\_3A-7A with state-of-the-art technology, an increase in power consumption of the UE may be required. It is also expected that as the state-of-the-art technology evolves in the future, this possible power consumption increase can be reduced or eliminated.

### 6.2.5A Configured transmitted power for CA

For uplink carrier aggregation the UE is allowed to set its configured maximum output power  $P_{CMAX,c}$  for serving cell *c* and its total configured maximum output power  $P_{CMAX}$ .

The configured maximum output power  $P_{CMAX,c}$  on serving cell c shall be set as specified in subclause 6.2.5.

For uplink inter-band carrier aggregation,  $MPR_c$  and  $A-MPR_c$  apply per serving cell c and are specified in subclause 6.2.3 and subclause 6.2.4, respectively. P-MPR<sub>c</sub> accounts for power management for serving cell c.  $P_{CMAX,c}$  is calculated under the assumption that the transmit power is increased independently on all component carriers.

For uplink intra-band contiguous carrier aggregation,  $MPR_c = MPR$  and  $A-MPR_c = A-MPR$  with MPR and A-MPR specified in subclause 6.2.3A and subclause 6.2.4A respectively. There is one power management term for the UE, denoted P-MPR, and P-MPR  $_c = P-MPR$ .  $P_{CMAX,c}$  is calculated under the assumption that the transmit power is increased by the same amount in dB on all component carriers.

#### Table 6.2.5A-1:Void

The total configured maximum output power PCMAX shall be set within the following bounds:

$$P_{CMAX_L} \le P_{CMAX} \le P_{CMAX_H}$$

For uplink inter-band carrier aggregation with one serving cell c per operating band,

 $P_{CMAX_L} = MIN \{ 10log_{10} \sum MIN [ p_{EMAX,c'} (\Delta t_{C,c}), p_{PowerClass} / (mpr_c \cdot a - mpr_c \cdot \Delta t_{C,c} \cdot \Delta t_{IB,c}), p_{PowerClass} / pmpr_c ], P_{PowerClass} \}$ 

 $P_{CMAX_H} = MIN\{10 \ log_{10} \sum p_{EMAX,c}, P_{PowerClass}\}$ 

where

- $p_{EMAX,c}$  is the linear value of  $P_{EMAX,c}$  which is given by IE *P*-Max for serving cell *c* in [7];
- P<sub>PowerClass</sub> is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1; p<sub>PowerClass</sub> is the linear value of P<sub>PowerClass</sub>;
- mpr<sub>c</sub> and a-mpr<sub>c</sub> are the linear values of MPR<sub>c</sub> and A-MPR<sub>c</sub> as specified in subclause 6.2.3 and subclause 6.2.4, respectively;
- pmpr<sub>c</sub> is the linear value of P-MPR<sub>c</sub>;
- $\Delta t_{C,c}$  is the linear value of  $\Delta T_{C,c}$ .  $\Delta t_{C,c} = 1.41$  when Note 2 in Table 6.2.2-1 applies for a serving cell *c*, otherwise  $\Delta t_{C,c} = 1$ ;

-  $\Delta t_{IB,c}$  is the linear value of the inter-band relaxation term  $\Delta T_{IB,c}$  of the serving cell *c* as specified in Table 6.2.5-2; otherwise  $\Delta t_{IB,c} = 1$ .

For uplink intra-band contiguous carrier aggregation,

$$P_{CMAX\_L} = MIN\{10 \ log_{10} \sum p_{EMAX,c} - \Delta T_C, P_{PowerClass} - MAX(MPR + A - MPR + \Delta T_{IB,c} + \Delta T_C, P - MPR)\}$$

 $P_{CMAX_H} = MIN\{10 \log_{10} \sum p_{EMAX,c}, P_{PowerClass}\}$ 

where

- p<sub>EMAX,c</sub> is the linear value of P<sub>EMAX,c</sub> which is given by IE *P-Max* for serving cell c in [7];
- P<sub>PowerClass</sub> is the maximum UE power specified in Table 6.2.2A-1 without taking into account the tolerance specified in the Table 6.2.2A-1;
- MPR and A-MPR are specified in subclause 6.2.3A and subclause 6.2.4A respectively;
- $\Delta T_{\text{IB},c}$  is the additional tolerance for serving cell c as specified in Table 6.2.5-2;
- P-MPR is the power management term for the UE;
- $\Delta T_{C}$  is the highest value  $\Delta T_{C,c}$  among all serving cells *c* in the subframe over both timeslots.  $\Delta T_{C,c} = 1.5$  dB when Note 2 in Table 6.2.2A-1 applies to the serving cell *c*, otherwise  $\Delta T_{C,c} = 0$  dB.

For each subframe, the  $P_{CMAX_L}$  is evaluated per slot and given by the minimum value taken over the transmission(s) within the slot; the minimum  $P_{CMAX_L}$  over the two slots is then applied for the entire subframe.  $P_{PowerClass}$  shall not be exceeded by the UE during any period of time.

The measured maximum output power P<sub>UMAX</sub> over all serving cells shall be within the following range:

 $P_{CMAX\_L} - T(P_{CMAX\_L}) \leq P_{UMAX} \leq P_{CMAX\_H} + T(P_{CMAX\_H})$ 

 $P_{UMAX} = 10 \log_{10} \sum p_{UMAX,c}$ 

where  $p_{UMAX,c}$  denotes the measured maximum output power for serving cell *c* expressed in linear scale. The tolerance  $T(P_{CMAX})$  is defined by the table below and applies to  $P_{CMAX_L}$  and  $P_{CMAX_H}$  separately.

| Р <sub>смах</sub><br>(dBm)  | Tolerance T(P <sub>CMAX</sub> )<br>Intra-band with two<br>active UL serving<br>cells<br>(dB) | Tolerance T(P <sub>CMAX</sub> )<br>Inter-band with two<br>active UL serving<br>cells<br>(dB) |
|-----------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $21 \le P_{CMAX} \le 23$    | 2.0                                                                                          | 2.0                                                                                          |
| $20 \le P_{CMAX} < 21$      | [2.5]                                                                                        | TBD                                                                                          |
| 19 ≤ P <sub>CMAX</sub> < 20 | [3.5]                                                                                        | TBD                                                                                          |
| 18 ≤ P <sub>CMAX</sub> < 19 | [4.0]                                                                                        | TBD                                                                                          |
| 13 ≤ P <sub>CMAX</sub> < 18 | [5.0]                                                                                        | TBD                                                                                          |
| $8 \le P_{CMAX} < 13$       | [6.0]                                                                                        | TBD                                                                                          |
| -40 ≤ P <sub>CMAX</sub> < 8 | [7.0]                                                                                        | TBD                                                                                          |

Table 6.2.5A-2: P<sub>CMAX</sub> tolerance

#### Table 6.2.5A-3: Void

#### 6.2.5B Configured transmitted power for UL-MIMO

For UE supporting UL-MIMO, the transmitted power is configured per each UE.

The definitions of configured maximum output power  $P_{CMAX,c}$ , the lower bound  $P_{CMAX_L,c}$ , and the higher bound  $P_{CMAX_L,c}$  specified in subclause 6.2.5 shall apply to UE supporting UL-MIMO, where

- $P_{PowerClass}$  and  $\Delta T_{C,c}$  are specified in subclause 6.2.2B;
- MPR<sub>c</sub> is specified in subclause 6.2.3B;
- A-MPR<sub>c</sub> is specified in subclause 6.2.4B.

The measured configured maximum output power  $P_{\text{UMAX},c}$  for serving cell c shall be within the following bounds:

 $P_{CMAX\_L,c} - MAX\{T_L, T_{LOW}(P_{CMAX\_L,c})\} \le P_{UMAX,c} \le P_{CMAX\_H,c} + T_{HIGH}(P_{CMAX\_H,c})$ 

where  $T_{LOW}(P_{CMAX\_L,c})$  and  $T_{HIGH}(P_{CMAX\_H,c})$  are defined as the tolerance and applies to  $P_{CMAX\_L,c}$  and  $P_{CMAX\_H,c}$  separately, while  $T_L$  is the absolute value of the lower tolerance in Table 6.2.2B-1 for the applicable operating band.

For UE with two transmit antenna connectors in closed-loop spatial amultiplexing scheme, the tolerance is specified in Table 6.2.5B-1. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2.

| Tolerance Tolerance<br>TLow(PCMAX_L,c) (dB) THIGH(PCMAX_H,c) (dl |                                                                                                    |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| 3.0                                                              | 2.0                                                                                                |  |  |
| [5.0]                                                            | [2.0]                                                                                              |  |  |
| [5.0]                                                            | [3.0]                                                                                              |  |  |
| [6.0]                                                            | [4.0]                                                                                              |  |  |
| [5.0]                                                            |                                                                                                    |  |  |
| [6.0]                                                            |                                                                                                    |  |  |
| [7.0]                                                            |                                                                                                    |  |  |
|                                                                  | T <sub>LOW</sub> (P <sub>CMAX_L,c</sub> ) (dB)<br>3.0<br>[5.0]<br>[5.0]<br>[6.0]<br>[5<br>[6<br>[6 |  |  |

Table 6.2.5B-1: PCMAX,c tolerance in closed-loop spatial multiplexing scheme

For single-antenna port scheme, the requirements in subclause 6.2.5 apply.

### 6.3 Output power dynamics

### 6.3.1 (Void)

### 6.3.2 Minimum output power

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

#### 6.3.2.1 Minimum requirement

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.1-1.

|                          | Channel bandwidth / Minimum output power / Measurement<br>bandwidth                                                                  |         |         |         |          |        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|----------|--------|
|                          | 1.4         3.0         5         10         15         20           MHz         MHz         MHz         MHz         MHz         MHz |         |         |         |          |        |
| Minimum output<br>power  | -40 dBm                                                                                                                              |         |         |         |          |        |
| Measurement<br>bandwidth | 1.08 MHz                                                                                                                             | 2.7 MHz | 4.5 MHz | 9.0 MHz | 13.5 MHz | 18 MHz |

Table 6.3.2.1-1: Minimum output power

### 6.3.2A UE Minimum output power for CA

For intra-band contiguous carrier aggregation, the minimum controlled output power of the UE is defined as the transmit power of the UE per component carrier, i.e., the power in the channel bandwidth of each component carrier for all transmit bandwidth configurations (resource blocks), when the power on both component carriers are set to a minimum value.

#### 6.3.2A.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation the minimum output power is defined as the mean power in one subframe (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2A.1-1.

|                          | CC Channel bandwidth / Minimum output power / Measurement<br>bandwidth                                                               |  |       |         |          |           |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|-------|---------|----------|-----------|
|                          | 1.4         3.0         5         10         15         20           MHz         MHz         MHz         MHz         MHz         MHz |  |       |         |          | 20<br>MHz |
| Minimum output<br>power  |                                                                                                                                      |  | -40 c | lBm     |          |           |
| Measurement<br>bandwidth |                                                                                                                                      |  |       | 9.0 MHz | 13.5 MHz | 18 MHz    |

Table 6.3.2A.1-1: Minimum output power for intra-band contiguous CA UE

### 6.3.2B UE Minimum output power for UL-MIMO

For UE supporting UL-MIMO, the minimum controlled output power is defined as the broadband transmit power of the UE, i.e. the sum of the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks) at each transmit antenna connector, when the UE power is set to a minimum value.

#### 6.3.2B.1 Minimum requirement

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2B.1-1.

Table 6.3.2B.1-1: Minimum output power

|                          | Channel bandwidth / Minimum output power / Measurement<br>bandwidth                                                                  |         |         |         |          |        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|----------|--------|
|                          | 1.4         3.0         5         10         15         20           MHz         MHz         MHz         MHz         MHz         MHz |         |         |         |          |        |
| Minimum output<br>power  | -40 dBm                                                                                                                              |         |         |         |          |        |
| Measurement<br>bandwidth | 1.08 MHz                                                                                                                             | 2.7 MHz | 4.5 MHz | 9.0 MHz | 13.5 MHz | 18 MHz |

For single-antenna port scheme, the requirements in subclause 6.3.2 apply.

### 6.3.3 Transmit OFF power

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

#### 6.3.3.1. Minimum requirement

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3.1-1.

|                          | Channel bandwidth / Transmit OFF power / Measurement<br>bandwidth |            |          |           |           |           |
|--------------------------|-------------------------------------------------------------------|------------|----------|-----------|-----------|-----------|
|                          | 1.4<br>MHz                                                        | 3.0<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |
| Transmit OFF<br>power    | -50 dBm                                                           |            |          |           |           |           |
| Measurement<br>bandwidth | 1.08 MHz                                                          | 2.7 MHz    | 4.5 MHz  | 9.0 MHz   | 13.5 MHz  | 18 MHz    |

Table 6.3.3.1-1: Transmit OFF power

### 6.3.3A UE Transmit OFF power for CA

For intra-band contiguous carrier aggregation, transmit OFF power is defined as the mean power per component carrier when the transmitter is OFF on both component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

#### 6.3.3A.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation the transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3A.1-1.

|                          | Channel bandwidth / Transmit OFF power / Measurement<br>bandwidth                                                                    |  |       |         |          |        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|-------|---------|----------|--------|
|                          | 1.4         3.0         5         10         15         20           MHz         MHz         MHz         MHz         MHz         MHz |  |       |         |          |        |
| Transmit OFF<br>power    |                                                                                                                                      |  | -50 c | lBm     |          |        |
| Measurement<br>bandwidth |                                                                                                                                      |  |       | 9.0 MHz | 13.5 MHz | 18 MHz |

Table 6.3.3A.1-1: Transmit OFF power for intra-band contiguous CA UE

### 6.3.3B UE Transmit OFF power for UL-MIMO

For UE supporting UL-MIMO, the transmit OFF power is defined as the mean power at each transmit antenna connector when the transmitter is OFF at all transmit antenna connectors. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During DTX and measurements gaps, the UE is not considered to be OFF.

#### 6.3.3B.1 Minimum requirement

The transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3.3B.1-1.

|                          | Channel bandwidth / Transmit OFF power/ Measurement<br>bandwidth                                                                     |         |         |         |          |        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|----------|--------|
|                          | 1.4         3.0         5         10         15         20           MHz         MHz         MHz         MHz         MHz         MHz |         |         |         |          |        |
| Transmit OFF<br>power    | -50 dBm                                                                                                                              |         |         |         |          |        |
| Measurement<br>bandwidth | 1.08 MHz                                                                                                                             | 2.7 MHz | 4.5 MHz | 9.0 MHz | 13.5 MHz | 18 MHz |

Table 6.3.3B.1-1: Transmit OFF power per antenna port

### 6.3.4 ON/OFF time mask

### 6.3.4.1 General ON/OFF time mask

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

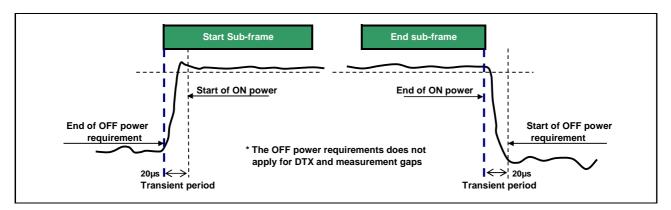
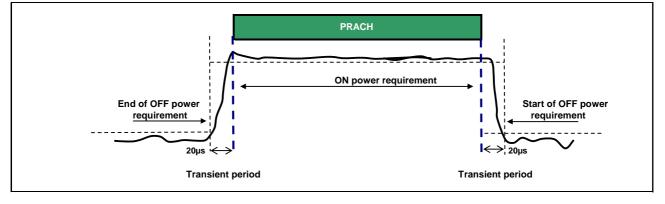



Figure 6.3.4.1-1: General ON/OFF time mask

#### 6.3.4.2 PRACH and SRS time mask


#### 6.3.4.2.1 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.4.2-1. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2-1.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

| PRACH preamble format | Measurement period (ms) |
|-----------------------|-------------------------|
| 0                     | 0.9031                  |
| 1                     | 1.4844                  |
| 2                     | 1.8031                  |
| 3                     | 2.2844                  |
| 4                     | 0.1479                  |

Table 6.3.4.2-1: PRACH ON power measurement period



#### Figure 6.3.4.2-1: PRACH ON/OFF time mask

#### 6.3.4.2.2 SRS time mask

In the case a single SRS transmission, the ON power is defined as the mean power over the symbol duration excluding any transient period. Figure 6.3.4.2.2-1

In the case a dual SRS transmission, the ON power is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2-2

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

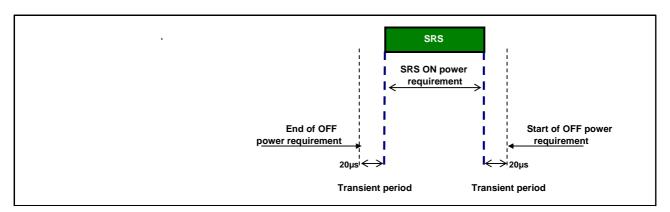
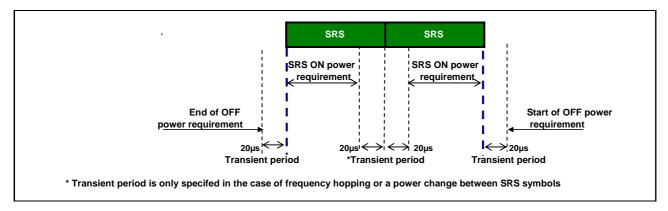
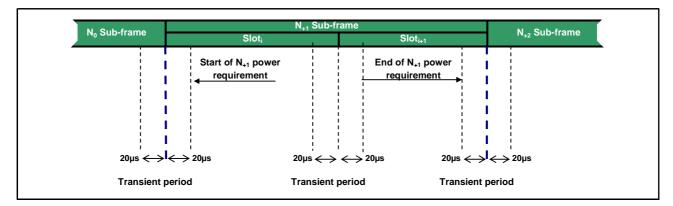
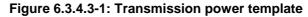



Figure 6.3.4.2.2-1: Single SRS time mask



Figure 6.3.4.2.2-2: Dual SRS time mask for the case of UpPTS transmissions

#### 6.3.4.3 Slot / Sub frame boundary time mask

The sub frame boundary time mask defines the observation period between the previous/subsequent sub–frame and the (reference) sub-frame. A transient period at a slot boundary within a sub-frame is only allowed in the case of Intra-sub frame frequency hopping. For the cases when the subframe contains SRS the time masks in subclause 6.3.4.4 apply.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3





### 6.3.4.4 PUCCH / PUSCH / SRS time mask

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in subclause 6.2.2 and subclause 6.6.2.3

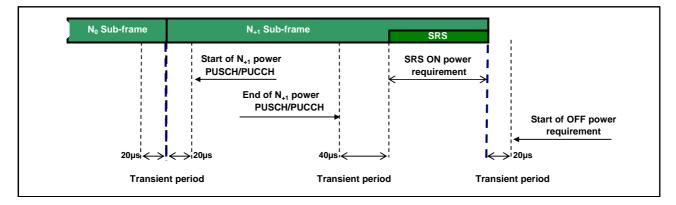



Figure 6.3.4.4-1: PUCCH/PUSCH/SRS time mask when there is a transmission before SRS but not after

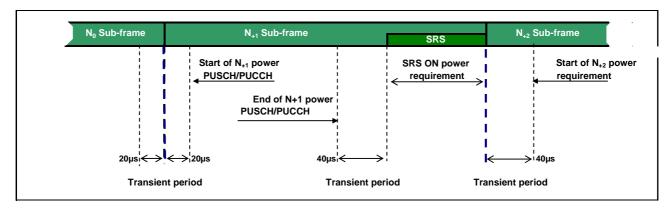



Figure 6.3.4.4-2: PUCCH/PUSCH/SRS time mask when there is transmission before and after SRS

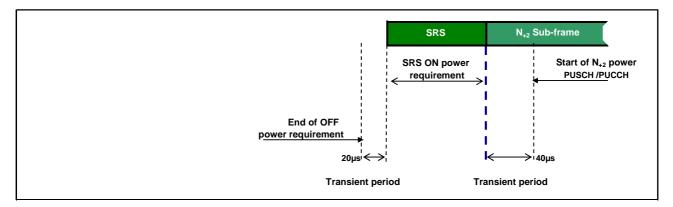



Figure 6.3.4.4-3: PUCCH/PUSCH/SRS time mask when there is a transmission after SRS but not before

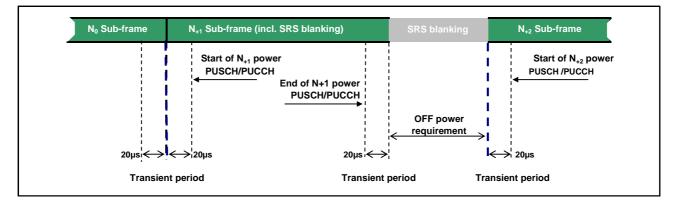



Figure 6.3.4.4-4: SRS time mask when there is FDD SRS blanking

### 6.3.4A ON/OFF time mask for CA

For intra-band contiguous carrier aggregation, the general output power ON/OFF time mask specified in subclause 6.3.4.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in subclause 6.3.4.1 shall only be applicable for each component carrier when all the component carriers are OFF.

### 6.3.4B ON/OFF time mask for UL-MIMO

For UE supporting UL-MIMO, the ON/OFF time mask requirements in subclause 6.3.4 apply at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in subclause 6.3.4.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.3.4 apply.

### 6.3.5 Power Control

#### 6.3.5.1 Absolute power tolerance

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. This tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133)

In the case of a PRACH transmission, the absolute tolerance is specified for the first preamble. The absolute power tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in subclause 9.1 of TS 36.133).

#### 6.3.5.1.1 Minimum requirements

The minimum requirement for absolute power tolerance is given in Table 6.3.5.1.1-1 over the power range bounded by the Maximum output power as defined in subclause 6.2.2 and the Minimum output power as defined in subclause 6.3.2.

For operating bands under Note 2 in Table 6.2.2-1, the absolute power tolerance as specified in Table 6.3.5.1.1-1 is relaxed by reducing the lower limit by 1.5 dB when the transmission bandwidth is confined within  $F_{UL\_low}$  and  $F_{UL\_low} + 4$  MHz or  $F_{UL\_high} - 4$  MHz and  $F_{UL\_high}$ .

| Table 6.3.5.1.1-1: | Absolute | power | tolerance |
|--------------------|----------|-------|-----------|
|--------------------|----------|-------|-----------|

| Conditions | Tolerance |
|------------|-----------|
| Normal     | ± 9.0 dB  |
| Extreme    | ± 12.0 dB |

#### 6.3.5.2 Relative Power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is  $\leq 20$  ms.

For PRACH transmission, the relative tolerance is the ability of the UE transmitter to set its output power relatively to the power of the most recently transmitted preamble. The measurement period for the PRACH preamble is specified in Table 6.3.4.2-1.

#### 6.3.5.2.1 Minimum requirements

The requirements specified in Table 6.3.5.2.1-1 apply when the power of the target and reference sub-frames are within the power range bounded by the Minimum output power as defined in subclause 6.3.2 and the measured PUMAX as defined in subclause 6.2.5 (i.e, the actual power as would be measured assuming no measurement error). This power shall be within the power limits specified in subclause 6.2.5.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in subclauses 6.3.2 and 6.2.2. For these exceptions the power tolerance limit is a maximum of  $\pm 6.0$  dB in Table 6.3.5.2.1-1

| Power step ∆P<br>(Up or down)<br>[dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               | All combinations<br>of PUSCH and<br>PUCCH<br>transitions [dB] | All combinations of<br>PUSCH/PUCCH and<br>SRS transitions<br>between sub-<br>frames [dB] | PRACH [dB] |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|
| ΔP <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 2                                                                                                                                                                                                                                                                                                           | ±2.5 (Note 3)                                                 | ±3.0                                                                                     | ±2.5       |
| 2 ≤ ∆F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>'</b> < 3                                                                                                                                                                                                                                                                                                  | ±3.0                                                          | ±4.0                                                                                     | ±3.0       |
| 3 ≤ ∆F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>'</b> < 4                                                                                                                                                                                                                                                                                                  | ±3.5                                                          | ±5.0                                                                                     | ±3.5       |
| 4 ≤ ∆P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ≤ 10                                                                                                                                                                                                                                                                                                          | ±4.0                                                          | ±6.0                                                                                     | ±4.0       |
| 10 ≤ ∆F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>'</b> < 15                                                                                                                                                                                                                                                                                                 | ±5.0                                                          | ±8.0                                                                                     | ±5.0       |
| 15 ≤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΔP                                                                                                                                                                                                                                                                                                            | ±6.0                                                          | ±6.0 ±9.0                                                                                |            |
| NOTE 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed<br>NOTE 2: For operating bands under Note 2 in Table 6.2.2-1, the relative power<br>tolerance is relaxed by increasing the upper limit by 1.5 dB if the<br>transmission bandwidth of the reference sub-frames is confined within<br>$F_{UL_low}$ and $F_{UL_low}$ + 4 MHz or $F_{UL_high}$ – 4 MHz and $F_{UL_high}$ and the target<br>sub-frame is not confined within any one of these frequency ranges; if<br>the transmission bandwidth of the target sub-frame is confined within<br>$F_{UL_low}$ and $F_{UL_low}$ + 4 MHz or $F_{UL_high}$ – 4 MHz and $F_{UL_high}$ and the<br>reference sub-frame is not confined within any one of these frequency<br>ranges, then the tolerance is relaxed by reducing the lower limit by 1.5<br>dB. |                                                                                                                                                                                                                                                                                                               |                                                               |                                                                                          |            |
| NOTE 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E 3: For PUSCH to PUSCH transitions with the allocated resource blocks<br>fixed in frequency and no transmission gaps other than those generated<br>by downlink subframes, DwPTS fields or Guard Periods for TDD: for a<br>power step ΔP ≤ 1 dB, the relative power tolerance for transmission is<br>±1.0 dB. |                                                               |                                                                                          |            |

| Table 6.3.5.2.1-1 Relative power tolerance for transmission (norma | I conditions) |
|--------------------------------------------------------------------|---------------|
|--------------------------------------------------------------------|---------------|

The power step ( $\Delta P$ ) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to subclause 5.1 of [TS 36.213]. The error is the difference between  $\Delta P$  and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2.1-1.

For sub-frames not containing an SRS symbol, the power change is defined as the relative power difference between the mean power of the original reference sub-frame and the mean power of the target subframe not including transient durations. The mean power of successive sub-frames shall be calculated according to Figure 6.3.4.3-1 and Figure 6.3.4.1-1 if there is a transmission gap between the reference and target sub-frames.

If at least one of the sub-frames contains an SRS symbol, the power change is defined as the relative power difference between the mean power of the last transmission within the reference sub-frame and the mean power of the first transmission within the target sub-frame not including transient durations. A transmission is defined as PUSCH, PUCCH or an SRS symbol. The mean power of the reference and target sub-frames shall be calculated according to Figures 6.3.4.1-1, 6.3.4.2-1, 6.3.4.4-1, 6.3.4.4-2 and 6.3.4.4-3 for these cases.

#### 6.3.5.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

#### 6.3.5.3.1 Minimum requirement

The UE shall meet the requirements specified in Table 6.3.5.3.1-1 for aggregate power control over the power range bounded by the minimum output power as defined in subclause 6.3.2 and the maximum output power as defined in subclause 6.2.2.

| TPC command                                                                                                                      | UL channel | Aggregate power tolerance within 21 ms |
|----------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|
| 0 dB                                                                                                                             | PUCCH      | ±2.5 dB                                |
| 0 dB                                                                                                                             | PUSCH      | ±3.5 dB                                |
| NOTE: The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission. |            |                                        |

Table 6.3.5.3.1-1: Aggregate power control tolerance

### 6.3.5A Power control for CA

The requirements apply for one single PUCCH, PUSCH or SRS transmission of contiguous PRB allocation per component carrier with power setting in accordance with Clause 5.1 of [6].

#### 6.3.5A.1 Absolute power tolerance

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20ms. The requirement can be tested by time aligning any transmission gaps on the component carriers.

#### 6.3.5A.1.1 Minimum requirements

For intra-band contiguous carrier aggregation bandwidth classes B and C the absolute power control tolerance per component carrier is given in Table 6.3.5.1.1-1.

### 6.3.5A.2 Relative power tolerance

#### 6.3.5A.2.1 Minimum requirements

The requirements apply when the power of the target and reference sub-frames on each component carrier exceed -20 dBm and the total power is limited by  $P_{UMAX}$  as defined in subclause 6.2.5A. For the purpose of these requirements, the power in each component carrier is specified over only the transmitted resource blocks.

For intra-band contiguous carrier aggregation bandwidth classes B and C, the UE shall meet the following requirements for transmission on both assigned component carriers when the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame:

a) for all possible combinations of PUSCH and PUCCH transitions per component carrier, the corresponding requirements given in Table 6.3.5.2.1-1:

b) for SRS transitions on each component carrier, the requirements for combinations of PUSCH/PUCCH and SRS transitions given in Table 6.3.5.2.1-1 with simultaneous SRS of constant SRS bandwidth allocated in the target and reference subrames:

c) for RACH on the primary component carrier, the requirements given in Table 6.3.5.2.1-1 for PRACH

For a) and b) above, the power step  $\Delta P$  between the reference and target subframes shall be set by a TPC command and/or an uplink scheduling grant transmitted by means of an appropriate DCI Format.

For a), b) and c) above, two exceptions are allowed for each component carrier for a power per carrier ranging from -20 dBm to  $P_{UMAX,c}$  as defined in subclause 6.2.5. For these exceptions the power tolerance limit is  $\pm 6.0$  dB in Table 6.3.5.2.1-1..

### 6.3.5A.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in [6] are constant on all active component carriers.

#### 6.3.5A.3.1 Minimum requirements

For intra-band contiguous carrier aggregation bandwidth classes B and C, the aggregate power tolerance per component carrier is given in Table 6.3.5.3.1-1 with either simultaneous PUSCH or simultaneous PUCCH-PUSCH (if supported by the UE) configured. The average power per PRB shall be aligned across both assigned carriers before the start of the test. The requirement can be tested with the transmission gaps time aligned between component carriers.

### 6.3.5B Power control for UL-MIMO

For UE supporting UL-MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.5 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL-MIMO configurations specified in Table 6.2.2B-2, wherein

- The Maximum output power requirements for UL-MIMO are specified in subclause 6.2.2B
- The Minimum output power requirements for UL-MIMO are specified in subclause 6.3.2B
- The requirements for configured transmitted power for UL-MIMO are specified in subclause 6.2.5B.

For single-antenna port scheme, the requirements in subclause 6.3.5 apply.

### 6.4 Void

### 6.5 Transmit signal quality

### 6.5.1 Frequency error

The UE modulated carrier frequency shall be accurate to within  $\pm 0.1$  PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B

### 6.5.1A Frequency error for CA

For intra-band contiguous carrier aggregation the UE modulated carrier frequencies per band shall be accurate to within  $\pm 0.1$  PPM observed over a period of one timeslot compared to the carrier frequency of primary component carrier received from the E-UTRA in the corresponding band.

### 6.5.1B Frequency error for UL-MIMO

For UE(s) supporting UL-MIMO, the UE modulated carrier frequency at each transmit antenna connector shall be accurate to within  $\pm 0.1$  PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B.

### 6.5.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.5.2 are defined using the measurement methodology specified in Annex F.

#### 6.5.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power, modulation or allocation between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5  $\mu$ s and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission with power change, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the boundary where the power change is expected to occur.

#### 6.5.2.1.1 Minimum requirement

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.1-1 for the parameters defined in Table 6.5.2.1.1-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and] all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

| Parameter    | Unit | Average EVM Level | Reference Signal EVM<br>Level |
|--------------|------|-------------------|-------------------------------|
| QPSK or BPSK | %    | 17.5              | 17.5                          |
| 16QAM        | %    | 12.5              | 12.5                          |

| Parameter            | Unit | Level             |
|----------------------|------|-------------------|
| UE Output Power      | dBm  | ≥ -40             |
| Operating conditions |      | Normal conditions |

#### 6.5.2.2 Carrier leakage

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

#### 6.5.2.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2.2.1-1.

| Parameters                       | Relative limit (dBc) | Applicable frequencies           |
|----------------------------------|----------------------|----------------------------------|
| Output power >10 dBm             | -28                  | Carrier center frequency < 1 GHz |
|                                  | -25                  | Carrier center frequency ≥ 1 GHz |
| 0 dBm ≤ Output power ≤10 dBm     | -25                  |                                  |
| -30 dBm ≤ Output power ≤0 dBm    | -20                  |                                  |
| -40 dBm ≤ Output power < -30 dBm | -10                  |                                  |

 Table 6.5.2.2.1-1: Minimum requirements for relative carrier leakage power

#### 6.5.2.3 In-band emissions

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

#### 6.5.2.3.1 Minimum requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.1-1.

| Parameter description | Unit | Limit (Note 1)                                                                                                                                                                                                                                        |                                                                                      | Applicable<br>Frequencies     |
|-----------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|
| General               | dB   | $\max \left\{ \begin{array}{l} -25 - 10 \cdot \log_{10} \left( N_{RB} / L_{CRB} \right), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot \left( \left  \Delta_{RB} \right  - 1 \right) / L_{CRB}, \\ -57 \ dBm \ / \ 180 \ kHz - P_{RB} \right\} \end{array}$ |                                                                                      | Any non-allocated<br>(Note 2) |
|                       | dB   | -28                                                                                                                                                                                                                                                   | Image frequencies when carrier center frequency<br>< 1 GHz and Output power > 10 dBm | Imaga                         |
| IQ Image              |      | -25                                                                                                                                                                                                                                                   | Image frequencies when carrier center frequency < 1 GHz and Output power ≤ 10 dBm    | Image<br>frequencies          |
|                       |      | -25                                                                                                                                                                                                                                                   | Image frequencies when carrier center frequency ≥ 1 GHz                              | (Notes 2, 3)                  |
|                       |      | -28                                                                                                                                                                                                                                                   | Output power > 10 dBm and carrier center<br>frequency < 1 GHz                        |                               |
| Carrier<br>leakage    | dBc  | -25                                                                                                                                                                                                                                                   | Output power > 10 dBm and carrier center<br>frequency ≥ 1 GHz                        | Carrier frequency             |
|                       |      | -25                                                                                                                                                                                                                                                   | 0 dBm ≤ Output power ≤10 dBm                                                         | (Notes 4, 5)                  |
|                       |      | -20                                                                                                                                                                                                                                                   | -30 dBm ≤ Output power ≤ 0 dBm                                                       |                               |
|                       |      | -10                                                                                                                                                                                                                                                   | -40 dBm ≤ Output power < -30 dBm                                                     |                               |

#### Table 6.5.2.3.1-1: Minimum requirements for in-band emissions

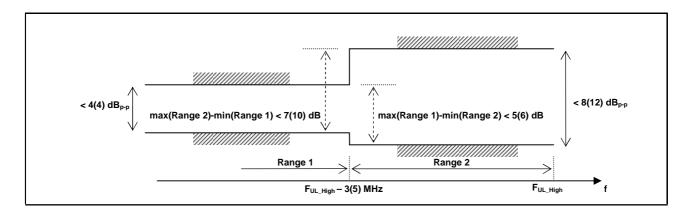
| NOTE 1: | An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of $P_{RB}$ - 30 dB and the power sum of all limit values |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE 2: | (General, IQ Image or Carrier leakage) that apply. $P_{RB}$ is defined in Note 10.<br>The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-                |
| NOTE 2. | allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.                                                                                         |
| NOTE 3: |                                                                                                                                                                                                            |
|         | bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RBs.                                                                                                |
| NOTE 4: | The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-                                                                                                      |
|         | allocated RB to the measured total power in all allocated RBs.                                                                                                                                             |
| NOTE 5: | The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC                                                                                                         |
|         | frequency if $N_{RB}$ is odd, or in the two RBs immediately adjacent to the DC frequency if $N_{RB}$ is even, but excluding any allocated RB.                                                              |
| NOTE 6: | $L_{CRR}$ is the Transmission Bandwidth (see Figure 5.6-1).                                                                                                                                                |
| NOTE 0. | <i>L<sub>CRB</sub></i> is the manshission bandwidth (see Figure 5.0-1).                                                                                                                                    |
| NOTE 7: | $N_{\scriptscriptstyle RB}$ is the Transmission Bandwidth Configuration (see Figure 5.6-1).                                                                                                                |
| NOTE 8: | EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.                                                                                                       |
| NOTE 9: | $\Delta_{RB}$ is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.                                                                                            |
|         | $\Delta_{_{RB}}=1$ or $\Delta_{_{RB}}=-1$ for the first adjacent RB outside of the allocated bandwidth.                                                                                                    |
| NOTE 10 | : $P_{\scriptscriptstyle RB}$ is the transmitted power per 180 kHz in allocated RBs, measured in dBm.                                                                                                      |
|         |                                                                                                                                                                                                            |

#### 6.5.2.4 EVM equalizer spectrum flatness

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex F) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

#### 6.5.2.4.1 Minimum requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.5.2.4.1-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.5.2.4.1-1).


The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.5.2.4.1-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.5.2.4.1-1).

| Table 6.5.2.4.1-1: Minimum requirements for EVM equ | ualizer spectrum flatness (normal conditions) |
|-----------------------------------------------------|-----------------------------------------------|
|-----------------------------------------------------|-----------------------------------------------|

|                     | Frequency range                                                                            | Maximum ripple [dB]          |
|---------------------|--------------------------------------------------------------------------------------------|------------------------------|
| F <sub>UL_Mea</sub> | s – $F_{UL_{Low}} \ge 3 \text{ MHz}$ and $F_{UL_{High}} - F_{UL_{Meas}} \ge 3 \text{ MHz}$ | 4 (p-p)                      |
|                     | (Range 1)                                                                                  |                              |
| F <sub>UL_Mea</sub> | as – F <sub>UL_Low</sub> < 3 MHz or F <sub>UL_High</sub> – F <sub>UL_Meas</sub> < 3 MHz    | 8 (p-p)                      |
|                     | (Range 2)                                                                                  |                              |
| NOTE 1:             | F <sub>UL_Meas</sub> refers to the sub-carrier frequency for which evaluated               | the equalizer coefficient is |
| NOTE 2:             | $F_{UL\_Low}$ and $F_{UL\_High}$ refer to each E-UTRA frequency 5.5-1                      | band specified in Table      |

Table 6.5.2.4.1-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

| Frequency range                                                                                           |                                                                                            | Maximum Ripple [dB]     |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------|--|--|
| F <sub>UL_Meas</sub>                                                                                      | s – $F_{UL_{Low}} \ge 5 \text{ MHz}$ and $F_{UL_{High}} - F_{UL_{Meas}} \ge 5 \text{ MHz}$ | 4 (p-p)                 |  |  |
|                                                                                                           | (Range 1)                                                                                  |                         |  |  |
| F <sub>UL_Meas</sub> – F <sub>UL_Low</sub> < 5 MHz or F <sub>UL_High</sub> – F <sub>UL_Meas</sub> < 5 MHz |                                                                                            | 12 (p-p)                |  |  |
|                                                                                                           | (Range 2)                                                                                  |                         |  |  |
| NOTE 1: FUL_Meas refers to the sub-carrier frequency for which the equalizer coefficient is evaluated     |                                                                                            |                         |  |  |
| NOTE 2:                                                                                                   | $F_{UL\_Low}$ and $F_{UL\_High}$ refer to each E-UTRA frequency 5.5-1                      | band specified in Table |  |  |



## Figure 6.5.2.4.1-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

### 6.5.2A Transmit modulation quality for CA

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

### 6.5.2A.1 Error Vector Magnitude

For the intra-band contiguous carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirements only apply with PRB allocation in one of the component carriers.

When a single component carrier is configured Table 6.5.2.1.1-1 apply.

The EVM requirements are according to Table 6.5.2A.1-1 if CA is configured in uplink.

| Table 6.5.2A.1-1: Minimum requirements for Error Vector Magnit | tude |
|----------------------------------------------------------------|------|
|----------------------------------------------------------------|------|

| Parameter    | Unit | Average EVM Level per<br>CC | Reference Signal EVM<br>Level |
|--------------|------|-----------------------------|-------------------------------|
| QPSK or BPSK | %    | 17.5                        | 17.5                          |
| 16QAM        | %    | 12.5                        | 12.5                          |

### 6.5.2A.2 Carrier leakage for CA

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. Carrier leakage is defined for each component carrier and is measured on the carrier with PRBs allocated. The measurement interval is one slot in the time domain.

# 6.5.2A.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2A.2.1-1.

Table 6.5.2A.2.1-1: Minimum requirements for Relative Carrier Leakage Power

| Parameters                       | Relative Limit (dBc) |
|----------------------------------|----------------------|
| Output power >0 dBm              | -25                  |
| -30 dBm ≤ Output power ≤0 dBm    | -20                  |
| -40 dBm ≤ Output power < -30 dBm | -10                  |

## 6.5.2A.3 In-band emissions

#### 6.5.2A.3.1 Minimum requirement for CA

For intra-band contiguous carrier aggregation bandwidth class C, the requirements in Table 6.5.2A.3.1-1 and 6.5.2A.3.1-2 apply within the aggregated transmission bandwidth configuration with both component carrier (s) active and one single contiguous PRB allocation of bandwidth  $L_{CRB}$  at the edge of the aggregated transmission bandwidth configuration.

The inband emission is defined as the interference falling into the non allocated resource blocks for all component carriers. The measurement method for the inband emissions in the component carrier with PRB allocation is specified in annex F. For a non allocated component carrier a spectral measurement is specified.

| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | ····· [ /                                                                                          |                                                                    |                                                        |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | $\max\{-1\}$                                                                                       | $25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$                      |                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dB                                                                | $20 \cdot \log_{10}$                                                                               | $EVM - 3 - 5 \cdot ( \Delta_{RB}  - 1) / L_{CRB}$ ,                | Any non-allocated (Note 1)                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   | – 57 dBm                                                                                           | $/180 kHz - P_{RB}$                                                |                                                        |  |  |  |  |
| IQ Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dB                                                                |                                                                                                    | -25                                                                | Exception for IQ image<br>(Note 2)                     |  |  |  |  |
| Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | -25                                                                                                | Output power > 0 dBm                                               | Exception for Carrier frequency                        |  |  |  |  |
| leakage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBc                                                               | -20<br>-10                                                                                         | -30 dBm ≤ Output power ≤ 0 dBm<br>-40 dBm ≤ Output power < -30 dBm | (Note 3)                                               |  |  |  |  |
| NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of $P_{RB}$ - 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. $P_{RB}$ is defined in Note 8. The limit is evaluated in each non-allocated RB. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs |                                                                   |                                                                                                    |                                                                    |                                                        |  |  |  |  |
| NOTE 2: Exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptions to the g                                                  | eneral limit are                                                                                   | e allowed for up to $L_{{\it CRBs}}$ RBs within a $$               | contiguous width of $L_{\scriptscriptstyle CRBs}$ non- |  |  |  |  |
| NOTE 3: Exc<br>ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | allocated RBs. The measurement bandwidth is 1 RB.                 |                                                                                                    |                                                                    |                                                        |  |  |  |  |
| NOTE 4: $L_{CL}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sub>RB</sub> is the Transr                                       | nission Bandw                                                                                      | vidth (see Figure 5.6-1) not exceeding                             | $N_{RB}/2-1$                                           |  |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |                                                                                                    |                                                                    |                                                        |  |  |  |  |
| NOTE 6: EV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M is the limits                                                   | specified in Ta                                                                                    | ble 6.5.2.1.1-1 for the modulation forma                           | t used in the allocated RBs.                           |  |  |  |  |
| NOTE 7: $\Delta_{RI}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $_{B}$ is the starting                                            | frequency offs                                                                                     | set between the allocated RB and the m                             | easured non-allocated RB (e.g.                         |  |  |  |  |
| $\Delta_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $_{\scriptscriptstyle RB}=1$ or $\Delta_{\scriptscriptstyle RB}=$ | $\Delta_{RB}=-1$ or $\Delta_{RB}=-1$ for the first adjacent RB outside of the allocated bandwidth. |                                                                    |                                                        |  |  |  |  |
| NOTE 8: $P_{RE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sub>B</sub> is the transmit                                      | ted power per                                                                                      | 180 kHz in allocated RBs, measured in                              | dBm.                                                   |  |  |  |  |

#### Table 6.5.2A.3.1-1: Minimum requirements for in-band emissions (allocated component carrier)

| Para-<br>meter     | Unit                    | Meas BW<br>Note 1                     |                      | Limit                                                                                                                             | remark                                                                                                                  | Applicable<br>Frequencies                                                                                                                                                    |
|--------------------|-------------------------|---------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General            | dB                      | BW of 1 RB<br>(180KHz<br>rectangular) | $20 \cdot \log_{10}$ | $25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$<br>$EVM - 3 - 5 \cdot ( \Delta_{RB}  - 1) / L_{CRB},$<br>$n / 180  kHz - P_{RB} \}$ | The<br>reference<br>value is the<br>average<br>power per<br>allocated<br>RB in the<br>allocated<br>component<br>carrier | Any RB in the<br>non allocated<br>component<br>carrier.<br>The frequency<br>raster of the<br>RBs is derived<br>when this<br>component<br>carrier is<br>allocated with<br>RBs |
| IQ Image           | dB                      | BW of 1 RB<br>(180KHz<br>rectangular) |                      | -25<br>Note 2                                                                                                                     | The<br>reference<br>value is the<br>average<br>power per<br>allocated<br>RB in the<br>allocated<br>component<br>carrier | The frequencies of the $L_{CRB}$ contiguous non-allocated RBs are unknown. The frequency raster of the RBs is derived when this component carrier is allocated with RBs      |
|                    |                         | BW of 1 RB<br>(180KHz                 |                      | Note 3                                                                                                                            | The reference                                                                                                           | The<br>frequencies of                                                                                                                                                        |
|                    |                         | rectangular)                          | -25                  | Output power > 0 dBm                                                                                                              | value is the total power                                                                                                | the up to 2<br>non-allocated                                                                                                                                                 |
| Carrier<br>leakage | ORC I                   | dBc -2                                | -20                  | -30 dBm ≤ Output power ≤ 0<br>dBm                                                                                                 | of the<br>allocated<br>RBs in the<br>allocated<br>component<br>carrier                                                  | RBs are<br>unknown.<br>The frequency<br>raster of the<br>RBs is derived<br>when this                                                                                         |
|                    |                         |                                       | -10                  | -40 dBm ≤ Output power < -30<br>dBm                                                                                               | Gamor                                                                                                                   | component<br>carrier is<br>allocated with<br>RBs                                                                                                                             |
|                    | Resolution<br>bandwidth |                                       | han the me           | asurement BW may be integrated                                                                                                    | to achieve the r                                                                                                        | neasurement                                                                                                                                                                  |
|                    |                         |                                       | limit is are         | allowed for up to $L_{\it CRB}$ RBs within                                                                                        | n a contiguous v                                                                                                        | width of $L_{\!{\scriptscriptstyle CRB}}^{}$                                                                                                                                 |
| NOTE 3:            | Two Exce                |                                       |                      | are allowed for up to two contiguous                                                                                              |                                                                                                                         | RBs                                                                                                                                                                          |

| Table 6.5.2A.3.1-2: Minimum requirements for in | -band emissions (not allocated comp | ponent carrier) |
|-------------------------------------------------|-------------------------------------|-----------------|
|                                                 |                                     |                 |

# 6.5.2B Transmit modulation quality for UL-MIMO

NOTE 4: Note 4 to note 8 from Table 6.5.2A.3.1-1 apply for Table 6.5.2A.3.1-2 as well.

For UE supporting UL-MIMO, the transmit modulation quality requirements are specified at each transmit antenna connector.

For single-antenna port scheme, the requirements in subclause 6.5.2 apply.

The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process

- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

# 6.5.2B.1 Error Vector Magnitude

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.5.2.1.1-1 which is defined in subclause 6.5.2.1 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

## 6.5.2B.2 Carrier leakage

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.5.2.2.1-1 which is defined in subclause 6.5.2.2 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

# 6.5.2B.3 In-band emissions

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.5.2.3.1-1 which is defined in subclause 6.5.2.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2.2B-2.

# 6.5.2B.4 EVM equalizer spectrum flatness for UL-MIMO

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.5.2.4.1-1 and Table 6.5.2.4.1-2 which are defined in subclause 6.5.2.4 apply at each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

# 6.6 Output RF spectrum emissions

The output UE transmitter spectrum consists of the three components; the emission within the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

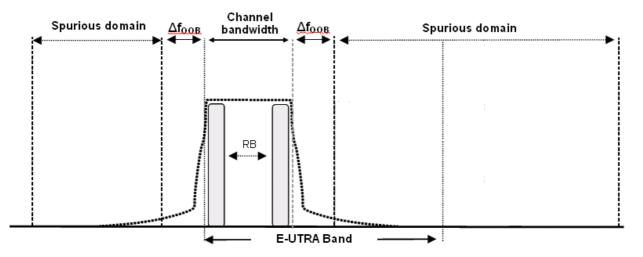



Figure 6.6-1: Transmitter RF spectrum

# 6.6.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.6.1-1

|                            | Occupied channel bandwidth / Channel bandwidth |            |          |           |           |           |
|----------------------------|------------------------------------------------|------------|----------|-----------|-----------|-----------|
|                            | 1.4<br>MHz                                     | 3.0<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |
| Channel bandwidth<br>(MHz) | 1.4                                            | 3          | 5        | 10        | 15        | 20        |

Table 6.6.1-1: Occupied channel bandwidth

# 6.6.1A Occupied bandwidth for CA

For intra-band contiguous carrier aggregation the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The OBW shall be less than the aggregated channel bandwidth defined in subclause 5.6A.

# 6.6.1B Occupied bandwidth for UL-MIMO

For UE supporting UL-MIMO, the requirements for occupied bandwidth is specified at each transmit antenna connector. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in Table 6.6.1B-1. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

#### Table 6.6.1B-1: Occupied channel bandwidth

|                            | Occupied c | Occupied channel bandwidth / Channel bandwidth |          |           |           |           |
|----------------------------|------------|------------------------------------------------|----------|-----------|-----------|-----------|
|                            | 1.4<br>MHz | 3.0<br>MHz                                     | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |
| Channel bandwidth<br>(MHz) | 1.4        | 3                                              | 5        | 10        | 15        | 20        |

For single-antenna port scheme, the requirements in subclause 6.6.1 apply.

# 6.6.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an Adjacent Channel Leakage power Ratio.

## 6.6.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies ( $\Delta f_{OOB}$ ) starting from the ± edge of the assigned E-UTRA channel bandwidth. For frequencies greater than ( $\Delta f_{OOB}$ ) as specified in Table 6.6.2.1.1-1 the spurious requirements in subclause 6.6.3 are applicable.

## 6.6.2.1.1 Minimum requirement

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.1-1 for the specified channel bandwidth.

|                            | Spectrum emission limit (dBm)/ Channel bandwidth |            |          |           |           |           |                          |  |  |
|----------------------------|--------------------------------------------------|------------|----------|-----------|-----------|-----------|--------------------------|--|--|
| Δf <sub>оов</sub><br>(MHz) | 1.4<br>MHz                                       | 3.0<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz | Measurement<br>bandwidth |  |  |
| ± 0-1                      | -10                                              | -13        | -15      | -18       | -20       | -21       | 30 kHz                   |  |  |
| ± 1-2.5                    | -10                                              | -10        | -10      | -10       | -10       | -10       | 1 MHz                    |  |  |
| ± 2.5-2.8                  | -25                                              | -10        | -10      | -10       | -10       | -10       | 1 MHz                    |  |  |
| ± 2.8-5                    |                                                  | -10        | -10      | -10       | -10       | -10       | 1 MHz                    |  |  |
| ± 5-6                      |                                                  | -25        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 6-10                     |                                                  |            | -25      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 10-15                    |                                                  |            |          | -25       | -13       | -13       | 1 MHz                    |  |  |
| ± 15-20                    |                                                  |            |          |           | -25       | -13       | 1 MHz                    |  |  |
| ± 20-25                    |                                                  |            |          |           |           | -25       | 1 MHz                    |  |  |

Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

# 6.6.2.1A Spectrum emission mask for CA

For intra-band contiguous carrier aggregation the spectrum emission mask of the UE applies to frequencies ( $\Delta f_{OOB}$ ) starting from the ± edge of the aggregated channel bandwidth (Table 5.6A-1) For intra-band contiguous carrier aggregation the bandwidth class C, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.1A-1 for the specified channel bandwidth.

| Spectrum emission limit [dBm]/BW <sub>Channel_CA</sub> |             |            |           |             |             |             |  |  |
|--------------------------------------------------------|-------------|------------|-----------|-------------|-------------|-------------|--|--|
| Δf <sub>OOB</sub>                                      | 25RB+100RB  | 50RB+100RB | 75RB+75RB | 75RB+100RB  | 100RB+100RB | Measurement |  |  |
| (MHz)                                                  | (24.95 MHz) | (29.9 MHz) | (30 MHz)  | (34.85 MHz) | (39.8 MHz)  | bandwidth   |  |  |
| ± 0-1                                                  | -22         | -22.5      | -22.5     | -23.5       | -24         | 30 kHz      |  |  |
| ± 1-5                                                  | -10         | -10        | -10       | -10         | -10         | 1 MHz       |  |  |
| ± 5-24.95                                              | -13         | -13        | -13       | -13         | -13         | 1 MHz       |  |  |
| ± 24.95-29.9                                           | -25         | -13        | -13       | -13         | -13         | 1 MHz       |  |  |
| ± 29.9-29.95                                           | -25         | -25        | -13       | -13         | -13         | 1 MHz       |  |  |
| ± 29.95-30                                             |             | -25        | -13       | -13         | -13         | 1 MHz       |  |  |
| ± 30-34.85                                             |             | -25        | -25       | -13         | -13         | 1 MHz       |  |  |
| ± 34.85-34.9                                           |             | -25        | -25       | -25         | -13         | 1 MHz       |  |  |
| ± 34.9-35                                              |             |            | -25       | -25         | -13         | 1 MHz       |  |  |
| ± 35-39.8                                              |             |            |           | -25         | -13         | 1 MHz       |  |  |
| $\pm 39.8-39.85$                                       |             |            |           | -25         | -25         | 1 MHz       |  |  |
| ± 39.85-44.8                                           |             |            |           |             | -25         | 1 MHz       |  |  |

#### Table 6.6.2.1A-1: General E-UTRA CA spectrum emission mask for Bandwidth Class C

#### 6.6.2.2 Additional spectrum emission mask

This requirement is specified in terms of an "additional spectrum emission" requirement.

#### 6.6.2.2.1 Minimum requirement (network signalled value "NS\_03", "NS\_11", and "NS\_20")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS\_03", "NS\_11" or "NS\_20" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.1-1.

|                            | Spectrum emission limit (dBm)/ Channel bandwidth |            |          |           |           |           |                          |  |  |
|----------------------------|--------------------------------------------------|------------|----------|-----------|-----------|-----------|--------------------------|--|--|
| Δf <sub>оов</sub><br>(MHz) | 1.4<br>MHz                                       | 3.0<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz | Measurement<br>bandwidth |  |  |
| ± 0-1                      | -10                                              | -13        | -15      | -18       | -20       | -21       | 30 kHz                   |  |  |
| ± 1-2.5                    | -13                                              | -13        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 2.5-2.8                  | -25                                              | -13        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 2.8-5                    |                                                  | -13        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 5-6                      |                                                  | -25        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 6-10                     |                                                  |            | -25      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 10-15                    |                                                  |            |          | -25       | -13       | -13       | 1 MHz                    |  |  |
| ± 15-20                    |                                                  |            |          |           | -25       | -13       | 1 MHz                    |  |  |
| ± 20-25                    |                                                  |            |          |           |           | -25       | 1 MHz                    |  |  |

| Table | 6.6.2.2 | .1-1: | Additional | requirements |
|-------|---------|-------|------------|--------------|
| IUDIC | 0.0.2.2 |       | Additional | requirements |

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

#### 6.6.2.2.2 Minimum requirement (network signalled value "NS\_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS\_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.2-1.

|                            | Spectrum emission limit (dBm)/ Channel bandwidth |            |          |           |           |           |                          |  |  |
|----------------------------|--------------------------------------------------|------------|----------|-----------|-----------|-----------|--------------------------|--|--|
| Δf <sub>OOB</sub><br>(MHz) | 1.4<br>MHz                                       | 3.0<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz | Measurement<br>bandwidth |  |  |
| ± 0-1                      | -10                                              | -13        | -15      | -18       | -20       | -21       | 30 kHz                   |  |  |
| ± 1-2.5                    | -13                                              | -13        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 2.5-2.8                  | -25                                              | -13        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 2.8-5.5                  |                                                  | -13        | -13      | -13       | -13       | -13       | 1 MHz                    |  |  |
| ± 5.5-6                    |                                                  | -25        | -25      | -25       | -25       | -25       | 1 MHz                    |  |  |
| ± 6-10                     |                                                  |            | -25      | -25       | -25       | -25       | 1 MHz                    |  |  |
| ± 10-15                    |                                                  |            |          | -25       | -25       | -25       | 1 MHz                    |  |  |
| ± 15-20                    |                                                  |            |          |           | -25       | -25       | 1 MHz                    |  |  |
| ± 20-25                    |                                                  |            |          |           |           | -25       | 1 MHz                    |  |  |

| Table 6.6.2.2.2-1: | Additional re | quirements |
|--------------------|---------------|------------|
|--------------------|---------------|------------|

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

#### 6.6.2.2.3 Minimum requirement (network signalled value "NS\_06" or "NS\_07")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS\_06" or "NS\_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3-1.

|                            | Spectrum emission limit (dBm)/ Channel bandwidth |            |          |           |                          |  |  |
|----------------------------|--------------------------------------------------|------------|----------|-----------|--------------------------|--|--|
| Δf <sub>оов</sub><br>(MHz) | 1.4<br>MHz                                       | 3.0<br>MHz | 5<br>MHz | 10<br>MHz | Measurement<br>bandwidth |  |  |
| ± 0-0.1                    | -13                                              | -13        | -15      | -18       | 30 kHz                   |  |  |
| ± 0.1-1                    | -13                                              | -13        | -13      | -13       | 100 kHz                  |  |  |
| ± 1-2.5                    | -13                                              | -13        | -13      | -13       | 1 MHz                    |  |  |
| ± 2.5-2.8                  | -25                                              | -13        | -13      | -13       | 1 MHz                    |  |  |
| ± 2.8-5                    |                                                  | -13        | -13      | -13       | 1 MHz                    |  |  |
| ± 5-6                      |                                                  | -25        | -13      | -13       | 1 MHz                    |  |  |
| ± 6-10                     |                                                  |            | -25      | -13       | 1 MHz                    |  |  |
| ± 10-15                    |                                                  |            |          | -25       | 1 MHz                    |  |  |

#### Table 6.6.2.2.3-1: Additional requirements

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

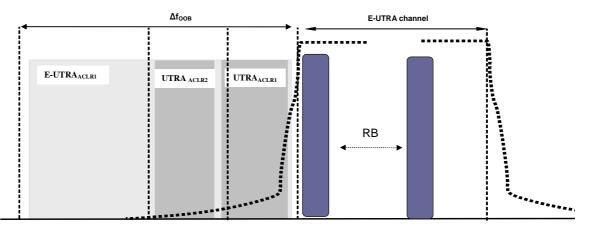
## 6.6.2.2A Additional Spectrum Emission Mask for CA

This requirement is specified in terms of an "additional spectrum emission" requirement.

#### 6.6.2.2A.1 Minimum requirement (network signalled value "CA\_NS\_04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "CA\_NS\_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2A-1.


|   | Spectrum emission limit [dBm]/BW <sub>Channel_CA</sub> |                        |                    |                         |                         |                          |  |  |
|---|--------------------------------------------------------|------------------------|--------------------|-------------------------|-------------------------|--------------------------|--|--|
|   | Δf <sub>oob</sub><br>(MHz)                             | 50+100RB<br>(29.9 MHz) | 75+75B<br>(30 MHz) | 75+100RB<br>(34.85 MHz) | 100+100RB<br>(39.8 MHz) | Measurement<br>bandwidth |  |  |
| Γ | ± 0-1                                                  | -22.5                  | -22.5              | -23.5                   | -24                     | 30 kHz                   |  |  |
|   | ± 1-5.5                                                | -13                    | -13                | -13                     | -13                     | 1 MHz                    |  |  |
|   | $\pm 5.5-34.9$                                         | -25                    | -25                | -25                     | -25                     | 1 MHz                    |  |  |
|   | $\pm$ 34.9-35                                          |                        | -25                | -25                     | -25                     | 1 MHz                    |  |  |
|   | $\pm 35 - 39.85$                                       |                        |                    | -25                     | -25                     | 1 MHz                    |  |  |
|   | ± 39.85-44.8                                           |                        |                    |                         | -25                     | 1 MHz                    |  |  |

#### Table 6.6.2.2A-1: Additional requirements

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

## 6.6.2.3 Adjacent Channel Leakage Ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirements for one E-UTRA carrier are specified for two scenarios for an adjacent E-UTRA and /or UTRA channel as shown in Figure 6.6.2.3-1.





#### 6.6.2.3.1 Minimum requirement E-UTRA

E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA<sub>ACLR</sub>) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1-1 and Table 6.6.2.3.1-2. If the measured adjacent channel power is greater than -50dBm then the E-UTRA<sub>ACLR</sub> shall be higher than the value specified in Table 6.6.2.3.1-1 and Table 6.6.2.3.1-2.

|                                            | Channel bandwidth / E-UTRA <sub>ACLR1</sub> / Measurement bandwidth |            |         |         |          |        |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------|------------|---------|---------|----------|--------|--|--|--|
|                                            | 1.4<br>MHz                                                          |            |         |         |          |        |  |  |  |
| E-UTRA <sub>ACLR1</sub>                    | 30 dB                                                               | 30 dB      | 30 dB   | 30 dB   | 30 dB    | 30 dB  |  |  |  |
| E-UTRA channel<br>Measurement<br>bandwidth | 1.08<br>MHz                                                         | 2.7<br>MHz | 4.5 MHz | 9.0 MHz | 13.5 MHz | 18 MHz |  |  |  |
| Adjacent channel                           | +1.4                                                                | +3.0       | +5      | +10     | +15      | +20    |  |  |  |
| centre frequency                           | /                                                                   | /          | /       | /       | /        | /      |  |  |  |
| offset [MHz]                               | -1.4                                                                | -3.0       | -5      | -10     | -15      | -20    |  |  |  |

Table 6.6.2.3.1-1: General requirements for E-UTRA<sub>ACLR</sub>

|                         | Channel bandwidth / E-UTRA <sub>ACLR1</sub> / Measurement bandwidth |              |         |         |     |     |  |  |
|-------------------------|---------------------------------------------------------------------|--------------|---------|---------|-----|-----|--|--|
|                         | 1.4                                                                 | 1.4 3.0 5 10 |         |         |     | 20  |  |  |
|                         | MHz                                                                 | MHz          | MHz     | MHz     | MHz | MHz |  |  |
| E-UTRA <sub>ACLR1</sub> |                                                                     |              | 37 dB   | 37 dB   |     |     |  |  |
| E-UTRA channel          |                                                                     |              |         |         |     |     |  |  |
| Measurement             |                                                                     |              | 4.5 MHz | 9.0 MHz |     |     |  |  |
| bandwidth               |                                                                     |              |         |         |     |     |  |  |
| Adjacent channel        |                                                                     |              | +5      | +10     |     |     |  |  |
| centre frequency        |                                                                     |              | /       | /       |     |     |  |  |
| offset [MHz]            |                                                                     |              | -5      | -10     |     |     |  |  |
| NOTE 1: E-UTRAAC        | NOTE 1: E-UTRA <sub>ACLR1</sub> shall be applicable for >23dBm      |              |         |         |     |     |  |  |

## 6.6.2.3.1A Void

#### 6.6.2.3.2 Minimum requirements UTRA

UTRA Adjacent Channel Leakage power Ratio (UTRA<sub>ACLR</sub>) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA<sub>ACLR1</sub>) and the 2<sup>nd</sup> UTRA adjacent channel (UTRA<sub>ACLR2</sub>). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor  $\alpha$  =0.22. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the measured UTRA channel power is greater than –50dBm then the UTRA<sub>ACLR</sub> shall be higher than the value specified in Table 6.6.2.3.2-1.

|                                                                   | Channel bandwidth / UTRA <sub>ACLR1/2</sub> / Measurement bandwidth |                                |                                                                   |                                                               |                                                                   |                                                                 |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|--|
|                                                                   | 1.4                                                                 | 3.0                            | 5                                                                 | 10                                                            | 15                                                                | 20                                                              |  |
|                                                                   | MHz                                                                 | MHz                            | MHz                                                               | MHz                                                           | MHz                                                               | MHz                                                             |  |
| UTRA <sub>ACLR1</sub>                                             | 33 dB                                                               | 33 dB                          | 33 dB                                                             | 33 dB                                                         | 33 dB                                                             | 33 dB                                                           |  |
| Adjacent<br>channel<br>centre                                     | 0.7+BW <sub>UTRA</sub> /2<br>/                                      | 1.5+BW <sub>UTRA</sub> /2<br>/ | +2.5+BW <sub>UTRA</sub> /2                                        | +5+BW <sub>UTRA</sub> /2                                      | +7.5+BW <sub>UTRA</sub> /2                                        | +10+BW <sub>UTRA</sub> /2                                       |  |
| frequency<br>offset [MHz]                                         | -0.7-<br>BW <sub>UTRA</sub> /2                                      | -1.5-<br>BW <sub>UTRA</sub> /2 | -2.5-BW <sub>UTRA</sub> /2                                        | -5-BW <sub>UTRA</sub> /2                                      | -7.5-BW <sub>UTRA</sub> /2                                        | ,<br>-10-BW <sub>UTRA</sub> /2                                  |  |
| UTRA <sub>ACLR2</sub>                                             | -                                                                   | -                              | 36 dB                                                             | 36 dB                                                         | 36 dB                                                             | 36 dB                                                           |  |
| Adjacent<br>channel<br>centre<br>frequency<br>offset [MHz]        | -                                                                   | -                              | +2.5+3*BW <sub>UTRA</sub> /2<br>/<br>-2.5-3*BW <sub>UTRA</sub> /2 | +5+3*BW <sub>UTRA</sub> /2<br>/<br>-5-3*BW <sub>UTRA</sub> /2 | +7.5+3*BW <sub>UTRA</sub> /2<br>/<br>-7.5-3*BW <sub>UTRA</sub> /2 | +10+3*BW <sub>UTRA</sub> /2<br>/<br>-10-3*BW <sub>UTRA</sub> /2 |  |
| E-UTRA<br>channel<br>Measurement<br>bandwidth                     | 1.08 MHz                                                            | 2.7 MHz                        | 4.5 MHz                                                           | 9.0 MHz                                                       | 13.5 MHz                                                          | 18 MHz                                                          |  |
| UTRA 5MHz<br>channel<br>Measurement<br>bandwidth<br>(Note 1)      | 3.84 MHz                                                            | 3.84 MHz                       | 3.84 MHz                                                          | 3.84 MHz                                                      | 3.84 MHz                                                          | 3.84 MHz                                                        |  |
| UTRA<br>1.6MHz<br>channel<br>measurement<br>bandwidth<br>(Note 2) | 1.28 MHz                                                            | 1.28 MHz                       | 1.28 MHz                                                          | 1.28MHz                                                       | 1.28MHz                                                           | 1.28MHz                                                         |  |
|                                                                   |                                                                     |                                |                                                                   |                                                               |                                                                   |                                                                 |  |

| Table 6.6.2.3.2-1: Requirements for | UTRA <sub>ACLR1/2</sub> |
|-------------------------------------|-------------------------|
|-------------------------------------|-------------------------|

## 6.6.2.3.2A Minimum requirement UTRA for CA

For intra-band contiguous carrier aggregation the UTRA Adjacent Channel Leakage power Ratio (UTRA<sub>ACLR</sub>) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA Adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA<sub>ACLR1</sub>) and the 2<sup>nd</sup> UTRA adjacent channel (UTRA<sub>ACLR2</sub>). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor  $\alpha$  =0.22. The assigned aggregated channel bandwidth power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2A-1. If the measured UTRA channel power is greater than –50dBm then the UTRA<sub>ACLR</sub> shall be higher than the value specified in Table 6.6.2.3.2A-1.

|                                                       | CA bandwidth class / UTRA <sub>ACLR1/2</sub> / measurement bandwidth                                                    |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                       | CA bandwidth class C                                                                                                    |
| UTRA <sub>ACLR1</sub>                                 | 33 dB                                                                                                                   |
| Adjacent channel centre<br>frequency offset (in MHz)  | + BW <sub>Channel_CA</sub> /2 + BW <sub>UTRA</sub> /2<br>/<br>- BW <sub>Channel_CA</sub> / 2 - BW <sub>UTRA</sub> /2    |
| UTRA <sub>ACLR2</sub>                                 | 36 dB                                                                                                                   |
| Adjacent channel centre frequency offset (in MHz)     | + BW <sub>Channel_CA</sub> /2 + 3*BW <sub>UTRA</sub> /2<br>/<br>- BW <sub>Channel_CA</sub> /2 - 3*BW <sub>UTRA</sub> /2 |
| CA E-UTRA channel<br>Measurement bandwidth            | BW <sub>Channel_CA</sub> - 2* BW <sub>GB</sub>                                                                          |
| UTRA 5MHz channel<br>Measurement bandwidth (Note 1)   | 3.84 MHz                                                                                                                |
| UTRA 1.6MHz channel<br>measurement bandwidth (Note 2) | 1.28 MHz                                                                                                                |
|                                                       | DD co-existence with UTRA FDD in paired spectrum.<br>DD co-existence with UTRA TDD in unpaired spectrum.                |

## Table 6.6.2.3.2A-1: Requirements for UTRA<sub>ACLR1/2</sub>

## 6.6.2.3.3A Minimum requirements for CA E-UTRA

For intra-band contiguous carrier aggregation the carrier aggregation E-UTRA Adjacent Channel Leakage power Ratio (CA E-UTRA<sub>ACLR</sub>) is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.3A-1. If the measured adjacent channel power is greater than – 50dBm then the E-UTRA<sub>ACLR</sub> shall be higher than the value specified in Table 6.6.2.3.3A-1.

|                                                   | CA bandwidth class / CA E-UTRA <sub>ACLR</sub> / Measurement<br>bandwidth<br>CA bandwidth class C |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|
| CA E-UTRA <sub>ACLR</sub>                         | 30 dB                                                                                             |
| CA E-UTRA channel<br>Measurement bandwidth        | BW <sub>Channel_CA</sub> - 2* BW <sub>GB</sub>                                                    |
| Adjacent channel centre frequency offset (in MHz) | + BW <sub>Channel_CA</sub><br>/<br>- BW <sub>Channel_CA</sub>                                     |

6.6.2.4 Void

6.6.2.4.1 Void

# 6.6.2A Void

<reserved for future use>

# 6.6.2B Out of band emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.2 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.6.3 apply.

# 6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements inline with SM.329 [2] and E-UTRA operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

## 6.6.3.1 Minimum requirements

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.6.3.1-2 apply for all transmitter band configurations (NRB) and channel bandwidths.

#### Table 6.6.3.1-1: Boundary between E-UTRA out of band and spurious emission domain

| Channel bandwidth                         | 1.4 | 3.0 | 5   | 10  | 15  | 20  |
|-------------------------------------------|-----|-----|-----|-----|-----|-----|
|                                           | MHz | MHz | MHz | MHz | MHz | MHz |
| ООВ<br>boundary<br>F <sub>ООВ</sub> (MHz) | 2.8 | 6   | 10  | 15  | 20  | 25  |

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than  $F_{OOB}$  (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be  $F_{OOB} + MBW/2$ . MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

| Frequency Range                                                                                                  | Maximum<br>Level                                 | Measurement<br>bandwidth | Note |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------|------|--|--|--|--|
| 9 kHz ≤ f < 150 kHz                                                                                              | -36 dBm                                          | 1 kHz                    |      |  |  |  |  |
| 150 kHz ≤ f < 30 MHz                                                                                             | -36 dBm                                          | 10 kHz                   |      |  |  |  |  |
| 30 MHz ≤ f < 1000 MHz                                                                                            | -36 dBm                                          | 100 kHz                  |      |  |  |  |  |
| 1 GHz ≤ f < 12.75 GHz                                                                                            | -30 dBm                                          | 1 MHz                    |      |  |  |  |  |
| 12.75 GHz ≤ f < 5 <sup>th</sup><br>harmonic of the upper<br>frequency edge of the<br>UL operating band in<br>GHz | -30 dBm                                          | 1 MHz                    | 1    |  |  |  |  |
| NOTE 1: Applies for Bar                                                                                          | NOTE 1: Applies for Band 22, Band 42 and Band 43 |                          |      |  |  |  |  |

Table 6.6.3.1-2: Spurious emissions limits

## 6.6.3.1A Minimum requirements for CA

For intra-band contiguous carrier aggregation the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth (Table 5.6A-1). For frequencies  $\Delta$ fOOB greater than FOOB as specified in Table 6.6.3.1A-1 the spurious emission requirements in Table 6.6.3.1-2 are applicable.

#### Table 6.6.3.1A-1: Boundary between E-UTRA out of band and spurious emission domain for intraband contiguous carrier aggregation

| CA Bandwidth Class | ООВ boundary F <sub>оов</sub><br>(MHz) |
|--------------------|----------------------------------------|
| A                  | Table 6.6.3.1-1                        |
| В                  | FFS                                    |
| C                  | BW <sub>Channel_CA</sub> + 5           |

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than  $F_{OOB}$  (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the aggregated channel should be  $F_{OOB} + MBW/2$ . MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

## 6.6.3.2 Spurious emission band UE co-existence

This clause specifies the requirements for the specified E-UTRA band, for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

|                | Spurious emission                                                               |                          |   |                      |                           |              |            |  |
|----------------|---------------------------------------------------------------------------------|--------------------------|---|----------------------|---------------------------|--------------|------------|--|
| E-UTRA<br>Band | Protected band                                                                  | Frequency range<br>(MHz) |   |                      | Maximum<br>Level<br>(dBm) | MBW<br>(MHz) | Note       |  |
| 1              | E-UTRA Band 1, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 38, 40, 41, 42, 43, 44 | F <sub>DL low</sub>      | _ | $F_{DL_high}$        | -50                       | 1            |            |  |
|                | E-UTRA Band 3, 34                                                               | F <sub>DL low</sub>      | - | FDL_high             | -50                       | 1            | 15         |  |
|                | Frequency range                                                                 | 1880                     |   | 1895                 | -40                       | 1            | 15,27      |  |
|                | Frequency range                                                                 | 1895                     |   | 1915                 | -15.5                     | 5            | 15, 26, 27 |  |
|                | Frequency range                                                                 | 1915                     |   | 1920                 | +1.6                      | 5            | 15, 26, 27 |  |
|                | Frequency range                                                                 | 1839.9                   | - | 1879.9               | -50                       | 1            | 15         |  |
| 2              | E-UTRA Band 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 26, 27, 28, 29, 41, 42        | $F_{DL\_low}$            | - | $F_{DL_{high}}$      | -50                       | 1            |            |  |
|                | E-UTRA Band 2, 25                                                               | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 15         |  |
|                | E-UTRA Band 43                                                                  | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 2          |  |
| 3              | E-UTRA Band 1, 7, 8, 20, 26, 27, 28, 33, 34, 38, 41, 43, 44                     | $F_{DL\_low}$            | - | $F_{DL\_high}$       | -50                       | 1            |            |  |
|                | E-UTRA Band 3                                                                   | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 15         |  |
|                | E-UTRA Band 11, 18, 19, 21                                                      | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 13         |  |
|                | E-UTRA Band 22, 42                                                              | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 2          |  |
|                | Frequency range                                                                 | 1884.5                   | - | 1915.7               | -41                       | 0.3          | 13         |  |
| 4              | E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 25, 26, 27, 28, 29, 41, 43 | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            |            |  |
|                | E-UTRA Band 42                                                                  | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 2          |  |
| 5              | E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 22, 23, 24, 25, 28, 29,42, 43          | $F_{DL_{low}}$           | - | $F_{DL_high}$        | -50                       | 1            |            |  |
|                | E-UTRA Band 41                                                                  | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 2          |  |
| 0              | E-UTRA Band 26                                                                  | 859                      | - | 869                  | -27                       | 1            |            |  |
| 6              | E-UTRA Band 1, 9, 11, 34                                                        | F <sub>DL_low</sub>      | - | F <sub>DL_high</sub> | -50                       | 1            |            |  |
|                | Frequency range                                                                 | 860                      | - | 875                  | -37                       | 1            |            |  |
|                | Frequency range                                                                 | 875                      | - | 895                  | -50                       | 1            |            |  |
|                |                                                                                 | 1884.5                   | - | 1919.6               | -41                       | 0.3          | 7          |  |
|                | Frequency range                                                                 | 1884.5                   | - | 1915.7               |                           |              | 8          |  |
| 7              | E-UTRA Band 1, 3, 7, 8, 20, 22, 27, 28, 29, 33, 34, 40, 42, 43                  | $F_{DL\_low}$            | - | $F_{DL_{high}}$      | -50                       | 1            |            |  |
|                | Frequency range                                                                 | 2570                     | - | 2575                 | +1.6                      | 5            | 15, 21, 26 |  |
|                | Frequency range                                                                 | 2575                     | - | 2595                 | -15.5                     | 5            | 15, 21, 26 |  |
|                | Frequency range                                                                 | 2595                     | - | 2620                 | -40                       | 1            | 15, 21     |  |
| 8              | E-UTRA Band 1, 20, 28, 33, 34, 38, 39,<br>40                                    | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            |            |  |
|                | E-UTRA band 3                                                                   | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 2          |  |
|                | E-UTRA band 7                                                                   | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            | 2          |  |
|                | E-UTRA Band 8                                                                   | F <sub>DL_low</sub>      | - | F <sub>DL_high</sub> | -50                       | 1            | 15         |  |
|                | E-UTRA Band 22, 41, 42, 43                                                      | F <sub>DL_low</sub>      | - | F <sub>DL_high</sub> | -50                       | 1            | 2          |  |
|                | E-UTRA Band 11, 21                                                              | F <sub>DL_low</sub>      | - | F <sub>DL_high</sub> | -50                       | 1            | 23         |  |
|                | Frequency range                                                                 | 860                      | - | 890                  | -40                       | 1            | 15, 23     |  |
| 9              | Frequency range<br>E-UTRA Band 1, 11, 18, 19, 21, 26, 28,                       | 1884.5                   | - | 1915.7               | -41                       | 0.3          | 8, 23      |  |
| 5              | 34                                                                              | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            |            |  |
|                | Frequency range                                                                 | 1884.5                   | - | 1915.7               | -41                       | 0.3          | 8          |  |
|                | Frequency range                                                                 | 945                      | - | 960                  | -50                       | 1            |            |  |
|                | Frequency range                                                                 | 1839.9                   | - | 1879.9               | -50                       | 1            |            |  |
|                | Frequency range                                                                 | 2545                     | - | 2575                 | -50                       | 1            |            |  |
| 10             | E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 27, 28, 29, 41, 43     | F <sub>DL_low</sub>      | - | $F_{DL_high}$        | -50                       | 1            |            |  |
|                | E-UTRA Band 22, 42                                                              | F <sub>DL_low</sub>      | _ | $F_{DL_high}$        | -50                       | 1            | 2          |  |
| 4.4            | E-UTRA Band 1, 11, 18, 19, 21, 28, 34                                           | F <sub>DL_low</sub>      | - | F <sub>DL_high</sub> | -50                       | 1            |            |  |
| 11             |                                                                                 |                          |   |                      |                           |              |            |  |
| 11             | Frequency range<br>Frequency range                                              | 1884.5<br>945            | - | 1915.7<br>960        | -41<br>-50                | 0.3          | 8          |  |

# Table 6.6.3.2-1: Requirements

|     | Eroquonov rango                                                                       | 2545                | -   | 2575                 | -50        | 1        | 1          |
|-----|---------------------------------------------------------------------------------------|---------------------|-----|----------------------|------------|----------|------------|
| 12  | E-UTRA Band 2, 5, 13, 14, 17, 23, 24,                                                 | 2040                | -   | 2070                 |            |          |            |
| 12  | 25, 26, 27, 41                                                                        | F <sub>DL low</sub> | -   | $F_{DL_high}$        | -50        | 1        |            |
|     | E-UTRA Band 4, 10                                                                     | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        | 2          |
|     | E-UTRA Band 12                                                                        | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        | 15         |
| 13  | E-UTRA Band 2, 4, 5, 10, 12, 13, 17, 23,                                              | - DL_10W            |     | · DC_nign            | -50        | 1        |            |
|     | 25, 26, 27, 29, 41                                                                    | $F_{DL_{low}}$      | -   | $F_{DL_high}$        | -50        | 1        |            |
|     | Frequency range                                                                       | 769                 | -   | 775                  | -35        | 0.00625  | 15         |
|     | Frequency range                                                                       | 799                 | -   | 805                  | -35        | 0.00625  | 11, 15     |
|     | E-UTRA Band 14                                                                        | $F_{DL\_low}$       | -   | $F_{DL_high}$        | -50        | 1        | 15         |
|     | E-UTRA Band 24                                                                        | $F_{DL\_low}$       | -   | $F_{DL_high}$        | -50        | 1        | 2          |
| 14  | E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17,                                              | _                   |     | _                    | -50        | 1        |            |
|     | 23, 24, 25, 26, 27, 29, 41                                                            | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> |            |          | 40.45      |
|     | Frequency range                                                                       | 769                 | -   | 775                  | -35        | 0.00625  | 12, 15     |
| 47  | Frequency range                                                                       | 799                 | -   | 805                  | -35        | 0.00625  | 11, 12, 15 |
| 17  | E-UTRA Band 2, 5, 13, 14, 17, 23, 24, 25, 26, 27, 41                                  | F <sub>DL low</sub> | _   | F <sub>DL high</sub> | -50        | 1        |            |
|     | E-UTRA Band 4, 10                                                                     | F <sub>DL low</sub> | _   | F <sub>DL_high</sub> | -50        | 1        | 2          |
|     | E-UTRA Band 12                                                                        | F <sub>DL_low</sub> | _   |                      | -50        | 1        | 15         |
| 18  | E-UTRA Band 1, 11, 21, 34                                                             |                     | -   | F <sub>DL_high</sub> | -50        | 1        | 10         |
| 10  |                                                                                       | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -30        | 1        |            |
|     | Frequency range<br>Frequency range                                                    | 860<br>1994 5       | -   | 890<br>1915.7        | -40<br>-41 | 0.3      | 8          |
|     |                                                                                       | 1884.5              | -   |                      | -41        | 0.3      | 0          |
|     | Frequency range                                                                       | 758                 | -   | 799                  | 1          | 1        | 45         |
|     | Frequency range                                                                       | 799                 | -   | 803                  | -40        |          | 15         |
|     | Frequency range                                                                       | 945                 | -   | 960                  | -50        | 1        |            |
|     | Frequency range                                                                       | 1839.9              | -   | 1879.9               | -50        | 1        |            |
| 4.0 | Frequency range                                                                       | 2545                | -   | 2575                 | -50        | 1        |            |
| 19  | E-UTRA Band 1, 11, 21, 28, 34                                                         | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        |            |
|     | Frequency range<br>Frequency range                                                    | 1884.5<br>945       | -   | 1915.7<br>960        | -41<br>-50 | 0.3      | 8          |
|     | Frequency range                                                                       | 1839.9              | -   | 1879.9               | -50        | 1        |            |
|     | Frequency range                                                                       | 2545                | -   | 2575                 | -50        | 1        |            |
| 20  | E-UTRA Band 1, 3, 7, 8, 20, 22, 33, 34,                                               | _                   |     | _                    | -50        | 1        |            |
|     | 40, 43                                                                                | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> |            |          | 45         |
|     | E-UTRA Band 20                                                                        | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        | 15         |
| 04  | E-UTRA Band 38, 42                                                                    | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        | 2          |
| 21  | E-UTRA Band 1, 18, 19, 28, 34                                                         | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        |            |
|     | Frequency range                                                                       | 1884.5              | -   | 1915.7               | -41        | 0.3      | 8          |
|     | Frequency range<br>Frequency range                                                    | 945<br>1839.9       | -   | 960<br>1879.9        | -50<br>-50 | 1        |            |
|     | Frequency range                                                                       | 2545                | -   | 2575                 | -50        | 1        |            |
| 22  | E-UTRA Band 1, 3, 7, 8, 20, 26, 27, 28,                                               | 2010                |     | 20.0                 |            |          |            |
|     | 33, 34, 38, 39, 40, 43                                                                | $F_{DL_{low}}$      | -   | $F_{DL_high}$        | -50        | 1        |            |
|     | Frequency range                                                                       | 3510                | -   | 3525                 | -40        | 1        | 15         |
|     | Frequency range                                                                       | 3525                | -   | 3590                 | -50        | 1        |            |
| 23  | E-UTRA Band 4, 5, 10, 12, 13, 14, 17,                                                 | -                   |     | -                    |            |          |            |
| 24  | 23, 24, 26, 27, 29, 41                                                                | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        |            |
| 24  | E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 23, 24, 25, 26, 29, 41                       | F <sub>DL low</sub> | -   | $F_{DL_high}$        | -50        | 1        |            |
| 25  | E-UTRA Band 4, 5, 10,12, 13, 14, 17, 22,                                              | • DL_IOW            |     | • DL_nign            | 50         | 4        |            |
|     | 23, 24, 26, 27, 28, 29, 41, 42                                                        | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        |            |
|     | E-UTRA Band 2                                                                         | F <sub>DL_low</sub> | L - | F <sub>DL_high</sub> | -50        | 1        | 15         |
|     | E-UTRA Band 25                                                                        | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        | 15         |
|     | E-UTRA Band 43                                                                        | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1        | 2          |
| 26  | E-UTRA Band 1, 2, 3, 4, 5, 10, 11, 12,                                                |                     |     | - 2                  |            |          |            |
|     | 13, 14, 17, 18,19, 21, 22, 23, 24, 25, 26,                                            | _                   |     |                      | -50        | 1        |            |
|     | 29, 34, 40, 42, 43                                                                    |                     | -   | F <sub>DL_high</sub> | 50         | 4        | 2          |
|     | E-UTRA Band 41                                                                        | F <sub>DL_low</sub> | -   | F <sub>DL_high</sub> | -50        | 1<br>0.3 | 2          |
|     | Frequency range                                                                       | 1884.5              |     | 1915.7               | -41<br>-50 | 0.3      | 8          |
|     | Frequency range                                                                       | 703                 | -   | 799                  | -          |          | 4 5        |
|     | -                                                                                     | 799                 | -   | 803                  | -40        | 1        | 15         |
|     | Frequency range                                                                       | 945                 | -   | 960                  | -50        | 1        |            |
| 07  | Frequency range                                                                       | 1839.9              | -   | 1879.9               | -50        | 1        |            |
| 27  | E-UTRA Band 1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 17, 22, 23, 25, 26, 27, 29, 38, 41, 42, |                     |     |                      | -50        | 1        |            |
|     | 43                                                                                    | F <sub>DL_low</sub> | -   | $F_{DL_high}$        | -00        |          |            |
|     | •                                                                                     |                     | •   | 9                    | •          |          |            |

|    | Frequency range                                                                                        | 799                 | - | 805                  | -35   | 0.00625 |            |
|----|--------------------------------------------------------------------------------------------------------|---------------------|---|----------------------|-------|---------|------------|
|    | E-UTRA Band 28                                                                                         | $F_{DL_{low}}$      | - | 790                  | -50   | 1       |            |
| 28 | E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 25, 26, 27, 34, 38, 41                                              | F <sub>DL_low</sub> | - | F <sub>DL_high</sub> | -50   | 1       |            |
|    | E-UTRA Band 1, 4, 10, 22, 42, 43                                                                       | $F_{DL\_low}$       | - | $F_{DL_high}$        | -50   | 1       | 2          |
|    | E-UTRA Band 11, 21                                                                                     | $F_{DL\_low}$       | - | $F_{DL_high}$        | -50   | 1       | 19, 24     |
|    | E-UTRA Band 1                                                                                          | $F_{DL_{low}}$      | - | $F_{DL_high}$        | -50   | 1       | 19, 25     |
|    | Frequency range                                                                                        | 470                 | - | 710                  | -26.2 | 6       | 31         |
|    | Frequency range                                                                                        | 758                 | - | 773                  | -32   | 1       | 15         |
|    | Frequency range                                                                                        | 773                 | - | 803                  | -50   | 1       |            |
|    | Frequency range                                                                                        | 662                 | - | 694                  | -26.2 | 6       | 15         |
|    | Frequency range                                                                                        | 1884.5              | - | 1915.7               | -41   | 0.3     | 8, 19      |
|    | Frequency range                                                                                        | 1839.9              | - | 1879.9               | -50   | 1       |            |
|    |                                                                                                        |                     |   |                      |       |         |            |
| 33 | E-UTRA Band 1, 7, 8, 20, 22, 34, 38, 39, 40, 42, 43                                                    | $F_{DL_{low}}$      | - | $F_{DL\_high}$       | -50   | 1       | 5          |
|    | E-UTRA Band 3                                                                                          | $F_{DL_{low}}$      | - | $F_{DL_high}$        | -50   | 1       | 15         |
| 34 | E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20,<br>21, 22, 26, 28, 33, 38,39, 40, 41, 42, 43,<br>44            | F <sub>DL_low</sub> | _ | F <sub>DL_high</sub> | -50   | 1       | 5          |
|    | Frequency range                                                                                        | 1884.5              | - | 1915.7               | -41   | 0.3     | 8          |
|    | Frequency range                                                                                        | 1839.9              | - | 1879.9               | -50   | 1       | 5          |
| 35 |                                                                                                        |                     |   |                      |       |         |            |
| 36 |                                                                                                        |                     |   |                      |       |         |            |
| 37 |                                                                                                        |                     | - |                      |       |         |            |
| 38 | E-UTRA Band 1,3, 8, 20, 22, 27, 28, 29, 33, 34, 40, 42, 43                                             | $F_{DL_{low}}$      | - | $F_{DL_high}$        | -50   | 1       |            |
|    | Frequency range                                                                                        | 2620                | - | 2645                 | -15.5 | 5       | 15, 22, 26 |
|    | Frequency range                                                                                        | 2645                | - | 2690                 | -40   | 1       | 15, 22     |
| 39 | E-UTRA Band 22, 34, 40, 41, 42, 44                                                                     | $F_{DL_{low}}$      | - | $F_{DL_high}$        | -50   | 1       |            |
| 40 | E-UTRA Band 1, 3, 7, 8, 20, 22, 26, 27, 33, 34, 38, 39, 41, 42, 43, 44                                 | F <sub>DL_low</sub> | - | $F_{DL_high}$        | -50   | 1       |            |
| 41 | E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13,<br>14, 17, 23, 24, 25, 26, 27, 28, 29, 34, 39,<br>40, 42, 44 | $F_{DL\_low}$       | - | $F_{DL_{high}}$      | -50   | 1       |            |
|    | E-UTRA Band 9, 11, 18, 19, 21                                                                          | $F_{DL\_low}$       | - | $F_{DL_high}$        | -50   | 1       | 30         |
|    | Frequency range                                                                                        | 1839.9              |   | 1879.9               | -50   | 1       | 30         |
|    | Frequency range                                                                                        | 1884.5              |   | 1915.7               | -41   | 0.3     | 8, 30      |
| 42 | E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 26, 27, 28, 33, 34, 38, 40, 41, 44                        | F <sub>DL low</sub> | - | $F_{DL_high}$        | -50   | 1       |            |
| 43 | E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 20, 25, 26, 27, 28, 33, 34, 38, 40                                | F <sub>DL_low</sub> | - | F <sub>DL_high</sub> | -50   | 1       |            |
|    | E-UTRA Band 22                                                                                         | $F_{DL_{low}}$      | - | $F_{DL_high}$        | [-50] | [1]     | 3          |
| 44 | E-UTRA Band 3, 5, 8, 34, 39, 41                                                                        | F <sub>DL_low</sub> | - | F <sub>DL_high</sub> | -50   | 1       |            |
|    | E-UTRA Band 1, 40, 42                                                                                  | $F_{DL_{low}}$      | - | $F_{DL_high}$        |       | -50     | 2          |

NOTE 1: FDL\_low and FDL\_high refer to each E-UTRA frequency band specified in Table 5.5-1 NOTE 2: As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2<sup>nd</sup>, 3<sup>rd</sup>, 4<sup>th</sup> [or 5<sup>th</sup>] harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2<sup>nd</sup>, 3<sup>rd</sup> or 4<sup>th</sup> harmonic totally or partially overlaps the measurement bandwidth (MBW). NOTE 3: To meet these requirements some restriction will be needed for either the operating band or protected band NOTE 4: N/A NOTE 5: For non synchronised TDD operation to meet these requirements some restriction will be needed for either the operating band or protected band NOTE 6: N/A. NOTE 7: Applicable when co-existence with PHS system operating in 1884.5-1919.6MHz. NOTE 8: Applicable when co-existence with PHS system operating in 1884.5 - 1915.7MHz. NOTE 9: N/A. NOTE 10: N/A. NOTE 11: Whether the applicable frequency range should be 793-805MHz instead of 799-805MHz is TBD NOTE 12: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dBNOTE 13: This requirement applies for 5, 10, 15 and 20 MHz E-UTRA channel bandwidth allocated within 1744.9MHz and 1784.9MHz. NOTE 14: N/A. NOTE 15: These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth. NOTE 16: N/A. NOTE 17: N/A NOTE 18: N/A NOTE 19: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. NOTE 20: N/A. NOTE 21: This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. NOTE 22: This requirement is applicable for any channel bandwidths within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers with channel bandwidth overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. NOTE 23 This requirement is applicable only for the following cases: - for carriers of 5 MHz channel bandwidth when carrier centre frequency (F<sub>c</sub>) is within the range 902.5 MHz  $\leq$  F<sub>c</sub> < 907.5 MHz with an uplink transmission bandwidth less than or equal to 20 RB - for carriers of 5 MHz channel bandwidth when carrier centre frequency (F<sub>c</sub>) is within the range 907.5 MHz  $\leq$  F<sub>c</sub>  $\leq$  912.5 MHz without any restriction on uplink transmission bandwidth. - for carriers of 10 MHz channel bandwidth when carrier centre frequency ( $F_c$ ) is  $F_c = 910$  MHz with an uplink transmission bandwidth less than or equal to 32 RB with  $RB_{start} > 3$ . NOTE 24: As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 2<sup>nd</sup> harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 2<sup>nd</sup> harmonic totally or partially overlaps the measurement bandwidth (MBW). NOTE 25: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3<sup>rd</sup> harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-1) for which the 3<sup>rd</sup> harmonic totally or partially overlaps the measurement bandwidth (MBW). NOTE 26: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band. NOTE 27: This requirement is applicable for any channel bandwidths within the range 1920 - 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1930 - 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. NOTE 28: N/A. NOTE 29: N/A.

| NOTE 3 |     | This requirement applies when the E-UTRA carrier is confined within 2545-2575 MHz and the channel bandwidth is 10 or 20 MHz.                                                                                                                                           |
|--------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTE 3 | 31: | This requirement is applicable for 5 and 10 MHz E-UTRA channel bandwidth allocated within 718-728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to [30] RB with [RBstart > 1] and RBstart<48. |
|        |     |                                                                                                                                                                                                                                                                        |
|        |     |                                                                                                                                                                                                                                                                        |
|        |     |                                                                                                                                                                                                                                                                        |
|        |     |                                                                                                                                                                                                                                                                        |

# 6.6.3.2A Spurious emission band UE co-existence for CA

This clause specifies the requirements for the specified carrier aggregation configurations for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

| E- Spurious emission                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |                      |                           |              |                  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|----------------------|---------------------------|--------------|------------------|
| UTRA<br>CA<br>Config<br>uration                                           | Protected band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | ency<br>MH2 | y range<br>z)        | Maximum<br>Level<br>(dBm) | MBW<br>(MHz) | Note             |
| CA_1C                                                                     | E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 38, 40, 41, 42, 43, 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $F_{DL_{low}}$      | -           | $F_{DL_{high}}$      | -50                       | 1            |                  |
|                                                                           | E-UTRA band 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <sub>DL_low</sub> | -           | F <sub>DL_high</sub> | -50                       | 1            | 4, 6, 7          |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1880                | -           | 1895                 | -40                       | 1            | 7, 10            |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1895                | -           | 1915                 | -15.5                     | 5            | 7, 10, 12        |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1900                | -           | 1915                 | -15.5                     | 5            | 6, 7, 10,<br>12  |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1915                | -           | 1920                 | +1.6                      | 5            | 6, 7, 10,<br>12  |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1884.5              | -           | 1915.7               | -41                       | 0.3          | 4, 5             |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1839.9              | -           | 1879.9               | -50                       | 1            |                  |
| CA_7C                                                                     | E-UTRA Band 1, 3, 7, 8, 20, 22, 27, 28, 29, 33, 34, 40, 42, 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $F_{DL\_low}$       | -           | $F_{DL_high}$        | -50                       | 1            |                  |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2570                | -           | 2575                 | +1.6                      | 5            | 8, 12            |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2575<br>2595        | -           | 2595<br>2620         | -15.5<br>-40              | 5            | 8, 12<br>8       |
| CA_38C                                                                    | E-UTRA Band 1,3, 8, 20, 22, 27, 28, 29, 33, 34, 40, 42, 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F <sub>DL_low</sub> | _           | F <sub>DL_high</sub> | -40                       | 1            | 0                |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2620                | _           | 2645                 | -15.5                     | 5            | 9, 10,<br>11, 12 |
|                                                                           | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2645                | -           | 2690                 | -40                       | 1            | 9, 10, 11        |
| CA_40C                                                                    | E-UTRA Band 1, 3, 7, 8, 20, 22, 26, 27, 33, 34, 38, 39, 41, 42, 43, 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F <sub>DL_low</sub> | -           | $F_{DL_high}$        | -50                       | 1            |                  |
| CA_41C                                                                    | E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13 ,<br>14, 17, 23, 24, 25, 26, 27, 28, 29, 34, 39,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F <sub>DL low</sub> | -           | F <sub>DL bigh</sub> | -50                       | 1            |                  |
| NOTE 5:<br>NOTE 6:<br>NOTE 7:<br>NOTE 8:<br>NOTE 9:<br>NOTE 10<br>NOTE 11 | 14, 17, 23, 24, 25, 26, 27, 28, 29, 34, 39,<br>40, 42, 44       -       -       FDL_high       -50       1         TE 1:       FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1       TE 2:       As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RE within the transmission bandwidth (see Figure 5.6-1) for which the 2nd or 3rd harmonic, i.e. the frequency equal to two or three times the frequency of that RE, is within the measurement bandwidth (MBW).         TE 3:       To meet these requirements some restriction will be needed for either the operating band or protected band         TE 4:       Applicable when CA_NS_01 in subclause 6.6.3.3A.1 is signalled by the network.         TE 5:       Applicable when CA_NS_02 in subclause 6.6.3.3A.2 is signalled by the network. |                     |             |                      |                           |              |                  |

#### Table 6.6.3.2A-1: Requirements

# 6.6.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

#### 6.6.3.3.1 Minimum requirement (network signalled value "NS\_05")

When "NS\_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency band<br>(MHz)                                                                                                                                                                                                                                                                                                        |          | el bandw<br>mission l |           |           | Measurement<br>bandwidth | Note |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----------|-----------|--------------------------|------|
|                                                                                                                                                                                                                                                                                                                                | 5<br>MHz | 10<br>MHz             | 15<br>MHz | 20<br>MHz |                          |      |
| 1884.5 ≤ f ≤1915.7                                                                                                                                                                                                                                                                                                             | -41      | -41                   | -41       | -41       | 300 KHz                  | 1    |
| NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel<br>bandwidth frequency is larger than or equal to the upper edge of PHS band<br>(1915.7 MHz) + 4 MHz + the channel BW assigned, where channel BW is as<br>defined in subclause 5.6. Additional restrictions apply for operations below<br>this point. |          |                       |           |           |                          |      |

 Table 6.6.3.3.1-1: Additional requirements (PHS)

The requirements in Table 6.6.3.3.1-1 apply with the additional restrictions specified in Table 6.6.3.3.1-2 when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is less than the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned.

| Table 6.6.3.3.1-2: RB restriction | s for additional requ | uirement (PHS). |
|-----------------------------------|-----------------------|-----------------|
|-----------------------------------|-----------------------|-----------------|

| 15 MHz channel bandwidth with $f_c = 1932.5$ MHz |                   |                                         |       |  |  |  |
|--------------------------------------------------|-------------------|-----------------------------------------|-------|--|--|--|
| RB <sub>start</sub> 0-7 8-66 67-74               |                   |                                         |       |  |  |  |
| L <sub>CRB</sub>                                 | N/A               | ≤ MIN(30, 67 – RB <sub>start</sub> )    | N/A   |  |  |  |
|                                                  | 20 MHz channel ba | andwidth with f <sub>c</sub> = 1930 MHz | Z     |  |  |  |
| RB <sub>start</sub>                              | 0-23              | 24-75                                   | 76-99 |  |  |  |
| L <sub>CRB</sub>                                 | N/A               | ≤ MIN(24, 76 – RB <sub>start</sub> )    | N/A   |  |  |  |

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

## 6.6.3.3.2 Minimum requirement (network signalled value "NS\_07")

When "NS\_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency band                                                                                                       | Channel bandwidth / Spectrum | Measurement |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|--|--|--|
| (MHz)                                                                                                                | emission limit (dBm)         | bandwidth   |  |  |  |
|                                                                                                                      | 10 MHz                       |             |  |  |  |
| 769 ≤ f ≤ 775                                                                                                        | -57                          | 6.25 kHz    |  |  |  |
| NOTE: The emissions measurement shall be sufficiently power averaged to ensure standard standard deviation < 0.5 dB. |                              |             |  |  |  |

| Table 6.6.3.3.2-1: | Additional | requirements |
|--------------------|------------|--------------|
|--------------------|------------|--------------|

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (6.25 kHz).

#### 6.6.3.3.3 Minimum requirement (network signalled value "NS\_08")

When "NS 08" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.3-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency<br>band | Channel ban | dwidth / Spectrum<br>(dBm) | Measurement<br>bandwidth |       |
|-------------------|-------------|----------------------------|--------------------------|-------|
| (MHz)             |             |                            |                          |       |
| 860 ≤ f ≤ 890     | -40         | -40                        | -40                      | 1 MHz |

Table 6.6.3.3.3-1: Additional requirement

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

#### 6.6.3.3.4 Minimum requirement (network signalled value "NS\_09")

When "NS 09" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.4-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency band<br>(MHz) | Channel bandwidth / Spectrum emission<br>limit (dBm) |       |       | Measurement<br>bandwidth |
|-------------------------|------------------------------------------------------|-------|-------|--------------------------|
|                         | 5MHz                                                 | 10MHz | 15MHz |                          |
| 1475.9 ≤ f ≤ 1510.9     | -35                                                  | -35   | -35   | 1 MHz                    |

- NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).
- NOTE 2: To improve measurement accuracy, A-MPR values for NS\_09 specified in Table 6.2.4-1 in subclause 6.2.4 are derived based on both the above NOTE 1 and 100 kHz RBW.

#### 6.6.3.3.5 Minimum requirement (network signalled value "NS\_12")

When "NS 12" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.5-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency band<br>(MHz)                                                                                         | Channel bandwidth /<br>Spectrum emission limit<br>(dBm) | Measurement<br>bandwidth |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|
|                                                                                                                 | 1.4 MHz, 3 MHz, 5 MHz                                   |                          |
| 806 ≤ f ≤ 813.5                                                                                                 | -42                                                     | 6.25 kHz                 |
| NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 814.2 MHz.              |                                                         |                          |
| NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB. |                                                         |                          |

#### 6.6.3.3.6 Minimum requirement (network signalled value "NS\_13")

When "NS 13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.6-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency band<br>(MHz)                                                                                         | Channel bandwidth /<br>Spectrum emission limit<br>(dBm)<br>5 MHz | Measurement<br>bandwidth |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|
| 806 ≤ f ≤ 816                                                                                                   | -42                                                              | 6.25 kHz                 |
| NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 819 MHz.                |                                                                  |                          |
| NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB. |                                                                  |                          |

Table 6.6.3.3.6-1: Additional requirements

## 6.6.3.3.7 Minimum requirement (network signalled value "NS\_14")

When "NS 14" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.7-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency band<br>(MHz)                                                                                                                                                                                                                          | Channel bandwidth /<br>Spectrum emission limit<br>(dBm) | Measurement<br>bandwidth |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|
|                                                                                                                                                                                                                                                  | 10 MHz, 15 MHz                                          |                          |
| 806 ≤ f ≤ 816                                                                                                                                                                                                                                    | -42                                                     | 6.25 kHz                 |
| <ul> <li>NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 824 MHz.</li> <li>NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation &lt; 0.5 dB.</li> </ul> |                                                         |                          |

Table 6.6.3.3.7-1: Additional requirements

## 6.6.3.3.8 Minimum requirement (network signalled value "NS\_15")

When "NS 15" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.8-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Table | 6.6.3.3.8- | 1: Additio | onal requir | ements |
|-------|------------|------------|-------------|--------|
|-------|------------|------------|-------------|--------|

| Frequency band<br>(MHz)                                                                                            | Channel bandwidth /<br>Spectrum emission limit<br>(dBm)<br>1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz | Measurement<br>bandwidth |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|
| 851 ≤ f ≤ 859                                                                                                      | -53                                                                                              | 6.25 kHz                 |
| NOTE 1: The emissions measurement shall be sufficiently power averaged to ensure a<br>standard deviation < 0.5 dB. |                                                                                                  |                          |

# 6.6.3.3.9 Minimum requirement (network signalled value "NS\_16")

When "NS\_16" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.9-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency<br>band<br>(MHz) | Channel bandwidth / Spectrum<br>emission limit (dBm)<br>1.4, 3, 5, 10 MHz | Measurement<br>bandwidth | Note |
|----------------------------|---------------------------------------------------------------------------|--------------------------|------|
| 790 ≤ f ≤ 803              | -32                                                                       | 1 MHz                    |      |

#### Table 6.6.3.3.9-1: Additional requirements

# 6.6.3.3.10 Minimum requirement (network signalled value "NS\_17")

When "NS\_17" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.10-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.3.1-1 from the edge of the channel bandwidth.

| Frequency<br>band<br>(MHz)                                                                                                                        | Channel bandwidth / Spectrum<br>emission limit (dBm)<br>5, 10 MHz | Measurement<br>bandwidth | Note |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|------|
| 470 ≤ f ≤ 710                                                                                                                                     | -26.2                                                             | 6 MHz                    | 1    |
| NOTE 1: Applicable when the assigned E-UTRA carrier is confined within 718 MHz<br>and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. |                                                                   |                          |      |

#### Table 6.6.3.3.10-1: Additional requirements

#### 6.6.3.3.11 Minimum requirement (network signalled value "NS\_18")

When "NS\_18" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.11-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.11-1: Additional requirements

| Frequency<br>band<br>(MHz) | Channel bandwidth / Spectrum<br>emission limit (dBm)<br>5, 10, 15, 20 MHz | Measurement<br>bandwidth | Note |
|----------------------------|---------------------------------------------------------------------------|--------------------------|------|
| 692-698                    | -26.2                                                                     | 6 MHz                    |      |

#### 6.6.3.3.12 Minimum requirement (network signalled value "NS\_19")

When "NS\_19" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.12-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Frequency<br>band<br>(MHz) | Channel bandwidth / Spectrum<br>emission limit (dBm)<br>3, 5, 10, 15, 20 MHz | Measurement<br>bandwidth | Note |
|----------------------------|------------------------------------------------------------------------------|--------------------------|------|
| 662 ≤ f ≤ 694              | -25                                                                          | 8 MHz                    |      |

#### 6.6.3.3.13 Minimum requirement (network signalled value "NS\_11")

When "NS\_11" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.13-1. These requirements also apply for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

| Frequency<br>band<br>(MHz) | Channel bandwidth / Spectrum<br>emission limit (dBm)<br>1.4, 3, 5, 10, 15, 20 MHz | Measurement<br>bandwidth |
|----------------------------|-----------------------------------------------------------------------------------|--------------------------|
| E-UTRA Band 2              | -50                                                                               | 1 MHz                    |
| 1998 ≤ f ≤ 1999            | -21                                                                               | 1 MHz                    |
| 1997 ≤ f < 1998            | -27                                                                               | 1 MHz                    |
| 1996 ≤ f < 1997            | -32                                                                               | 1 MHz                    |
| 1995 ≤ f < 1996            | -37                                                                               | 1 MHz                    |
| 1990 ≤ f < 1995            | -40                                                                               | 1 MHz                    |

Table 6.6.3.3.13-1: Additional requirements

#### 6.6.3.3.14 Minimum requirement (network signalled value " NS\_20")

When "NS\_20" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.14-1. These requirements also apply for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 and Table 6.6.3.1A-1 from the edge of the channel bandwidth.

| Frequency<br>band<br>(MHz)                                                          | Channel bandwidth / Spectrum<br>emission limit (dBm)<br>5, 10, 15, 20 MHz | Measurement<br>bandwidth |  |  |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|--|--|--|--|
| 1990 ≤ f < 1999                                                                     | -40                                                                       | 1 MHz                    |  |  |  |  |
| 1999 ≤ f ≤ 2000                                                                     | -40                                                                       | Note 1                   |  |  |  |  |
| Note 1: The measurement bandwidth is 1% of the applicable E-UTRA channel bandwidth. |                                                                           |                          |  |  |  |  |

Table 6.6.3.3.14-1: Additional requirements

#### 6.6.3.3.15 Minimum requirement (network signalled value " NS\_22")

When "NS 22" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.15-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Protected band |                                                                                           | Frequency range (MHz) |   |                 | Maximum Level (dBm) | MBW (MHz) |  |
|----------------|-------------------------------------------------------------------------------------------|-----------------------|---|-----------------|---------------------|-----------|--|
| 43             |                                                                                           | $F_{DL_{low}}$        | • | $F_{DL_{high}}$ | [-50]               | 1         |  |
| NOTE:          | E: The [-50] dBm/MHz in Table 6.6.3.3.13-1 is for unsynchronized operation. To meet these |                       |   |                 |                     |           |  |
|                | requirements some restriction will be needed for either the operating band or protected   |                       |   |                 |                     |           |  |
|                | band.                                                                                     |                       |   |                 |                     |           |  |

Table 6.6.3.3.15-1: Additional requirement

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

## 6.6.3.3.16 Minimum requirement (network signalled value " NS\_23")

When "NS 23" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.16-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

| Protected band | Frequen                                                                                                                                                                             | cy rar | nge (MHz)            | Maximum Level (dBm) | MBW (MHz) |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|---------------------|-----------|--|--|
| 42             | F <sub>DL_low</sub>                                                                                                                                                                 | -      | F <sub>DL_high</sub> | [-50]               | 1         |  |  |
|                | OTE: The [-50] dBm/MHz in Table 6.6.3.3.14-1 is for unsynchronized operation. To meet these requirements some restriction will be needed for either the operating band or protected |        |                      |                     |           |  |  |

 Table 6.6.3.3.16-1: Additional requirement

NOTE 1: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (1 MHz).

# 6.6.3.3A Additional spurious emissions for CA

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell reconfiguration message.

## 6.6.3.3A.1 Minimum requirement for CA\_1C (network signalled value "CA\_NS\_01")

When "CA\_NS\_01" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.1-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

| Protected band                                                                                              | Frequency range (MHz) |   |          | Maximum Level (dBm) | MBW (MHz) | Note |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------|---|----------|---------------------|-----------|------|--|--|--|
| E-UTRA band 34                                                                                              | FDL_low               | - | FDL_high | -50                 | 1         |      |  |  |  |
| Frequency range                                                                                             | 1884.5                | - | 1915.7   | -41                 | 0.3       | 1    |  |  |  |
| NOTE 1: Applicable when the aggregated channel bandwidth is confined within frequency range 1940 – 1980 MHz |                       |   |          |                     |           |      |  |  |  |

Table 6.6.3.3A.1-1: Additional requirements (PHS)

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

## 6.6.3.3A.2 Minimum requirement for CA\_1C (network signalled value "CA\_NS\_02")

When "CA\_NS\_02" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.2-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

| Protected band  | Frequency range (MHz) |   |               | Maximum Level (dBm) | MBW (MHz) |
|-----------------|-----------------------|---|---------------|---------------------|-----------|
| E-UTRA band 34  | $F_{DL_{low}}$        | - | $F_{DL_high}$ | -50                 | 1         |
| Frequency range | 1900                  | - | 1915          | -15.5               | 5         |
| Frequency range | 1915                  | - | 1920          | +1.6                | 5         |

#### Table 6.6.3.3A.2-1: Additional requirements

# 6.6.3.3A.3 Minimum requirement for CA\_1C (network signalled value "CA\_NS\_03")

When "CA\_NS\_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.3-1. This requirement also applies for the frequency ranges that are less than FOOB (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

| Protected band  | Frequency range (MHz) |   | nge (MHz)            | Maximum Level (dBm) | MBW (MHz) |
|-----------------|-----------------------|---|----------------------|---------------------|-----------|
| E-UTRA band 34  | $F_{DL_{low}}$        | - | F <sub>DL_high</sub> | -50                 | 1         |
| Frequency range | 1880                  | - | 1895                 | -40                 | 1         |
| Frequency range | 1895                  | - | 1915                 | -15.5               | 5         |
| Frequency range | 1915                  | - | 1920                 | +1.6                | 5         |

Table 6.6.3.3A.3-1: Additional requirements

## 6.6.3.3A.4 Minimum requirement for CA\_38C (network signalled value "CA\_NS\_05")

When "CA\_NS\_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.4-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth. This requirement is applicable for carriers with aggregated channel bandwidths confined in 2570 - 2615 MHz.

Table 6.6.3.3A.4-1: Additional requirements

| Ī | Protected band  | Frequency range (MHz) |   |      | Maximum Level (dBm) | MBW (MHz) |
|---|-----------------|-----------------------|---|------|---------------------|-----------|
|   | Frequency range | 2620                  | - | 2645 | -15.5               | 5         |
|   | Frequency range | 2645                  | - | 2690 | -40                 | 1         |

## 6.6.3.3A.5 Minimum requirement for CA\_7C (network signalled value "CA\_NS\_06")

When "CA\_NS\_06" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3A.5-1. This requirement also applies for the frequency ranges that are less than  $F_{OOB}$  (MHz) in Table 6.6.3.1A-1 from the edge of the aggregated channel bandwidth.

| Protected band  | Frequenc | y rar | nge (MHz) | Maximum Level (dBm) | MBW (MHz) |
|-----------------|----------|-------|-----------|---------------------|-----------|
| Frequency range | 2570     | 1     | 2575      | +1.6                | 5         |
| Frequency range | 2575     | -     | 2595      | -15.5               | 5         |
| Frequency range | 2595     | -     | 2620      | -40                 | 1         |

Table 6.6.3.3A.5-1: Additional requirements

# 6.6.3A Void

<reserved for future use>

# 6.6.3B Spurious emission for UL-MIMO

For UE supporting UL-MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.6.3 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-1.

For single-antenna port scheme, the general requirements in subclause 6.6.3 apply.

6.6A Void

6.6B Void

# 6.7 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

# 6.7.1 Minimum requirement

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.1-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.1-1.

| BW Channel (UL)                         | 5MHz       |        | 10MHz  |        | 15MHz   |         | 20MHz  |        |
|-----------------------------------------|------------|--------|--------|--------|---------|---------|--------|--------|
| Interference Signal<br>Frequency Offset | 5MHz       | 10MHz  | 10MHz  | 20MHz  | 15MHz   | 30MHz   | 20MHz  | 40MHz  |
| Interference CW Signal<br>Level         | nal -40dBc |        |        |        |         |         |        |        |
| Intermodulation Product                 | -29dBc     | -35dBc | -29dBc | -35dBc | -29dBc  | -35dBc  | -29dBc | -35dBc |
| Measurement bandwidth                   | 4.5MHz     | 4.5MHz | 9.0MHz | 9.0MHz | 13.5MHz | 13.5MHz | 18MHz  | 18MHz  |

Table 6.7.1-1: Transmit Intermodulation

# 6.7.1A Minimum requirement for CA

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product on both component carriers when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through rectangular filter with measurement bandwidth shown in Table 6.7.1A-1.

For intra-band contiguous carrier aggregation the requirement of transmitting intermodulation is specified in Table 6.7.1A-1.

| CA bandwidth class(UL)                  | С                                              |        |  |
|-----------------------------------------|------------------------------------------------|--------|--|
| Interference Signal<br>Frequency Offset | BWChannel_CA 2*BWChannel_0                     |        |  |
| Interference CW Signal<br>Level         | -40dBc                                         |        |  |
| Intermodulation Product                 | -29dBc                                         | -35dBc |  |
| Measurement bandwidth                   | BW <sub>Channel_CA</sub> - 2* BW <sub>GB</sub> |        |  |

# 6.7.1B Minimum requirement for UL-MIMO

For UE supporting UL-MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.7.1 apply to each transmit antenna connector. The requirements shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2.

For single-antenna port scheme, the requirements in subclause 6.7.1 apply.

- 6.8.1 Void
- 6.8A Void

# 6.8B Time alignment error for UL-MIMO

For UE(s) with multiple transmit antenna connectors supporting UL-MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

# 6.8B.1 Minimum Requirements

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

# 7 Receiver characteristics

# 7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

With the exception of subclause 7.3, the requirements shall be verified with the network signalling value NS\_01 configured (Table 6.2.4-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

For the additional requirements for intra-band non-contiguous carrier aggregation, in-gap test refers to the case when the interfering signal(s) is (are) located at a negative offset with respect to the the assigned channel frequency of the highest carrier frequency; or located at a positive offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation, out-of-gap test refers to the case when the interfering signal(s) is (are) located at a positive offset with respect to the assigned channel frequency of the

highest carrier frequency, or located at a negative offset with respect to the assigned channel frequency of the lowest carrier frequency.

For the additional requirements for intra-band non-contiguous carrier aggregation with channel bandwidth larger than or equal to 5 MHz, existing adjacent channel selectivity requirements, in-band blocking requirements and narrow band blocking requirements shall be supported for in-gap tests only if the sub-block gap size satisfies the following condition so that the interferer position does not change the nature of the core requirement tested:

 $Wgap \ge (Interferer frequency offset 1) + (Interferer frequency offset 2) -0.5*( (Channel bandwidth 1) + (Channel bandwidth 2) )$ 

where the interferer frequency offset represents the interferer frequency offset per carrier specified in subclause 7.5.1, subclause 7.6.1 and subclause 7.6.3.

# 7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. These requirements apply to all UE categories unless stated otherwise. Requirements for 4 ports are FFS. With the exception of subclause 7.9 all requirements shall be verified by using both (all) antenna ports simultaneously.

# 7.3 Reference sensitivity power level

The reference sensitivity power level REFSENS is the minimum mean power applied to both the UE antenna ports at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

# 7.3.1 Minimum requirements (QPSK)

The throughput shall be  $\ge 95\%$  of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2

| Channel bandwidth                                                                                                                                                                                                                  |                                                        |                          |                          |                         |                             |             |                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------|--------------------------|-------------------------|-----------------------------|-------------|--------------------|--|--|--|
|                                                                                                                                                                                                                                    | E-UTRA 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Duplex |                          |                          |                         |                             |             |                    |  |  |  |
| Band                                                                                                                                                                                                                               | (dBm)                                                  | (dBm)                    | (dBm)                    | (dBm)                   | (dBm)                       | (dBm)       | Mode               |  |  |  |
| 1                                                                                                                                                                                                                                  | 402.7                                                  | 00.7                     | -100                     | -97                     | -95.2                       | -94         | FDD                |  |  |  |
| 2                                                                                                                                                                                                                                  | -102.7                                                 | -99.7                    | -98                      | -95                     | -93.2                       | -92         | FDD                |  |  |  |
| 3                                                                                                                                                                                                                                  | -101.7                                                 | -98.7                    | -97                      | -94                     | -92.2                       | -91         | FDD                |  |  |  |
| 4                                                                                                                                                                                                                                  | -104.7                                                 | -101.7                   | -100                     | -97                     | -95.2                       | -94         | FDD                |  |  |  |
| 5                                                                                                                                                                                                                                  | -103.2                                                 | -100.2                   | -98                      | -95                     |                             |             | FDD                |  |  |  |
| 6<br>7                                                                                                                                                                                                                             |                                                        |                          | -100                     | -97                     | 02.0                        | 00          | FDD                |  |  |  |
|                                                                                                                                                                                                                                    | 400.0                                                  | 00.0                     | -98                      | -95                     | -93.2                       | -92         | FDD                |  |  |  |
| 8                                                                                                                                                                                                                                  | -102.2                                                 | -99.2                    | -97                      | -94                     | 04.0                        | 00          | FDD                |  |  |  |
| 9                                                                                                                                                                                                                                  |                                                        |                          | -99                      | -96                     | -94.2                       | -93         | FDD                |  |  |  |
| 10                                                                                                                                                                                                                                 |                                                        |                          | -100                     | -97                     | -95.2                       | -94         | FDD                |  |  |  |
| 11                                                                                                                                                                                                                                 | 404.7                                                  | 00.7                     | -100                     | -97                     |                             |             | FDD                |  |  |  |
| 12                                                                                                                                                                                                                                 | -101.7                                                 | -98.7                    | -97                      | -94                     |                             |             | FDD                |  |  |  |
| 13                                                                                                                                                                                                                                 |                                                        |                          | -97                      | -94                     |                             |             | FDD                |  |  |  |
| 14                                                                                                                                                                                                                                 |                                                        |                          | -97                      | -94                     |                             |             | FDD                |  |  |  |
|                                                                                                                                                                                                                                    |                                                        |                          | 07                       | 0.4                     |                             |             | 500                |  |  |  |
| 17                                                                                                                                                                                                                                 |                                                        |                          | -97<br>-100 <sup>7</sup> | -94<br>-97 <sup>7</sup> | -95.2 <sup>7</sup>          |             | FDD                |  |  |  |
| 18                                                                                                                                                                                                                                 |                                                        |                          |                          |                         |                             |             | FDD                |  |  |  |
| 19                                                                                                                                                                                                                                 |                                                        |                          | -100                     | -97                     | -95.2                       |             | FDD                |  |  |  |
| 20                                                                                                                                                                                                                                 |                                                        |                          | -97                      | -94                     | -91.2                       | -90         | FDD                |  |  |  |
| 21                                                                                                                                                                                                                                 |                                                        |                          | -100                     | -97                     | -95.2                       | 04          | FDD                |  |  |  |
| 22                                                                                                                                                                                                                                 |                                                        |                          | -97                      | -94                     | -92.2                       | -91         | FDD                |  |  |  |
| 23                                                                                                                                                                                                                                 | -104.7                                                 | -101.7                   | -100                     | -97                     | -95.2                       | -94         | FDD                |  |  |  |
| 24                                                                                                                                                                                                                                 |                                                        |                          | -100                     | -97                     | 04.7                        | 00.5        | FDD                |  |  |  |
| 25                                                                                                                                                                                                                                 | -101.2                                                 | -98.2                    | -96.5                    | -93.5                   | -91.7<br>-92.7 <sup>6</sup> | -90.5       | FDD                |  |  |  |
| 26                                                                                                                                                                                                                                 | -102.7                                                 | -99.7                    | -97.5 <sup>6</sup>       | -94.5 <sup>6</sup>      | -92.7                       |             | FDD                |  |  |  |
| 27                                                                                                                                                                                                                                 | -103.2                                                 | -100.2                   | -98                      | -95                     | 00.7                        | 01          | FDD                |  |  |  |
| 28                                                                                                                                                                                                                                 |                                                        | -100.2                   | -98.5                    | -95.5                   | -93.7                       | -91         | FDD                |  |  |  |
|                                                                                                                                                                                                                                    |                                                        |                          | 400                      | 07                      | -95.2                       | -94         | TDD                |  |  |  |
| 33                                                                                                                                                                                                                                 |                                                        |                          | -100                     | -97                     | -95.2                       | -94         | TDD                |  |  |  |
| 34                                                                                                                                                                                                                                 | 100.0                                                  | 402.2                    | -100                     | -97                     | -95.2                       | -94         | TDD                |  |  |  |
| 35                                                                                                                                                                                                                                 | -106.2                                                 | -102.2                   | -100                     | -97                     | -95.2                       | -94<br>-94  | TDD                |  |  |  |
| 36<br>37                                                                                                                                                                                                                           | -106.2                                                 | -102.2                   | -100<br>-100             | -97<br>-97              | -95.2                       | -94         | TDD<br>TDD         |  |  |  |
|                                                                                                                                                                                                                                    |                                                        |                          |                          |                         | -95.2                       | -94         |                    |  |  |  |
| 38<br>39                                                                                                                                                                                                                           |                                                        |                          | -100<br>-100             | -97<br>-97              | -95.2                       | -94<br>-94  | TDD<br>TDD         |  |  |  |
| <u>39</u>                                                                                                                                                                                                                          |                                                        |                          | -100                     | -97<br>-97              | -95.2                       | -94         | TDD                |  |  |  |
| 40                                                                                                                                                                                                                                 |                                                        |                          | -100                     | -97<br>-95              | -93.2                       | -94         | TDD                |  |  |  |
| 41                                                                                                                                                                                                                                 |                                                        |                          | -98<br>-99               | -95<br>-96              | -93.2                       | -92         | TDD                |  |  |  |
| 42                                                                                                                                                                                                                                 |                                                        |                          | -99                      | -96<br>-96              | -94.2                       | -93         | TDD                |  |  |  |
| 43                                                                                                                                                                                                                                 |                                                        | [_100.2]                 |                          |                         | [-93.2]                     | [-92]       | TDD                |  |  |  |
| 44<br>NOTE 1:                                                                                                                                                                                                                      | The transmitter                                        | [-100.2]<br>shall be set | [-98]                    | [-95]<br>as defined     |                             |             | עטי                |  |  |  |
| NOTE 2:                                                                                                                                                                                                                            | Reference meas                                         |                          |                          |                         |                             |             | NG                 |  |  |  |
|                                                                                                                                                                                                                                    | Pattern OP.1 FE                                        | DD/TDD as                | described                | in Annex A              |                             |             |                    |  |  |  |
| NOTE 3:                                                                                                                                                                                                                            | The signal powe                                        |                          |                          |                         | d 0 the ref                 | 010000 000  | oitiv <i>it</i> iv |  |  |  |
| NOTE 4:                                                                                                                                                                                                                            | For the UE which level is FFS.                         | n supports               | both Band                | a 3 and Bar             | iu 9 the ref                | erence sen  | SILIVILY           |  |  |  |
| NOTE 5:                                                                                                                                                                                                                            | For the UE which level is FFS.                         | h supports               | both Band                | d 11 and Ba             | and 21 the                  | reference s | ensitivity         |  |  |  |
| NOTE 6:                                                                                                                                                                                                                            | <sup>6</sup> indicates that t                          |                          |                          |                         |                             |             |                    |  |  |  |
| frequency of the assigned E-UTRA channel bandwidth is within 865-894 MHz.<br>NOTE 7: For a UE that support both Band 18 and Band 26, the reference sensitivity level<br>for Band 26 applies for the applicable channel bandwidths. |                                                        |                          |                          |                         |                             |             |                    |  |  |  |

| Table 7.3.1-1: | Reference | sensitivity | QPSK | PREFSENS |
|----------------|-----------|-------------|------|----------|
|                |           |             |      |          |

The reference receive sensitivity (REFSENS) requirement specified in Table 7.3.1-1 shall be met for an uplink transmission bandwidth less than or equal to that specified in Table 7.3.1-2.

NOTE: Table 7.3.1-2 is intended for conformance tests and does not necessarily reflect the operational conditions of the network, where the number of uplink and downlink allocated resource blocks will be practically constrained by other factors. Typical receiver sensitivity performance with HARQ retransmission enabled and using a residual BLER metric relevant for e.g. Speech Services is given in the Annex X (informative).

For the UE which supports inter-band carrier aggregation configuration in Table 7.3.1-1A with uplink in one E-UTRA band, the minimum requirement for reference sensitivity in Table 7.3.1-1 shall be increased by the amount given in  $\Delta R_{IB,c}$  in Table7.3.1-1A for the applicable E-UTRA bands.

| Inter-band CA<br>Configuration                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΔR <sub>IB,c</sub> [dB]            |  |  |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|
| CA_1A-5A                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| 07_17-37                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_1A-18A                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
|                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
| CA_1A-19A                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
|                                                                         | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
| CA_1A-21A                                                               | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
|                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_2A-17A                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                |  |  |  |  |  |  |
|                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_3A-5A                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
|                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_3A-7A                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_3A-8A                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| 0/(_0/(0/(                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_3A-20A                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
|                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
| CA_4A-5A                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
|                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_4A-7A                                                                | 4 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                |  |  |  |  |  |  |
|                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                |  |  |  |  |  |  |
| CA_4A-12A                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                |  |  |  |  |  |  |
|                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_4A-13A                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
|                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
| CA_4A-17A                                                               | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                |  |  |  |  |  |  |
| CA_5A-12A                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                |  |  |  |  |  |  |
| 04_34-124                                                               | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3                                |  |  |  |  |  |  |
| CA_5A-17A                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                |  |  |  |  |  |  |
|                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3                                |  |  |  |  |  |  |
| CA_7A-20A                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
|                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
| CA_8A-20A                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                  |  |  |  |  |  |  |
|                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
| CA_11A-18A                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                  |  |  |  |  |  |  |
| NOTE 1. The a                                                           | above additional tolerances are only ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                  |  |  |  |  |  |  |
| band                                                                    | s that belong to the supported inter-bar<br>gurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd carrier aggregation             |  |  |  |  |  |  |
| NOTE 2: The a                                                           | above additional tolerances also apply i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n intra-band CA and non-           |  |  |  |  |  |  |
| aggre                                                                   | egated operation for the supported E-U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRA operating bands that belong to |  |  |  |  |  |  |
|                                                                         | upported inter-band carrier aggregation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |  |  |  |  |  |  |
|                                                                         | se the UE supports more than one of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |  |  |  |  |  |  |
|                                                                         | egation configurations and a E-UTRA o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |  |  |  |  |  |  |
|                                                                         | nter-band carrier aggregation configura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |  |  |  |  |  |  |
|                                                                         | When the E-UTRA operating band freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |  |  |  |  |  |  |
|                                                                         | pplicable additional tolerance shall be Table 7.3.1-1A, truncated to one decimate the decimate the state of t |                                    |  |  |  |  |  |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 110                              |  |  |  |  |  |  |
|                                                                         | operating band among the supported CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |  |  |  |  |  |  |
| harmonic relation between low band UL and high band DL, then the        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |  |  |  |  |  |
|                                                                         | naximum tolerance among the differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |  |  |  |  |  |  |
|                                                                         | configurations involving such band sha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |  |  |  |  |  |  |
|                                                                         | When the E-UTRA operating band freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |  |  |  |  |  |  |
| applicable additional tolerance shall be the maximum tolerance in Table |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |  |  |  |  |  |
| 7                                                                       | 3.1-1A that would apply for that oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ating band among the supported     |  |  |  |  |  |  |

| Table 7.3.1-1 | A: ΔR <sub>IB,c</sub> |
|---------------|-----------------------|
|---------------|-----------------------|

CA configurations

NOTE : The above additional tolerances do not apply to supported UTRA operating bands with frequency range below 1 GHz that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations when such bands are belonging only to band combination(s) where one band is <1GHz and another band is >1.7GHz and there is no harmonic relationship between the low band UL and high band DL. Otherwise the above additional tolerances also apply to supported UTRA operating bands that correspond to the E-UTRA operating bands that belong to the supported inter-band carrier aggregation configurations.

| E-UTRA Band / Channel bandwidth / N <sub>RB</sub> / Duplex mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |       |                 |                       |                       |                 |                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|-----------------|-----------------------|-----------------------|-----------------|----------------|--|--|
| E-UTRA<br>Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4 MHz      | 3 MHz | 5 MHz           | 10 MHz                | 15 MHz                | 20 MHz          | Duplex<br>Mode |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |       | 25              | 50                    | 75                    | 100             | FDD            |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6            | 15    | 25              | 50                    | 50 <sup>1</sup>       | 50 <sup>1</sup> | FDD            |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6            | 15    | 25              | 50                    | 50 <sup>1</sup>       | 50 <sup>1</sup> | FDD            |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6            | 15    | 25              | 50                    | 75                    | 100             | FDD            |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6            | 15    | 25              | 25 <sup>1</sup>       | _                     |                 | FDD            |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            |       | 25              | 25 <sup>1</sup>       |                       |                 | FDD            |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |       | 25              | 50                    | 75                    | 75 <sup>1</sup> | FDD            |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6            | 15    | 25              | 25 <sup>1</sup>       |                       |                 | FDD            |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            |       | 25              | 50                    | 50 <sup>1</sup>       | 50 <sup>1</sup> | FDD            |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             | FDD            |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 25 <sup>1</sup>       |                       |                 | FDD            |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 15    | 20 <sup>1</sup> | 20 <sup>1</sup>       |                       |                 | FDD            |  |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ű            | 10    | 20 <sup>1</sup> | 20 <sup>1</sup>       |                       |                 | FDD            |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 15 <sup>1</sup> | 15 <sup>1</sup>       |                       |                 | FDD            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |       | 10              | 10                    |                       |                 | 100            |  |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 20 <sup>1</sup> | 20 <sup>1</sup>       |                       |                 | FDD            |  |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 25 <sup>1</sup>       | 25 <sup>1</sup>       |                 | FDD            |  |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 25 <sup>1</sup>       | 25 <sup>1</sup>       |                 | FDD            |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 20 <sup>1</sup>       | 20 <sup>3</sup>       | 20 <sup>3</sup> | FDD            |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 20<br>25 <sup>1</sup> | 20<br>25 <sup>1</sup> | 20              | FDD            |  |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 50 <sup>1</sup>       | 50 <sup>1</sup> | FDD            |  |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 15    | 25              | 50                    | 75                    | 100             | FDD            |  |  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0            | 15    | 25              | 50                    | 75                    | 100             | FDD            |  |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 15    | 25              | 50                    | 50 <sup>1</sup>       | 50 <sup>1</sup> | FDD            |  |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 15    | 25              | 25 <sup>1</sup>       | 25 <sup>1</sup>       | 50              | FDD            |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 15    | 25              | 25<br>25 <sup>1</sup> | 25                    |                 | FDD            |  |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0            | 15    | 25              | 25 <sup>1</sup>       | 25 <sup>1</sup>       | 25 <sup>1</sup> | FDD            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 15    | 20              | 20                    | 20                    | 20              | FDD            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |       | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             |                |  |  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0            | 45    | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 15    | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6            | 15    | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |       | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 4.5   | 25              | 50                    | 75                    | 100             | TDD            |  |  |
| 44<br>NOTE 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roforo to th | 15    | 25              | 50<br>ka aball ba     | 75                    | 100             | TDD            |  |  |
| <ul> <li>NOTE 1: <sup>1</sup> refers to the UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).</li> <li>NOTE 2: For the UE which supports both Band 11 and Band 21 the uplink configuration for reference sensitivity is FFS.</li> <li>NOTE 3: <sup>3</sup> refers to Band 20; in the case of 15MHz channel bandwidth, the UL resource blocks shall be located at RB<sub>start</sub> 11 and in the case of 20MHz channel bandwidth, the UL resource blocks shall be located at RB<sub>start</sub> 16</li> </ul> |              |       |                 |                       |                       |                 |                |  |  |

 Table 7.3.1-2: Uplink configuration for reference sensitivity

Unless given by Table 7.3.1-3, the minimum requirements specified in Tables 7.3.1-1 and 7.3.1-2 shall be verified with the network signalling value NS\_01 (Table 6.2.4-1) configured.

| E-UTRA<br>Band | Network<br>Signalling<br>value |
|----------------|--------------------------------|
| 2              | NS_03                          |
| 4              | NS_03                          |
| 10             | NS_03                          |
| 12             | NS_06                          |
| 13             | NS_06                          |
| 14             | NS_06                          |
| 17             | NS_06                          |
| 19             | NS_08                          |
| 21             | NS_09                          |
| 23             | NS_03                          |

# 7.3.1A Minimum requirements (QPSK) for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1-2. The reference sensitivity is defined to be met with both downlink component carriers active and either of the uplink carriers active. The UE shall meet the requirements specified in subclause 7.3.1 with the following exceptions.

For the UE that supports any of the E-UTRA CA configurations given in Table 7.3.1A-0a, exceptions to the aforementioned requirements are allowed when the uplink active in the lower-frequency operating band is within a specified frequency range as noted in Table 7.3.1A-0a. For these exceptions, the UE shall meet the requirements specified in Table 7.3.1A-0a and Table 7.3.1A-0b.

| Channel bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                  |                |                |                 |                 |                 |                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|--|
| EUTRA CA<br>Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EUTRA<br>band | 1.4 MHz<br>(dBm) | 3 MHz<br>(dBm) | 5 MHz<br>(dBm) | 10 MHz<br>(dBm) | 15 MHz<br>(dBm) | 20 MHz<br>(dBm) | Duplex<br>mode |  |
| CA_3A-8A <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3             |                  |                |                | N/A             | N/A             | N/A             | FDD            |  |
| CA_3A-0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8             |                  |                | N/A            | N/A             |                 |                 |                |  |
| CA_4A-12A <sup>5,6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4             | [-89.2]          | [-89.2]        | [-90]          | [-89.5]         |                 |                 | FDD            |  |
| CA_4A-12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12            |                  |                | -96.5          | -93.5           |                 |                 | FUU            |  |
| CA_4A-17A <sup>5,6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4             |                  |                | [-90]          | [-89.5]         |                 |                 | FDD            |  |
| 0A_4A-17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17            |                  |                | -96.5          | -93.5           |                 |                 | FDD            |  |
| NOTE 1: The transmitter shall be set to $P_{UMAX}$ as defined in subclause 6.2.5A.<br>NOTE 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1<br>FDD/TDD as described in Annex A.5.1.1/A.5.2.1<br>NOTE 3: The signal power is specified per port<br>NOTE 4: No requirements apply when there is at least one individual RE within the uplink transmission<br>bandwidth of the low band for which the 2nd transmitter harmonic is within the downlink<br>transmission bandwidth of the high band. The reference sensitivity is only verified when this is<br>not the case (the requirements specified in clause 7.3.1 apply).<br>NOTE 5: These requirements apply when there is at least one individual RE within the uplink<br>transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the<br>downlink transmission bandwidth of the low band for which the 3rd transmitter harmonic is within the<br>downlink transmission bandwidth of the high band.<br>NOTE 6: The requirements should be verified for UL EARFCN of the low band (superscript LB) such that<br>$f_{UL}^{LB} = \lfloor f_{DL}^{HB} / 0.3 \rfloor 0.1$ in MHz and $F_{UL_{Low}}^{LB} + BW_{Channel}^{LB} / 2 < f_{UL_{Lingh}}^{LB} - BW_{Channel}^{LB} / 2$ with $f_{DL}^{HB}$ the<br>carrier frequency of the high band in MHz and $BW_{Channel}^{LB}$ the channel bandwidth configured in the |               |                  |                |                |                 |                 |                 |                |  |

| E-UTRA Band / Channel bandwidth of the high band / $N_{RB}$ / Duplex mode                                                                                                                                                                                                                                                                                                                                                        |         |         |       |       |        |        |        |                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------|-------|--------|--------|--------|----------------|--|
| EUTRA CA<br>Configuration                                                                                                                                                                                                                                                                                                                                                                                                        | UL band | 1.4 MHz | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz | Duplex<br>mode |  |
| CA_4A-12A                                                                                                                                                                                                                                                                                                                                                                                                                        | 12      | 2       | 5     | 8     | 16     |        |        | FDD            |  |
| CA_4A-17A                                                                                                                                                                                                                                                                                                                                                                                                                        | 17      |         |       | 8     | 16     |        |        | FDD            |  |
| <ul> <li>NOTE 1: refers to the UL resource blocks, which shall be centred within the transmission bandwidth configuration for the channel bandwidth.</li> <li>NOTE 2: the UL configuration applies regardless of the channel bandwidth of the low band unless the UL resource blocks exceed that specified in Table 7.3.1-2 for the uplink bandwidth in which case the allocation according to Table 7.3.1-2 applies.</li> </ul> |         |         |       |       |        |        |        |                |  |

Table 7.3.1A-0b: Uplink configuration for the low band (exceptions)

For band combinations including operating bands without uplink band (as noted in Table 5.5-1), the requirements are specified in Table 7.3.1A-0d and Table 7.3.1A-0e.

| Channel bandwidth                                                                                                                                                                                                                                                                                                        |               |                  |                |                |                 |                 |                 |                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|--|
| EUTRA CA<br>Configuration                                                                                                                                                                                                                                                                                                | EUTRA<br>band | 1.4 MHz<br>(dBm) | 3 MHz<br>(dBm) | 5 MHz<br>(dBm) | 10 MHz<br>(dBm) | 15 MHz<br>(dBm) | 20 MHz<br>(dBm) | Duplex<br>mode |  |
| CA_2A-29A                                                                                                                                                                                                                                                                                                                | 2             |                  |                | -98            | -95             |                 |                 | FDD            |  |
|                                                                                                                                                                                                                                                                                                                          | 29            |                  | -98.7          | -97            | -94             |                 |                 |                |  |
| CA_4A-29A                                                                                                                                                                                                                                                                                                                | 4             |                  |                | -100           | -97             |                 |                 | FDD            |  |
|                                                                                                                                                                                                                                                                                                                          | 29            |                  | -98.7          | -97            | -94             |                 |                 |                |  |
| NOTE 1:       The transmitter shall be set to P <sub>UMAX</sub> as defined in subclause 6.2.5A.         NOTE 2:       Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1         FDD/TDD as described in Annex A.5.1.1/A.5.2.1         NOTE 3:       The signal power is specified per port |               |                  |                |                |                 |                 |                 |                |  |

Table 7.3.1A-0d: Reference sensitivity QPSK PREFSENS

| Table 7.3.1A-0e: l | Jplink configuratio | on for reference sensitivity |
|--------------------|---------------------|------------------------------|
|--------------------|---------------------|------------------------------|

| E-UTRA Band / Channel bandwidth / NRB / Duplex mode |               |                  |                |                |                 |                 |                 |                |  |
|-----------------------------------------------------|---------------|------------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|--|
| EUTRA CA<br>Configuration                           | EUTRA<br>band | 1.4 MHz<br>(dBm) | 3 MHz<br>(dBm) | 5 MHz<br>(dBm) | 10 MHz<br>(dBm) | 15 MHz<br>(dBm) | 20 MHz<br>(dBm) | Duplex<br>mode |  |
| CA_2A-29A                                           | 2             |                  |                | 25             | 50              |                 |                 | FDD            |  |
|                                                     | 29            |                  | N/A            | N/A            | N/A             |                 |                 | FUU            |  |
| CA_4A-29A                                           | 4             |                  |                | 25             | 50              |                 |                 |                |  |
|                                                     | 29            |                  | N/A            | N/A            | N/A             |                 |                 | FDD            |  |

In all cases for single uplink inter-band CA, unless given by Table 7.3.1-3 for the band with the active uplink carrier, the applicable reference sensitivity requirements shall be verified with the network signalling value NS\_01 (Table 6.2.4-1) configured.

For intra-band contiguous carrier aggregation the throughput of each component carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and Table 7.3.1A-1. Table 7.3.1A-1 specifies the maximum number of allocated uplink resource blocks for which the intra-band contiguous carrier aggregation reference sensitivity requirement shall be met. The PCC and SCC allocations follow Table 7.3.1A-1 and form a contiguous allocation where TX–RX frequency separations are as defined in Table 5.7.4-1. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2 and the downlink PCC carrier center frequency shall be configured closer to uplink operating band than the downlink SCC center frequency. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS\_01 (Table 6.2.4-1) configured.

| CA configuration / CC combination / N <sub>RB_agg</sub> / Duplex mode                                                                                                                                                                                                                                                                                  |            |     |           |     |            |     |             |     |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------|-----|------------|-----|-------------|-----|----------------|
| CA configuration                                                                                                                                                                                                                                                                                                                                       | 100RB+50RB |     | 75RB+75RB |     | 100RB+75RB |     | 100RB+100RB |     | Dunlay         |
|                                                                                                                                                                                                                                                                                                                                                        | PCC        | SCC | PCC       | SCC | PCC        | SCC | PCC         | SCC | Duplex<br>Mode |
| CA_1C                                                                                                                                                                                                                                                                                                                                                  | N/A        | N/A | 75        | 54  | N/A        | N/A | 100         | 30  | FDD            |
| CA_7C                                                                                                                                                                                                                                                                                                                                                  | N/A        | N/A | 75        | 0   | N/A        | N/A | 75          | 0   | FDD            |
| CA_38C                                                                                                                                                                                                                                                                                                                                                 |            |     | 75        | 75  |            |     | 100         | 100 | TDD            |
| CA_40C                                                                                                                                                                                                                                                                                                                                                 | 100        | 50  | 75        | 75  | N/A        | N/A | 100         | 100 | TDD            |
| CA_41C                                                                                                                                                                                                                                                                                                                                                 | 100        | 50  | 75        | 75  | 100        | 75  | 100         | 100 | TDD            |
| NOTE 1: The carrier centre frequency of SCC in the UL operating band is configured closer to the DL operating band.<br>NOTE 2: The transmitted power over both PCC and SCC shall be set to P <sub>UMAX</sub> as defined in subclause 6.2.5A.<br>NOTE 3: The UL resource blocks in both PCC and SCC shall be confined within the transmission bandwidth |            |     |           |     |            |     |             |     |                |

#### Table 7.3.1A-1: Intra-band CA uplink configuration for reference sensitivity

configuration for the channel bandwidth (Table 5.6-1). NOTE 4: The UL resource blocks in PCC shall be located as close as possible to the downlink operating band, while the UL resource blocks in SCC shall be located as far as possible from the downlink operating band.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the throughput of each downlink component carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with both downlink carriers active and parameters specified in Table 7.3.1-1 and Table 7.3.1A-3 with the power level in Table 7.3.1-1 increased by  $\Delta_{IBNC}$  given in Table 7.3.1A-3 for the SCC. Unless given by Table 7.3.1-3, the reference sensitivity requirements shall be verified with the network signalling value NS\_01 (Table 6.2.4-1) configured.

| CA<br>configuration                                                                                                                                       | Aggregated<br>channel<br>bandwidth<br>(PCC+SCC)                                                                                                                                                                    | W <sub>gap</sub> /[MHz]                                                                                                                                                                                                                                                                                                   | UL PCC allocation                                                                         | ΔR <sub>IBNC</sub><br>(dB) | Duplex<br>mode            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|---------------------------|
|                                                                                                                                                           | 25RB+25RB                                                                                                                                                                                                          | $30.0 < W_{gap} \le 55.0$                                                                                                                                                                                                                                                                                                 | 10 <sup>1</sup>                                                                           | 5.0                        |                           |
|                                                                                                                                                           | 2010-2010                                                                                                                                                                                                          | $0.0 < W_{gap} \le 30.0$                                                                                                                                                                                                                                                                                                  | 25 <sup>1</sup>                                                                           | 0.0                        |                           |
|                                                                                                                                                           | 25RB+50RB                                                                                                                                                                                                          | $25.0 < W_{gap} \le 50.0$                                                                                                                                                                                                                                                                                                 | 10 <sup>1</sup>                                                                           | 4.5                        |                           |
|                                                                                                                                                           | 2368+3068                                                                                                                                                                                                          | $0.0 < W_{gap} \le 25.0$                                                                                                                                                                                                                                                                                                  | 25 <sup>1</sup>                                                                           | 0.0                        | FDD                       |
| CA_25A-25A                                                                                                                                                | 50RB+25RB                                                                                                                                                                                                          | 15.0 < W <sub>gap</sub> ≤ 50.0                                                                                                                                                                                                                                                                                            | 10 <sup>4</sup>                                                                           | 5.5                        | FUU                       |
|                                                                                                                                                           | JUKD+2JKD                                                                                                                                                                                                          | 0.0 < W <sub>gap</sub> ≤ 15.0                                                                                                                                                                                                                                                                                             | 32 <sup>1</sup>                                                                           | 0.0                        |                           |
|                                                                                                                                                           | 50RB+50RB                                                                                                                                                                                                          | 10.0 < W <sub>gap</sub> ≤ 45.0                                                                                                                                                                                                                                                                                            | 10 <sup>4</sup>                                                                           | 5.0                        |                           |
|                                                                                                                                                           | JUKD+JUKD                                                                                                                                                                                                          | $0.0 < W_{gap} \le 10.0$                                                                                                                                                                                                                                                                                                  | 32 <sup>1</sup>                                                                           | 0.0                        |                           |
| CA_41A-41A                                                                                                                                                | NOTE 6                                                                                                                                                                                                             | NOTE 7                                                                                                                                                                                                                                                                                                                    | NOTE 8                                                                                    | 0.0                        | TDD                       |
| NOTE 2: W <sub>gap</sub> is<br>NOTE 3: The ca<br>operat<br>NOTE 4: <sup>4</sup> refer<br>NOTE 5: For the<br>only in<br>NOTE 6: All cor<br>NOTE 7: All app | ting band but confi<br>s the sub-block ga<br>arrier center freque<br>ting band.<br>s to the UL resource<br>TDD intra-band r<br>synchronized ope<br>nbinations of chan<br>blicable sub-block<br>CC allocation is sa | ce blocks shall be located as c<br>ned within the transmission.<br>b between the two sub-blocks.<br>ency of PCC in the UL operation<br>ce blocks shall be located at R<br>non-contiguous CA configuration<br>eration between all component<br>nel bandwidths defined in Tab<br>gap sizes.<br>une as Transmission bandwidt | ng band is conf<br>B <sub>start</sub> =33.<br>ons, the minim<br>carriers.<br>le 5.6A.1-3. | igured close               | r to the DL<br>ents apply |

| Table 7.3.1A-3: | : Intra-band non-cont | tiquous CA uplin | k configuration for | reference sensitivity |
|-----------------|-----------------------|------------------|---------------------|-----------------------|
|                 |                       |                  |                     |                       |

# 7.3.1B Minimum requirements (QPSK) for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.3.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{UMAX}$  is the total transmitter power over the two transmit antenna connectors.

## 7.3.2 Void

# 7.4 Maximum input level

This is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

# 7.4.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1-1

| Rx Parameter                                                                                                                                                                                                                                                                                                                                                                                                           | Units | Channel bandwidth |          |          |           |           |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|----------|----------|-----------|-----------|-----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1.4<br>MHz        | 3<br>MHz | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |  |
| Power in Transmission<br>Bandwidth Configuration                                                                                                                                                                                                                                                                                                                                                                       | dBm   | -25               |          |          |           |           |           |  |
| Bandwidth Configuration       Image: Configuration         NOTE 1:       The transmitter shall be set to 4dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX_L as defined in subclause 6.2.5.         NOTE 2:       Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1. |       |                   |          |          |           |           |           |  |

 Table 7.4.1-1: Maximum input level

# 7.4.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the maximum input level is defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.4.1 for each component carrier while both downlink carriers are active.

For intra-band contiguous carrier aggregation maximum input level is defined as a mean power received at the UE antenna port over the aggregated channel bandwidth, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel over each component carrier.

The downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.4.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels over each component carrier as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1A-1.

For intra-band non-contiguous carrier aggregation with two downlink carriers the maximum input level requirement is – 22 dBm and is defined as a sum of mean carrier powers received at the UE antenna port while both carriers have equal power. The throughput shall be  $\geq$  95% of the maximum throughput of the specified reference measurement channel as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) over each carrier. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1A-3.

| Rx Parameter                                                   | Units       | CA Bandwidth Class |            |            |          |           |         |
|----------------------------------------------------------------|-------------|--------------------|------------|------------|----------|-----------|---------|
|                                                                |             | Α                  | В          | С          | D        | E         | F       |
| Power in Transmission<br>Aggregated Bandwidth<br>Configuration | dBm         |                    |            | -22        |          |           |         |
| NOTE 1: The transmitter shal<br>6.2.5A.                        | l be set to | 4dB below          | PCMAX_L OR | PCMAX_L_CA | as defin | ed in sub | clause  |
| NOTE 2: Reference measure<br>dynamic OCNG Pat                  |             |                    |            |            |          |           | e sided |

Table 7.4.1A-1: Maximum input level for intra-band contiguous CA

# 7.4.1B Minimum requirements for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing, the minimum requirements in Clause 7.4.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P<sub>CMAX\_L</sub> is defined as the total transmitter power over the two transmit antenna connectors.

#### 7.4A Void

#### 7.4A.1 Void

#### Adjacent Channel Selectivity (ACS) 7.5

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

#### 7.5.1 Minimum requirements

The UE shall fulfil the minimum requirement specified in Table 7.5.1-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1-2 and Table 7.5.1-3 where the throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

|              |       |            |          |           | ,         |           |           |
|--------------|-------|------------|----------|-----------|-----------|-----------|-----------|
|              |       |            | C        | Channel b | andwidth  | 1         |           |
| Rx Parameter | Units | 1.4<br>MHz | 3<br>MHz | 5<br>MHz  | 10<br>MHz | 15<br>MHz | 20<br>MHz |
|              |       |            |          |           |           |           |           |

Table 7.5.1-1: Adjacent channel selectivity

|              |       |            | Channel bandwidth |          |           |           |           |  |  |
|--------------|-------|------------|-------------------|----------|-----------|-----------|-----------|--|--|
| Rx Parameter | Units | 1.4<br>MHz | 3<br>MHz          | 5<br>MHz | 10<br>MHz | 15<br>MHz | 20<br>MHz |  |  |
| ACS          | dB    | 33.0       | 33.0              | 33.0     | 33.0      | 30        | 27        |  |  |

| Rx Parameter         | Units       |                   | Channel bandwidth |                  |                  |                   |                |  |  |  |  |
|----------------------|-------------|-------------------|-------------------|------------------|------------------|-------------------|----------------|--|--|--|--|
|                      |             | 1.4 MHz           | 3 MHz             | 5 MHz            | 10 MHz           | 15 MHz            | 20 MHz         |  |  |  |  |
| Power in             | dBm         |                   |                   |                  |                  |                   |                |  |  |  |  |
| Transmission         |             |                   |                   |                  |                  |                   |                |  |  |  |  |
| Bandwidth            |             |                   |                   | REFSENS          | 5 + 14 0B        |                   |                |  |  |  |  |
| Configuration        |             |                   |                   |                  |                  |                   |                |  |  |  |  |
|                      | dBm         | REFSENS           | REFSENS           | REFSENS          | REFSENS          | REFSENS           | REFSENS        |  |  |  |  |
| PInterferer          |             | +45.5dB           | +45.5dB           | +45.5dB          | +45.5dB          | +42.5dB           | +39.5dB        |  |  |  |  |
| BWInterferer         | MHz         | 1.4               | 3                 | 5                | 5                | 5                 | 5              |  |  |  |  |
| FInterferer (offset) | MHz         | 1.4+0.0025        | 3+0.0075          | 5+0.0025         | 7.5+0.0075       | 10+0.0125         | 12.5+0.0025    |  |  |  |  |
|                      |             | /                 | /                 | /                | /                | /                 | /              |  |  |  |  |
|                      |             | -1.4-0.0025       | -3-0.0075         | -5-0.0025        | -7.5-0.0075      | -10-0.0125        | -12.5-         |  |  |  |  |
|                      |             |                   |                   |                  |                  |                   | 0.0025         |  |  |  |  |
| NOTE 1: The tra      | insmitter s | hall be set to 4d | B below PCMAX     | ⊥ at the minimum | uplink configura | ation specified i | n Table 7.3.1- |  |  |  |  |
|                      |             | defined in subcl  |                   |                  |                  | -                 |                |  |  |  |  |
| NOTE 2: The int      | erferer co  | nsists of the Ref | erence measur     | ement channel sp | pecified in Anne | x A.3.2 with one  | e sided        |  |  |  |  |
|                      |             |                   |                   | ribed in Annex A |                  |                   |                |  |  |  |  |
| C.3.1                |             |                   |                   |                  |                  |                   | -              |  |  |  |  |

#### Table 7.5.1-2: Test parameters for Adjacent channel selectivity, Case 1

| Rx Parameter                                                                                                                                                          | Units      |                   | Channel bandwidth |                                      |             |                |                  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|-------------------|--------------------------------------|-------------|----------------|------------------|--|--|--|
|                                                                                                                                                                       |            | 1.4 MHz           | 3 MHz             | 5 MHz                                | 10 MHz      | 15 MHz         | 20 MHz           |  |  |  |
| Power in<br>Transmission<br>Bandwidth<br>Configuration                                                                                                                | dBm        | -56.5             | -56.5             | -56.5                                | -56.5       | -53.5          | -50.5            |  |  |  |
| PInterferer                                                                                                                                                           | dBm        |                   |                   | -2                                   | 5           |                |                  |  |  |  |
| BWInterferer                                                                                                                                                          | MHz        | 1.4               | 3                 | 5                                    | 5           | 5              | 5                |  |  |  |
| F <sub>Interferer</sub> (offset)                                                                                                                                      | MHz        | 1.4+0.0025        | 3+0.0075<br>/     | 5+0.0025<br>/                        | 7.5+0.0075  | 10+0.0125<br>/ | 12.5+0.0025      |  |  |  |
|                                                                                                                                                                       |            | -1.4-0.0025       | -3-0.0075         | -5-0.0025                            | -7.5-0.0075 | -10-0.0125     | -12.5-<br>0.0025 |  |  |  |
| NOTE 1: The transmitter shall be set to 24dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX_L as defined in subclause 6.2.5. |            |                   |                   |                                      |             |                |                  |  |  |  |
| NOTE 2: The int                                                                                                                                                       | erferer co | nsists of the Ref | ference measur    | ement channel sp<br>Annex A.5.1.1/A. |             |                |                  |  |  |  |

Table 7.5.1-3: Test parameters for Adjacent channel selectivity, Case 2

# 7.5.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band, the adjacent channel requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.5.1 for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the adjacent channel requirements of subclause 7.5.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.5.1A-2 and Table 7.5.1A-3 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement specified in Table 7.5.1A-1 for an adjacent channel interferer on either side of the aggregated downlink signal at a specified frequency offset and for an interferer power up to -25 dBm. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.5.1A-2 and 7.5.1A-3.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, each larger than or equal to 5 MHz, the adjacent channel selectivity requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.5.1 for each component carrier subject to in-gap and out-of-gap interferers while both downlink carriers are active. The interferer powerP<sub>interferer</sub> for Case 1 in Table 7.5.1-2 shall be set to the maximum of the levels given by the two downlink carriers. For both Case 1 and Case 2 (Table 7.5.1-3), the wanted signal power level of each carrier shall be set in accordance with the ACS requirement (Clause 7.5.1) relative to the interferer power P<sub>interferer</sub>.

|              |       |   | CA Bandwidth Class |   |   |   |  |  |  |  |
|--------------|-------|---|--------------------|---|---|---|--|--|--|--|
| Rx Parameter | Units | В | С                  | D | E | F |  |  |  |  |
| ACS          | dB    |   | 24                 |   |   |   |  |  |  |  |

| Rx Parameter                     | Units                                                                         | CA Bandwidth Class    |                            |                  |                |              |  |
|----------------------------------|-------------------------------------------------------------------------------|-----------------------|----------------------------|------------------|----------------|--------------|--|
|                                  |                                                                               | В                     | С                          | D                | E              | F            |  |
| Pw in Transmission Bandy         | width                                                                         |                       | REFSENS +                  |                  |                |              |  |
| Configuration, per CC            |                                                                               |                       | 14 dB                      |                  |                |              |  |
|                                  | dBm                                                                           |                       | Aggregated                 |                  |                |              |  |
|                                  |                                                                               |                       | power + 22.5               |                  |                |              |  |
| PInterferer                      |                                                                               |                       | dB                         |                  |                |              |  |
| BWInterferer                     | MHz                                                                           |                       | 5                          |                  |                |              |  |
| F <sub>Interferer</sub> (offset) | MHz                                                                           |                       | 2.5 + F <sub>offset</sub>  |                  |                |              |  |
|                                  |                                                                               |                       | /                          |                  |                |              |  |
|                                  |                                                                               |                       | -2.5 - F <sub>offset</sub> |                  |                |              |  |
| NOTE 1: The transmitter          | shall be set to 4dB                                                           | below P <sub>CM</sub> | AX_L OF PCMAX_L_C          | as defined in    | subclause 6.2  | 2.5A.        |  |
| NOTE 2: The interferer c         | onsists of the Refer                                                          | ence meas             | urement channe             | I specified in A | Annex A.3.2 wi | th one sided |  |
| dynamic OCNG                     | Pattern OP.1 FDD                                                              | /TDD as de            | scribed in Annex           | x A.5.1.1/A.5.2  | 2.1 and set-up | according to |  |
| Annex C.3.1                      |                                                                               |                       |                            |                  |                |              |  |
| NOTE 3: The Finterferer (of      |                                                                               |                       |                            |                  |                |              |  |
|                                  | I to $\left[ \mathrm{F}_{\mathrm{interferer}} \left/ 0.015 \right. + \right.$ |                       |                            |                  |                |              |  |

Table 7.5.1A-2: Test parameters for Adjacent channel selectivity, Case 1

| Rx Parameter Units CA Bandwidth Class                 |                                      |                 |                           | Class          |                 |             |
|-------------------------------------------------------|--------------------------------------|-----------------|---------------------------|----------------|-----------------|-------------|
|                                                       |                                      | В               | С                         | D              | E               | F           |
| Pw in Transmission Bandwidth<br>Configuration, per CC | dBm                                  |                 | -50.5                     |                |                 |             |
| PInterferer                                           | dBm                                  |                 |                           | -25            |                 |             |
| BWInterferer                                          | MHz                                  |                 | 5                         |                |                 |             |
| F <sub>Interferer</sub> (offset)                      | F <sub>Interferer</sub> (offset) MHz |                 |                           |                |                 |             |
|                                                       |                                      |                 | /                         |                |                 |             |
|                                                       |                                      |                 | -2.5- F <sub>offset</sub> |                |                 |             |
| NOTE 1: The transmitter shall be                      | set to 24d                           | B below PCMA    | X_L OF PCMAX_L_CA         | as defined in  | subclause 6.2   | 5A.         |
| NOTE 2: The interferer consists of                    |                                      |                 |                           |                |                 |             |
| dynamic OCNG Pattern                                  | OP.1 FDI                             | D/TDD as des    | cribed in Annex /         | A.5.1.1/A.5.2. | 1 and set-up a  | ccording to |
| Annex C.3.1                                           |                                      |                 |                           |                |                 |             |
| NOTE 3: 5. The Finterferer (offset) is                | s relative t                         | o the center fr | equency of the a          | djacent CC b   | eing tested and | d shall be  |
| further adjusted to $\lfloor F_{inter}$               | $_{\rm ferer}/0.015$                 | + 0.5 0.015 +   | 0.0075 MHz to k           | be offset from | the sub-carrie  | r raster.   |

# 7.5.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.5.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

# 7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

# 7.6.1 In-band blocking

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels.

#### 7.6.1.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1-1 and 7.6.1.1-2.

| Rx parameter     | Units      |                  |                 |                    |                  |                 |            |
|------------------|------------|------------------|-----------------|--------------------|------------------|-----------------|------------|
|                  |            | 1.4 MHz          | 3 MHz           | 5 MHz              | 10 MHz           | 15 MHz          | 20 MHz     |
| Power in         |            |                  | REFSENS         | + channel band     | width specific v | alue below      |            |
| Transmission     | dBm        |                  |                 |                    |                  |                 |            |
| Bandwidth        | ubiii      | 6                | 6               | 6                  | 6                | 7               | 9          |
| Configuration    |            |                  |                 |                    |                  |                 |            |
| BWInterferer     | MHz        | 1.4              | 3               | 5                  | 5                | 5               | 5          |
| Floffset, case 1 | MHz        | 2.1+0.0125       | 4.5+0.0075      | 7.5+0.0125         | 7.5+0.0025       | 7.5+0.0075      | 7.5+0.0125 |
| Floffset, case 2 | MHz        | 3.5+0.0075       | 7.5+0.0075      | 12.5+0.0075        | 12.5+0.012       | 12.5+0.002      | 12.5+0.007 |
|                  |            |                  |                 |                    | 5                | 5               | 5          |
| NOTE 1: The tra  | nsmitter   | shall be set to  | 4dB below Pcr   | MAX_L at the minii | mum uplink co    | nfiguration spe | cified in  |
| Table 7          | '.3.1-2 wi | th PCMAX_L as c  | defined in subc | lause 6.2.5.       |                  |                 |            |
| NOTE 2: The inte | erferer co | onsists of the R | Reference mea   | surement chanr     | nel specified in | Annex A.3.2 w   | ith one    |
| sided d          | ynamic C   | OCNG Pattern     | OP.1 FDD/TD     | D as described i   | in Annex A.5.1   | .1/A.5.2.1 and  | set-up     |
| accordi          | ng to An   | nex C.3.1        |                 |                    |                  |                 | -          |

| E-UTRA                                                                                                                                                                   | Parameter                                                                 | Unit                                         | Case 1                                                                                                                                  | Case 2                                                                            | Case 3 | Case 4 | Case 5                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------|--------|-------------------------|
| band                                                                                                                                                                     | PInterferer                                                               | dBm                                          | -56                                                                                                                                     | -44                                                                               |        |        | -38                     |
|                                                                                                                                                                          | F <sub>Interferer</sub><br>(offset)                                       | MHz                                          | =-BW/2 - F <sub>loffset,case 1</sub><br>&<br>=+BW/2 + F <sub>loffset,case 1</sub>                                                       | ≤-BW/2 - F <sub>loffset,case 2</sub><br>&<br>≥+BW/2 + F <sub>loffset,case 2</sub> |        |        | -BW/2 - 11              |
| $\begin{array}{c} 1,2,3,4,5,\\ 6,7,8,9,\\ 10,11,12,\\ 13,14,17,\\ 18,19,20,\\ 21,22,23,\\ 25,26,27,\\ 28,31,33,\\ 34,35,36,\\ 37,38,39,\\ 40,41,42,\\ 43,44 \end{array}$ | Finterferer                                                               | MHz                                          | (Note 2)                                                                                                                                | F <sub>DL_low</sub> − 15<br>to<br>F <sub>DL_high</sub> + 15                       | Void   | Void   |                         |
| 30                                                                                                                                                                       | F <sub>Interferer</sub>                                                   | MHz                                          | (Note 2)                                                                                                                                | F <sub>DL_low</sub> – 15<br>to<br>F <sub>DL_high</sub> + 15                       |        |        | F <sub>DL_low</sub> -11 |
| the<br>NOTE 2: Fo                                                                                                                                                        | e first 15 MHz b<br>or each carrier f<br>a. the carrier<br>b. the carrier | pelow or<br>requency<br>frequenc<br>frequenc | above the UE receive I<br>/ the requirement is va<br>y -BW/2 - F <sub>loffset, case 1</sub> a<br>y +BW/2 + F <sub>loffset, case 1</sub> | lid for two frequencies:                                                          |        |        | d, but within           |

#### Table 7.6.1.1-2: In-band blocking

For the UE which supports inter band CA configuration in Table 7.3.1-1A,  $P_{Interferer}$  power defined in Table 7.6.1.1-2 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

#### 7.6.1.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the in-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.1.1 for each component carrier while both downlink carriers are active. For the UE which supports inter band CA configuration in Table 7.3.1-1A,  $P_{Interferer}$  power defined in Table 7.6.1.1-2 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A. For E-UTRA CA configurations including an operating

band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink in the band capable of UL operation.. The requirements for the component carrier configured in the operating band without uplink band are specified in Table 7.6.1.1-1 and Table 7.6.1.1A-0.

| Table 7.6.1.1A-0: | In-band blocking for | additional operating bands f | or carrier aggregation |
|-------------------|----------------------|------------------------------|------------------------|
|                   |                      |                              |                        |

| E-UTRA band                                                                                                                                                                                                                              | Parameter                            | Unit       | Case 1                                                                            | Case 2                                                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                          | PInterferer                          | dBm        | -56                                                                               | -44                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                          | F <sub>Interferer</sub><br>(offset)  | MHz        | =-BW/2 - F <sub>loffset,case 1</sub><br>&<br>=+BW/2 + F <sub>loffset,case 1</sub> | ≤-BW/2 – F <sub>loffset,case 2</sub><br>&<br>≥+BW/2 + F <sub>loffset,case 2</sub> |  |  |  |  |
| 29                                                                                                                                                                                                                                       | F <sub>Interferer</sub> MHz (Note 2) |            | F <sub>DL_low</sub> – 15<br>to<br>F <sub>DL_high</sub> + 15                       |                                                                                   |  |  |  |  |
| NOTE 1: For cer                                                                                                                                                                                                                          | rtain bands, the ur                  | nwanted mo | dulated interfering signal r                                                      | nay not fall inside the                                                           |  |  |  |  |
| UE receive band, but within the first 15 MHz below or above the UE receive band<br>NOTE 2: For each carrier frequency the requirement is valid for two frequencies:<br>a. the carrier frequency -BW/2 - F <sub>loffset, case 1</sub> and |                                      |            |                                                                                   |                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                          | •                                    |            | <ul> <li>Floffset, case 1</li> <li>modulated interfering signal</li> </ul>        | al are interferer center                                                          |  |  |  |  |

For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the in-band blocking requirements of subclause 7.6.1.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.1.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.1.1A-1 and Tables 7.6.1.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, each larger than or equal to 5 MHz, the in-band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.6.1.1 for each component carrier subject to in-gap and out-of-gap interferers while both downlink carriers are active.

| Rx Parameter          | Units                                                                                           | CA Bandwidth Class |                  |                   |                    |                |  |
|-----------------------|-------------------------------------------------------------------------------------------------|--------------------|------------------|-------------------|--------------------|----------------|--|
|                       |                                                                                                 | В                  | С                | D                 | E                  | F              |  |
| Pw in Transmission    | smission REFSENS + CA Bandwidth Class specific value below                                      |                    |                  |                   |                    | ow.            |  |
| Bandwidth             | dBm                                                                                             |                    | 12               |                   |                    |                |  |
| Configuration, per CC |                                                                                                 |                    | 12               |                   |                    |                |  |
| BWInterferer          | MHz                                                                                             |                    | 5                |                   |                    |                |  |
| Floffset, case 1      | MHz                                                                                             |                    | 7.5              |                   |                    |                |  |
| Floffset, case 2      | MHz                                                                                             |                    | 12.5             |                   |                    |                |  |
| NOTE 1: The transmit  | ter shall b                                                                                     | be set to 4dB bel  | OW PCMAX_L OF PC | MAX_L_CA as defin | ed in subclause 6  | 6.2.5A         |  |
| NOTE 2: The interfere | er consiste                                                                                     | s of the Reference | e measurement    | channel specifie  | d in Annex A.3.2 v | with one sided |  |
| dynamic OC            | dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to |                    |                  |                   |                    |                |  |
| Annex C.3.1           |                                                                                                 |                    |                  |                   |                    | -              |  |

| Table | 7.6.1 | .1A-1: | In band | blocking | parameters |
|-------|-------|--------|---------|----------|------------|
|-------|-------|--------|---------|----------|------------|

| CA configuration                        | Parameter                          | Unit | Case 1                                                                                                          | Case 2                                                                                                          |  |  |  |  |
|-----------------------------------------|------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                         | PInterferer                        | dBm  | -56                                                                                                             | -44                                                                                                             |  |  |  |  |
|                                         | FInterferer                        | MHz  | =-F <sub>offset</sub> - F <sub>loffset,case 1</sub><br>&<br>=+F <sub>offset</sub> + F <sub>loffset,case 1</sub> | ≤-F <sub>offset</sub> - F <sub>loffset,case 2</sub><br>&<br>≥+F <sub>offset</sub> + F <sub>loffset,case 2</sub> |  |  |  |  |
| CA_1C, CA_7C, CA_38C,<br>CA_40C, CA_41C | F <sub>Interferer</sub><br>(Range) | MHz  | (Note 2)                                                                                                        | F <sub>DL_low</sub> – 15<br>to<br>F <sub>DL_high</sub> + 15                                                     |  |  |  |  |
| (A A)(C (A A)(C (A A)))                 |                                    |      |                                                                                                                 |                                                                                                                 |  |  |  |  |

Table 7.6.1.1A-2: In-band blocking

# 7.6.2 Out-of-band blocking

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band. For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in subclause 7.5.1 and subclause 7.6.1 shall be applied.

## 7.6.2.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1-2.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to  $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$  exceptions are allowed for spurious

response frequencies in each assigned frequency channel when measured using a 1MHz step size, where  $N_{RB}$  is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.6-1). For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to  $\max(8, \left[ (N_{RB} + 2 \cdot L_{CRBs})/8 \right])$  exceptions are allowed for spurious

response frequencies in each assigned frequency channel when measured using a 1MHz step size, where  $N_{RB}$  is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.6-1) and  $L_{CRBs}$  is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 spurious response are applicable.

| Rx Parameter         | Units                                                                   | Channel bandwidth |             |            |            |             |         |
|----------------------|-------------------------------------------------------------------------|-------------------|-------------|------------|------------|-------------|---------|
|                      |                                                                         | 1.4               | 3 MHz       | 5 MHz      | 10         | 15          | 20      |
|                      |                                                                         | MHz               |             |            | MHz        | MHz         | MHz     |
| Power in             |                                                                         | REFS              | ENS + ch    | annel ban  | dwidth sp  | ecific valu | e below |
| Transmission         | dBm                                                                     |                   |             |            |            |             |         |
| Bandwidth            | ubiii                                                                   | 6                 | 6           | 6          | 6          | 7           | 9       |
| Configuration        |                                                                         |                   |             |            |            |             |         |
| NOTE 1: The transmit | ter shall be                                                            | e set to 40       | B below I   | Рсмах_∟ at | the minim  | num uplink  | ζ.      |
| configuration        | specified i                                                             | in Table 7        | 7.3.1-2 wit | h Pcmax_L  | as define  | d in subcla | ause    |
| 6.2.5.               | 6.2.5.                                                                  |                   |             |            |            |             |         |
|                      | eference measurement channel is specified in Annex A.3.2 with one sided |                   |             |            |            |             |         |
| dynamic OC           | NG Pattern                                                              | OP.1 FE           | D/TDD a     | s describe | ed in Anne | x A.5.1.1/  | A.5.2.  |

Table 7.6.2.1-1: Out-of-band blocking parameters

| E-UTRA band                                                                                                                  | Parameter                       | Units | Frequency                                                |                                                         |                                           |                  |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------|----------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|------------------|--|
|                                                                                                                              |                                 |       | Range 1                                                  | Range 2                                                 | Range 3                                   | Range 4          |  |
|                                                                                                                              | PInterferer                     | dBm   | -44                                                      | -30                                                     | -15                                       | -15              |  |
| 1, 2, 3, 4, 5, 6,<br>7, 8, 9, 10, 11,                                                                                        |                                 |       | F <sub>DL_low</sub> -15 to<br>F <sub>DL_low</sub> -60    | F <sub>DL_low</sub> -60 to<br>F <sub>DL_low</sub> -85   | F <sub>DL_low</sub> -85 to<br>1 MHz       | -                |  |
| 12, 13, 14, 17,<br>18, 19, 20, 21,<br>22, 23, 24, 25,<br>26, 27, 28, 33,<br>34, 35, 36, 37,<br>38, 39, 40, 41,<br>42, 43, 44 | F <sub>Interferer</sub><br>(CW) | MHz   | F <sub>DL_high</sub> +15 to<br>F <sub>DL_high</sub> + 60 | F <sub>DL_high</sub> +60 to<br>F <sub>DL_high</sub> +85 | F <sub>DL_high</sub> +85 to<br>+12750 MHz | -                |  |
| 2, 5, 12, 17                                                                                                                 | FInterferer                     | MHz   | _                                                        | _                                                       | -                                         | FUL_low - FUL_hi |  |

Table 7.6.2.1-2: Out of band blocking

7.6.2.1A Minimum requirements for CA

For inter-band carrier aggregation with the uplink assigned to one E-UTRA band, the out-of-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The throughput in the downlink measured shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1A-0. The UE shall meet these requirements for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the out-of-band blocking requirements of subclause 7.6.2.1A do not apply.

| Paramete    | er Unit                 | Range 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Range 2                                     | Range 3                               |
|-------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|
| Pw          | dBm                     | Table 7.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | carriers                                    |                                       |
| Pinterferer | dBm                     | -44 + ΔR <sub>IB,c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -30 + ΔR <sub>IB,c</sub>                    | -15 + ΔR <sub>IB,c</sub>              |
| Finterferer | MHz                     | $-60 < f - F_{DL_{Low(1)}} < -15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-85 < f - F_{DL_{Low(1)}} \le -60$         | $1 \le f \le F_{DL\_Low(1)} - 85$     |
| (CW)        |                         | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or                                          | or                                    |
|             |                         | $-60 < f - F_{DL_{Low(2)}} < -15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-85 < f - F_{DL_{Low(2)}} \le -60$         | $F_{DL_{High(1)}} + 85 \le f$         |
|             |                         | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or                                          | $\leq F_{DL\_Low(2)} - 85$            |
|             |                         | $15 < f - F_{DL_{High(1)}} < 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $60 \leq f - F_{DL_{High(1)}} < 85$         | or                                    |
|             |                         | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or                                          | $F_{DL_{High(2)}} + 85 \le f$         |
|             |                         | $15 < f - F_{DL_{High(2)}} < 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $60 \leq f - F_{DL_{High(2)}} < 85$         | ≤ 12750                               |
| NOTE 1:     |                         | nd F <sub>DL_High(1)</sub> denote the respec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                       |
|             | operating b             | and, $F_{DL\_Low(2)}$ and $F_{DL\_High(2)}$ the second seco | ne respective lower and up                  | per frequency limits of the           |
|             | upper oper              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                       |
| NOTE 2:     |                         | $_{(2)} - F_{DL_High(1)} < 145 \text{ MHz and}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                                       |
|             | in both Rar             | nge 1 and Range 2. Then the l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ower of the P <sub>Interferer</sub> applies | i.                                    |
| NOTE 3:     | For F <sub>DL_Low</sub> | $_{(1)} - 15 \text{ MHz} \le f \le F_{\text{DL}-High}(1) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 MHz and F <sub>DL_Low(2)</sub> – 15 I     | $MHz \le f \le F_{DL_{High(2)}} + 15$ |
|             | MHz the ap              | propriate adjacent channel se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | electivity and in-band blocki               | ng in the respective                  |
|             | subclauses              | 7.5.1A and 7.6.1.1A shall be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | applied.                                    |                                       |
| NOTE 4:     | $\Delta R_{IB,c}$ acco  | rding to Table 7.3.1-1A applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s when serving cell <i>c</i> is me          | asured.                               |

Table 7.6.2.1A-0: out-of-band blocking for inter-band carrier aggregation with one active uplink

For Table 7.6.2.1A-0 in frequency ranges 1, 2 and 3, up to  $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$  exceptions per downlink are allowed for spurious response frequencies when measured using a step size of 1 MHz. For these exceptions the requirements in clause 7.7.1A apply.

For intra-band contiguous carrier aggreagations the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.2.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2.

The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Tables 7.6.2.1A-1 and Tables 7.6.2.1A-2 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1A-1 and 7.6.2.1A-2.

For Table 7.6.2.1A-2 in frequency range 1, 2 and 3, up to  $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$  exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 Spurious response are applicable.

#### Table 7.6.2.1A-1: Out-of-band blocking parameters

| Rx Parameter                                                                                                                                                                                                                                                          |  |                                                      | Class |   |   |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------|-------|---|---|---|
|                                                                                                                                                                                                                                                                       |  | В                                                    | С     | D | E | F |
| Pw in Transmission Bandwidth Configuration, per dBm                                                                                                                                                                                                                   |  | REFSENS + CA Bandwidth Class specific value<br>below |       |   |   |   |
|                                                                                                                                                                                                                                                                       |  |                                                      | 9     |   |   |   |
| NOTE 1: The transmitter shall be set to 4dB below PCMAX_L or PCMAX_L_CA as defined in subclause 6.2.5A.<br>NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1<br>FDD/TDD as described in Annex A.5.1.1/A.5.2. |  |                                                      |       |   |   |   |

| Table | 7.6.2.1A | -2: Out       | of band  | blocking   |
|-------|----------|---------------|----------|------------|
| IUNIO | 1.0.2.17 | <b></b> . out | or surre | a biooning |

| CA configuration                                        | Parameter                       | Units | Frequency                                             |                                                            |                                                 |
|---------------------------------------------------------|---------------------------------|-------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|
|                                                         |                                 |       | Range 1                                               | Range 2                                                    | Range 3                                         |
|                                                         | PInterferer                     | dBm   | -44                                                   | -30                                                        | -15                                             |
|                                                         | <b>E</b>                        |       | F <sub>DL_low</sub> -15 to<br>F <sub>DL_low</sub> -60 | F <sub>DL_low</sub> -60 to<br>F <sub>DL_low</sub> -85      | F <sub>DL_low</sub> -85 to<br>1 MHz             |
| CA_1C, <u>CA_3C</u> , CA_7C , CA_38C, CA_40C,<br>CA_41C | F <sub>Interferer</sub><br>(CW) | MHz   | $F_{DL_high} + 15$<br>to<br>$F_{DL_high} + 60$        | F <sub>DL_high</sub> +60<br>to<br>F <sub>DL_high</sub> +85 | F <sub>DL_high</sub> +85<br>to<br>+12750<br>MHz |

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the out-of-band blocking requirements are defined with the uplink configuration in accordance with table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.6.2.1 for each component carrier while both downlink carriers are active.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to  $\max(24,6 \cdot \lceil N_{RB} \cdot /6 \rceil)$  exceptions per assigned E-UTRA channel per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies when measured using a 1MHz step size. For these exceptions the requirements of subclause 7.7 spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to  $\max(8, \left[ (N_{RB} + 2 \cdot L_{CRBs})/8 \right])$  exceptions per assigned E-UTRA channel

per sub-block of the E-UTRA CA configuration are allowed for spurious response frequencies when measured using a 1MHz step size. For these exceptions the requirements of clause 7.7 spurious response are applicable.

# 7.6.3 Narrow band blocking

This requirement is measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

### 7.6.3.1 Minimum requirements

The relative throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1-1

| Parameter                                                                                                                                                            | Unit |                |              |             |              |            |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|--------------|-------------|--------------|------------|---------|
| Parameter                                                                                                                                                            | Unit | 1.4 MHz        | 3 MHz        | 5 MHz       | 10 MHz       | 15 MHz     | 20 MHz  |
| Pw                                                                                                                                                                   | dDm  | P <sub>R</sub> | EFSENS + cha | nnel-bandwi | dth specific | value belo | w       |
| Pw                                                                                                                                                                   | dBm  | 22             | 18           | 16          | 13           | 14         | 16      |
| P <sub>uw</sub> (CW)                                                                                                                                                 | dBm  | -55            | -55          | -55         | -55          | -55        | -55     |
| $F_{uw}$ (offset for<br>$\Delta f = 15 \text{ kHz}$ )                                                                                                                | MHz  | 0.9075         | 1.7025       | 2.7075      | 5.2125       | 7.7025     | 10.2075 |
| $F_{uw}$ (offset for $\Delta f = 7.5 \text{ kHz}$ )                                                                                                                  | MHz  |                |              |             |              |            |         |
| NOTE 1: The transmitter shall be set a 4 dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2 with PCMAX_L as defined in subclause 6.2.5. |      |                |              |             |              |            |         |
| NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.            |      |                |              |             |              |            |         |

For the UE which supports inter-band CA configuration in Table 7.3.1-1A,  $P_{UW}$  power defined in Table 7.6.3.1-1 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

### 7.6.3.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the narrow-band blocking requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.6.3.1 for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the narrow-band blocking requirements of subclause 7.6.3.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.6.3.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.6.3.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1A-1.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the narrow band blocking requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.6.3.1 for each component carrier subject to in-gap and out-of-gap interferers while both downlink carriers are active.

| Parameter                                                                                                     | Unit                                                                                                                      | CA Bandwidth Class |                             |              |                    |         |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|--------------|--------------------|---------|--|
| Falanielei                                                                                                    | Unit                                                                                                                      | В                  | С                           | D            | E                  | F       |  |
| Pw in Transmission Bandwidth                                                                                  | dBm                                                                                                                       | REF                | SENS + CA Band              | vidth Class  | specific value     | below   |  |
| Configuration, per CC                                                                                         | UDIII                                                                                                                     |                    | 16 <sup>4</sup>             |              |                    |         |  |
| P <sub>uw</sub> (CW)                                                                                          | dBm                                                                                                                       |                    | -55                         |              |                    |         |  |
| FIIM (offset for                                                                                              |                                                                                                                           |                    | - F <sub>offset</sub> – 0.2 |              |                    |         |  |
| $\Delta f = 15 \text{ kHz}$                                                                                   | MHz                                                                                                                       |                    | /                           |              |                    |         |  |
| $\Delta I = 15 \text{ KHz})$                                                                                  |                                                                                                                           |                    | + F <sub>offset</sub> + 0.2 |              |                    |         |  |
| F <sub>uw</sub> (offset for                                                                                   | MHz                                                                                                                       |                    |                             |              |                    |         |  |
| ⊿f = 7.5 kHz)                                                                                                 |                                                                                                                           |                    |                             |              |                    |         |  |
| NOTE 1: The transmitter shall be set to                                                                       | 4dB below F                                                                                                               | CMAX_L OF PC       | MAX_L_CA as define          | d in subclau | se 6.2.5A.         |         |  |
| NOTE 2: Reference measurement char                                                                            | nel is specifi                                                                                                            | ied in Annex       | A.3.2 with one sid          | ed dynamic   | <b>OCNG</b> Patter | rn OP.1 |  |
| FDD/TDD as described in Ann                                                                                   | FDD/TDD as described in Annex A.5.1.1/A.5.2.1.                                                                            |                    |                             |              |                    |         |  |
|                                                                                                               | NOTE 3: The Finterferer (offset) is relative to the center frequency of the adjacent CC being tested and shall be further |                    |                             |              |                    |         |  |
| adjusted to $[F_{\text{interferer}}/0.015 + 0.5]0.015 + 0.0075$ MHz to be offset from the sub-carrier raster. |                                                                                                                           |                    |                             |              |                    |         |  |
| NOTE 4: The requirement is applied for                                                                        | the band co                                                                                                               | mbinations v       | vhose component             | carriers' BW | /≥5 MHz.           |         |  |

| Table | 7.6.3.1A-1 | : Narrow-band | blocking |
|-------|------------|---------------|----------|
|-------|------------|---------------|----------|

# 7.6A Void

<Reserved for future use>

# 7.6B Blocking characteristics for UL-MIMO

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.6 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

# 7.7 Spurious response

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in subclause 7.6.2 is not met.

# 7.7.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2.

| Rx parameter                                                                                                                                                                                                                                                                                                      | Units | Channel bandwidth |                                                  |   |   |   |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|--------------------------------------------------|---|---|---|---|--|
|                                                                                                                                                                                                                                                                                                                   |       | 1.4 MHz           | 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 M           |   |   |   |   |  |
| Power in                                                                                                                                                                                                                                                                                                          |       | REF               | REFSENS + channel bandwidth specific value below |   |   |   |   |  |
| Transmission<br>Bandwidth<br>Configuration                                                                                                                                                                                                                                                                        | dBm   | 6                 | 6                                                | 6 | 6 | 7 | 9 |  |
| <ul> <li>NOTE 1: The transmitter shall be set to 4dB below PCMAX_L at the minimum uplink configuration specified in Table 7.3.1-2.</li> <li>N OTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.</li> </ul> |       |                   |                                                  |   |   |   |   |  |

| Table 7.7.1-1: | <b>Spurious</b> | response | parameters |
|----------------|-----------------|----------|------------|
|----------------|-----------------|----------|------------|

Table 7.7.1-2: Spurious response

| Parameter                       | Unit | Level                         |  |  |
|---------------------------------|------|-------------------------------|--|--|
| P <sub>Interferer</sub><br>(CW) | dBm  | -44                           |  |  |
| F <sub>Interferer</sub>         | MHz  | Spurious response frequencies |  |  |

For the UE which supports inter-band CA configuration in Table 7.3.1-1A,  $P_{interferer}$  power defined in Table 7.7.1-2 is increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

# 7.7.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the spurious response requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The throughput measured in each downlink with  $F_{interferer}$  in Table 7.6.2.1A-0 at spurious response frequencies shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2. The UE shall meet these requirements for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the spurious response requirements of subclause 7.7.1A do not apply.

For intra-band contiguous carrier aggregation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.7.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggregation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1A-1 and 7.7.1A-2.

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the spurious response requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in clause 7.7.1 for each component carrier while both downlink carriers are active.

|                           | •     | •                                     | • |   |   |  |  |
|---------------------------|-------|---------------------------------------|---|---|---|--|--|
| Rx Parameter              | Units | CA Bandwidth Class                    |   |   |   |  |  |
|                           |       | В                                     | С | D | ш |  |  |
| in Transmission Bandwidth | dBm   | REFSENS + CA Bandwidth Class specific |   |   |   |  |  |
| figuration por CC         | UDIII |                                       | 0 |   |   |  |  |

| Table 7.7.1A-1: | Spurious | response | parameters |
|-----------------|----------|----------|------------|
|-----------------|----------|----------|------------|

|                                                     |                                                                                                         | В | С | D | E | F |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|---|---|---|---|---|--|
| Pw in Transmission Bandwidth                        | REFSENS + CA Bandwidth Class specific value below                                                       |   |   |   |   |   |  |
| Configuration, per CC                               | dBm                                                                                                     |   | 9 |   |   |   |  |
| NOTE 1: The transmitter shall b                     | NOTE 1: The transmitter shall be set to 4dB below PCMAX_L or PCMAX_L_CA as defined in subclause 6.2.5A. |   |   |   |   |   |  |
| NOTE 2: Reference measurem                          | NOTE 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern   |   |   |   |   |   |  |
| OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1. |                                                                                                         |   |   |   |   |   |  |

#### Table 7.7.1A-2: Spurious response

| Parameter                       | Unit | Level                         |
|---------------------------------|------|-------------------------------|
| P <sub>Interferer</sub><br>(CW) | dBm  | -44                           |
| FInterferer                     | MHz  | Spurious response frequencies |

#### Minimum requirements for UL-MIMO 7.7.1B

For UE with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in Clause 7.7.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter P<sub>CMAX L</sub> is defined as the total transmitter power over the two transmit antenna connectors.

#### 7.8 Intermodulation characteristics

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

#### 7.8.1 Wide band intermodulation

The wide band intermodulation requirement is defined following the same principles using modulated E-UTRA carrier and CW signal as interferer.

#### 7.8.1.1 Minimum requirements

The throughput shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1.1 for the specified wanted signal mean power in the presence of two interfering signals

| Rx Paramete                                | r Units                                                                      | Channel bandwidth                                                         |                                                  |           |              |             |              |              |
|--------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|-----------|--------------|-------------|--------------|--------------|
|                                            |                                                                              | 1.4 MHz                                                                   | 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20             |           |              |             |              | 20 MHz       |
| Power in                                   |                                                                              | RE                                                                        | REFSENS + channel bandwidth specific value below |           |              |             |              |              |
| Transmission<br>Bandwidth<br>Configuration | dBm                                                                          | 12                                                                        |                                                  | 8         | 6            | 6           | 7            | 9            |
| P <sub>Interferer 1</sub><br>(CW)          | dBm                                                                          | -46                                                                       |                                                  |           |              |             |              |              |
| P <sub>Interferer 2</sub><br>(Modulated)   | dBm                                                                          | -46                                                                       |                                                  |           |              |             |              |              |
| BW Interferer 2                            |                                                                              | 1.4 3 5                                                                   |                                                  |           |              |             |              |              |
| FInterferer 1                              | MHz                                                                          | -BW/2 –2.1                                                                | -BW/                                             | /2 –4.5   |              | -BW         | /2 – 7.5     |              |
| (Offset)                                   |                                                                              | /                                                                         |                                                  | /         |              |             | /            |              |
|                                            |                                                                              | +BW/2+ 2.1                                                                | +BW/                                             | 2 + 4.5   |              | +BW         | /2 + 7.5     |              |
| F <sub>Interferer 2</sub><br>(Offset)      | MHz                                                                          | 2*FInterferer 1                                                           |                                                  |           |              |             |              |              |
| NOTE 1: The t                              | ransmitter sha                                                               | all be set to 4dB                                                         | below I                                          | CMAX_L a  | at the minim | um uplink c | onfiguration | specified in |
| Table                                      | e 7.3.1-2 with                                                               | PCMAX_L as define                                                         | ed in su                                         | ubclause  | 6.2.5.       |             |              |              |
| NOTE 2: Refe                               | rence measur                                                                 | rement channel is specified in Annex A.3.2 with one sided dynamic OCNG    |                                                  |           |              |             |              |              |
| Patte                                      | rn OP.1 FDD/                                                                 | D/TDD as described in Annex A.5.1.1/A.5.2.1.                              |                                                  |           |              |             |              |              |
|                                            |                                                                              | terferer consists of the Reference measurement channel specified in Annex |                                                  |           |              |             |              |              |
|                                            | A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex |                                                                           |                                                  |           |              |             |              |              |
| A.5.1                                      | .1/A.5.2.1 witl                                                              | n set-up accordir                                                         | ng to Ar                                         | nnex C.3  | .1The interf | ering modu  | lated signal | is 5MHz E-   |
| UTR                                        | A signal as de                                                               | scribed in Annex                                                          | k D for (                                        | channel l | bandwidth ≥  | ≥5MHz       | -            |              |

For the UE which supports inter band CA configuration in Table 7.3.1-1A,  $P_{interferer1}$  and  $P_{interferer2}$  powers defined in Table 7.8.1.1-1 are increased by the amount given by  $\Delta R_{IB,c}$  in Table 7.3.1-1A.

## 7.8.1A Minimum requirements for CA

For inter-band carrier aggregation with uplink assigned to one E-UTRA band the wide band intermodulation requirements are defined with the uplink active on the band other than the band whose downlink is being tested. The UE shall meet the requirements specified in subclause 7.8.1.1 for each component carrier while both downlink carriers are active. For E-UTRA CA configurations including an operating band without uplink band (as noted in Table 5.5-1), the requirements for both downlinks shall be met with the uplink active in the band capable of UL operation. For E-UTRA CA configurations listed in Table 7.3.1A-0a under conditions for which reference sensitivity for the operating band being tested is N/A, the wideband intermodulation requirements of subclause 7.8.1A do not apply.

For intra-band contiguous carrier aggegation the downlink SCC shall be configured at nominal channel spacing to the PCC with the PCC configured closest to the uplink band. Downlink PCC and SCC are both activated. The uplink output power shall be set as specified in Table 7.8.1A-1 with the uplink configuration set according to Table 7.3.1A-1 for the applicable carrier aggreagation configuration. For UE(s) supporting one uplink carrier, the uplink configuration of the PCC shall be in accordance with Table 7.3.1-2. The UE shall fulfil the minimum requirement in presence of an interfering signal specified in Table 7.8.1A-1 being on either side of the aggregated signal. The throughput of each carrier shall be  $\geq$  95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1A-1

| Rx parameter       | Units    |                                                                          | CA Bandwidth Class         |                 |                     |               |  |  |  |
|--------------------|----------|--------------------------------------------------------------------------|----------------------------|-----------------|---------------------|---------------|--|--|--|
| •                  |          | В                                                                        | С                          | D               | E                   | F             |  |  |  |
| Pw in              |          | RE                                                                       | FSENS + CA B               | andwidth Class  | specific value      | below         |  |  |  |
| Transmission       |          |                                                                          |                            |                 |                     |               |  |  |  |
| Bandwidth          | dBm      |                                                                          | 12                         |                 |                     |               |  |  |  |
| Configuration, per |          |                                                                          | 12                         |                 |                     |               |  |  |  |
| CC                 |          |                                                                          |                            |                 |                     |               |  |  |  |
| PInterferer 1      | dBm      |                                                                          |                            | -46             |                     |               |  |  |  |
| (CW)               |          |                                                                          |                            | 40              |                     |               |  |  |  |
| PInterferer 2      | dBm      |                                                                          |                            | -46             |                     |               |  |  |  |
| (Modulated)        |          |                                                                          |                            | 10              |                     | 1             |  |  |  |
| BW Interferer 2    | MHz      |                                                                          | 5                          |                 |                     |               |  |  |  |
| FInterferer 1      | MHz      |                                                                          | -F <sub>offset</sub> -7.5  |                 |                     |               |  |  |  |
| (Offset)           |          |                                                                          | _ /                        |                 |                     |               |  |  |  |
|                    |          |                                                                          | + F <sub>offset</sub> +7.5 |                 |                     |               |  |  |  |
| FInterferer 2      | MHz      |                                                                          |                            | 2*FInterferer 1 |                     |               |  |  |  |
| (Offset)           |          |                                                                          |                            |                 |                     |               |  |  |  |
| NOTE 1: The trans  |          |                                                                          |                            |                 |                     |               |  |  |  |
|                    |          |                                                                          | is specified in An         |                 | one sided dyna      | amic OCNG     |  |  |  |
|                    |          |                                                                          | ed in Annex A.5.           |                 |                     |               |  |  |  |
|                    |          | erferer consists of the Reference measurement channel specified in Annex |                            |                 |                     |               |  |  |  |
|                    |          | d dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex                |                            |                 |                     |               |  |  |  |
|                    |          |                                                                          | ing to Annex C.3           |                 | ile a dia Arra arra |               |  |  |  |
|                    | •        | dulated signal is                                                        | 5MHz E-UTRA                | signal as desci | ibea in Annex L     | J for channel |  |  |  |
| bandwid            | th ≥5MHz |                                                                          |                            |                 |                     |               |  |  |  |

#### Table 7.8.1A-1: Wide band intermodulation

For intra-band non-contiguous carrier aggregation with one uplink carrier and two downlink carriers, the wide band intermodulation requirements are defined with the uplink configuration in accordance with Table 7.3.1A-3. For this uplink configuration, the UE shall meet the requirements specified in subclause 7.8.1.1 for each component carrier while both downlink carriers are active. The wide band intermodulation requirements shall be supported for out-of-gap test only.

# 7.8.1B Minimum requirements for UL-MIMO

For UE(s) with two transmitter antenna connectors in closed-loop spatial multiplexing scheme, the minimum requirements in subclause 7.8.1 shall be met with the UL-MIMO configurations specified in Table 6.2.2B-2. For UL-MIMO, the parameter  $P_{CMAX_L}$  is defined as the total transmitter power over the two transmit antenna connectors.

# 7.8.2 Void

# 7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

# 7.9.1 Minimum requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1-1

Table 7.9.1-1: General receiver spurious emission requirements

| Frequency band                                                                                                                                                                                                             | Measurement<br>bandwidth | Maximum<br>level | Note |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|------|--|--|--|--|
| 30MHz ≤ f < 1GHz                                                                                                                                                                                                           | 100 kHz                  | -57 dBm          |      |  |  |  |  |
| $1$ GHz $\leq$ f $\leq$ 12.75 GHz                                                                                                                                                                                          | 1 MHz                    | -47 dBm          |      |  |  |  |  |
| 12.75 GHz $\leq$ f $\leq$ 5 <sup>th</sup> harmonic<br>of the upper frequency edge<br>of the DL operating band in<br>GHz                                                                                                    | 1 MHz                    | -47 dBm          | 1    |  |  |  |  |
| <ul> <li>NOTE 1: Applies only for Band 22, Band 42 and Band 43</li> <li>NOTE 2: Unused PDCCH resources are padded with resource element groups with power level given by PDCCH_RA/RB as defined in Annex C.3.1.</li> </ul> |                          |                  |      |  |  |  |  |

# 7.10 Receiver image

## 7.10.1 Void

# 7.10.1A Minimum requirements for CA

Receiver image rejection is a measure of a receiver's ability to receive the E-UTRA signal on one component carrier while it is also configured to receive an adjacent aggregated carrier. Receiver image rejection ratio is the ratio of the wanted received power on a sub-carrier being measured to the unwanted image power received on the same sub-carrier when both sub-carriers are received with equal power at the UE antenna connector.

For intra-band contiguous carrier aggregation the UE shall fulfil the minimum requirement specified in Table 7.10.1A-1 for all values of aggregated input signal up to -22 dBm.

|                             |       | CA bandwidth class |   |    |   |   |   |
|-----------------------------|-------|--------------------|---|----|---|---|---|
| Rx parameter                | Units | Α                  | В | С  | D | E | F |
| Receiver image<br>rejection | dB    |                    |   | 25 |   |   |   |

Table 7.10.1A-1: Receiver image rejection

# 8 Performance requirement

This clause contains performance requirements for the physical channels specified in TS 36.211 [4]. The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex A.3, the propagation conditions in Annex B and the downlink channels in Annex C.3.2.

Note: For the requirements in the following sections, similar Release 8 and 9 requirements apply for time domain measurements restriction under colliding CRS.

# 8.1 General

### 8.1.1 Dual-antenna receiver capability

The performance requirements are based on UE(s) that utilize a dual-antenna receiver.

For all test cases, the SNR is defined as

$$SNR = \frac{\hat{E}_{s}^{(1)} + \hat{E}_{s}^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}}$$

where the superscript indicates the receiver antenna connector. The above SNR definition assumes that the REs are not precoded. The SNR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SNR requirement applies for the UE categories and CA capabilities given for each test.

For enhanced performance requirements type A, the SINR is defined as

$$SINR = \frac{\hat{E}_{s}^{(1)} + \hat{E}_{s}^{(2)}}{N_{oc}^{(1)'} + N_{oc}^{(2)'}}$$

where the superscript indicates the receiver antenna connector. The above SINR definition assumes that the REs are not precoded. The SINR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SINR requirement applies for the UE categories given for each test.

The applicability of the requirements with respect to CA capabilities is given as in Table 8.1.1-1. In case the CA capability is omitted, the requirement is applicable to a UE regardless of its CA capability.

Table 8.1.1-1: Applicability of the requirement with respect to the CA capability

| CA<br>Capability | CA Capability Description                                           |  |  |  |  |  |
|------------------|---------------------------------------------------------------------|--|--|--|--|--|
| CL_X             | The requirement is applicable to a UE that indicates a CA bandwidth |  |  |  |  |  |
|                  | class X on at least one E-UTRA band.                                |  |  |  |  |  |
| CL_X-Y           | The requirement is applicable to a UE that indicates CA bandwidth   |  |  |  |  |  |
|                  | classes X and Y on at least one E-UTRA band combination.            |  |  |  |  |  |
| Note: The        | Note: The CA bandwidth classes are defined in Table 5.6A-1          |  |  |  |  |  |

For test cases with more than one component carrier, "Fraction of Maximum Throughput" in the performance requirement refers to the ratio of the sum of throughput values of all component carriers to the sum of the nominal maximum throughput values of all component carriers, unless otherwise stated.

#### 8.1.1.1 Simultaneous unicast and MBMS operations

8.1.1.2 Dual-antenna receiver capability in idle mode

# 8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

# 8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

| Parameter                                                    | Unit         | Value                                                                                                          |
|--------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|
| Inter-TTI Distance                                           |              | 1                                                                                                              |
| Number of HARQ<br>processes per<br>component carrier         | Processes    | 8                                                                                                              |
| Maximum number of<br>HARQ transmission                       |              | 4                                                                                                              |
| Redundancy version<br>coding sequence                        |              | {0,1,2,3} for QPSK and 16QAM<br>{0,0,1,2} for 64QAM                                                            |
| Number of OFDM<br>symbols for PDCCH per<br>component carrier | OFDM symbols | 4 for 1.4 MHz bandwidth, 3 for 3 MHz and<br>5 MHz bandwidths,<br>2 for 10 MHz, 15 MHz and 20 MHz<br>bandwidths |
| Cyclic Prefix                                                |              | Normal                                                                                                         |
| Cell_ID                                                      |              | 0                                                                                                              |
| Cross carrier scheduling                                     |              | Not configured                                                                                                 |

Table 8.2.1-1: Common Test Parameters (FDD)

### 8.2.1.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

#### 8.2.1.1.1 Minimum Requirement

For single carrier the requirements are specified in Table 8.2.1.1.1-2, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.1.1.1-4, with the addition of the parameters in Table 8.2.1.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

| Parame                                                                                                                                                                                                                                | er                           | Unit      | Test 1- 5        | Test 6- 8        | Test 9- 15       | Test 16- 18      | Test 19          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|------------------|------------------|------------------|------------------|------------------|
| Downlink nowor                                                                                                                                                                                                                        | $ ho_{\scriptscriptstyle A}$ | dB        | 0                | 0                | 0                | 0                | 0                |
| Downlink power<br>allocation                                                                                                                                                                                                          | $ ho_{\scriptscriptstyle B}$ | dB        | 0 (Note 1)       |
|                                                                                                                                                                                                                                       | σ                            | dB        | 0                | 0                | 0                | 0                | 0                |
| $N_{oc}$ at antenna port dBm/15kH                                                                                                                                                                                                     |                              | dBm/15kHz | -98              | -98              | -98              | -98              | -98              |
| Symbols for unu                                                                                                                                                                                                                       | Symbols for unused PRBs      |           | OCNG<br>(Note 2) |
| Modulati                                                                                                                                                                                                                              | Modulation                   |           | QPSK             | 16QAM            | 64QAM            | 16QAM            | QPSK             |
| PDSCH transmis                                                                                                                                                                                                                        | PDSCH transmission mode      |           |                  | 1                | 1                | 1                | 1                |
| Note 1: $P_B = 0$                                                                                                                                                                                                                     |                              |           |                  |                  |                  |                  |                  |
| Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. |                              |           |                  |                  |                  |                  |                  |
| Note 3: Void.                                                                                                                                                                                                                         | Void.                        |           |                  |                  |                  |                  |                  |
| Note 4: Void.                                                                                                                                                                                                                         |                              |           |                  |                  |                  |                  |                  |

Table 8.2.1.1.1-1: Test Parameters

| Test<br>num.         Band-<br>width         Reference<br>channel         OCNG<br>pattern         gation<br>condi-<br>tion         matrix and<br>antenna<br>condi-<br>tion         Fraction of<br>matrix and<br>antenna<br>condi-<br>tion         Fraction of<br>maximum         UE<br>cate<br>gavin           1         10 MHz         R.2 FDD         OP.1 FDD         EVA5         1x2 Low         70         -1.0         ≥1           3         10 MHz         R.2 FDD         OP.1 FDD         ETU300         1x2 Low         70         -0.4         ≥1           4         10 MHz         R.2 FDD         OP.1 FDD         ETU300         1x2 Low         70         -0.0         ≥1           5         1.4 MHz         R.3 FDD         OP.1 FDD         EVA5         1x2 Low         70         0.0         ≥1           6         10 MHz         R.3 FDD         OP.1 FDD         EVA5         1x2 Low         70         0.0         ≥1           7         10 MHz         R.3 FDD         OP.1 FDD         ETU70         1x2 Low         70         1.4         >2           5 MHz         R.3 FDD         OP.1 FDD         ETU300         1x2 High         70         9.4         >2           7         3 MHz         R.5 FDD         OP.1 FDD         EVA5         1x2 Low                                          |        |            |               |               | Propa-           | Correlation        | Reference             | value     |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|---------------|------------------|--------------------|-----------------------|-----------|------|
| 2         10 MHz         R.2 FDD         OP.1 FDD         ETU70         1x2 Low         70         -0.4         ≥1           3         10 MHz         R.2 FDD         OP.1 FDD         ETU300         1x2 Low         70         0.0         ≥1           4         10 MHz         R.2 FDD         OP.1 FDD         HST         1x2 Low         70         -2.4         ≥1           5         1.4 MHz         R.3 FDD         OP.1 FDD         EVA5         1x2 Low         70         6.7         ≥2           6         10 MHz         R.3 FDD         OP.1 FDD         EVA5         1x2 Low         70         6.7         1           7         5 MHz         R.3 FDD         OP.1 FDD         ETU70         1x2 Low         30         1.4         ≥2           5 MHz         R.3 FDD         OP.1 FDD         ETU70         1x2 Low         30         1.4         1           10 MHz         R.3 FDD         OP.1 FDD         ETU300         1x2 Low         30         1.4         1           8         5 MHz         R.3 FDD         OP.1 FDD         ETU300         1x2 Low         70         17.6         21           10         MHz         R.6 FDD <t< th=""><th></th><th></th><th></th><th></th><th>gation<br/>condi-</th><th>matrix and antenna</th><th>maximum<br/>throughput</th><th>-</th><th>cate</th></t<> |        |            |               |               | gation<br>condi- | matrix and antenna | maximum<br>throughput | -         | cate |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 10 MHz     | R.2 FDD       | OP.1 FDD      | EVA5             | 1x2 Low            | 70                    | -1.0      | ≥1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2      | 10 MHz     | R.2 FDD       | OP.1 FDD      | ETU70            | 1x2 Low            | 70                    | -0.4      | ≥1   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3      | 10 MHz     | R.2 FDD       | OP.1 FDD      | ETU300           | 1x2 Low            | 70                    | 0.0       | ≥1   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 10 MHz     | R.2 FDD       |               | HST              | 1x2                | 70                    | -2.4      | ≥1   |
| 6         5 MHz         R.3-1 FDD         OP.1 FDD         EVA5         1x2 Low         70         6.7         1           7         10 MHz         R.3 FDD         OP.1 FDD         ETU70         1x2 Low         30         1.4         ≥2           5 MHz         R.3-1 FDD         OP.1 FDD         ETU70         1x2 Low         30         1.4         1           8         10 MHz         R.3-1 FDD         OP.1 FDD         ETU300         1x2 High         70         9.4         ≥2           5 MHz         R.3-1 FDD         OP.1 FDD         ETU300         1x2 High         70         9.4         1           9         3 MHz         R.5 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.6         ≥1           10         5 MHz         R.6 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.7         ≥2           5 MHz         R.7 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.7         ≥2           10 MHz         R.7 FDD         OP.1 FDD         EVA5         1x2 Low         70         16.7         1           12         10 MHz         R.7 FDD         OP.1 FDD         EVA5                                                                                                                                              | 5      | 1.4 MHz    | R.4 FDD       | OP.1 FDD      | EVA5             | 1x2 Low            |                       | 0.0       | ≥1   |
| S MHZ         R.3-1 FDD         OP.1 FDD         EVAS         1 X2 Low         30         1.4         ≥2           5 MHZ         R.3 FDD         OP.1 FDD         ETU70         1 X2 Low         30         1.4         1           8         10 MHz         R.3 FDD         OP.1 FDD         ETU70         1 X2 Low         30         1.4         1           9         3 MHz         R.3 FDD         OP.1 FDD         ETU300         1 X2 High         70         9.4         22           10         MHz         R.3 FDD         OP.1 FDD         EVU300         1 X2 High         70         9.4         1           9         3 MHz         R.5 FDD         OP.1 FDD         EVA5         1 X2 Low         70         17.6         ≥1           10         5 MHz         R.6 FDD         OP.1 FDD         EVA5         1 X2 Low         70         17.7         ≥2           10         MHz         R.7 FDD         OP.1 FDD         EVA5         1 X2 Low         70         16.7         1           11         10 MHz         R.7 FDD         OP.1 FDD         ETU70         1 X2 Low         70         16.7         1           12         10 MHz         R.7 FDD                                                                                                                                                       | 6      | 10 MHz     | R.3 FDD       | OP.1 FDD      | EVA5             | 1x2 Low            |                       | 6.7       | ≥2   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0      | 5 MHz      | R.3-1 FDD     | OP.1 FDD      | EVA5             | 1x2 Low            | 70                    | 6.7       | 1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7      | 10 MHz     | R.3 FDD       | OP.1 FDD      | ETU70            | 1x2 Low            |                       | 1.4       | ≥2   |
| 8         5 MHz         R.3-1 FDD         OP.1 FDD         ETU300         1x2 High         70         9.4         1           9         3 MHz         R.5 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.6         ≥1           10         5 MHz         R.6 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.4         ≥2           10         5 MHz         R.6-1 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.4         ≥2           11         10 MHz         R.7 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.7         ≥2           10 MHz         R.7-1 FDD         OP.1 FDD         EVA5         1x2 Low         70         16.7         1           12         10 MHz         R.7-1 FDD         OP.1 FDD         ETU70         1x2 Low         70         18.1         1           13         10 MHz         R.7-1 FDD         OP.1 FDD         EVA5         1x2 High         70         17.8         1           14         15 MHz         R.8 FDD         OP.1 FDD         EVA5         1x2 Low         70         17.6         ≥3           15         20 MHz                                                                                                                                                    | '      | 5 MHz      | R.3-1 FDD     | OP.1 FDD      | ETU70            | 1x2 Low            |                       | 1.4       | 1    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0      | 10 MHz     | R.3 FDD       | OP.1 FDD      | ETU300           | 1x2 High           |                       | 9.4       | ≥2   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 5 MHz      | R.3-1 FDD     | OP.1 FDD      | ETU300           | 1x2 High           |                       | 9.4       | 1    |
| 105 MHzR.6-1 FDDOP.1 FDDEVA51x2 Low7017.511110 MHzR.7 FDDOP.1 FDDEVA51x2 Low7017.7≥210 MHzR.7.1 FDDOP.1 FDDEVA51x2 Low7016.711210 MHzR.7.1 FDDOP.1 FDDETU701x2 Low7018.111310 MHzR.7.1 FDDOP.1 FDDETU701x2 Low7018.111310 MHzR.7.1 FDDOP.1 FDDEVA51x2 High7019.1≥210 MHzR.7.1 FDDOP.1 FDDEVA51x2 Low7017.811415 MHzR.8 FDDOP.1 FDDEVA51x2 Low7017.7≥215MHzR.8-1 FDDOP.1 FDDEVA51x2 Low7017.6≥31520 MHzR.9-1 FDDOP.1 FDDEVA51x2 Low7017.3220 MHzR.9-1 FDDOP.1 FDDEVA51x2 Low7016.71163 MHzR.0 FDDOP.1 FDDETU701x2 Low301.9≥11710 MHzR.1 FDDOP.1 FDDETU701x2 Low301.9≥11820 MHzR.1 FDDOP.1 FDDETU701x2 Low301.9≥11910 MHzR.1 FDDOP.1 FDDETU701x2 Low301.9≥11910 MHzR.1 FDDOP.1 FDDETU70 <td< td=""><td>9</td><td>3 MHz</td><td>R.5 FDD</td><td></td><td>EVA5</td><td>1x2 Low</td><td></td><td>17.6</td><td>≥1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9      | 3 MHz      | R.5 FDD       |               | EVA5             | 1x2 Low            |                       | 17.6      | ≥1   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     | 5 MHz      | R.6 FDD       |               | EVA5             | 1x2 Low            |                       | 17.4      | ≥2   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     | 5 MHz      | R.6-1 FDD     | OP.1 FDD      | EVA5             | 1x2 Low            | 70                    | 17.5      | 1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11     |            |               |               |                  | 1x2 Low            |                       |           | ≥2   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11     | 10 MHz     | R.7-1 FDD     |               |                  | 1x2 Low            | 70                    | 16.7      | 1    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 10 MHz     | R.7 FDD       |               | ETU70            | 1x2 Low            | 70                    | 19.0      |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 10 MHz     | R.7-1 FDD     |               | ETU70            | 1x2 Low            | 70                    | 18.1      | 1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12     | 10 MHz     | R.7 FDD       |               | EVA5             | 1x2 High           |                       |           | ≥2   |
| 14       15 MHz       R.8-1 FDD       OP.1 FDD       EVA5       1x2 Low       70       16.8       1         15       20 MHz       R.9 FDD       OP.1 FDD       EVA5       1x2 Low       70       17.6       ≥3         15       20 MHz       R.9-2 FDD       OP.1 FDD       EVA5       1x2 Low       70       17.3       2         20 MHz       R.9-2 FDD       OP.1 FDD       EVA5       1x2 Low       70       16.7       1         16       3 MHz       R.0 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         17       10 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         18       20 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         19       10 MHz       R.41 FDD       OP.1 FDD       EVA5       1x2 Low       70       -5.4       ≥1         Note 1:       Void.       Void.       Void.       Void.       Void.       Void.       Void.                                                                                                                                                                                                                                                                                                                                                      | 15     |            | R.7-1 FDD     |               |                  | 1x2 High           | 70                    | 17.8      | 1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14     | 15 MHz     |               |               |                  | 1x2 Low            | 70                    |           | ≥2   |
| 15       20 MHz       R.9-2 FDD       OP.1 FDD       EVA5       1x2 Low       70       17.3       2         20 MHz       R.9-1 FDD       OP.1 FDD       EVA5       1x2 Low       70       16.7       1         16       3 MHz       R.0 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         17       10 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         18       20 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         19       10 MHz       R.41 FDD       OP.1 FDD       EVA5       1x2 Low       70       -5.4       ≥1         Note 1:       Void.       Void.       Void.       Void.       Void.       Void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14     | 15 MHz     | R.8-1 FDD     | OP.1 FDD      | EVA5             | 1x2 Low            |                       | 16.8      | 1    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 20 MHz     | R.9 FDD       | OP.1 FDD      | EVA5             | 1x2 Low            | 70                    | 17.6      | ≥3   |
| 16       3 MHz       R.0 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         17       10 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         18       20 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         19       10 MHz       R.41 FDD       OP.1 FDD       EVA5       1x2 Low       70       -5.4       ≥1         Note 1:       Void.       Void.       Void.       Void.       Void.       Void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15     |            | R.9-2 FDD     |               |                  | 1x2 Low            |                       | 17.3      |      |
| 17       10 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         18       20 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         19       10 MHz       R.41 FDD       OP.1 FDD       EVA5       1x2 Low       70       -5.4       ≥1         Note 1:       Void.       Void.       Void.       Void.       Void.       Void.       Void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            | R.9-1 FDD     |               | EVA5             | 1x2 Low            |                       | 16.7      | 1    |
| 18       20 MHz       R.1 FDD       OP.1 FDD       ETU70       1x2 Low       30       1.9       ≥1         19       10 MHz       R.41 FDD       OP.1 FDD       EVA5       1x2 Low       70       -5.4       ≥1         Note 1:       Void.         Note 2:       Void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |               |               |                  |                    |                       |           |      |
| 19         10 MHz         R.41 FDD         OP.1 FDD         EVA5         1x2 Low         70         -5.4         ≥1           Note 1:         Void.           Note 2:         Void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |               |               |                  |                    |                       |           |      |
| Note 1: Void.<br>Note 2: Void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |            |               |               |                  |                    |                       | -         |      |
| Note 2: Void.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |            | R.41 FDD      | OP.1 FDD      | EVA5             | 1x2 Low            | 70                    | -5.4      | ≥1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |            |               |               |                  |                    |                       |           |      |
| Note 3: Test 1 may not be executed for UE-s for which Test 1 in Table 8.2A.1.1.1-2 is applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |            |               |               | · · · · -        |                    | 0                     |           |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note 3 | : lest 1 m | ay not be exe | cuted for UE- | s for which      | lest 1 in Table 8  | .2A.1.1.1-2 is a      | pplicable |      |

Table 8.2.1.1.1-2: Minimum performance (FRC)

Table 8.2.1.1.1-3: Test Parameters for CA

| Pa                | Parameter                    |    | Test 1-2   |
|-------------------|------------------------------|----|------------|
| Downlink<br>power | $\rho_{A}$                   | dB | 0          |
| allocation        | $ ho_{\scriptscriptstyle B}$ | dB | 0 (Note 1) |

|                              | σ                       | dB                   | 0                                                                                                |  |  |  |  |  |  |
|------------------------------|-------------------------|----------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $N_{\it oc}$ at antenna port |                         | dBm/15kHz            | -98                                                                                              |  |  |  |  |  |  |
| Symbols 1                    | for unused PRBs         |                      | OCNG (Note 2)                                                                                    |  |  |  |  |  |  |
| Μ                            | odulation               |                      | QPSK                                                                                             |  |  |  |  |  |  |
| PDSCH tra                    | ansmission mode         |                      | 1                                                                                                |  |  |  |  |  |  |
| Note 1: $P_B =$              | $P_{\rm R}=0$ .         |                      |                                                                                                  |  |  |  |  |  |  |
| with                         |                         | UE; the data trans   | to an arbitrary number of virtual UEs<br>smitted over the OCNG PDSCHs shall<br>s QPSK modulated. |  |  |  |  |  |  |
| Note 3: PUC                  | CCH format 1b with chai | nnel selection is us | sed to feedback ACK/NACK.                                                                        |  |  |  |  |  |  |
| Note 4: The                  | same PDSCH transmis     | sion mode is appli   | ed to each component carrier.                                                                    |  |  |  |  |  |  |

Table 8.2.1.1.1-4: Minimum performance (FRC) for CA

|              |                |                      |                      | Dropo                              | Correlation                      | Reference                                   | value       |                    |                       |
|--------------|----------------|----------------------|----------------------|------------------------------------|----------------------------------|---------------------------------------------|-------------|--------------------|-----------------------|
| Test<br>num. | Band-<br>width | Reference<br>channel | OCNG<br>pattern      | Propa-<br>gation<br>condi-<br>tion | matrix and<br>antenna<br>config. | Fraction of<br>maximum<br>throughput<br>(%) | SNR<br>(dB) | UE<br>cate<br>gory | CA<br>capa-<br>bility |
| 1            | 2x10 MHz       | R.2 FDD              | OP.1 FDD<br>(Note 1) | EVA5                               | 1x2 Low                          | 70                                          | -1.1        | ≥3                 | CL_A-A<br>(Note 2)    |
| 2            | 2x20 MHz       | R.42 FDD             | OP.1 FDD<br>(Note 1) | EVA5                               | 1x2 Low                          | 70                                          | -1.3        | ≥5                 | CL_C                  |
| Note 1       | : The OCN      | IG pattern app       | olies for each       | CC.                                |                                  |                                             |             |                    |                       |
| Note 2       | : 30usec ti    | ming differend       | ce between tw        | vo CCs is ap                       | oplied in inter-bai              | nd CA case.                                 |             |                    |                       |

- 8.2.1.1.2 Void
- 8.2.1.1.3 Void

#### 8.2.1.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

| Parameter                            |                              | Unit                                                                                   | Test 1                                |
|--------------------------------------|------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|
|                                      | $ ho_{\scriptscriptstyle A}$ | dB                                                                                     | 0                                     |
| Downlink power<br>allocation         | $ ho_{\scriptscriptstyle B}$ | dB                                                                                     | 0 (Note 1)                            |
|                                      | σ                            | dB                                                                                     | 0                                     |
| $N_{_{oc}}$ at antenna               | port                         | dBm/15kHz                                                                              | -98                                   |
| Symbols for MBSFN<br>MBSFN subframes | •                            |                                                                                        | OCNG (Note 3)                         |
| PDSCH transmission                   | on mode                      |                                                                                        | 1                                     |
| Note 1: $P_{B} = 0$                  |                              |                                                                                        |                                       |
|                                      |                              | an MBSFN subfrar<br>e except the first tv                                              |                                       |
| QPSK mod<br>not inserted             | ulated data.<br>I in the MBS | the MBSFN subfra<br>Cell-specific refere<br>FN portion of the M<br>FN data is used ins | ence signals are<br>/IBSFN subframes, |

Table 8.2.1.1.4-1: Test Parameters for Testing 1 PRB allocation

| Test   | Bandwidth | Reference | OCNG     | Propagation | Correlation           | Reference              | value       | UE       |
|--------|-----------|-----------|----------|-------------|-----------------------|------------------------|-------------|----------|
| number |           | Channel   | Pattern  | Condition   | Matrix and<br>Antenna | Fraction of<br>Maximum | SNR<br>(dB) | Category |
|        |           |           |          |             | Configuration         | Throughput             | (ub)        |          |
|        |           |           |          |             |                       | (%)                    |             |          |
| 1      | 10 MHz    | R.29 FDD  | OP.3 FDD | ETU70       | 1x2 Low               | 30                     | 2.0         | ≥1       |

Table 8.2.1.1.4-2: Minimum performance 1PRB (FRC)

#### 8.2.1.2 Transmit diversity performance

#### 8.2.1.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.1-2, with the addition of the parameters in Table 8.2.1.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

| Table 8.2.1.2.1-1: Test Parameters for Transmit diversity | Performance   |       |
|-----------------------------------------------------------|---------------|-------|
|                                                           | y renomance ( | (FNC) |

| Parameter                    |                              | Unit      | Test 1-2    |
|------------------------------|------------------------------|-----------|-------------|
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle A}$ | dB        | -3          |
|                              | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1) |
|                              | σ                            | dB        | 0           |
| $N_{\it oc}$ at antenna      | ı port                       | dBm/15kHz | -98         |
| PDSCH transmissi             | on mode                      |           | 2           |
| Note 1: $P_B = 1$ .          |                              |           |             |

Table 8.2.1.2.1-2: Minimum performance Transmit Diversity (FRC)

| Test   | Band-  | Reference  | Reference OCNG |           | Correlation                            | Reference                                       | UE          |          |
|--------|--------|------------|----------------|-----------|----------------------------------------|-------------------------------------------------|-------------|----------|
| number | width  | Channel    | Pattern        | Condition | Matrix and<br>Antenna<br>Configuration | Fraction<br>of<br>Maximum<br>Throughp<br>ut (%) | SNR<br>(dB) | Category |
| 1      | 10 MHz | R.11 FDD   | OP.1 FDD       | EVA5      | 2x2 Medium                             | 70                                              | 6.8         | ≥2       |
|        | 5 MHz  | R.11-2 FDD | OP.1 FDD       | EVA5      | 2x2 Medium                             | 70                                              | 5.9         | 1        |
| 2      | 10 MHz | R.10 FDD   | OP.1 FDD       | HST       | 2x2                                    | 70                                              | -2.3        | ≥1       |

#### 8.2.1.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.2-2, with the addition of the parameters in Table 8.2.1.2.2-1 and the downlink physical channel setup according Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

| Parameter                    |                              | Unit      | Test 1-2    |
|------------------------------|------------------------------|-----------|-------------|
|                              | $ ho_{\scriptscriptstyle A}$ | dB        | -3          |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1) |
|                              | σ                            | dB        | 0           |
| $N_{\it oc}$ at antenna      | port                         | dBm/15kHz | -98         |
| PDSCH transmission           | on mode                      |           | 2           |
| Note 1: $P_B = 1$ .          |                              |           |             |

 Table 8.2.1.2.2-1: Test Parameters for Transmit diversity Performance (FRC)

| Test   | Band-   | Reference | Reference OCNG Pro |           | Correlation                            | Reference v                                 | UE          |          |
|--------|---------|-----------|--------------------|-----------|----------------------------------------|---------------------------------------------|-------------|----------|
| number | width   | Channel   | Pattern            | Condition | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 1.4 MHz | R.12 FDD  | OP.1 FDD           | EPA5      | 4x2 Medium                             | 70                                          | 0.6         | ≥1       |
| 2      | 10 MHz  | R.13 FDD  | OP.1 FDD           | ETU70     | 4x2 Low                                | 70                                          | -0.9        | ≥1       |

# 8.2.1.2.3 Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.1.2.3-2, with the addition of parameters in Table 8.2.1.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

| Parameter                                                                                                                                               |                                                                                                         | Unit                                                                                                                                                         | Cell 1                                                                    | Cell 2                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                                         | $ ho_{\scriptscriptstyle A}$                                                                            | dB                                                                                                                                                           | -3                                                                        | -3                                                       |
| Downlink power allocation                                                                                                                               | $ ho_{\scriptscriptstyle B}$                                                                            | dB                                                                                                                                                           | -3 (Note 1)                                                               | -3                                                       |
|                                                                                                                                                         | σ                                                                                                       | dB                                                                                                                                                           | 0                                                                         | N/A                                                      |
|                                                                                                                                                         | N <sub>oc1</sub>                                                                                        | dBm/15kHz                                                                                                                                                    | -102 (Note 2)                                                             | N/A                                                      |
| $N_{oc}$ at antenna port                                                                                                                                | N <sub>oc2</sub>                                                                                        | dBm/15kHz                                                                                                                                                    | -98 (Note 3)                                                              | N/A                                                      |
|                                                                                                                                                         | N <sub>oc3</sub>                                                                                        | dBm/15kHz                                                                                                                                                    | -94.8 (Note 4)                                                            | N/A                                                      |
| $\widehat{E}_{s}/N_{oc2}$                                                                                                                               |                                                                                                         | dB                                                                                                                                                           | Reference Value in Table 8.2.1.2.3-2                                      | 6                                                        |
| BW <sub>Channel</sub>                                                                                                                                   |                                                                                                         | MHz                                                                                                                                                          | 10                                                                        | 10                                                       |
| Subframe Configura                                                                                                                                      | ition                                                                                                   |                                                                                                                                                              | Non-MBSFN                                                                 | Non-MBSFN                                                |
| Time Offset between                                                                                                                                     | Cells                                                                                                   | μs                                                                                                                                                           | 2.5 (synchror                                                             | nous cells)                                              |
| Cell Id                                                                                                                                                 |                                                                                                         |                                                                                                                                                              | 0                                                                         | 1                                                        |
| ABS pattern (Note                                                                                                                                       | 5)                                                                                                      |                                                                                                                                                              | N/A                                                                       | 11000100<br>11000000<br>11000000<br>11000000<br>11000000 |
| RLM/RRM Measurement<br>Pattern (Note 6)                                                                                                                 |                                                                                                         |                                                                                                                                                              | 1000000<br>1000000<br>1000000<br>1000000<br>1000000                       | N/A                                                      |
|                                                                                                                                                         | C <sub>CSI,0</sub>                                                                                      |                                                                                                                                                              | 11000100<br>11000000<br>11000000<br>11000000<br>11000000                  | N/A                                                      |
| CSI Subframe Sets (Note7)                                                                                                                               | C <sub>CSI,1</sub>                                                                                      |                                                                                                                                                              | 00111011<br>00111111<br>00111111<br>00111111<br>00111111                  | N/A                                                      |
| Number of control OFDM                                                                                                                                  | symbols                                                                                                 |                                                                                                                                                              | 2                                                                         |                                                          |
| PDSCH transmission                                                                                                                                      | mode                                                                                                    |                                                                                                                                                              | 2                                                                         | N/A                                                      |
| Cyclic prefix                                                                                                                                           |                                                                                                         |                                                                                                                                                              | Normal                                                                    | Normal                                                   |
| overlapping with thNote 3:This noise is appliaABS.ABS.Note 4:This noise is appliaNote 5:ABS pattern as deNote 6:Time-domain meaNote 7:As configured acc | ne aggressor Å<br>ed in OFDM sy<br>ed in all OFDM<br>fined in [9].<br>surement resc<br>ording to the ti | ymbols #1, #2, #3, #5, #6, a<br>ABS.<br>ymbols #0, #4, #7, #11 of a<br>A symbols of a subframe ov<br>purce restriction pattern for<br>ime-domain measurement | a subframe overlapping<br>verlapping with aggress<br>PCell measurements a | with the aggressor<br>or non-ABS<br>s defined in [7]     |
| Mote 8: Cell 1 is the servin<br>is the same.                                                                                                            |                                                                                                         | s the aggressor cell. The n                                                                                                                                  | umber of the CRS ports                                                    | in Cell1 and Cell2                                       |

 Table 8.2.1.2.3-1: Test Parameters for Transmit diversity Performance (FRC)

is the same. Note 9: SIB-1 will not be transmitted in Cell2 in this test.

| Test<br>Number     | Reference<br>Channel                                                                  |                      | DCNG Propagation<br>attern Conditions<br>(Note 1) |            | Correlation<br>Matrix and<br>Antenna | trix and            |                                                      |                            |         |  |
|--------------------|---------------------------------------------------------------------------------------|----------------------|---------------------------------------------------|------------|--------------------------------------|---------------------|------------------------------------------------------|----------------------------|---------|--|
|                    |                                                                                       | Cell 1               | Cell 2                                            | Cell 1     | Cell 2                               | Configurati<br>on   | Fraction of<br>Maximum<br>Throughput<br>(%) (Note 5) | SNR<br>(dB)<br>(Note<br>2) |         |  |
| 1                  | R.11-4<br>FDD (Note<br>4)                                                             | OP.1<br>FDD          | OP.1<br>FDD                                       | EVA5       | EVA 5                                | 2x2 Medium          | 70                                                   | 3.4                        | ≥2      |  |
| Note 1:            |                                                                                       |                      |                                                   |            | Cell2 are                            | statistically indep | bendent.                                             |                            |         |  |
| Note 2:            | SNR correspo                                                                          | nds to $\widehat{E}$ | $s/N_{oc2}$                                       | of cell 1. |                                      |                     |                                                      |                            |         |  |
| Note 3:<br>Note 4: | Note 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. |                      |                                                   |            |                                      |                     |                                                      |                            |         |  |
| Note 5:            | The maximum                                                                           | Through              | put is cal                                        | culated fi | rom the tota                         | al Payload in 9 s   | ubframes, avera                                      | aged ove                   | r 40ms. |  |

Table 8.2.1.2.3-2: Minimum Performance Transmit Diversity (FRC)

# 8.2.1.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.1.2.3A-2, with the addition of parameters in Table 8.2.1.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

| Parameter                            |                              | Unit      | Cell 1                                                   | Cell 2                                                   | Cell 3                                                   |
|--------------------------------------|------------------------------|-----------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                                      | $ ho_{\scriptscriptstyle A}$ | dB        | -3                                                       | -3                                                       | -3                                                       |
| Downlink power<br>allocation         | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1)                                              | -3 (Note 1)                                              | -3 (Note 1)                                              |
|                                      | σ                            | dB        | 0                                                        | N/A                                                      | N/A                                                      |
|                                      | N <sub>oc1</sub>             | dBm/15kHz | -98 (Note 2)                                             | N/A                                                      | N/A                                                      |
| $N_{oc}$ at antenna port             | N <sub>oc2</sub>             | dBm/15kHz | -98 (Note 3)                                             | N/A                                                      | N/A                                                      |
|                                      | N <sub>oc3</sub>             | dBm/15kHz | -93 (Note 4)                                             | N/A                                                      | N/A                                                      |
| $\hat{E}_s/N_{oc2}$                  |                              | dB        | Reference<br>Value in<br>Table8.2.1.2.3A-<br>2           | 12                                                       | 10                                                       |
| BW <sub>Channel</sub>                |                              | MHz       | 10                                                       | 10                                                       | 10                                                       |
| Subframe Configu                     | ration                       |           | Non-MBSFN                                                | Non-MBSFN                                                | Non-MBSFN                                                |
| Time Offset betwee                   | n Cells                      | μs        | N/A                                                      | 3                                                        | -1                                                       |
| Frequency shift betwe                | een Cells                    | Hz        | N/A                                                      | 300                                                      | -100                                                     |
| Cell Id                              |                              |           | 0                                                        | 126                                                      | 1                                                        |
| ABS pattern (No                      | ABS pattern (Note 5)         |           | N/A                                                      | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 |
| RLM/RRM Measur<br>Subframe Pattern ( |                              |           | 10000000<br>10000000<br>10000000<br>10000000<br>1000000  | N/A                                                      | N/A                                                      |
| CSI Subframe Sets                    | C <sub>CSI,0</sub>           |           | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 | N/A                                                      | N/A                                                      |
| (Note7)                              | C <sub>CSI,1</sub>           |           | 00111111<br>00111111<br>00111111<br>00111111<br>00111111 | N/A                                                      | N/A                                                      |
| Number of control symbols            | OFDM                         |           | 2                                                        | Note 8                                                   | Note 8                                                   |
| PDSCH transmissio                    | n mode                       |           | 2                                                        | Note 9                                                   | Note 9                                                   |
| Cyclic prefix                        |                              | 1         | Normal                                                   | Normal                                                   | Normal                                                   |

 Table 8.2.1.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

| Note 1:  | $P_B = 1.$                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10, #12, #13 of a subframe overlapping with the aggressor ABS. |
| Note 3:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.                           |
| Note 4:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS                                        |
| Note 5:  | ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated                                                    |
|          | PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is                                                    |
|          | overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.      |
| Note 6:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in                                         |
|          | [7]                                                                                                                               |
| Note 7:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].          |
| Note 8:  | The number of control OFDM symbols is not available for ABS and is 2 for the subframe                                             |
|          | indicated by "0" of ABS pattern.                                                                                                  |
| Note 9:  | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying                                      |
|          | OCNG pattern as defined in Annex A.5.                                                                                             |
| Note 10: | The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.                                                             |
| Note 11: | SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.                                                                  |

#### Table 8.2.1.2.3A-2: Minimum Performance Transmit Diversity (FRC)

| Test<br>Number                | Reference<br>Channel | OC                                                                                                                                                                                                                | NG Patte    | ern         | Propagation Conditions<br>(Note1) |        | Correlation<br>Matrix and | Reference Value                      |                                             | UE<br>Cate                 |      |  |
|-------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------------|--------|---------------------------|--------------------------------------|---------------------------------------------|----------------------------|------|--|
|                               |                      | Cell 1                                                                                                                                                                                                            | Cell 2      | Cell<br>3   | Cell 1                            | Cell 2 | Cell 3                    | Antenna<br>Configuration<br>(Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) | gory |  |
| 1                             | R.11-4 FDD           | OP.1<br>FDD                                                                                                                                                                                                       | OP.1<br>FDD | OP.1<br>FDD | EVA5                              | EVA5   | EVA5                      | 2x2 Medium                           | 70                                          | 3.4                        | ≥2   |  |
| Note 1:<br>Note 2:<br>Note 3: | The correlation      | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.<br>SNR corresponds to of cell 1. |             |             |                                   |        |                           |                                      |                                             |                            |      |  |

# 8.2.1.2.4 Enhanced Performance Requirement Type A - 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.1.2.4-2, with the addition of parameters in Table 8.2.1.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.1.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

| Parameter                                                                                                                                                                                                                                                                                                            |                              | Unit      | Cell 1               | Cell 2                          | Cell 3                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|----------------------|---------------------------------|---------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                      | $ ho_{\scriptscriptstyle A}$ | dB        | -3                   | -3                              | -3                              |  |  |
| Downlink power allocation                                                                                                                                                                                                                                                                                            | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1)          | -3                              | -3                              |  |  |
|                                                                                                                                                                                                                                                                                                                      | σ                            | dB        | 0                    | 0                               | 0                               |  |  |
| Cell-specific reference                                                                                                                                                                                                                                                                                              | signals                      |           | Antenna ports<br>0,1 | Antenna ports<br>0,1            | Antenna ports<br>0,1            |  |  |
| $N_{oc}$ at antenna po                                                                                                                                                                                                                                                                                               | ort                          | dBm/15kHz | -98                  | N/A                             | N/A                             |  |  |
| DIP (Note 2)                                                                                                                                                                                                                                                                                                         |                              | dB        | N/A                  | -2.23                           | -8.06                           |  |  |
| BW <sub>Channel</sub>                                                                                                                                                                                                                                                                                                | MHz                          | 10        | 10                   | 10                              |                                 |  |  |
| Cyclic Prefix                                                                                                                                                                                                                                                                                                        |                              | Normal    | Normal               | Normal                          |                                 |  |  |
| Cell Id                                                                                                                                                                                                                                                                                                              |                              |           | 0                    | 1                               | 2                               |  |  |
| Number of control OFDM                                                                                                                                                                                                                                                                                               | l symbols                    |           | 2                    | 2                               | 2                               |  |  |
| PDSCH transmission                                                                                                                                                                                                                                                                                                   |                              |           | 2                    | N/A                             | N/A                             |  |  |
| Interference mod                                                                                                                                                                                                                                                                                                     | el                           |           | N/A                  | As specified in<br>clause B.5.2 | As specified in<br>clause B.5.2 |  |  |
| Probability of occurrence of                                                                                                                                                                                                                                                                                         | Rank 1                       | %         | N/A                  | 80                              | 80                              |  |  |
| transmission rank in<br>interfering cells                                                                                                                                                                                                                                                                            | Rank 2                       | %         | N/A                  | 20                              | 20                              |  |  |
| Reporting interva                                                                                                                                                                                                                                                                                                    | al                           | ms        | 5                    | N/A                             | N/A                             |  |  |
| Reporting mode                                                                                                                                                                                                                                                                                                       |                              |           | PUCCH 1-0            | N/A                             | N/A                             |  |  |
| Note 1: $P_B = 1$                                                                                                                                                                                                                                                                                                    |                              |           |                      |                                 |                                 |  |  |
| Note 2: The respective received power spectral density of each interfering cell relative to $N_{oc}$ is defined by                                                                                                                                                                                                   |                              |           |                      |                                 |                                 |  |  |
| <ul> <li>its associated DIP value as specified in clause B.5.1.</li> <li>Note 3: Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.</li> <li>Note 4: Cell 2 transmission is delayed with respect to Cell 1 by 0.33 ms and Cell 3 transmission is delayed with respect to Cell 1 by 0.67 ms.</li> </ul> |                              |           |                      |                                 |                                 |  |  |

# Table 8.2.1.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

# Table 8.2.1.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 interference model

| Test<br>Number | Reference<br>Channel                                                                   | OCI       | NG Pat    | tern      | Propagation<br>Conditions |           | Correlation Reference<br>Matrix and |                                       | Value                                       | UE<br>Cate                  |      |
|----------------|----------------------------------------------------------------------------------------|-----------|-----------|-----------|---------------------------|-----------|-------------------------------------|---------------------------------------|---------------------------------------------|-----------------------------|------|
|                |                                                                                        | Cell<br>1 | Cell<br>2 | Cell<br>3 | Cell<br>1                 | Cell<br>2 | Cell<br>3                           | Antenna<br>Configurati<br>on (Note 3) | Fraction of<br>Maximum<br>Throughput<br>(%) | SINR<br>(dB)<br>(Note<br>2) | gory |
| 1              | R.46 FDD                                                                               | OP.       | N/A       | N/A       | EV                        | EV        | EV                                  | 2x2 Low                               | 70                                          | -1.1                        | ≥1   |
|                |                                                                                        | 1         |           |           | A70                       | A70       | A70                                 |                                       |                                             |                             |      |
|                |                                                                                        | FD        |           |           |                           |           |                                     |                                       |                                             |                             |      |
|                |                                                                                        | D         |           |           |                           |           |                                     |                                       |                                             |                             |      |
| Note 1:        |                                                                                        |           |           |           |                           |           |                                     |                                       |                                             |                             |      |
| Note 2:        | Note 2: SINR corresponds to $\hat{E}_s / N_{oc}$ of Cell 1 as defined in clause 8.1.1. |           |           |           |                           |           |                                     |                                       |                                             |                             |      |
| Note 3:        | Correlation ma                                                                         | trix and  | anten     | na conf   | iguratic                  | on para   | meters                              | apply for each o                      | f Cell 1, Cell 2 a                          | nd Cell 3.                  |      |

## 8.2.1.3 Open-loop spatial multiplexing performance

### 8.2.1.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.1.3.1-2, with the addition of the parameters in Table 8.2.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.1.3.1-4, with the addition of the parameters in Table 8.2.1.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

| Parameter                    |                              | Unit      | Test 1-2    |
|------------------------------|------------------------------|-----------|-------------|
| Downlink nowor               | $ ho_{\scriptscriptstyle A}$ | dB        | -3          |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1) |
|                              | σ                            | dB        | 0           |
| $N_{_{oc}}$ at antenna       | port                         | dBm/15kHz | -98         |
| PDSCH transmission           | on mode                      |           | 3           |
| Note 1: $P_B = 1$ .          |                              |           |             |
| Note 2: Void                 |                              |           |             |
| Note 3: Void                 |                              |           |             |

Table 8.2.1.3.1-1: Test Parameters for Large Delay CDD (FRC)

|             |               |                      |                 | Brono                                        | Correlation        | Reference                                   |             |                |  |  |
|-------------|---------------|----------------------|-----------------|----------------------------------------------|--------------------|---------------------------------------------|-------------|----------------|--|--|
| Test<br>num | Bandwidth     | Reference<br>channel | OCNG<br>pattern | OCNG gation ma<br>pattern condi- a<br>tion c |                    | Fraction of<br>maximum<br>Throughput<br>(%) | SNR<br>(dB) | UE<br>category |  |  |
| 1           | 10 MHz        | R.11 FDD             | OP.1 FDD        | EVA70                                        | 2x2 Low            | 70                                          | 13.0        | ≥2             |  |  |
| 2           | 10 MHz        | R.35 FDD             | OP.1 FDD        | EVA200                                       | 2x2 Low            | 70                                          | 20.2        | ≥2             |  |  |
| Note 1:     | Void.         |                      |                 |                                              |                    |                                             |             |                |  |  |
| Note 2:     | Test 1 may no | ot be executed       | d for UE-s for  | which Test 1                                 | or 2 in Table 8.2/ | A.1.3.1-2 is appl                           | cable.      |                |  |  |

### Table 8.2.1.3.1-3: Test Parameters for Large Delay CDD (FRC) for CA

|                   | Parameter                                                               |                                                                        | Unit      | Test 1-3    |  |  |  |
|-------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|-------------|--|--|--|
| Devertistenseense |                                                                         | $ ho_{\scriptscriptstyle A}$                                           | dB        | -3          |  |  |  |
|                   | Downlink power<br>allocation                                            |                                                                        | dB        | -3 (Note 1) |  |  |  |
|                   |                                                                         | σ                                                                      | dB        | 0           |  |  |  |
| $N_{oo}$          | , at antenna                                                            | port                                                                   | dBm/15kHz | -98         |  |  |  |
| PDSCH             | l transmissio                                                           | on mode                                                                |           | 3           |  |  |  |
| Note 1:           | $P_B = 1$ .                                                             |                                                                        |           |             |  |  |  |
| Note 2:           | PUCCH format 1b with channel selection is used to<br>feedback ACK/NACK. |                                                                        |           |             |  |  |  |
| Note 3:           |                                                                         | The same PDSCH transmission mode is applied to each component carrier. |           |             |  |  |  |

|                    |                                               |                      |                      | Propa-                   | Correlation                      | Reference                                   | value       |                |                       |  |
|--------------------|-----------------------------------------------|----------------------|----------------------|--------------------------|----------------------------------|---------------------------------------------|-------------|----------------|-----------------------|--|
| Test<br>num        | Bandwidth                                     | Reference<br>channel | OCNG<br>pattern      | gation<br>condi-<br>tion | matrix and<br>antenna<br>config. | Fraction of<br>maximum<br>Throughput<br>(%) | SNR<br>(dB) | UE<br>category | CA<br>capa-<br>bility |  |
| 1                  | 2x10 MHz                                      | R.11 FDD             | OP.1 FDD<br>(Note 1) | EVA70                    | 2x2 Low                          | 70                                          | 13.7        | ≥3             | CL_A-A                |  |
| 2<br>(Note 2)      | 2x20 MHz                                      | R.30 FDD             | OP.1 FDD<br>(Note 1) | EVA70                    | 2x2 Low                          | 70                                          | 13.2        | ≥5             | CL_C                  |  |
| Note 1:<br>Note 2: | Note 1: The OCNG pattern applies for each CC. |                      |                      |                          |                                  |                                             |             |                |                       |  |

#### 8.2.1.3.1A Soft buffer management test

For CA the requirements are specified in Table 8.2.1.3.1A-2, with the addition of the parameters in Table 8.2.1.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the UE performance with proper instantaneous buffer implementation. The test points are applied to UE category and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.2.1.3.1A-3.

| Paramete                     | r                                                                                         | Unit      | Test 1-7    |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------------------------|-----------|-------------|--|--|--|--|
| Downlink power               | $ ho_{\scriptscriptstyle A}$                                                              | dB        | -3          |  |  |  |  |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$                                                              | dB        | -3 (Note 1) |  |  |  |  |
|                              | σ                                                                                         | dB        | 0           |  |  |  |  |
| $N_{oc}$ at antenna          | a port                                                                                    | dBm/15kHz | -98         |  |  |  |  |
| PDSCH transmissi             | on mode                                                                                   |           | 3           |  |  |  |  |
| Note 1: $P_B = 1$ .          |                                                                                           |           |             |  |  |  |  |
|                              | For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK.   |           |             |  |  |  |  |
|                              | For CA test cases, the same PDSCH transmission mode is applied to each component carrier. |           |             |  |  |  |  |

 Table 8.2.1.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

#### Table 8.2.1.3.1A-2: Minimum performance soft buffer management test (FRC) for CA

|                                                                                                                                                                            |               |                            |                      | Dropo                              |                                                        | Reference | value       |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------|----------------------|------------------------------------|--------------------------------------------------------|-----------|-------------|--------------------|
| Test<br>num                                                                                                                                                                | Bandwi<br>dth | Reference<br>channel       | OCNG<br>pattern      | Propa-<br>gation<br>condi-<br>tion | gation Correlation<br>condi- matrix and antenna config |           | SNR<br>(dB) | CA capa-<br>bility |
| 1                                                                                                                                                                          | 2x20<br>MHz   | R.30 FDD                   | OP.1 FDD<br>(Note 1) | EVA70                              | 2x2 Low                                                | 70        | 13.2        | CL_A-A<br>CL_C     |
| 2                                                                                                                                                                          | 15MHz +       | R.35-2 FDD for<br>15MHz CC | OP.1 FDD<br>(Note 1) | EVA5                               | 2x2 Low                                                | 70        | 15.1        |                    |
| 2                                                                                                                                                                          | 10MHz         | R.35-3 FDD for<br>10MHz CC | OP.1 FDD<br>(Note 1) | EVAD                               | 2X2 LOW                                                | 70        | 15.1        | CL_A-A             |
| 3                                                                                                                                                                          | 20MHz +       | R.30 FDD for<br>20MHz CC   | OP.1 FDD<br>(Note 1) | 5)/470                             |                                                        | 70        | 13.5        | CL_A-A             |
| 3                                                                                                                                                                          | 10MHz         | R.11 FDD for<br>10MHz CC   | OP.1 FDD<br>(Note 1) | EVA70 2x2 Low                      | 70                                                     | 13.5      |             |                    |
|                                                                                                                                                                            | 20MHz +       | R.30 FDD for<br>20MHz CC   | OP.1 FDD<br>(Note 1) |                                    |                                                        | 70        | 13.5        | CL_A-A             |
| 4                                                                                                                                                                          | 15MHz         | R.30-1 FDD for<br>15MHz CC | OP.1 FDD<br>(Note 1) | EVA70                              | 2x2 Low                                                | 70        | 13.5        |                    |
| 5                                                                                                                                                                          | 2x20<br>MHz   | R.35-1 FDD                 | OP.1 FDD<br>(Note 1) | EVA5                               | 2x2 Low                                                | 70        | 15.8        | CL_A-A<br>CL_C     |
| 6                                                                                                                                                                          | 20MHz +       | R.35-1 FDD for<br>20MHz CC | OP.1 FDD<br>(Note 1) | EVA5                               |                                                        | 70        | 15.9        |                    |
| 6                                                                                                                                                                          | 10MHz         | R.35-3 FDD for<br>10MHz CC | OP.1 FDD<br>(Note 1) | EVA5                               | 2x2 Low                                                | 70        | 15.9        | CL_A-A             |
| 7                                                                                                                                                                          | 20MHz +       | R.35-1 FDD for<br>20MHz CC | OP.1 FDD<br>(Note 1) |                                    |                                                        | 70        | 15.9        |                    |
| (                                                                                                                                                                          | 7 15MHz       | R.35-2 FDD for<br>15MHz CC | OP.1 FDD<br>(Note 1) | EVA5                               | 2x2 Low                                                | 70        | 15.9        | CL_A-A             |
| Note 1:       For CA test cases, the OCNG pattern applies for each CC.         Note 2:       For Test 2, 3, 4, 6, 7 the Fraction of maximum Throughput applies to each CC. |               |                            |                      |                                    |                                                        |           |             |                    |

### Table 8.2.1.3.1A-3: Test points for soft buffer management tests for CA

| UE category                                                                                                    | Bandwidth combination with maximum aggregated bandwidth (Note 1) |             |             |             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------|-------------|-------------|--|--|--|--|
| OE calegoly                                                                                                    | 2x20MHz                                                          | 15MHz+10MHz | 20MHz+10MHz | 20MHz+15MHz |  |  |  |  |
| 3                                                                                                              | 1                                                                | 2           | 3           | 4           |  |  |  |  |
| 4 5                                                                                                            |                                                                  | N/A         | 6           | 7           |  |  |  |  |
| Note 1: Maximum over all supported CA configurations and bandwidth combination sets according to Table 5.6A.1- |                                                                  |             |             |             |  |  |  |  |
| 1and Table                                                                                                     | 1and Table 5.6A.1-2.                                             |             |             |             |  |  |  |  |

#### 8.2.1.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.2-2, with the addition of the parameters in Table 8.2.1.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

| Parameter                              |                              | Unit      | Test 1      |
|----------------------------------------|------------------------------|-----------|-------------|
| Downlink power<br>allocation           | $ ho_{\scriptscriptstyle A}$ | dB        | -6          |
|                                        | $ ho_{\scriptscriptstyle B}$ | dB        | -6 (Note 1) |
|                                        | σ                            | dB        | 3           |
| $N_{\scriptscriptstyle oc}$ at antenna | port                         | dBm/15kHz | -98         |
| PDSCH transmissi                       | on mode                      |           | 3           |
| Note 1: $P_B = 1$                      |                              |           |             |

| Γ | Test   | Band-  | Reference | OCNG     | Propagation | Correlation                            | Reference v                                 | alue        | UE       |
|---|--------|--------|-----------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
|   | number | width  | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
|   | 1      | 10 MHz | R.14 FDD  | OP.1 FDD | EVA70       | 4x2 Low                                | 70                                          | 14.3        | ≥2       |

# 8.2.1.3.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.3-2, with the addition of parameters in Table 8.2.1.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.1.3.3-4, with the addition of parameters in Table 8.2.1.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.1.3.3-1 and 8.2.1.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

| Parameter                                                                                                                                                                                                             |                                                                                                                                | Unit                                                                                                            | Cell 1                                                                                                 | Cell 2                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                                                                                                                                                       | $ ho_{\scriptscriptstyle A}$                                                                                                   | dB                                                                                                              | -3                                                                                                     | -3                                                                        |
| Downlink power allocation                                                                                                                                                                                             | $ ho_{\scriptscriptstyle B}$                                                                                                   | dB                                                                                                              | -3 (Note 1)                                                                                            | -3                                                                        |
|                                                                                                                                                                                                                       | σ                                                                                                                              | dB                                                                                                              | 0                                                                                                      | N/A                                                                       |
|                                                                                                                                                                                                                       | N <sub>oc1</sub>                                                                                                               | dBm/15kHz                                                                                                       | -102 (Note 2)                                                                                          | N/A                                                                       |
| $N_{oc}$ at antenna port                                                                                                                                                                                              | $N_{oc2}$                                                                                                                      | dBm/15kHz                                                                                                       | -98 (Note 3)                                                                                           | N/A                                                                       |
|                                                                                                                                                                                                                       | N <sub>oc3</sub>                                                                                                               | dBm/15kHz                                                                                                       | -94.8 (Note 4)                                                                                         | N/A                                                                       |
| $\widehat{E}_{s}/N_{oc2}$                                                                                                                                                                                             |                                                                                                                                | dB                                                                                                              | Reference Value in Table 8.2.1.3.3-2                                                                   | 6                                                                         |
| BW <sub>Channel</sub>                                                                                                                                                                                                 |                                                                                                                                | MHz                                                                                                             | 10                                                                                                     | 10                                                                        |
| Subframe Configur                                                                                                                                                                                                     | ation                                                                                                                          |                                                                                                                 | Non-MBSFN                                                                                              | Non-MBSFN                                                                 |
| Cell Id                                                                                                                                                                                                               |                                                                                                                                |                                                                                                                 | 0                                                                                                      | 1                                                                         |
| Time Offset betweer                                                                                                                                                                                                   | Cells                                                                                                                          | μs                                                                                                              | 2.5 (synchro                                                                                           | nous cells)                                                               |
| ABS pattern (Note                                                                                                                                                                                                     | 9 5)                                                                                                                           |                                                                                                                 | N/A                                                                                                    | 11000100,<br>11000000,<br>11000000,<br>11000000,<br>11000000,<br>11000000 |
| RLM/RRM Measurement<br>Pattern(Note 6                                                                                                                                                                                 |                                                                                                                                |                                                                                                                 | 10000000<br>10000000<br>10000000<br>10000000<br>1000000                                                | N/A                                                                       |
| CSI Subframe Sets (Note                                                                                                                                                                                               | C <sub>CSI,0</sub>                                                                                                             |                                                                                                                 | 11000100<br>11000000<br>11000000<br>11000000<br>11000000                                               | N/A                                                                       |
| 7)                                                                                                                                                                                                                    | C <sub>CSI,1</sub>                                                                                                             |                                                                                                                 | 00111011<br>00111111<br>00111111<br>00111111<br>00111111                                               | N/A                                                                       |
| Number of control OFD                                                                                                                                                                                                 |                                                                                                                                |                                                                                                                 | 2                                                                                                      |                                                                           |
| PDSCH transmission                                                                                                                                                                                                    | mode                                                                                                                           |                                                                                                                 | 3<br>Normal                                                                                            | N/A                                                                       |
| Cyclic prefixNote 1: $P_{\scriptscriptstyle R} = 1$ .                                                                                                                                                                 |                                                                                                                                |                                                                                                                 | Normal                                                                                                 | Normal                                                                    |
| Note 2:This noise is appl<br>overlapping with tNote 3:This noise is appl<br>aggressor ABS.Note 4:This noise is applNote 5:ABS pattern as de<br>Time-domain meat<br>Note 7:Note 7:As configured acc<br>measurements de | he aggressor Å<br>ied in OFDM sy<br>ied in all OFDM<br>efined in [9].<br>asurement reso<br>cording to the ti<br>efined in [7]. | ymbols #0, #4, #7, #11 of<br>I symbols of a subframe o<br>purce restriction pattern fo<br>me-domain measurement | a subframe overlapping<br>overlapping with aggres<br>r PCell measurements<br>t resource restriction pa | g with the<br>sor non-ABS<br>as defined in [7].<br>ttern for CSI          |
| Note 8: Cell 1 is the servi<br>Cell2 is the same<br>Note 9: SIB-1 will not be t                                                                                                                                       |                                                                                                                                | s the aggressor cell. The r<br>Cell2 in this test.                                                              | number of the CRS port                                                                                 | s in Cell1 and                                                            |

# Table 8.2.1.3.3-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

| Test<br>Number     | Reference<br>Channel                                                                            |             |             | Propagation<br>Conditions<br>(Note 1) |           | Correlation<br>Matrix and<br>Antenna | Reference Value                                      |                            | UE<br>Category |
|--------------------|-------------------------------------------------------------------------------------------------|-------------|-------------|---------------------------------------|-----------|--------------------------------------|------------------------------------------------------|----------------------------|----------------|
|                    |                                                                                                 | Cell 1      | Cell 2      | Cell 1                                | Cell 2    | Configuration                        | Fraction of<br>Maximum<br>Throughput<br>(%) (Note 5) | SNR<br>(dB)<br>(Note<br>2) |                |
| 1                  | R.11 FDD<br>(Note 4)                                                                            | OP.1<br>FDD | OP.1<br>FDD | EVA 5                                 | EVA 5     | 2x2 Low                              | 70                                                   | 13.3                       | ≥2             |
| Note 1:            | The propagati                                                                                   | on condit   | ons for C   | ell 1 and                             | Cell2 are | statistically indepe                 | endent.                                              | •                          |                |
| Note 2:            | SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1.                                               |             |             |                                       |           |                                      |                                                      |                            |                |
| Note 3:<br>Note 4: | 3: The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.                |             |             |                                       |           |                                      |                                                      |                            |                |
| Note 5:            | The maximum Throughput is calculated from the total Payload in 9 subframes, averaged over 40ms. |             |             |                                       |           |                                      |                                                      |                            |                |

Table 8.2.1.3.3-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

| Parameter                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         | Unit                                                                                                                                                                                                                                | Cell 1                                                                                                                                                              | Cell 2                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                          | $ ho_{\scriptscriptstyle A}$                                                                                                                                                            | dB                                                                                                                                                                                                                                  | -3                                                                                                                                                                  | -3                                                                                                      |
| Downlink power allocation                                                                                                                                                                                                                                                                | $ ho_{\scriptscriptstyle B}$                                                                                                                                                            | dB                                                                                                                                                                                                                                  | -3 (Note 1)                                                                                                                                                         | -3                                                                                                      |
|                                                                                                                                                                                                                                                                                          | σ                                                                                                                                                                                       | dB                                                                                                                                                                                                                                  | 0                                                                                                                                                                   | N/A                                                                                                     |
|                                                                                                                                                                                                                                                                                          | N <sub>oc1</sub>                                                                                                                                                                        | dBm/15kHz                                                                                                                                                                                                                           | -102 (Note 2)                                                                                                                                                       | N/A                                                                                                     |
| $N_{oc}$ at antenna port                                                                                                                                                                                                                                                                 | $N_{oc2}$                                                                                                                                                                               | dBm/15kHz                                                                                                                                                                                                                           | -98 (Note 3)                                                                                                                                                        | N/A                                                                                                     |
|                                                                                                                                                                                                                                                                                          | N <sub>oc3</sub>                                                                                                                                                                        | dBm/15kHz                                                                                                                                                                                                                           | -94.8 (Note 4)                                                                                                                                                      | N/A                                                                                                     |
| $\widehat{E}_{s}/N_{oc2}$                                                                                                                                                                                                                                                                |                                                                                                                                                                                         | dB                                                                                                                                                                                                                                  | Reference Value in<br>Table 8.2.1.3.3-4                                                                                                                             | 6                                                                                                       |
| BW <sub>Channel</sub>                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         | MHz                                                                                                                                                                                                                                 | 10                                                                                                                                                                  | 10                                                                                                      |
| Subframe Configura                                                                                                                                                                                                                                                                       | ation                                                                                                                                                                                   |                                                                                                                                                                                                                                     | Non-MBSFN                                                                                                                                                           | MBSFN                                                                                                   |
| Cell Id                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                                                                                     | 0                                                                                                                                                                   | 126                                                                                                     |
| Time Offset between                                                                                                                                                                                                                                                                      | Cells                                                                                                                                                                                   | μs                                                                                                                                                                                                                                  | 2.5 (synchror                                                                                                                                                       | nous cells)                                                                                             |
| ABS pattern (Note                                                                                                                                                                                                                                                                        | 9 5)                                                                                                                                                                                    |                                                                                                                                                                                                                                     | N/A                                                                                                                                                                 | 0001000000<br>0100000010<br>0000001000<br>0000000                                                       |
| RLM/RRM Measurement<br>Pattern (Note 6                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                     | 0001000000<br>010000010<br>0000001000<br>00000000                                                                                                                   | N/A                                                                                                     |
| C <sub>CSI,0</sub><br>CSI Subframe Sets (Note                                                                                                                                                                                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                                                                     | 0001000000<br>010000010<br>0000001000<br>00000000                                                                                                                   | N/A                                                                                                     |
| 7)                                                                                                                                                                                                                                                                                       | C <sub>CSI,1</sub>                                                                                                                                                                      |                                                                                                                                                                                                                                     | 1110111111<br>1011111101<br>1111110111<br>1111110111<br>111111                                                                                                      | N/A                                                                                                     |
| MBSFN Subframe Allocation                                                                                                                                                                                                                                                                | on (Note 10)                                                                                                                                                                            |                                                                                                                                                                                                                                     | N/A                                                                                                                                                                 | 001000<br>100001<br>000100<br>000000                                                                    |
| Number of control OFDN                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                     | 2                                                                                                                                                                   |                                                                                                         |
| PDSCH transmission<br>Cyclic prefix                                                                                                                                                                                                                                                      | mode                                                                                                                                                                                    |                                                                                                                                                                                                                                     | 3<br>Normal                                                                                                                                                         | N/A<br>Normal                                                                                           |
| subframe overlap<br>Note 3: This noise is appl<br>Note 4: This noise is appl<br>Note 5: ABS pattern as de<br>MBSFN ABS sub<br>Note 6: Time-domain mea<br>Note 7: As configured acc<br>measurements de<br>Note 8: Cell 1 is the servi<br>Cell2 is the same<br>Note 9: SIB-1 will not be t | ping with the ag<br>ied in OFDM sp<br>ied in all OFDM<br>efined in [9]. Th<br>frames.<br>asurement resc<br>cording to the ti<br>efined in [7].<br>ng cell. Cell 2 is<br>ransmitted in C | ymbol #0 of a subframe ov<br>I symbols of a subframe ov<br>le 4 <sup>th</sup> , 12 <sup>th</sup> , 19 <sup>th</sup> and 27 <sup>th</sup> s<br>purce restriction pattern for<br>me-domain measurement<br>s the aggressor cell. The r | verlapping with the aggroup<br>overlapping with aggress<br>ubframes indicated by A<br>r PCell measurements a<br>t resource restriction pa<br>number of the CRS port | ressor ABS.<br>sor non-ABS.<br>ABS pattern are<br>as defined in [7].<br>ttern for CSI<br>s in Cell1 and |
|                                                                                                                                                                                                                                                                                          | mber of uplink                                                                                                                                                                          | HARQ transmission is lim<br>ptected by MBSFN ABS ir                                                                                                                                                                                 |                                                                                                                                                                     | HICH channel                                                                                            |

Table 8.2.1.3.3-3: Test Parameters for Large Delay CDD (FRC) – MBSFN ABS

| Test<br>Number     | Reference<br>Channel                                                                                                                                                                                                                                                                                                                                                               | OCNG Pattern |             | Propagation<br>Conditions<br>(Note 2) |             | Correlation<br>Matrix and<br>Antenna | Reference Value                                      |                            | UE<br>Category |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|---------------------------------------|-------------|--------------------------------------|------------------------------------------------------|----------------------------|----------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                    | Cell 1       | Cell 2      | Cell 1                                | Cell 2      | Configuration                        | Fraction of<br>Maximum<br>Throughput<br>(%) (Note 5) | SNR<br>(dB)<br>(Note<br>2) |                |
| 1                  | R.11 FDD<br>(Note 4)                                                                                                                                                                                                                                                                                                                                                               | OP.1<br>FDD  | OP.1<br>FDD | EVA 5                                 | EVA 5       | 2x2 Low                              | 70                                                   | 12.0                       | ≥2             |
| Note 1:            |                                                                                                                                                                                                                                                                                                                                                                                    |              |             |                                       | Cell2 are   | statistically indepe                 | ndent.                                               | •                          |                |
| Note 2:            | SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1.                                                                                                                                                                                                                                                                                                                                  |              |             |                                       |             |                                      |                                                      |                            |                |
| Note 3:<br>Note 4: | The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.<br>Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |              |             |                                       |             |                                      |                                                      |                            |                |
| Note 5:            | The maximum                                                                                                                                                                                                                                                                                                                                                                        | Through      | put is cald | culated fro                           | om the tota | al Payload in 4 su                   | bframes, averag                                      | ed over 4                  | 0ms.           |

Table 8.2.1.3.3-4: Minimum Performance Large Delay CDD (FRC) – MBSFN ABS

# 8.2.1.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.1.3.4-2, with the addition of parameters in Table 8.2.1.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cells with CRS assistance information. In Table 8.2.1.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 ad Cell3.

| Parameter                    |                                                  | Unit      | Cell 1                                                         | Cell 2                                                   | Cell 3                                                   |
|------------------------------|--------------------------------------------------|-----------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                              | $ ho_{\scriptscriptstyle A}$                     | dB        | -3                                                             | -3                                                       | -3                                                       |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$                     | dB        | -3 (Note 1)                                                    | -3 (Note 1)                                              | -3 (Note 1)                                              |
| anoodion                     | σ                                                | dB        | 0                                                              | N/A                                                      | N/A                                                      |
|                              | N <sub>oc1</sub>                                 | dBm/15kHz | -98 (Note 2)                                                   | N/A                                                      | N/A                                                      |
| $N_{oc}$ at antenna port     | N <sub>oc2</sub>                                 | dBm/15kHz | -98 (Note 3)                                                   | N/A                                                      | N/A                                                      |
|                              | $N_{oc3}$                                        | dBm/15kHz | -93 (Note 4)                                                   | N/A                                                      | N/A                                                      |
| $\widehat{E}_s/N_{oc2}$      |                                                  | dB        | Reference Value in Table 8.2.1.3.4-2                           | Reference<br>Value in<br>Table<br>8.2.1.3.4-2            | Reference<br>Value in<br>Table<br>8.2.1.3.4-2            |
| BW <sub>Channel</sub>        |                                                  | MHz       | 10                                                             | 10                                                       | 10                                                       |
| Subframe Configu             | ration                                           |           | Non-MBSFN                                                      | Non-MBSFN                                                | Non-MBSFN                                                |
| Time Offset betwee           | n Cells                                          | μs        | N/A                                                            | 3                                                        | -1                                                       |
| Frequency shift betwe        | Frequency shift between Cells                    |           | N/A                                                            | 300                                                      | -100                                                     |
| Cell Id                      | Cell Id                                          |           | 0                                                              | 1                                                        | 126                                                      |
| ABS pattern (No              | ABS pattern (Note 5)                             |           | N/A                                                            | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 |
|                              | RLM/RRM Measurement<br>Subframe Pattern (Note 6) |           | 1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000 | N/A                                                      | N/A                                                      |
| CSI Subframe Sets            | C <sub>CSI,0</sub>                               |           | 11000000<br>11000000<br>11000000<br>11000000<br>11000000       | N/A                                                      | N/A                                                      |
| (Note7)                      | C <sub>CSI,1</sub>                               |           | 00111111<br>00111111<br>00111111<br>00111111<br>00111111       | N/A                                                      | N/A                                                      |
| Number of control<br>symbols | OFDM                                             |           | 2                                                              | Note 8                                                   | Note 8                                                   |
| PDSCH transmissio            | n mode                                           |           | 3                                                              | Note 9                                                   | Note 9                                                   |
| Cyclic prefix                |                                                  |           | Normal                                                         | Normal                                                   | Normal                                                   |

# Table 8.2.1.3.4-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

| Note 1:  | $P_B = 1$ .                                                                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.                                       |
| Note 3:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.                                                                |
| Note 4:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS                                                                             |
| Note 5:  | ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated                                                                                         |
|          | PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the |
|          | definition of the reference channel.                                                                                                                                   |
| Note 6:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                          |
| Note 7:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                                               |
| Note 8:  | The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.                                                 |
| Note 9:  | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.                                     |
| Note 10: |                                                                                                                                                                        |
|          | SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.                                                                                                       |
| Note 11: | SID-1 will not be transmitted in Ceil 2 and Ceil 3 in this test.                                                                                                       |

Table 8.2.1.3.4-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

| Test<br>Numb<br>er            | Refer<br>ence<br>Chan<br>nel | $\widehat{E}_{s}/N_{oc2}$                                                                                                                                                                                                             |           | OCNG Pattern |             |             | Propagation<br>Conditions (Note1) |        |        | Correlatio<br>n Matrix                          | Reference Value                                     |                            | UE<br>Cate |  |
|-------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-------------|-------------|-----------------------------------|--------|--------|-------------------------------------------------|-----------------------------------------------------|----------------------------|------------|--|
|                               |                              | Cell<br>2                                                                                                                                                                                                                             | Cell<br>3 | Cell 1       | Cell 2      | Cell 3      | Cell 1                            | Cell 2 | Cell 3 | and<br>Antenna<br>Configurat<br>ion (Note<br>2) | Fraction<br>of<br>Maximu<br>m<br>Through<br>put (%) | SNR<br>(dB)<br>(Note<br>3) | gory       |  |
| 1                             | R.11<br>FDD                  | 9                                                                                                                                                                                                                                     | 7         | OP.1<br>FDD  | OP.1<br>FDD | OP.1<br>FDD | EVA5                              | EVA5   | EVA5   | 2x2 Low                                         | 70                                                  | 13.9                       | ≥2         |  |
| 2                             | R.35<br>FDD                  | 9                                                                                                                                                                                                                                     | 1         | OP.1<br>FDD  | OP.1<br>FDD | OP.1<br>FDD | EVA5                              | EVA5   | EVA5   | 2x2 Low                                         | 70                                                  | 22.6                       | ≥2         |  |
| Note 1:<br>Note 2:<br>Note 3: | The co                       | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.<br>SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |           |              |             |             |                                   |        |        |                                                 |                                                     |                            |            |  |

# 8.2.1.4 Closed-loop spatial multiplexing performance

### 8.2.1.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1-2, with the addition of the parameters in Table 8.2.1.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

| Parameter                                                    |                              | Unit                | Test 1               | Test 2        |  |  |  |
|--------------------------------------------------------------|------------------------------|---------------------|----------------------|---------------|--|--|--|
| Downlink nower                                               | $ ho_{\scriptscriptstyle A}$ | dB                  | -3                   | -3            |  |  |  |
| Downlink power<br>allocation                                 | $ ho_{\scriptscriptstyle B}$ | dB                  | -3 (Note 1)          | -3 (Note 1)   |  |  |  |
|                                                              | σ                            | dB                  | 0                    | 0             |  |  |  |
| $N_{_{oc}}$ at antenna                                       | port                         | dBm/15kHz           | -98                  | -98           |  |  |  |
| Precoding granul                                             | arity                        | PRB                 | 6                    | 50            |  |  |  |
| PMI delay (Note                                              | e 2)                         | ms                  | 8                    | 8             |  |  |  |
| Reporting inter                                              | val                          | ms 1                |                      | 1             |  |  |  |
| Reporting mod                                                | le                           |                     | PUSCH 1-2            | PUSCH 3-1     |  |  |  |
| CodeBookSubsetR<br>on bitmap                                 | estricti                     |                     | 001111               | 001111        |  |  |  |
| PDSCH transmis                                               | sion                         |                     | 4                    | 4             |  |  |  |
| mode                                                         |                              |                     |                      |               |  |  |  |
| Note 1: $P_B = 1$ .                                          |                              |                     |                      |               |  |  |  |
| Note 2: If the UE                                            | reports                      | in an available upl | ink reporting instan | ce at subrame |  |  |  |
| SF#n based on PMI estimation at a downlink SF not later than |                              |                     |                      |               |  |  |  |
| SF#(n-4<br>before S                                          |                              | ported PMI cannot   | be applied at the e  | NB downlink   |  |  |  |

Table 8.2.1.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

| Test   | Band-  | Reference | OCNG     | Propagation | Correlation                            | Reference value                             |             | UE       |
|--------|--------|-----------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number | width  | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 10 MHz | R.10 FDD  | OP.1 FDD | EVA5        | 2x2 Low                                | 70                                          | -2.5        | ≥1       |
| 2      | 10 MHz | R.10 FDD  | OP.1 FDD | EPA5        | 2x2 High                               | 70                                          | -2.3        | ≥1       |

#### 8.2.1.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1A-2, with the addition of the parameters in Table 8.2.1.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

| Parameter                                                                                                                                                                                                                               |                              | Unit      | Test 1                                  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|-----------------------------------------|--|--|--|--|
| Downlink nowor                                                                                                                                                                                                                          | $ ho_{\scriptscriptstyle A}$ | dB        | -6                                      |  |  |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                            | $ ho_{\scriptscriptstyle B}$ | dB        | -6 (Note 1)                             |  |  |  |  |
|                                                                                                                                                                                                                                         | σ                            | dB        | 3                                       |  |  |  |  |
| $N_{_{oc}}$ at antenna p                                                                                                                                                                                                                | ort                          | dBm/15kHz | -98                                     |  |  |  |  |
| Precoding granula                                                                                                                                                                                                                       | arity                        | PRB       | 6                                       |  |  |  |  |
| PMI delay (Note                                                                                                                                                                                                                         | 2)                           | ms        | 8                                       |  |  |  |  |
| Reporting interv                                                                                                                                                                                                                        | al                           | ms        | 1                                       |  |  |  |  |
| Reporting mode                                                                                                                                                                                                                          | e                            |           | PUSCH 1-2                               |  |  |  |  |
| CodeBookSubsetRe                                                                                                                                                                                                                        | estricti                     |           | 000000000000000000000000000000000000000 |  |  |  |  |
| on bitmap                                                                                                                                                                                                                               |                              |           | 00000000000000000                       |  |  |  |  |
|                                                                                                                                                                                                                                         |                              |           | 00000000000000000                       |  |  |  |  |
|                                                                                                                                                                                                                                         |                              |           | 111111111111111111                      |  |  |  |  |
| PDSCH transmiss<br>mode                                                                                                                                                                                                                 | sion                         |           | 4                                       |  |  |  |  |
| Note 1: $P_B = 1$ .                                                                                                                                                                                                                     |                              |           |                                         |  |  |  |  |
| Note 2: If the UE reports in an available uplink reporting instance<br>at subrame SF#n based on PMI estimation at a downlink<br>SF not later than SF#(n-4), this reported PMI cannot be<br>applied at the eNB downlink before SF#(n+4). |                              |           |                                         |  |  |  |  |

#### Table 8.2.1.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Table 8.2.1.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

| ſ | Test   | Band-  | Reference | OCNG     | Propagation | Correlation                            | Reference v                                 | value       | UE       |
|---|--------|--------|-----------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
|   | number | width  | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
|   | 1      | 10 MHz | R.13 FDD  | OP.1 FDD | EVA5        | 4x2 Low                                | 70                                          | -3.2        | ≥1       |

#### 8.2.1.4.1B Enhanced Performance Requirement Type A - Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.1.4.1B-2, with the addition of the parameters in Table 8.2.1.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rankone performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined in clause B.5.3. In Table 8.2.1.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Unit      | Cell 1               | Cell 2                          | Cell 3                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|----------------------|---------------------------------|---------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ ho_{\scriptscriptstyle A}$ | dB        | -3                   | -3                              | -3                              |  |  |  |
| Downlink power allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1)          | -3                              | -3                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ                            | dB        | 0                    | 0                               | 0                               |  |  |  |
| Cell-specific reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | signals                      |           | Antenna ports<br>0,1 | Antenna ports<br>0,1            | Antenna ports<br>0,1            |  |  |  |
| $N_{oc}$ at antenna po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ort                          | dBm/15kHz | -98                  | N/A                             | N/A                             |  |  |  |
| DIP (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | dB        | N/A                  | -1.73                           | -8.66                           |  |  |  |
| BW <sub>Channel</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | MHz       | 10                   | 10                              | 10                              |  |  |  |
| Cyclic Prefix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |           | Normal               | Normal                          | Normal                          |  |  |  |
| Cell Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |           | 0                    | 1                               | 2                               |  |  |  |
| Number of control OFDN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | symbols                      |           | 2                    | 2                               | 2                               |  |  |  |
| PDSCH transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |           | 6                    | N/A                             | N/A                             |  |  |  |
| Interference mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el                           |           | N/A                  | As specified in<br>clause B.5.3 | As specified in<br>clause B.5.3 |  |  |  |
| Probability of occurrence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rank 1                       | %         | N/A                  | 80                              | 80                              |  |  |  |
| transmission rank in<br>interfering cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rank 2                       | %         | N/A                  | 20                              | 20                              |  |  |  |
| Precoding granula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rity                         | PRB       | 50                   | 6                               | 6                               |  |  |  |
| PMI delay (Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4)                           | ms        | 8                    | N/A                             | N/A                             |  |  |  |
| Reporting interva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al                           | ms        | 5                    | N/A                             | N/A                             |  |  |  |
| Reporting mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |           | PUCCH 1-1            | N/A                             | N/A                             |  |  |  |
| CodeBookSubsetRestrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on bitmap                    |           | 001111               | N/A                             | N/A                             |  |  |  |
| Note 1: $P_B = 1$ Note 2:The respective received power spectral density of each interfering cell relative to $N_{oc}$ ' is defined by<br>its associated DIP value as specified in clause B.5.1.Note 3:Cell 1 is the serving cell. Cell 2, 3 are the interfering cells.Note 4:If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation<br>at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink<br>before SF#(n+4).Note 5:All cells are time-synchronous. |                              |           |                      |                                 |                                 |  |  |  |

# Table 8.2.1.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

# Table 8.2.1.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

| Test<br>Number | Reference<br>Channel                                                         |                     |           |           | Propagation<br>Conditions |           |           | Correlation<br>Matrix and             | Reference Value                             |                             | UE<br>Cate |
|----------------|------------------------------------------------------------------------------|---------------------|-----------|-----------|---------------------------|-----------|-----------|---------------------------------------|---------------------------------------------|-----------------------------|------------|
|                |                                                                              | Cell<br>1           | Cell<br>2 | Cell<br>3 | Cell<br>1                 | Cell<br>2 | Cell<br>3 | Antenna<br>Configurati<br>on (Note 3) | Fraction of<br>Maximum<br>Throughput<br>(%) | SINR<br>(dB)<br>(Note<br>2) | gory       |
| 1              | R.47 FDD                                                                     | OP.<br>1<br>FD<br>D | N/A       | N/A       | EV<br>A5                  | EV<br>A5  | EV<br>A5  | 2x2 Low                               | 70                                          | 0.8                         | ≥1         |
| Note 1:        |                                                                              |                     |           |           |                           |           |           | e statistically inc                   | dependent.                                  |                             |            |
| Note 2:        | SINR corresponds to $\hat{E}_s/N_{oc}$ of Cell 1 as defined in clause 8.1.1. |                     |           |           |                           |           |           |                                       |                                             |                             |            |
| Note 3:        | Correlation ma                                                               | trix and            | anten     | na conf   | iguratic                  | on para   | meters    | apply for each o                      | f Cell 1, Cell 2 a                          | nd Cell 3.                  |            |

# 8.2.1.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.1.4.1C-2, with the addition of parameters in Table 8.2.1.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.1.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

| Parameter                              |                              | Unit      | Cell 1                                                   | Cell 2                                                   | Cell 3                                                   |
|----------------------------------------|------------------------------|-----------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                                        | $ ho_{\scriptscriptstyle A}$ | dB        | -3                                                       | -3                                                       | -3                                                       |
| Downlink power<br>allocation           | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1)                                              | -3 (Note 1)                                              | -3 (Note 1)                                              |
| anocation                              | σ                            | dB        | 0                                                        | N/A                                                      | N/A                                                      |
|                                        | N <sub>oc1</sub>             | dBm/15kHz | -98 (Note 2)                                             | N/A                                                      | N/A                                                      |
| $N_{oc}$ at antenna port               | N <sub>oc2</sub>             | dBm/15kHz | -98 (Note 3)                                             | N/A                                                      | N/A                                                      |
|                                        | $N_{oc3}$                    | dBm/15kHz | -93 (Note 4)                                             | N/A                                                      | N/A                                                      |
| $\widehat{E}_s/N_{oc2}$                |                              | dB        | Reference Value in Table 8.2.1.4.1C-2                    | 12                                                       | 10                                                       |
| BW <sub>Channel</sub>                  |                              | MHz       | 10                                                       | 10                                                       | 10                                                       |
| Subframe Configur                      | ration                       |           | Non-MBSFN                                                | Non-MBSFN                                                | Non-MBSFN                                                |
| Time Offset betweer                    | n Cells                      | μs        | N/A                                                      | 3                                                        | -1                                                       |
| Frequency shift betwe                  | en Cells                     | Hz        | N/A                                                      | 300                                                      | -100                                                     |
| Cell Id                                |                              |           | 0                                                        | 126                                                      | 1                                                        |
| ABS pattern (Not                       | e 5)                         |           | N/A                                                      | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 |
| RLM/RRM Measure<br>Subframe Pattern (N |                              |           | 10000000<br>10000000<br>10000000<br>10000000<br>1000000  | N/A                                                      | N/A                                                      |
| CSI Subframe Sets                      | C <sub>CSI,0</sub>           |           | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 | N/A                                                      | N/A                                                      |
| (Note7)                                | C <sub>CSI,1</sub>           |           | 00111111<br>00111111<br>00111111<br>00111111<br>00111111 | N/A                                                      | N/A                                                      |
| Number of control C<br>symbols         | DFDM                         |           | 2                                                        | Note 8                                                   | Note 8                                                   |
| PDSCH transmission mode                |                              |           | 6                                                        | Note 9                                                   | Note 9                                                   |
| Precoding granularity                  |                              | PRB       | 50                                                       | N/A                                                      | N/A                                                      |
| PMI delay (Note 10)                    |                              | ms        | 8                                                        | N/A                                                      | N/A                                                      |
|                                        | Reporting interval           |           | 1                                                        | N/A                                                      | N/A                                                      |
| Peporting mod                          |                              | ms        | PUSCH 3-1                                                | N/A                                                      | N/A                                                      |
| CodeBookSubsetRes<br>bitmap            |                              |           | 1111                                                     | N/A                                                      | N/A                                                      |
| Cyclic prefix                          |                              |           | Normal                                                   | Normal                                                   | Normal                                                   |

Table 8.2.1.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) – Non-MBSFN ABS

| Note 1:            | $P_B = 1$ .                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:            | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.                                                                                                                                                                                                                                                      |
| Note 3:            | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.                                                                                                                                                                                                                                                                               |
| Note 4:<br>Note 5: | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |
| Note 6:            | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                                                                                                                                                         |
| Note 7:            | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                                                                                                                                                                                                                                                              |
| Note 8:            | The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.                                                                                                                                                                                                                                                                |
| Note 9:            | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.                                                                                                                                                                                                                                                    |
| Note 10:           | •                                                                                                                                                                                                                                                                                                                                                                                     |
| Note 11:           | The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.                                                                                                                                                                                                                                                                                                                 |
| Note 12:           | SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.                                                                                                                                                                                                                                                                                                                      |

#### Table 8.2.1.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)– Non-MBSFN ABS

| Test<br>Number | Reference<br>Channel | 00                | NG Patte                 | ern        |           | ropagations (N |             | Correlation<br>Matrix and             | Reference                                   | Value                      | UE<br>Cate |
|----------------|----------------------|-------------------|--------------------------|------------|-----------|----------------|-------------|---------------------------------------|---------------------------------------------|----------------------------|------------|
|                |                      | Cell 1            | Cell 2                   | Cell 3     | Cell 1    | Cell 2         | Cell 3      | Antenna<br>Configurati<br>on (Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) | gory       |
| 1              | R.11 FDD             | OP.1              | OP.1                     | OP.1       | EPA5      | EPA5           | EPA5        | 2x2 High                              | 70                                          | 6.1                        | ≥2         |
|                |                      | FDD               | FDD                      | FDD        |           |                |             |                                       |                                             |                            |            |
| Note 1:        | The propagat         | ion condi         | tions for                | Cell 1, Co | ell 2 and | Cell 3 are     | e statistic | ally independen                       | t.                                          |                            |            |
| Note 2:        | The correlation      | on matrix         | and ante                 | nna conf   | iguration | apply for      | Cell 1, C   | ell 2 and Cell 3.                     |                                             |                            |            |
| Note 3:        | SNR correspo         | onds to $\hat{E}$ | $\hat{E}_s / N_{oc2}$ of | of cell 1. |           |                |             |                                       |                                             |                            |            |

#### 8.2.1.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.2-2, with the addition of the parameters in Table 8.2.1.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

| Parameter                                                                                                                                                                                                                               |                              | Unit      | Test 1-2    |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|-------------|--|--|--|--|--|
| Downlink nower                                                                                                                                                                                                                          | $ ho_{\scriptscriptstyle A}$ | dB        | -3          |  |  |  |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                            | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1) |  |  |  |  |  |
|                                                                                                                                                                                                                                         | σ                            | dB        | 0           |  |  |  |  |  |
| $N_{_{oc}}$ at antenna                                                                                                                                                                                                                  | port                         | dBm/15kHz | -98         |  |  |  |  |  |
| Precoding granu                                                                                                                                                                                                                         | Ilarity                      | PRB       | 50          |  |  |  |  |  |
| PMI delay (Not                                                                                                                                                                                                                          | e 2)                         | ms        | 8           |  |  |  |  |  |
| Reporting inte                                                                                                                                                                                                                          | rval                         | ms        | 1           |  |  |  |  |  |
| Reporting mo                                                                                                                                                                                                                            | de                           |           | PUSCH 3-1   |  |  |  |  |  |
| CodeBookSubsetR                                                                                                                                                                                                                         | estriction                   |           | 110000      |  |  |  |  |  |
| bitmap                                                                                                                                                                                                                                  |                              |           |             |  |  |  |  |  |
| PDSCH transmission                                                                                                                                                                                                                      | on mode                      |           | 4           |  |  |  |  |  |
| Note 1: $P_B = 1$ .                                                                                                                                                                                                                     |                              |           |             |  |  |  |  |  |
| Note 2: If the UE reports in an available uplink reporting instance<br>at subrame SF#n based on PMI estimation at a downlink<br>SF not later than SF#(n-4), this reported PMI cannot be<br>applied at the eNB downlink before SF#(n+4). |                              |           |             |  |  |  |  |  |

Table 8.2.1.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

| Test   | Band-  | Reference | OCNG     | Propagation | Correlation                            | Reference v                                 | UE          |          |
|--------|--------|-----------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number | width  | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 10 MHz | R.35 FDD  | OP.1 FDD | EPA5        | 2x2 Low                                | 70                                          | 18.9        | ≥2       |
| 2      | 10 MHz | R.11 FDD  | OP.1 FDD | ETU70       | 2x2 Low                                | 70                                          | 14.3        | ≥2       |

#### 8.2.1.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.1.4.3-2, with the addition of the parameters in Table 8.2.1.4.3-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.1.4.3-4, with the addition of the parameters in Table 8.2.1.4.3-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.1.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

| Paramete                     | r                            | Unit | Test 1      |
|------------------------------|------------------------------|------|-------------|
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle A}$ | dB   | -6          |
|                              | $ ho_{\scriptscriptstyle B}$ | dB   | -6 (Note 1) |
|                              | σ                            | dB   | 3           |

| $N_{\scriptscriptstyle oc}$ at antenna port                                                                                                                                                                                    | dBm/15kHz | -98                                     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|--|--|--|--|--|
| Precoding granularity                                                                                                                                                                                                          | PRB       | 6                                       |  |  |  |  |  |
| PMI delay (Note 2)                                                                                                                                                                                                             | ms        | 8                                       |  |  |  |  |  |
| Reporting interval                                                                                                                                                                                                             | ms        | 1                                       |  |  |  |  |  |
| Reporting mode                                                                                                                                                                                                                 |           | PUSCH 1-2                               |  |  |  |  |  |
| CodeBookSubsetRestrictio                                                                                                                                                                                                       |           | 000000000000000000000000000000000000000 |  |  |  |  |  |
| n bitmap                                                                                                                                                                                                                       |           | 0000000111111111111111100               |  |  |  |  |  |
|                                                                                                                                                                                                                                |           | 0000000000000                           |  |  |  |  |  |
| PDSCH transmission mode                                                                                                                                                                                                        |           | 4                                       |  |  |  |  |  |
| Note 1: $P_B = 1$ .                                                                                                                                                                                                            |           |                                         |  |  |  |  |  |
| Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). |           |                                         |  |  |  |  |  |
| Note 3: Void.                                                                                                                                                                                                                  |           |                                         |  |  |  |  |  |
| Note 4: Void.                                                                                                                                                                                                                  |           |                                         |  |  |  |  |  |
| Note 5: Void.                                                                                                                                                                                                                  |           |                                         |  |  |  |  |  |

|              |                |                  |                 | Propa-      | Correlation | Reference v                                          |      |                     |
|--------------|----------------|------------------|-----------------|-------------|-------------|------------------------------------------------------|------|---------------------|
| Test<br>num. | Band-<br>width | Referencechannel | OCNG<br>pattern | OCNG gation |             | Fraction of<br>maximum SNR<br>throughput (dB)<br>(%) |      | UE<br>cate-<br>gory |
| 1            | 10<br>MHz      | R.36 FDD         | OP.1<br>FDD     | EPA5        | 4x2 Low     | 70                                                   | 14.7 | ≥2                  |
| Note 1       | : Void         |                  |                 |             |             |                                                      |      |                     |

### Table 8.2.1.4.3-3: Test Parameters for Multi-Layer Spatial Multiplexing (FRC) for CA

| Parameter                              |                                                                                                  | Unit      | Test 1              | Test 2              |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------|-----------|---------------------|---------------------|--|--|--|--|--|
| Deverliek zewer                        | $ ho_{\scriptscriptstyle A}$                                                                     | dB        | -6                  | -6                  |  |  |  |  |  |
| Downlink power<br>allocation           | $ ho_{\scriptscriptstyle B}$                                                                     | dB        | -6 (Note 1)         | -6 (Note 1)         |  |  |  |  |  |
|                                        | σ                                                                                                | dB        | 3                   | 3                   |  |  |  |  |  |
| $N_{\scriptscriptstyle oc}$ at antenna | port                                                                                             | dBm/15kHz | -98                 | -98                 |  |  |  |  |  |
| Precoding granu                        | Ilarity                                                                                          | PRB       | 6                   | 8                   |  |  |  |  |  |
| PMI delay (Not                         | e 2)                                                                                             | ms        | 8                   | 8                   |  |  |  |  |  |
| Reporting inter                        | rval                                                                                             | ms        | 1                   | 1                   |  |  |  |  |  |
| Reporting mo                           | de                                                                                               |           | PUSCH 1-2           | PUSCH 1-2           |  |  |  |  |  |
| CodeBookSubsetRe                       | estriction                                                                                       |           | 0000000000000       | 000000000000000000  |  |  |  |  |  |
| bitmap                                 |                                                                                                  |           | 0000000000000000000 | 0000000000000000000 |  |  |  |  |  |
|                                        |                                                                                                  |           | 0000001111111       | 0000001111111       |  |  |  |  |  |
|                                        |                                                                                                  |           | 1111111110000       | 1111111110000       |  |  |  |  |  |
|                                        |                                                                                                  |           | 000000000000        | 000000000000        |  |  |  |  |  |
| CSI request field (                    | Note 3)                                                                                          |           | '10'                |                     |  |  |  |  |  |
| PDSCH transmission                     | on mode                                                                                          |           | 4                   |                     |  |  |  |  |  |
| Note 1: $P_B = 1$ .                    |                                                                                                  |           |                     |                     |  |  |  |  |  |
| based on I<br>reported P               | 5                                                                                                |           |                     |                     |  |  |  |  |  |
| Note 3: Multiple Collayers.            | 3: Multiple CC-s under test are configured as the 1 <sup>st</sup> set of serving cells by higher |           |                     |                     |  |  |  |  |  |
| Note 4: ACK/NAC                        |                                                                                                  |           |                     |                     |  |  |  |  |  |
|                                        |                                                                                                  |           | applied to each con | nponent carrier.    |  |  |  |  |  |

|              |                                               |                  |                         | Propa-                   | Correlation                      | Reference value                             |             |                     |                       |  |
|--------------|-----------------------------------------------|------------------|-------------------------|--------------------------|----------------------------------|---------------------------------------------|-------------|---------------------|-----------------------|--|
| Test<br>num. | Band-<br>width                                | Referencechannel | OCNG<br>pattern         | gation<br>condi-<br>tion | matrix and<br>antenna<br>config. | Fraction of<br>maximum<br>throughput<br>(%) | SNR<br>(dB) | UE<br>cate-<br>Gory | CA<br>capa-<br>bility |  |
| 1            | 2x10<br>MHz                                   | R.14 FDD         | OP.1<br>FDD<br>(Note 1) | EVA5                     | 4x2 Low                          | 70                                          | 10.8        | ≥3                  | CL_A-<br>A            |  |
| 2            | 2x20<br>MHz                                   | R.14-3 FDD       | OP.1<br>FDD<br>(Note 1) | EVA5                     | 4x2 Low                          | 70                                          | 10.9        | ≥5                  | CL_C                  |  |
| Note 1       | Note 1: The OCNG pattern applies for each CC. |                  |                         |                          |                                  |                                             |             |                     |                       |  |

Table 8.2.1.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA

#### 8.2.1.5 MU-MIMO

### 8.2.1.6 [Control channel performance: D-BCH and PCH]

#### 8.2.1.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjancent carrier aggregation UE to demodulate the signal transmitted by the PCell in the presence of a stronger SCell signal on an adjacent frequency. Throughput is measured on the PCell only.

#### 8.2.1.7.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.1.7.1-2, with the addition of the parameters in Table 8.2.1.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

| Paramete                                                   | r                                                                                                                                                                                                                                                                  | Unit      | Test 1             |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|--|--|--|
|                                                            | $ ho_{\scriptscriptstyle A}$                                                                                                                                                                                                                                       | dB        | 0                  |  |  |  |
| Downlink power<br>allocation                               | $ ho_{\scriptscriptstyle B}$                                                                                                                                                                                                                                       | dB        | 0 (Note 1)         |  |  |  |
|                                                            | σ                                                                                                                                                                                                                                                                  | dB        | 0                  |  |  |  |
| $\hat{E}_{s}$ – $^{PCell}$ at anten PCell                  | na port of                                                                                                                                                                                                                                                         | dBm/15kHz | -85                |  |  |  |
| $\hat{E}_{s}$ _ $SCell$ at anten Scell                     | na port of                                                                                                                                                                                                                                                         | dBm/15kHz | -79                |  |  |  |
| $N_{oc}$ at antenn                                         | a port                                                                                                                                                                                                                                                             | dBm/15kHz | Off (Note 2)       |  |  |  |
| Symbols for unus                                           | ed PRBs                                                                                                                                                                                                                                                            |           | OCNG<br>(Note 3,4) |  |  |  |
| Modulatio                                                  | n                                                                                                                                                                                                                                                                  |           | 64 QAM             |  |  |  |
| Maximum number<br>transmissio                              |                                                                                                                                                                                                                                                                    |           | 1                  |  |  |  |
| Redundancy version                                         | -                                                                                                                                                                                                                                                                  |           | {0}                |  |  |  |
| PDSCH transmiss<br>of PCell                                |                                                                                                                                                                                                                                                                    |           | 1                  |  |  |  |
| PDSCH tramsmiss<br>of SCell                                | sion mode                                                                                                                                                                                                                                                          |           | 3                  |  |  |  |
| Note 1: $P_B = 0$ .                                        |                                                                                                                                                                                                                                                                    |           |                    |  |  |  |
| Note 3: These p<br>an arbitr<br>PDSCH<br>the OCN<br>pseudo | <ol> <li>These physical resource blocks are assigned to<br/>an arbitrary number of virtual UEs with one<br/>PDSCH per virtual UE; the data transmitted over<br/>the OCNG PDSCHs shall be uncorrelated.<br/>pseudo random data, which is QPSK modulated.</li> </ol> |           |                    |  |  |  |
|                                                            | and PDSCI                                                                                                                                                                                                                                                          |           |                    |  |  |  |

Table 8.2.1.7.1-2: Minimum performance (FRC) for CA

| Test<br>Number | Band-<br>width |             | rence<br>nnel | OCNG F      | Pattern     | Propa<br>Cond |               | Correlation<br>Matrix and<br>Antenna |       | Reference value<br>Fraction of<br>Maximum | UE<br>Category | CA<br>capabi<br>lity |
|----------------|----------------|-------------|---------------|-------------|-------------|---------------|---------------|--------------------------------------|-------|-------------------------------------------|----------------|----------------------|
|                |                | PCell       | SCell         | PCell       | SCell       | PCell         | SCell         | PCell                                | SCell | Throughput (%)                            |                |                      |
| 1              | 2x20M<br>Hz    | R.49<br>FDD | R.49-1<br>FDD | OP.1<br>FDD | OP.5<br>FDD | AWGN          | Clause<br>B.1 | 1x2                                  | 2x2   | 85%                                       | 5-8            | CL-C                 |

### 8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

| Parameter                                                                                                | Unit         | Value                                                                                                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Uplink downlink configuration (Note 1)                                                                   |              | 1                                                                                                              |  |  |  |  |
| Special subframe configuration (Note 2)                                                                  |              | 4                                                                                                              |  |  |  |  |
| Cyclic prefix                                                                                            |              | Normal                                                                                                         |  |  |  |  |
| Cell ID                                                                                                  |              | 0                                                                                                              |  |  |  |  |
| Inter-TTI Distance                                                                                       |              | 1                                                                                                              |  |  |  |  |
| Number of HARQ<br>processes per<br>component carrier                                                     | Processes    | 7                                                                                                              |  |  |  |  |
| Maximum number of<br>HARQ transmission                                                                   |              | 4                                                                                                              |  |  |  |  |
| Redundancy version<br>coding sequence                                                                    |              | {0,1,2,3} for QPSK and 16QAM<br>{0,0,1,2} for 64QAM                                                            |  |  |  |  |
| Number of OFDM<br>symbols for PDCCH per<br>component carrier                                             | OFDM symbols | 4 for 1.4 MHz bandwidth, 3 for 3 MHz and<br>5 MHz bandwidths,<br>2 for 10 MHz, 15 MHz and 20 MHz<br>bandwidths |  |  |  |  |
| Cross carrier scheduling                                                                                 |              | Not configured                                                                                                 |  |  |  |  |
| Note 1:as specified in Table 4.2-2 in TS 36.211 [4].Note 2:as specified in Table 4.2-1 in TS 36.211 [4]. |              |                                                                                                                |  |  |  |  |

#### Table 8.2.2-1: Common Test Parameters (TDD)

### 8.2.2.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.4 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

#### 8.2.2.1.1 Minimum Requirement

For single carrier the requirements are specified in Table 8.2.2.1.1-2, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.2.1.1-4, with the addition of the parameters in Table 8.2.2.1.1-3 and the downlink physical channel setup according to Annex C.3.2.

| Paramete            | r                            | Unit | Test 1- 5  | Test 6- 8  | Test 9- 15 | Test 16- 18 | Test 19    |
|---------------------|------------------------------|------|------------|------------|------------|-------------|------------|
| Downlink            | $ ho_{\scriptscriptstyle A}$ | dB   | 0          | 0          | 0          | 0           | 0          |
| power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB   | 0 (Note 1) | 0 (Note 1) | 0 (Note 1) | 0 (Note 1)  | 0 (Note 1) |

#### Table 8.2.2.1.1-1: Test Parameters

|                                                                                                                                    | σ       | dB                | 0              | 0                | 0              | 0                | 0            |  |
|------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------------|------------------|----------------|------------------|--------------|--|
| $N_{oc}$ at ante                                                                                                                   | enna    | dBm/15kHz         | -98            | -98              | -98            | -98              | -98          |  |
| port                                                                                                                               | ,       |                   | 0010           | 0010             | 0010           | 00110            | 00110        |  |
| Symbols                                                                                                                            |         |                   | OCNG           | OCNG             | OCNG           | OCNG             | OCNG         |  |
| unused Pl                                                                                                                          | RBs     |                   | (Note 2)       | (Note 2)         | (Note 2)       | (Note 2)         | (Note 2)     |  |
| Modulati                                                                                                                           | on      |                   | QPSK           | 16QAM            | 64QAM          | 16QAM            | QPSK         |  |
| ACK/NAG                                                                                                                            | CK      |                   | Multiplexing   | Multiplexing     | Multiplexing   | Multiplexing     | Multiplexing |  |
| feedback n                                                                                                                         | node    |                   |                |                  | -              | _                |              |  |
| PDSCH                                                                                                                              | 1       |                   | 1              | 1                | 1              | 1                | 1            |  |
| transmission                                                                                                                       | mode    |                   |                |                  |                |                  |              |  |
| Note 1: P <sub>1</sub>                                                                                                             | =0      |                   |                |                  |                |                  |              |  |
| Note 2: Th                                                                                                                         | ese phy | sical resource    | blocks are ass | igned to an arl  | oitrary number | of virtual UEs v | with one     |  |
| P                                                                                                                                  | SCH p   | er virtual UE; tl | ne data transm | itted over the C | CNG PDSCH      | s shall be unco  | rrelated     |  |
| PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. |         |                   |                |                  |                |                  |              |  |
|                                                                                                                                    | Void.   |                   |                |                  |                |                  |              |  |
| Note 4: Vo                                                                                                                         | oid.    |                   |                |                  |                |                  |              |  |

| Table 8.2.2.1.1-2: | Minimum | performance | (FRC) |
|--------------------|---------|-------------|-------|
|                    |         |             |       |

| Test   | Bandwidth | Reference | OCNG        | Propagation | Correlation                            | Reference v                                 | alue        | UE       |
|--------|-----------|-----------|-------------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number |           | Channel   | Pattern     | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 10 MHz    | R.2 TDD   | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | -1.2        | ≥1       |
| 2      | 10 MHz    | R.2 TDD   | OP.1<br>TDD | ETU70       | 1x2 Low                                | 70                                          | -0.6        | ≥1       |
| 3      | 10 MHz    | R.2 TDD   | OP.1<br>TDD | ETU300      | 1x2 Low                                | 70                                          | -0.2        | ≥1       |
| 4      | 10 MHz    | R.2 TDD   | OP.1<br>TDD | HST         | 1x2                                    | 70                                          | -2.6        | ≥1       |
| 5      | 1.4 MHz   | R.4 TDD   | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 0.0         | ≥1       |
| 6      | 10 MHz    | R.3 TDD   | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 6.7         | ≥2       |
|        | 5 MHz     | R.3-1 TDD | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 6.7         | 1        |
| 7      | 10 MHz    | R.3 TDD   | OP.1<br>TDD | ETU70       | 1x2 Low                                | 30                                          | 1.4         | ≥2       |
|        | 5 MHz     | R.3-1 TDD | OP.1<br>TDD | ETU70       | 1x2 Low                                | 30                                          | 1.4         | 1        |
| 8      | 10 MHz    | R.3 TDD   | OP.1<br>TDD | ETU300      | 1x2 High                               | 70                                          | 9.3         | ≥2       |
|        | 5 MHz     | R.3-1 TDD | OP.1<br>TDD | ETU300      | 1x2 High                               | 70                                          | 9.3         | 1        |
| 9      | 3 MHz     | R.5 TDD   | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 17.6        | ≥1       |
| 10     | 5 MHz     | R.6 TDD   | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 17.6        | ≥2       |
|        | 5 MHz     | R.6-1 TDD | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 17.6        | 1        |
| 11     | 10 MHz    | R.7 TDD   | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 17.6        | ≥2       |
|        | 10 MHz    | R.7-1 TDD | OP.1<br>TDD | EVA5        | 1x2 Low                                | 70                                          | 17.6        | 1        |
| 12     | 10 MHz    | R.7 TDD   | OP.1<br>TDD | ETU70       | 1x2 Low                                | 70                                          | 19.1        | ≥2       |
|        | 10 MHz    | R.7-1 TDD | OP.1<br>TDD | ETU70       | 1x2 Low                                | 70                                          | 19.1        | 1        |
| 13     | 10 MHz    | R.7 TDD   | OP.1<br>TDD | EVA5        | 1x2 High                               | 70                                          | 19.1        | ≥2       |
|        | 10 MHz    | R.7-1 TDD | OP.1<br>TDD | EVA5        | 1x2 High                               | 70                                          | 19.1        | 1        |

| 14      | 15 MHz | R.8 TDD   | OP.1<br>TDD | EVA5  | 1x2 Low | 70 | 17.8 | ≥2 |
|---------|--------|-----------|-------------|-------|---------|----|------|----|
|         | 15 MHz | R.8-1 TDD | OP.1<br>TDD | EVA5  | 1x2 Low | 70 | 17.8 | 1  |
| 15      | 20 MHz | R.9 TDD   | OP.1<br>TDD | EVA5  | 1x2 Low | 70 | 17.7 | ≥3 |
|         | 20 MHz | R.9-2 TDD | OP.1<br>TDD | EVA5  | 1x2 Low | 70 | 17.7 | 2  |
|         | 20 MHz | R.9-1 TDD | OP.1<br>TDD | EVA5  | 1x2 Low | 70 | 17.7 | 1  |
| 16      | 3 MHz  | R.0 TDD   | OP.1<br>TDD | ETU70 | 1x2 Low | 30 | 2.1  | ≥1 |
| 17      | 10 MHz | R.1 TDD   | OP.1<br>TDD | ETU70 | 1x2 Low | 30 | 2.0  | ≥1 |
| 18      | 20 MHz | R.1 TDD   | OP.1<br>TDD | ETU70 | 1x2 Low | 30 | 2.1  | ≥1 |
| 19      | 10 MHz | R.41 TDD  | OP.1<br>TDD | EVA5  | 1x2 Low | 70 | -5.3 | ≥1 |
| Note 1: | Void   |           |             |       |         |    |      |    |

#### Table 8.2.2.1.1-3: Test Parameters for CA

|                     | Parameter                    | Unit             | Test 1                                            |
|---------------------|------------------------------|------------------|---------------------------------------------------|
| Downlink            | $ ho_{\scriptscriptstyle A}$ | dB               | 0                                                 |
| power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB               | 0 (Note 1)                                        |
|                     | σ                            | dB               | 0                                                 |
| $N_{i}$             | $_{pc}$ at antenna port      | dBm/15kHz        | -98                                               |
| Symb                | ols for unused PRBs          |                  | OCNG (Note 2)                                     |
|                     | Modulation                   |                  | QPSK                                              |
| ACK/N               | ACK feedback mode            |                  | PUCCH format 1b with channel selection            |
| PDSC                | H transmission mode          |                  | 1                                                 |
| Note 1:             | $P_B = 0$                    |                  |                                                   |
| Note 2:             | These physical resource blo  | ocks are assigne | ed to an arbitrary number of virtual UEs with one |
| F                   | PDSCH per virtual UE; the    | data transmitted | over the OCNG PDSCHs shall be uncorrelated        |
| F                   | oseudo random data, which    | n is QPSK modu   | lated.                                            |
| Note 3:             | The same PDSCH transmis      | ssion mode is ap | pplied to each component carrier.                 |

Table 8.2.2.1.1-4: Minimum performance (FRC) for CA

| Test    | Bandwidth  | ndwidth Reference | Reference OCNG Propagation |           | Reference value                        |                                             | UE          | CA       |                 |
|---------|------------|-------------------|----------------------------|-----------|----------------------------------------|---------------------------------------------|-------------|----------|-----------------|
| number  |            | Channel           | Pattern                    | Condition | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category | capability      |
| 1       | 2x20MHz    | R.42 TDD          | OP.1<br>TDD<br>(Note<br>1) | EVA5      | 1x2 Low                                | 70                                          | -1.2        | ≥5       | CL_C,<br>CL_A-A |
| Note 1: | The OCNG p | attern applies    | for each C                 | C.        |                                        | •                                           |             |          |                 |

8.2.2.1.2 Void

8.2.2.1.3 Void

#### 8.2.2.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.2.1.4-2, with the addition of the parameters in Table 8.2.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

| Parameter                                                                 |                                                              | Unit                                                                                                                               | Test 1                                                              |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
|                                                                           | $ ho_{\scriptscriptstyle A}$                                 | dB                                                                                                                                 | 0                                                                   |  |  |
| Downlink power<br>allocation                                              | $ ho_{\scriptscriptstyle B}$                                 | dB                                                                                                                                 | 0 (Note 1)                                                          |  |  |
|                                                                           | σ                                                            | dB                                                                                                                                 | 0                                                                   |  |  |
| $N_{\scriptscriptstyle oc}$ at antenna                                    | N <sub>oc</sub> at antenna port dBm/15kHz -98                |                                                                                                                                    |                                                                     |  |  |
| Symbols for MBSFN<br>MBSFN subframes                                      |                                                              |                                                                                                                                    | OCNG (Note 3)                                                       |  |  |
| ACK/NACK feedba                                                           | ck mode                                                      |                                                                                                                                    | Multiplexing                                                        |  |  |
| PDSCH transmission                                                        | on mode                                                      |                                                                                                                                    | 1                                                                   |  |  |
| whole MBS<br>first slot.<br>Note 3: The MBSFI<br>QPSK mod<br>not inserted | FN subfram<br>N portion of t<br>ulated data.<br>I in the MBS | an MBSFN subfran<br>e except the first tw<br>the MBSFN subfran<br>Cell-specific refere<br>FN portion of the M<br>ulated MBSFN data | vo symbols in the<br>mes shall contain<br>ence signals are<br>IBSFN |  |  |

 Table 8.2.2.1.4-1: Test Parameters for Testing 1 PRB allocation

| Table 8.2.2.1.4-2: Minimum performance 1PRB (FRC | ;) |
|--------------------------------------------------|----|
|--------------------------------------------------|----|

| Test   | Bandwidth | Reference | OCNG     | Propagation | Correlation                            | Reference                                   | value       | UE       |
|--------|-----------|-----------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number |           | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 10 MHz    | R.29 TDD  | OP.3 TDD | ETU70       | 1x2 Low                                | 30                                          | 2.0         | ≥1       |

### 8.2.2.2 Transmit diversity performance

#### 8.2.2.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.1-2, with the addition of the parameters in Table 8.2.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

| Table 8.2.2.2.1-1: Test Parameters for T | ransmit diversity Performance (FRC) |
|------------------------------------------|-------------------------------------|

| Parameter                    |                              | Unit      | Test 1-2     |
|------------------------------|------------------------------|-----------|--------------|
|                              | $ ho_{\scriptscriptstyle A}$ | dB        | -3           |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1)  |
|                              | σ                            | dB        | 0            |
| $N_{\it oc}$ at antenna      | port                         | dBm/15kHz | -98          |
| ACK/NACK feedba              | ck mode                      |           | Multiplexing |
| PDSCH transmission           | on mode                      |           | 2            |
| Note 1: $P_B = 1$            |                              |           |              |

-

158

| Test Bandw |        | Bandw Reference |          | Reference OCNG Pro | Propagation                            | Correlation                                 | Reference   | UE       |
|------------|--------|-----------------|----------|--------------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number     | idth   | Channel         | Pattern  | Condition          | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1          | 10 MHz | R.11 TDD        | OP.1 TDD | EVA5               | 2x2 Medium                             | 70                                          | 6.8         | ≥2       |
| I          | 5 MHz  | R.11-2 TDD      | OP.1 TDD | EVA5               | 2x2 Medium                             | 70                                          | 6.8         | 1        |
| 2          | 10 MHz | R.10 TDD        | OP.1 TDD | HST                | 2x2                                    | 70                                          | -2.3        | ≥1       |

Table 8.2.2.2.1-2: Minimum performance Transmit Diversity (FRC)

#### 8.2.2.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.2.2, with the addition of the parameters in Table 8.2.2.2.2.1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

| Table 8.2.2.2.2-1: Test Parameters for Transmit diversity Performance (FR | (C) |
|---------------------------------------------------------------------------|-----|
|---------------------------------------------------------------------------|-----|

| Parameter                    |                              | Unit      | Test 1-2     |
|------------------------------|------------------------------|-----------|--------------|
|                              | $ ho_{\scriptscriptstyle A}$ | dB        | -3           |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1)  |
|                              | σ                            | dB        | 0            |
| $N_{\it oc}$ at antenna      | port                         | dBm/15kHz | -98          |
| ACK/NACK feedba              | ck mode                      |           | Multiplexing |
| PDSCH transmissio            | on mode                      |           | 2            |
| Note 1: $P_B = 1$            |                              | -         |              |

| Table 8.2.2.2.2-2: Minimum performance | Transmit Diversity (FRC) |
|----------------------------------------|--------------------------|
|----------------------------------------|--------------------------|

| Test   | Band-   | Reference | OCNG     | Propagation | Correlation                            | Reference value                             |             | UE       |
|--------|---------|-----------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number | width   | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 1.4 MHz | R.12 TDD  | OP.1 TDD | EPA5        | 4x2 Medium                             | 70                                          | 0.2         | ≥1       |
| 2      | 10 MHz  | R.13 TDD  | OP.1 TDD | ETU70       | 4x2 Low                                | 70                                          | -0.5        | ≥1       |

# 8.2.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

The requirements are specified in Table 8.2.2.3-2, with the addition of parameters in Table 8.2.2.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Table 8.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

|                                                                                                                                                                                                                                                         | Parameter                                                                                                            |                              | Unit                                     | Cell 1                                      | Cell 2                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|---------------------------------------------|--------------------------|--|--|
| Uplin                                                                                                                                                                                                                                                   | k downlink confi                                                                                                     | guration                     |                                          | 1                                           | 1                        |  |  |
|                                                                                                                                                                                                                                                         | al subframe con                                                                                                      |                              |                                          | 4                                           | 4                        |  |  |
|                                                                                                                                                                                                                                                         |                                                                                                                      | $ ho_{\scriptscriptstyle A}$ | dB                                       | -3                                          | -3                       |  |  |
|                                                                                                                                                                                                                                                         | Downlink power<br>allocation                                                                                         |                              | dB                                       | -3 (Note 1)                                 | -3 (Note 1)              |  |  |
|                                                                                                                                                                                                                                                         | anoodiion                                                                                                            | σ                            | dB                                       | 0                                           | N/A                      |  |  |
|                                                                                                                                                                                                                                                         |                                                                                                                      | N <sub>oc1</sub>             | dBm/15kHz                                | -102 (Note 2)                               | N/A                      |  |  |
| N <sub>oc</sub> at a                                                                                                                                                                                                                                    | antenna port                                                                                                         | $N_{oc2}$                    | dBm/15kHz                                | -98 (Note 3)                                | N/A                      |  |  |
|                                                                                                                                                                                                                                                         |                                                                                                                      | $N_{oc3}$                    | dBm/15kHz                                | -94.8 (Note<br>4)                           | N/A                      |  |  |
|                                                                                                                                                                                                                                                         | $\widehat{E}_{s}/N_{oc2}$                                                                                            |                              | dB                                       | Reference<br>Value in<br>Table<br>8.2.2.3-2 | 6                        |  |  |
|                                                                                                                                                                                                                                                         | BW <sub>Channel</sub>                                                                                                |                              | MHz                                      | 10                                          | 10                       |  |  |
| Su                                                                                                                                                                                                                                                      | bframe Configu                                                                                                       | ration                       |                                          | Non-MBSFN                                   | Non-MBSFN                |  |  |
| Time                                                                                                                                                                                                                                                    | e Offset betwee                                                                                                      | n Cells                      | μs                                       | 2.5 (synch                                  | ronous cells)            |  |  |
|                                                                                                                                                                                                                                                         | Cell Id                                                                                                              |                              |                                          | 0                                           | 1                        |  |  |
| А                                                                                                                                                                                                                                                       | BS pattern (Not                                                                                                      | te 5)                        |                                          | N/A                                         | 0000010001<br>0000000001 |  |  |
| RLM/RR                                                                                                                                                                                                                                                  | M Measuremen<br>Pattern (Note                                                                                        |                              |                                          | 0000000001<br>0000000001                    | N/A                      |  |  |
| CSI Sul                                                                                                                                                                                                                                                 | CSI Subframe Sets                                                                                                    |                              |                                          | 0000010001<br>0000000001                    | N/A                      |  |  |
| (N                                                                                                                                                                                                                                                      | lote 7)                                                                                                              | C <sub>CSI,1</sub>           |                                          | 1100101000<br>1100111000                    | N/A                      |  |  |
| Number                                                                                                                                                                                                                                                  | r of control OFD                                                                                                     | M symbols                    |                                          | 2                                           |                          |  |  |
| ACK                                                                                                                                                                                                                                                     | /NACK feedbac                                                                                                        | k mode                       |                                          | Multiplexing                                |                          |  |  |
| PDS                                                                                                                                                                                                                                                     | CH transmissio                                                                                                       | n mode                       |                                          | 2                                           | N/A                      |  |  |
|                                                                                                                                                                                                                                                         | Cyclic prefix                                                                                                        |                              |                                          | Normal                                      | Normal                   |  |  |
| Note 1: $P_B = 1$ Note 2:This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a<br>subframe overlapping with the aggressor ABS.Note 3:This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with |                                                                                                                      |                              |                                          |                                             |                          |  |  |
| Note 4:                                                                                                                                                                                                                                                 | the aggressor ABS.<br>This noise is applied in all OFDM symbols of a subframe overlapping with aggressor<br>non-ABS. |                              |                                          |                                             |                          |  |  |
| Note 5:                                                                                                                                                                                                                                                 | ABS pattern as                                                                                                       | defined in [9]               |                                          |                                             |                          |  |  |
| Note 6:                                                                                                                                                                                                                                                 |                                                                                                                      |                              |                                          |                                             |                          |  |  |
| Note 7:                                                                                                                                                                                                                                                 |                                                                                                                      |                              | ne time-domain measuren                  | nent resource re                            | striction pattern        |  |  |
| Note 8:                                                                                                                                                                                                                                                 | for CSI measur<br>Cell 1 is the se<br>Cell1 and Cell2                                                                | rving cell. Cell             | ed in [7].<br>2 is the aggressor cell. T | he number of the                            | e CRS ports in           |  |  |
| Note 9:                                                                                                                                                                                                                                                 |                                                                                                                      |                              | in Cell2 in this test.                   |                                             |                          |  |  |

| Table 8.2.2.2.3-1: Test | Parameters for Transr | mit diversity Perfor | mance (FRC) |
|-------------------------|-----------------------|----------------------|-------------|
|                         |                       |                      |             |

| Test<br>Number     | Reference<br>Channel                                                                                                                                                                                                                                                                                                                                                                     | OCNG Pattern |             | n Propagation<br>Conditions<br>(Note 1)                                                         |           | Correlation<br>Matrix and<br>Antenna | Reference Value                                      |                            | Matrix and |  | UE<br>Category |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------------------------------------------------------------------------------------------|-----------|--------------------------------------|------------------------------------------------------|----------------------------|------------|--|----------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                          | Cell 1       | Cell 2      | Cell 1                                                                                          | Cell 2    | Configuration                        | Fraction of<br>Maximum<br>Throughput<br>(%) (Note 5) | SNR<br>(dB)<br>(Note<br>2) |            |  |                |
| 1                  | R.11-4<br>TDD (Note<br>4)                                                                                                                                                                                                                                                                                                                                                                | OP.1<br>TDD  | OP.1<br>TDD | EVA5                                                                                            | EVA5      | 2x2 Medium                           | 70                                                   | 3.8                        | ≥2         |  |                |
| Note 1:            | The propagat                                                                                                                                                                                                                                                                                                                                                                             | ion condit   | ions for C  | ell 1 and 0                                                                                     | Cell2 are | statistically indepe                 | endent.                                              |                            | •          |  |                |
| Note 2:            | SNR corresponds to $\hat{E}_s/N_{ac2}$ of cell 1.                                                                                                                                                                                                                                                                                                                                        |              |             |                                                                                                 |           |                                      |                                                      |                            |            |  |                |
| Note 3:<br>Note 4: | The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.<br>Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated<br>PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the<br>ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |              |             |                                                                                                 |           |                                      |                                                      |                            |            |  |                |
| Note 5:            | The maximur                                                                                                                                                                                                                                                                                                                                                                              | n Through    | put is cale | The maximum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms. |           |                                      |                                                      |                            |            |  |                |

Table 8.2.2.3-2: Minimum Performance Transmit Diversity (FRC)

# 8.2.2.2.3A Minimum Requirement 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.2.3A-2, with the addition of parameters in Table 8.2.2.2.3A-1. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.2.3A-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

|                                                     | Parameter                                                                                                                                                                                                                               |                                                                                             | Unit                                                                                                           | Cell 1                                                                                                                                                  | Cell 2                                                                              | Cell 3                                             |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|--|
| Uplink d                                            | ownlink confi                                                                                                                                                                                                                           | auration                                                                                    | Onic                                                                                                           | 1                                                                                                                                                       | 1                                                                                   | 1                                                  |  |
|                                                     | ubframe con                                                                                                                                                                                                                             | 0                                                                                           |                                                                                                                | 4                                                                                                                                                       | 4                                                                                   | 4                                                  |  |
|                                                     |                                                                                                                                                                                                                                         | $\rho_A$                                                                                    | dB                                                                                                             | -3                                                                                                                                                      | -3                                                                                  | -3                                                 |  |
|                                                     | Downlink power allocation $\rho_B \sigma$                                                                                                                                                                                               |                                                                                             | dB                                                                                                             | -3 (Note 1)                                                                                                                                             | -3 (Note 1)                                                                         | -3 (Note 1)                                        |  |
|                                                     |                                                                                                                                                                                                                                         |                                                                                             | dB                                                                                                             | 0                                                                                                                                                       | N/A                                                                                 | N/A                                                |  |
|                                                     |                                                                                                                                                                                                                                         | N <sub>oc1</sub>                                                                            | dBm/15kHz                                                                                                      | -98 (Note 2)                                                                                                                                            | N/A                                                                                 | N/A                                                |  |
| $N_{oc}$ at an                                      | itenna port                                                                                                                                                                                                                             | $N_{oc2}$                                                                                   | dBm/15kHz                                                                                                      | -98 (Note 3)                                                                                                                                            | N/A                                                                                 | N/A                                                |  |
|                                                     |                                                                                                                                                                                                                                         | N <sub>oc3</sub>                                                                            | dBm/15kHz                                                                                                      | -93 (Note 4)                                                                                                                                            | N/A                                                                                 | N/A                                                |  |
|                                                     | $\hat{E}_{s}/N_{oc2}$                                                                                                                                                                                                                   |                                                                                             | dB                                                                                                             | Reference<br>Value in Table<br>8.2.2.2.3A-2                                                                                                             | 12                                                                                  | 10                                                 |  |
|                                                     | BW <sub>Channel</sub>                                                                                                                                                                                                                   |                                                                                             | MHz                                                                                                            | 10                                                                                                                                                      | 10                                                                                  | 10                                                 |  |
| Subfra                                              | ame Configu                                                                                                                                                                                                                             | ration                                                                                      |                                                                                                                | Non-MBSFN                                                                                                                                               | Non-MBSFN                                                                           | Non-MBSFN                                          |  |
| Time C                                              | )ffset betwee                                                                                                                                                                                                                           | n Cells                                                                                     | μs                                                                                                             | N/A                                                                                                                                                     | 3                                                                                   | -1                                                 |  |
| Frequence                                           | cy shift betwe                                                                                                                                                                                                                          | en Cells                                                                                    | Hz                                                                                                             | N/A                                                                                                                                                     | 300                                                                                 | -100                                               |  |
|                                                     | Cell Id                                                                                                                                                                                                                                 |                                                                                             |                                                                                                                | 0                                                                                                                                                       | 126                                                                                 | 1                                                  |  |
| ABS                                                 | ABS pattern (Note 5)                                                                                                                                                                                                                    |                                                                                             |                                                                                                                | N/A                                                                                                                                                     | 0000000001<br>0000000001                                                            | 0000000001<br>0000000001                           |  |
|                                                     | RRM Measur<br>me Pattern (I                                                                                                                                                                                                             |                                                                                             |                                                                                                                | 0000000001<br>0000000001                                                                                                                                | N/A                                                                                 | N/A                                                |  |
| CSI Subf                                            | rame Sets                                                                                                                                                                                                                               | C <sub>CSI,0</sub>                                                                          |                                                                                                                | 0000000001<br>0000000001                                                                                                                                | N/A                                                                                 | N/A                                                |  |
| (No                                                 | ote7)                                                                                                                                                                                                                                   | C <sub>CSI,1</sub>                                                                          |                                                                                                                | 1100111000<br>1100111000                                                                                                                                | N/A                                                                                 | N/A                                                |  |
| Numbe                                               | er of control (<br>symbols                                                                                                                                                                                                              | OFDM                                                                                        |                                                                                                                | 2                                                                                                                                                       | Note 8                                                                              | Note 8                                             |  |
| ACK/N/                                              | ACK feedbac                                                                                                                                                                                                                             | k mode                                                                                      |                                                                                                                | Multiplexing                                                                                                                                            | N/A                                                                                 | N/A                                                |  |
|                                                     | l transmissio                                                                                                                                                                                                                           | n mode                                                                                      |                                                                                                                | 2                                                                                                                                                       | Note 9                                                                              | Note 9                                             |  |
|                                                     | Cyclic prefix                                                                                                                                                                                                                           |                                                                                             |                                                                                                                | Normal                                                                                                                                                  | Normal                                                                              | Normal                                             |  |
| Note 1:<br>Note 2:<br>Note 3:<br>Note 4:<br>Note 5: | subframe ov<br>This noise is<br>aggressor A<br>This noise is<br>ABS pattern<br>PDCCH/PCI<br>overlapped                                                                                                                                  | erlapping v<br>applied in<br>BS.<br>applied in<br>as defined<br>FICH are tra<br>with the AB | vith the aggresso<br>OFDM symbols<br>all OFDM symbo<br>in [9]. PDSCH o<br>ansmitted in the<br>S subframe of ag | #1, #2, #3, #5, #6, #<br>or ABS.<br>#0, #4, #7, #11 of a<br>ols of a subframe ov<br>ther than SIB1/pagi<br>serving cell subfram<br>ggressor cell and th | subframe overlap<br>rerlapping with ago<br>ng and its associa<br>ne when the subfra | ping with the<br>gressor non-ABS<br>ited<br>ame is |  |
| Note 6:<br>Note 7:                                  | definition of the reference channel.<br>Time-domain measurement resource restriction pattern for PCell measurements as defined in<br>[7]<br>As configured according to the time-domain measurement resource restriction pattern for CSI |                                                                                             |                                                                                                                |                                                                                                                                                         |                                                                                     |                                                    |  |
| Note 8:                                             | measureme<br>The number                                                                                                                                                                                                                 | nts defined<br>of control (                                                                 | in [7].<br>DFDM symbols is                                                                                     | s not available for A                                                                                                                                   |                                                                                     |                                                    |  |
|                                                     |                                                                                                                                                                                                                                         |                                                                                             |                                                                                                                |                                                                                                                                                         |                                                                                     |                                                    |  |
| Note 11:                                            | SIB-1 will no                                                                                                                                                                                                                           | ot be transm                                                                                | ntted in Cell 2 ar                                                                                             | nd Cell 3 in this test.                                                                                                                                 |                                                                                     |                                                    |  |

 Table 8.2.2.2.3A-1: Test Parameters for Transmit diversity Performance (FRC)

| Test<br>Number | Reference<br>Channel | 00          | OCNG Pattern |             | Propagation<br>Conditions (Note 1) |           | Correlation<br>Matrix and | Reference Value                                                    |              | UE<br>Cate |                                                       |       |      |
|----------------|----------------------|-------------|--------------|-------------|------------------------------------|-----------|---------------------------|--------------------------------------------------------------------|--------------|------------|-------------------------------------------------------|-------|------|
|                |                      | Cell 1      | Cell 2       | Cell 3      | Cell 1                             | Cell 2    | Cell 3                    | Antenna<br>Configuration<br>(Note 2)                               | Maximum (dB) |            | Configuration Maximum (dB<br>(Note 2) Throughput (Not | (Note | gory |
| 1              | R.11-4<br>TDD        | OP.1<br>TDD | OP.1<br>TDD  | OP.1<br>TDD | EVA5                               | EVA5      | EVA5                      | 2x2 Medium                                                         | 70           | 3.5        | ≥2                                                    |       |      |
|                | Note 1:<br>Note 2:   |             | orrelation   | matrix a    | nd anten                           | na config | uration a                 | ell 3 are statistical<br>pply for Cell 1, Ce<br>$_{c2}$ of cell 1. |              |            |                                                       |       |      |

# 8.2.2.2.4 Enhanced Performance Requirement Type A – 2 Tx Antenna Ports with TM3 interference model

The requirements are specified in Table 8.2.2.2.4-2, with the addition of parameters in Table 8.2.2.2.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 3 interference model defined in clause B.5.2. In Table 8.2.2.2.4-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

| Parameter                                                                                                             |                                  | Unit              | Cell 1               | Cell 2                                         | Cell 3                          |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|----------------------|------------------------------------------------|---------------------------------|
|                                                                                                                       | $ ho_{\scriptscriptstyle A}$     | dB                | -3                   | -3                                             | -3                              |
| Downlink power allocation                                                                                             | $ ho_{\scriptscriptstyle B}$     | dB                | -3 (Note 1)          | -3                                             | -3                              |
|                                                                                                                       | σ                                | dB                | 0                    | 0                                              | 0                               |
| Cell-specific reference                                                                                               | signals                          |                   | Antenna ports<br>0,1 | Antenna ports<br>0,1                           | Antenna ports<br>0,1            |
| $N_{oc}$ at antenna po                                                                                                | ort                              | dBm/15kHz         | -98                  | N/A                                            | N/A                             |
| DIP (Note 2)                                                                                                          |                                  | dB                | N/A                  | -1.73                                          | -8.66                           |
| BW <sub>Channel</sub>                                                                                                 | BW <sub>Channel</sub>            |                   |                      | 10                                             | 10                              |
| Cyclic Prefix                                                                                                         | Cyclic Prefix                    |                   |                      | Normal                                         | Normal                          |
| Cell Id                                                                                                               |                                  |                   | 0                    | 1                                              | 2                               |
| Number of control OFDM                                                                                                | symbols                          |                   | 2                    | 2                                              | 2                               |
| PDSCH transmission                                                                                                    |                                  |                   | 2                    | N/A                                            | N/A                             |
| Interference mod                                                                                                      | əl                               |                   | N/A                  | As specified in<br>clause B.5.2                | As specified in<br>clause B.5.2 |
| Probability of occurrence of                                                                                          | Rank 1                           | %                 | N/A                  | 80                                             | 80                              |
| transmission rank in<br>interfering cells                                                                             | Rank 2                           | %                 | N/A                  | 20                                             | 20                              |
| Reporting interva                                                                                                     | Reporting interval               |                   | 5                    | N/A                                            | N/A                             |
| Reporting mode                                                                                                        | Reporting mode                   |                   | PUCCH 1-0            | N/A                                            | N/A                             |
| ACK/NACK feedback                                                                                                     |                                  | Multiplexing      | N/A                  | N/A                                            |                                 |
| Note 1: $P_B = 1$ Note 2:The respective requires associated DIPNote 3:Cell 1 is the servinNote 4:All cells are time-s | value as spec<br>g cell. Cell 2, | ified in clause B | .5.1.                | cell relative to $N_{_{\scriptscriptstyle O}}$ | $c^{\prime}$ is defined by      |

### Table 8.2.2.2.4-1: Test Parameters for Transmit diversity Performance (FRC) with TM3 interference model

| Table 8.2.2.2.4-2: Enhanced Performance Requirement Type A, Transmit Diversity (FRC) with TM3 |
|-----------------------------------------------------------------------------------------------|
| interference model                                                                            |

| Test<br>Number | Reference<br>Channel                                                                  | OCI       | NG Pat    | tern      | Propagation<br>Conditions |           | Correlation<br>Matrix and |                                       |                                             |                             |      |
|----------------|---------------------------------------------------------------------------------------|-----------|-----------|-----------|---------------------------|-----------|---------------------------|---------------------------------------|---------------------------------------------|-----------------------------|------|
|                |                                                                                       | Cell<br>1 | Cell<br>2 | Cell<br>3 | Cell<br>1                 | Cell<br>2 | Cell<br>3                 | Antenna<br>Configurati<br>on (Note 3) | Fraction of<br>Maximum<br>Throughput<br>(%) | SINR<br>(dB)<br>(Note<br>2) | gory |
| 1              | R.46 TDD                                                                              | OP.       | N/A       | N/A       | EV                        | EV        | EV                        | 2x2 Low                               | 70                                          | -1.4                        | ≥1   |
|                |                                                                                       | 1         |           |           | A70                       | A70       | A70                       |                                       |                                             |                             |      |
|                |                                                                                       | TD        |           |           |                           |           |                           |                                       |                                             |                             |      |
|                |                                                                                       | D         |           |           |                           |           |                           |                                       |                                             |                             |      |
| Note 1:        |                                                                                       |           |           |           |                           |           |                           |                                       |                                             |                             |      |
| Note 2:        | e 2: SINR corresponds to $\widehat{E}_s/N_{oc}$ of Cell 1 as defined in clause 8.1.1. |           |           |           |                           |           |                           |                                       |                                             |                             |      |
| Note 3:        |                                                                                       |           |           |           |                           |           |                           |                                       | f Cell 1, Cell 2 a                          | nd Cell 3.                  |      |

### 8.2.2.3 Open-loop spatial multiplexing performance

#### 8.2.2.3.1 Minimum Requirement 2 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.2.3.1-2, with the addition of the parameters in Table 8.2.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.2.3.1-4, with the addition of the parameters in Table 8.2.2.3.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

| Parameter                      |                              | Unit      | Test 1-2    |
|--------------------------------|------------------------------|-----------|-------------|
| Davasliala                     | $ ho_{\scriptscriptstyle A}$ | dB        | -3          |
| Downlink power<br>allocation   | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1) |
|                                | σ                            | dB        | 0           |
| $N_{_{oc}}$ at antenna         | a port                       | dBm/15kHz | -98         |
| ACK/NACK feedba                | ck mode                      |           | Bundling    |
| PDSCH transmissi               | on mode                      |           | 3           |
| Note 1: $P_B = 1$              |                              |           |             |
| Note 2: Void.<br>Note 3: Void. |                              |           |             |

| Test       | Bandwidth | Reference     | ence OCNG Propagation Correlatio |           | Correlation                            | Reference v                                 | /alue       | UE           |  |
|------------|-----------|---------------|----------------------------------|-----------|----------------------------------------|---------------------------------------------|-------------|--------------|--|
| num<br>ber |           | Channel       | Pattern                          | Condition | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Cate<br>gory |  |
| 1          | 10 MHz    | R.11-1<br>TDD | OP.1<br>TDD                      | EVA70     | 2x2 Low                                | 70                                          | 13.1        | ≥2           |  |
| 2          | 10 MHz    | R.35 TDD      | OP.1<br>TDD                      | EVA200    | 2x2 Low                                | 70                                          | 20.3        | ≥2           |  |
| Note 1     | : Void    |               |                                  |           |                                        |                                             |             |              |  |

| Parameter                    | •                            | Unit | Test 1      |
|------------------------------|------------------------------|------|-------------|
| Davadialana                  | $ ho_{\scriptscriptstyle A}$ | dB   | -3          |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB   | -3 (Note 1) |
|                              | σ                            | dB   | 0           |

| $N_{oc}$ at antenna port                                                       | dBm/15kHz | -98                                       |  |  |  |  |  |
|--------------------------------------------------------------------------------|-----------|-------------------------------------------|--|--|--|--|--|
| ACK/NACK feedback mode                                                         |           | PUCCH format 1b with channel<br>selection |  |  |  |  |  |
| PDSCH transmission mode                                                        |           | 3                                         |  |  |  |  |  |
| Note 1: $P_B = 1$                                                              |           |                                           |  |  |  |  |  |
| Note 2: The same PDSCH transmission mode is applied to each component carrier. |           |                                           |  |  |  |  |  |

#### Table 8.2.2.3.1-4: Minimum performance Large Delay CDD (FRC) for CA

| Test       | Bandwidth | Reference     | OCNG                    | Propagation | Correlation                            | Reference v                                 | /alue       | UE           | CA             |
|------------|-----------|---------------|-------------------------|-------------|----------------------------------------|---------------------------------------------|-------------|--------------|----------------|
| num<br>ber |           | Channel       | Pattern                 | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Cate<br>gory | capabil<br>ity |
| 1          | 2x20 MHz  | R.30-1<br>TDD | OP.1<br>TDD<br>(Note 1) | EVA70       | 2x2 Low                                | 70                                          | 13.7        | ≥5           | CL_C           |

#### 8.2.2.3.1A Soft buffer management test

For CA the requirements are specified in Table 8.2.2.3.1A-2, with the addition of the parameters in Table 8.2.2.3.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify UE performance with proper instantaneous buffer implementation.

#### Table 8.2.2.3.1A-1: Test Parameters for soft buffer management test (FRC) for CA

| Parameter                              |                                                                         | Unit      | Test 1-2      |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------------|-----------|---------------|--|--|--|--|
| Downlink nower                         | $ ho_{\scriptscriptstyle A}$                                            | dB        | -3            |  |  |  |  |
| Downlink power<br>allocation           | $ ho_{\scriptscriptstyle B}$                                            | dB        | -3 (Note 1)   |  |  |  |  |
|                                        | σ                                                                       | dB        | 0             |  |  |  |  |
| $N_{\scriptscriptstyle oc}$ at antenna | port                                                                    | dBm/15kHz | -98           |  |  |  |  |
| ACK/NACK feedba                        | ck mode                                                                 |           | -<br>(Note 2) |  |  |  |  |
| PDSCH transmissi                       | on mode                                                                 |           | 3             |  |  |  |  |
| Note 1: $P_{B} = 1$                    | Note 1: $P_{R} = 1$                                                     |           |               |  |  |  |  |
| Note 3: For CA tes                     | 2: PUCCH format 1b with channel selection is used to feedback ACK/NACK. |           |               |  |  |  |  |

#### Table 8.2.2.3.1A-2: Minimum performance soft buffer management test (FRC) for CA

| Test       | Bandwidth     | Reference     | OCNG                    | Propagation      | Correlation                            | Reference                                   | value       | UE           | CA              |
|------------|---------------|---------------|-------------------------|------------------|----------------------------------------|---------------------------------------------|-------------|--------------|-----------------|
| num<br>ber |               | Channel       | Pattern                 | Condition        | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Cate<br>gory | capabil<br>ity  |
| 1          | 2x20 MHz      | R.30-2<br>TDD | OP.1<br>TDD<br>(Note 1) | EVA70            | 2x2 Low                                | 70                                          | 13.2        | 3            | CL_C,<br>CL_A-A |
| 2          | 2x20 MHz      | R.35-1<br>TDD | OP.1<br>TDD<br>(Note 1) | EVA5             | 2x2 Low                                | 70                                          | 15.7        | 4            | CL_C,<br>CL_A-A |
| Note 1     | : For CA test | cases, the OC | NG pattern a            | applies for each | CC.                                    | •                                           |             | •            |                 |

#### 8.2.2.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.2-2, with the addition of the parameters in Table 8.2.2.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

| Parameter                    |                              | Unit      | Test 1      |  |  |  |  |
|------------------------------|------------------------------|-----------|-------------|--|--|--|--|
| Downlink nowor               | $ ho_{\scriptscriptstyle A}$ | dB        | -6          |  |  |  |  |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB        | -6 (Note 1) |  |  |  |  |
|                              | σ                            | dB        | 3           |  |  |  |  |
| $N_{_{oc}}$ at antenna       | port                         | dBm/15kHz | -98         |  |  |  |  |
| ACK/NACK feedba              | ck mode                      |           | Bundling    |  |  |  |  |
| PDSCH transmission           | on mode                      |           | 3           |  |  |  |  |
| Note 1: $P_B = 1$ .          |                              |           |             |  |  |  |  |

Table 8.2.2.3.2-1: Test Parameters for Large Delay CDD (FRC)

| ſ | Test   | Bandwidth | Reference | OCNG        | Propagation | Correlation                            | Reference                                   | /alue       | UE       |
|---|--------|-----------|-----------|-------------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
|   | number |           | Channel   | Pattern     | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
|   | 1      | 10 MHz    | R.14 TDD  | OP.1<br>TDD | EVA70       | 4x2 Low                                | 70                                          | 14.2        | ≥2       |

# 8.2.2.3.3 Minimum Requirement 2Tx antenna port (demodulation subframe overlaps with aggressor cell ABS)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.3-2, with the addition of parameters in Table 8.2.2.3.3-1 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The requirements for MBSFN ABS are specified in Table 8.2.2.3.3-4, with the addition of parameters in Table 8.2.2.3.3-3 and the downlink physical channel setup according to Annex C.3.2 and Annex C.3.3.

The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell. In Tables 8.2.2.3.3-1 and 8.2.2.3.3-3, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Unit      | Cell 1                               | Cell 2                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|--------------------------------------|---------------------------|--|--|--|
| Uplink downlink confi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | guration                     |           | 1                                    | 1                         |  |  |  |
| Special subframe cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iguration                    |           | 4                                    | 4                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ ho_{\scriptscriptstyle A}$ | dB        | -3                                   | -3                        |  |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ ho_{\scriptscriptstyle B}$ | dB        | -3 (Note 1)                          | -3 (Note 1)               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ                            | dB        | 0                                    | N/A                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N <sub>oc1</sub>             | dBm/15kHz | -102 (Note 2)                        | N/A                       |  |  |  |
| $N_{oc}$ at antenna port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N <sub>oc2</sub>             | dBm/15kHz | -98 (Note 3)                         | N/A                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N_{oc3}$                    | dBm/15kHz | -94.8 (Note 4)                       | N/A                       |  |  |  |
| $\widehat{E}_s/N_{oc2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | dB        | Reference Value in Table 8.2.2.3.3-2 | 6                         |  |  |  |
| BW <sub>Channel</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | MHz       | 10                                   | 10                        |  |  |  |
| Subframe Configu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ration                       |           | Non-MBSFN                            | Non-MBSFN                 |  |  |  |
| Cell Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |           | 0                                    | 1                         |  |  |  |
| Time Offset betwee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Cells                      | μs        | 2.5 (synchroi                        | nous cells)               |  |  |  |
| ABS pattern (Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 5)                         |           | N/A                                  | 0000010001,<br>0000000001 |  |  |  |
| RLM/RRM Measuremen<br>Pattern (Note 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |           | 0000000001,<br>0000000001            | N/A                       |  |  |  |
| CSI Subframe Sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>CSI,0</sub>           |           | 0000010001,<br>0000000001            | N/A                       |  |  |  |
| (Note 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>CSI,1</sub>           |           | 1100101000<br>1100111000             | N/A                       |  |  |  |
| Number of control OFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V symbols                    |           | 2                                    |                           |  |  |  |
| ACK/NACK feedbac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           | Multiplexing                         |                           |  |  |  |
| PDSCH transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n mode                       |           | 3                                    | N/A                       |  |  |  |
| Cyclic prefix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |           | Normal                               | Normal                    |  |  |  |
| <ul> <li>Note 1: P<sub>B</sub> = 1.</li> <li>Note 2: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 3: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 4: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 5: ABS pattern as defined in [9].</li> <li>Note 6: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].</li> <li>Note 7: As configured according to the time-domain measurement resource restriction pattern for</li> </ul> |                              |           |                                      |                           |  |  |  |
| and Cell2 is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ving cell. Cell<br>same.     |           | cell. The number of the              | CRS ports in Cell1        |  |  |  |

| Test<br>Number     | Reference<br>Channel       |                                                                                                                                                                                                                                                                                                                                                                                          |                        | Propagation<br>Conditions<br>(Note 1) |             | Correlation<br>Matrix and<br>Antenna | Reference Value                                      |                            | UE<br>Category |  |  |
|--------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------|-------------|--------------------------------------|------------------------------------------------------|----------------------------|----------------|--|--|
|                    |                            | Cell 1                                                                                                                                                                                                                                                                                                                                                                                   | Cell 2                 | Cell 1                                | Cell 2      | Configuration                        | Fraction of<br>Maximum<br>Throughput<br>(%) (Note 5) | SNR<br>(dB)<br>(Note<br>2) |                |  |  |
| 1                  | R.11 TDD<br>(Note 4)       | OP.1<br>TDD                                                                                                                                                                                                                                                                                                                                                                              | OP.1<br>TDD            | EVA 5                                 | EVA 5       | 2x2 Low                              | 70                                                   | 14.0                       | ≥2             |  |  |
| Note 1:            | The propagat               | tion condit                                                                                                                                                                                                                                                                                                                                                                              | ions for C             | ell 1 and 0                           | Cell2 are s | statistically indepe                 | ndent.                                               |                            |                |  |  |
| Note 2:            | SNR corresp                | onds to $\widetilde{E}$                                                                                                                                                                                                                                                                                                                                                                  | $\hat{Z}_s/N_{oc2}$ of | of cell 1.                            |             |                                      |                                                      |                            |                |  |  |
| Note 3:<br>Note 4: | Cell 1 Refere<br>PDCCH/PCF | The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.<br>Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated<br>PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the<br>ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |                        |                                       |             |                                      |                                                      |                            |                |  |  |
| Note 5:            | The maximur                | n Through                                                                                                                                                                                                                                                                                                                                                                                | put is cal             | culated fro                           | om the tota | al Payload in 2 sul                  | bframes, averag                                      | ged over                   | 20ms.          |  |  |

Table 8.2.2.3.3-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

| Parameter                                                       | ,                            | Unit                                            | Cell 1                                                          | Cell 2                   |
|-----------------------------------------------------------------|------------------------------|-------------------------------------------------|-----------------------------------------------------------------|--------------------------|
| Uplink downlink con                                             |                              |                                                 | 1                                                               | 1                        |
| Special subframe co                                             | nfiguration                  |                                                 | 4                                                               | 4                        |
|                                                                 | $ ho_{\scriptscriptstyle A}$ | dB                                              | -3                                                              | -3                       |
| Downlink power<br>allocation                                    | $ ho_{\scriptscriptstyle B}$ | dB                                              | -3 (Note 1)                                                     | -3 (Note 1)              |
|                                                                 | σ                            | dB                                              | 0                                                               | N/A                      |
|                                                                 | N <sub>oc1</sub>             | dBm/15kHz                                       | -102 (Note 2)                                                   | N/A                      |
| $N_{oc}$ at antenna port                                        | N <sub>oc2</sub>             | dBm/15kHz                                       | -98 (Note 3)                                                    | N/A                      |
|                                                                 | N <sub>oc3</sub>             | dBm/15kHz                                       | -94.8 (Note 4)                                                  | N/A                      |
| $\widehat{E}_s/N_{oc2}$                                         |                              | dB                                              | Reference Value in<br>Table 8.2.2.3.3-4                         | 6                        |
| BW <sub>Channel</sub>                                           |                              | MHz                                             | 10                                                              | 10                       |
| Subframe Config                                                 | uration                      |                                                 | Non-MBSFN                                                       | MBSFN                    |
| Cell Id                                                         |                              |                                                 | 0                                                               | 126                      |
| Time Offset betwe                                               | en Cells                     | μs                                              | 2.5 (synchro                                                    | nous cells)              |
| ABS pattern (No                                                 | ote 5)                       |                                                 | N/A                                                             | 0000000001<br>0000000001 |
| RLM/RRM Measureme<br>Pattern (Note                              |                              |                                                 | 0000000001<br>0000000001                                        | N/A                      |
| CSI Subframe Sets                                               | C <sub>CSI,0</sub>           |                                                 | 0000000001<br>0000000001                                        | N/A                      |
| (Note 7)                                                        | C <sub>CSI,1</sub>           |                                                 | 1100111000<br>1100111000                                        | N/A                      |
| MBSFN Subframe Allo<br>10)                                      | cation (Note                 |                                                 | N/A                                                             | 000010                   |
| Number of control OFI                                           | DM symbols                   |                                                 | 2                                                               |                          |
| ACK/NACK feedba                                                 | ck mode                      |                                                 | Multiplexing                                                    |                          |
| PDSCH transmissi                                                |                              |                                                 | 3                                                               | N/A                      |
| Cyclic prefi                                                    | x                            |                                                 | Normal                                                          | Normal                   |
| Note 1: $P_B = 1$ .                                             |                              |                                                 |                                                                 |                          |
| #13 of a subfr                                                  | ame overlappir               | ng with the aggresso                            | 3, #4, #5, #6, #7, #8, #9<br>or ABS.<br>bframe overlapping with |                          |
| ABS.                                                            |                              | -                                               | ubframe overlapping wit                                         |                          |
|                                                                 |                              | . The $10^{th}$ and $20^{th}$ s                 | subframes indicated by                                          | ABS pattern are          |
| MBSFN ABS<br>Note 6: Time-domain                                |                              | esource restriction                             | pattern for PCell measu                                         | rements as defined       |
|                                                                 |                              |                                                 | surement resource rest                                          | riction pattern for      |
| Note 8: Cell 1 is the se                                        | •                            |                                                 | cell. The number of the                                         | CRS ports in Cell1       |
| and Cell2 is th                                                 |                              | in CallO in this tast                           |                                                                 |                          |
| Note 9: SIB-1 will not<br>Note 10: MBSFN Subfr<br>subframe allo | ame Allocation               | in Cell2 in this test.<br>as defined in [7], or | ne frame with 6 bits is cl                                      | nosen for MBSFN          |

| Test<br>Number     | Reference<br>Channel       |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          | Propagation<br>Conditions<br>(Note 1) |             | Correlation<br>Matrix and<br>Antenna | Reference Value                                     |                            | UE<br>Category |  |  |
|--------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------|-------------|--------------------------------------|-----------------------------------------------------|----------------------------|----------------|--|--|
|                    |                            | Cell 1                                                                                                                                                                                                                                                                                                                                                                                   | Cell 2                                                                                   | Cell 1                                | Cell 2      | Configuration                        | Fraction of<br>Maximum<br>Throughput<br>(%) Note 5) | SNR<br>(dB)<br>(Note<br>2) |                |  |  |
| 1                  | R.11 TDD<br>(Note 4)       | OP.1<br>TDD                                                                                                                                                                                                                                                                                                                                                                              | OP.1<br>TDD                                                                              | EVA 5                                 | EVA 5       | 2x2 Low                              | 70                                                  | 12.2                       | ≥2             |  |  |
| Note 1:            |                            |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |                                       | Cell2 are s | statistically indepe                 | ndent.                                              |                            |                |  |  |
| Note 2:            | SNR correspo               | onds to $\widehat{E}$                                                                                                                                                                                                                                                                                                                                                                    | $\hat{Z}_s / N_{oc2}$ of                                                                 | of cell 1.                            |             |                                      |                                                     |                            |                |  |  |
| Note 3:<br>Note 4: | Cell 1 Refere<br>PDCCH/PCF | The correlation matrix and antenna configuration apply for Cell 1 and Cell 2.<br>Cell 1 Reference channel is modified: PDSCH other than SIB1/paging and its associated<br>PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the<br>ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |                                                                                          |                                       |             |                                      |                                                     |                            |                |  |  |
| Note 5:            |                            |                                                                                                                                                                                                                                                                                                                                                                                          | imum Throughput is calculated from the total Payload in 2 subframes, averaged over 20ms. |                                       |             |                                      |                                                     |                            |                |  |  |

Table 8.2.2.3.3-4: Minimum Performance Large Delay CDD (FRC) – MBSFN ABS

# 8.2.2.3.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements for non-MBSFN ABS are specified in Table 8.2.2.3.4-2, with the addition of parameters in Table 8.2.2.3.4-1. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.3.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

| Pa                           | rameter                |                              | Unit              | Cell 1                                           | Cell 2                                     | Cell 3                                        |
|------------------------------|------------------------|------------------------------|-------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Uplink dow                   |                        |                              |                   | 1                                                | 1                                          | 1                                             |
| Special subf                 | rame con               | figuration                   |                   | 4                                                | 4                                          | 4                                             |
|                              |                        | $ ho_{\scriptscriptstyle A}$ | dB                | -3                                               | -3                                         | -3                                            |
| Downlink power<br>allocation |                        | $ ho_{\scriptscriptstyle B}$ | dB                | -3 (Note 1)                                      | -3 (Note 1)                                | -3 (Note 1)                                   |
|                              |                        | σ                            | dB                | 0                                                | N/A                                        | N/A                                           |
|                              |                        | N <sub>oc1</sub>             | dBm/15kHz         | -98 (Note 2)                                     | N/A                                        | N/A                                           |
| $N_{oc}$ at anter            | ina port               | N <sub>oc2</sub>             | dBm/15kHz         | -98 (Note 3)                                     | N/A                                        | N/A                                           |
|                              |                        | $N_{oc3}$                    | dBm/15kHz         | -93 (Note 4)                                     | N/A                                        | N/A                                           |
| Ê                            | $\hat{Z}_s/N_{oc2}$    |                              | dB                | Reference Value<br>in Table<br>8.2.2.3.4-2       | Reference<br>Value in Table<br>8.2.2.3.4-2 | Reference<br>Value in<br>Table<br>8.2.2.3.4-2 |
| В                            | W <sub>Channel</sub>   |                              | MHz               | 10                                               | 10                                         | 10                                            |
| Subfram                      | e Configu              | ration                       |                   | Non-MBSFN                                        | Non-MBSFN                                  | Non-MBSFN                                     |
| Time Offs                    | et betwee              | n Cells                      | μs                | N/A                                              | 3                                          | -1                                            |
| Frequency s                  | shift betwe            | een Cells                    | Hz                | N/A                                              | 300                                        | -100                                          |
|                              | Cell Id                |                              |                   | 0                                                | 1                                          | 126                                           |
| ABS pa                       | attern (Not            | te 5)                        |                   | N/A                                              | 0000000001<br>0000000001                   | 0000000001<br>0000000001                      |
| RLM/RRM<br>Subframe          |                        |                              |                   | 0000000001<br>0000000001                         | N/A                                        | N/A                                           |
| CSI Subfran                  | ne Sets                | C <sub>CSI,0</sub>           | 000000001 N/A     |                                                  | N/A                                        |                                               |
| (Note7                       | 7)                     | C <sub>CSI,1</sub>           |                   | 1100111000<br>1100111000                         | N/A                                        | N/A                                           |
| Number o                     | of control (<br>ymbols | OFDM                         |                   | 2                                                | Note 8                                     | Note 8                                        |
| ACK/NAC                      |                        | k mode                       |                   | Multiplexing                                     | N/A                                        | N/A                                           |
| PDSCH tra                    | ansmissio              | n mode                       |                   | 3                                                | Note 9                                     | Note 9                                        |
|                              | clic prefix            |                              |                   | Normal                                           | Normal                                     | Normal                                        |
| Note 1: $P_B$                | =1.                    |                              |                   |                                                  |                                            |                                               |
| OV                           | erlapping              | with the age                 | gressor ABS.      | #1, #2, #3, #5, #6, #8<br>#0, #4, #7, #11 of a s |                                            |                                               |
|                              | gressor A              |                              |                   | #0, # <del>4</del> , #7, #11 01 a 3              |                                            | ing with the                                  |
|                              |                        |                              | all OFDM symbo    | ols of a subframe ove                            | rlapping with ago                          | ressor non-ABS                                |
| Note 5: AE                   | S pattern              | as defined                   | in [9]. PDSCH o   | ther than SIB1/pagin                             | g and its associat                         | ed                                            |
|                              |                        |                              |                   | serving cell subframe<br>ggressor cell and the   |                                            |                                               |
|                              |                        |                              | ce channel.       |                                                  |                                            | -                                             |
| Note 6: Tir<br>[7]           |                        | n measurer                   | nent resource re  | striction pattern for P                          | Cell measuremen                            | ts as defined in                              |
| Note 7: As                   | configure              | ed according                 |                   | nain measurement re                              | source restriction                         | pattern for CSI                               |
| Note 8: Th                   | e number               | of control C                 | OFDM symbols is   | s not available for AE                           | S and is 2 for the                         | subframe                                      |
| Note 9: Do                   | wnlink ph              |                              |                   | 2 and Cell 3 in acco                             | rdance with Annex                          | c C.3.3 applying                              |
| Note 10: Th                  | e number               | of the CRS                   | ports in Cell1, 0 | Cell2 and Cell 3 is the d Cell 3 is the          | e same.                                    |                                               |
| 0                            |                        |                              |                   |                                                  |                                            |                                               |

### Table 8.2.2.3.4-1: Test Parameters for Large Delay CDD (FRC) – Non-MBSFN ABS

| Test<br>Num | Refer<br>ence                                                                                   | $\widehat{E}_{s}/2$ | N <sub>oc2</sub> | OCNG Pattern Propagation<br>Conditions (Note1) |             |             |            |           | Correlation<br>Matrix and | Reference Value                       |                                                 | UE<br>Cate                 |      |
|-------------|-------------------------------------------------------------------------------------------------|---------------------|------------------|------------------------------------------------|-------------|-------------|------------|-----------|---------------------------|---------------------------------------|-------------------------------------------------|----------------------------|------|
| ber         | Chan<br>nel                                                                                     | Cell<br>2           | Cell<br>3        | Cell 1                                         | Cell 2      | Cell 3      | Cell 1     | Cell 2    | Cell 3                    | Antenna<br>Configurati<br>on (Note 2) | Fraction<br>of<br>Maximum<br>Throughp<br>ut (%) | SNR<br>(dB)<br>(Note<br>3) | gory |
| 1           | R.11<br>TDD                                                                                     | 9                   | 7                | OP.1<br>TDD                                    | OP.1<br>TDD | OP.1<br>TDD | EVA5       | EVA5      | EVA5                      | 2x2 Low                               | 70                                              | 14.2                       | ≥2   |
| 2           | R.35<br>TDD                                                                                     | 9                   | 1                | OP.1<br>TDD                                    | OP.1<br>TDD | OP.1<br>TDD | EVA5       | EVA5      | EVA5                      | 2x2 Low                               | 70                                              | 22.7                       | ≥2   |
|             | Note 1: The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. |                     |                  |                                                |             |             |            |           |                           |                                       |                                                 |                            |      |
| Note 2:     |                                                                                                 |                     |                  |                                                |             | •           | n apply fo | r Cell 1, | Cell 2 and                | d Cell 3.                             |                                                 |                            |      |
| Note 3:     | SNR                                                                                             | correspo            | onds to          | $\widehat{E}_{s}/N_{oc2}$                      | of cell 1.  |             |            |           |                           |                                       |                                                 |                            |      |

Table 8.2.2.3.4-2: Minimum Performance Large Delay CDD (FRC) – Non-MBSFN ABS

#### 8.2.2.4 Closed-loop spatial multiplexing performance

#### 8.2.2.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1-2, with the addition of the parameters in Table 8.2.2.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

| Parameter                                                                                                                                                                                                                      |                              | Unit                    | Test 1                    | Test 2             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|---------------------------|--------------------|--|--|--|
| Deventinte norven                                                                                                                                                                                                              | $ ho_{\scriptscriptstyle A}$ | dB                      | -3                        | -3                 |  |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                   | $ ho_{\scriptscriptstyle B}$ | dB                      | -3 (Note 1)               | -3 (Note 1)        |  |  |  |
|                                                                                                                                                                                                                                | σ                            | dB                      | 0                         | 0                  |  |  |  |
| $N_{\scriptscriptstyle oc}$ at antenna po                                                                                                                                                                                      | ort                          | dBm/15kHz               | -98                       | -98                |  |  |  |
| Precoding granular                                                                                                                                                                                                             | rity                         | PRB                     | 6                         | 50                 |  |  |  |
| PMI delay (Note 2                                                                                                                                                                                                              | 2)                           | ms                      | 10 or 11                  | 10 or 11           |  |  |  |
| Reporting interva                                                                                                                                                                                                              | ıl                           | ms 1 or 4 (Note 3)      |                           | 1 or 4 (Note 3)    |  |  |  |
| Reporting mode                                                                                                                                                                                                                 |                              |                         | PUSCH 1-2                 | PUSCH 3-1          |  |  |  |
| CodeBookSubsetRest<br>bitmap                                                                                                                                                                                                   | riction                      |                         | 001111                    | 001111             |  |  |  |
| ACK/NACK feedback                                                                                                                                                                                                              | mode                         |                         | Multiplexing              | Multiplexing       |  |  |  |
| PDSCH transmission                                                                                                                                                                                                             | mode                         |                         | 4                         | 4                  |  |  |  |
| Note 1: $P_B = 1$ .                                                                                                                                                                                                            |                              |                         |                           |                    |  |  |  |
| Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). |                              |                         |                           |                    |  |  |  |
| Note 3: For Uplink - c<br>and 4ms.                                                                                                                                                                                             | lownlink                     | configuration 1 the rep | orting interval will alte | ernate between 1ms |  |  |  |

Table 8.2.2.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

### Table 8.2.2.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

| Test   | Bandwidth | Reference | OCNG        | Propagation | Correlation                            | Reference                                   | UE          |          |
|--------|-----------|-----------|-------------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number |           | Channel   | Pattern     | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 10 MHz    | R.10 TDD  | OP.1<br>TDD | EVA5        | 2x2 Low                                | 70                                          | -3.1        | ≥1       |
| 2      | 10 MHz    | R.10 TDD  | OP.1<br>TDD | EPA5        | 2x2 High                               | 70                                          | -2.8        | ≥1       |

#### 8.2.2.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1A-2, with the addition of the parameters in Table 8.2.2.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

| Parameter                                                                                                                                                                                                                                                                                                                                                           |                              | Unit      | Test 1                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|------------------------------------------------|--|--|
| Downlink nowor                                                                                                                                                                                                                                                                                                                                                      | $ ho_{\scriptscriptstyle A}$ | dB        | -6                                             |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                                                                                                                                                        | $ ho_{\scriptscriptstyle B}$ | dB        | -6 (Note 1)                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                     | σ                            | dB        | 3                                              |  |  |
| $N_{\scriptscriptstyle oc}$ at antenna                                                                                                                                                                                                                                                                                                                              | port                         | dBm/15kHz | -98                                            |  |  |
| Precoding granul                                                                                                                                                                                                                                                                                                                                                    | arity                        | PRB       | 6                                              |  |  |
| PMI delay (Note                                                                                                                                                                                                                                                                                                                                                     | e 2)                         | ms        | 10 or 11                                       |  |  |
| Reporting inter                                                                                                                                                                                                                                                                                                                                                     | val                          | ms        | 1 or 4 (Note 3)                                |  |  |
| Reporting mod                                                                                                                                                                                                                                                                                                                                                       | le                           |           | PUSCH 1-2                                      |  |  |
| CodeBookSubsetR<br>on bitmap                                                                                                                                                                                                                                                                                                                                        | estricti                     |           | 00000000000000000<br>00000000000000000<br>0000 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                     |                              |           | 1111111111111                                  |  |  |
| ACK/NACK feedl<br>mode                                                                                                                                                                                                                                                                                                                                              | back                         |           | Multiplexing                                   |  |  |
| PDSCH transmis<br>mode                                                                                                                                                                                                                                                                                                                                              | sion                         |           | 4                                              |  |  |
| Note 1: $P_{R} = 1$ .                                                                                                                                                                                                                                                                                                                                               |                              |           |                                                |  |  |
| <ul> <li>Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).</li> <li>Note 3: For Uplink - downlink configuration 1 the reporting interva will alternate between 1ms and 4ms.</li> </ul> |                              |           |                                                |  |  |

#### Table 8.2.2.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

| Table 8.2.2.4.1A-2: Minimum performanc | e Single-Layer | Spatial Multiplexing (FRC) | ) |
|----------------------------------------|----------------|----------------------------|---|
|----------------------------------------|----------------|----------------------------|---|

| ſ | Test   | Bandwidth | Reference | OCNG        | Propagation | Correlation                            | Reference value                             |             | UE       |  |
|---|--------|-----------|-----------|-------------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|--|
|   | number |           | Channel   | Pattern     | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |  |
|   | 1      | 10 MHz    | R.13 TDD  | OP.1<br>TDD | EVA5        | 4x2 Low                                | 70                                          | -3.5        | ≥1       |  |

## 8.2.2.4.1B Enhanced Performance Requirement Type A – Single-Layer Spatial Multiplexing 2 Tx Antenna Port with TM4 interference model

The requirements are specified in Table 8.2.2.4.1B-2, with the addition of the parameters in Table 8.2.2.4.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rankone performance with wideband precoding with two transmit antennas when the PDSCH transmission in the serving cell is interfered by PDSCH of two dominant interfering cells applying transmission mode 4 interference model defined in clause B.5.3. In Table 8.2.2.4.1B-1, Cell 1 is the serving cell, and Cell 2, 3 are interfering cells. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1, Cell 2 and Cell 3, respectively.

| Parameter                                                                                                                                             |                                                  | Unit                                                         | Cell 1                                     | Cell 2                          | Cell 3                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|---------------------------------|---------------------------------|
|                                                                                                                                                       | $ ho_{\scriptscriptstyle A}$                     | dB                                                           | -3                                         | -3                              | -3                              |
| Downlink power allocation                                                                                                                             | $ ho_{\scriptscriptstyle B}$                     | dB                                                           | -3 (Note 1)                                | -3                              | -3                              |
|                                                                                                                                                       | σ                                                | dB                                                           | 0                                          | 0                               | 0                               |
| Cell-specific reference                                                                                                                               | signals                                          |                                                              | Antenna ports<br>0,1                       | Antenna ports<br>0,1            | Antenna ports<br>0,1            |
| $N_{oc}$ at antenna po                                                                                                                                | ort                                              | dBm/15kHz                                                    | -98                                        | N/A                             | N/A                             |
| DIP (Note 2)                                                                                                                                          |                                                  | dB                                                           | N/A                                        | -1.73                           | -8.66                           |
| BW <sub>Channel</sub>                                                                                                                                 |                                                  | MHz                                                          | 10                                         | 10                              | 10                              |
| Cyclic Prefix                                                                                                                                         |                                                  |                                                              | Normal                                     | Normal                          | Normal                          |
| Cell Id                                                                                                                                               |                                                  |                                                              | 0                                          | 1                               | 2                               |
| Number of control OFDM                                                                                                                                | symbols                                          |                                                              | 2                                          | 2                               | 2                               |
| PDSCH transmission                                                                                                                                    | mode                                             |                                                              | 6                                          | N/A                             | N/A                             |
| Interference mode                                                                                                                                     | əl                                               |                                                              | N/A                                        | As specified in<br>clause B.5.3 | As specified in<br>clause B.5.3 |
| Probability of occurrence of                                                                                                                          | Rank 1                                           | %                                                            | N/A                                        | 80                              | 80                              |
| transmission rank in<br>interfering cells                                                                                                             | Rank 2                                           | %                                                            | N/A                                        | 20                              | 20                              |
| Precoding granula                                                                                                                                     | rity                                             | PRB                                                          | 50                                         | 6                               | 6                               |
| PMI delay (Note 4                                                                                                                                     | 1)                                               | ms                                                           | 10 or 11                                   | N/A                             | N/A                             |
| Reporting interva                                                                                                                                     | l                                                | ms                                                           | 5                                          | N/A                             | N/A                             |
| Reporting mode                                                                                                                                        |                                                  |                                                              | PUCCH 1-1                                  | N/A                             | N/A                             |
| CodeBookSubsetRestricti                                                                                                                               | on bitmap                                        |                                                              | 001111                                     | N/A                             | N/A                             |
| ACK/NACK feedback                                                                                                                                     | mode                                             |                                                              | Multiplexing                               | N/A                             | N/A                             |
| Note 1: $P_B = 1$ Note 2:The respective recits associated DIPNote 3:Cell 1 is the servinNote 4:If the UE reports inat a downlink SF nbefore SF#(n+4). | value as speo<br>g cell. Cell 2,<br>an available | cified in clause B<br>3 are the interfer<br>uplink reporting | .5.1.<br>ring cells.<br>instance at subrar | ne SF#n based or                | PMI estimation                  |
| Note 5: All cells are time-s                                                                                                                          | ynchronous.                                      |                                                              |                                            |                                 |                                 |

# Table 8.2.2.4.1B-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

# Table 8.2.2.4.1B-2: Enhanced Performance Requirement Type A, Single-Layer Spatial Multiplexing (FRC) with TM4 interference model

| Test<br>Number | Reference<br>Channel                                                                   | OCI                 | NG Pat    | tern      |           |           |           | Correlation<br>Matrix and             | Matrix and                                  |                             |      |
|----------------|----------------------------------------------------------------------------------------|---------------------|-----------|-----------|-----------|-----------|-----------|---------------------------------------|---------------------------------------------|-----------------------------|------|
|                |                                                                                        | Cell<br>1           | Cell<br>2 | Cell<br>3 | Cell<br>1 | Cell<br>2 | Cell<br>3 | Antenna<br>Configurati<br>on (Note 3) | Fraction of<br>Maximum<br>Throughput<br>(%) | SINR<br>(dB)<br>(Note<br>2) | gory |
| 1              | R.47 TDD                                                                               | OP.<br>1<br>TD<br>D | N/A       | N/A       | EV<br>A5  | EV<br>A5  | EV<br>A5  | 2x2 Low                               | 70                                          | 1.1                         | ≥1   |
| Note 1:        |                                                                                        |                     |           |           |           |           |           | e statistically inc                   | dependent.                                  |                             |      |
| Note 2:        | Note 2: SINR corresponds to $\hat{E}_s / N_{oc}$ of Cell 1 as defined in clause 8.1.1. |                     |           |           |           |           |           |                                       |                                             |                             |      |
|                |                                                                                        |                     |           |           |           |           |           |                                       | f Cell 1, Cell 2 a                          | nd Cell 3.                  |      |

# 8.2.2.4.1C Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Ports (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.2.2.4.1C-2, with the addition of parameters in Table 8.2.2.4.1C-1. The purpose is to verify the closed loop rank-one performance with wideband precoding if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.2.2.4.1C-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

| Parameter                             |                               | Unit      | Cell 1                                | Cell 2                   | Cell 3                   |
|---------------------------------------|-------------------------------|-----------|---------------------------------------|--------------------------|--------------------------|
| Uplink downlink confi                 | Uplink downlink configuration |           | 1                                     | 1                        | 1                        |
| Special subframe con                  | figuration                    |           | 4                                     | 4                        | 4                        |
|                                       | $ ho_{\scriptscriptstyle A}$  | dB        | -3                                    | -3                       | -3                       |
| Downlink power<br>allocation          | $ ho_{\scriptscriptstyle B}$  | dB        | -3 (Note 1)                           | -3 (Note 1)              | -3 (Note 1)              |
|                                       | σ                             | dB        | 0                                     | N/A                      | N/A                      |
|                                       | $N_{oc1}$                     | dBm/15kHz | -98 (Note 2)                          | N/A                      | N/A                      |
| $N_{oc}$ at antenna port              | $N_{oc2}$                     | dBm/15kHz | -98 (Note 3)                          | N/A                      | N/A                      |
|                                       | $N_{oc3}$                     | dBm/15kHz | -93 (Note 4)                          | N/A                      | N/A                      |
| $\widehat{E}_s/N_{oc2}$               |                               | dB        | Reference Value in Table 8.2.2.4.1C-2 | 12                       | 10                       |
| BW <sub>Channel</sub>                 |                               | MHz       | 10                                    | 10                       | 10                       |
| Subframe Configu                      | ration                        |           | Non-MBSFN                             | Non-MBSFN                | Non-MBSFN                |
| Time Offset betwee                    | n Cells                       | μs        | N/A                                   | 3                        | -1                       |
| Frequency shift betwe                 | en Cells                      | Hz        | N/A                                   | 300                      | -100                     |
| Cell Id                               |                               |           | 0                                     | 126                      | 1                        |
| ABS pattern (Not                      | e 5)                          |           | N/A                                   | 0000000001<br>0000000001 | 0000000001<br>0000000001 |
| RLM/RRM Measur<br>Subframe Pattern (I |                               |           | 0000000001<br>0000000001              | N/A                      | N/A                      |
| CSI Subframe Sets                     | C <sub>CSI,0</sub>            |           | 000000001<br>0000000001               | N/A                      | N/A                      |
| (Note7)                               | C <sub>CSI,1</sub>            |           | 1100111000<br>1100111000              | N/A                      | N/A                      |
| Number of control symbols             | OFDM                          |           | 2                                     | Note 8                   | Note 8                   |
| ACK/NACK feeback                      | ( mode                        |           | Multiplexing                          | N/A                      | N/A                      |
| PDSCH transmission mode               |                               |           | 6                                     | Note 9                   | Note 9                   |
| Precoding granularity                 |                               | PRB       | 50                                    | N/A                      | N/A                      |
| PMI delay (Note 10)                   |                               | ms        | 10 or 11                              | N/A                      | N/A                      |
| Reporting interv                      | val                           | ms        | 1 or 4 (Note 11)                      | N/A                      | N/A                      |
| Peporting mod                         |                               |           | PUSCH 3-1                             | N/A                      | N/A                      |
| CodeBookSubsetRe<br>bitmap            | striction                     |           | 1111                                  | N/A                      | N/A                      |
| Cyclic prefix                         |                               |           | Normal                                | Normal                   | Normal                   |

### Table 8.2.2.4.1C-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC) – Non-MBSFN ABS

| Note 1:  | $P_B = 1$ .                                                                                                                                                                                                                                                                                         |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.                                                                                                                                                                    |
| Note 3:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.                                                                                                                                                                                             |
| Note 4:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS                                                                                                                                                                                                          |
| Note 5:  | ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated<br>PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is<br>overlapped with the ABS subframe of aggressor cell and the subframe is available in the<br>definition of the reference channel. |
| Note 6:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                                                                       |
| Note 7:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                                                                                                                                                                            |
| Note 8:  | The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.                                                                                                                                                                              |
| Note 9:  | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.                                                                                                                                                                  |
| Note 10: | If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).                                                                              |
| Note 11: | For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.                                                                                                                                                                                                    |
| Note 12: | The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.                                                                                                                                                                                                                               |
| Note 13: | SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.                                                                                                                                                                                                                                    |

#### Table 8.2.2.4.1C-2: Minimum Performance Single-Layer Spatial Multiplexing (FRC)- Non-MBSFN ABS

| Test<br>Number | Reference<br>Channel                                                                                                                                                                       | 00          | NG Patt     | ern         |        | Propagation<br>conditions (Note1) |        | Correlation<br>Matrix and            | Matrix and                                  |                            | UE<br>Cate |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------|-----------------------------------|--------|--------------------------------------|---------------------------------------------|----------------------------|------------|
|                |                                                                                                                                                                                            | Cell 1      | Cell 2      | Cell 3      | Cell 1 | Cell 2                            | Cell 3 | Antenna<br>Configuration<br>(Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) | gory       |
| 1              | R.11 TDD                                                                                                                                                                                   | OP.1<br>TDD | OP.1<br>FDD | OP.1<br>TDD | EPA5   | EPA5                              | EPA5   | 2x2 High                             | 70                                          | 6.4                        | ≥2         |
| Note 2:        | Note 1:The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.Note 2:The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. |             |             |             |        |                                   |        |                                      |                                             |                            |            |

#### 8.2.2.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2-2, with the addition of the parameters in Table 8.2.2.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

| Parameter                                                                                                                                                                                                                      |                              | Unit                             | Test 1-2           |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|--------------------|--|--|--|
| Downlink nowor                                                                                                                                                                                                                 | $ ho_{\scriptscriptstyle A}$ | dB                               | -3                 |  |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                   | $ ho_{\scriptscriptstyle B}$ | dB                               | -3 (Note 1)        |  |  |  |
|                                                                                                                                                                                                                                | σ                            | dB                               | 0                  |  |  |  |
| $N_{_{oc}}$ at antenna                                                                                                                                                                                                         | port                         | dBm/15kHz                        | -98                |  |  |  |
| Precoding granu                                                                                                                                                                                                                | Ilarity                      | PRB                              | 50                 |  |  |  |
| PMI delay (Not                                                                                                                                                                                                                 | e 2)                         | ms                               | 10 or 11           |  |  |  |
| Reporting inte                                                                                                                                                                                                                 | rval                         | ms                               | 1 or 4 (Note 3)    |  |  |  |
| Reporting mo                                                                                                                                                                                                                   | de                           |                                  | PUSCH 3-1          |  |  |  |
| ACK/NACK feedba                                                                                                                                                                                                                | ck mode                      |                                  | Bundling           |  |  |  |
| CodeBookSubsetR                                                                                                                                                                                                                | estriction                   |                                  | 110000             |  |  |  |
| bitmap                                                                                                                                                                                                                         |                              |                                  |                    |  |  |  |
| PDSCH transmission                                                                                                                                                                                                             | on mode                      |                                  | 4                  |  |  |  |
| Note 1: $P_B = 1$ .                                                                                                                                                                                                            |                              |                                  |                    |  |  |  |
| Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). |                              |                                  |                    |  |  |  |
|                                                                                                                                                                                                                                |                              | configuration 1 the 1ms and 4ms. | reporting interval |  |  |  |

Table 8.2.2.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

| T   | est  | Band-  | Reference  | OCNG     | Propagation | Correlation                            | Reference                                   | /alue       | UE       |
|-----|------|--------|------------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| nur | nber | width  | Channel    | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
|     | 1    | 10 MHz | R.35 TDD   | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                          | 19.5        | ≥2       |
|     | 2    | 10 MHz | R.11-1 TDD | OP.1 TDD | ETU70       | 2x2 Low                                | 70                                          | 13.9        | ≥2       |

#### 8.2.2.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

For single carrier the requirements are specified in Table 8.2.2.4.3-2, with the addition of the parameters in Table 8.2.2.4.3-1 and the downlink physical channel setup according to Annex C.3.2. For CA the requirements are specified in Table 8.2.2.4.3-4, with the addition of the parameters in Table 8.2.2.4.3-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.2.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

| Parameter                    | •                            | Unit | Test 1      |
|------------------------------|------------------------------|------|-------------|
| Deverlight newser            | $ ho_{\scriptscriptstyle A}$ | dB   | -6          |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB   | -6 (Note 1) |
|                              | σ                            | dB   | 3           |

| N <sub>oc</sub>       | at antenna port                                                                                                                                                                                                               | dBm/15kHz | -98                                     |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------|--|--|
| Precoding granularity |                                                                                                                                                                                                                               | PRB       | 6                                       |  |  |
| PMI delay (Note 2)    |                                                                                                                                                                                                                               | ms        | 10 or 11                                |  |  |
| Re                    | porting interval                                                                                                                                                                                                              | ms        | 1 or 4 (Note 3)                         |  |  |
| Re                    | eporting mode                                                                                                                                                                                                                 |           | PUSCH 1-2                               |  |  |
|                       | CK feedback mode                                                                                                                                                                                                              |           | Bundling                                |  |  |
| CodeBo                | okSubsetRestriction                                                                                                                                                                                                           |           | 000000000000000000000000000000000000000 |  |  |
|                       | bitmap                                                                                                                                                                                                                        |           | 000001111111111111111000000             |  |  |
|                       |                                                                                                                                                                                                                               |           | 000000000                               |  |  |
| PDSCH                 | transmission mode                                                                                                                                                                                                             |           | 4                                       |  |  |
| Note 1:               | $P_B = 1$ .                                                                                                                                                                                                                   |           |                                         |  |  |
| Note 2:               | Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4) |           |                                         |  |  |
| Note 3:               | For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.                                                                                                                              |           |                                         |  |  |
| Note 4:               | Void.                                                                                                                                                                                                                         |           |                                         |  |  |
| Note 5:               | Void.                                                                                                                                                                                                                         |           |                                         |  |  |
| Note 6:               | Void.                                                                                                                                                                                                                         |           |                                         |  |  |

| Table 8.2.2.4.3-2: Minimum | performance Multi-Lave  | r Spatial Multiplexing (FRC) |
|----------------------------|-------------------------|------------------------------|
|                            | por lor mando mana Eugo |                              |

| Test    | Band-  | Reference | OCNG     | Propagatio     | Correlation                            | Reference value                             |             | UE       |
|---------|--------|-----------|----------|----------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number  | width  | Channel   | Pattern  | n<br>Condition | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1       | 10 MHz | R.36 TDD  | OP.1 TDD | EPA5           | 4x2 Low                                | 70                                          | 15.7        | ≥2       |
| Note 1: | Void   |           |          |                |                                        |                                             |             |          |

| Table 8.2.2.4.3-3: Test Parameters | for Multi-Laver Spatia | l Multiplexing (FRC) for CA |
|------------------------------------|------------------------|-----------------------------|
|                                    | , ioi main Eayer opana |                             |

| Parameter                                                                                                                                                                                                                           |                              | Unit           | Test 1                                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|-------------------------------------------|--|--|--|
| Deverliek zewer                                                                                                                                                                                                                     | $ ho_{\scriptscriptstyle A}$ | dB             | -6                                        |  |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                        | $ ho_{\scriptscriptstyle B}$ | dB -6 (Note 1) |                                           |  |  |  |
|                                                                                                                                                                                                                                     | σ                            | dB             | 3                                         |  |  |  |
| $N_{_{oc}}$ at antenna                                                                                                                                                                                                              | port                         | dBm/15kHz      | -98                                       |  |  |  |
| Precoding granu                                                                                                                                                                                                                     | Ilarity                      | PRB            | 8                                         |  |  |  |
| PMI delay (Not                                                                                                                                                                                                                      | e 2)                         | ms             | 10 or 11                                  |  |  |  |
| Reporting inte                                                                                                                                                                                                                      | rval                         | ms             | 1 or 4 (Note 3)                           |  |  |  |
| Reporting mo                                                                                                                                                                                                                        | de                           |                | PUSCH 1-2                                 |  |  |  |
| ACK/NACK feedba                                                                                                                                                                                                                     | ck mode                      |                | PUCCH format 1b with channel<br>selection |  |  |  |
| CodeBookSubsetRestriction                                                                                                                                                                                                           |                              |                | 000000000000000000000000000000000000000   |  |  |  |
| bitmap                                                                                                                                                                                                                              |                              |                | 0000111111111111111100000000              |  |  |  |
|                                                                                                                                                                                                                                     |                              |                | 0000000                                   |  |  |  |
| CSI request field (                                                                                                                                                                                                                 |                              |                | '10'                                      |  |  |  |
| PDSCH transmission                                                                                                                                                                                                                  | on mode                      |                | 4                                         |  |  |  |
| Note 1: $P_B = 1$ .                                                                                                                                                                                                                 |                              |                |                                           |  |  |  |
| Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n<br>based on PMI estimation at a downlink SF not later than SF#(n-4), this<br>reported PMI cannot be applied at the eNB downlink before SF#(n+4) |                              |                |                                           |  |  |  |
| Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate                                                                                                                                                 |                              |                |                                           |  |  |  |
| between 1ms and 4ms.                                                                                                                                                                                                                |                              |                |                                           |  |  |  |
| Note 4: Multiple CC-s under test are configured as the 1 <sup>st</sup> set of serving cells by high layers.                                                                                                                         |                              |                |                                           |  |  |  |
| Note 5: The same PDSCH transmission mode is applied to each component carrier.                                                                                                                                                      |                              |                |                                           |  |  |  |

| Test    | Band-                                         | Reference | OCNG     | Propagatio     | Correlation                            | Reference value                             |             | UE       |     |
|---------|-----------------------------------------------|-----------|----------|----------------|----------------------------------------|---------------------------------------------|-------------|----------|-----|
| number  | width                                         | Channel   | Pattern  | n<br>Condition | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category | caŗ |
| 1       | 2x20                                          | R.43 TDD  | OP.1 TDD | EVA5           | 4x2 Low                                | 70                                          | 11.1        | ≥5       | С   |
|         | MHz                                           |           | (Note 1) |                |                                        |                                             |             |          | CL  |
| Note 1: | Note 1: The OCNG pattern applies for each CC. |           |          |                |                                        |                                             |             |          |     |

Table 8.2.2.4.3-4: Minimum performance Multi-Layer Spatial Multiplexing (FRC) for CA

#### 8.2.2.5 MU-MIMO

### 8.2.2.6 [Control channel performance: D-BCH and PCH]

#### 8.2.2.7 Carrier aggregation with power imbalance

The requirements in this section verify the ability of an intraband adjancent carrier aggregation UE to demodulate the signal transmitted by the PCell in the presence of a stronger SCell signal on an adjacent frequency. Throughput is measured on the PCell only.

#### 8.2.2.7.1 Minimum Requirement

For CA the requirements are specified in Table 8.2.2.7.1-2, with the addition of the parameters in Table 8.2.2.7.1-1 and the downlink physical channel setup according to Annex C.3.2.

| Paramete                                                                                                                                                                                                                                                                                                     | r                            | Unit      | Test 1             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|--------------------|--|
| Devertials a surray                                                                                                                                                                                                                                                                                          | $ ho_{\scriptscriptstyle A}$ | dB        | 0                  |  |
| Downlink power<br>allocation                                                                                                                                                                                                                                                                                 | $ ho_{\scriptscriptstyle B}$ | dB        | 0 (Note 1)         |  |
|                                                                                                                                                                                                                                                                                                              | σ                            | dB        | 0                  |  |
| $\hat{E}_{s}$ – $^{PCell}$ at anten PCell                                                                                                                                                                                                                                                                    | na port of                   | dBm/15kHz | -85                |  |
| $\hat{E}_{s}$ _ $SCell$ at anten Scell                                                                                                                                                                                                                                                                       | na port of                   | dBm/15kHz | -79                |  |
| $N_{\scriptscriptstyle oc}$ at antenn                                                                                                                                                                                                                                                                        | a port                       | dBm/15kHz | Off (Note 2)       |  |
| Symbols for unus                                                                                                                                                                                                                                                                                             | ed PRBs                      |           | OCNG<br>(Note 3,4) |  |
| Modulatio                                                                                                                                                                                                                                                                                                    | n                            |           | 64 QAM             |  |
| Maximum number<br>transmissio                                                                                                                                                                                                                                                                                |                              |           | 1                  |  |
| Redundancy versions sequence                                                                                                                                                                                                                                                                                 | •                            |           | {0}                |  |
| PDSCH transmiss<br>of PCell                                                                                                                                                                                                                                                                                  |                              |           | 1                  |  |
| PDSCH transmiss<br>of SCell                                                                                                                                                                                                                                                                                  | ion mode                     |           | 3                  |  |
| Note 1: $P_{\scriptscriptstyle B} = 0$ .Note 2:No external noise sources are applied.Note 3:These physical resource blocks are assigned to<br>an arbitrary number of virtual UEs with one<br>PDSCH per virtual UE; the data transmitted over<br>the OCNG PDSCHs shall be uncorrelated<br>pseudo random data. |                              |           |                    |  |
|                                                                                                                                                                                                                                                                                                              | and PDSCI                    |           | e Scell control    |  |

Table 8.2.2.7.1-2: Minimum performance (FRC) for CA

| Test<br>Number | Band-<br>width |             | rence<br>nnel | OCNG F      | Pattern     |       | gation<br>itions | Correlation<br>Matrix and<br>Antenna |       | Matrix and     |     | Matrix and |  | Matrix and<br>Antenna |  | Matrix and Fraction of Antenna Maximum |  | UE<br>Category | CA<br>capabi<br>lity |
|----------------|----------------|-------------|---------------|-------------|-------------|-------|------------------|--------------------------------------|-------|----------------|-----|------------|--|-----------------------|--|----------------------------------------|--|----------------|----------------------|
|                |                | PCell       | SCell         | PCell       | SCell       | PCell | SCell            | PCell                                | SCell | Throughput (%) |     |            |  |                       |  |                                        |  |                |                      |
| 1              | 2x20M<br>Hz    | R.49<br>TDD | R.49-1<br>TDD | OP.1<br>TDD | OP.5<br>TDD | AWGN  | Clause<br>B.1    | 1x2                                  | 2x2   | 85%            | 5-8 | CL-C       |  |                       |  |                                        |  |                |                      |

# 8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

### 8.3.1 FDD

The parameters specified in Table 8.3.1-1 are valid for FDD unless otherwise stated.

| Parameter                                                                                                      | Unit         | Value                                                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------|--|--|--|
| Cyclic prefix                                                                                                  |              | Normal                                                                         |  |  |  |
| Cell ID                                                                                                        |              | 0                                                                              |  |  |  |
| Inter-TTI Distance                                                                                             |              | 1                                                                              |  |  |  |
| Number of HARQ<br>processes                                                                                    | Processes    | 8                                                                              |  |  |  |
| Maximum number of<br>HARQ transmission                                                                         |              | 4                                                                              |  |  |  |
| Redundancy version<br>coding sequence                                                                          |              | {0,1,2,3} for QPSK and 16QAM<br>{0,0,1,2} for 64QAM                            |  |  |  |
| Number of OFDM<br>symbols for PDCCH                                                                            | OFDM symbols | 2                                                                              |  |  |  |
| Precoder update granularity                                                                                    |              | Frequency domain: 1 PRG for<br>Transmission mode 9 and 10<br>Time domain: 1 ms |  |  |  |
| Note 1: as specified in Table 4.2-2 in TS 36.211 [4].<br>Note 2: as specified in Table 4.2-1 in TS 36.211 [4]. |              |                                                                                |  |  |  |

### Table 8.3.1-1: Common Test Parameters for User-specific Reference Symbols

### 8.3.1.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.1-1 and 8.3.1.1-2, with the addition of the parameters in Table 8.3.1.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

| parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | Unit                  | Test 1                                                       | Test 2                  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|--------------------------------------------------------------|-------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ ho_{\scriptscriptstyle A}$ | dB                    | 0                                                            | 0                       |  |  |  |  |  |
| Downlink power<br>allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                       | 0 (Note 1)                                                   | 0 (Note 1)              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | σ                            | dB                    | -3                                                           | -3                      |  |  |  |  |  |
| Beamforming me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | odel                         |                       | Annex B.4.1                                                  | Annex B.4.1             |  |  |  |  |  |
| Cell-specific refer<br>signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ence                         |                       | Antenna                                                      | ports 0,1               |  |  |  |  |  |
| CSI reference sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | inals                        |                       | Antenna ports<br>15,,18                                      | Antenna ports<br>15,,18 |  |  |  |  |  |
| CSI-RS periodicity<br>subframe offs<br>$T_{CSI-RS} / \Delta_{CSI-R}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | et<br>s                      | Subframes             | 5/2                                                          | 5/2                     |  |  |  |  |  |
| CSI reference si<br>configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                       | 0                                                            | 3                       |  |  |  |  |  |
| Zero-power CSI-RS<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPowerCSI-RS<br>bitmap                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | Subframes<br>/ bitmap | 3 /<br>00010000000000000000                                  | 3 /<br>0001000000000000 |  |  |  |  |  |
| $N_{\scriptscriptstyle oc}$ at antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | port                         | dBm/15kHz             | -98                                                          | -98                     |  |  |  |  |  |
| Symbols for unu<br>PRBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sed                          |                       | OCNG (Note 4)                                                | OCNG (Note 4)           |  |  |  |  |  |
| Number of alloca<br>resource blocks (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | PRB                   | 50                                                           | 50                      |  |  |  |  |  |
| Simultaneous<br>transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                       | No                                                           | Yes (Note 3, 5)         |  |  |  |  |  |
| PDSCH transmis<br>mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sion                         |                       | 9                                                            | 9                       |  |  |  |  |  |
| ModeNote 1: $P_B = 1$ .Note 2:The modulation symbols of the signal under test are mapped onto antenna<br>port 7 or 8.Note 3:Modulation symbols of an interference signal is mapped onto the antenna<br>port (7 or 8) not used for the input signal under test.Note 4:These physical resource blocks are assigned to an arbitrary number of<br>virtual UEs with one PDSCH per virtual UE; the data transmitted over the<br>OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK<br>modulated. |                              |                       |                                                              |                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                       | ties $n_{ m SCID}$ are set to 0                              |                         |  |  |  |  |  |
| DM RS \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vitn inte                    | riering simultai      | DM RS with interfering simultaneous transmission test cases. |                         |  |  |  |  |  |

### Table 8.3.1.1-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

Table 8.3.1.1-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

| Test   | est Bandwidt Reference |          | OCNG     | Propagation | Correlation                            | Reference                                    | UE          |          |
|--------|------------------------|----------|----------|-------------|----------------------------------------|----------------------------------------------|-------------|----------|
| number | h and<br>MCS           | Channel  | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughpu<br>t (%) | SNR<br>(dB) | Category |
| 1      | 10 MHz<br>QPSK 1/3     | R.43 FDD | OP.1 FDD | EVA5        | 2x2 Low                                | 70                                           | -1          | ≥1       |

| nd MCS            | Channel  |          |           |                                        | Reference v                                 | arao                                    | UE                                           |
|-------------------|----------|----------|-----------|----------------------------------------|---------------------------------------------|-----------------------------------------|----------------------------------------------|
|                   | Channel  | Pattern  | Condition | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)                             | Category                                     |
| 10 MHz<br>QAM 1/2 | R.50 FDD | OP.1 FDD | EPA5      | 2x2 Low                                | 70                                          | 21.9                                    | ≥2                                           |
| (                 | QAM 1/2  | QAM 1/2  | QAM 1/2   | QAM 1/2                                | 0 MHz R.50 FDD OP.1 FDD EPA5 2x2 Low        | 0 MHz R.50 FDD OP.1 FDD EPA5 2x2 Low 70 | 0 MHz R.50 FDD OP.1 FDD EPA5 2x2 Low 70 21.9 |

### Table 8.3.1.1-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

## 8.3.1.1A Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.1.1A-2, with the addition of the parameters in Table 8.3.1.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.1.1A-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

|                                                    | r                            | Unit          | Cell 1                                                                                                       | Cell 2                          |
|----------------------------------------------------|------------------------------|---------------|--------------------------------------------------------------------------------------------------------------|---------------------------------|
| Downlink news                                      | $ ho_{\scriptscriptstyle A}$ | dB            | 0                                                                                                            | 0                               |
| Downlink power<br>allocation                       |                              |               | 0 (Note 1)                                                                                                   | 0                               |
| σ                                                  |                              | dB            | -3                                                                                                           | -3                              |
| Cell-specific referen                              | ce signals                   |               | Antenna ports 0,1                                                                                            | Antenna ports 0,1               |
| CSI reference s                                    | ignals                       |               | Antenna ports<br>15,,18                                                                                      | N/A                             |
| CSI-RS periodic subframe offset T <sub>CSI</sub> . | ity and                      | Subframes     | 5/2                                                                                                          | N/A                             |
| CSI reference s<br>configuratio                    | signal                       |               | 0                                                                                                            | N/A                             |
| $N_{oc}$ at antenna                                | a port                       | dBm/15kH<br>z | -98                                                                                                          | N/A                             |
| DIP (Note 2                                        | 2)                           | dB            | N/A                                                                                                          | -1.73                           |
| BW <sub>Channel</sub>                              |                              | MHz           | 10                                                                                                           | 10                              |
| Cyclic Prefi                                       | ix                           |               | Normal                                                                                                       | Normal                          |
| Cell Id                                            |                              |               | 0                                                                                                            | 126                             |
| Number of contro<br>symbols                        | IOFDM                        |               | 2                                                                                                            | 2                               |
| PDSCH transmissi                                   | on mode                      |               | 9                                                                                                            | N/A                             |
| Beamforming model                                  |                              |               | As specified in<br>clause B.4.3<br>(Note 4, 5)                                                               | N/A                             |
| Interference model                                 |                              |               | N/A                                                                                                          | As specified in<br>clause B.5.4 |
| Probability of<br>occurrence of                    | Rank 1                       |               | N/A                                                                                                          | 70                              |
| transmission rank<br>in interfering cells          | Rank 2                       |               | N/A                                                                                                          | 30                              |
| Precoder update g                                  | ranularity                   | PRB           | 50                                                                                                           | 6                               |
| PMI delay (No                                      | te 5)                        | Ms            | 8                                                                                                            | N/A                             |
| Reporting inte                                     | erval                        | Ms            | 5                                                                                                            | N/A                             |
| Reporting mo                                       | ode                          |               | PUCCH 1-1                                                                                                    | N/A                             |
| CodeBookSubsetRestriction<br>bitmap                |                              |               | 0000000000000000<br>0000000000000000<br>000000                                                               | N/A                             |
| Symbols for unuse                                  | ed PRBs                      |               | OCNG (Note 6)                                                                                                | N/A                             |
|                                                    | smission                     |               | No simultaneous<br>transmission on the<br>other antenna port in<br>(7 or 8) not used for<br>the input signal | N/A                             |

## Table 8.3.1.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

ote 5: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI

|         | cannot be applied at the eNB downlink before SF#(n+4).                            |
|---------|-----------------------------------------------------------------------------------|
| Note 6: | These physical resource blocks are assigned to an arbitrary number of virtual UEs |
|         | with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs          |
|         | shall be uncorrelated pseudo random data, which is QPSK modulated.                |
| Note 7: | All cells are time-synchronous.                                                   |

### Table 8.3.1.1A-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

| Test<br>Number | Referenc<br>e                                                                   |             | NG Propagation |            | •          | Correlatio<br>n Matrix                          | Reference Value                          |                             | UE<br>Categor |
|----------------|---------------------------------------------------------------------------------|-------------|----------------|------------|------------|-------------------------------------------------|------------------------------------------|-----------------------------|---------------|
|                | Channel                                                                         | Cell 1      | Cell 2         | Cell 1     | Cell 2     | and<br>Antenna<br>Configurat<br>ion (Note<br>3) | Fraction of<br>Maximum<br>Throughput (%) | SINR<br>(dB)<br>(Note<br>2) | У             |
| 1              | R.48 FDD                                                                        | OP.1<br>FDD | N/A            | EVA5       | EVA5       | 4x2 Low                                         | 70                                       | -1.1                        | ≥1            |
| Note 1:        | The propagation conditions for Cell 1 and Cell 2 are statistically independent. |             |                |            |            |                                                 |                                          |                             |               |
| Note 2:        | SINR corresponds to $\hat{E}_s/N_{oc}$ of Cell 1 as defined in clause 8.1.1.    |             |                |            |            |                                                 |                                          |                             |               |
| Note 3:        | Correlation                                                                     | matrix ar   | nd antenr      | na configu | uration pa | arameters appl                                  | y for each of Cell 1                     | and Cell 2.                 |               |

## 8.3.1.1B Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.1.1B -2, with the addition of parameters in Table 8.3.1.1B -1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.1.1B -1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

| Parameter                                                            |                              | Unit                  | Cell 1                                                   | Cell 2                                                   | Cell 3                                                   |
|----------------------------------------------------------------------|------------------------------|-----------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                                                                      | $ ho_{\scriptscriptstyle A}$ | dB                    | 0                                                        | -3                                                       | -3                                                       |
| Downlink power<br>allocation                                         | $ ho_{\scriptscriptstyle B}$ | dB                    | 0 (Note 1)                                               | -3 (Note 1)                                              | -3 (Note 1)                                              |
| σ                                                                    |                              | dB                    | -3                                                       | N/A                                                      | N/A                                                      |
|                                                                      | N <sub>oc1</sub>             | dBm/15kHz             | -98 (Note 2)                                             | N/A                                                      | N/A                                                      |
| $N_{oc}$ at antenna port                                             | N <sub>oc2</sub>             | dBm/15kHz             | -98 (Note 3)                                             | N/A                                                      | N/A                                                      |
|                                                                      | $N_{oc3}$                    | dBm/15kHz             | -93 (Note 4)                                             | N/A                                                      | N/A                                                      |
| $\widehat{E}_{s}/N_{oc2}$                                            |                              | dB                    | Reference Value<br>in Table 2                            | 12                                                       | 10                                                       |
| BW <sub>Channel</sub>                                                |                              | MHz                   | 10                                                       | 10                                                       | 10                                                       |
| Subframe Configu                                                     | ration                       |                       | Non-MBSFN                                                | Non-MBSFN                                                | Non-MBSFN                                                |
| Time Offset betwee                                                   | n Cells                      | μs                    | N/A                                                      | 3                                                        | -1                                                       |
| Frequency shift betwe                                                | en Cells                     | Hz                    | N/A                                                      | 300                                                      | -100                                                     |
| Cell Id                                                              |                              |                       | 0                                                        | 1                                                        | 126                                                      |
| Cell-specific referenc                                               | e signals                    |                       | A                                                        | ntenna ports 0,1                                         |                                                          |
| CSI reference sig                                                    | Inals                        |                       | Antenna ports<br>15,16                                   | N/A                                                      | N/A                                                      |
| CSI-RS periodicity<br>subframe offs<br>$T_{CSI-RS} / \Delta_{CSI-R}$ | et                           | Subframes             | 5/2                                                      | N/A                                                      | N/A                                                      |
| CSI reference si<br>configuration                                    |                              |                       | 8                                                        | N/A                                                      | N/A                                                      |
| Zero-power CSI-RS<br>configuration<br>ICSI-RS / ZeroPowerCSI-RS      |                              | Subframes /<br>bitmap | [3 /<br>0010000000000<br>00]                             | N/A                                                      | N/A                                                      |
| bitmap<br>ABS pattern (Nor                                           | te 5)                        |                       | N/A                                                      | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 |
| RLM/RRM Measur<br>Subframe Pattern (I                                |                              |                       | 10000000<br>10000000<br>10000000<br>10000000<br>1000000  | N/A                                                      | N/A                                                      |
| CSI Subframe Sets                                                    | C <sub>CSI,0</sub>           |                       | 11000000<br>11000000<br>11000000<br>11000000<br>11000000 | N/A                                                      | N/A                                                      |
| (Note7)                                                              | C <sub>CSI,1</sub>           |                       | 00111111<br>00111111<br>00111111<br>00111111<br>00111111 | N/A                                                      | N/A                                                      |
| Number of control OFDM<br>symbols                                    |                              |                       | 2                                                        | Note 8                                                   | Note 8                                                   |
| PDSCH transmissio                                                    | n mode                       |                       | TM9-1layer                                               | Note 9                                                   | Note 9                                                   |
| Precoding granul                                                     | arity                        |                       | Frequency<br>domain: 1 PRG<br>Time domain: 1<br>ms       | N/A                                                      | N/A                                                      |
| Beamforming mo                                                       |                              |                       | Annex B.4.1                                              | N/A                                                      | N/A                                                      |
| Cyclic prefix                                                        |                              |                       | Normal                                                   | Normal                                                   | Normal                                                   |

### Table 8.3.1.1B-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

| Note 1:  | $P_B = 1$ .                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a                                          |
|          | subframe overlapping with the aggressor ABS.                                                                                 |
| Note 3:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the                                     |
|          | aggressor ABS.                                                                                                               |
| Note 4:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-                                      |
|          | ABS.                                                                                                                         |
| Note 5:  | ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated                                               |
|          | PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is                                               |
|          | overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |
| Note 6:  | Time-domain measurement resource restriction pattern for PCell measurements as defined                                       |
| Note 0.  | in [7].                                                                                                                      |
| Note 7:  | As configured according to the time-domain measurement resource restriction pattern for                                      |
|          | CSI measurements defined in [7].                                                                                             |
| Note 8:  | The number of control OFDM symbols is not available for ABS and is 2 for the subframe                                        |
|          | indicated by "0" of ABS pattern.                                                                                             |
| Note 9:  | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3                                          |
|          | applying OCNG pattern as defined in Annex A.5.                                                                               |
| Note 10: | If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI                                     |
|          | estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at                                  |
|          | the eNB downlink before SF#(n+4).                                                                                            |
| Note 11: | , , , , , , , , , , , , , , , , , , ,                                                                                        |
| Note 12: |                                                                                                                              |
| Note 13: | The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.                                         |

#### Table 8.3.1.1B-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

| Test<br>Number                | Reference<br>Channel                                                                                                                                                                                                                  | 00          | NG Patt     | ern         | Propagation<br>Conditions (Note1) |        | Correlation Reference Value<br>Matrix and |                                       | UE<br>Cate                                  |                            |      |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-----------------------------------|--------|-------------------------------------------|---------------------------------------|---------------------------------------------|----------------------------|------|
|                               |                                                                                                                                                                                                                                       | Cell 1      | Cell 2      | Cell 3      | Cell 1                            | Cell 2 | Cell 3                                    | Antenna<br>Configurati<br>on (Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) | gory |
| 1                             | R.51 FDD                                                                                                                                                                                                                              | OP.1<br>FDD | OP.1<br>FDD | OP.1<br>FDD |                                   | EVA5   |                                           | 2x2 Low                               | 70                                          | [TBD]                      | ≥2   |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.<br>SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |             |             |             |                                   |        |                                           |                                       |                                             |                            |      |

### 8.3.1.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.1.2-2, with the addition of the parameters in Table 8.3.1.2-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

#### Table 8.3.1.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

| parameter                    |                              | Unit | Tes        | st 1   |
|------------------------------|------------------------------|------|------------|--------|
|                              |                              | Unit | Cell 1     | Cell 2 |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle A}$ | dB   | 4          | 0      |
|                              | $ ho_{\scriptscriptstyle B}$ | dB   | 4 (Note 1) | 0      |
|                              | σ                            | dB   | -3         | -3     |

| Cell-specific reference signals                                                                                                                                                                                                                               |                       | Antenna ports 0 and                   | Antenna ports 0 and |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|---------------------|--|--|--|--|--|
| Cell ID                                                                                                                                                                                                                                                       |                       | 0                                     | 126                 |  |  |  |  |  |
| CSI reference signals                                                                                                                                                                                                                                         |                       | Antenna ports 15,16                   | NA                  |  |  |  |  |  |
| Beamforming model                                                                                                                                                                                                                                             |                       | Annex B.4.2                           | NA                  |  |  |  |  |  |
| CSI-RS periodicity and<br>subframe offset<br>$T_{CSI-RS} / \Delta_{CSI-RS}$                                                                                                                                                                                   | Subframes             | 5/2                                   | NA                  |  |  |  |  |  |
| CSI reference signal<br>configuration                                                                                                                                                                                                                         |                       | 8                                     | NA                  |  |  |  |  |  |
| Zero-power CSI-RS<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPowerCSI-RS<br>bitmap                                                                                                                                                                      | Subframes<br>/ bitmap | 3 /<br>001000000000000000             | NA                  |  |  |  |  |  |
| $N_{\it oc}$ at antenna port                                                                                                                                                                                                                                  | dBm/15kHz             | -98                                   | -98                 |  |  |  |  |  |
| $\widehat{E}_s/N_{oc}$                                                                                                                                                                                                                                        |                       | Reference Value in<br>Table 8.3.1.2-2 | 7.25dB              |  |  |  |  |  |
| Symbols for unused<br>PRBs                                                                                                                                                                                                                                    |                       | OCNG (Note 2)                         | NA                  |  |  |  |  |  |
| Number of allocated resource blocks (Note 2)                                                                                                                                                                                                                  | PRB                   | 50                                    | NA                  |  |  |  |  |  |
| Simultaneous<br>transmission                                                                                                                                                                                                                                  |                       | No                                    | NA                  |  |  |  |  |  |
| PDSCH transmission<br>mode                                                                                                                                                                                                                                    |                       | 9                                     | Blanked             |  |  |  |  |  |
| Note 1: $P_B = 1$ Note 2:       These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. |                       |                                       |                     |  |  |  |  |  |

Table 8.3.1.2-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

| Test<br>number                | Bandwidth<br>and MCS                                                                                                                                                                                                                |          |             | -         |           | gation<br>dition | Correlation<br>Matrix and    | Reference value                             |             | UE<br>Categ |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------|-----------|------------------|------------------------------|---------------------------------------------|-------------|-------------|
|                               |                                                                                                                                                                                                                                     |          | Cell1       | Cell<br>2 | Cell<br>1 | Cell<br>2        | Antenna<br>Configurati<br>on | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | ory         |
| 1                             | 10 MHz<br>16QAM 1/2                                                                                                                                                                                                                 | R.51 FDD | OP.1<br>FDD | N/A       | ETU5      | ETU5             | 2x2 Low                      | 70                                          | [14.2]      | 2-8         |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for Cell 1 and Cell 2 are statistically independent.<br>Correlation matrix and antenna configuration parameters apply for each of Cell 1 and Cell 2.<br>SNR corresponds to $\hat{E}_s/N_{oc}$ of Cell 1. |          |             |           |           |                  |                              |                                             |             |             |

## 8.3.1.3 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

### 8.3.1.3.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.1.3.1-3, with the additional parameters in Table 8.3.1.3.1-1 and Table 8.3.1.3.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.1.3.1-2. In Table 8.3.1.3.1-1 and 8.3.1.3.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2

(TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

| Paramete                                                                           | r                                                                   | Unit          | TP 1                                 | TP 2                                 |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|--------------------------------------|--------------------------------------|--|--|--|--|--|
| Downlink power                                                                     | $ ho_{\scriptscriptstyle A}$                                        | dB            | 0                                    | 0                                    |  |  |  |  |  |
| Downlink power<br>allocation                                                       | $ ho_{\scriptscriptstyle B}$                                        | dB            | 0 (Note 1)                           | 0                                    |  |  |  |  |  |
| σ                                                                                  |                                                                     | dB            | -3                                   | -3                                   |  |  |  |  |  |
| Cell-specific referer                                                              | ice signals                                                         |               | Antenna ports 0,1                    | (Note 2)                             |  |  |  |  |  |
| CSI-RS 0 antenr                                                                    | na ports                                                            |               | NA                                   | Port {15,16}                         |  |  |  |  |  |
| qcl-CSI-RS-Configl<br>CSI-RS 0 period<br>subframe offset T <sub>CSI</sub>          | icity and<br><sub>-RS</sub> / ∆ <sub>CSI-RS</sub>                   | Subframes     | NA                                   | 5/2                                  |  |  |  |  |  |
| qcl-CSI-RS-Configl<br>CSI-RS 0 config                                              |                                                                     |               | NA                                   | 8                                    |  |  |  |  |  |
| csi-RS-ConfigZPId<br>power CSI-RS 0 co<br>I <sub>CSI-RS</sub> /<br>ZeroPower CSI-R | nfiguration                                                         |               | NA                                   | 2/<br>000001000000000                |  |  |  |  |  |
| $N_{\scriptscriptstyle oc}$ at antenn                                              | a port                                                              | dBm/15kH<br>z | -98                                  | -98                                  |  |  |  |  |  |
| SNR                                                                                |                                                                     | dB            | Reference point in Table 8.3.1.3.1-3 | Reference point in Table 8.3.1. 1-3  |  |  |  |  |  |
| BW <sub>Channe</sub>                                                               |                                                                     | MHz           | 10                                   | 10                                   |  |  |  |  |  |
| Cyclic Pref                                                                        | ix                                                                  |               | Normal                               | Normal                               |  |  |  |  |  |
| Cell Id                                                                            |                                                                     |               | 0                                    | 0                                    |  |  |  |  |  |
| Number of contro<br>symbols                                                        | I OFDM                                                              |               | 2                                    | 2                                    |  |  |  |  |  |
| PDSCH transmiss                                                                    | ion mode                                                            |               | Blanked                              | 10                                   |  |  |  |  |  |
| Number of alloca                                                                   | ted PRB                                                             | PRB           | NA                                   | 50                                   |  |  |  |  |  |
| <i>qcl-Operation, '</i> PE<br>Mapping and Qu<br>Location Indic                     | asi-Co-                                                             |               | Туре                                 | B, '00'                              |  |  |  |  |  |
| Time offset betwe                                                                  | een TPs                                                             | μs            | NA                                   | Reference point in Table 8.3.1.3.1-3 |  |  |  |  |  |
| Frequency error be                                                                 | tween TPs                                                           | Hz            | NA                                   | 0                                    |  |  |  |  |  |
| Beamforming I                                                                      | model                                                               |               | NA                                   | As specified in<br>clause B.4.1      |  |  |  |  |  |
| Symbols for unus                                                                   | ed PRBs                                                             |               | NA                                   | OCNG (Note 3)                        |  |  |  |  |  |
| Note 1: $P_B = 1$                                                                  |                                                                     |               |                                      |                                      |  |  |  |  |  |
| Note 3: These ph<br>with one                                                       | Noet 2: REs for antenna ports 0 and 1 have zero transmission power. |               |                                      |                                      |  |  |  |  |  |

Table 8.3.1.3.1-1: Test Parameters for quasi co-location type B: same Cell ID

| Table 8.3.1.3.1-2 Configurations of PQI and DL transmission hypothesis for each PQI set |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

| PQI set<br>index | Parameter                                | s in each PQI set       | DL transm<br>hypothesis<br>PQI S |       |
|------------------|------------------------------------------|-------------------------|----------------------------------|-------|
|                  | NZP CSI-RS Index (For quasi co-location) | ZP CSI-RS configuration | TP 1                             | TP 2  |
| PQI set 0        | CSI-RS 0                                 | ZP CSI-RS 0             | Blanked                          | PDSCH |

| Test<br>Number                                                                                                                                                                                                                                                                         |          |      | Time<br>offset<br>between | Propagation<br>Conditions<br>(Note1) |      | Correlation<br>Matrix and<br>Antenna | Reference Value           |                                             | UE<br>Category             |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|---------------------------|--------------------------------------|------|--------------------------------------|---------------------------|---------------------------------------------|----------------------------|----|
|                                                                                                                                                                                                                                                                                        |          | TP 1 | TP 2                      | TPs (μs)                             | TP 1 | TP 2                                 | Configuration<br>(Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) |    |
| 1                                                                                                                                                                                                                                                                                      | R.52 FDD | NA   | OP.1<br>FDD               | 2                                    | EPA  | EPA                                  | 2x2 Low                   | 70                                          | 12.1                       | ≥2 |
| 2                                                                                                                                                                                                                                                                                      | R.52 FDD | NA   | OP.1<br>FDD               | -0.5                                 | EPA  | EPA                                  | 2x2 Low                   | 70                                          | 12.6                       | ≥2 |
| FDD       FDD         Note 1:       The propagation conditions for TP 1 and TP 2 are statistically independent.         Note 2:       The correlation matrix and antenna configuration apply for TP 1 and TP 2.         Note 3:       SNR corresponds to $\hat{E}_s / N_{oc}$ of TP 2. |          |      |                           |                                      |      |                                      |                           |                                             |                            |    |

Table 8.3.1.3.1-3: Minimum performance for quasi co-location type B: same Cell ID

### 8.3.1.3.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.1.3.2-3, with the additional parameters in Table 8.3.1.3.2-1 and 8.3.1.3.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In 8.3.1.3.2-1 and 8.3.1.3.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.1.3.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

| paramete                     | r                            | Unit | TP 1       | TP 2 |
|------------------------------|------------------------------|------|------------|------|
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle A}$ | dB   | 0          | 0    |
|                              | $ ho_{\scriptscriptstyle B}$ | dB   | 0 (Note 1) | 0    |
|                              | σ                            | dB   | -3         | -3   |

| Beamforming model                                                                                    |                      | N/A                                         | As specified in<br>clause B.4.1         |
|------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|-----------------------------------------|
| Cell-specific reference signals                                                                      |                      | Antenna ports 0,1                           | (Note 2)                                |
| CSI reference signals 0                                                                              |                      | Antenna ports<br>{15,16}                    | N/A                                     |
| CSI-RS 0 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$                              | Subframes            | 5/2                                         | N/A                                     |
| CSI reference signal 0<br>configuration                                                              |                      | 0                                           | N/A                                     |
| CSI reference signals 1                                                                              |                      | N/A                                         | Antenna ports<br>{15,16}                |
| CSI-RS 1 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$                              | Subframes            | N/A                                         | 5/2                                     |
| CSI reference signal 1<br>configuration                                                              |                      | N/A                                         | 8                                       |
| Zero-power CSI-RS 0<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPower CSI-RS bitmap             | Subframes<br>/bitmap | 2/<br>0010000000000000000000000000000000000 | 2/<br>001000000000000000                |
| Zero-power CSI-RS1<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPower CSI-RS bitmap <sub>S</sub> | Subframes<br>/bitmap | 2/<br>0000010000000000                      | 2/<br>0000010000000000                  |
| ${\widehat E}_{s}/N_{oc}$                                                                            | dB                   | Reference Value in<br>Table 8.3.1.3.2-3     | Reference Value in Table 8.3.1.3.2-3    |
| $N_{_{oc}}$ at antenna port                                                                          | dBm/15kH<br>z        | -98                                         | -98                                     |
| BW <sub>Channel</sub>                                                                                | MHz                  | 10                                          | 10                                      |
| Cyclic Prefix                                                                                        |                      | Normal                                      | Normal                                  |
| Cell Id                                                                                              |                      | 0                                           | 0                                       |
| Number of control OFDM<br>symbols                                                                    |                      | 2                                           | 2                                       |
| Timing offset between TPs                                                                            |                      | N/A                                         | Reference Value in<br>Table 8.3.1.3.2-3 |
| Frequency offset between TPs                                                                         | Hz                   | N/A                                         | 0                                       |
| Number of allocated resource blocks                                                                  | PRB                  | 50                                          | 50                                      |
| PDSCH transmission mode                                                                              |                      | 10                                          | 10                                      |
| Probability of occurrence of<br>PDSCH transmission(Note 3)                                           | %                    | 30                                          | 70                                      |
| Symbols for unused PRBs                                                                              |                      | OCNG (Note 4)                               | OCNG (Note 4)                           |

Note 2: REs for antenna ports 0 and 1 have zero transmission power.

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified. The probability of occurrence of PQI set in each TP is equal.

Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

| PQI set<br>index | Parameter                                   | DL transmission<br>hypothesis for<br>each PQI Set |         |         |
|------------------|---------------------------------------------|---------------------------------------------------|---------|---------|
|                  | NZP CSI-RS Index (For quasi<br>co-location) | ZP CSI-RS configuration                           | TP 1    | TP 2    |
| PQI set 0        | CSI-RS 0                                    | ZP CSI-RS 0                                       | PDSCH   | Blanked |
| PQI set 1        | CSI-RS 0                                    | ZP CSI-RS 1                                       | PDSCH   | Blanked |
| PQI set 2        | CSI-RS 1                                    | ZP CSI-RS 0                                       | Blanked | PDSCH   |
| PQI set 3        | CSI-RS 1                                    | ZP CSI-RS 1                                       | Blanked | PDSCH   |

#### Table 8.3.1.3.2-2 Configurations of PQI and DL transmission hypothesis for each PQI set

### Table 8.3.1.3.2-3 Performance Requirements for timing offset compensation with DPS transmission

| Test<br>Number                | Timing<br>offset(us) | Reference<br>Channel                                                                                                                                                                                                                                               |             | OCNG Propagation<br>Pattern Conditions |      | Correlation Reference Value<br>Matrix and |                                      | UE<br>Category                              |                            |    |  |
|-------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|------|-------------------------------------------|--------------------------------------|---------------------------------------------|----------------------------|----|--|
|                               |                      |                                                                                                                                                                                                                                                                    | TP 1        | TP 2                                   | TP 1 | TP 2                                      | Antenna<br>Configuration<br>(Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) |    |  |
| 1                             | 2                    | R.53<br>FDD                                                                                                                                                                                                                                                        | OP.1<br>FDD | OP.1<br>FDD                            | EPA5 | EPA5                                      | 2x2 Low                              | 70                                          | 12.2                       | ≥2 |  |
| 2                             | -0.5                 | R.53<br>FDD                                                                                                                                                                                                                                                        | OP.1<br>FDD | OP.1<br>FDD                            | EPA5 | EPA5                                      | 2x2 Low                              | 70                                          | 12.5                       | ≥2 |  |
| Note 1:<br>Note 2:<br>Note 3: | Correlation          | The propagation conditions for TP 1 and TP 2 are statistically independent.<br>Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2.<br>SNR corresponds to $\hat{E}_s/N_{oc}$ of both TP 1 and TP 2 as defined in clause 8.1.1. |             |                                        |      |                                           |                                      |                                             |                            |    |  |

### 8.3.1.3.3 Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.1.3.3-2, with the additional parameters in Table 8.3.1.3.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In 8.3.1.3.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

#### Table 8.3.1.3.3-1 Test Parameters for quasi co-location type B with different Cell ID and Colliding CRS

| parameter                    |                              | Unit TP 1 |            | TP 2 |  |
|------------------------------|------------------------------|-----------|------------|------|--|
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle A}$ | dB        | 0          | 0    |  |
|                              | $ ho_{\scriptscriptstyle B}$ | dB        | 0 (Note 1) | 0    |  |
|                              | σ                            | dB        | -3         | -3   |  |

| Beamforming model                                                                                                                                                                                                                                             |                      | N/A                                              | As specified in clause B.4.2         |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|--------------------------------------|--|--|--|--|--|
| Cell-specific reference signals                                                                                                                                                                                                                               |                      | Antenna ports 0,1                                | Antenna ports 0,1                    |  |  |  |  |  |
| CSI reference signals 0                                                                                                                                                                                                                                       |                      | N/A                                              | Antenna ports<br>{15,16}             |  |  |  |  |  |
| CSI-RS 0 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$                                                                                                                                                                                       | Subframes            | N/A                                              | 5 / 2                                |  |  |  |  |  |
| CSI reference signal 0<br>configuration                                                                                                                                                                                                                       |                      | N/A                                              | 0                                    |  |  |  |  |  |
| Zero-power CSI-RS 0<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPower CSI-RS bitmap                                                                                                                                                                      | Subframes<br>/bitmap | N/A                                              | 2/<br>00100000000000000              |  |  |  |  |  |
| $\widehat{E}_{s}/N_{oc}$                                                                                                                                                                                                                                      | dB                   | Reference point in<br>Table 8.3.1.3.3-2 +<br>4dB | Reference Value in Table 8.3.1.3.3-2 |  |  |  |  |  |
| $N_{_{oc}}$ at antenna port                                                                                                                                                                                                                                   | dBm/15kH<br>z        | -98                                              | -98                                  |  |  |  |  |  |
| BW <sub>Channel</sub>                                                                                                                                                                                                                                         | MHz                  | 10                                               | 10                                   |  |  |  |  |  |
| Cyclic Prefix                                                                                                                                                                                                                                                 |                      | Normal                                           | Normal                               |  |  |  |  |  |
| Cell Id                                                                                                                                                                                                                                                       |                      | 0                                                | 126                                  |  |  |  |  |  |
| Number of control OFDM<br>symbols                                                                                                                                                                                                                             |                      | 1                                                | 2                                    |  |  |  |  |  |
| Timing offset between TPs                                                                                                                                                                                                                                     | us                   | N/A                                              | 0                                    |  |  |  |  |  |
| Frequency offset between TPs                                                                                                                                                                                                                                  | Hz                   | N/A                                              | 200                                  |  |  |  |  |  |
| <i>qcl-Operation, '</i> PDSCH RE<br>Mapping and Quasi-Co-<br>Location Indicator'                                                                                                                                                                              |                      | Туре                                             | B, '00'                              |  |  |  |  |  |
| PDSCH transmission mode                                                                                                                                                                                                                                       |                      | Blank                                            | 10                                   |  |  |  |  |  |
| Number of allocated resource block                                                                                                                                                                                                                            |                      | N/A                                              | 50                                   |  |  |  |  |  |
| Symbols for unused PRBs                                                                                                                                                                                                                                       |                      | N/A                                              | OCNG(Note2)                          |  |  |  |  |  |
| Note 1: $P_B = 1$ Note 2:       These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. |                      |                                                  |                                      |  |  |  |  |  |

### Table 8.3.1.3.3-2 Performance Requirements for quasi co-location type B with different Cell ID and Colliding CRS

| Test<br>Number                | Reference<br>Channel | OCNG<br>Pattern                                                                                                                                                                                                                                      |             |      |      | Correlation<br>Matrix and<br>Antenna | Reference                                   | UE<br>Category          |    |  |
|-------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|------|--------------------------------------|---------------------------------------------|-------------------------|----|--|
|                               |                      | TP 1                                                                                                                                                                                                                                                 | TP 2        | TP 1 | TP 2 | Configuration<br>(Note 2)            | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note 3) |    |  |
| 1                             | R.54 FDD             | N/A                                                                                                                                                                                                                                                  | OP.1<br>FDD | EPA5 | ETU5 | 2x2 Low                              | 70                                          | 14.4                    | ≥2 |  |
| Note 1:<br>Note 2:<br>Note 3: | Correlation m        | The propagation conditions for TP 1 and TP 2 are statistically independent.<br>Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2.<br>SNR corresponds to $\hat{E}_s/N_{ac}$ of TP 2 as defined in clause 8.1.1. |             |      |      |                                      |                                             |                         |    |  |

### 8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Table 8.3.2-1: Common Test Parameters for User-specific Reference Symbols

| Parameter                                 | Unit                                           | Value                                                                                                           |
|-------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Uplink downlink<br>configuration (Note 1) |                                                | 1                                                                                                               |
| Special subframe configuration (Note 2)   |                                                | 4                                                                                                               |
| Cyclic prefix                             |                                                | Normal                                                                                                          |
| Cell ID                                   |                                                | 0                                                                                                               |
| Inter-TTI Distance                        |                                                | 1                                                                                                               |
| Number of HARQ<br>processes               | Processes                                      | 7                                                                                                               |
| Maximum number of<br>HARQ transmission    |                                                | 4                                                                                                               |
| Redundancy version<br>coding sequence     |                                                | {0,1,2,3} for QPSK and 16QAM<br>{0,0,1,2} for 64QAM                                                             |
| Number of OFDM<br>symbols for PDCCH       | OFDM symbols                                   | 2                                                                                                               |
| Precoder update<br>granularity            |                                                | Frequency domain: 1 PRB for<br>Transmission mode 8, 1 PRG for<br>Transmission mode 9 and 10Time<br>domain: 1 ms |
| ACK/NACK feedback<br>mode                 |                                                | Multiplexing                                                                                                    |
|                                           | Table 4.2-2 in TS 36.<br>Table 4.2-1 in TS 36. |                                                                                                                 |

### 8.3.2.1 Single-layer Spatial Multiplexing

For single-layer transmission on antenna port 5, the requirements are specified in Table 8.3.2.1-2, with the addition of the parameters in Table 8.3.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the demodulation performance using user-specific reference signals with full RB or single RB allocation.

| Parameter                                                                                                                                                                                                                             |                              | Unit     | Test 1           | Test 2           | Test 3           | Test 4           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|------------------|------------------|------------------|------------------|--|--|
| Downlink power                                                                                                                                                                                                                        | $ ho_{\scriptscriptstyle A}$ | dB       | 0                | 0                | 0                | 0                |  |  |
| allocation                                                                                                                                                                                                                            | $ ho_{\scriptscriptstyle B}$ | dB       | 0 (Note 1)       | 0 (Note 1)       | 0 (Note 1)       | 0 (Note 1)       |  |  |
|                                                                                                                                                                                                                                       | σ                            | dB       | 0                | 0                | 0                | 0                |  |  |
| Cell-specific refere<br>signals                                                                                                                                                                                                       | ence                         |          |                  | Antenna port 0   |                  |                  |  |  |
| Beamforming mo                                                                                                                                                                                                                        | del                          |          | Annex B.4.1      |                  |                  |                  |  |  |
| $N_{_{oc}}$ at antenna p                                                                                                                                                                                                              | ort                          | dB/15kHz | -98              | -98              | -98              | -98              |  |  |
| Symbols for unused                                                                                                                                                                                                                    | PRBs                         |          | OCNG<br>(Note 2) | OCNG<br>(Note 2) | OCNG<br>(Note 2) | OCNG<br>(Note 2) |  |  |
| PDSCH transmiss<br>mode                                                                                                                                                                                                               | sion                         |          | 7                | 7                | 7                | 7                |  |  |
| Note 1: $P_{B} = 0$ .                                                                                                                                                                                                                 |                              |          |                  |                  |                  |                  |  |  |
| Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. |                              |          |                  |                  |                  |                  |  |  |

Table 8.3.2.1-1: Test Parameters for Testing DRS

| Test   | Bandwidth           | Reference     | OCNG     | Propagation | Correlation                            | Reference                                   | value       | UE       |
|--------|---------------------|---------------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number | and MCS             | Channel       | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 1      | 10 MHz<br>QPSK 1/3  | R.25 TDD      | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                          | -0.8        | ≥1       |
| 2      | 10 MHz<br>16QAM 1/2 | R.26 TDD      | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                          | 7.0         | ≥2       |
|        | 5MHz<br>16QAM 1/2   | R.26-1<br>TDD | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                          | 7.0         | 1        |
| 3      | 10 MHz<br>64QAM 3/4 | R.27 TDD      | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                          | 17.0        | ≥2       |
|        | 10 MHz<br>64QAM 3/4 | R.27-1<br>TDD | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                          | 17.0        | 1        |
| 4      | 10 MHz<br>16QAM 1/2 | R.28 TDD      | OP.1 TDD | EPA5        | 2x2 Low                                | 30                                          | 1.7         | ≥1       |

Table 8.3.2.1-2: Minimum performance DRS (FRC)

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.1-4 and 8.3.2.1-5, with the addition of the parameters in Table 8.3.2.1-3 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port.

| Parameter                          |                                                                                                                                                                                                                               | Unit                                        | Test 1                | Test 2           | Test 3           | Test 4             | Test 5             |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|------------------|------------------|--------------------|--------------------|--|
| Downlink power                     | $ ho_{\scriptscriptstyle A}$                                                                                                                                                                                                  | dB                                          | 0                     | 0                | 0                | 0                  | 0                  |  |
| Downlink power<br>allocation       | $ ho_{\scriptscriptstyle B}$                                                                                                                                                                                                  | dB                                          | 0 (Note 1)            | 0 (Note 1)       | 0 (Note 1)       | 0 (Note 1)         | 0 (Note 1)         |  |
|                                    | σ                                                                                                                                                                                                                             | dB                                          | -3                    | -3               | -3               | -3                 | -3                 |  |
| Cell-specific reference signals    | e                                                                                                                                                                                                                             |                                             |                       | Antenna p        | port 0 and ant   | enna port 1        |                    |  |
| Beamforming mode                   |                                                                                                                                                                                                                               |                                             |                       |                  | Annex B.4.1      |                    |                    |  |
| $N_{oc}$ at antenna port dBm/15kHz |                                                                                                                                                                                                                               |                                             | -98                   | -98              | -98              | -98                | -98                |  |
| Symbols for unused Pl              | Symbols for unused PRBs                                                                                                                                                                                                       |                                             |                       | OCNG<br>(Note 4) | OCNG<br>(Note 4) | OCNG<br>(Note 4)   | OCNG<br>(Note 4)   |  |
| Simultaneous transmis              | sion                                                                                                                                                                                                                          |                                             | No                    | No               | No               | Yes<br>(Note 3, 5) | Yes<br>(Note 3, 5) |  |
| PDSCH transmission m               | ode                                                                                                                                                                                                                           |                                             | 8                     | 8                | 8                | 8                  | 8                  |  |
|                                    | mbols                                                                                                                                                                                                                         | bols of the sigr<br>of an interferei<br>st. |                       |                  |                  |                    | t used for the     |  |
| per virtual UE                     | These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. |                                             |                       |                  |                  |                    |                    |  |
| Note 5: The two UEs'               | scram                                                                                                                                                                                                                         | bling identities                            | $n_{\rm SCID}$ are se | t to 0 for CDN   | /I-multiplexed   | DM RS with in      | nterfering         |  |
| simultaneous                       | transm                                                                                                                                                                                                                        | nission test cas                            | es.                   |                  |                  |                    |                    |  |

 Table 8.3.2.1-3: Test Parameters for Testing CDM-multiplexed DM RS (single layer)

| Test   | Bandwidt            | Reference     | OCNG     | Propagation | Correlation                            | Reference                                    | value       | UE       |
|--------|---------------------|---------------|----------|-------------|----------------------------------------|----------------------------------------------|-------------|----------|
| number | h and<br>MCS        | Channel       | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughpu<br>t (%) | SNR<br>(dB) | Category |
| 1      | 10 MHz<br>QPSK 1/3  | R.31 TDD      | OP.1 TDD | EVA5        | 2x2 Low                                | 70                                           | -1.0        | ≥1       |
| 2      | 10 MHz<br>16QAM 1/2 | R.32 TDD      | OP.1 TDD | EPA5        | 2x2 Medium                             | 70                                           | 7.7         | ≥2       |
|        | 5MHz<br>16QAM 1/2   | R.32-1<br>TDD | OP.1 TDD | EPA5        | 2x2 Medium                             | 70                                           | 7.7         | 1        |
| 3      | 10 MHz<br>64QAM 3/4 | R.33 TDD      | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                           | 17.7        | ≥2       |
|        | 10 MHz<br>64QAM 3/4 | R.33-1<br>TDD | OP.1 TDD | EPA5        | 2x2 Low                                | 70                                           | 17.7        | 1        |

### Table 8.3.2.1-4: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC)

### Table 8.3.2.1-5: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC)

| Test    | Bandwidth        | Reference      | OCNG            | Propagation       | Correlation                            | Reference v                                 | /alue       | UE       |
|---------|------------------|----------------|-----------------|-------------------|----------------------------------------|---------------------------------------------|-------------|----------|
| number  | and MCS          | Channel        | Pattern         | Condition         | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |
| 4       | 10 MHz           | R.32 TDD       | OP.1 TDD        | EPA5              | 2x2 Medium                             | 70                                          | 21.9        | ≥2       |
|         | 16QAM 1/2        | (Note 1)       |                 |                   |                                        |                                             |             |          |
| 5       | 10 MHz           | R.34 TDD       | OP.1 TDD        | EPA5              | 2x2 Low                                | 70                                          | 22.0        | ≥2       |
|         | 64QAM 1/2        | (Note 1)       |                 |                   |                                        |                                             |             |          |
| Note 1: | The reference of | channel applie | s to both the i | input signal unde | er test and the inte                   | rfering signal.                             |             |          |

### 8.3.2.1A Single-layer Spatial Multiplexing (with multiple CSI-RS configurations)

For single-layer transmission on antenna ports 7 or 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.1A-2 and 8.3.2.1A-3, with the addition of the parameters in Table 8.3.2.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify rank-1 performance on one of the antenna ports 7 or 8 with and without a simultaneous transmission on the other antenna port, and to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power.

| Parameter                                                                                            |                                                                                                                                                                                                                                                                               | Unit                  | Test 1                                                     | Test 2                   |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|--------------------------|--|--|--|--|
| Davadiala                                                                                            | $ ho_{\scriptscriptstyle A}$                                                                                                                                                                                                                                                  | dB                    | 0                                                          | 0                        |  |  |  |  |
| Downlink power<br>allocation                                                                         | $ ho_{\scriptscriptstyle B}$                                                                                                                                                                                                                                                  | dB                    | 0 (Note 1)                                                 | 0 (Note 1)               |  |  |  |  |
|                                                                                                      | σ                                                                                                                                                                                                                                                                             | dB                    | -3                                                         | -3                       |  |  |  |  |
| Cell-specific refere<br>signals                                                                      | nce                                                                                                                                                                                                                                                                           |                       |                                                            | ports 0,1                |  |  |  |  |
| CSI reference sigr                                                                                   | nals                                                                                                                                                                                                                                                                          |                       | Antenna ports<br>15,,22                                    | Antenna ports<br>15,,18  |  |  |  |  |
| Beamforming mo                                                                                       | del                                                                                                                                                                                                                                                                           |                       | Annex B.4.1                                                | Annex B.4.1              |  |  |  |  |
| CSI-RS periodicity<br>subframe offse<br>$T_{CSI-RS} / \Delta_{CSI-RS}$                               | t                                                                                                                                                                                                                                                                             | Subframes             | 5 / 4                                                      | 5 / 4                    |  |  |  |  |
| CSI reference sig<br>configuration                                                                   |                                                                                                                                                                                                                                                                               |                       | 1                                                          | 3                        |  |  |  |  |
| Zero-power CSI-I<br>configuration<br><i>I</i> <sub>CSI-RS</sub> /<br><i>ZeroPowerCSI-F</i><br>bitmap |                                                                                                                                                                                                                                                                               | Subframes<br>/ bitmap | 4 /<br>0010000100000000                                    | 4 /<br>00100000000000000 |  |  |  |  |
| $N_{\scriptscriptstyle oc}$ at antenna p                                                             |                                                                                                                                                                                                                                                                               | dBm/15kHz             | -98                                                        | -98                      |  |  |  |  |
| Symbols for unus<br>PRBs                                                                             | ed                                                                                                                                                                                                                                                                            |                       | OCNG (Note 4)                                              | OCNG (Note 4)            |  |  |  |  |
| Number of allocat<br>resource blocks (No                                                             |                                                                                                                                                                                                                                                                               | PRB                   | 50                                                         | 50                       |  |  |  |  |
| Simultaneous<br>transmission                                                                         |                                                                                                                                                                                                                                                                               |                       | No                                                         | Yes (Note 3, 5)          |  |  |  |  |
| PDSCH transmiss<br>mode                                                                              | ion                                                                                                                                                                                                                                                                           |                       | 9                                                          | 9                        |  |  |  |  |
| port 7 or 8<br>Note 3: Modulatio<br>port (7 or<br>Note 4: These ph<br>virtual UE<br>OCNG PI          | <ol> <li>P<sub>B</sub> = 1.</li> <li>The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.</li> <li>Modulation symbols of an interference signal is mapped onto the antenna port (7 or 8) not used for the input signal under test.</li> </ol> |                       |                                                            |                          |  |  |  |  |
|                                                                                                      |                                                                                                                                                                                                                                                                               |                       | ties $n_{ m SCID}$ are set to 0<br>neous transmission test |                          |  |  |  |  |

### Table 8.3.2.1A-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with multiple CSI-RS configurations

Table 8.3.2.1A-2: Minimum performance for CDM-multiplexed DM RS without simultaneous transmission (FRC) with multiple CSI-RS configurations

| Test   | Bandwidt           | Reference | OCNG     | Propagation | Correlation                            | Reference value                              |             | UE       |
|--------|--------------------|-----------|----------|-------------|----------------------------------------|----------------------------------------------|-------------|----------|
| number | h and<br>MCS       | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughpu<br>t (%) | SNR<br>(dB) | Category |
| 1      | 10 MHz<br>QPSK 1/3 | R.50 TDD  | OP.1 TDD | EVA5        | 2x2 Low                                | 70                                           | -0.6        | ≥1       |

| Test    |                     |          | Propagation | Correlation | Reference v                            | UE                                          |             |          |  |
|---------|---------------------|----------|-------------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|--|
| number  | and MCS             | Channel  | Pattern     | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |  |
| 2       | 10 MHz<br>64QAM 1/2 | R.44 TDD | OP.1 TDD    | EPA5        | 2x2 Low                                | 70                                          | 22.1        | ≥2       |  |
| Note 1: |                     |          |             |             |                                        |                                             |             |          |  |

### Table 8.3.2.1A-3: Minimum performance for CDM-multiplexed DM RS with interfering simultaneous transmission (FRC) with multiple CSI-RS configurations

## 8.3.2.1B Enhanced Performance Requirement Type A – Single-layer Spatial Multiplexing with TM9 interference model

The requirements are specified in Table 8.3.2.1B-2, with the addition of the parameters in Table 8.3.2.1B-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify closed-loop rank one performance on one of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell when the PDSCH transmission in the serving cell is interfered by PDSCH of one dominant interfering cell applying transmission mode 9 interference model defined in clause B.5.4. In 8.3.2.1B-1, Cell 1 is the serving cell, and Cell 2 is the interfering cell. The downlink physical channel setup is according to Annex C.3.2 for each of Cell 1 and Cell 2, respectively.

| paramete                                         | r                              | Unit             | Cell 1                                                                                                                     | Cell 2                                                                                                                                                                                                                                   |
|--------------------------------------------------|--------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Downlink newer                                   | $ ho_{\scriptscriptstyle A}$   | dB               | 0                                                                                                                          | 0                                                                                                                                                                                                                                        |
| Downlink power<br>allocation                     | $ ho_{\scriptscriptstyle B}$   | dB               | 0 (Note 1)                                                                                                                 | 0                                                                                                                                                                                                                                        |
|                                                  | σ                              | dB               | -3                                                                                                                         | -3                                                                                                                                                                                                                                       |
| Cell-specific referen                            | nce signals                    |                  | Antenna ports 0,1                                                                                                          | Antenna ports 0,1                                                                                                                                                                                                                        |
| CSI reference                                    | -                              |                  | Antenna ports<br>15,,18                                                                                                    | N/A                                                                                                                                                                                                                                      |
| CSI-RS periodic subframe offset T <sub>CSI</sub> | -rs / $\Delta_{csi-rs}$        | Subframes        | 5 / 4                                                                                                                      | N/A                                                                                                                                                                                                                                      |
| CSI reference<br>configuration                   |                                |                  | 0                                                                                                                          | N/A                                                                                                                                                                                                                                      |
| $N_{\scriptscriptstyle oc}$ at antenn            | a port                         | dBm/15kH<br>z    | -98                                                                                                                        | N/A                                                                                                                                                                                                                                      |
| DIP (Note                                        | 2)                             | dB               | N/A                                                                                                                        | -1.73                                                                                                                                                                                                                                    |
| BW <sub>Channe</sub>                             | I                              | MHz              | 10                                                                                                                         | 10                                                                                                                                                                                                                                       |
| Cyclic Pref                                      | ïx                             |                  | Normal                                                                                                                     | Normal                                                                                                                                                                                                                                   |
| Cell Id                                          |                                |                  | 0                                                                                                                          | 126                                                                                                                                                                                                                                      |
| Number of contro<br>symbols                      | OFDM                           |                  | 2                                                                                                                          | 2                                                                                                                                                                                                                                        |
| PDSCH transmiss                                  | ion mode                       |                  | 9                                                                                                                          | 0<br>0<br>-3<br>Antenna ports 0,1<br>N/A<br>N/A<br>N/A<br>-1.73<br>10<br>Normal<br>126<br>2<br>N/A<br>126<br>2<br>N/A<br>N/A<br>N/A<br>N/A<br>As specified in<br>clause B.5.4<br>70<br>30<br>6<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |
| Beamforming I                                    | nodel                          |                  | As specified in<br>clause B.4.3<br>(Note 4, 5)                                                                             | N/A                                                                                                                                                                                                                                      |
| Interference n                                   | nodel                          |                  | N/A                                                                                                                        |                                                                                                                                                                                                                                          |
| Probability of<br>occurrence of                  | Rank 1                         |                  | N/A                                                                                                                        | 70                                                                                                                                                                                                                                       |
| transmission rank in interfering cells           | Rank 2                         |                  | N/A                                                                                                                        | 30                                                                                                                                                                                                                                       |
| Precoder update g                                | ranularity                     | PRB              | 50                                                                                                                         | 6                                                                                                                                                                                                                                        |
| PMI delay (No                                    | ote 5)                         | ms               | 10 or 11                                                                                                                   | N/A                                                                                                                                                                                                                                      |
| Reporting inte                                   | erval                          | ms               | 5                                                                                                                          | N/A                                                                                                                                                                                                                                      |
| Reporting m                                      | ode                            |                  | PUCCH 1-1                                                                                                                  | N/A                                                                                                                                                                                                                                      |
| CodeBookSubsetF<br>bitmap                        | Restriction                    |                  | 0000000000000000<br>0000000000000000<br>000000                                                                             | N/A                                                                                                                                                                                                                                      |
| Symbols for unus                                 | ed PRBs                        |                  | OCNG (Note 6)                                                                                                              | N/A                                                                                                                                                                                                                                      |
| Simultaneous trar                                | osmission                      |                  | No simultaneous<br>transmission on the<br>other antenna port in<br>(7 or 8) not used for<br>the input signal<br>under test | N/A                                                                                                                                                                                                                                      |
| Note 1: $P_B = 1$                                |                                |                  |                                                                                                                            |                                                                                                                                                                                                                                          |
| Note 2: The resp                                 |                                |                  | tral density of each inter<br>P value as specified in c                                                                    | -                                                                                                                                                                                                                                        |
| Note 3: The mode                                 |                                |                  | al under test in Cell 1 are                                                                                                |                                                                                                                                                                                                                                          |
| Note 4: The prece<br>Note 5: If the UE           | oder in claus<br>reports in ar | n available upli | s UE recommended PMI<br>nk reporting instance at a                                                                         | subrame SF#n based                                                                                                                                                                                                                       |

## Table 8.3.2.1B-1: Test Parameters for Testing CDM-multiplexed DM RS (single layer) with TM9 interference model

Note 5: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI

|         | cannot be applied at the eNB downlink before SF#(n+4).                            |
|---------|-----------------------------------------------------------------------------------|
| Note 6: | These physical resource blocks are assigned to an arbitrary number of virtual UEs |
|         | with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs          |
|         | shall be uncorrelated pseudo random data, which is QPSK modulated.                |
| Note 7: | All cells are time-synchronous.                                                   |

### Table 8.3.2.1B-2: Enhanced Performance Requirement Type A, CDM-multiplexed DM RS with TM9 interference model

| Test<br>Number | Referenc<br>e |             | Pattern Conditions n Matrix |               | Correlatio<br>n Matrix | Reference V                                     | alue                                     | UE<br>Categor               |    |
|----------------|---------------|-------------|-----------------------------|---------------|------------------------|-------------------------------------------------|------------------------------------------|-----------------------------|----|
|                | Channel       | Cell 1      | Cell 2                      | Cell 1        | Cell 2                 | and<br>Antenna<br>Configurat<br>ion (Note<br>3) | Fraction of<br>Maximum<br>Throughput (%) | SINR<br>(dB)<br>(Note<br>2) | У  |
| 1              | R.48 TDD      | OP.1<br>TDD | N/A                         | EVA5          | EVA5                   | 4x2 Low                                         | 70                                       | -1.0                        | ≥1 |
| Note 1:        |               |             |                             |               |                        |                                                 | ly independent.                          |                             |    |
| Note 2:        | SINR corres   | sponds to   | $\hat{E}_s/N_a$             | $_{oc}$ of Ce | ll 1 as de             | fined in clause                                 | 8.1.1.                                   |                             |    |
| Note 3:        | Correlation   | matrix ar   | nd antenr                   | a configu     | uration pa             | arameters appl                                  | y for each of Cell 1                     | and Cell 2                  |    |

## 8.3.2.1C Single-layer Spatial Multiplexing (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

The requirements are specified in Table 8.3.2.1.C -2, with the addition of parameters in Table 8.3.2.1.C -1. The purpose is to verify the performance of the antenna ports 7 or 8 without a simultaneous transmission on the other antenna port in the serving cell if the PDSCH transmission in the serving cell takes place in subframes that overlap with ABS [9] of the aggressor cell with CRS assistance information. In Table 8.3.2.1.C -1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] includes Cell 2 and Cell 3.

| Parameter                                                                   |                              | Unit                  | Cell 1                                             | Cell 2                   | Cell 3                   |
|-----------------------------------------------------------------------------|------------------------------|-----------------------|----------------------------------------------------|--------------------------|--------------------------|
| Uplink downlink Conf                                                        | iguration                    |                       | 1                                                  | 1                        | 1                        |
| Special subframe con                                                        | figuration                   |                       | 4                                                  | 4                        | 4                        |
|                                                                             | $ ho_{\scriptscriptstyle A}$ | dB                    | 0                                                  | -3                       | -3                       |
| Downlink power<br>allocation                                                | $ ho_{\scriptscriptstyle B}$ | dB                    | 0 (Note 1)                                         | -3 (Note 1)              | -3 (Note 1)              |
| anocation                                                                   | σ                            | dB                    | -3                                                 | N/A                      | N/A                      |
|                                                                             | N <sub>oc1</sub>             | dBm/15kHz             | -98 (Note 2)                                       | N/A                      | N/A                      |
| $N_{ac}$ at antenna port                                                    | N <sub>oc2</sub>             | dBm/15kHz             | -98 (Note 3)                                       | N/A                      | N/A                      |
|                                                                             | N <sub>oc3</sub>             | dBm/15kHz             | -93 (Note 4)                                       | N/A                      | N/A                      |
| $\hat{E}_s/N_{oc2}$                                                         |                              | dB                    | Reference Value<br>in Table 2                      | 12                       | 10                       |
| BW <sub>Channel</sub>                                                       |                              | MHz                   | 10                                                 | 10                       | 10                       |
| Subframe Configu                                                            | ration                       |                       | Non-MBSFN                                          | Non-MBSFN                | Non-MBSFN                |
| Time Offset betwee                                                          | n Cells                      | μs                    | N/A                                                | 3                        | -1                       |
| Frequency shift betwe                                                       | een Cells                    | Hz                    | N/A                                                | 300                      | -100                     |
| Cell Id                                                                     |                              |                       | 0                                                  | 1                        | 126                      |
| Cell-specific reference                                                     | e signals                    |                       | A                                                  | ntenna ports 0,1         |                          |
| CSI reference sig                                                           | gnals                        |                       | Antenna ports<br>15,16                             | N/A                      | N/A                      |
| CSI-RS periodicit<br>subframe offs<br>$T_{CSI-RS} / \Delta_{CSI-R}$         | et                           | Subframes             | 5/4                                                | N/A                      | N/A                      |
| CSI reference si<br>configuratior                                           | gnal                         |                       | 8                                                  | N/A                      | N/A                      |
| Zero-power CSI<br>configuratior<br>I <sub>CSI-RS</sub> / ZeroPowe<br>bitmap | -RS                          | Subframes /<br>bitmap | [4 /<br>0010000000000<br>00]                       | N/A                      | N/A                      |
| ABS pattern (No                                                             | te 5)                        |                       | N/A                                                | 0000000001<br>0000000001 | 0000000001<br>0000000001 |
| RLM/RRM Measur<br>Subframe Pattern (                                        |                              |                       | 0000000001<br>0000000001                           | N/A                      | N/A                      |
| CSI Subframe Sets                                                           | C <sub>CSI,0</sub>           |                       | 0000000001<br>00000000001                          | N/A                      | N/A                      |
| (Note7)                                                                     | C <sub>CSI,1</sub>           |                       | 1100111000<br>1100111000                           | N/A                      | N/A                      |
| Number of control symbols                                                   | OFDM                         |                       | 2                                                  | Note 8                   | Note 8                   |
| PDSCH transmissio                                                           | n mode                       |                       | TM9-1layer                                         | Note 9                   | Note 9                   |
| Precoding granu                                                             | coding granularity           |                       | Frequency<br>domain: 1 PRG<br>Time domain: 1<br>ms | N/A                      | N/A                      |
| Beamforming m                                                               |                              |                       | Annex B.4.1                                        | N/A                      | N/A                      |
| Cyclic prefix                                                               |                              |                       | Normal                                             | Normal                   | Normal                   |

### Table 8.3.2.1.C-1: Test parameters of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

| Note 1:  | $P_B = 1$ .                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a                                          |
|          | subframe overlapping with the aggressor ABS.                                                                                 |
| Note 3:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the                                     |
|          | aggressor ABS.                                                                                                               |
| Note 4:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-<br>ABS.                              |
|          |                                                                                                                              |
| Note 5:  | ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated                                               |
|          | PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is                                               |
|          | overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |
| Note 6:  | Time-domain measurement resource restriction pattern for PCell measurements as defined                                       |
|          | in [7].                                                                                                                      |
| Note 7:  | As configured according to the time-domain measurement resource restriction pattern for                                      |
|          | CSI measurements defined in [7].                                                                                             |
| Note 8:  | The number of control OFDM symbols is not available for ABS and is 2 for the subframe                                        |
|          | indicated by "0" of ABS pattern.                                                                                             |
| Note 9:  | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3                                          |
|          | applying OCNG pattern as defined in Annex A.5.                                                                               |
| Note 10: | If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI                                     |
|          | estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at                                  |
|          | the eNB downlink before SF#(n+4).                                                                                            |
| Note 11: | For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and                                  |
|          | 4ms.                                                                                                                         |
| Note 12: | The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.                                                        |
|          | SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.                                                             |
| Note 14: | The modulation symbols of the signal under test are mapped onto antenna port 7 or 8.                                         |
|          |                                                                                                                              |

### Table 8.3.2.1.C-2: Minimum Performance of TM9-Single-Layer (2 CSI-RS ports) – Non-MBSFN ABS

| Test<br>Number                | Reference<br>Channel | 00          | NG Patt                                                                                                                                                                                                                                                                                                                                                                   | ern         | Propagation<br>Conditions (Note1) |      | Correlation<br>Matrix and | Reference                             | eference Value                              |                            |      |
|-------------------------------|----------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|------|---------------------------|---------------------------------------|---------------------------------------------|----------------------------|------|
|                               |                      | Cell 1      | Cell 2                                                                                                                                                                                                                                                                                                                                                                    | Cell 3      | Cell 1                            |      |                           | Antenna<br>Configurati<br>on (Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) | gory |
| 1                             | R.51 TDD             | OP.1<br>TDD | OP.1<br>TDD                                                                                                                                                                                                                                                                                                                                                               | OP.1<br>TDD |                                   | EVA5 |                           | 2x2 Low                               | 70                                          | [TBD]                      | ≥2   |
| Note 1:<br>Note 2:<br>Note 3: | The correlation      | on matrix   | TDD       TDD       TDD       Image: conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.         matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.       Image: configuration apply for Cell 1, Cell 2 and Cell 3.         ds to $\hat{E}_s / N_{oc2}$ of cell 1.       Image: configuration apply for Cell 1, Cell 2 and Cell 3. |             |                                   |      |                           |                                       |                                             |                            |      |

### 8.3.2.2 Dual-Layer Spatial Multiplexing

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2B, the requirements are specified in Table 8.3.2.2-2, with the addition of the parameters in Table 8.3.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation.

| Parame                           | ter                          | Unit                                                                                                         | Test 1                                  | Test 2           |
|----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|
| Downlink                         | $ ho_{\scriptscriptstyle A}$ | dB                                                                                                           | 0                                       | 0                |
| power                            | $ ho_{\scriptscriptstyle B}$ | dB                                                                                                           | 0 (Note 1)                              | 0 (Note 1)       |
| allocation                       | σ                            | dB                                                                                                           | -3                                      | -3               |
| Cell-spec<br>referenc<br>symbol  | ce                           |                                                                                                              | Antenna port 0 ar<br>1                  | nd antenna port  |
| Beamforn<br>model                |                              |                                                                                                              | Annex                                   | B.4.2            |
| $N_{_{oc}}$ at ant port          | enna                         | dBm/15kHz                                                                                                    | -98                                     | -98              |
| Symbols<br>unused P              |                              |                                                                                                              | OCNG<br>(Note 2)                        | OCNG<br>(Note 2) |
| Number<br>allocate<br>resource b | ed                           | PRB                                                                                                          | 50                                      | 50               |
| PDSCI<br>transmiss<br>mode       | sion                         |                                                                                                              | 8                                       | 8                |
| Note 1:                          | $P_{R} = 1$                  |                                                                                                              |                                         |                  |
| Note 2:                          | These<br>numbe<br>transm     | physical resource blocks<br>or of virtual UEs with one<br>hitted over the OCNG PD<br>n data, which is QPSK m | PDSCH per virtual<br>SCHs shall be unco | UE; the data     |

### Table 8.3.2.2-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer)

Table 8.3.2.2-2: Minimum performance for CDM-multiplexed DM RS (FRC)

| Test   | Bandwidth           | Reference | OCNG     | Propagation |                                        | Reference value                             |             | UE       |  |
|--------|---------------------|-----------|----------|-------------|----------------------------------------|---------------------------------------------|-------------|----------|--|
| number | and MCS             | Channel   | Pattern  | Condition   | Matrix and<br>Antenna<br>Configuration | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | Category |  |
| 1      | 10 MHz<br>QPSK 1/3  | R.31 TDD  | OP.1 TDD | EVA5        | 2x2 Low                                | 70                                          | 4.5         | ≥2       |  |
| 2      | 10 MHz<br>16QAM 1/2 | R.32 TDD  | OP.1 TDD | EPA5        | 2x2 Medium                             | 70                                          | 21.7        | ≥2       |  |

### 8.3.2.3 Dual-Layer Spatial Multiplexing (with multiple CSI-RS configurations)

For dual-layer transmission on antenna ports 7 and 8 upon detection of a PDCCH with DCI format 2C, the requirements are specified in Table 8.3.2.3-2, with the addition of the parameters in Table 8.3.2.3-1 where Cell 1 is the serving cell and Cell 2 is the interfering cell. The downlink physical channel setup is set according to Annex C.3.2. The purpose of these tests is to verify the rank-2 performance for full RB allocation, to verify rate matching with multiple CSI reference symbol configurations with non-zero and zero transmission power, and to verify that the UE correctly estimate SNR.

### Table 8.3.2.3-1: Test Parameters for Testing CDM-multiplexed DM RS (dual layer) with multiple CSI-RS configurations

| parameter                    |                              | Unit | Test 1     |        |  |  |
|------------------------------|------------------------------|------|------------|--------|--|--|
|                              |                              | Unit | Cell 1     | Cell 2 |  |  |
| Downlink nower               | $ ho_{\scriptscriptstyle A}$ | dB   | 4          | 0      |  |  |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB   | 4 (Note 1) | 0      |  |  |
| anocation                    | σ                            | dB   | -3         | -3     |  |  |

| Cell-specific reference signals                                                          |                                                                                                                                                                                                                            | Antenna ports 0<br>and 1                     | Antenna ports 0 and 1    |  |  |  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|--|--|--|--|--|
| Cell ID                                                                                  |                                                                                                                                                                                                                            | 0                                            | 126                      |  |  |  |  |  |
| CSI reference signals                                                                    |                                                                                                                                                                                                                            | Antenna ports<br>15,16                       | NA                       |  |  |  |  |  |
| Beamforming model                                                                        |                                                                                                                                                                                                                            | Annex B.4.2                                  | NA                       |  |  |  |  |  |
| CSI-RS periodicity and<br>subframe offset<br>$T_{CSI-RS} / \Delta_{CSI-RS}$              | Subframes                                                                                                                                                                                                                  | 5 / 4                                        | NA                       |  |  |  |  |  |
| CSI reference signal<br>configuration                                                    |                                                                                                                                                                                                                            | 8                                            | NA                       |  |  |  |  |  |
| Zero-power CSI-RS<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPowerCSI-RS<br>bitmap | Subframes<br>/ bitmap                                                                                                                                                                                                      | 4 /<br>0010000000000000000000000000000000000 | NA                       |  |  |  |  |  |
| $N_{_{oc}}$ at antenna port                                                              | dBm/15kHz                                                                                                                                                                                                                  | -98                                          | -98                      |  |  |  |  |  |
| $\widehat{E}_s/N_{oc}$                                                                   |                                                                                                                                                                                                                            | Reference Value in<br>Table 8.3.2.3-2        | Test specific,<br>7.25dB |  |  |  |  |  |
| Symbols for unused<br>PRBs                                                               |                                                                                                                                                                                                                            | OCNG (Note 2)                                | NA                       |  |  |  |  |  |
| Number of allocated resource blocks (Note 2)                                             | PRB                                                                                                                                                                                                                        | 50                                           | NA                       |  |  |  |  |  |
| Simultaneous<br>transmission                                                             |                                                                                                                                                                                                                            | No                                           | NA                       |  |  |  |  |  |
| PDSCH transmission<br>mode                                                               |                                                                                                                                                                                                                            | 9                                            | Blanked                  |  |  |  |  |  |
| Note 1: $P_B = 1$                                                                        |                                                                                                                                                                                                                            |                                              |                          |  |  |  |  |  |
| virtual UEs with                                                                         | Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK |                                              |                          |  |  |  |  |  |

Table 8.3.2.3-2: Minimum performance for CDM-multiplexed DM RS (FRC) with multiple CSI-RS configurations

| Test<br>number | Bandwidth<br>and MCS                                  | Reference<br>Channel |             | NG<br>tern |        | opagationCorrelationConditionMatrix and |                              |                                             |             | UE<br>Cate |
|----------------|-------------------------------------------------------|----------------------|-------------|------------|--------|-----------------------------------------|------------------------------|---------------------------------------------|-------------|------------|
|                |                                                       |                      | Cell 1      | Cell 2     | Cell 1 | Cell 2                                  | Antenna<br>Configurati<br>on | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB) | gory       |
| 1              | 10 MHz<br>16QAM 1/2                                   | R.51 TDD             | OP.1<br>TDD | N/A        | ETU5   | ETU5                                    | 2x2 Low                      | 70                                          | [14.8]      | 2-8        |
|                | The propagation<br>Correlation matr<br>SNR correspond | ix and antenna       | a configui  | ration par |        |                                         |                              | nd Cell 2.                                  |             |            |

## 8.3.2.4 Performance requirements for DCI format 2D and non Quasi Co-located Antenna Ports

### 8.3.2.4.1 Minimum requirement with Same Cell ID (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.1-3, with the additional parameters in Table 8.3.2.4.1-1 and Table 8.3.2.4.1-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the

'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6], configured according to Table 8.3.2.4.1-2. In Table 8.3.2.4.1-1 and 8.3.2.4.1-2, transmission point 1 (TP 1) is the serving cell and transmission point 2 (TP 2) transmits PDSCH. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

| Paramete                                                                                | r                            | Unit           | TP 1                                                                           | TP 2                                  |
|-----------------------------------------------------------------------------------------|------------------------------|----------------|--------------------------------------------------------------------------------|---------------------------------------|
| Deurslieleneuren                                                                        | $ ho_{\scriptscriptstyle A}$ | dB             | 0                                                                              | 0                                     |
| Downlink power<br>allocation                                                            | $ ho_{\scriptscriptstyle B}$ | dB             | 0 (Note 1)                                                                     | 0                                     |
| anooanon                                                                                | σ                            | dB             | -3                                                                             | -3                                    |
| Cell-specific referer                                                                   | nce signals                  |                | Antenna ports 0,1                                                              | (Note 2)                              |
| CSI-RS 0 antenr                                                                         | na ports                     |                | NA                                                                             | Port {15,16}                          |
| <i>qcl-CSI-RS-Configl</i><br>CSI-RS 0 period<br>subframe offset <i>T</i> <sub>CSI</sub> | icity and                    | Subframes      | NA                                                                             | 5/4                                   |
| qcl-CSI-RS-Configl<br>CSI-RS 0 config                                                   | <i>VZPId-r11,</i><br>uration |                | NA                                                                             | 8                                     |
| csi-RS-ConfigZPId<br>power CSI-RS 0 co<br>I <sub>CSI-RS</sub> /<br>ZeroPower CSI-R      | nfiguration                  |                | NA                                                                             | 4/<br>0000010000000000                |
| $N_{\scriptscriptstyle oc}$ at antenn                                                   |                              | dBm/15kH<br>z  | -98                                                                            | -98                                   |
| SNR                                                                                     |                              | dB             | Reference point in Table 8.3.2.4.1-3                                           | Reference point in Table 8.3.2.4.1-3  |
| BW <sub>Channe</sub>                                                                    | l                            | MHz            | 10                                                                             | 10                                    |
| Cyclic Pref                                                                             | ïx                           |                | Normal                                                                         | Normal                                |
| Cell Id                                                                                 |                              |                | 0                                                                              | 0                                     |
| Number of contro<br>symbols                                                             | I OFDM                       |                | 2                                                                              | 2                                     |
| PDSCH transmiss                                                                         | ion mode                     |                | Blanked                                                                        | 10                                    |
| Number of alloca                                                                        | ted PRB                      | PRB            | NA                                                                             | 50                                    |
| <i>qcl-Operation, '</i> PD<br>Mapping and Qu<br>Location Indic                          | asi-Co-                      |                | Туре                                                                           | B, '00'                               |
| Time offset betwe                                                                       | een TPs                      | μs             | NA                                                                             | Reference point in<br>Table 8.3.2.4-3 |
| Frequency error be                                                                      | tween TPs                    | Hz             | NA                                                                             | 0                                     |
| Beamforming model                                                                       |                              |                | NA                                                                             | As specified in<br>clause B.4.1       |
| Symbols for unused PRBs                                                                 |                              |                | NA                                                                             | OCNG (Note 3)                         |
| Note 3: These ph                                                                        | ysical resou                 | rce blocks are | zero transmission powe<br>assigned to an arbitrary<br>data transmitted over th | number of virtual UEs                 |

Table 8.3.2.4.1-1: Test Parameters for quasi co-location type B: same Cell ID

shall be uncorrelated pseudo random data, which is QPSK modulated.

| PQI set<br>index | Parameter                                   | Parameters in each PQI set |         |       |  |  |
|------------------|---------------------------------------------|----------------------------|---------|-------|--|--|
|                  | NZP CSI-RS Index (For quasi<br>co-location) | ZP CSI-RS configuration    | TP 1    | TP 2  |  |  |
| PQI set 0        | CSI-RS 0                                    | ZP CSI-RS 0                | Blanked | PDSCH |  |  |

#### Table 8.3.2.4.1-2 Configurations of PQI and DL transmission hypothesis for each PQI set

#### Table 8.3.2.4.1-3: Minimum performance for quasi co-location type B: same Cell ID

| Test<br>Number | Reference<br>Channel                                                                                                       |          | iCN<br>tern | Time<br>offset<br>between | Propag<br>Condi<br>(Not | tions      | Correlation<br>Matrix and<br>Antenna | Reference Value                             |                            | UE<br>Category |
|----------------|----------------------------------------------------------------------------------------------------------------------------|----------|-------------|---------------------------|-------------------------|------------|--------------------------------------|---------------------------------------------|----------------------------|----------------|
|                |                                                                                                                            | TP 1     | TP 2        | TPs (μs)                  | TP 1                    | TP 2       | Configuration<br>(Note 2)            | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) |                |
| 1              | R.52 TDD                                                                                                                   | NA       | OP.1<br>TDD | 2                         | EPA                     | EPA        | 2x2 Low                              | 70                                          | 12                         | ≥2             |
| 2              | R.52 TDD                                                                                                                   | NA       | OP.1<br>TDD | -0.5                      | EPA                     | EPA        | 2x2 Low                              | 70                                          | 12.4                       | ≥2             |
| Note 1:        | The propagation                                                                                                            | on condi | tions for   | TP 1 and TP               | 2 are sta               | tistically | independent.                         |                                             |                            |                |
| Note 2:        |                                                                                                                            |          |             |                           |                         | •          | •                                    |                                             |                            |                |
| Note 3:        | The correlation matrix and antenna configuration apply for TP 1 and TP 2. SNR corresponds to $\hat{E}_s / N_{oc}$ of TP 2. |          |             |                           |                         |            |                                      |                                             |                            |                |

### 8.3.2.4.2 Minimum requirements with Same Cell ID (with multiple NZP CSI-RS resources)

The requirements are specified in Table 8.3.2.4.2-3, with the additional parameters in Table 8.3.2.4.2-1 and 8.3.2.4.2-2. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission point share the same Cell ID. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the timing difference between two transmission points, channel parameters estimation and rate matching according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' (PQI) signalling defined in [6]. In8.3.2.4.2-1 and 8.3.2.4.2-2, transmission point 1 (TP 1) is the serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) has same Cell ID as TP 1. Multiple NZP CSI-RS resources and ZP CSI-RS resources are configured. In each sub-frame, DL PDSCH transmission is dynamically switched between 2 TPs with multiple PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator configuration (PQI). Configurations of PDSCH RE Mapping and Quasi-Co-Location Indicator and downlink transmission hypothesis are defined in Table 8.3.2.4.2-2. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

| parameter                                                                       |                                                     | Unit                 | TP 1                                              | TP 2                                    |
|---------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|---------------------------------------------------|-----------------------------------------|
| Downlink power                                                                  | $ ho_{\scriptscriptstyle A}$                        | dB                   | 0                                                 | 0                                       |
| allocation                                                                      | $ ho_{\scriptscriptstyle B}$                        | dB                   | 0 (Note 1)                                        | 0                                       |
|                                                                                 | σ                                                   |                      | -3                                                | -3                                      |
| Beamforming mode                                                                | 9                                                   |                      | N/A                                               | As specified in<br>clause B.4.1         |
| Cell-specific referer                                                           | nce signals                                         |                      | Antenna ports 0,1                                 | (Note 2)                                |
| CSI reference signa                                                             |                                                     |                      | Antenna ports<br>{15,16}                          | N/A                                     |
| CSI-RS 0 periodicit<br>subframe offset T <sub>CS</sub>                          | $\Delta_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$ | Subframes            | 5 / 4                                             | N/A                                     |
| CSI reference signa<br>configuration                                            | al O                                                |                      | 0                                                 | N/A                                     |
| CSI reference signa                                                             |                                                     |                      | N/A                                               | Antenna ports<br>{15,16}                |
| CSI-RS 1 periodicit<br>subframe offset T <sub>CS</sub>                          | $_{\rm SI-RS}$ / $\Delta_{\rm CSI-RS}$              | Subframes            | N/A                                               | 5 / 4                                   |
| CSI reference signa<br>configuration                                            |                                                     |                      | N/A                                               | 8                                       |
| Zero-power CSI-RS<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPower CSI-RS | bitmap                                              | Subframes<br>/bitmap | 4/<br>0010000000000000000000000000000000000       | 4/<br>001000000000000000                |
| configuration<br>I <sub>CSI-RS</sub> /                                          |                                                     |                      | 4/<br>0000010000000000                            | 4/<br>0000010000000000                  |
| $\widehat{E}_{s}/N_{oc}$                                                        |                                                     | dB                   | Reference Value in<br>Table 8.3.2.4.2-3           | Reference Value in<br>Table 8.3.2.4.2-3 |
| $N_{\scriptscriptstyle oc}$ at antenna por                                      | t                                                   | dBm/15kH<br>z        | -98                                               | -98                                     |
| BW <sub>Channel</sub>                                                           |                                                     | MHz                  | 10                                                | 10                                      |
| Cyclic Prefix                                                                   |                                                     |                      | Normal                                            | Normal                                  |
| Cell Id                                                                         |                                                     |                      | 0                                                 | 0                                       |
| Number of control C<br>symbols                                                  | OFDM                                                |                      | 2                                                 | 2                                       |
| Timing offset betwe                                                             | en TPs                                              |                      | N/A                                               | Reference Value in<br>Table 8.3.2.4.2-3 |
| Frequency offset be                                                             |                                                     | Hz                   | N/A                                               | 0                                       |
| Number of allocated resource blocks                                             |                                                     | PRB                  | 50                                                | 50                                      |
| PDSCH transmission mode                                                         |                                                     |                      | 10                                                | 10                                      |
| Probability of occurrence of<br>PDSCH transmission(Note 3)                      |                                                     | %                    | 30                                                | 70                                      |
| Symbols for unused                                                              | PRBs                                                |                      | OCNG (Note 4)                                     | OCNG (Note 4)                           |
|                                                                                 |                                                     |                      | zero transmission powe<br>I be randomly determine |                                         |

### Table 8.3.2.4.2-1 Test Parameters for timing offset compensation with DPS transmission

Note 3: PDSCH transmission from TPs shall be randomly determined independently for each subframe. Probabilities of occurrence of PDSCH transmission from TPs are specified. The probability of occurrence of PQI set in each TP is equal.
 Note 4: These physical resource blocks are assigned to an arbitrary number of virtual UEs

with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

| PQI set<br>index | Parameter                                   | DL transmission<br>hypothesis for<br>each PQI Set |         |         |
|------------------|---------------------------------------------|---------------------------------------------------|---------|---------|
|                  | NZP CSI-RS Index (For quasi<br>co-location) | TP 1                                              | TP 2    |         |
| PQI set 0        | CSI-RS 0                                    | ZP CSI-RS 0                                       | PDSCH   | Blanked |
| PQI set 1        | CSI-RS 0                                    | ZP CSI-RS 1                                       | PDSCH   | Blanked |
| PQI set 2        | CSI-RS 1                                    | ZP CSI-RS 0                                       | Blanked | PDSCH   |
| PQI set 3        | CSI-RS 1                                    | Blanked                                           | PDSCH   |         |

Table 8.3.2.4.2-2 Configurations of PQI and DL transmission hypothesis for each PQI set

### Table 8.3.2.4.2-3 Performance Requirements for timing offset compensation with DPS transmission

| Test<br>Number     | Timing<br>offset(us)                                                                                                                                                    | Reference<br>Channel             |             | NG<br>tern  | -         | gation<br>itions | Correlation<br>Matrix and            | Reference Value                             |                            | UE<br>Category |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------------|-----------|------------------|--------------------------------------|---------------------------------------------|----------------------------|----------------|
|                    |                                                                                                                                                                         |                                  | TP 1        | TP 2        | TP 1      | TP 2             | Antenna<br>Configuration<br>(Note 2) | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note<br>3) |                |
| 1                  | 2                                                                                                                                                                       | R.53 TDD                         | OP.1<br>TDD | OP.1<br>TDD | EPA5      | EPA5             | 2x2 Low                              | 70                                          | 12.3                       | ≥2             |
| 2                  | -0.5                                                                                                                                                                    | R.53 TDD                         | OP.1<br>TDD | OP.1<br>TDD | EPA5      | EPA5             | 2x2 Low                              | 70                                          | 12.5                       | ≥2             |
| Note 1:<br>Note 2: | The propagation conditions for TP 1 and TP 2 are statistically independent.<br>Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2. |                                  |             |             |           |                  |                                      |                                             |                            |                |
| Note 3:            | SNR corresp                                                                                                                                                             | bonds to $ \widehat{E}_{s} ig/ $ | $N_{oc}$ of | both TI     | P 1 and 7 | FP 2 as o        | defined in clause 8                  | 3.1.1.                                      |                            |                |

### 8.3.2.4.3 Minimum requirement with Different Cell ID and Colliding CRS (with single NZP CSI-RS resource)

The requirements are specified in Table 8.3.2.4.3-2, with the additional parameters in Table 8.3.2.4.3-1. The purpose of this test is to verify the UE capability of supporting non quasi-colocated antenna ports when the UE receives DCI format 2D in a scenario where the two transmission points have different Cell ID and colliding CRS. In particular the test verifies that the UE, configured with quasi co-location type B, performs correct tracking and compensation of the frequency difference between two transmission points, channel parameters estimation and rate matching behaviour according to the 'PDSCH RE Mapping and Quasi-Co-Location Indicator' signalling defined in [6]. In 8.3.2.4.3-1, transmission point 1 (TP 1) is serving cell transmitting PDCCH, synchronization signals and PBCH, and transmission point 2 (TP 2) transmits PDSCH with different Cell ID. The downlink physical channel setup for TP 1 is according to Table C.3.4-1 and for TP 2 according to Table C.3.4-2.

| parameter                    |                              | Unit | TP 1       | TP 2 |
|------------------------------|------------------------------|------|------------|------|
| Downlink nowor               | $ ho_{\scriptscriptstyle A}$ | dB   | 0          | 0    |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB   | 0 (Note 1) | 0    |
|                              | σ                            | dB   | -3         | -3   |

| Beamforming model                                                                                                                                                                                                                                            |                      | N/A                                            | As specified in<br>clause B.4.2      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|--------------------------------------|--|--|--|
| Cell-specific reference signals                                                                                                                                                                                                                              |                      | Antenna ports 0,1                              | Antenna ports 0,1                    |  |  |  |
| CSI reference signals 0                                                                                                                                                                                                                                      |                      | N/A                                            | Antenna ports<br>{15,16}             |  |  |  |
| CSI-RS 0 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$                                                                                                                                                                                      | Subframes            | N/A                                            | 5 / 4                                |  |  |  |
| CSI reference signal 0<br>configuration                                                                                                                                                                                                                      |                      | N/A                                            | 0                                    |  |  |  |
| Zero-power CSI-RS 0<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPower CSI-RS bitmap                                                                                                                                                                     | Subframes<br>/bitmap | N/A                                            | 4/<br>001000000000000000             |  |  |  |
| $\widehat{E}_s/N_{oc}$                                                                                                                                                                                                                                       | dB                   | Reference point in<br>Table 8.3.2.4.3 +<br>4dB | Reference Value in Table 8.3.2.4.3-2 |  |  |  |
| $N_{_{oc}}$ at antenna port                                                                                                                                                                                                                                  | dBm/15kH<br>z        | -98                                            | -98                                  |  |  |  |
| BW <sub>Channel</sub>                                                                                                                                                                                                                                        | MHz                  | 10                                             | 10                                   |  |  |  |
| Cyclic Prefix                                                                                                                                                                                                                                                |                      | Normal                                         | Normal                               |  |  |  |
| Cell Id                                                                                                                                                                                                                                                      |                      | 0                                              | 126                                  |  |  |  |
| Number of control OFDM<br>symbols                                                                                                                                                                                                                            |                      | 1                                              | 2                                    |  |  |  |
| Timing offset between TPs                                                                                                                                                                                                                                    | us                   | N/A                                            | 0                                    |  |  |  |
| Frequency offset between TPs                                                                                                                                                                                                                                 | Hz                   | N/A                                            | 200                                  |  |  |  |
| <i>qcl-Operation, '</i> PDSCH RE<br>Mapping and Quasi-Co-<br>Location Indicator'                                                                                                                                                                             |                      | Туре                                           | B, '00'                              |  |  |  |
| PDSCH transmission mode                                                                                                                                                                                                                                      |                      | Blank                                          | 10                                   |  |  |  |
| Number of allocated resource<br>block                                                                                                                                                                                                                        |                      | N/A                                            | 50                                   |  |  |  |
| Symbols for unused PRBs                                                                                                                                                                                                                                      |                      | N/A                                            | OCNG(Note2)                          |  |  |  |
| Note 1: $P_B = 1$ Note 2:These physical resource blocks are assigned to an arbitrary number of virtual UEs<br>with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs<br>shall be uncorrelated pseudo random data, which is QPSK modulated. |                      |                                                |                                      |  |  |  |

### Table 8.3.2.4.3-2 Performance Requirements for quasi co-location type B with different Cell ID and Colliding CRS

| Test<br>Number                | Reference<br>Channel                                                                                                                                                                                                                                 |      | NG<br>tern  | Cond | gation<br>itions<br>te1) | Correlation<br>Matrix and<br>Antenna | Reference                                   | Reference Value         |    |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|------|--------------------------|--------------------------------------|---------------------------------------------|-------------------------|----|
|                               |                                                                                                                                                                                                                                                      | TP 1 | TP 2        | TP 1 | TP 2                     | Configuration<br>(Note 2)            | Fraction of<br>Maximum<br>Throughput<br>(%) | SNR<br>(dB)<br>(Note 3) |    |
| 1                             | R.54 TDD                                                                                                                                                                                                                                             | N/A  | OP.1<br>TDD | EPA5 | ETU5                     | 2x2 Low                              | 70                                          | 14.7                    | ≥2 |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for TP 1 and TP 2 are statistically independent.<br>Correlation matrix and antenna configuration parameters apply for each of TP 1 and TP 2.<br>SNR corresponds to $\hat{E}_s/N_{oc}$ of TP 2 as defined in clause 8.1.1. |      |             |      |                          |                                      |                                             |                         |    |

### 8.4 Demodulation of PDCCH/PCFICH

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH

### 8.4.1 FDD

The parameters specified in Table 8.4.1-1 are valid for all FDD tests unless otherwise stated.

| Parameter                    |                                              | Unit      | Single antenna<br>port | Transmit<br>diversity |
|------------------------------|----------------------------------------------|-----------|------------------------|-----------------------|
| Number of PDC                | CH symbols                                   | symbols   | 2                      | 2                     |
| Number of PHICH              | H groups ( <i>N</i> g)                       |           | 1                      | 1                     |
| PHICH du                     | ration                                       |           | Normal                 | Normal                |
| Unused RE-s a                | and PRB-s                                    |           | OCNG                   | OCNG                  |
| Cell I                       | D                                            |           | 0                      | 0                     |
| Downlink nower               | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB        | 0                      | -3                    |
| Downlink power<br>allocation | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB        | 0                      | -3                    |
| $N_{_{oc}}$ at antenna port  |                                              | dBm/15kHz | -98                    | -98                   |
| Cyclic p                     | refix                                        |           | Normal                 | Normal                |

### Table 8.4.1-1: Test Parameters for PDCCH/PCFICH

### 8.4.1.1 Single-antenna port performance

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

### Table 8.4.1.1-1: Minimum performance PDCCH/PCFICH

| Test   | Bandwidth | Aggregation | Reference | OCNG     | Propagation | Antenna       | Referen    | ce value |
|--------|-----------|-------------|-----------|----------|-------------|---------------|------------|----------|
| number |           | level       | Channel   | Pattern  | Condition   | configuration | Pm-dsg (%) | SNR (dB) |
|        |           |             |           |          |             | and           |            |          |
|        |           |             |           |          |             | correlation   |            |          |
|        |           |             |           |          |             | Matrix        |            |          |
| 1      | 10 MHz    | 8 CCE       | R.15 FDD  | OP.1 FDD | ETU70       | 1x2 Low       | 1          | -1.7     |

8.4.1.2 Transmit diversity performance

### 8.4.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test  | Bandwidth | Aggregation | Reference | Reference OCNG | Propagation | Antenna                                    | Reference value |          |
|-------|-----------|-------------|-----------|----------------|-------------|--------------------------------------------|-----------------|----------|
| numbe |           | level       | Channel   | Pattern        | Condition   | configuration<br>and correlation<br>Matrix | Pm-dsg (%)      | SNR (dB) |
| 1     | 10 MHz    | 4 CCE       | R.16 FDD  | OP.1 FDD       | EVA70       | 2 x 2 Low                                  | 1               | -0.6     |

### Table 8.4.1.2.1-1: Minimum performance PDCCH/PCFICH

### 8.4.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | Aggregation | Reference | OCNG     | Propagation | Antenna                          | Reference value |             |
|--------|-----------|-------------|-----------|----------|-------------|----------------------------------|-----------------|-------------|
| number |           | level       | Channel   | Pattern  | Condition   | configuration<br>and correlation | Pm-dsg<br>(%)   | SNR<br>(dB) |
|        |           |             |           |          |             | Matrix                           | (70)            | (ub)        |
| 1      | 5 MHz     | 2 CCE       | R.17 FDD  | OP.1 FDD | EPA5        | 4 x 2 Medium                     | 1               | 6.3         |

#### Table 8.4.1.2.2-1: Minimum performance PDCCH/PCFICH

### 8.4.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.4.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

| Paramete                                                                                                                         | r                                                          | Unit                                                     | Cell 1                                                               | Cell 2                                                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
|                                                                                                                                  | PDCCH_RA                                                   | Unit                                                     |                                                                      |                                                          |  |  |  |  |
| Downlink power                                                                                                                   | PHICH_RA<br>OCNG_RA                                        | dB                                                       | -3                                                                   | -3                                                       |  |  |  |  |
| allocation                                                                                                                       | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB               | dB                                                       | -3                                                                   | -3                                                       |  |  |  |  |
|                                                                                                                                  | N <sub>oc1</sub>                                           | dBm/15kHz                                                | -100.5 (Note 1)                                                      | N/A                                                      |  |  |  |  |
| $N_{oc}$ at antenna port                                                                                                         | N <sub>oc2</sub>                                           | dBm/15kHz                                                | -98 (Note 2)                                                         | N/A                                                      |  |  |  |  |
|                                                                                                                                  | N <sub>oc3</sub>                                           | dBm/15kHz                                                | -95.3 (Note 3)                                                       | N/A                                                      |  |  |  |  |
| $\widehat{E}_{s}/N_{oc2}$                                                                                                        |                                                            | dB                                                       | Reference Value<br>in Table 8.4.1.2.3-<br>2                          | 1.5                                                      |  |  |  |  |
| BW <sub>Channel</sub>                                                                                                            |                                                            | MHz                                                      | 10                                                                   | 10                                                       |  |  |  |  |
| Subframe Config                                                                                                                  | uration                                                    |                                                          | Non-MBSFN                                                            | Non-MBSFN                                                |  |  |  |  |
| Time Offset betwe                                                                                                                | en Cells                                                   | μs                                                       | 2.5 (synchro                                                         | nous cells)                                              |  |  |  |  |
| Cell Id                                                                                                                          |                                                            |                                                          | 0                                                                    | 1                                                        |  |  |  |  |
| ABS pattern (N                                                                                                                   | ote 4)                                                     |                                                          | N/A                                                                  | 00000100<br>00000100<br>00000100<br>01000100<br>00000100 |  |  |  |  |
| RLM/RRM Measureme<br>Pattern (Note                                                                                               |                                                            |                                                          | 00000100<br>00000100<br>00000100<br>00000100<br>00000100             | N/A                                                      |  |  |  |  |
| CSI Subframe Sets                                                                                                                | C <sub>CSI,0</sub>                                         |                                                          | 00000100<br>00000100<br>00000100<br>01000100<br>00000100             | N/A                                                      |  |  |  |  |
| (Note 6)                                                                                                                         | C <sub>CSI,1</sub>                                         |                                                          | 11111011<br>11111011<br>11111011<br>10111011<br>10111011<br>11111011 | N/A                                                      |  |  |  |  |
| Number of control OF                                                                                                             |                                                            |                                                          | 3                                                                    |                                                          |  |  |  |  |
| Number of PHICH g                                                                                                                |                                                            |                                                          | 1<br>Extended                                                        |                                                          |  |  |  |  |
| PHICH durat<br>Unused RE-s and                                                                                                   |                                                            |                                                          | Extended<br>OCNG                                                     |                                                          |  |  |  |  |
| Cyclic prefi                                                                                                                     |                                                            |                                                          | Normal                                                               | Normal                                                   |  |  |  |  |
| Note 1: This noise is a<br>overlapping wit<br>Note 2: This noise is a                                                            | oplied in OFDM s<br>th the aggressor a<br>oplied in OFDM s | ymbols #1, #2, #3, #5,<br>ABS.<br>ymbols #0, #4, #7, #11 | #6, #8, #9, #10, #12,                                                | #13 of a subframe                                        |  |  |  |  |
| Note 3: This noise is a<br>Note 4: ABS pattern as<br>are transmitted                                                             |                                                            |                                                          |                                                                      |                                                          |  |  |  |  |
| Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7];                           |                                                            |                                                          |                                                                      |                                                          |  |  |  |  |
| Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]; |                                                            |                                                          |                                                                      |                                                          |  |  |  |  |
| Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1<br>and Cell2 is the same. |                                                            |                                                          |                                                                      |                                                          |  |  |  |  |
| Note 8: SIB-1 will not be transmitted in Cell2 in the test.                                                                      |                                                            |                                                          |                                                                      |                                                          |  |  |  |  |

Table 8.4.1.2.3-1: Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

| Test<br>Numb<br>er | Aggregati<br>on Level                             | Referen<br>ce<br>Channel                                                        | OCNG Pattern |             | Propagation<br>Conditions<br>(Note 1) |            | Correlation<br>Matrix and<br>Antenna | Reference<br>Value |                            |
|--------------------|---------------------------------------------------|---------------------------------------------------------------------------------|--------------|-------------|---------------------------------------|------------|--------------------------------------|--------------------|----------------------------|
|                    |                                                   |                                                                                 | Cell 1       | Cell 2      | Cell 1                                | Cell 2     | Configuration                        | Pm-<br>dsg<br>(%)  | SNR<br>(dB)<br>(Note<br>2) |
| 1                  | 8 CCE                                             | R15-1<br>FDD                                                                    | OP.1<br>FDD  | OP.1<br>FDD | EVA5                                  | EVA5       | 2x2 Low                              | 1                  | -3.9                       |
| Note 1:            |                                                   | The propagation conditions for Cell 1 and Cell 2 are statistically independent. |              |             |                                       |            |                                      |                    |                            |
| Note 2:            | SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |                                                                                 |              |             |                                       |            |                                      |                    |                            |
| Note 3:            | The correlat                                      | ion matrix ar                                                                   | nd antenn    | a configu   | iration ap                            | ply for Ce | ell 1 and Cell 2.                    |                    |                            |

Table 8.4.1.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

| Paramet                            | er                                           | Unit      | Cell 1                                                         | Cell 2                                            |
|------------------------------------|----------------------------------------------|-----------|----------------------------------------------------------------|---------------------------------------------------|
| Downlink power                     | PCFICH_RA<br>PDCCH_RA<br>PHICH_RA<br>OCNG_RA | dB        | -3                                                             | -3                                                |
| allocation                         | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB        | -3                                                             | -3                                                |
|                                    | N <sub>oc1</sub>                             | dBm/15kHz | -100.5 (Note 1)                                                | N/A                                               |
| $N_{oc}$ at antenna port           | N <sub>oc2</sub>                             | dBm/15kHz | -98 (Note 2)                                                   | N/A                                               |
|                                    | N <sub>oc3</sub>                             | dBm/15kHz | -95.3 (Note 3)                                                 | N/A                                               |
| $\widehat{E}_{s}/N_{oo}$           | ·                                            | dB        | Reference Value<br>in Table 8.4.1.2.3-<br>4                    | 1.5                                               |
| BW <sub>Chanr</sub>                | nel                                          | MHz       | 10                                                             | 10                                                |
| Subframe Conf                      | iguration                                    |           | Non-MBSFN                                                      | MBSFN                                             |
| Time Offset betw                   | veen Cells                                   | μs        | 2.5 (synchro                                                   | nous cells)                                       |
| Cell Id                            |                                              |           | 0                                                              | 126                                               |
| ABS pattern (                      | Note 4)                                      |           | N/A                                                            | 0001000000<br>0100000010<br>0000001000<br>0000000 |
| RLM/RRM Measuren<br>Pattern (No    |                                              |           | 000100000<br>010000010<br>000001000<br>000000000               | N/A                                               |
| CSI Subframe Sets                  | C <sub>CSI,0</sub>                           |           | 000100000<br>010000010<br>0000001000<br>00000000               | N/A                                               |
| (Note 6)                           | C <sub>CSI,1</sub>                           |           | 1110111111<br>1011111101<br>1111110111<br>1111110111<br>111111 | N/A                                               |
| MBSFN Subframe Allocation (Note 9) |                                              |           | N/A                                                            | 001000<br>100001<br>000100<br>000000              |
| Number of control O                | FDM symbols                                  |           | 3                                                              |                                                   |
| Number of PHICH                    | groups (Ng)                                  |           | 1                                                              |                                                   |
| PHICH dur                          |                                              |           | extended                                                       |                                                   |
| Unused RE-s ar                     |                                              |           | OCNG                                                           | NI                                                |
| Cyclic pre                         | XIIX                                         |           | Normal                                                         | Normal                                            |

Table 8.4.1.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

| Note 1:  | This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.   |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.                                                       |
| Note 3:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS                                                       |
| Note 4:  | ABS pattern as defined in [9]. The 4 <sup>th</sup> , 12 <sup>th</sup> , 19 <sup>th</sup> and 27 <sup>th</sup> subframes indicated by ABS pattern |
|          | are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated                                                                         |
|          | PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is                                                                   |
|          | overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in                                                        |
|          | the definition of the reference channel.                                                                                                         |
| Note 5:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in                                                        |
|          | [7].                                                                                                                                             |
| Note 6:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                         |
| Note 7:  | Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1                                                   |
|          | and Cell2 is the same.                                                                                                                           |
| Note 8:  | SIB-1 will not be transmitted in Cell2 in this test.                                                                                             |
| Note 9:  | MBSFN Subframe Allocation as defined in [7], four frames with 24 bits is chosen for MBSFN                                                        |
|          | subframe allocation.                                                                                                                             |
| Note 10: |                                                                                                                                                  |
| 1        | channel transmission is in a subframe protected by MBSFN ABS in this test.                                                                       |

Table 8.4.1.2.3-4: Minimum performance PDCCH/PCHICH – MBSFN ABS

| Test<br>Numb<br>er | Aggregati<br>on Level                             | Reference<br>Channel                                                           | OCNG Propagation<br>Pattern Conditions<br>(Note 1) |             | Correlation<br>Matrix and<br>Antenna | Reference Value |                   |                   |                                                                               |  |  |  |  |  |  |  |  |  |
|--------------------|---------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|-------------|--------------------------------------|-----------------|-------------------|-------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                    |                                                   |                                                                                | Cell 1                                             | Cell 2      | Cell 1                               | Cell 2          | Configurati<br>on | Pm-<br>dsg<br>(%) | SNR<br>(dB)<br>(Note 2)                                                       |  |  |  |  |  |  |  |  |  |
| 1                  | 8 CCE                                             | R15-1 FDD                                                                      | OP.1<br>FDD                                        | OP.1<br>FDD | EVA5                                 | EVA5            | 2x2 Low           | 1                 | -4.2                                                                          |  |  |  |  |  |  |  |  |  |
| Note 1:            |                                                   | The propagation conditions for Cell 1 and Cell2 are statistically independent. |                                                    |             |                                      |                 |                   |                   |                                                                               |  |  |  |  |  |  |  |  |  |
| Note 2:            | SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |                                                                                |                                                    |             |                                      |                 |                   |                   |                                                                               |  |  |  |  |  |  |  |  |  |
| Note 3:            | The correlat                                      | ion matrix and                                                                 | antenna                                            | configura   | tion appl                            | y for Cell      | 1 and Cell 2.     |                   | The correlation matrix and antenna configuration apply for Cell 1 and Cell 2. |  |  |  |  |  |  |  |  |  |

### 8.4.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.1-1 and Table 8.4.1.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.4-4.

In Tables 8.4.1.2.4-1 and 8.4.1.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell3are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Paran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | neter                                        | Unit      | Cell 1                                                               | Cell 2                                                   | Cell 3                                                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|--|
| Downlink power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB        | -3                                                                   | -3                                                       | -3                                                       |  |  |
| allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB        | -3                                                                   | -3                                                       | -3                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N <sub>oc1</sub>                             | dBm/15kHz | -98(Note 1)                                                          | N/A                                                      | N/A                                                      |  |  |
| $N_{oc}$ at antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N <sub>oc2</sub>                             | dBm/15kHz | -98 (Note 2)                                                         | N/A                                                      | N/A                                                      |  |  |
| port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N <sub>oc3</sub>                             | dBm/15kHz | -93 (Note 3)                                                         | N/A                                                      | N/A                                                      |  |  |
| $\widehat{E}_{s}/N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>oc2</sub>                             | dB        | Reference<br>Value in Table<br>8.4.1.2.4-2                           | 5                                                        | 3                                                        |  |  |
| BW <sub>Cr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | annel                                        | MHz       | 10                                                                   | 10                                                       | 10                                                       |  |  |
| Subframe Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onfiguration                                 |           | Non-MBSFN                                                            | Non-MBSFN                                                | Non-MBSFN                                                |  |  |
| Time Offset be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | etween Cells                                 | μs        | N/A                                                                  | 3                                                        | -1                                                       |  |  |
| Frequency shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | between Cells                                | Hz        | N/A                                                                  | 300                                                      | -100                                                     |  |  |
| Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ld                                           |           | 0                                                                    | 126                                                      | 1                                                        |  |  |
| ABS patter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ABS pattern (Note 4)                         |           | N/A                                                                  | 00000100<br>00000100<br>00000100<br>00000100<br>00000100 | 00000100<br>00000100<br>00000100<br>00000100<br>00000100 |  |  |
| RLM/RRM M<br>Subframe Pat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |           | 00000100<br>00000100<br>00000100<br>00000100<br>00000100             | N/A                                                      | N/A                                                      |  |  |
| CSI Subframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>CSI,0</sub>                           |           | 00000100<br>00000100<br>00000100<br>00000100<br>00000100             | N/A                                                      | N/A                                                      |  |  |
| Sets (Note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>CSI,1</sub>                           |           | 11111011<br>11111011<br>11111011<br>11111011<br>11111011<br>11111011 | N/A                                                      | N/A                                                      |  |  |
| Number of control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |           | 2                                                                    | Note 7                                                   | Note 7                                                   |  |  |
| Number of PHIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |           | 1<br>Normal                                                          | N/A                                                      | N/A                                                      |  |  |
| PHICH c<br>Unused RE-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |           | Normal<br>OCNG                                                       | N/A<br>OCNG                                              | N/A<br>OCNG                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |           |                                                                      | Normal                                                   | Normal                                                   |  |  |
| Cyclic prefix         Normal         Normal         Normal           Note 1:         This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.         Note 2:         This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.           Note 2:         This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.           Note 3:         This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS           Note 4:         ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging are |                                              |           |                                                                      |                                                          |                                                          |  |  |
| <ul> <li>In the patient as defined in [5]. I Deer in or for other than that associated with orb in aging the transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell.</li> <li>Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7];</li> <li>Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI</li> </ul>                                                                                                                                                                                                                                                             |                                              |           |                                                                      |                                                          |                                                          |  |  |
| <ul> <li>measurements defined in [7];</li> <li>Note 7: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.</li> <li>Note 8: The number of the CRS ports in Cell1, Cell2 and Cell 3is the same.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |           |                                                                      |                                                          |                                                          |  |  |
| Note 9: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |           |                                                                      |                                                          |                                                          |  |  |

| Test<br>Number     | Aggregati<br>on Level                                                                         | Reference<br>Channel     | 00                   | NG Patt     | ern         | Propagation<br>Conditions (Note 1) |        |       |                                      | Correlation<br>Matrix and | Refere                  | nce Value |
|--------------------|-----------------------------------------------------------------------------------------------|--------------------------|----------------------|-------------|-------------|------------------------------------|--------|-------|--------------------------------------|---------------------------|-------------------------|-----------|
|                    |                                                                                               |                          | Cell 1               | Cell 2      | Cell 3      | Cell 1                             | Cell 2 | Cell3 | Antenna<br>Configuration<br>(Note 2) | Pm-<br>dsg<br>(%)         | SNR<br>(dB)<br>(Note 3) |           |
| 1                  | 8 CCE                                                                                         | R.15-2<br>FDD            | OP.1<br>FDD          | OP.1<br>FDD | OP.1<br>FDD | EVA5                               | EVA5   | EVA5  | 2x2 Low                              | 1                         | -2.2                    |           |
| Note 1:<br>Note 2: | Note 2: The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. |                          |                      |             |             |                                    |        |       |                                      |                           |                         |           |
| Note 3:            | SNR correspo                                                                                  | nds to $\hat{E}_s / N_o$ | <sub>2</sub> of cell | 1.          |             |                                    |        |       |                                      |                           |                         |           |

Table 8.4.1.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

| Paran                              | neter                                        | Unit      | Cell 1                                            | Cell 2                                            | Cell 3                                            |
|------------------------------------|----------------------------------------------|-----------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Downlink power                     | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB        | -3                                                | -3                                                | -3                                                |
| allocation                         | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB        | -3                                                | -3                                                | -3                                                |
|                                    | N <sub>oc1</sub>                             | dBm/15kHz | -98(Note 1)                                       | N/A                                               | N/A                                               |
| N <sub>oc</sub> at antenna         | N <sub>oc2</sub>                             | dBm/15kHz | -98 (Note 2)                                      | N/A                                               | N/A                                               |
| port                               | N <sub>oc3</sub>                             | dBm/15kHz | -93 (Note 3)                                      | N/A                                               | N/A                                               |
| $\widehat{E}_{s}/N$                |                                              | dB        | Reference<br>Value in<br>Table<br>8.4.1.2.4-4     | 5                                                 | 3                                                 |
| BW <sub>C</sub>                    | nannel                                       | MHz       | 10                                                | 10                                                | 10                                                |
| Subframe Co                        | onfiguration                                 |           | Non-MBSFN                                         | MBSFN                                             | MBSFN                                             |
| Time Offset be                     | etween Cells                                 | μs        | N/A                                               | 3                                                 | -1                                                |
| Frequency shift                    | between Cells                                | Hz        | N/A                                               | 300                                               | -100                                              |
| Cell                               | ld                                           |           | 0                                                 | 126                                               | 1                                                 |
| ABS patter                         | n (Note 4)                                   |           | N/A                                               | 0001000000<br>010000010<br>0000001000<br>00000000 | 0001000000<br>010000010<br>0000001000<br>00000000 |
| RLM/RRM Measu<br>Pattern (         |                                              |           | 0001000000<br>010000010<br>000001000<br>00000000  | N/A                                               | N/A                                               |
| CSI Subframe                       | C <sub>CSI,0</sub>                           |           | 0001000000<br>010000010<br>000001000<br>00000000  | N/A                                               | N/A                                               |
| Sets (Note 6)                      | C <sub>CSI,1</sub>                           |           | 1110111111<br>1011111101<br>1111110111<br>1111111 | N/A                                               | N/A                                               |
| MBSFN Subframe Allocation (Note 7) |                                              |           | N/A                                               | 001000<br>100001<br>000100<br>000000              | 001000<br>100001<br>000100<br>000000              |
| Number of control                  |                                              |           | 2                                                 | Note 8                                            | Note 8                                            |
| Number of PHIC                     |                                              |           | 1                                                 | N/A                                               | N/A                                               |
| PHICH o<br>Unused RE-s             |                                              |           | Normal<br>OCNG                                    | N/A<br>OCNG                                       | N/A<br>OCNG                                       |
| Cyclic                             |                                              |           | Normal                                            | Normal                                            | Normal                                            |

Table 8.4.1.2.4-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

| Note 1:  | This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.                                                                   |
| Note 3:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS                                                                   |
| Note 4:  | ABS pattern as defined in [9]. The 4 <sup>th</sup> , 12 <sup>th</sup> , 19 <sup>th</sup> and 27 <sup>th</sup> subframes indicated by ABS pattern             |
|          | are MBSFN ABS subframes. PDSCH other than SIB1/paging and its associated                                                                                     |
|          | PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped                                                                    |
|          | with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.                                      |
| Note 5:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in                                                                    |
| 1010 0.  | [7].                                                                                                                                                         |
| Note 6:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                                     |
| Note 7:  | MBSFN Subframe Allocation as defined in [7], four frames with 24 bits are chosen for MBSFN subframe allocation.                                              |
| Note 8:  | The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.                                       |
| Note 9:  | The maximum number of uplink HARQ transmission is limited to 2 so that each PHICH channel transmission is in a subframe protected by MBSFN ABS in this test. |
| Note 10: |                                                                                                                                                              |
| Note 11: | SIB-1 will not be transmitted in Cell 2 and Cell 3 in this test.                                                                                             |

### Table 8.4.1.2.4-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

| Test<br>Number                | Aggregati<br>on Level                                                                                                                                                            | Reference<br>Channel | 00          | NG Patte    | ern         | Propagation<br>Conditions (Note 1) |        |       |                                      | Correlation<br>Matrix and | Reference Value         |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|-------------|------------------------------------|--------|-------|--------------------------------------|---------------------------|-------------------------|--|
|                               |                                                                                                                                                                                  |                      | Cell 1      | Cell 2      | Cell 3      | Cell 1                             | Cell 2 | Cell3 | Antenna<br>Configuration<br>(Note 2) | Pm-<br>dsg<br>(%)         | SNR<br>(dB)<br>(Note 3) |  |
| 1                             | 8 CCE                                                                                                                                                                            | R.15-2<br>FDD        | OP.1<br>FDD | OP.1<br>FDD | OP.1<br>FDD | EVA5                               | EVA5   | EVA5  | 2x2 Low                              | 1                         | -2.0                    |  |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. |                      |             |             |             |                                    |        |       |                                      |                           |                         |  |

# 8.4.2 TDD

The parameters specified in Table 8.4.2-1 are valid for all TDD tests unless otherwise stated.

| Parame                       | eter                                         | Unit                                       | Single antenna port | Transmit<br>diversity |
|------------------------------|----------------------------------------------|--------------------------------------------|---------------------|-----------------------|
| Uplink downlink o<br>(Note   | •                                            |                                            | 0                   | 0                     |
| Special subframe<br>(Note    | •                                            |                                            | 4                   | 4                     |
| Number of PDC                | CH symbols                                   | symbols                                    | 2                   | 2                     |
| Number of PHICH              | l groups ( <i>N</i> g)                       |                                            | 1                   | 1                     |
| PHICH du                     | ration                                       |                                            | Normal              | Normal                |
| Unused RE-s a                | and PRB-s                                    |                                            | OCNG                | OCNG                  |
| Cell I                       | D                                            |                                            | 0                   | 0                     |
| Deurslink zeuer              | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB                                         | 0                   | -3                    |
| Downlink power<br>allocation | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB                                         | 0                   | -3                    |
| $N_{oc}$ at antenna port     |                                              | dBm/15kHz                                  | -98                 | -98                   |
| Cyclic p                     | refix                                        |                                            | Normal              | Normal                |
| ACK/NACK feed                | back mode                                    |                                            | Multiplexing        | Multiplexing          |
|                              |                                              | 2-2 in TS 36.211 [4<br>2-1 in TS 36.211 [4 |                     |                       |

#### Table 8.4.2-1: Test Parameters for PDCCH/PCFICH

### 8.4.2.1 Single-antenna port performance

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | Aggregation | Reference | OCNG     | Propagation | Antenna                                       | Referen    | ce value |
|--------|-----------|-------------|-----------|----------|-------------|-----------------------------------------------|------------|----------|
| number |           | level       | Channel   | Pattern  | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-dsg (%) | SNR (dB) |
| 1      | 10 MHz    | 8 CCE       | R.15 TDD  | OP.1 TDD | ETU70       | 1x2 Low                                       | 1          | -1.6     |

## 8.4.2.2 Transmit diversity performance

#### 8.4.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

#### Table 8.4.2.2.1-1: Minimum performance PDCCH/PCFICH

| Test   | Bandwidth | Aggregation | Reference | OCNG     | Propagation | Antenna                                       | Referen    | ce value |
|--------|-----------|-------------|-----------|----------|-------------|-----------------------------------------------|------------|----------|
| number |           | level       | Channel   | Pattern  | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-dsg (%) | SNR (dB) |
| 1      | 10 MHz    | 4 CCE       | R.16 TDD  | OP.1 TDD | EVA70       | 2 x 2 Low                                     | 1          | 0.1      |

### 8.4.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | Aggregation | Reference | OCNG        | Propagation | Antenna                                    | Reference     | e value     |
|--------|-----------|-------------|-----------|-------------|-------------|--------------------------------------------|---------------|-------------|
| number |           | level       | Channel   | Pattern     | Condition   | configuration<br>and correlation<br>Matrix | Pm-dsg<br>(%) | SNR<br>(dB) |
| 1      | 5 MHz     | 2 CCE       | R.17 TDD  | OP.1<br>TDD | EPA5        | 4 x 2 Medium                               | 1             | 6.5         |

 Table 8.4.2.2.2-1: Minimum performance PDCCH/PCFICH

# 8.4.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.3-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3.. In Table 8.4.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.3-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.3-4. The downlink physical channel setup for Cell 1 is according to Annex C3.2 and for Cell 2 is according to Annex C.3.3, respectively.

|                                                                                                                                                                                                                                                                                                                               | Paramete                    | r                                            | Unit                                                         | Cell 1                                     | Cell 2                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------|--------------------------|--|--|--|
| Uplii                                                                                                                                                                                                                                                                                                                         | nk downlink co              |                                              |                                                              | 1                                          | 1                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | ial subframe co             |                                              |                                                              | 4                                          | 4                        |  |  |  |
| Davuali                                                                                                                                                                                                                                                                                                                       |                             | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB                                                           | -3                                         | -3                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | ink power<br>ocation        | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB                                                           | -3                                         | -3                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                               |                             | N <sub>oc1</sub>                             | dBm/15kHz                                                    | -100.5 (Note 1)                            | N/A                      |  |  |  |
| $N_{oc}$ at a                                                                                                                                                                                                                                                                                                                 | ntenna port                 | N <sub>oc2</sub>                             | dBm/15kHz                                                    | -98 (Note 2)                               | N/A                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                               |                             | N <sub>oc3</sub>                             | dBm/15kHz                                                    | -95.3 (Note 3)                             | N/A                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | $\widehat{E}_s/N_{oc2}$     |                                              | dB                                                           | Reference Value<br>in Table<br>8.4.2.2.3-2 | 1.5                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | BW <sub>Channe</sub>        | l                                            | MHz                                                          | 10                                         | 10                       |  |  |  |
| S                                                                                                                                                                                                                                                                                                                             | ubframe Config              | guration                                     |                                                              | Non-MBSFN                                  | Non-MBSFN                |  |  |  |
| Tin                                                                                                                                                                                                                                                                                                                           | ne Offset betwe             | en Cells                                     | μs                                                           | 2.5 (synchro                               | nous cells)              |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | Cell Id                     |                                              |                                                              | 0                                          | 1                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | ABS pattern (N              | ote 4)                                       |                                                              | N/A                                        | 0000010001<br>0000000001 |  |  |  |
| RLM/RI                                                                                                                                                                                                                                                                                                                        | RM Measurem<br>Pattern(Note |                                              |                                                              | 0000000001<br>0000000001                   |                          |  |  |  |
| CSI S                                                                                                                                                                                                                                                                                                                         | Subframe                    | C <sub>CSI,0</sub>                           |                                                              | 0000010001<br>0000000001                   | N/A                      |  |  |  |
| Sets                                                                                                                                                                                                                                                                                                                          | (Note 6)                    | C <sub>CSI,1</sub>                           |                                                              | 1100101000<br>1100111000                   | N/A                      |  |  |  |
| Numbe                                                                                                                                                                                                                                                                                                                         | er of control OF            | DM symbols                                   |                                                              | 3                                          |                          |  |  |  |
| AC                                                                                                                                                                                                                                                                                                                            | K/NACK feedba               | ack mode                                     |                                                              | Multiplexing                               |                          |  |  |  |
| Num                                                                                                                                                                                                                                                                                                                           | ber of PHICH g              |                                              |                                                              | 1                                          |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | PHICH dura                  |                                              |                                                              | extended                                   |                          |  |  |  |
| Ur                                                                                                                                                                                                                                                                                                                            | nused RE-s and              |                                              |                                                              | OCNG                                       |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                               | Cyclic pref                 |                                              |                                                              | Normal                                     | Normal                   |  |  |  |
| Note 1:<br>Note 2:                                                                                                                                                                                                                                                                                                            | overlapping wi              | th the aggressor <i>i</i> pplied in OFDM s   | ymbols #1, #2, #3, #5, #<br>ABS.<br>ymbols #0, #4, #7, #11 o |                                            |                          |  |  |  |
| Note 3: This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS<br>Note 4: ABS pattern as defined in [9]. PDCCH/PCFICH other than that associated with SIB1/Paging<br>are transmitted in the serving cell subframe when the subframe is overlapped with the ABS<br>subframe of aggressor cell. |                             |                                              |                                                              |                                            |                          |  |  |  |
| Note 5:                                                                                                                                                                                                                                                                                                                       |                             |                                              |                                                              |                                            |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                               |                             |                                              | ime-domain measureme                                         | ent resource restrictio                    | n pattern for CSI        |  |  |  |
| Note 7:                                                                                                                                                                                                                                                                                                                       |                             | erving cell. Cell 2 i                        | s the aggressor cell. The                                    | e number of the CRS                        | ports in Cell1           |  |  |  |
| Note 8:                                                                                                                                                                                                                                                                                                                       |                             | be transmitted in C                          | Cell2 in the test.                                           |                                            |                          |  |  |  |

Table 8.4.2.2.3-1: Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

| Test<br>Numbe<br>r | Aggregatio<br>n Level                             | Referenc<br>e Channel | OCNG        | Pattern     | ern Propagation<br>Conditions<br>(Note 1) |             | Correlation<br>Matrix and<br>Antenna | Reference<br>Value |                            |  |
|--------------------|---------------------------------------------------|-----------------------|-------------|-------------|-------------------------------------------|-------------|--------------------------------------|--------------------|----------------------------|--|
|                    |                                                   |                       | Cell 1      | Cell 2      | Cell 1                                    | Cell 2      | Configuration                        | Pm-<br>dsg<br>(%)  | SNR<br>(dB)<br>(Note<br>2) |  |
| 1                  | 8 CCE                                             | R15-1<br>TDD          | OP.1<br>TDD | OP.1<br>TDD | EVA5                                      | EVA5        | 2x2 Low                              | 1                  | -3.9                       |  |
| Note 1:            | The propagation                                   |                       |             |             | are statisti                              | cally indep | endent.                              |                    |                            |  |
| Note 2:            | SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |                       |             |             |                                           |             |                                      |                    |                            |  |
| Note 3:            | The correlation                                   | n matrix and a        | ntenna co   | nfiguration | apply for                                 | Cell 1 and  | Cell 2.                              |                    |                            |  |

Table 8.4.2.2.3-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

| Paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er                                                                                                                                                       | Unit                                              | Cell 1                                     | Cell 2                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------------------|--|--|--|--|
| Uplink downlink co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |                                                   | 1                                          | 1                        |  |  |  |  |
| Special subframe c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - V                                                                                                                                                      |                                                   | 4                                          | 4                        |  |  |  |  |
| Downlink power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PCFICH_RA<br>PDCCH_RA<br>PHICH_RA<br>OCNG_RA                                                                                                             | dB                                                | -3                                         | -3                       |  |  |  |  |
| allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB                                                                                                             | dB                                                | -3                                         | -3                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N <sub>oc1</sub>                                                                                                                                         | dBm/15kHz                                         | -100.5 (Note 1)                            | N/A                      |  |  |  |  |
| $N_{oc}$ at antenna port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N <sub>oc2</sub>                                                                                                                                         | dBm/15kHz                                         | -98 (Note 2)                               | N/A                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $N_{oc3}$                                                                                                                                                | dBm/15kHz                                         | -95.3 (Note 3)                             | N/A                      |  |  |  |  |
| $\widehat{E}_s/N_{oc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          | dB                                                | Reference Value<br>in Table<br>8.4.2.2.3-4 | 1.5                      |  |  |  |  |
| BW <sub>Channe</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                        | MHz                                               | 10                                         | 10                       |  |  |  |  |
| Subframe Config                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | guration                                                                                                                                                 |                                                   | Non-MBSFN                                  | MBSFN                    |  |  |  |  |
| Time Offset betwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | een Cells                                                                                                                                                | μS                                                | 2.5 (synchro                               | onous cells)             |  |  |  |  |
| Cell Id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                   | 0                                          | 126                      |  |  |  |  |
| ABS pattern (N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lote 4)                                                                                                                                                  |                                                   | N/A                                        | 0000000001<br>0000000001 |  |  |  |  |
| RLM/RRM Measurem<br>Pattern(Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                   | 0000000001<br>0000000001                   |                          |  |  |  |  |
| CSI Subframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>CSI,0</sub>                                                                                                                                       |                                                   | 0000000001<br>0000000001                   | N/A                      |  |  |  |  |
| Sets(Note 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C <sub>CSI,1</sub>                                                                                                                                       |                                                   | 1100111000<br>1100111000                   | N/A                      |  |  |  |  |
| MBSFN Subframe Allo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cation (Note 9)                                                                                                                                          |                                                   | N/A                                        | 000010                   |  |  |  |  |
| Number of control OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                          |                                                   | 3                                          |                          |  |  |  |  |
| ACK/NACK feedb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |                                                   | Multiplexing                               |                          |  |  |  |  |
| Number of PHICH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                   | 1                                          |                          |  |  |  |  |
| PHICH dura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                   | extended                                   |                          |  |  |  |  |
| Unused RE-s an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |                                                   | OCNG<br>Normal                             | Normal                   |  |  |  |  |
| Cyclic pret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                   |                                            | 1                        |  |  |  |  |
| Note 1:       This noise is applied in OFDM symbols #1, #2, #3, #4, #5, #6, #7, #8, #9, #10, #11, #12, #13 of a subframe overlapping with the aggressor ABS.         Note 2:       This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.         Note 3:       This noise is applied in OFDM symbols #0 of a subframe overlapping with the aggressor ABS.         Note 4:       ABS pattern as defined in [9]. The 10 <sup>th</sup> and 20 <sup>th</sup> subframes indicated by ABS pattern are MBSFN ABS subframes.PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the MBSFN ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel. |                                                                                                                                                          |                                                   |                                            |                          |  |  |  |  |
| [7].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time-domain measurement resource restriction pattern for PCell measurements as defined in                                                                |                                                   |                                            |                          |  |  |  |  |
| measurement<br>Note 7: Cell 1 is the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | measurements defined in [7].<br>Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1<br>and Cell2 is the same. |                                                   |                                            |                          |  |  |  |  |
| Note 8: SIB-1 will not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | be transmitted in<br>rame Allocation as                                                                                                                  | Cell2 in this test.<br>s defined in [7], one fram | ne with 6 bits is chose                    | en for MBSFN             |  |  |  |  |

Table 8.4.2.2.3-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

| Test<br>Number | Aggregati<br>on Level                             | Reference<br>Channel | OCNG         | Pattern     |                  |            | Correlation<br>Matrix and    | Referen       | Reference Value         |  |
|----------------|---------------------------------------------------|----------------------|--------------|-------------|------------------|------------|------------------------------|---------------|-------------------------|--|
|                |                                                   |                      | Cell 1       | Cell 2      | Cell 1           | Cell 2     | Antenna<br>Configurati<br>on | Pm-dsg<br>(%) | SNR<br>(dB)<br>(Note 2) |  |
| 1              | 8 CCE                                             | R15-1 TDD            | OP.1         | OP.1        | EVA5             | EVA5       | 2x2 Low                      | 1             | -4.1                    |  |
|                |                                                   |                      | TDD          | TDD         |                  |            |                              |               |                         |  |
| Note 1:        | The propagation                                   |                      |              |             | statistically ir | ndependen  | t.                           |               |                         |  |
| Note 2:        | SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |                      |              |             |                  |            |                              |               |                         |  |
| Note 3:        | The correlation                                   | matrix and ar        | ntenna confi | guration ap | ply for Cell 1   | and Cell 2 |                              |               |                         |  |

 Table 8.4.2.2.3-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

# 8.4.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters for non-MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-1, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-2.

For the parameters for MBSFN ABS specified in Table 8.4.2-1 and Table 8.4.2.2.4-3, the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.4-4.

In Tables 8.4.2.2.4-1 and 8.4.2.2.4-3, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Param                                        | eter                                         | Unit                                          | Cell 1                                     | Cell 2                   | Cell 3                   |  |  |  |  |  |
|----------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------|--------------------------|--|--|--|--|--|
| Uplink downlink                              |                                              | onic                                          | 1                                          | 1                        | 1                        |  |  |  |  |  |
| Special subframe                             |                                              |                                               | 4                                          | 4                        | 4                        |  |  |  |  |  |
|                                              | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB                                            | -3                                         | -3                       | -3                       |  |  |  |  |  |
| Downlink power<br>allocation                 | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB                                            | -3                                         | -3                       | -3                       |  |  |  |  |  |
|                                              | N <sub>oc1</sub>                             | dBm/15kHz                                     | -98(Note 1)                                | N/A                      | N/A                      |  |  |  |  |  |
| $N_{oc}$ at antenna                          | N <sub>oc2</sub>                             | dBm/15kHz                                     | -98 (Note 2)                               | N/A                      | N/A                      |  |  |  |  |  |
| port                                         | N <sub>oc3</sub>                             | dBm/15kHz                                     | -93 (Note 3)                               | N/A                      | N/A                      |  |  |  |  |  |
| $\widehat{E}_s/N$                            | oc2                                          | dB                                            | Reference<br>Value in Table<br>8.4.2.2.4-2 | 5                        | 3                        |  |  |  |  |  |
| BW <sub>Cha</sub>                            | annel                                        | MHz                                           | 10                                         | 10                       | 10                       |  |  |  |  |  |
| Subframe Co                                  | nfiguration                                  |                                               | Non-MBSFN                                  | Non-MBSFN                | Non-MBSFN                |  |  |  |  |  |
| Time Offset be                               | tween Cells                                  | μs                                            | N/A                                        | 3                        | -1                       |  |  |  |  |  |
| Frequency shift I                            | between Cells                                | Hz                                            | N/A                                        | 300                      | -100                     |  |  |  |  |  |
| Cell                                         | Id                                           |                                               | 0                                          | 126                      | 1                        |  |  |  |  |  |
| ABS pattern                                  |                                              |                                               | N/A                                        | 0000000001<br>0000000001 | 0000000001<br>0000000001 |  |  |  |  |  |
| RLM/RRM Me<br>Subframe Patt                  |                                              |                                               | 0000000001<br>0000000001                   | N/A                      | N/A                      |  |  |  |  |  |
| CSI Subframe                                 | C <sub>CSI,0</sub>                           |                                               | 0000000001<br>0000000001                   | N/A                      | N/A                      |  |  |  |  |  |
| Sets (Note 6)                                | C <sub>CSI,1</sub>                           |                                               | 1100111000<br>1100111000                   | N/A                      | N/A                      |  |  |  |  |  |
| Number of con<br>symb                        |                                              |                                               | 2                                          | Note 7                   | Note 7                   |  |  |  |  |  |
| ACK/NACK fee                                 | dback mode                                   |                                               | Multiplexing                               | N/A                      | N/A                      |  |  |  |  |  |
| Number of PHIC                               | H groups ( <i>N</i> g)                       |                                               | 1                                          | N/A                      | N/A                      |  |  |  |  |  |
| PHICH d                                      | uration                                      |                                               | Normal                                     | N/A                      | N/A                      |  |  |  |  |  |
| Unused RE-s                                  | and PRB-s                                    |                                               | OCNG                                       | OCNG                     | OCNG                     |  |  |  |  |  |
| Cyclic p                                     | orefix                                       |                                               | Normal                                     | Normal                   | Normal                   |  |  |  |  |  |
| Note 1: This no                              | ise is applied in C                          | FDM symbols #1, #                             | #2, #3, #5, #6, #8,                        | #9, #10, #12, #13        | of a subframe            |  |  |  |  |  |
| Note 2: This no                              |                                              | ressor ABS.<br>)FDM symbols #0,               | #4, #7, #11 of a su                        | bframe overlappir        | ng with the              |  |  |  |  |  |
| Note 3: This no<br>Note 4: ABS pa<br>transmi |                                              |                                               |                                            |                          |                          |  |  |  |  |  |
|                                              |                                              | ent resource restrict                         | tion pattern for PC                        | ell measurements         | s as defined in          |  |  |  |  |  |
| Note 6: As conf                              | igured according<br>ements defined ir        | to the time-domain                            | measurement reso                           | ource restriction p      | attern for CSI           |  |  |  |  |  |
| Note 7: The nur                              |                                              | FDM symbols is not                            | available for ABS                          | and is 2 for the s       | ubframe                  |  |  |  |  |  |
|                                              |                                              | ports in Cell1, Cell2<br>tted in Cell2 and Ce |                                            | ame.                     |                          |  |  |  |  |  |

Table 8.4.2.2.4-1: Test Parameters for PDCCH/PCFICH – Non-MBSFN ABS

| Test<br>Number                | Aggregati<br>on Level                                                                                                                                                                                                                 | Reference<br>Channel | 00          | NG Patte    | ern         | Propagation<br>Conditions (Note 1) |        |       | Correlation<br>Matrix and            | Reference Value   |                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|-------------|------------------------------------|--------|-------|--------------------------------------|-------------------|-------------------------|
|                               |                                                                                                                                                                                                                                       |                      | Cell 1      | Cell 2      | Cell 3      | Cell 1                             | Cell 2 | Cell3 | Antenna<br>Configuration<br>(Note 2) | Pm-<br>dsg<br>(%) | SNR<br>(dB)<br>(Note 3) |
| 1                             | 8 CCE                                                                                                                                                                                                                                 | R.15-2<br>TDD        | OP.1<br>TDD | OP.1<br>TDD | OP.1<br>TDD | EVA5                               | EVA5   | EVA5  | 2x2 Low                              | 1                 | -2.0                    |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.<br>SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |                      |             |             |             |                                    |        |       |                                      |                   |                         |

Table 8.4.2.2.4-2: Minimum performance PDCCH/PCFICH – Non-MBSFN ABS

| Para                                                                          | meter                                                                                                                                                             | Unit                                                                                                                                                                                              | Cell 1                                                                                                                              | Cell 2                                                                                           | Cell 3                                                                |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Uplink downli                                                                 | nk configuration                                                                                                                                                  |                                                                                                                                                                                                   | 1                                                                                                                                   | 1                                                                                                | 1                                                                     |
| Special subfra                                                                | me configuration                                                                                                                                                  |                                                                                                                                                                                                   | 4                                                                                                                                   | 4                                                                                                | 4                                                                     |
| Downlink power                                                                | PDCCH_RA<br>PHICH_RA<br>OCNG_RA                                                                                                                                   | dB                                                                                                                                                                                                | -3                                                                                                                                  | -3                                                                                               | -3                                                                    |
| allocation                                                                    | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB                                                                                                                      | dB                                                                                                                                                                                                | -3                                                                                                                                  | -3                                                                                               | -3                                                                    |
|                                                                               | $N_{oc1}$                                                                                                                                                         | dBm/15kHz                                                                                                                                                                                         | -98(Note 1)                                                                                                                         | N/A                                                                                              | N/A                                                                   |
| $N_{oc}$ at antenna                                                           | N <sub>oc2</sub>                                                                                                                                                  | dBm/15kHz                                                                                                                                                                                         | -98 (Note 2)                                                                                                                        | N/A                                                                                              | N/A                                                                   |
| port                                                                          | N <sub>oc3</sub>                                                                                                                                                  | dBm/15kHz                                                                                                                                                                                         | -93 (Note 3)                                                                                                                        | N/A                                                                                              | N/A                                                                   |
| $\widehat{E}_{s}$ /                                                           | N <sub>oc2</sub>                                                                                                                                                  | dB                                                                                                                                                                                                | Reference<br>Value in Table<br>8.4.2.2.4-4                                                                                          | 5                                                                                                | 3                                                                     |
| BW                                                                            | Channel                                                                                                                                                           | MHz                                                                                                                                                                                               | 10                                                                                                                                  | 10                                                                                               | 10                                                                    |
| Subframe (                                                                    | Configuration                                                                                                                                                     |                                                                                                                                                                                                   | Non-MBSFN                                                                                                                           | MBSFN                                                                                            | MBSFN                                                                 |
| Time Offset                                                                   | between Cells                                                                                                                                                     | μs                                                                                                                                                                                                | N/A                                                                                                                                 | 3                                                                                                | -1                                                                    |
| Frequency shi                                                                 | ft between Cells                                                                                                                                                  | Hz                                                                                                                                                                                                | N/A                                                                                                                                 | 300                                                                                              | -100                                                                  |
| Ce                                                                            | ell Id                                                                                                                                                            |                                                                                                                                                                                                   | 0                                                                                                                                   | 126                                                                                              | 1                                                                     |
| ABS patte                                                                     | ern (Note 4)                                                                                                                                                      |                                                                                                                                                                                                   | N/A                                                                                                                                 | 0000000001<br>00000000001                                                                        | 0000000001<br>00000000001                                             |
|                                                                               | Measurement<br>attern (Note 5)                                                                                                                                    |                                                                                                                                                                                                   | 0000000001<br>0000000001                                                                                                            | N/A                                                                                              | N/A                                                                   |
| CSI Subframe                                                                  | C <sub>CSI,0</sub>                                                                                                                                                |                                                                                                                                                                                                   | 0000000001<br>0000000001                                                                                                            | N/A                                                                                              | N/A                                                                   |
| Sets (Note 6)                                                                 | C <sub>CSI,1</sub>                                                                                                                                                |                                                                                                                                                                                                   | 1100111000<br>1100111000                                                                                                            | N/A                                                                                              | N/A                                                                   |
|                                                                               | rame Allocation ote 7)                                                                                                                                            |                                                                                                                                                                                                   | N/A                                                                                                                                 | 000010                                                                                           | 000010                                                                |
| Number of contr                                                               | ol OFDM symbols                                                                                                                                                   |                                                                                                                                                                                                   | 2                                                                                                                                   | Note 8                                                                                           | Note 8                                                                |
|                                                                               | eedback mode                                                                                                                                                      |                                                                                                                                                                                                   | Multiplexing                                                                                                                        | N/A                                                                                              | N/A                                                                   |
| Number of PH                                                                  | ICH groups (Ng)                                                                                                                                                   |                                                                                                                                                                                                   | 1                                                                                                                                   | N/A                                                                                              | N/A                                                                   |
| PHICH                                                                         | duration                                                                                                                                                          |                                                                                                                                                                                                   | Normal                                                                                                                              | N/A                                                                                              | N/A                                                                   |
| Unused RE                                                                     | -s and PRB-s                                                                                                                                                      |                                                                                                                                                                                                   | OCNG                                                                                                                                | OCNG                                                                                             | OCNG                                                                  |
|                                                                               | c prefix                                                                                                                                                          |                                                                                                                                                                                                   | Normal                                                                                                                              | Normal                                                                                           | Normal                                                                |
| a sub<br>Note 2: This r<br>Note 3: This r<br>Note 4: ABS r<br>MBSF<br>are tra | frame overlapping v<br>noise is applied in O<br>noise is applied in O<br>pattern as defined ir<br>N ABS subframes.<br>Ansmitted in the ser<br>subframe of aggress | FDM symbols #1, #2<br>vith the aggressor A<br>FDM symbols #0 of<br>FDM symbols of a s<br>fn [9]. The 10 <sup>th</sup> and 20<br>PDSCH other than<br>ving cell subframe w<br>sor cell and the subf | BS.<br>a subframe overla<br>ubframe overlappi<br>0 <sup>th</sup> subframes indic<br>SIB1/paging and it<br><i>r</i> hen the subframe | pping with the ag<br>ng with aggresso<br>ated by ABS pat<br>s associated PD0<br>is overlapped wi | ggressor ABS.<br>or non-ABS<br>tern are<br>CCH/PCFICH<br>th the MBSFN |
| [7].                                                                          |                                                                                                                                                                   | ent resource restricti                                                                                                                                                                            |                                                                                                                                     |                                                                                                  |                                                                       |
| meas                                                                          | urements defined in                                                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                     |                                                                                                  |                                                                       |
| subfra                                                                        | ame allocation.                                                                                                                                                   | tion as defined in [7]                                                                                                                                                                            | -                                                                                                                                   |                                                                                                  |                                                                       |
| indica                                                                        | ted by "0" of ABS p                                                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                     |                                                                                                  |                                                                       |
| Note 9: Cell 1                                                                |                                                                                                                                                                   | Cell 2 is the aggress                                                                                                                                                                             | sor cell. The number                                                                                                                | er of the CRS po                                                                                 | rts in Cell1 and                                                      |
| Note 10: SIB-1                                                                | will not be transmit                                                                                                                                              | ted in Cell2 in this te                                                                                                                                                                           | est.                                                                                                                                |                                                                                                  |                                                                       |

Table 8.4.2.2.4-3: Test Parameters for PDCCH/PCFICH – MBSFN ABS

| Test<br>Number                | Aggregati<br>on Level                                                                                                                                                                                                                 | Reference<br>Channel | 00          | NG Patte    | ern         |        | ropagati<br>itions (N |       | Correlation<br>Matrix and            | Reference Value   |                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|-------------|--------|-----------------------|-------|--------------------------------------|-------------------|-------------------------|
|                               |                                                                                                                                                                                                                                       |                      | Cell 1      | Cell 2      | Cell 3      | Cell 1 | Cell 2                | Cell3 | Antenna<br>Configuration<br>(Note 2) | Pm-<br>dsg<br>(%) | SNR<br>(dB)<br>(Note 3) |
| 1                             | 8 CCE                                                                                                                                                                                                                                 | R.15-2<br>TDD        | OP.1<br>TDD | OP.1<br>TDD | OP.1<br>TDD | EVA5   | EVA5                  | EVA5  | 2x2 Low                              | 1                 | -1.8                    |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.<br>SNR corresponds to $\hat{E}_s/N_{ar2}$ of cell 1. |                      |             |             |             |        |                       |       |                                      |                   |                         |

 Table 8.4.2.2.4-4: Minimum performance PDCCH/PCFICH – MBSFN ABS

# 8.5 Demodulation of PHICH

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold delection).

# 8.5.1 FDD

The parameters specified in Table 8.5.1-1 are valid for all FDD tests unless otherwise stated.

| Param            | eter                                         | Unit          | Single antenna<br>port | Transmit<br>diversity                      |
|------------------|----------------------------------------------|---------------|------------------------|--------------------------------------------|
| Downlink power   | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB            | 0                      | -3                                         |
| allocation       | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB            | 0                      | -3                                         |
| PHICH du         | uration                                      |               | Normal                 | Normal                                     |
| Number of PHICH  | groups (Note 1)                              |               | Ng = 1                 | Ng = 1                                     |
| PDCCH C          | Content                                      |               |                        | be included with the n aligned with A.3.6. |
| Unused RE-s      | and PRB-s                                    |               | OCNG                   | OCNG                                       |
| Cell             | D                                            |               | 0                      | 0                                          |
| $N_{oc}$ at ante | enna port                                    | dBm/15kHz     | -98                    | -98                                        |
| Cyclic p         | orefix                                       |               | Normal                 | Normal                                     |
| Note 1: accordin | g to Clause 6.9 in                           | TS 36.211 [4] |                        |                                            |

Table 8.5.1-1: Test Parameters for PHICH

# 8.5.1.1 Single-antenna port performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth Reference OCNG Propagation |         | Antenna  | Reference value |                                               |           |          |
|--------|--------------------------------------|---------|----------|-----------------|-----------------------------------------------|-----------|----------|
| number |                                      | Channel | Pattern  | Condition       | configuration<br>and<br>correlation<br>Matrix | Pm-an (%) | SNR (dB) |
| 1      | 10 MHz                               | R.18    | OP.1 FDD | ETU70           | 1 x 2 Low                                     | 0.1       | 5.5      |
| 2      | 10 MHz                               | R.24    | OP.1 FDD | ETU70           | 1 x 2 Low                                     | 0.1       | 0.6      |

Table 8.5.1.1-1: Minimum performance PHICH

# 8.5.1.2 Transmit diversity performance

# 8.5.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2-1. The downlink physical setup is in accordance with Annex C.3.2.

| Table 8.5.1.2.1-1: Minimum | performance PHICH |
|----------------------------|-------------------|
|----------------------------|-------------------|

| Test   | Bandwidth | Reference | OCNG     | Propagation | Antenna                                       | Reference value |          |
|--------|-----------|-----------|----------|-------------|-----------------------------------------------|-----------------|----------|
| number |           | Channel   | Pattern  | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-an (%)       | SNR (dB) |
| 1      | 10 MHz    | R.19      | OP.1 FDD | EVA70       | 2 x 2 Low                                     | 0.1             | 4.4      |

### 8.5.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | Reference | OCNG     |           |                                               |           |          |
|--------|-----------|-----------|----------|-----------|-----------------------------------------------|-----------|----------|
| number |           | Channel   | Pattern  | Condition | configuration<br>and<br>correlation<br>Matrix | Pm-an (%) | SNR (dB) |
| 1      | 5 MHz     | R.20      | OP.1 FDD | EPA5      | 4 x 2 Medium                                  | 0.1       | 6.1      |

# 8.5.1.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3. In Table 8.5.1.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

| Paramete                                                                                                                                                                                                                                         | r                                                                                                                                              | Unit                                                                                                                                                                                               | Cell 1                                                                                                                          | Cell 2                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Downlink power<br>allocation                                                                                                                                                                                                                     | PDCCH_RA<br>PHICH_RA<br>OCNG_RA                                                                                                                | dB                                                                                                                                                                                                 | -3                                                                                                                              | -3                                                                                               |
|                                                                                                                                                                                                                                                  | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB                                                                                                   | dB                                                                                                                                                                                                 | -3                                                                                                                              | -3                                                                                               |
| $N_{oc}$ at antenna port                                                                                                                                                                                                                         | $N_{oc1}$                                                                                                                                      | dBm/15kHz                                                                                                                                                                                          | -100.5 (Note 1)                                                                                                                 | N/A                                                                                              |
|                                                                                                                                                                                                                                                  | N <sub>oc2</sub>                                                                                                                               | dBm/15kHz                                                                                                                                                                                          | -98 (Note 2)                                                                                                                    | N/A                                                                                              |
|                                                                                                                                                                                                                                                  | $N_{oc3}$                                                                                                                                      | dBm/15kHz                                                                                                                                                                                          | -95.3 (Note 3)                                                                                                                  | N/A                                                                                              |
| $\widehat{E}_{s}/N_{oc2}$                                                                                                                                                                                                                        |                                                                                                                                                | dB                                                                                                                                                                                                 | Reference Value<br>in Table 8.5.1.2.3-<br>2                                                                                     | 1.5                                                                                              |
| BW <sub>Channe</sub>                                                                                                                                                                                                                             | l                                                                                                                                              | MHz                                                                                                                                                                                                | 10                                                                                                                              | 10                                                                                               |
| Subframe Config                                                                                                                                                                                                                                  | guration                                                                                                                                       |                                                                                                                                                                                                    | Non-MBSFN                                                                                                                       | Non-MBSFN                                                                                        |
| Time Offset betwe                                                                                                                                                                                                                                | een Cells                                                                                                                                      | μs                                                                                                                                                                                                 | 2.5 (synchror                                                                                                                   | nous cells)                                                                                      |
| Cell Id                                                                                                                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                                                    | 0                                                                                                                               | 1                                                                                                |
| ABS pattern (N                                                                                                                                                                                                                                   | lote 4)                                                                                                                                        |                                                                                                                                                                                                    | N/A                                                                                                                             | 00000100<br>00000100<br>00000100<br>01000100<br>00000100                                         |
| RLM/RRM Measurem<br>Pattern (Not                                                                                                                                                                                                                 |                                                                                                                                                |                                                                                                                                                                                                    | 00000100<br>00000100<br>00000100<br>00000100<br>00000100                                                                        | N/A                                                                                              |
| CSI Subframe Sets<br>(Note 6)                                                                                                                                                                                                                    | C <sub>CSI,0</sub>                                                                                                                             |                                                                                                                                                                                                    | 00000100<br>00000100<br>00000100<br>01000100<br>00000100                                                                        | N/A                                                                                              |
|                                                                                                                                                                                                                                                  | C <sub>CSI,1</sub>                                                                                                                             |                                                                                                                                                                                                    | 11111011<br>11111011<br>11111011<br>10111011<br>10111011<br>11111011                                                            | N/A                                                                                              |
| Number of control OF                                                                                                                                                                                                                             |                                                                                                                                                |                                                                                                                                                                                                    | 3                                                                                                                               |                                                                                                  |
| Number of PHICH of PHICH of PHICH dura                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                                                                                                                    | 1<br>extended                                                                                                                   |                                                                                                  |
| Unused RE-s and                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                                    | OCNG                                                                                                                            | OCNG                                                                                             |
| Cyclic pref<br>Note 1: This noise is a                                                                                                                                                                                                           |                                                                                                                                                | <br>ymbols #1, #2, #3, #5, #                                                                                                                                                                       | Normal                                                                                                                          | Normal                                                                                           |
| Note 2:       This noise is a aggressor ABS         Note 3:       This noise is a Note 4:         ABS pattern as subframe is ow indicated by th         Note 5:       Time-domain r         [7]         Note 6:       As configured measurements | pplied in OFDM s<br>s defined in [9]. Pl<br>erlapped with the<br>e ABS pattern.<br>neasurement reso<br>according to the ti<br>s defined in [7] | ABS<br>ymbols #0, #4, #7, #11 o<br>ymbols of a subframe ov<br>HICH is transmitted in th<br>ABS subframe of aggre<br>ource restriction pattern<br>ime-domain measureme<br>s the aggressor cell. The | verlapping with aggres<br>e serving cell subfram<br>ssor cell but not in the<br>for PCell measuremer<br>nt resource restriction | esor non-ABS<br>be when the<br>26 <sup>th</sup> subframe<br>nts as defined in<br>pattern for CSI |
| Cell2 is the sa                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                                    | - 1                                                                                                                             |                                                                                                  |

| Table 8.5.1.2.3-1: Test | Parameters for PHICH |
|-------------------------|----------------------|

| Test<br>Number | Reference<br>Channel | OCNG                                              | Pattern     | Conditions Conf<br>(Note 1) |             | Antenna<br>Configuration<br>and | Refere       | nce Value            |  |
|----------------|----------------------|---------------------------------------------------|-------------|-----------------------------|-------------|---------------------------------|--------------|----------------------|--|
|                |                      | Cell 1                                            | Cell 2      | Cell 1                      | Cell 2      | Correlation<br>Matrix           | Pm-an<br>(%) | SNR (dB)<br>(Note 2) |  |
| 1              | R.19                 | OP.1<br>FDD                                       | OP.1<br>FDD | EPA5                        | EPA5        | 2x2 Low                         | 0.1          | 4.6                  |  |
| Note 1:        |                      |                                                   |             |                             | ell 2 are s | tatistically indepen            | dent.        |                      |  |
| Note 2:        | SNR correspor        | SNR corresponds to $\hat{E}_s/N_{oc2}$ of cell 1. |             |                             |             |                                 |              |                      |  |
| Note 3:        | The correlation      | matrix ar                                         | d antenna   | a configura                 | ation appl  | y for Cell 1 and Ce             | ll 2.        |                      |  |

Table 8.5.1.2.3-2: Minimum performance PHICH

# 8.5.1.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.1-1 and Table 8.5.1.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.4-2. In Table 8.5.1.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Param                       | eter                                         | Unit      | Cell 1                                                                                     | Cell 2                                                   | Cell 3                                                   |
|-----------------------------|----------------------------------------------|-----------|--------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Downlink power              | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB        | -3                                                                                         | -3                                                       | -3                                                       |
| allocation                  | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB        | -3                                                                                         | -3                                                       | -3                                                       |
|                             | $N_{oc1}$                                    | dBm/15kHz | -98 (Note 1)                                                                               | N/A                                                      | N/A                                                      |
| $N_{oc}$ at antenna         | $N_{oc2}$                                    | dBm/15kHz | -98 (Note 2)                                                                               | N/A                                                      | N/A                                                      |
| port                        | $N_{oc3}$                                    | dBm/15kHz | -93 (Note 3)                                                                               | N/A                                                      | N/A                                                      |
| $\widehat{E}_s/N$           |                                              | dB        | Reference Value<br>in Table 8.5.1.2.4-<br>2                                                | 5                                                        | 3                                                        |
| BW <sub>Cha</sub>           | annel                                        | MHz       | 10                                                                                         | 10                                                       | 10                                                       |
| Subframe Co                 | nfiguration                                  |           | Non-MBSFN                                                                                  | Non-MBSFN                                                | Non-MBSFN                                                |
| Time Offset be              | tween Cells                                  | μs        | N/A                                                                                        | 3                                                        | -1                                                       |
| Frequency shift I           | between Cells                                | Hz        | N/A                                                                                        | 300                                                      | -100                                                     |
| Cell                        | ld                                           |           | 0                                                                                          | 126                                                      | 1                                                        |
| PDCCH (                     | PDCCH Content                                |           | UL Grant should<br>be included with<br>the proper<br>information<br>aligned with<br>A.3.6. | N/A                                                      | N/A                                                      |
| ABS pattern                 | n (Note 4)                                   |           | N/A                                                                                        | 00000100<br>00000100<br>00000100<br>00000100<br>00000100 | 00000100<br>00000100<br>00000100<br>00000100<br>00000100 |
| RLM/RRM Me<br>Subframe Patt |                                              |           | 00000100<br>00000100<br>00000100<br>00000100<br>00000100                                   | N/A                                                      | N/A                                                      |
| CSI Subframe                | C <sub>CSI,0</sub>                           |           | 00000100<br>00000100<br>00000100<br>00000100<br>00000100                                   | N/A                                                      | N/A                                                      |
| Sets (Note 6)               | C <sub>CSI,1</sub>                           |           | 11111011<br>11111011<br>11111011<br>11111011<br>11111011<br>11111011                       | N/A                                                      | N/A                                                      |
| Number of control           |                                              |           | 2                                                                                          | Note 7                                                   | Note 7                                                   |
| Number of PHIC              |                                              |           | 1                                                                                          | N/A                                                      | N/A                                                      |
| PHICH di                    |                                              |           | Normal                                                                                     | N/A                                                      | N/A                                                      |
| Unused RE-s                 | and PRB-s                                    |           | OCNG<br>Normal                                                                             | OCNG<br>Normal                                           | OCNG<br>Normal                                           |

| Table 8.5.1.2.4-1:  | Test Parameters for PHICH |
|---------------------|---------------------------|
| 1 abit 0.J.1.2.4-1. |                           |

| Note 1: | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe                                                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | overlapping with the aggressor ABS                                                                                                                                                                                              |
| Note 2: | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS                                                                                                                          |
| Note 3: | This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABS                                                                                                                                          |
| Note 4: | ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell but not in the 26 <sup>th</sup> subframe indicated by the ABS pattern. |
| Note 5: | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                   |
| Note 6: | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]                                                                                                         |
| Note 7: | The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.                                                                                                          |
| Note 8: | The number of the CRS ports in Cell 1, Cell 2 and Cell 3 is the same.                                                                                                                                                           |
| Note 9: | SIB-1 will not be transmitted in Cell 2 and Cell 3 in the test.                                                                                                                                                                 |

### Table 8.5.1.2.4-2: Minimum performance PHICH

| Test<br>Number                | Reference<br>Channel                                                                                                                                                                                                                  | 00          | NG Patte    | ern         | Propagation<br>Conditions (Note 1) |        | Antenna<br>Configuration | Refere                             | ence Value   |                      |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|------------------------------------|--------|--------------------------|------------------------------------|--------------|----------------------|
|                               |                                                                                                                                                                                                                                       | Cell 1      | Cell 2      | Cell 3      | Cell 1                             | Cell 2 | Cell 3                   | and Correlation<br>Matrix (Note 2) | Pm-an<br>(%) | SNR (dB)<br>(Note 3) |
| 1                             | R.19                                                                                                                                                                                                                                  | OP.1<br>FDD | OP.1<br>FDD | OP.1<br>FDD | EPA5                               | EVA5   | EVA5                     | 2x2 Low                            | 0.1          | 5.0                  |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.<br>SNR corresponds to $\hat{E}_s/N_{oc2}$ of Cell 1. |             |             |             |                                    |        |                          |                                    |              |                      |

# 8.5.2 TDD

The parameters specified in Table 8.5.2-1 are valid for all TDD tests unless otherwise stated.

| Param                                  | eter                                         | Unit          | Single<br>antenna port | Transmit diversity                            |
|----------------------------------------|----------------------------------------------|---------------|------------------------|-----------------------------------------------|
| Uplink downlink configuration (Note 1) |                                              |               | 1                      | 1                                             |
| Special subframe<br>(Note              |                                              |               | 4                      | 4                                             |
|                                        | PDCCH_RA<br>PHICH_RA<br>OCNG_RA              | dB            | 0                      | -3                                            |
| Downlink power<br>allocation           | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB | dB            | 0                      | -3                                            |
| PHICH d                                | uration                                      |               | Normal                 | Normal                                        |
| Number of PHICH                        | groups (Note 3)                              |               | Ng = 1                 | Ng = 1                                        |
| PDCCH (                                | Content                                      |               |                        | I be included with the on aligned with A.3.6. |
| Unused RE-s                            | and PRB-s                                    |               | OCNG                   | OCNG                                          |
| Cell                                   | ID                                           |               | 0                      | 0                                             |
| $N_{oc}$ at ante                       | $N_{\it oc}$ at antenna port                 |               | -98                    | -98                                           |
| Cyclic prefix                          |                                              |               | Normal                 | Normal                                        |
| ACK/NACK fee                           |                                              |               | Multiplexing           | Multiplexing                                  |
|                                        | fied in Table 4.2-2                          |               |                        |                                               |
|                                        | fied in Table 4.2-1                          |               | .]                     |                                               |
| Note 3: accordin                       | g to Clause 6.9 in                           | 15 36.211 [4] |                        |                                               |

#### Table 8.5.2-1: Test Parameters for PHICH

### 8.5.2.1 Single-antenna port performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | width Reference OCNG Propagation Antenna |          | Antenna   | Reference value                               |           |          |
|--------|-----------|------------------------------------------|----------|-----------|-----------------------------------------------|-----------|----------|
| number |           | Channel                                  | Pattern  | Condition | configuration<br>and<br>correlation<br>Matrix | Pm-an (%) | SNR (dB) |
| 1      | 10 MHz    | R.18                                     | OP.1 TDD | ETU70     | 1 x 2 Low                                     | 0.1       | 5.8      |
| 2      | 10 MHz    | R.24                                     | OP.1 TDD | ETU70     | 1 x 2 Low                                     | 0.1       | 1.3      |

#### Table 8.5.2.1-1: Minimum performance PHICH

## 8.5.2.2 Transmit diversity performance

## 8.5.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | Reference | OCNG     | Propagation | tion Antenna Reference                        |           | ce value |
|--------|-----------|-----------|----------|-------------|-----------------------------------------------|-----------|----------|
| number |           | Channel   | Pattern  | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-an (%) | SNR (dB) |
| 1      | 10 MHz    | R.19      | OP.1 TDD | EVA70       | 2 x 2 Low                                     | 0.1       | 4.2      |

#### Table 8.5.2.2.1-1: Minimum performance PHICH

### 8.5.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test<br>number | Bandwidth | Reference<br>Channel | OCNG<br>Pattern | Propagation<br>Condition | Antenna<br>configuration<br>and<br>correlation<br>Matrix | Referen<br>Pm-an (%) | ce value<br>SNR (dB) |
|----------------|-----------|----------------------|-----------------|--------------------------|----------------------------------------------------------|----------------------|----------------------|
| 1              | 5 MHz     | R.20                 | OP.1 TDD        | EPA5                     | 4 x 2 Medium                                             | 0.1                  | 6.2                  |

#### Table 8.5.2.2.2-1: Minimum performance PHICH

# 8.5.2.2.3 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.3-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.3-2. The downlink physical setup is in accordance with Annex C.3.2 and Annex C.3.3, In Table 8.5.2.2.3-1, Cell 1 is the serving cell, and Cell 2 is the aggressor cell. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 is according to Annex C.3.3, respectively.

| Paramete                                                                                                                                                                                                                                                                              | r                                                | Unit               | Cell 1                                  | Cell 2                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|-----------------------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                       | Uplink downlink configuration                    |                    | 1                                       | 1                        |
| Special subframe configuration                                                                                                                                                                                                                                                        |                                                  |                    | 4                                       | 4                        |
| Downlink power                                                                                                                                                                                                                                                                        | PDCCH_RA<br>PHICH_RA<br>OCNG_RA                  | dB                 | -3                                      | -3                       |
| Downlink power<br>allocation                                                                                                                                                                                                                                                          | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB     | dB                 | -3                                      | -3                       |
|                                                                                                                                                                                                                                                                                       | N <sub>oc1</sub>                                 | dBm/15kHz          | -100.5 (Note 1)                         | N/A                      |
| $N_{oc}$ at antenna port                                                                                                                                                                                                                                                              | N <sub>oc2</sub>                                 | dBm/15kHz          | -98 (Note 2)                            | N/A                      |
|                                                                                                                                                                                                                                                                                       | N <sub>oc3</sub>                                 | dBm/15kHz          | -95.3 (Note 3)                          | N/A                      |
| $\widehat{E}_s/N_{oc2}$                                                                                                                                                                                                                                                               |                                                  | dB                 | Reference Value in<br>Table 8.5.2.2.3-2 | 1.5                      |
| BW <sub>Channe</sub>                                                                                                                                                                                                                                                                  | I                                                | MHz                | 10                                      | 10                       |
| Subframe Config                                                                                                                                                                                                                                                                       | guration                                         |                    | Non-MBSFN                               | Non-MBSFN                |
| Time Offset between Cells                                                                                                                                                                                                                                                             |                                                  | μs                 | 2.5 (synchrone                          | ous cells)               |
| Cell Id                                                                                                                                                                                                                                                                               |                                                  |                    | 0                                       | 1                        |
| ABS pattern (Note 4)                                                                                                                                                                                                                                                                  |                                                  |                    | N/A                                     | 0000010001<br>0000000001 |
|                                                                                                                                                                                                                                                                                       | RLM/RRM Measurement Subframe<br>Pattern (Note 5) |                    | 000000001<br>0000000001                 | N/A                      |
| CSI Subframe Sets                                                                                                                                                                                                                                                                     | C <sub>CSI,0</sub>                               |                    | 0000010001<br>0000000001                | N/A                      |
| (Note 6)                                                                                                                                                                                                                                                                              | C <sub>CSI,1</sub>                               |                    | 1100101000<br>1100111000                | N/A                      |
| Number of control OF                                                                                                                                                                                                                                                                  | DM symbols                                       |                    | 3                                       |                          |
| ACK/NACK feedb                                                                                                                                                                                                                                                                        | ack mode                                         |                    | Multiplexing                            |                          |
| Number of PHICH g                                                                                                                                                                                                                                                                     |                                                  |                    | 1                                       |                          |
| PHICH dura                                                                                                                                                                                                                                                                            |                                                  |                    | extended                                |                          |
| Unused RE-s and                                                                                                                                                                                                                                                                       |                                                  |                    | OCNG                                    | OCNG                     |
| Cyclic pref                                                                                                                                                                                                                                                                           |                                                  |                    | Normal                                  | Normal                   |
| <ul> <li>Note 1: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS</li> <li>Note 2: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS</li> </ul>   |                                                  |                    |                                         |                          |
| Note 3:This noise is applied in OFDM symbols of a subframe overlapping with aggressor non-ABSNote 4:ABS pattern as defined in [9]. PHICH is transmitted in the serving cell subframe when the<br>subframe is overlapped with the ABS subframe of aggressor cell but not in subframe 5 |                                                  |                    |                                         |                          |
| Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                                                 |                                                  |                    |                                         |                          |
| Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]                                                                                                                                                       |                                                  |                    |                                         |                          |
| Note 7: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1<br>Cell2 is the same.                                                                                                                                                          |                                                  |                    |                                         |                          |
| Note 8: SIB-1 will not                                                                                                                                                                                                                                                                | be transmitted in                                | Cell2 in the test. |                                         |                          |

| Test<br>Number | Reference<br>Channel                                  | OCNG                                                                            | Pattern     | Propagation<br>Conditions<br>(Note 1) |            | Antenna<br>Configuration<br>and | Refere       | nce Value            |
|----------------|-------------------------------------------------------|---------------------------------------------------------------------------------|-------------|---------------------------------------|------------|---------------------------------|--------------|----------------------|
|                |                                                       | Cell 1                                                                          | Cell 2      | Cell 1                                | Cell 2     | Correlation<br>Matrix           | Pm-an<br>(%) | SNR (dB)<br>(Note 2) |
| 1              | R.19                                                  | OP.1<br>TDD                                                                     | OP.1<br>TDD | EPA5                                  | EPA5       | 2x2 Low                         | 0.1          | 4.6                  |
| Note 1:        |                                                       | The propagation conditions for Cell 1 and Cell 2 are statistically independent. |             |                                       |            |                                 |              |                      |
| Note 2:        | SNR corresponds to $\widehat{E}_s/N_{oc2}$ of cell 1. |                                                                                 |             |                                       |            |                                 |              |                      |
| Note 3:        | The correlation                                       | matrix ar                                                                       | nd antenna  | a configura                           | ation appl | y for Cell 1 and Ce             | ll 2.        |                      |

Table 8.5.2.2.3-2: Minimum performance PHICH

# 8.5.2.2.4 Minimum Requirement 2 Tx Antenna Port (demodulation subframe overlaps with aggressor cell ABS and CRS assistance information are configured)

For the parameters specified in Table 8.5.2-1 and Table 8.5.2.2.4-1, the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.4-2. In Table 8.5.2.2.4-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Paran                                                                                                                                                                                                                                                                                       | neter                                                                                                                     | Unit                                                                                       | Cell 1                                                                                                                                          | Cell 2                                                                            | Cell 3                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|
| Uplink downlink configuration                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                            | 1                                                                                                                                               | 1                                                                                 | 1                                         |
| Special subfram                                                                                                                                                                                                                                                                             | Special subframe configuration                                                                                            |                                                                                            | 4                                                                                                                                               | 4                                                                                 | 4                                         |
| Downlink power                                                                                                                                                                                                                                                                              | PDCCH_RA<br>PHICH_RA<br>OCNG_RA                                                                                           | dB                                                                                         | -3                                                                                                                                              | -3                                                                                | -3                                        |
| allocation                                                                                                                                                                                                                                                                                  | PCFICH_RB<br>PDCCH_RB<br>PHICH_RB<br>OCNG_RB                                                                              | dB                                                                                         | -3                                                                                                                                              | -3                                                                                | -3                                        |
|                                                                                                                                                                                                                                                                                             | $N_{oc1}$                                                                                                                 | dBm/15kHz                                                                                  | -98 (Note 1)                                                                                                                                    | N/A                                                                               | N/A                                       |
| $N_{oc}$ at antenna                                                                                                                                                                                                                                                                         | N <sub>oc2</sub>                                                                                                          | dBm/15kHz                                                                                  | -98 (Note 2)                                                                                                                                    | N/A                                                                               | N/A                                       |
| port                                                                                                                                                                                                                                                                                        | $N_{oc3}$                                                                                                                 | dBm/15kHz                                                                                  | -93 (Note 3)                                                                                                                                    | N/A                                                                               | N/A                                       |
| $\widehat{E}_s/N$                                                                                                                                                                                                                                                                           | V <sub>oc2</sub>                                                                                                          | dB                                                                                         | Reference Value<br>in Table<br>8.5.2.2.4-2                                                                                                      | 5                                                                                 | 3                                         |
| BW <sub>Cr</sub>                                                                                                                                                                                                                                                                            | nannel                                                                                                                    | MHz                                                                                        | 10                                                                                                                                              | 10                                                                                | 10                                        |
| Subframe Co                                                                                                                                                                                                                                                                                 | onfiguration                                                                                                              |                                                                                            | Non-MBSFN                                                                                                                                       | Non-MBSFN                                                                         | Non-<br>MBSFN                             |
| Time Offset b                                                                                                                                                                                                                                                                               | etween Cells                                                                                                              | μs                                                                                         | N/A                                                                                                                                             | 3                                                                                 | -1                                        |
| Frequency shift                                                                                                                                                                                                                                                                             | between Cells                                                                                                             | Hz                                                                                         | N/A                                                                                                                                             | 300                                                                               | -100                                      |
| Cell                                                                                                                                                                                                                                                                                        | ld                                                                                                                        |                                                                                            | 0                                                                                                                                               | 126                                                                               | 1                                         |
| PDCCH Content                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                            | UL Grant should<br>be included with<br>the proper<br>information<br>aligned with<br>A.3.6.                                                      | N/A                                                                               | N/A                                       |
| ABS patter                                                                                                                                                                                                                                                                                  | ABS pattern (Note 4)                                                                                                      |                                                                                            | N/A                                                                                                                                             | 0000000001<br>0000000001                                                          | 000000001                                 |
| RLM/RRM Measu                                                                                                                                                                                                                                                                               | amont Subframa                                                                                                            |                                                                                            | 000000001                                                                                                                                       | 000000001                                                                         | 000000001                                 |
| Pattern (                                                                                                                                                                                                                                                                                   |                                                                                                                           |                                                                                            | 0000000001<br>0000000001                                                                                                                        | N/A                                                                               | N/A                                       |
| CSI Subframe                                                                                                                                                                                                                                                                                | C <sub>CSI,0</sub>                                                                                                        |                                                                                            | 0000000001<br>0000000001                                                                                                                        | N/A                                                                               | N/A                                       |
| Sets (Note 6)                                                                                                                                                                                                                                                                               | C <sub>CSI,1</sub>                                                                                                        |                                                                                            | 1100111000<br>1100111000                                                                                                                        | N/A                                                                               | N/A                                       |
| Number of contro                                                                                                                                                                                                                                                                            | OFDM symbols                                                                                                              |                                                                                            | 2                                                                                                                                               | Note 7                                                                            | Note 7                                    |
| ACK/NACK fee                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                            | Multiplexing                                                                                                                                    | N/A                                                                               | N/A                                       |
| Number of PHIC                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                            | 1                                                                                                                                               | N/A                                                                               | N/A                                       |
| PHICH c                                                                                                                                                                                                                                                                                     |                                                                                                                           |                                                                                            | Normal                                                                                                                                          | N/A                                                                               | N/A                                       |
| Unused RE-s                                                                                                                                                                                                                                                                                 |                                                                                                                           |                                                                                            | OCNG                                                                                                                                            | OCNG                                                                              | OCNG                                      |
| Cyclic<br>Note 1: This noi                                                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                            | Normal                                                                                                                                          | Normal                                                                            | Normal                                    |
| overlap<br>Note 2: This noi<br>aggress<br>Note 3: This noi<br>Note 4: ABS pa<br>subfram                                                                                                                                                                                                     | ping with the aggre<br>se is applied in OF<br>or ABS<br>se is applied in OF<br>ttern as defined in<br>ne is overlapped wi | ssor ABS<br>DM symbols #0, #<br>DM symbols of a<br>[9]. PHICH is tran<br>th the ABS subfra | #2, #3, #5, #6, #8, #9<br>#4, #7, #11 of a subf<br>subframe overlappir<br>smitted in the servin<br>me of aggressor cel<br>tion pattern for PCel | rame overlapping<br>ng with aggressor<br>g cell subframe w<br>l but not in subfra | y with the<br>non-ABS<br>/hen the<br>me 5 |
| <ul> <li>Note 6: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]</li> <li>Note 7: The number of control OFDM symbols is not available for ABS and is 2 for the subframe indicated by "0" of ABS pattern.</li> </ul> |                                                                                                                           |                                                                                            |                                                                                                                                                 |                                                                                   |                                           |
|                                                                                                                                                                                                                                                                                             | nber of the CRS po<br>ill not be transmitte                                                                               |                                                                                            | 2 and Cell 3 is the s<br>ell 3 in the test.                                                                                                     | ame.                                                                              |                                           |

### Table 8.5.2.2.4-1: Test Parameters for PHICH

| Test<br>Number                | Reference<br>Channel                                                                                                                                                                                                                  | OCNG Patter |             |             |        | Conditions (Note 1) Configu |        | Antenna<br>Configuration           | Refere       | ence Value           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|--------|-----------------------------|--------|------------------------------------|--------------|----------------------|
|                               |                                                                                                                                                                                                                                       | Cell 1      | Cell 2      | Cell 3      | Cell 1 | Cell 2                      | Cell 3 | and Correlation<br>Matrix (Note 2) | Pm-an<br>(%) | SNR (dB)<br>(Note 3) |
| 1                             | R.19                                                                                                                                                                                                                                  | OP.1<br>TDD | OP.1<br>TDD | OP.1<br>TDD | EPA5   | EVA5                        | EVA5   | 2x2 Low                            | 0.1          | 5.7                  |
| Note 1:<br>Note 2:<br>Note 3: | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.<br>The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3.<br>SNR corresponds to $\hat{E}_s/N_{oc2}$ of Cell 1. |             |             |             |        |                             |        |                                    |              |                      |

Table 8.5.2.2.4-2: Minimum performance PHICH

# 8.6 Demodulation of PBCH

The receiver characteristics of the PBCH are determined by the probability of miss-detection of the PBCH (Pm-bch), which is defined as

$$Pm - bch = 1 - \frac{A}{B}$$

Where A is the number of correctly decoded MIB PDUs and B is the Number of transmitted MIB PDUs (Redundancy versions for the same MIB are not counted separately).

# 8.6.1 FDD

 Table 8.6.1-1: Test Parameters for PBCH

| Parame                                                                                                 | ter                                         | Unit | Single antenna<br>port | Transmit<br>diversity |  |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------|------|------------------------|-----------------------|--|
|                                                                                                        |                                             |      |                        |                       |  |
| Downlink power                                                                                         | PBCH_RA                                     | dB   | 0                      | -3                    |  |
| allocation                                                                                             | PBCH_RB                                     | dB   | 0                      | -3                    |  |
| $N_{\it oc}$ at anter                                                                                  | $N_{\scriptscriptstyle oc}$ at antenna port |      | -98                    | -98                   |  |
| Cyclic pr                                                                                              | Cyclic prefix                               |      | Normal                 | Normal                |  |
| Cell I                                                                                                 | )                                           |      | 0                      | 0                     |  |
| Note 1:as specified in Table 4.2-2 in TS 36.211 [4]Note 2:as specified in Table 4.2-1 in TS 36.211 [4] |                                             |      |                        |                       |  |

## 8.6.1.1 Single-antenna port performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detecting PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

 Table 8.6.1.1-1: Minimum performance PBCH

| Γ | Test   | Bandwidth | Reference | Propagation | Antenna                                       | Referen    | ce value |
|---|--------|-----------|-----------|-------------|-----------------------------------------------|------------|----------|
|   | number |           | Channel   | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-bch (%) | SNR (dB) |
|   | 1      | 1.4 MHz   | R.21      | ETU70       | 1 x 2 Low                                     | 1          | -6.1     |

### 8.6.1.2 Transmit diversity performance

### 8.6.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | Reference | Propagation | Antenna                                       | Referen    | ce value |
|--------|-----------|-----------|-------------|-----------------------------------------------|------------|----------|
| number |           | Channel   | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-bch (%) | SNR (dB) |
| 4      |           | D 00      |             | 2 x 2 L our                                   | 1          | 4.0      |

#### Table 8.6.1.2.1-1: Minimum performance PBCH

### 8.6.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

#### Table 8.6.1.2.2-1: Minimum performance PBCH

| Test   | Bandwidth | Reference | Propagation | Antenna       | Referen    | ce value |
|--------|-----------|-----------|-------------|---------------|------------|----------|
| number |           | Channel   | Condition   | configuration | Pm-bch (%) | SNR (dB) |
|        |           |           |             | and           |            |          |
|        |           |           |             | correlation   |            |          |
|        |           |           |             | Matrix        |            |          |
| 1      | 1.4 MHz   | R.23      | EVA5        | 4 x 2 Medium  | 1          | -3.5     |

### 8.6.1.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.1.2.3-1 and Table 8.6.1.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, repectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | Unit      | Cell 1                                     | Cell 2                                                   | Cell 3                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|--------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Downlink power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PBCH_RA<br>OCNG_RA            | dB        | -3                                         | -3                                                       | -3                                                       |
| allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PBCH_RB<br>OCNG_RB            | dB        | -3                                         | -3                                                       | -3                                                       |
| $N_{oc}$ at ant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | enna port                     | dBm/15kHz | -98                                        | N/A                                                      | N/A                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                             | dB        | Reference<br>Value in Table<br>8.6.1.2.3-2 | 4                                                        | 2                                                        |
| BWc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hannel                        | MHz       | 1.4                                        | 1.4                                                      | 1.4                                                      |
| Time Offset b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | etween Cells                  | μs        | N/A                                        | 3                                                        | -1                                                       |
| Frequency shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency shift between Cells |           | N/A                                        | 300                                                      | -100                                                     |
| Cel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l ld                          |           | 0                                          | 126                                                      | 1                                                        |
| ABS Patter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ABS Pattern (Note 4)          |           | N/A                                        | 01000000<br>01000000<br>01000000<br>01000000<br>01000000 | 01000000<br>01000000<br>01000000<br>01000000<br>01000000 |
| Unused RE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s and PRB-s                   |           | OCNG                                       | OCNG                                                     | OCNG                                                     |
| Cyclic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |           | Normal                                     | Normal                                                   | Normal                                                   |
| <ul> <li>Note 1: The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.</li> <li>Note 2: SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.</li> <li>Note 3: The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission redundancy version is used for Cell 1, Cell 2 and Cell 3.</li> <li>Note 4: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped with the ABS subframe of aggressor cell and the subframe is available in the definition of the reference channel.</li> </ul> |                               |           |                                            |                                                          |                                                          |

| Table 8.6.1.2.3-2: Minir | num performance PBCH |
|--------------------------|----------------------|
|--------------------------|----------------------|

| Test    | Reference                                                                             | Propagation Conditions (Note 1) |                 | Antenna Configuration | Reference Value                    |               |                      |
|---------|---------------------------------------------------------------------------------------|---------------------------------|-----------------|-----------------------|------------------------------------|---------------|----------------------|
| Number  | Channel                                                                               | Cell 1                          | Cell 2          | Cell 3                | and Correlation Matrix<br>(Note 2) | Pm-bch<br>(%) | SNR (dB) (Note<br>3) |
| 1       | R.22                                                                                  | ETU30                           | ETU30           | ETU30                 | 2x2 Low                            | 1             | [-3.0]               |
| Note 1: | The propagation                                                                       | on conditions fo                | or Cell 1, 0    | Cell 2 and Cell       | 3 are statistically independent    | t.            |                      |
| Note 2: | The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. |                                 |                 |                       |                                    |               |                      |
| Note 3: | SNR correspo                                                                          | nds to $\hat{E}_s / N_o$        | $_c$ of cell 1. |                       |                                    |               |                      |

# 8.6.2 TDD

| Parame                                                                                                   | ter                | Unit      | Single antenna port | Transmit<br>diversity |  |
|----------------------------------------------------------------------------------------------------------|--------------------|-----------|---------------------|-----------------------|--|
| Uplink downlink o<br>(Note 1                                                                             |                    |           | 1                   | 1                     |  |
| Special subframe<br>(Note 2                                                                              | •                  |           | 4                   | 4                     |  |
| Downlink power<br>allocation                                                                             | PBCH_RA<br>PBCH_RB | dB<br>dB  | 0                   | -3<br>-3              |  |
| $N_{oc}$ at antenna port                                                                                 |                    | dBm/15kHz | -98                 | -98                   |  |
| Cyclic pr                                                                                                | efix               |           | Normal              | Normal                |  |
| Cell I                                                                                                   | )                  |           | 0                   | 0                     |  |
| Note 1:as specified in Table 4.2-2 in TS 36.211 [4].Note 2:as specified in Table 4.2-1 in TS 36.211 [4]. |                    |           |                     |                       |  |

### Table 8.6.2-1: Test Parameters for PBCH

## 8.6.2.1 Single-antenna port performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| 1 | Test   | Bandwidth | Reference | Propagation | Antenna                                       | Referen    | ce value |
|---|--------|-----------|-----------|-------------|-----------------------------------------------|------------|----------|
|   | number |           | Channel   | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-bch (%) | SNR (dB) |
|   | 1      | 1.4 MHz   | R.21      | ETU70       | 1 x 2 Low                                     | 1          | -6.4     |

## 8.6.2.2 Transmit diversity performance

### 8.6.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test<br>number | Bandwidth | Reference<br>Channel | Propagation<br>Condition | Antenna<br>configuration<br>and<br>correlation<br>Matrix | Referen<br>Pm-bch (%) | ce value<br>SNR (dB) |
|----------------|-----------|----------------------|--------------------------|----------------------------------------------------------|-----------------------|----------------------|
| 1              | 1.4 MHz   | R.22                 | EPA5                     | 2 x 2 Low                                                | 1                     | -4.8                 |

### 8.6.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

| Test   | Bandwidth | Reference | Propagation | Antenna                                       | Referen    | ce value |
|--------|-----------|-----------|-------------|-----------------------------------------------|------------|----------|
| number |           | Channel   | Condition   | configuration<br>and<br>correlation<br>Matrix | Pm-bch (%) | SNR (dB) |
| 1      | 1.4 MHz   | R.23      | EVA5        | 4 x 2 Medium                                  | 1          | -4.1     |

Table 8.6.2.2.2-1: Minimum performance PBCH

### 8.6.2.2.3 Minimum Requirement 2 Tx Antenna Port under Time Domain Measurement Resource Restriction with CRS Assistance Information

For the parameters specified in Table 8.6.2.2.3-1 and Table 8.6.2.3-2, the averaged probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.3-2. Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggressor cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Parameter                     |                                                                                                                                                                                                                                                                                                                                                                        |                    | Unit      | Cell 1                                     | Cell 2                   | Cell 3                   |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|--------------------------------------------|--------------------------|--------------------------|--|
| Downlink power                |                                                                                                                                                                                                                                                                                                                                                                        | PBCH_RA<br>OCNG_RA | dB        | -3                                         | -3                       | -3                       |  |
| allocati                      | ion                                                                                                                                                                                                                                                                                                                                                                    | PBCH_RB<br>OCNG_RB | dB        | -3                                         | -3                       | -3                       |  |
| No                            | $_{c}$ at ante                                                                                                                                                                                                                                                                                                                                                         | enna port          | dBm/15kHz | -98                                        | N/A                      | N/A                      |  |
|                               | $rac{\widehat{E}_s}{N_{oc}}$                                                                                                                                                                                                                                                                                                                                          | ,                  | dB        | Reference<br>Value in Table<br>8.6.2.2.3-2 | 4                        | 2                        |  |
|                               | $BW_{Char}$                                                                                                                                                                                                                                                                                                                                                            | annel              | MHz       | 1.4                                        | 1.4                      | 1.4                      |  |
| Time Offset between Cells     |                                                                                                                                                                                                                                                                                                                                                                        |                    | μs        | N/A                                        | 3                        | -1                       |  |
| Frequency shift between Cells |                                                                                                                                                                                                                                                                                                                                                                        |                    | Hz        | N/A                                        | 300                      | -100                     |  |
|                               | Cell                                                                                                                                                                                                                                                                                                                                                                   | ld                 |           | 0                                          | 126                      | 1                        |  |
| ABS                           | S Patterr                                                                                                                                                                                                                                                                                                                                                              | n (Note 4)         |           | N/A                                        | 0000000001<br>0000000001 | 0000000001<br>0000000001 |  |
| Unuse                         | ed RE-s                                                                                                                                                                                                                                                                                                                                                                | and PRB-s          |           | OCNG                                       | OCNG                     | OCNG                     |  |
|                               | Cyclic p                                                                                                                                                                                                                                                                                                                                                               | orefix             |           | Normal                                     | Normal                   | Normal                   |  |
| Note 2:<br>Note 3:            | Note 2:SIB-1 will not be transmitted in Cell2 and Cell 3 in the test.Note 3:The PBCH transmission from Cell 1, Cell 2 and Cell 3 overlap. The same PBCH transmission                                                                                                                                                                                                   |                    |           |                                            |                          |                          |  |
| Note 4:                       | redundancy version is used for Cell 1, Cell 2 and Cell 3.<br>te 4: ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated<br>PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is overlapped<br>with the ABS subframe of aggressor cell and the subframe is available in the definition of the<br>reference channel. |                    |           |                                            |                          |                          |  |

### Table 8.6.2.2.3-1: Test Parameters for PBCH

| Table 8.6.2.2.3-2: Minimum | performance PBCH |
|----------------------------|------------------|
|----------------------------|------------------|

| Test    | Reference                                                                             | Propagation Conditions (Note 1)                                                         |        | Antenna Configuration | Refe                               | erence Value  |                      |  |
|---------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|-----------------------|------------------------------------|---------------|----------------------|--|
| Number  | Channel                                                                               | Cell 1                                                                                  | Cell 2 | Cell 3                | and Correlation Matrix<br>(Note 2) | Pm-bch<br>(%) | SNR (dB) (Note<br>3) |  |
| 1       | R.22                                                                                  | ETU30                                                                                   | ETU30  | ETU30                 | 2x2 Low                            | 1             | [-3.0]               |  |
| Note 1: | The propagation                                                                       | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent. |        |                       |                                    |               |                      |  |
| Note 2: | The correlation matrix and antenna configuration apply for Cell 1, Cell 2 and Cell 3. |                                                                                         |        |                       |                                    |               |                      |  |
| Note 3: | SNR correspo                                                                          | SNR corresponds to $\hat{E}_s/N_{ac}$ of cell 1.                                        |        |                       |                                    |               |                      |  |

# 8.7 Sustained downlink data rate provided by lower layers

The purpose of the test is to verify that the Layer 1 and Layer 2 correctly process in a sustained manner the received packets corresponding to the maximum number of DL-SCH transport block bits received within a TTI for the UE category indicated. The sustained downlink data rate shall be verified in terms of the success rate of delivered PDCP SDU(s) by Layer 2. The test case below specifies the RF conditions and the required success rate of delivered TB by Layer 1 to meet the sustained data rate requirement. The size of the TB per TTI corresponds to the largest possible DL-SCH transport block for each UE category using the maximum number of layers for spatial multiplexing. Transmission modes 1 and 3 are used with radio conditions resembling a scenario where sustained maximum data rates are available. Test case is selected according to table 8.7-1 depending on UE capability for CA and EPDCCH.

#### Table 8.7-1: SDR test applicability

|     | Single carrier UE<br>not supporting<br>EPDCCH | CA UE not<br>supporting EPDCCH | Single carrier UE supporting EPDCCH | CA UE supporting<br>EPDCCH |
|-----|-----------------------------------------------|--------------------------------|-------------------------------------|----------------------------|
| FDD | 8.7.1                                         | 8.7.1                          | 8.7.3                               | 8.7.1, 8.7.3               |
| TDD | 8.7.2                                         | 8.7.2                          | 8.7.4                               | 8.7.2, 8.7.4               |

# 8.7.1 FDD

The parameters specified in Table 8.7.1-1 are valid for all FDD tests unless otherwise stated.

| Parameter                                                    | Unit         | Value                                                                 |
|--------------------------------------------------------------|--------------|-----------------------------------------------------------------------|
| Cyclic prefix                                                |              | Normal                                                                |
| Cell ID                                                      |              | 0                                                                     |
| Inter-TTI Distance                                           |              | 1                                                                     |
| Number of HARQ<br>processes per<br>component carrier         | Processes    | 8                                                                     |
| Maximum number of<br>HARQ transmission                       |              | 4                                                                     |
| Redundancy version<br>coding sequence                        |              | {0,0,1,2} for 64QAM                                                   |
| Number of OFDM<br>symbols for PDCCH per<br>component carrier | OFDM symbols | 1                                                                     |
| Cross carrier scheduling                                     |              | Not configured                                                        |
| Propagation condition                                        |              | Static propagation condition<br>No external noise sources are applied |

### Table 8.7.1-1: Common Test Parameters (FDD)

The requirements are specified in Table 8.7.1-3, with the addition of the parameters in Table 8.7.1-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.7.1-4. The TB success rate shall be sustained during at least 300 frames.

| Test Bandwidth |             | th Transmission | Antenna           | Codebook<br>subset | Downlink power<br>allocation (dB) |                              |   | $\hat{E}_{_{s}}$ at         | Symbols<br>for |
|----------------|-------------|-----------------|-------------------|--------------------|-----------------------------------|------------------------------|---|-----------------------------|----------------|
| Test           | (MHz)       | mode            | configuration     | restriction        | $ ho_{\scriptscriptstyle A}$      | $ ho_{\scriptscriptstyle B}$ | σ | antenna port<br>(dBm/15kHz) | unused<br>PRBs |
| 1              | 10          | 1               | 1 x 2             | N/A                | 0                                 | 0                            | 0 | -85                         | OP.6 FDD       |
| 2              | 10          | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 3,4,6          | 20          | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 3A             | 10          | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 3B, 4A         | 2x10        | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 3C, 4B         | 15          | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 6A             | 2x20        | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 6B             | 10+15       | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 6C             | 10+20       | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| 6D             | 15+20       | 3               | 2 x 2             | 10                 | -3                                | -3                           | 0 | -85                         | OP.1 FDD       |
| Note 1         | For CA test | •               | rmat 1b with char | -                  |                                   |                              | - |                             |                |

## Table 8.7.1-2: test parameters for sustained downlink data rate (FDD)

Note 1: For CA test cases, PUCCH format 1b with channel selection is used to feedback ACK/NACK.

### Table 8.7.1-3: Minimum requirement (FDD)

| Test    | Number of bits of a DL-SCH transport                                                                                                                                  | Measurement channel           | Reference value     |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|--|--|--|--|--|
|         | block received within a TTI                                                                                                                                           |                               | TB success rate [%] |  |  |  |  |  |
| 1       | 10296                                                                                                                                                                 | R.31-1 FDD                    | 95                  |  |  |  |  |  |
| 2       | 25456                                                                                                                                                                 | R.31-2 FDD                    | 95                  |  |  |  |  |  |
| 3       | 51024                                                                                                                                                                 | R.31-3 FDD                    | 95                  |  |  |  |  |  |
| 3A      | 36696 (Note 2)                                                                                                                                                        | R.31-3A FDD                   | 85                  |  |  |  |  |  |
| 3B      | 25456                                                                                                                                                                 | R.31-2 FDD                    | 95                  |  |  |  |  |  |
| 3C      | 51024                                                                                                                                                                 | R.31-3C FDD                   | 85                  |  |  |  |  |  |
| 4       | 75376 (Note 3)                                                                                                                                                        | R.31-4 FDD                    | 85                  |  |  |  |  |  |
| 4A      | 36696 (Note 2)                                                                                                                                                        | R.31-3A FDD                   | 85                  |  |  |  |  |  |
| 4B      | 55056 (Note 5)                                                                                                                                                        | R.31-4B FDD                   | 85]                 |  |  |  |  |  |
| 6       | 75376 (Note 3)                                                                                                                                                        | R.31-4 FDD                    | 85                  |  |  |  |  |  |
| 6A      | 75376 (Note 3)                                                                                                                                                        | R.31-4 FDD                    | 85                  |  |  |  |  |  |
| 6B      | 36696 (Note 2) for 10MHz CC                                                                                                                                           | R.31-3A FDD for 10MHz carrier | 85                  |  |  |  |  |  |
|         | 55056 for 15MHz CC                                                                                                                                                    | CC                            |                     |  |  |  |  |  |
|         |                                                                                                                                                                       | R.31-5 FDD for 15MHz CC       |                     |  |  |  |  |  |
| 6C      | 36696 (Note 2) for 10MHz CC                                                                                                                                           | R.31-3A FDD for 10MHz CC      | 85                  |  |  |  |  |  |
|         | 75376 (Note 3) for 20MHz CC                                                                                                                                           | R.31-4 FDD for 20MHz CC       |                     |  |  |  |  |  |
| 6D      | 55056 for 15MHz CC                                                                                                                                                    | R.31-5 FDD for 15MHz CC       | 85                  |  |  |  |  |  |
|         | 75376 (Note 3) for 20MHz CC                                                                                                                                           | R.31-4 FDD for 20MHz CC       |                     |  |  |  |  |  |
| Note 1: | For 2 layer transmissions, 2 transport blocks                                                                                                                         | are received within a TTI.    |                     |  |  |  |  |  |
| Note 2: | 35160 bits for sub-frame 5.                                                                                                                                           |                               |                     |  |  |  |  |  |
| Note 3: | 71112 bits for sub-frame 5.                                                                                                                                           |                               |                     |  |  |  |  |  |
| Note 4: | The TB success rate is defined as TB success rate = 100%*N <sub>DL_correct_rx</sub> / (N <sub>DL_newtx</sub> + N <sub>DL_retx</sub> ), where N <sub>DL_newtx</sub> is |                               |                     |  |  |  |  |  |
|         | the number of newly transmitted DL transport blocks, N <sub>DL_retx</sub> is the number of retransmitted DL transport                                                 |                               |                     |  |  |  |  |  |
|         | blocks, and N <sub>DL_correct_rx</sub> is the number of correctly received DL transport blocks.                                                                       |                               |                     |  |  |  |  |  |
| Note 5: | 52752bits for sub-frame 5.                                                                                                                                            |                               |                     |  |  |  |  |  |

| CA<br>config      | Maximum<br>supported<br>Bandwidth/<br>Bandwidth<br>combination<br>(MHz)                             | Category<br>1  | Category<br>2   | Category 3         | Category 4       | Category 6        | Category 7                                                                                                                                            |  |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------|----------------|-----------------|--------------------|------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Cingle            | 10                                                                                                  | 1              | 2               | ЗA                 | ЗA               | -                 | -                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Single<br>carrier | 15                                                                                                  | -              | -               | 3C                 | 4B               | -                 | -                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Carrier           | 20                                                                                                  | -              | -               | 3                  | 4                | 6                 | 6                                                                                                                                                     |  |  |  |  |  |  |  |  |
|                   | 10+10                                                                                               | -              | -               | 3B                 | 4A               | 4A                | 4A                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                   | 10+15                                                                                               | -              | -               | 3B                 | 4A               | 6B                | 6B                                                                                                                                                    |  |  |  |  |  |  |  |  |
| CL_A_<br>A        | 10+20                                                                                               | -              | -               | 3B                 | 4A               | 6C                | 6C                                                                                                                                                    |  |  |  |  |  |  |  |  |
| A                 | 15+20                                                                                               | -              | -               | 3B                 | 4A               | 6D                | 6D                                                                                                                                                    |  |  |  |  |  |  |  |  |
|                   | 20+20                                                                                               | -              | -               | 3B                 | 4A               | 6A                | 6A                                                                                                                                                    |  |  |  |  |  |  |  |  |
| CL_C              | 20+20                                                                                               | -              | -               | 3 (Note 4)         | 4 (Note 4)       | 6A                | 6A                                                                                                                                                    |  |  |  |  |  |  |  |  |
| Note 1:           | If UE can be tested                                                                                 | for CA configu | iration, single | carrier test is sl | kipped.          |                   |                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Note 2:           |                                                                                                     |                |                 |                    |                  |                   |                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Note 3:           | For CA UE, test is selected for bandwidth combination corresponding to maximum aggregated bandwidth |                |                 |                    |                  |                   |                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Note 4:           |                                                                                                     |                |                 | by category 3 of   | r 4 UE, single c | arrier test is se | among all CA configuration supported by UE.<br>If CL_C is the only CA configuration supported by category 3 or 4 UE, single carrier test is selected. |  |  |  |  |  |  |  |  |

Table 8.7.1-4: Test points for sustained data rate (FRC)

# 8.7.2 TDD

The parameters specified in Table 8.7.2-1 are valid for all TDD tests unless otherwise stated.

| Parameter                                                    | Unit         | Value                                                                 |  |  |  |  |
|--------------------------------------------------------------|--------------|-----------------------------------------------------------------------|--|--|--|--|
| Special subframe<br>configuration (Note 1)                   |              | 4                                                                     |  |  |  |  |
| Cyclic prefix                                                |              | Normal                                                                |  |  |  |  |
| Cell ID                                                      |              | 0                                                                     |  |  |  |  |
| Inter-TTI Distance                                           |              | 1                                                                     |  |  |  |  |
| Maximum number of<br>HARQ transmission                       |              | 4                                                                     |  |  |  |  |
| Redundancy version<br>coding sequence                        |              | {0,0,1,2} for 64QAM                                                   |  |  |  |  |
| Number of OFDM<br>symbols for PDCCH per<br>component carrier | OFDM symbols | 1                                                                     |  |  |  |  |
| Cross carrier scheduling                                     |              | Not configured                                                        |  |  |  |  |
| Propagation condition                                        |              | Static propagation condition<br>No external noise sources are applied |  |  |  |  |
| Note 1: as specified in Table 4.2-1 in TS 36.211 [4].        |              |                                                                       |  |  |  |  |

Table 8.7.2-1: Common Test Parameters (TDD)

The requirements are specified in Table 8.7.2-3, with the addition of the parameters in Table 8.7.2-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.7.2-4. The TB success rate shall be sustained during at least 300 frames.

| Test    | Bandwidth<br>(MHz) | Transmission<br>mode | Antenna configuration | Codebook<br>subset<br>restriction |        | Downlink<br>power<br>allocation<br>(dB) |      | power<br>allocation<br>(dB) |               | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation<br>(dB) |  | power<br>allocation |  | power<br>allocation |  | power<br>allocation<br>(dB) |  | $\hat{E}_s$ at antenna port (dBm/15kHz) | ACK/NACK<br>feedback<br>mode | Symbols for<br>unused<br>PRBs |
|---------|--------------------|----------------------|-----------------------|-----------------------------------|--------|-----------------------------------------|------|-----------------------------|---------------|-----------------------------|--|-----------------------------|--|-----------------------------|--|-----------------------------|--|-----------------------------|--|-----------------------------|--|-----------------------------|--|-----------------------------|--|-----------------------------|--|---------------------|--|---------------------|--|-----------------------------|--|-----------------------------------------|------------------------------|-------------------------------|
|         |                    |                      |                       |                                   | $O_A$  | $ ho_{\scriptscriptstyle B}$            | σ    | · ,                         |               |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |
| 1       | 10                 | 1                    | 1 x 2                 | N/A                               | 0      | 0                                       | 0    | -85                         | Bundling      | OP.6 TDD                    |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |
| 2       | 10                 | 3                    | 2 x 2                 | 10                                | -<br>3 | -3                                      | 0    | -85                         | Bundling      | OP.1 TDD                    |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |
| 3       | 20                 | 3                    | 2 x 2                 | 10                                | -<br>3 | -3                                      | 0    | -85                         | Bundling      | OP.1 TDD                    |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |
| ЗA      | 15                 | 3                    | 2 x 2                 | 10                                | - 3    | -3                                      | 0    | -85                         | Muliplexing   | OP.2 TDD                    |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |
| 4,6     | 20                 | 3                    | 2 x 2                 | 10                                | -<br>3 | -3                                      | 0    | -85                         | Multiplexing  | OP.1 TDD                    |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |
| 6A      | 2x20               | 3                    | 2 x 2                 | 10                                | -<br>3 | -3                                      | 0    | -85                         | -<br>(Note 1) | OP.1 TDD                    |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |
| Note 1: | PUCCH for          | mat 1b with chan     | nel selection is us   | sed to feedbac                    | ck A   | CK/NA                                   | ACK. | ı                           |               |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                             |  |                     |  |                     |  |                             |  |                                         |                              |                               |

#### Table 8.7.2-2: test parameters for sustained downlink data rate (TDD)

### Table 8.7.2-3: Minimum requirement (TDD)

| Test                | Number of bits of a DL-SCH<br>transport block received within<br>a TTI for normal/special sub-<br>frame        | Measurement channel | Reference value<br>TB success rate [%] |  |
|---------------------|----------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|--|
| 1                   | 10296/0                                                                                                        | R31-1 TDD           | 95                                     |  |
| 2                   | 25456/0                                                                                                        | R31-2 TDD           | 95                                     |  |
| 3                   | 51024/0                                                                                                        | R31-3 TDD           | 95                                     |  |
| ЗA                  | 51024/0                                                                                                        | R31-3A TDD          | 85                                     |  |
| 4                   | 75376/0 (Note 2)                                                                                               | R31-4 TDD           | 85                                     |  |
| 6                   | 75376/0 (Note 2)                                                                                               | R.31-4 TDD          | 85                                     |  |
| 6A 75376/0 (Note 2) |                                                                                                                | R.31-4 TDD          | 85                                     |  |
| Note 2: 71112 k     | yer transmissions, 2 transport blocks are<br>bits for sub-frame 5.<br>success rate is defined as TB success ra |                     | + No) where No                         |  |

Note 3: The TB success rate is defined as TB success rate = 100%\*N<sub>DL\_correct\_rx</sub>/ (N<sub>DL\_newtx</sub> + N<sub>DL\_retx</sub>), where N<sub>DL\_newtx</sub> is the number of newly transmitted DL transport blocks, N<sub>DL\_retx</sub> is the number of retransmitted DL transport blocks, and N<sub>DL\_correct\_rx</sub> is the number of correctly received DL transport blocks.

| CA<br>config | Bandwidth/<br>Bandwidth<br>combination<br>(MHz) | Category 1      | Category 2       | Category 3         | Category 4      | Category 6         | Category 7 |  |  |
|--------------|-------------------------------------------------|-----------------|------------------|--------------------|-----------------|--------------------|------------|--|--|
| Cincela      | 10                                              | 1               | 2                | -                  | -               | -                  | -          |  |  |
| Single       | 15                                              | -               | -                | ЗA                 | ЗA              | -                  | -          |  |  |
| carrier      | 20                                              | -               | -                | 3                  | 4               | 6                  | 6          |  |  |
| CL_C         | 20+20                                           |                 | -                | 3 (Note 4)         | 4 (Note 4)      | 6A                 | 6A         |  |  |
| CL_A-A       | 20+20                                           |                 | -                | 3 (Note 4)         | 4 (Note 4)      | 6A                 | 6A         |  |  |
| Note 1:      | If UE can be tested                             | or CA configur  | ation, single ca | rrier test is skip | ped.            |                    |            |  |  |
| Note 2:      | For non-CA UE, test                             | is selected for | maximum sup      | ported bandwid     | th.             |                    |            |  |  |
| Note 3:      |                                                 |                 |                  |                    |                 |                    |            |  |  |
| Note 4:      | If CL C is the only C                           | •••             | •                | category 3 or 4    | UE, single carr | ier test is select | ed         |  |  |

# 8.7.3 FDD (EPDCCH scheduling)

The parameters specified in Table 8.7.3-1 are valid for all FDD tests unless otherwise stated.

### Table 8.7.3-1: Common test parameters (FDD)

| Parameter                                                                   | Unit         | Value                                               |  |  |  |  |  |
|-----------------------------------------------------------------------------|--------------|-----------------------------------------------------|--|--|--|--|--|
| Cyclic prefix                                                               |              | Normal                                              |  |  |  |  |  |
| Cell ID                                                                     |              | 0                                                   |  |  |  |  |  |
| Inter-TTI Distance                                                          |              | 1                                                   |  |  |  |  |  |
| Number of HARQ                                                              |              |                                                     |  |  |  |  |  |
| processes per                                                               | Processes    | 8                                                   |  |  |  |  |  |
| component carrier                                                           |              |                                                     |  |  |  |  |  |
| Maximum number of                                                           |              | 4                                                   |  |  |  |  |  |
| HARQ transmission                                                           |              | +                                                   |  |  |  |  |  |
| Redundancy version                                                          |              | {0,0,1,2} for 64QAM                                 |  |  |  |  |  |
| coding sequence                                                             |              | (0,0,1,2) 101 04 QAM                                |  |  |  |  |  |
| Number of OFDM                                                              |              |                                                     |  |  |  |  |  |
| symbols for PDCCH per                                                       | OFDM symbols | 1                                                   |  |  |  |  |  |
| component carrier                                                           |              |                                                     |  |  |  |  |  |
| Cross carrier scheduling                                                    |              | Not configured                                      |  |  |  |  |  |
| Number of EPDCCH                                                            |              | 1                                                   |  |  |  |  |  |
| sets                                                                        |              | 1                                                   |  |  |  |  |  |
| EPDCCH transmission                                                         |              | Localized                                           |  |  |  |  |  |
| type                                                                        |              |                                                     |  |  |  |  |  |
| Number of PRB per                                                           |              | 2 PRB pairs                                         |  |  |  |  |  |
| EPDCCH set and                                                              |              | 10MHz BW: Resource blocks $n_{PRB} = 48, 49$        |  |  |  |  |  |
| EPDCCH PRB pair                                                             |              | 15MHz BW: Resource blocks $n_{PRB} = 70, 71$        |  |  |  |  |  |
| allocation                                                                  |              | 20MHz BW: Resource blocks n <sub>PRB</sub> = 98, 99 |  |  |  |  |  |
| EPDCCH Starting                                                             |              | Derived from CFI (i.e. default behaviour)           |  |  |  |  |  |
| Symbol                                                                      |              |                                                     |  |  |  |  |  |
| ECCE Aggregation                                                            |              | 2 ECCEs                                             |  |  |  |  |  |
| Level                                                                       |              |                                                     |  |  |  |  |  |
| Number of EREGs per                                                         |              | 4                                                   |  |  |  |  |  |
| ECCE                                                                        |              | EDDOOLL                                             |  |  |  |  |  |
| EPDCCH scheduling                                                           |              | EPDCCH candidate is randomly assigned               |  |  |  |  |  |
| •                                                                           |              | in each subframe                                    |  |  |  |  |  |
| EPDCCH precoder                                                             |              | Fixed PMI 0                                         |  |  |  |  |  |
| (Note 1)<br>EPDCCH monitoring SF                                            |              | 111111111 000000000                                 |  |  |  |  |  |
| 0                                                                           |              |                                                     |  |  |  |  |  |
| pattern                                                                     |              | <u>111111111 000000000</u><br>100                   |  |  |  |  |  |
| Timing advance                                                              | μs           | Static propagation condition                        |  |  |  |  |  |
| Propagation condition                                                       |              | No external noise sources are applied               |  |  |  |  |  |
| Note 1: EPDCCH precoder parameters are defined for tests with 2 x 2 antenna |              |                                                     |  |  |  |  |  |
| configuration                                                               |              |                                                     |  |  |  |  |  |
| connyuration                                                                |              |                                                     |  |  |  |  |  |

The requirements are specified in Table 8.7.3-3, with the addition of the parameters in Table 8.7.3-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified in Table 8.7.3-4. The TB success rate shall be sustained during at least 300 frames.

| Table 8.7.3-2: Test parameters for SDR test for PDSCH scheduled by |                   |
|--------------------------------------------------------------------|-------------------|
|                                                                    | y Ei DOOII (i DD) |

| Test      | Bandwidth | Bandwidth Transmission Antenna Codebook |               |             | ownlinl<br>Ilocatio          |                              |   | $\hat{E}_{_{s}}$ at | Symbols<br>for              |                |
|-----------|-----------|-----------------------------------------|---------------|-------------|------------------------------|------------------------------|---|---------------------|-----------------------------|----------------|
| Test      | (MHz)     | mode                                    | configuration | restriction | $ ho_{\scriptscriptstyle A}$ | $ ho_{\scriptscriptstyle B}$ | σ | δ                   | antenna port<br>(dBm/15kHz) | unused<br>PRBs |
| 1         | 10        | 1                                       | 1 x 2         | N/A         | 0                            | 0                            | 0 | 0                   | -85                         | OP.6<br>FDD    |
| 2         | 10        | 3                                       | 2 x 2         | 10          | -3                           | -3                           | 0 | 3                   | -85                         | OP.1<br>FDD    |
| 3,4,6     | 20        | 3                                       | 2 x 2         | 10          | -3                           | -3                           | 0 | 3                   | -85                         | OP.1<br>FDD    |
| ЗA        | 10        | 3                                       | 2 x 2         | 10          | -3                           | -3                           | 0 | 3                   | -85                         | OP.1<br>FDD    |
| 3C,<br>4B | 15        | 3                                       | 2 x 2         | 10          | -3                           | -3                           | 0 | 3                   | -85                         | OP.1<br>FDD    |

| Test    | Number of bits of a DL-SCH transport                                                                                                                                  | Measurement channel        | Reference value     |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|--|--|--|--|--|
|         | block received within a TTI                                                                                                                                           |                            | TB success rate [%] |  |  |  |  |  |
| 1       | 10296                                                                                                                                                                 | R.31E-1 FDD                | 95                  |  |  |  |  |  |
| 2       | 25456                                                                                                                                                                 | R.31E-2 FDD                | 95                  |  |  |  |  |  |
| 3       | 51024                                                                                                                                                                 | R.31E-3 FDD                | 95                  |  |  |  |  |  |
| ЗA      | 36696 (Note 2)                                                                                                                                                        | R.31E-3A FDD               | 85                  |  |  |  |  |  |
| 3C      | 51024                                                                                                                                                                 | R.31E-3C FDD               | 85                  |  |  |  |  |  |
| 4       | 75376 (Note 3)                                                                                                                                                        | R.31E-4 FDD                | 85                  |  |  |  |  |  |
| 4B      | 55056 (Note 5)                                                                                                                                                        | R.31E-4B FDD               | 85                  |  |  |  |  |  |
| 6       | 75376 (Note 3)                                                                                                                                                        | R.31E-4 FDD                | 85                  |  |  |  |  |  |
| Note 1: | For 2 layer transmissions, 2 transport blocks                                                                                                                         | are received within a TTI. |                     |  |  |  |  |  |
| Note 2: | 35160 bits for sub-frame 5.                                                                                                                                           |                            |                     |  |  |  |  |  |
| Note 3: | 71112 bits for sub-frame 5.                                                                                                                                           |                            |                     |  |  |  |  |  |
| Note 4: | The TB success rate is defined as TB success rate = 100%*N <sub>DL_correct_rx</sub> / (N <sub>DL_newtx</sub> + N <sub>DL_retx</sub> ), where N <sub>DL_newtx</sub> is |                            |                     |  |  |  |  |  |
|         | the number of newly transmitted DL transport blocks, N <sub>DL retx</sub> is the number of retransmitted DL transport                                                 |                            |                     |  |  |  |  |  |
|         | blocks, and N <sub>DL correct rx</sub> is the number of correctly received DL transport blocks.                                                                       |                            |                     |  |  |  |  |  |
| Note 5: | 52752 bits for sub-frame 5.                                                                                                                                           |                            |                     |  |  |  |  |  |

| Table 8.7.3-4: Test points for sustain | ed data rate (FRC) |
|----------------------------------------|--------------------|
|----------------------------------------|--------------------|

| CA<br>config   | Bandwidth (MHz)                                          | Category<br>1 | Category<br>2 | Category 3 | Category 4 | Category 6 | Category 7 |
|----------------|----------------------------------------------------------|---------------|---------------|------------|------------|------------|------------|
| Single carrier | 10                                                       | 1             | 2             | 3A         | 3A         | -          | -          |
|                | 15                                                       | -             | -             | 3C         | 4B         | -          | -          |
|                | 20                                                       | -             | -             | 3          | 4          | 6          | 6          |
| Note 1:        | I: The test is selected for maximum supported bandwidth. |               |               |            |            |            |            |

# 8.7.4 TDD (EPDCCH scheduling)

The parameters specified in Table 8.7.4-1 are valid for all TDD tests unless otherwise stated.

Table 8.7.4-1: Common test parameters (TDD)

| Parameter                                                                                                                                                           | Unit         | Value                                                                                                                                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Special subframe<br>configuration (Note 1)                                                                                                                          |              | 4                                                                                                                                                                       |  |  |  |
| Cyclic prefix                                                                                                                                                       |              | Normal                                                                                                                                                                  |  |  |  |
| Cell ID                                                                                                                                                             |              | 0                                                                                                                                                                       |  |  |  |
| Inter-TTI Distance                                                                                                                                                  |              | 1                                                                                                                                                                       |  |  |  |
| Maximum number of<br>HARQ transmission                                                                                                                              |              | 4                                                                                                                                                                       |  |  |  |
| Redundancy version<br>coding sequence                                                                                                                               |              | {0,0,1,2} for 64QAM                                                                                                                                                     |  |  |  |
| Number of OFDM<br>symbols for PDCCH per<br>component carrier                                                                                                        | OFDM symbols | 1                                                                                                                                                                       |  |  |  |
| Cross carrier scheduling                                                                                                                                            |              | Not configured                                                                                                                                                          |  |  |  |
| Number of EPDCCH<br>sets                                                                                                                                            |              | 1                                                                                                                                                                       |  |  |  |
| EPDCCH transmission<br>type                                                                                                                                         |              | Localized                                                                                                                                                               |  |  |  |
| Number of PRB per<br>EPDCCH set and<br>EPDCCH PRB pair<br>allocation                                                                                                |              | 2 PRB pairs<br>10MHz BW: Resource blocks $n_{PRB} = 48$ ,<br>49<br>15MHz BW: Resource blocks $n_{PRB} = 70$ ,<br>71<br>20MHz BW: Resource blocks $n_{PRB} = 98$ ,<br>99 |  |  |  |
| EPDCCH Starting<br>Symbol                                                                                                                                           |              | Derived from CFI (i.e. default behaviour)                                                                                                                               |  |  |  |
| ECCE Aggregation<br>Level                                                                                                                                           |              | 2 ECCEs                                                                                                                                                                 |  |  |  |
| Number of EREGs per<br>ECCE                                                                                                                                         |              | 4 for normal subframe and 8 for special<br>subframe                                                                                                                     |  |  |  |
| EPDCCH scheduling                                                                                                                                                   |              | EPDCCH candidate is randomly assigned<br>in each subframe                                                                                                               |  |  |  |
| EPDCCH precoder<br>(Note 2)                                                                                                                                         |              | Fixed PMI 0                                                                                                                                                             |  |  |  |
| EPDCCH monitoring SF<br>pattern                                                                                                                                     |              | UL-DL configuration 1: 1101111111<br>000000000<br>UL-DL configuration 5: 1100111001<br>0000000000                                                                       |  |  |  |
| Timing advance                                                                                                                                                      | μs           | 100                                                                                                                                                                     |  |  |  |
| Propagation condition                                                                                                                                               |              | Static propagation condition<br>No external noise sources are applied                                                                                                   |  |  |  |
| Note 1:       As specified in Table 4.2-1 in TS 36.211 [4].         Note 2:       EPDCCH precoder parameters are defined for tests with 2 x 2 antenna configuration |              |                                                                                                                                                                         |  |  |  |

The requirements are specified in Table 8.7.4-3, with the addition of the parameters in Table 8.7.4-2 and the downlink physical channel setup according to Annex C.3.2. The test points are applied to UE category, CA capability and bandwidth combination with maximum aggregated bandwidth as specified inTable 8.7.4-4. The TB success rate shall be sustained during at least 300 frames.

| Test | Bandwidth<br>(MHz) | Transmission          | Antenn<br>a | Codebook<br>subset |                              | nlink<br>catio               |   |   | $\hat{E}_{_{s}}$ at antenna port | Symbols for unused | ACK/NACK<br>feedback |  |
|------|--------------------|-----------------------|-------------|--------------------|------------------------------|------------------------------|---|---|----------------------------------|--------------------|----------------------|--|
|      | (101712)           | mode configu restrict |             | restriction        | $ ho_{\scriptscriptstyle A}$ | $ ho_{\scriptscriptstyle B}$ | σ | δ | (dBm/15kHz)                      | PRBs               | mode                 |  |
| 1    | 10                 | 1                     | 1 x 2       | N/A                | 0                            | 0                            | 0 | 0 | -85                              | OP.6 TDD           | Bundling             |  |
| 2    | 10                 | 3                     | 2 x 2       | 10                 | -3                           | -3                           | 0 | 3 | -85                              | OP.1 TDD           | Bundling             |  |
| 3    | 20                 | 3                     | 2 x 2       | 10                 | -3                           | -3                           | 0 | 3 | -85                              | OP.1 TDD           | Bundling             |  |
| 3A   | 15                 | 3                     | 2 x 2       | 10                 | -3                           | -3                           | 0 | 3 | -85                              | OP.2 TDD           | Multiplexing         |  |
| 4,6  | 20                 | 3                     | 2 x 2       | 10                 | -3                           | -3                           | 0 | 3 | -85                              | OP.1 TDD           | Multiplexing         |  |

#### Table 8.7.4-2: Test parameters for SDR test for PDSCH scheduled by EPDCCH (TDD)

#### Table 8.7.4-3: Minimum requirement (TDD)

| Test                                          | Number of bits of a DL<br>transport block received<br>a TTI for normal/specia<br>frame | within                                                                                                                                                                                                               | Reference value<br>TB success rate [%] |
|-----------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1                                             | 10296/0                                                                                | R.31E-1 TDD                                                                                                                                                                                                          | 95                                     |
| 2                                             | 25456/0                                                                                | R.31E-2 TDD                                                                                                                                                                                                          | 95                                     |
| 3                                             | 51024/0                                                                                | R.31E-3 TDD                                                                                                                                                                                                          | 95                                     |
| ЗA                                            | 51024/0                                                                                | R.31E-3A TDD                                                                                                                                                                                                         | 85                                     |
| 4                                             | 75376/0 (Note 2)                                                                       | R.31E-4 TDD                                                                                                                                                                                                          | 85                                     |
| 6                                             | 75376/0 (Note 2)                                                                       | R.31E-4 TDD                                                                                                                                                                                                          | 85                                     |
| Note 2: 71 <sup>2</sup><br>Note 3: The<br>the | number of newly transmitted DL tr                                                      | blocks are received within a TTI.<br>success rate = 100%*N <sub>DL_correct_rx</sub> / (N <sub>DL_nev</sub><br>ansport blocks, N <sub>DL_retx</sub> is the number of re<br>of correctly received DL transport blocks. |                                        |

| Table 8.7.4-4: Test | points for sustained data rate ( | FRC) |
|---------------------|----------------------------------|------|
|                     |                                  |      |

| CA<br>config | Bandwidth/<br>Bandwidth<br>combination<br>(MHz) | Category 1                                           | Category 2 | Category 3 | Category 4 | Category 6 | Category 7 |  |  |  |  |  |
|--------------|-------------------------------------------------|------------------------------------------------------|------------|------------|------------|------------|------------|--|--|--|--|--|
| Circala      | 10                                              | 1                                                    | 2          | -          | -          | -          | -          |  |  |  |  |  |
| Single       | 15                                              | -                                                    | -          | ЗA         | ЗA         | -          | -          |  |  |  |  |  |
| carrier      | 20                                              | -                                                    | -          | 3          | 4          | 6          | 6          |  |  |  |  |  |
| Note 1       | The test is selected                            | The test is selected for maximum supported bandwidth |            |            |            |            |            |  |  |  |  |  |

The test is selected for maximum supported bandwidth. Note 1:

#### Demodulation of EPDCCH 8.8

The receiver characteristics of the EPDCCH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). For the distributed transmission tests in 8.8.1, EPDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of EPDCCH. For other tests, EPDCCH and PCFICH are not tested jointly.

#### **Distributed Transmission** 8.8.1

#### 8.8.1.1 FDD

The parameters specified in Table 8.8.1.1-1 are valid for all FDD distributed EPDCCH tests unless otherwise stated.

|                                   |                                                                                                                                                                                                                                                                                                                                     |                              | 1            | 1                                                  |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|----------------------------------------------------|--|--|--|
|                                   | Parame                                                                                                                                                                                                                                                                                                                              | Unit                         | Value        |                                                    |  |  |  |
|                                   | f PDCCH syr                                                                                                                                                                                                                                                                                                                         | symbols                      | 2 (Note 1)   |                                                    |  |  |  |
| PHICH du                          | ration                                                                                                                                                                                                                                                                                                                              |                              | Normal       |                                                    |  |  |  |
|                                   | E-s and PRE                                                                                                                                                                                                                                                                                                                         | 3-s                          |              | OCNG                                               |  |  |  |
| Cell ID                           |                                                                                                                                                                                                                                                                                                                                     |                              | 0            |                                                    |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                     | $ ho_{\scriptscriptstyle A}$ | dB           | -3                                                 |  |  |  |
| Downlink                          | oower                                                                                                                                                                                                                                                                                                                               | $ ho_{\scriptscriptstyle B}$ | dB           | -3                                                 |  |  |  |
| allocation                        |                                                                                                                                                                                                                                                                                                                                     | σ                            | dB           | 0                                                  |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                     | δ                            | dB           | 3                                                  |  |  |  |
| $N_{\scriptscriptstyle oc}$ at an | tenna port                                                                                                                                                                                                                                                                                                                          | dBm/15<br>kHz                | -98          |                                                    |  |  |  |
| Cyclic pret                       | fix                                                                                                                                                                                                                                                                                                                                 |                              | Normal       |                                                    |  |  |  |
| Subframe                          | Configuratio                                                                                                                                                                                                                                                                                                                        |                              | Non-MBSFN    |                                                    |  |  |  |
| Precoder Update Granularity       |                                                                                                                                                                                                                                                                                                                                     |                              | PRB          | 1                                                  |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                     |                              | ms           | 1                                                  |  |  |  |
|                                   | ing Pre-Cod                                                                                                                                                                                                                                                                                                                         |                              | Annex B. 4.4 |                                                    |  |  |  |
| Cell Speci                        | fic Reference                                                                                                                                                                                                                                                                                                                       | e Signal                     |              | Port 0 and 1                                       |  |  |  |
| Number of                         | FEPDCCH S                                                                                                                                                                                                                                                                                                                           | ets Configured               |              | 2 (Note 2)                                         |  |  |  |
| Number of                         | FPRB per EF                                                                                                                                                                                                                                                                                                                         | PDCCH Set                    |              | 4 (1 <sup>st</sup> Set)<br>8 (2 <sup>nd</sup> Set) |  |  |  |
| EPDCCH                            | Subframe M                                                                                                                                                                                                                                                                                                                          | onitoring                    |              | NA                                                 |  |  |  |
| PDSCH T                           | M                                                                                                                                                                                                                                                                                                                                   |                              |              | TM3                                                |  |  |  |
| DCI Forma                         | at                                                                                                                                                                                                                                                                                                                                  |                              |              | 2A                                                 |  |  |  |
| Note 1:                           | lote 1: The starting symbol for EPDCCH is derived from the PCFICH. RRC signalling <i>epdcch-StartSymbol-r11</i> is not                                                                                                                                                                                                              |                              |              |                                                    |  |  |  |
| Note 2:                           | configured.<br>ote 2: The two sets are distributed EPDCCH sets and non-<br>overlapping with PRB = {3, 17, 31, 45} for the first set and<br>PRB = {0, 7, 14, 21, 28, 35, 42, 49} for the second set.<br>EPDCCH is scheduled in the first set for Test 1 and second<br>set for Test 2, respectively. Both sets are always configured. |                              |              |                                                    |  |  |  |

 Table 8.8.1.1-1: Test Parameters for Distributed EPDCCH

For the parameters specified in Table 8.8.1.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.1-2. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.8.1.1-2: Minimum performance Distributed EPDCCH

| Test   | Bandwidth | Aggregatio | Reference | OCNG     | Propagation | Antenna                                    | Referenc      | e value     |
|--------|-----------|------------|-----------|----------|-------------|--------------------------------------------|---------------|-------------|
| number |           | n level    | Channel   | Pattern  | Condition   | configuration<br>and correlation<br>Matrix | Pm-dsg<br>(%) | SNR<br>(dB) |
| 1      | 10 MHz    | 4 ECCE     | R.55 FDD  | OP.7 FDD | EVA5        | 2 x 2 Low                                  | 1             | 2.60        |
| 2      | 10 MHZ    | 16 ECCE    | R.56 FDD  | OP.7 FDD | EVA70       | 2 x 2 Low                                  | 1             | -3.20       |

8.8.1.1.1 Void

#### Table 8.8.1.1.1-1: Void

### 8.8.1.2 TDD

The parameters specified in Table 8.8.1.2-1 are valid for all TDD distributed EPDCCH tests unless otherwise stated.

|                                   | Param                                                                                                                                                                                                                                                                                                                | Unit                         | Value                                              |            |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------|------------|--|--|--|
| Number of                         | f PDCCH sy                                                                                                                                                                                                                                                                                                           | symbols                      | 2 (Note 1)                                         |            |  |  |  |
| PHICH du                          |                                                                                                                                                                                                                                                                                                                      |                              | Normal                                             |            |  |  |  |
|                                   | E-s and PRE                                                                                                                                                                                                                                                                                                          | 3-s                          |                                                    | OCNG       |  |  |  |
| Cell ID                           |                                                                                                                                                                                                                                                                                                                      |                              | 0                                                  |            |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                      | $ ho_{\scriptscriptstyle A}$ | dB                                                 | -3         |  |  |  |
| Downlink  <br>allocation          | oower                                                                                                                                                                                                                                                                                                                | $ ho_{\scriptscriptstyle B}$ | dB                                                 | -3         |  |  |  |
| anocation                         |                                                                                                                                                                                                                                                                                                                      | σ                            | dB                                                 | 0          |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                      | δ                            | dB                                                 | 3          |  |  |  |
| $N_{\scriptscriptstyle oc}$ at an | tenna port                                                                                                                                                                                                                                                                                                           | dBm/15<br>kHz                | -98                                                |            |  |  |  |
| Cyclic pre                        | fix                                                                                                                                                                                                                                                                                                                  |                              |                                                    | Normal     |  |  |  |
| Subframe                          | Configuratio                                                                                                                                                                                                                                                                                                         | n                            |                                                    | Non-MBSFN  |  |  |  |
| Procedor                          | Update Grar                                                                                                                                                                                                                                                                                                          | PRB                          | 1                                                  |            |  |  |  |
| Fiecodel                          | Opuale Grai                                                                                                                                                                                                                                                                                                          | ms                           | 1                                                  |            |  |  |  |
|                                   | ing Pre-Cod                                                                                                                                                                                                                                                                                                          |                              | Annex B. 4.4                                       |            |  |  |  |
|                                   | fic Referenc                                                                                                                                                                                                                                                                                                         |                              | Port 0 and 1                                       |            |  |  |  |
| Number of                         | FEPDCCH S                                                                                                                                                                                                                                                                                                            |                              | 2 (Note 2)                                         |            |  |  |  |
| Number o                          | f PRB per El                                                                                                                                                                                                                                                                                                         |                              | 4 (1 <sup>st</sup> Set)<br>8 (2 <sup>nd</sup> Set) |            |  |  |  |
| EPDCCH                            | Subframe M                                                                                                                                                                                                                                                                                                           | onitoring                    |                                                    | NA         |  |  |  |
| PDSCH T                           | М                                                                                                                                                                                                                                                                                                                    |                              |                                                    | TM3        |  |  |  |
| DCI Forma                         | at                                                                                                                                                                                                                                                                                                                   |                              |                                                    | 2A         |  |  |  |
| TDD UL/D                          | L Configura                                                                                                                                                                                                                                                                                                          | tion                         |                                                    | 0          |  |  |  |
| TDD Spec                          | ial Subfram                                                                                                                                                                                                                                                                                                          |                              |                                                    | 1 (Note 3) |  |  |  |
| Note 1:                           | The starting symbol for EPDCCH is derived from the PCFICH. RRC signalling <i>epdcch-StartSymbol-r11</i> is not configured.                                                                                                                                                                                           |                              |                                                    |            |  |  |  |
| Note 3:                           | Note 2:The two sets are distributed EPDCCH sets and non-<br>overlapping with PRB = {3, 17, 31, 45} for the first set and<br>PRB = {0, 7, 14, 21, 28, 35, 42, 49} for the second set.<br>EPDCCH is scheduled in the first set for Test 1 and second<br>set for Test 2, respectively. Both sets are always configured. |                              |                                                    |            |  |  |  |

 Table 8.8.1.2-1: Test Parameters for Distributed EPDCCH

For the parameters specified in Table 8.8.1.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.1.2-2. The downlink physical setup is in accordance with Annex C.3.2.

 Table 8.8.1.2-2: Minimum performance Distributed EPDCCH

| ſ | Test   | Bandwidth | Aggregation | Reference | OCNG     | Propagation | Antenna                                    | Reference v   |             |
|---|--------|-----------|-------------|-----------|----------|-------------|--------------------------------------------|---------------|-------------|
|   | number |           | level       | Channel   | Pattern  | Condition   | configuration<br>and correlation<br>Matrix | Pm-dsg<br>(%) | SNR<br>(dB) |
|   | 1      | 10 MHz    | 4 ECCE      | R.55 TDD  | OP.7 TDD | EVA5        | 2 x 2 Low                                  | 1             | 2.8         |
| [ | 2      | 10 MHZ    | 16 ECCE     | R.56 TDD  | OP.7 TDD | EVA70       | 2 x 2 Low                                  | 1             | -3.10       |

8.8.1.2.1 Void

#### Table 8.8.1.2.1-1: Void

## 8.8.2 Localized Transmission with TM9

#### 8.8.2.1 FDD

The parameters specified in Table 8.8.2.1-1 are valid for all FDD TM9 localized ePDCCH tests unless otherwise stated.

| Param                              | eter                                                                                                                                                                                               | Unit          | Value                                                                                                |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Number of PDCCH sy                 | mbols                                                                                                                                                                                              | symbols       | 1 (Note 1)                                                                                           |  |  |  |  |
| EPDCCH starting sym                | bol                                                                                                                                                                                                | symbols       | 2 (Note 1)                                                                                           |  |  |  |  |
| PHICH duration                     |                                                                                                                                                                                                    | -             | Normal                                                                                               |  |  |  |  |
| Unused RE-s and PRE                | 3-s                                                                                                                                                                                                |               | OCNG                                                                                                 |  |  |  |  |
| Cell ID                            |                                                                                                                                                                                                    |               | 0                                                                                                    |  |  |  |  |
|                                    | $ ho_{\scriptscriptstyle A}$                                                                                                                                                                       | dB            | 0                                                                                                    |  |  |  |  |
| Downlink power                     | $ ho_{\scriptscriptstyle B}$                                                                                                                                                                       | dB            | 0                                                                                                    |  |  |  |  |
| allocation                         | $\sigma$                                                                                                                                                                                           | dB            | -3                                                                                                   |  |  |  |  |
|                                    | δ                                                                                                                                                                                                  | dB            | 0                                                                                                    |  |  |  |  |
| $N_{oc}$ at antenna port           |                                                                                                                                                                                                    | dBm/15<br>kHz | -98                                                                                                  |  |  |  |  |
| Cyclic prefix                      |                                                                                                                                                                                                    |               | Normal                                                                                               |  |  |  |  |
| Subframe Configuration             | n                                                                                                                                                                                                  |               | Non-MBSFN                                                                                            |  |  |  |  |
|                                    |                                                                                                                                                                                                    | PRB           | 1                                                                                                    |  |  |  |  |
| Precoder Update Granularity        |                                                                                                                                                                                                    | ms            | 1                                                                                                    |  |  |  |  |
| Beamforming Pre-Coc                | ler                                                                                                                                                                                                |               | Annex B.4.5                                                                                          |  |  |  |  |
| Cell Specific Reference            | e Signal                                                                                                                                                                                           |               | Port 0 and 1                                                                                         |  |  |  |  |
| CSI-RS Reference Sig               |                                                                                                                                                                                                    |               | Port 15 and 16                                                                                       |  |  |  |  |
| CSI-RS reference sigr              | nal resource                                                                                                                                                                                       |               | 0                                                                                                    |  |  |  |  |
| configuration                      |                                                                                                                                                                                                    |               | 0                                                                                                    |  |  |  |  |
| CSI reference signal s             | ubframe                                                                                                                                                                                            |               | 2                                                                                                    |  |  |  |  |
| configuration I <sub>CSI-RS</sub>  |                                                                                                                                                                                                    |               |                                                                                                      |  |  |  |  |
| ZP-CSI-RS configurati              |                                                                                                                                                                                                    |               | 00000100000000                                                                                       |  |  |  |  |
| ZP-CSI-RS subframe                 | configuration I <sub>ZP-</sub>                                                                                                                                                                     |               | 2                                                                                                    |  |  |  |  |
| CSI-RS                             |                                                                                                                                                                                                    |               |                                                                                                      |  |  |  |  |
| Number of EPDCCH S                 |                                                                                                                                                                                                    |               | 2 (Note 2)                                                                                           |  |  |  |  |
| EPDCCH Subframe M                  |                                                                                                                                                                                                    |               | 111111110 111111101 111111011                                                                        |  |  |  |  |
| subframePatternConfi               | g-r11                                                                                                                                                                                              | -             | 111110111 (Note 3)<br>TM9                                                                            |  |  |  |  |
| PDSCH TM                           |                                                                                                                                                                                                    |               |                                                                                                      |  |  |  |  |
| set to 1.<br>Note 2: The first set | Note 2: The first set is distributed transmission with PRB = {0, 49} and the second set is localized transmission with PRB = {0, 7, 14, 21, 28, 35, 42, 49}. ePDCCH is scheduled in the second set |               |                                                                                                      |  |  |  |  |
| Note 3: EPDCCH is                  | scheduled in every                                                                                                                                                                                 |               | equired to monitor ePDCCH for UE-specific search<br>atternConfig-r11. Legacy PDCCH is not scheduled. |  |  |  |  |

| Table 8.8.2.1-1: Test Parameters for Localized EPDCCH with TM9 |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

For the parameters specified in Table 8.8.2.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.8.2.1-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of [99.9%].

The downlink physical setup is in accordance with Annex C.3.2.

| Table 8.8.2.1-2: Minimum | performance Localized EPDCCH with TM9 |
|--------------------------|---------------------------------------|
|                          |                                       |

| Test  | Bandwidt | Aggregatio | Reference | OCNG     | Propagatio  | Antenna                                    | Referenc      | e value     |
|-------|----------|------------|-----------|----------|-------------|--------------------------------------------|---------------|-------------|
| numbe | r h      | n level    | Channel   | Pattern  | n Condition | configuration<br>and correlation<br>Matrix | Pm-dsg<br>(%) | SNR<br>(dB) |
| 1     | 10 MHz   | 2 ECCE     | R.57 FDD  | OP.7 FDD | EVA5        | 2 x 2 Low                                  | 1             | 12.2        |
| 2     | 10 MHZ   | 8 ECCE     | R.58 FDD  | OP.7 FDD | EVA5        | 2 x 2 Low                                  | 1             | 2.5         |

### 8.8.2.1.1 Void

#### Table 8.8.2.1.1-1: Void

8.8.2.1.2 Void

Table 8.8.2.1.2-1: Void

#### Table 8.8.2.1.2-2: Void

#### Table 8.8.2.1.2-3: Void

## 8.8.2.2 TDD

The parameters specified in Table 8.8.2.2-1 are valid for all TDD TM9 localized ePDCCH tests unless otherwise stated.

| Parame                                                                                                                                                                                                        | eter                                                                                                  | Unit          | Value                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------|--|
| Number of PDCCH syr                                                                                                                                                                                           | nbols                                                                                                 | symbols       | 1 (Note 1)                                                                                  |  |
| EPDCCH starting syml                                                                                                                                                                                          | loc                                                                                                   | symbols       | 2 (Note 1)                                                                                  |  |
| PHICH duration                                                                                                                                                                                                |                                                                                                       |               | Normal                                                                                      |  |
| Unused RE-s and PRE                                                                                                                                                                                           | -s                                                                                                    |               | OCNG                                                                                        |  |
| Cell ID                                                                                                                                                                                                       | -                                                                                                     |               | 0                                                                                           |  |
|                                                                                                                                                                                                               | $ ho_{\scriptscriptstyle A}$                                                                          | dB            | 0                                                                                           |  |
| Downlink power                                                                                                                                                                                                | $ ho_{\scriptscriptstyle B}$                                                                          | dB            | 0                                                                                           |  |
| allocation                                                                                                                                                                                                    | σ                                                                                                     | dB            | -3                                                                                          |  |
|                                                                                                                                                                                                               | δ                                                                                                     | dB            | 0                                                                                           |  |
| $N_{\scriptscriptstyle oc}$ at antenna port                                                                                                                                                                   |                                                                                                       | dBm/15<br>kHz | -98                                                                                         |  |
| Cyclic prefix                                                                                                                                                                                                 |                                                                                                       |               | Normal                                                                                      |  |
| Subframe Configuratio                                                                                                                                                                                         | n                                                                                                     |               | Non-MBSFN                                                                                   |  |
|                                                                                                                                                                                                               |                                                                                                       | PRB           | 1                                                                                           |  |
| Precoder Update Gran                                                                                                                                                                                          | ularity                                                                                               | ms            | 1                                                                                           |  |
| Beamforming Pre-Cod                                                                                                                                                                                           | er                                                                                                    |               | Annex B.4.5                                                                                 |  |
| Cell Specific Reference                                                                                                                                                                                       |                                                                                                       |               | Port 0 and 1                                                                                |  |
| CSI-RS Reference Sig                                                                                                                                                                                          | nal                                                                                                   |               | Port 15 and 16                                                                              |  |
| CSI-RS reference sign                                                                                                                                                                                         | al resource                                                                                           |               | 0                                                                                           |  |
| configuration                                                                                                                                                                                                 |                                                                                                       |               | -                                                                                           |  |
| CSI reference signal su                                                                                                                                                                                       | ubtrame                                                                                               |               | 0                                                                                           |  |
| configuration I <sub>CSI-RS</sub>                                                                                                                                                                             | an hitman                                                                                             |               | 000001000000000                                                                             |  |
| ZP-CSI-RS configuration                                                                                                                                                                                       | on bilinap                                                                                            |               | 00000100000000                                                                              |  |
| CSI-RS                                                                                                                                                                                                        | configuration IZP-                                                                                    |               | 0                                                                                           |  |
| Number of EPDCCH S                                                                                                                                                                                            | ets                                                                                                   |               | 2 (Note 2)                                                                                  |  |
| EPDCCH Subframe MosubframePatternConfig                                                                                                                                                                       |                                                                                                       |               | 1100011000 1100010000 1100011000<br>1100001000 1100011000 1000011000<br>1100011000 (Note 3) |  |
| PDSCH TM                                                                                                                                                                                                      |                                                                                                       |               | TM9                                                                                         |  |
| TDD UL/DL Configurat                                                                                                                                                                                          | ion                                                                                                   |               | 0                                                                                           |  |
| TDD Special Subframe                                                                                                                                                                                          |                                                                                                       |               | 1 (Note 4)                                                                                  |  |
|                                                                                                                                                                                                               |                                                                                                       | H is signalle | d with epdcch-StartSymbol-r11. However, CFI is                                              |  |
| Note 2: The first set is distributed transmission with PRB = {0, 49} and the second set is localized transmission with PRB = {0, 7, 14, 21, 28, 35, 42, 49}. ePDCCH is scheduled in the second for all tests. |                                                                                                       |               |                                                                                             |  |
| space only i                                                                                                                                                                                                  | equired to monitor ePDCCH for UE-specific search<br>PatternConfig-r11. Legacy PDCCH is not scheduled. |               |                                                                                             |  |
| Note 4: Demodulation                                                                                                                                                                                          | on performance is a                                                                                   | veraged over  | er normal and special subframe.                                                             |  |

#### Table 8.8.2.2-1: Test Parameters for Localized EPDCCH with TM9

For the parameters specified in Table 8.8.2.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.2.2.2-2. EPDCCH subframe monitoring is configured and the subframe monitoring requirement in EPDCCH restricted subframes is statDTX of [99.9%].

The downlink physical setup is in accordance with Annex C.3.2.

#### Table 8.8.2.2-2: Minimum performance Localized EPDCCH with TM9

| Test   | Bandwidth | Aggregation | Reference | OCNG     | Propagation | Antenna                                    | Reference     | e value     |
|--------|-----------|-------------|-----------|----------|-------------|--------------------------------------------|---------------|-------------|
| number |           | level       | Channel   | Pattern  | Condition   | configuration<br>and correlation<br>Matrix | Pm-dsg<br>(%) | SNR<br>(dB) |
| 1      | 10 MHz    | 2 ECCE      | R.57 TDD  | OP.7 TDD | EVA5        | 2 x 2 Low                                  | 1             | 12.8        |
| 2      | 10 MHZ    | 8 ECCE      | R.58 TDD  | OP.7 TDD | EVA5        | 2 x 2 Low                                  | 1             | 2.0         |

8.8.2.2.1 Void

#### Table 8.8.2.2.1-1: Void

8.8.2.2.2 Void

Table 8.8.2.2.2-1: Void

#### Table 8.8.2.2.2-2: Void

#### Table 8.8.2.2.2-3: Void

### 8.8.3 Localized transmission with TM10 Type B quasi co-location type

#### 8.8.3.1 FDD

For the parameters specified in Table 8.8.3.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.1-2. In Table 8.8.3.1-1, transmission point 1 (TP 1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

## Table 8.8.3.1-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

| Ba                                   | Parameter                                                                       |                   | Te                                                                   | est 1                                     | Tes                                                                         | st 2                                                                        |
|--------------------------------------|---------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                      |                                                                                 | Unit              | TP 1                                                                 | TP 2                                      | TP 1                                                                        | TP 2                                                                        |
| PHICH durat                          |                                                                                 |                   |                                                                      |                                           | ormal                                                                       |                                                                             |
| Downlink                             | $\rho_{\scriptscriptstyle A}$                                                   | dB                |                                                                      |                                           | 0                                                                           |                                                                             |
| power                                | $ ho_{\scriptscriptstyle B}$                                                    | dB                |                                                                      |                                           | 0                                                                           |                                                                             |
| allocation                           | σ                                                                               | dB                |                                                                      |                                           | -3                                                                          |                                                                             |
|                                      | δ                                                                               | dB                |                                                                      |                                           | 0                                                                           | 1                                                                           |
| $\hat{E}_s/N_{oc}$                   |                                                                                 | dB                | 0dB power<br>imbalance is<br>considered<br>between TP 1<br>and TP 2, | Reference value<br>in Table 8.8.3.1-<br>2 | Reference value<br>in Table 8.8.3.1-<br>2                                   | Reference value<br>in Table 8.8.3.1-<br>2                                   |
| $N_{\scriptscriptstyle oc}$ at anten | na port                                                                         | dBm/<br>15kH<br>z |                                                                      | -                                         | 98                                                                          |                                                                             |
| Bandwidth                            |                                                                                 | MHz               | 10                                                                   | 10                                        | 10                                                                          | 10                                                                          |
| Number of co<br>EPDCCH Se            | ts                                                                              |                   |                                                                      | lote 1)                                   | 2 (N                                                                        | ote1)                                                                       |
| EPDCCH-PR<br>(setConfigId)           |                                                                                 |                   | 0                                                                    | 1                                         | 0                                                                           | 1                                                                           |
| PRB-set                              | type of EPDCCH-                                                                 |                   | Localized                                                            | Localized                                 | Localized                                                                   | Localized                                                                   |
| Number of P<br>EPDCCH-PR             | B-set                                                                           | PRB               | 8                                                                    | 8                                         | 8                                                                           | 8                                                                           |
|                                      | amforming model                                                                 |                   | Annex B.4.5<br>TM10                                                  | Annex B.4.5<br>TM10                       | Annex B.4.5<br>TM10                                                         | Annex B.4.5<br>TM10                                                         |
|                                      | PDSCH transmission mode<br>PDSCH transmission<br>scheduling                     |                   | Blanked in all the subframes                                         | Transmit in all the subframes             | Probability of<br>occurrence of<br>PDSCH<br>transmission is<br>30% (Note 3) | Probability of<br>occurrence of<br>PDSCH<br>transmission is<br>70% (Note 3) |
| Non-zero<br>power CSI                | CSI reference<br>signal<br>configuration                                        |                   | N/A                                                                  | 0                                         | N/A                                                                         | 0                                                                           |
| reference<br>signal<br>(NZPId=1)     | CSI reference<br>signal subframe<br>configuration<br>I <sub>CSI-RS</sub>        |                   | N/A                                                                  | 2                                         | N/A                                                                         | 2                                                                           |
| Non-zero<br>power CSI                | CSI reference<br>signal<br>configuration                                        |                   | N/A                                                                  | N/A                                       | 10                                                                          | N/A                                                                         |
| reference<br>signal<br>(NZPId=2)     | CSI reference<br>signal subframe<br>configuration<br><i>I</i> <sub>CSI-RS</sub> |                   | N/A                                                                  | N/A                                       | 2                                                                           | N/A                                                                         |
| Zero power<br>CSI<br>reference       | CSI-RS<br>Configuration list<br>(ZeroPowerCSI-<br>RS bitmap)                    | Bitma<br>p        | N/A                                                                  | 0000010000000<br>000                      | N/A                                                                         | 1000010000000<br>000                                                        |
| signal<br>(ZPId=1)                   | CSI-RS<br>subframe<br>configuration<br>I <sub>CSI-RS</sub>                      |                   | N/A                                                                  | 2                                         | N/A                                                                         | 2                                                                           |
| Zero power<br>CSI                    | CSI-RS<br>Configuration list<br>(ZeroPowerCSI-<br>RS bitmap)                    | Bitma<br>p        | N/A                                                                  | N/A                                       | 1000010000000<br>000                                                        | N/A                                                                         |
| reference<br>signal<br>(ZPId=2)      | CSI-RS<br>subframe<br>configuration<br>I <sub>CSI-RS</sub>                      |                   | N/A                                                                  | N/A                                       | 2                                                                           | N/A                                                                         |
| PQI set 0<br>(Note 4)                | Non-Zero power<br>CSI RS Identity<br>(NZPId)                                    |                   | N/A                                                                  | 1                                         | N/A                                                                         | 1                                                                           |

|                                                                                                                                                                                                    | Zero power CSI<br>RS Identity<br>(ZPId)                                                                                         |             | N/A                            | 1                              | N/A                            | 1                              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|
| PQI set 1                                                                                                                                                                                          | Non-Zero power<br>CSI RS Identity<br>(NZPId)                                                                                    |             | N/A                            | N/A                            | 2                              | N/A                            |  |  |
| (Note 4)                                                                                                                                                                                           | Zero power CSI<br>RS Identity<br>(ZPId)                                                                                         |             | N/A                            | N/A                            | 2                              | N/A                            |  |  |
| Number o                                                                                                                                                                                           | f PDCCH symbols                                                                                                                 | Symb<br>ols | 1 (Note 2)                     |                                |                                |                                |  |  |
| EPDCCH                                                                                                                                                                                             | starting position                                                                                                               |             | pdsch-Start-<br>r11=2 (Note 2) | pdsch-Start-<br>r11=2 (Note 2) | pdsch-Start-<br>r11=2 (Note 2) | pdsch-Start-<br>r11=2 (Note 2) |  |  |
| Subframe                                                                                                                                                                                           | configuration                                                                                                                   |             | Non-MBSFN                      | Non-MBSFN                      | Non-MBSFN                      | Non-MBSFN                      |  |  |
| Time offs                                                                                                                                                                                          | et between TPs                                                                                                                  | μs          | N/A                            | 2                              | N/A                            | 2                              |  |  |
| Frequenc                                                                                                                                                                                           | y shift between TPs                                                                                                             | Hz          | N/A                            | 200                            | N/A                            | 200                            |  |  |
| Cell ID                                                                                                                                                                                            |                                                                                                                                 |             | 0                              | 126                            | 0                              | 126                            |  |  |
| Note 1:<br>Note 2:                                                                                                                                                                                 | Note 1: Resource blocks n <sub>PRB</sub> =0, 7, 14, 21, 28, 35, 42, 49 are allocated for both the first set and the second set. |             |                                |                                |                                |                                |  |  |
| Note 3: The TP from which PDSCH is transmitted shall be randomly determined independently for each subframe<br>Probabilities of occurrence of PDSCH transmission from TP 1 and TP 2 are specified. |                                                                                                                                 |             |                                |                                |                                |                                |  |  |
| Note 4:                                                                                                                                                                                            | For PQI set 0, PDSCH<br>transmitted from TP1.                                                                                   |             |                                |                                |                                | and EPDCCH are                 |  |  |

| Test   | Aggregation | Reference | OCNG     | Propagation | Antenna                                    | Reference  | e value  |
|--------|-------------|-----------|----------|-------------|--------------------------------------------|------------|----------|
| number | level       | Channel   | Pattern  | Condition   | configuration<br>and correlation<br>Matrix | Pm-dsg (%) | SNR (dB) |
| 1      | 2 ECCE      | R.59 FDD  | OP.7 FDD | EVA5        | 2 x 2 Low                                  | 1          | [13.4]   |
| 2      | 2 ECCE      | R.59 FDD  | OP.7 FDD | EVA5        | 2 x 2 Low                                  | 1          | [13.4]   |

## 8.8.3.2 TDD

For the parameters specified in Table 8.8.3.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified values in Table 8.8.3.2-2. In Table 8.8.3.2-1, transmission point 1 (TP1) is the serving cell. The downlink physical setup is in accordance with Annex C.3.2.

## Table 8.8.3.2-1: Test Parameters for Localized Transmission TM10 Type B quasi co-location type

| De                                   | romotor                                                                         | Unit              | Те                                                                   | est 1                                     | Tes                                                                                 | st 2                                                                                |
|--------------------------------------|---------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                      | rameter                                                                         | Unit              | TP 1                                                                 | TP 2                                      | TP 1                                                                                | TP 2                                                                                |
| PHICH durat                          |                                                                                 |                   |                                                                      |                                           | ormal                                                                               |                                                                                     |
| Downlink                             | $ ho_{\scriptscriptstyle A}$                                                    | dB                |                                                                      |                                           | 0                                                                                   |                                                                                     |
| power                                | $ ho_{\scriptscriptstyle B}$                                                    | dB                |                                                                      |                                           | 0                                                                                   |                                                                                     |
| allocation                           | σ                                                                               | dB                |                                                                      |                                           | -3                                                                                  |                                                                                     |
|                                      | δ                                                                               | dB                |                                                                      |                                           | 0                                                                                   | 1                                                                                   |
| $\hat{E}_s/N_{oc}$                   |                                                                                 | dB                | 0dB power<br>imbalance is<br>considered<br>between TP 1<br>and TP 2, | Reference value<br>in Table 8.8.3.2-<br>2 | Reference value<br>in Table 8.8.3.2-<br>2                                           | Reference value<br>in Table 8.8.3.2-<br>2                                           |
| $N_{\scriptscriptstyle oc}$ at anten | na port                                                                         | dBm/<br>15kH<br>z |                                                                      | -                                         | 98                                                                                  |                                                                                     |
| Bandwidth                            |                                                                                 | MHz               | 10                                                                   | 10                                        | 10                                                                                  | 10                                                                                  |
| Number of E                          |                                                                                 |                   | 2 (N                                                                 | lote 1)                                   | 2 (N                                                                                | ote1)                                                                               |
| EPDCCH-PR<br>(setConfigId)           |                                                                                 |                   | 0                                                                    | 1                                         | 0                                                                                   | 1                                                                                   |
| PRB-set                              | type of EPDCCH-                                                                 |                   | Localized                                                            | Localized                                 | Localized                                                                           | Localized                                                                           |
| Number of P<br>EPDCCH-PR             | B-set                                                                           | PRB               | 8                                                                    | 8                                         | 8                                                                                   | 8                                                                                   |
|                                      | amforming model                                                                 |                   | Annex B.4.5                                                          | Annex B.4.5                               | Annex B.4.5                                                                         | Annex B.4.5                                                                         |
|                                      | PDSCH transmission mode<br>PDSCH transmission<br>scheduling                     |                   | TM10<br>Blanked in all<br>the subframes                              | TM10<br>Transmit in all<br>the subframes  | TM10<br>Probability of<br>occurrence of<br>PDSCH<br>transmission is<br>30% (Note 3) | TM10<br>Probability of<br>occurrence of<br>PDSCH<br>transmission is<br>70% (Note 3) |
| CSI reference<br>configuration       | S                                                                               |                   | Antenna ports<br>15,16                                               | Antenna ports<br>15,16                    | Antenna ports<br>15,16                                                              | Antenna ports<br>15,16                                                              |
| Non-zero<br>power CSI                | CSI reference<br>signal<br>configuration                                        |                   | N/A                                                                  | 0                                         | N/A                                                                                 | 0                                                                                   |
| reference<br>signal<br>(NZPId=1)     | CSI reference<br>signal subframe<br>configuration<br>I <sub>CSI-RS</sub>        |                   | N/A                                                                  | 0                                         | N/A                                                                                 | 0                                                                                   |
| Non-zero<br>power CSI                | CSI reference<br>signal<br>configuration                                        |                   | N/A                                                                  | N/A                                       | 10                                                                                  | N/A                                                                                 |
| reference<br>signal<br>(NZPId=2)     | CSI reference<br>signal subframe<br>configuration<br><i>I</i> <sub>CSI-RS</sub> |                   | N/A                                                                  | N/A                                       | 0                                                                                   | N/A                                                                                 |
| Zero power<br>CSI<br>reference       | CSI-RS<br>Configuration list<br>(ZeroPowerCSI-<br>RS bitmap)                    | Bitma<br>p        | N/A                                                                  | 0000010000000<br>000                      | N/A                                                                                 | 1000010000000<br>000                                                                |
| signal<br>(ZPId=1)                   | CSI-RS<br>subframe<br>configuration<br>I <sub>CSI-RS</sub>                      |                   | N/A                                                                  | 0                                         | N/A                                                                                 | 0                                                                                   |
| Zero power<br>CSI<br>reference       | CSI-RS<br>Configuration list<br>(ZeroPowerCSI-<br>RS bitmap)                    | Bitma<br>p        | N/A                                                                  | N/A                                       | 1000010000000<br>000                                                                | N/A                                                                                 |
| signal<br>(ZPId=2)                   | CSI-RS<br>subframe<br>configuration<br>I <sub>CSI-RS</sub>                      |                   | N/A                                                                  | N/A                                       | 0                                                                                   | N/A                                                                                 |

| PQI set 0  | Non-Zero power<br>CSI RS Identity<br>(NZPId)                         |             | N/A                            | 1                              | N/A                            | 1                              |  |  |
|------------|----------------------------------------------------------------------|-------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--|--|
| (Note 4)   | Zero power CSI<br>RS Identity<br>(ZPId)                              |             | N/A                            | 1                              | N/A                            | 1                              |  |  |
| PQI set 1  | Non-Zero power<br>CSI RS Identity<br>(NZPId)                         |             | N/A                            | N/A                            | 2                              | N/A                            |  |  |
| (Note 4)   | Zero power CSI<br>RS Identity<br>(ZPId)                              |             | N/A                            | N/A                            | 2                              | N/A                            |  |  |
| Number of  | f PDCCH symbols                                                      | Symb<br>ols | 1 (Note 2)                     |                                |                                |                                |  |  |
| EPDCCH     | starting position                                                    |             | pdsch-Start-<br>r11=2 (Note 2) | pdsch-Start-<br>r11=2 (Note 2) | pdsch-Start-<br>r11=2 (Note 2) | pdsch-Start-<br>r11=2 (Note 2) |  |  |
| Subframe   | configuration                                                        |             | Non-MBSFN                      | Non-MBSFN                      | Non-MBSFN                      | Non-MBSFN                      |  |  |
| Time offse | et between TPs                                                       | μs          | N/A                            | 2                              | N/A                            | 2                              |  |  |
| Frequency  | / shift between TPs                                                  | Hz          | N/A                            | 200                            | N/A                            | 200                            |  |  |
| Cell ID    |                                                                      |             | 0                              | 126                            | 0                              | 126                            |  |  |
| TDD UL/D   | L configuration                                                      |             |                                |                                | 0                              |                                |  |  |
| TDD spec   | ial subframe                                                         |             |                                |                                | 1                              |                                |  |  |
| Note 1:    | Resource blocks n <sub>PRB</sub>                                     |             |                                |                                |                                |                                |  |  |
| Note 2:    | The starting OFDM sy                                                 | mbol for I  | EPDCCH is deterr               | nined from the high            | er layer signalling p          | dsch-Start-r11.                |  |  |
|            | And CFI is set to 1.                                                 |             |                                |                                |                                |                                |  |  |
| Note 3:    | The TP from which PD                                                 |             |                                |                                |                                | or each subframe.              |  |  |
|            | Probabilities of occurre                                             |             |                                |                                |                                |                                |  |  |
| Note 4:    | For PQI set 0, PDSCH                                                 |             |                                |                                |                                | and EPDCCH are                 |  |  |
|            | transmitted from TP1. EPDCCH and PDSCH are transmitted from same TP. |             |                                |                                |                                |                                |  |  |

Table 8.8.3.2-2: Minimum Performance

| Test   | Aggregation | Reference | OCNG     | Propagation | Antenna                                    | Reference  | e value  |
|--------|-------------|-----------|----------|-------------|--------------------------------------------|------------|----------|
| number | level       | Channel   | Pattern  | Condition   | configuration<br>and correlation<br>Matrix | Pm-dsg (%) | SNR (dB) |
| 1      | 2 ECCE      | R.59 TDD  | OP.7 TDD | EVA5        | 2 x 2 Low                                  | 1          | [13.6]   |
| 2      | 2 ECCE      | R.59 TDD  | OP.7 TDD | EVA5        | 2 x 2 Low                                  | 1          | [13.6]   |

## 9 Reporting of Channel State Information

## 9.1 General

This section includes requirements for the reporting of channel state information (CSI). For all test cases in this section,

the definition of SNR is in accordance with the one given in clause 8.1.1, where  $S_{1.1}$ 

$$NR = \frac{\sum \hat{I}_{or}^{(j)}}{\sum N_{oc}^{(j)}}.$$

## 9.2 CQI reporting definition under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in TS 36.213 [6]. To account for sensitivity of the input SNR the reporting definition is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

# 9.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbols)

### 9.2.1.1 FDD

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-1 shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1.

| Parameter                                                                                                                                           |                                                                                                                                               | Unit         | Te      | Test 1 Test 2 |                  |     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------------|------------------|-----|--|--|
| Bandwidth                                                                                                                                           |                                                                                                                                               | MHz          |         |               | 10               |     |  |  |
| PDSCH transmission                                                                                                                                  | on mode                                                                                                                                       |              |         | 1             |                  |     |  |  |
| Downlink power                                                                                                                                      | $ ho_{\scriptscriptstyle A}$                                                                                                                  | dB           |         | 0             |                  |     |  |  |
| Downlink power<br>allocation                                                                                                                        | $ ho_{\scriptscriptstyle B}$                                                                                                                  | dB           | 0       |               |                  |     |  |  |
|                                                                                                                                                     | σ                                                                                                                                             | dB           |         |               | 0                |     |  |  |
| Propagation condit<br>antenna configu                                                                                                               |                                                                                                                                               |              |         | AWGI          | N (1 x 2)        |     |  |  |
| SNR (Note 2                                                                                                                                         | 2)                                                                                                                                            | dB           | 0       | 1             | 6                | 7   |  |  |
| $\hat{I}^{(j)}_{or}$                                                                                                                                |                                                                                                                                               | dB[mW/15kHz] | -98     | -97           | -92              | -91 |  |  |
| $N_{oc}^{(j)}$                                                                                                                                      |                                                                                                                                               | dB[mW/15kHz] | -98 -98 |               |                  | 98  |  |  |
| Max number of H<br>transmission                                                                                                                     |                                                                                                                                               |              |         | 1             |                  |     |  |  |
| Physical channel f<br>reporting                                                                                                                     | or CQI                                                                                                                                        |              |         | PUCCH         | Format 2         |     |  |  |
| PUCCH Report                                                                                                                                        | Туре                                                                                                                                          |              |         |               | 4                |     |  |  |
| Reporting period                                                                                                                                    | dicity                                                                                                                                        | ms           |         | Np            | <sub>d</sub> = 5 |     |  |  |
| cqi-pmi-Configurati                                                                                                                                 | onIndex                                                                                                                                       |              |         |               | 6                |     |  |  |
|                                                                                                                                                     | Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG<br>Pattern OP.1 FDD as described in Annex A.5.1.1. |              |         |               |                  |     |  |  |
| Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level. |                                                                                                                                               |              |         |               |                  |     |  |  |

Table 9.2.1.1-1: PUCCH 1-0 static test (FDD)

### 9.2.1.2 TDD

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-2 shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1.

| Paramete                                                                                                                                                                                                                                                                             | r                            | Unit                | Те             | st 1           | Те               | st 2    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|----------------|----------------|------------------|---------|
| Bandwidt                                                                                                                                                                                                                                                                             | า                            | MHz                 |                |                | 10               |         |
| PDSCH transmiss                                                                                                                                                                                                                                                                      | ion mode                     |                     |                |                | 1                |         |
| Uplink downlink co                                                                                                                                                                                                                                                                   | nfiguration                  |                     |                |                | 2                |         |
| Special subfr                                                                                                                                                                                                                                                                        | ame                          |                     |                |                | 4                |         |
| configuration                                                                                                                                                                                                                                                                        | on                           |                     |                |                | 4                |         |
| Downlink nower                                                                                                                                                                                                                                                                       | $ ho_{\scriptscriptstyle A}$ | dB                  |                |                | 0                |         |
| Downlink power<br>allocation                                                                                                                                                                                                                                                         | $ ho_{\scriptscriptstyle B}$ | dB                  |                |                | 0                |         |
|                                                                                                                                                                                                                                                                                      | σ                            | dB                  |                |                | 0                |         |
| Propagation cond<br>antenna configu                                                                                                                                                                                                                                                  |                              |                     |                | AWGI           | N (1 x 2)        |         |
| SNR (Note                                                                                                                                                                                                                                                                            | 2)                           | dB                  | 0              | 1              | 6                | 7       |
| $\hat{I}^{(j)}_{or}$                                                                                                                                                                                                                                                                 |                              | dB[mW/15kHz]        | -98            | -97            | -92              | -91     |
| $N_{oc}^{(j)}$                                                                                                                                                                                                                                                                       |                              | dB[mW/15kHz]        | -98 -98        |                |                  | 98      |
| Max number of                                                                                                                                                                                                                                                                        | HARQ                         |                     |                |                | 1                |         |
| transmissio                                                                                                                                                                                                                                                                          |                              |                     |                |                | I                |         |
| Physical channel                                                                                                                                                                                                                                                                     | for CQI                      |                     | PUSCH (Note 3) |                |                  |         |
| reporting                                                                                                                                                                                                                                                                            |                              |                     |                | 1 0001         |                  |         |
| PUCCH Repor                                                                                                                                                                                                                                                                          |                              |                     |                |                | 4                |         |
| Reporting perio                                                                                                                                                                                                                                                                      |                              | ms                  |                | Np             | <sub>d</sub> = 5 |         |
| cqi-pmi-Configura                                                                                                                                                                                                                                                                    |                              |                     |                |                | 3                |         |
| ACK/NACK feedba                                                                                                                                                                                                                                                                      |                              |                     |                |                | plexing          |         |
|                                                                                                                                                                                                                                                                                      |                              | ent channel accordi |                | A.4-2 with one | sided dynam      | IC OCNG |
| Pattern OP.1 TDD as described in Annex A.5.2.1.<br>Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s)<br>and the respective wanted signal input level.                                                                            |                              |                     |                |                |                  |         |
| Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2. |                              |                     |                |                |                  |         |

#### Table 9.2.1.2-1: PUCCH 1-0 static test (TDD)

#### 9.2.1.3 FDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.3-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets 0.1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

| D                                                                     |                              | 11-24        |                                                          | Tes                                  | t 1                                                                  |                                                                      | Te                                                 | st 2                                                                 |  |
|-----------------------------------------------------------------------|------------------------------|--------------|----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|--|
| Parameter                                                             |                              | Unit         | Ce                                                       |                                      | Cell 2                                                               | Ce                                                                   | ell 1                                              | Cell 2                                                               |  |
| Bandwidth                                                             |                              | MHz          |                                                          | 1(                                   |                                                                      |                                                                      |                                                    | 0                                                                    |  |
| PDSCH transmission                                                    | on mode                      |              | 2                                                        | 2                                    | Note 10                                                              |                                                                      | 2                                                  | Note 10                                                              |  |
| Downlink power                                                        | $ ho_{\scriptscriptstyle A}$ | dB           |                                                          | -3                                   | 3                                                                    | -3                                                                   |                                                    |                                                                      |  |
| allocation                                                            | $ ho_{\scriptscriptstyle B}$ | dB           |                                                          | -3                                   | 3                                                                    |                                                                      | -3                                                 |                                                                      |  |
|                                                                       | σ                            | dB           |                                                          | 0                                    |                                                                      |                                                                      | (                                                  | C                                                                    |  |
| Propagation condit<br>antenna configu                                 |                              |              | Clause B.1                                               |                                      | 3.1 (2x2)                                                            |                                                                      | Clause I                                           | 3.1 (2x2)                                                            |  |
| $\widehat{E}_{s}/N_{oc2}$ (Not                                        |                              | dB           | 4                                                        | 5                                    | 6                                                                    | 4 5                                                                  |                                                    | -12                                                                  |  |
| $\mathbf{r}(i)$                                                       | $N_{oc1}^{(j)}$              | dBm/15kHz    | -102 (Note 7)                                            |                                      | N/A                                                                  |                                                                      | lote 7)                                            | N/A                                                                  |  |
| $N_{oc}^{(j)}$ at antenna port                                        | $N_{oc2}^{(j)}$              | dBm/15kHz    | -98 (N                                                   | lote 8)                              | N/A                                                                  |                                                                      | lote 8)                                            | N/A                                                                  |  |
| pon                                                                   | $N_{oc3}^{(j)}$              | dBm/15kHz    | -94.8 (I                                                 | Note 9)                              | N/A                                                                  | -98(N                                                                | lote 9)                                            | N/A                                                                  |  |
| $\hat{I}^{(j)}_{or}$                                                  |                              | dB[mW/15kHz] | -94                                                      | -93                                  | -92                                                                  | -94                                                                  | -93                                                | -110                                                                 |  |
| Subframe Configu                                                      | uration                      |              | Non-N                                                    |                                      | Non-MBSFN                                                            |                                                                      | <b>IBSFN</b>                                       | Non-MBSFN                                                            |  |
| Cell Id                                                               |                              |              | (                                                        |                                      | 1                                                                    |                                                                      | 0                                                  | 1                                                                    |  |
| Time Offset betwee                                                    | en Cells                     | μs           | 2.5                                                      | (synchro                             | nous cells)                                                          | 2.5                                                                  | (synchr                                            | onous cells)                                                         |  |
| ABS pattern (Note 2)                                                  |                              |              | N/A                                                      |                                      | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 | N/A                                                                  |                                                    | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 |  |
| RLM/RRM Measu<br>Subframe Pattern                                     |                              |              | 00000100<br>00000100<br>00000100<br>00000100<br>00000100 |                                      | N/A                                                                  | 00000100<br>00000100<br>00000100<br>00000100<br>00000100             |                                                    | N/A                                                                  |  |
| CSI Subframe Sets                                                     | C <sub>CSI,0</sub>           |              | 0101<br>0101<br>0101<br>0101<br>0101<br>0101             | 0101<br>0101<br>0101<br>0101<br>0101 | N/A                                                                  | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 |                                                    | N/A                                                                  |  |
| (Note 3)                                                              | C <sub>CSI,1</sub>           |              | 1010<br>1010<br>1010<br>1010                             | 1010<br>1010<br>1010                 | N/A                                                                  | 1010<br>1010<br>1010<br>1010                                         | )1010<br>)1010<br>)1010<br>)1010<br>)1010<br>)1010 | N/A                                                                  |  |
| Number of control<br>symbols                                          | OFDM                         |              |                                                          | 3                                    |                                                                      |                                                                      |                                                    | 3                                                                    |  |
| Max number of H<br>transmission                                       |                              |              |                                                          | 1                                    |                                                                      |                                                                      |                                                    | 1                                                                    |  |
| Physical channel for reporting                                        | C <sub>CSI,0</sub> CQI       |              | F                                                        | PUCCH                                | Format 2                                                             |                                                                      | PUCCH                                              | Format 2                                                             |  |
| Physical channel for reporting                                        | C <sub>CSI,1</sub> CQI       |              | F                                                        | PUSCH (                              | Note 12)                                                             |                                                                      | PUSCH                                              | (Note 12)                                                            |  |
| PUCCH Report                                                          |                              | N/-          |                                                          | 4                                    |                                                                      |                                                                      |                                                    | 4                                                                    |  |
| Reporting period<br>cqi-pmi-Configurati<br>C <sub>CSI,0</sub> (Note 1 | ionIndex                     | Ms           | 6                                                        | N <sub>pd</sub>                      | = 5<br>N/A                                                           |                                                                      | N <sub>pd</sub><br>6                               | = 5<br>N/A                                                           |  |
| cqi-pmi-Configuratio                                                  | onIndex2                     |              | 5                                                        | ;                                    | N/A                                                                  |                                                                      | 5                                                  | N/A                                                                  |  |

| Table 9.2.1.3-1: PUCCH 1-0 static test (FDD) |
|----------------------------------------------|
|----------------------------------------------|

| <ul> <li>Note 1: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.</li> <li>Note 2: ABS pattern as defined in [9].</li> <li>Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]</li> <li>Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.</li> <li>Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 14: cq<i>i-pmi-ConfigurationIndex2</i> is applied for C<sub>CSI.0</sub>.</li> </ul> |         |                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------|
| <ul> <li>Note 2: ABS pattern as defined in [9].</li> <li>Note 3: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]</li> <li>Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.</li> <li>Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 1 accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQl it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: <i>cqi-pmi-ConfigurationIndex</i> is applied for C<sub>CS1.0</sub>.</li> </ul>                    | Note 1: |                                                                                                     |
| <ul> <li>Note 4: As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]</li> <li>Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.</li> <li>Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: <i>cqi-pmi-ConfigurationIndex</i> is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                                | Note 2: |                                                                                                     |
| <ul> <li>measurements defined in [7]</li> <li>Note 5: Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]</li> <li>Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.</li> <li>Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: <i>cqi-pmi-ConfigurationIndex</i> is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                     | Note 3: | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]       |
| <ul> <li>Note 6: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.</li> <li>Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: <i>cqi-pmi-ConfigurationIndex</i> is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note 4: |                                                                                                     |
| <ul> <li>the same.</li> <li>Note 7: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.</li> <li>Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: cqi-pmi-ConfigurationIndex is applied for CcsI.0.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Note 5: | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]       |
| <ul> <li>overlapping with the aggressor ABS.</li> <li>Note 8: This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: cqi-pmi-ConfigurationIndex is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note 6: |                                                                                                     |
| <ul> <li>ABS.</li> <li>Note 9: This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.</li> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: cqi-pmi-ConfigurationIndex is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note 7: |                                                                                                     |
| <ul> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: cqi-pmi-ConfigurationIndex is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Note 8: |                                                                                                     |
| <ul> <li>Note 10: Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5</li> <li>Note 11: Reference measurement channel in Cell 1 according to Table A.4-1 for UE Cateogry 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: cqi-pmi-ConfigurationIndex is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Note 9: | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.         |
| <ul> <li>dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP. 1/2 FDD as described in Annex A.5.1.1 and A.5.1.2.</li> <li>Note 12: To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.</li> <li>Note 13: cqi-pmi-ConfigurationIndex is applied for C<sub>CSI,0</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Note 10 |                                                                                                     |
| instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.<br>Note 13: <i>cqi-pmi-ConfigurationIndex</i> is applied for C <sub>CSI,0</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note 11 | dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1, and Table A.4-7 for Category 1 with    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note 12 | instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic |
| Note 14: cqi-pmi-ConfigurationIndex2 is applied for C <sub>CSI,1</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note 13 | cqi-pmi-ConfigurationIndex is applied for C <sub>CSI,0</sub>                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note 14 | cqi-pmi-ConfigurationIndex2 is applied for C <sub>CSI,1</sub>                                       |

### 9.2.1.4 TDD (CSI measurements in case two CSI subframe sets are configured)

The following requirements apply to UE Category  $\geq 1$ . For the parameters specified in Table 9.2.1.4-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-1 for Cell 2 and C.3.2-2, the reported CQI value according to Table A.4-2 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time. If the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by (median CQI - 1) shall be less than or equal to 0.1. The value of the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  minus the median CQI obtained by reports in CSI subframe sets 0.1 and shall be larger than or equal to 0 and less than or equal to 1 in Test 2.

|                                                          |                              |              |                          | Tes      | st 1                     |                          | Te                         | st 2                     |  |
|----------------------------------------------------------|------------------------------|--------------|--------------------------|----------|--------------------------|--------------------------|----------------------------|--------------------------|--|
| Parameter                                                |                              | Unit         | Ce                       |          | Cell 2                   | Ce                       | ll 1                       | Cell 2                   |  |
| Bandwidth                                                |                              | MHz          |                          |          | 0                        |                          | 10                         |                          |  |
| PDSCH transmission                                       |                              |              | 2                        | 2        | Note 10                  | 2                        |                            | Note 10                  |  |
| Uplink downlink con                                      |                              |              |                          |          | 1                        |                          | 1                          |                          |  |
| Special subfra<br>configuration                          |                              |              |                          | 2        | 4                        |                          | 4                          | 4                        |  |
| Downlink power $\rho_A$                                  |                              | dB           |                          | -3       |                          |                          | -3                         |                          |  |
| allocation                                               | $ ho_{\scriptscriptstyle B}$ | dB           |                          | -3       |                          |                          | -3                         |                          |  |
|                                                          | σ                            | dB           |                          | (        | )                        |                          | (                          | 0                        |  |
| Propagation condit<br>antenna configu                    |                              |              |                          | Clause E | 3.1 (2x2)                |                          | Clause I                   | B.1 (2x2)                |  |
| $\widehat{E}_{s}/N_{oc2}$ (Not                           | te 1)                        | dB           | 4                        | 5        | 6                        | 4                        | 5                          | -12                      |  |
|                                                          | $N_{oc1}^{(j)}$              | dBm/15kHz    | -102 (1                  | Note 7)  | N/A                      | -98 (N                   | lote 7)                    | N/A                      |  |
| $N_{\scriptscriptstyle oc}^{(j)}$ at antenna             | $N_{oc2}^{(j)}$              | dBm/15kHz    | -98 (Note 8)             |          | N/A                      | -98 (N                   | lote 8)                    | N/A                      |  |
| port                                                     | $N_{oc3}^{(j)}$              | dBm/15kHz    | -94.8 (Note 9)           |          | N/A                      | -98 (N                   | lote 9)                    | N/A                      |  |
| $\hat{I}_{or}^{(j)}$                                     |                              | dB[mW/15kHz] | -94                      | -93      | -92                      | -94                      | -93                        | -110                     |  |
| Subframe Configu                                         | uration                      |              | Non-M                    | IBSFN    | Non-MBSFN                | Non-N                    | IBSFN                      | Non-MBSFN                |  |
| Cell Id                                                  |                              |              | (                        | )        | 1                        | (                        | C                          | 1                        |  |
| Time Offset betwee                                       | en Cells                     | μs           | 2.5                      | (synchro | onous cells)             | 2.5                      | i (synchr                  | onous cells)             |  |
| ABS pattern (No                                          | ote 2)                       |              | N/A                      |          | 0100010001<br>0100010001 | N                        | /A                         | 0100010001<br>0100010001 |  |
| RLM/RRM Measu<br>Subframe Pattern                        |                              |              | 000000001<br>0000000001  |          | N/A                      |                          | 00001                      | N/A                      |  |
| CSI Subframe Sets                                        | C <sub>CSI,0</sub>           |              | 0100010001<br>0100010001 |          | N/A                      | 0100010001<br>0100010001 |                            | N.A                      |  |
| (Note 3)                                                 | C <sub>CSI,1</sub>           |              | 1000101000<br>1000101000 |          | N/A                      | 1000101000<br>1000101000 |                            | N/A                      |  |
| Number of control                                        | OFDM                         |              | 10001                    |          | -                        | 10001                    |                            | -                        |  |
| symbols                                                  |                              |              | 3                        |          | 3                        |                          |                            |                          |  |
| Max number of H<br>transmission                          |                              |              | 1                        |          |                          | 1                        |                            |                          |  |
| Physical channel for C <sub>CSI,0</sub> CQI<br>reporting |                              |              | PUCCH Format 2           |          |                          | PUCCH Format 2           |                            |                          |  |
| Physical channel for $C_{CSI,1}$ CQI                     |                              |              | PUSCH (Note 12)          |          | 1                        | PUS                      | SCH                        |                          |  |
| reporting<br>PUCCH Report Type                           |                              |              | 4                        |          | +                        |                          | 1                          |                          |  |
| Reporting periodicity                                    |                              | ms           |                          |          | = 5                      |                          | $\frac{4}{N_{\rm pd} = 5}$ |                          |  |
| cqi-pmi-Configurati<br>C <sub>CSI,0</sub> (Note 1        | ionIndex                     |              | 3                        | 3        | N/A                      | :                        | 3                          | N/A                      |  |
| cqi-pmi-Configuratio                                     | onIndex2                     |              |                          | 1        | N/A                      |                          | 4                          | N/A                      |  |
| ACK/NACK feedba                                          |                              |              |                          | Multip   | lexing                   |                          | Multiplexing               |                          |  |

## Table 9.2.1.4-1: PUCCH 1-0 static test (TDD)

| Note 1:  | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.                                                                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | ABS pattern as defined in [9].                                                                                                                                                                                                                                                                    |
| Note 3:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                                                                     |
| Note 4:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                                                                                                                                                                          |
| Note 5:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                                                                     |
| Note 6:  | Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell1 and Cell2 is the same.                                                                                                                                                                             |
| Note 7:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.                                                                                                                                                                  |
| Note 8:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS                                                                                                                                                                                            |
| Note 9:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.                                                                                                                                                                                                       |
| Note 10: | Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5                                                                                                                                                                        |
| Note 11: | Reference measurement channel in Cell 1 according to Table A.4-2 for UE Category ≥2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1, and Table A.4-8 for Category 1 with one/two sided dynami OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1 and Annex A.5.2.2. |
| Note 12: | To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.                     |
| Note 13: |                                                                                                                                                                                                                                                                                                   |
| Note 14: | cqi-pmi-ConfigurationIndex2 is applied for C <sub>CSI,1</sub> .                                                                                                                                                                                                                                   |

# 9.2.1.5 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in Table 9.2.1.5-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C.3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to Table A.4-1 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by the set of the median CQI is greater than 0.1. If the PDSCH BLER in ABS subframes using transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. The BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

|                                                          |                              | 11. 2     | Test 1 Test 2                                                        |                                                                      |                                                                      |                                                                      |  |  |  |
|----------------------------------------------------------|------------------------------|-----------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Parameter                                                |                              | Unit      | Cell 1                                                               | Cell 2 and 3                                                         | Cell 1                                                               | Cell 2 and 3                                                         |  |  |  |
| Bandwidth                                                |                              | MHz       | 1                                                                    | -                                                                    |                                                                      | 0                                                                    |  |  |  |
| PDSCH transmission                                       |                              |           | 2                                                                    | Note 10                                                              | 2 Note 10                                                            |                                                                      |  |  |  |
| Downlink power                                           | $ ho_{\scriptscriptstyle A}$ | dB        | -:                                                                   |                                                                      |                                                                      | 3                                                                    |  |  |  |
| allocation                                               | $ ho_{\scriptscriptstyle B}$ | dB        |                                                                      |                                                                      | -3                                                                   |                                                                      |  |  |  |
|                                                          | σ                            | dB        | C                                                                    | )                                                                    | (                                                                    | 0                                                                    |  |  |  |
| Propagation condition and<br>antenna configuration       |                              |           | Clause E                                                             | 3.1 (2x2)                                                            | Clause I                                                             | B.1 (2x2)                                                            |  |  |  |
| $\widehat{E}_{s} ig / N_{oc2}$ (Not                      | te 1)                        | dB        | 4 5                                                                  | Cell 2: 12<br>Cell 3: 10                                             | 13 14                                                                | Cell 2: 12<br>Cell 3: 10                                             |  |  |  |
|                                                          | $N_{oc1}^{(j)}$              | dBm/15kHz | -98 (Note 7)                                                         | N/A                                                                  | -98 (Note 7)                                                         | N/A                                                                  |  |  |  |
| $N_{\scriptscriptstyle oc}^{(j)}$ at antenna port        | $N_{oc2}^{(j)}$              | dBm/15kHz | -98 (Note 8)                                                         | N/A                                                                  | -98 (Note 8)                                                         | N/A                                                                  |  |  |  |
| pon                                                      | $N_{oc3}^{(j)}$              | dBm/15kHz | -93 (Note 9)                                                         | N/A                                                                  | -93 (Note 9)                                                         | N/A                                                                  |  |  |  |
| Subframe Config                                          | uration                      |           | Non-MBSFN                                                            | Non-MBSFN                                                            | Non-MBSFN                                                            | Non-MBSFN                                                            |  |  |  |
| Cell Id                                                  |                              |           | 0                                                                    | Cell 2: 6<br>Cell 3: 1                                               | 0                                                                    | Cell 2: 6<br>Cell 3: 1                                               |  |  |  |
|                                                          |                              |           | Cell 2:                                                              |                                                                      | Cell 2:                                                              | 3 usec                                                               |  |  |  |
| Time Offset betwee                                       | en Cells                     | μs        | Cell 3: -1usec                                                       |                                                                      |                                                                      | -1usec                                                               |  |  |  |
| Frequency Shift between Cells                            |                              | Hz        | Cell 2: 300Hz                                                        |                                                                      |                                                                      | 300Hz                                                                |  |  |  |
|                                                          |                              |           | Cell 3: -100Hz                                                       |                                                                      | Cell 3: -100Hz                                                       |                                                                      |  |  |  |
| ABS pattern (Note 2)                                     |                              |           | N/A                                                                  | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 | N/A                                                                  | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 |  |  |  |
| RLM/RRM Measurement<br>Subframe Pattern (Note 4)         |                              |           | 00000100<br>00000100<br>00000100<br>00000100<br>00000100             | N/A                                                                  | 00000100<br>00000100<br>00000100<br>00000100<br>00000100             | N/A                                                                  |  |  |  |
| CSI Subframe Sets                                        | C <sub>CSI,0</sub>           |           | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 | N/A                                                                  | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 | N/A                                                                  |  |  |  |
| (Note 3)                                                 | C <sub>CSI,1</sub>           |           | 10101010<br>10101010<br>10101010<br>10101010<br>10101010             | N/A                                                                  | 10101010<br>10101010<br>10101010<br>10101010<br>10101010<br>10101010 | N/A                                                                  |  |  |  |
| Number of control<br>symbols                             | OFDM                         |           | 3                                                                    | 8                                                                    | ;                                                                    | 3                                                                    |  |  |  |
| Max number of H<br>transmissior                          |                              |           | 1                                                                    |                                                                      |                                                                      | 1                                                                    |  |  |  |
| Physical channel for C <sub>CSI,0</sub> CQI<br>reporting |                              |           | PUCCH Format 2                                                       |                                                                      | PUCCH                                                                | Format 2                                                             |  |  |  |
| Physical channel for C <sub>CSI,1</sub> CQI<br>reporting |                              |           | PUSCH (Note 12)                                                      |                                                                      | PUSCH (Note 12)                                                      |                                                                      |  |  |  |
| PUCCH Report Type                                        |                              |           | 4                                                                    | ŀ                                                                    |                                                                      | 4                                                                    |  |  |  |
| Reporting perio                                          | dicity                       | Ms        | N <sub>pd</sub>                                                      | = 5                                                                  | N <sub>pd</sub>                                                      | = 5                                                                  |  |  |  |
| cqi-pmi-Configurati<br>C <sub>CSI,0</sub> (Note 1        | 3)                           |           | 6                                                                    | N/A                                                                  | 6                                                                    | N/A                                                                  |  |  |  |
| cqi-pmi-Configuratio<br>C <sub>CSI,1</sub> (Note 1       |                              |           | 5                                                                    | N/A                                                                  | 5                                                                    | N/A                                                                  |  |  |  |

| Note 1:   | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:   | ABS pattern as defined in [9].                                                                                                                                                                    |
| Note 3:   | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                     |
| Note 4:   | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]                                                                           |
| Note 5:   | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                     |
| Note 6:   | Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 are the same.                                                       |
| Note 7:   | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.                                                                  |
| Note 8:   | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.                                                                                           |
| Note 9:   | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.                                                                                                       |
| Note 10:  | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5                                                             |
| Note 11:  | Reference measurement channel in Cell 1 according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.                                                      |
| Note 12:  | To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic |
|           | CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.                                                                                                                       |
| Note 13:  | cqi-pmi-ConfigurationIndex is applied for C <sub>CSL0</sub> .                                                                                                                                     |
|           | $cqi-pmi-ConfigurationIndex2$ is applied for $C_{CSI,1}$ .                                                                                                                                        |
| 11010 111 |                                                                                                                                                                                                   |

# 9.2.1.6 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in Table 9.2.1.6-1, and using the downlink physical channels specified in tables C.3.2-1 for Cell 1, C3.3-2 for Cell 2 and Cell 3, and C.3.2-2, the reported CQI value according to Table A.4-2 in subframes overlapping with aggressor cell ABS and non-ABS subframes shall be in the range of  $\pm 1$  of the reported median more than 90% of the time.

For test 1 and test 2, if the PDSCH BLER in ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,0}$  is less than or equal to 0.1, the BLER in ABS subframes using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER in ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by the set of the median CQI is greater than 0.1. If the PDSCH BLER in ABS subframes using transport format indicated by the median CQI is greater than 0.1, the BLER in ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

For test 2, if the PDSCH BLER in non-ABS subframes using the transport format indicated by median CQI obtained by reports in CSI subframe sets  $C_{CSI,1}$  is less than or equal to 0.1, the BLER in non-ABS subframes using the transport format indicated by the (median CQI + 2) shall be greater than 0.1. If the PDSCH BLER in non-ABS subframes using the transport format indicated by the median CQI is greater than 0.1, the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. If the PDSCH BLER in non-ABS subframes using transport format indicated by the median CQI is greater than 0.1. The BLER in non-ABS subframes using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

|                                                       |                        |           |                                  | Tee              | st 1                             | Test 2       |                  |                          |
|-------------------------------------------------------|------------------------|-----------|----------------------------------|------------------|----------------------------------|--------------|------------------|--------------------------|
| Parameter                                             |                        | Unit      | Ce                               | <u>   1</u>      | Cell 2 and 3                     | Ce           | ell 1            | Cell 2 and 3             |
| Bandwidth                                             |                        | MHz       |                                  |                  | 0                                |              |                  | 0                        |
| PDSCH transmission                                    |                        |           | 2                                | 2                | Note 10                          |              | 2                | Note 10                  |
| Uplink downlink con                                   |                        |           |                                  |                  | 1                                |              |                  | 1                        |
| Special subfra<br>configuratio                        |                        |           |                                  | 2                | 4                                |              |                  | 4                        |
| Downlink power $\rho_A$<br>allocation $\rho_B$        |                        | dB        |                                  | -3               |                                  |              | -3               |                          |
|                                                       |                        | dB        |                                  | -3               |                                  |              | -3               |                          |
| anocation                                             | σ                      | dB        |                                  | (                | )                                |              |                  | 0                        |
| Propagation condi<br>antenna configu                  | tion and               |           |                                  | Clause E         | 3.1 (2x2)                        |              | Clause I         | B.1 (2x2)                |
| $\widehat{E}_{s}ig/N_{oc2}$ (No                       | te 1)                  | dB        | 4                                | 5                | Cell 2: 12<br>Cell 3: 10         | 13           | 14               | Cell 2: 12<br>Cell 3: 10 |
|                                                       | $N_{oc1}^{(j)}$        | dBm/15kHz | -98 (N                           | lote 7)          | N/A                              | -98 (N       | lote 7)          | N/A                      |
| $N_{oc}^{(j)}$ at antenna                             | $N_{oc2}^{(j)}$        | dBm/15kHz | -98 (N                           | -98 (Note 8) N/A |                                  | -98 (Note 8) |                  | N/A                      |
| port                                                  | $N_{oc3}^{(j)}$        | dBm/15kHz | -93 (Note 9) N/A                 |                  | -93 (Note 9)                     |              | N/A              |                          |
| Subframe Config                                       | uration                |           | Non-MBSFN                        |                  | Non-MBSFN                        | Non-MBSFN    |                  | Non-MBSFN                |
| Cell Id                                               |                        |           | 0                                |                  | Cell 2: 6<br>Cell 3: 1           | 0            |                  | Cell 2: 6<br>Cell 3: 1   |
| Time Offset betwee                                    | en Cells               | μs        | Cell 2: 3 usec<br>Cell 3: -1usec |                  | Cell 2: 3 usec<br>Cell 3: -1usec |              |                  |                          |
| Frequency shift betw                                  | veen Cells             | Hz        | Cell 2: 300Hz<br>Cell 3: -100Hz  |                  | Cell 2: 300Hz<br>Cell 3: -100Hz  |              | 300Hz            |                          |
| ABS pattern (No                                       | ote 2)                 |           | N                                | /A               | 0100010001<br>0100010001         | N            | /A               | 0100010001<br>0100010001 |
| RLM/RRM Measu<br>Subframe Pattern                     |                        |           | 00000                            |                  | N/A                              |              | )00001<br>)00001 | N/A                      |
| CSI Subframe Sets                                     | C <sub>CSI,0</sub>     |           | 01000<br>01000                   | 10001            | N/A                              | 01000        | )10001<br>)10001 | N.A                      |
| (Note 3)                                              | C <sub>CSI,1</sub>     |           |                                  | 01000<br>01000   | N/A                              |              | 01000<br>01000   | N/A                      |
| Number of control<br>symbols                          | OFDM                   |           | 3                                |                  | 3                                |              |                  |                          |
| Max number of H<br>transmissior                       | ns                     |           | 1                                |                  | 1                                |              | 1                |                          |
| Physical channel for<br>reporting                     | C <sub>CSI,0</sub> CQI |           | PUCCH Format 2                   |                  |                                  | PUCCH        | Format 2         |                          |
| Physical channel for C <sub>CSI,1</sub> CQI reporting |                        |           | PUSCH (Note 12)                  |                  | PUSCH (Note 12)                  |              | (Note 12)        |                          |
| PUCCH Report Type                                     |                        |           |                                  |                  | 1                                | 4            |                  | •                        |
| Reporting periodicity                                 |                        | ms        |                                  | Npd              | = 5                              |              | Npd              | = 5                      |
| cqi-pmi-Configurati<br>C <sub>CSI,0</sub> (Note 1     | 3)                     |           | 3                                | 3                | N/A                              | :            | 3                | N/A                      |
| cqi-pmi-Configuratio                                  | onIndex2               |           | 4                                | 4                | N/A                              |              | 4                | N/A                      |
| ACK/NACK feedba                                       |                        |           |                                  | Multip           | lexing                           |              | Multip           | lexing                   |

## Table 9.2.1.6-1: PUCCH 1-0 static test (TDD)

| Note 1:  | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | ABS pattern as defined in [9].                                                                                                               |
| Note 3:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                |
| Note 4:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                     |
| Note 5:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                |
| Note 6:  | Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.   |
| Note 7:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.             |
| Note 8:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS                                       |
| Note 9:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.                                                  |
| Note 10: | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5        |
| Note 11: | Reference measurement channel in Cell 1 according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1. |
| Note 12: | To avoid collisions between HARQ-ACK and wideband CQI it is necessary to report both on PUSCH                                                |
|          | instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic                                          |
|          | CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.                                                                  |
| Note 13: | cqi-pmi-ConfigurationIndex is applied for C <sub>CSI,0.</sub>                                                                                |
| Note 14: | cai-pmi-ConfigurationIndex2 is applied for Cost                                                                                              |

# 9.2.2 Minimum requirement PUCCH 1-1 (Cell-Specific Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

#### 9.2.2.1 FDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.2.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1 - 1$ , median  $CQI_1 + 1$ } for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

| Parameter                                                                                                                                                                                                                                                                                                          |            | Unit                                         | Те             | Test 1 Test 2 |                   |            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|----------------|---------------|-------------------|------------|--|--|
| Bandwidth                                                                                                                                                                                                                                                                                                          |            | MHz                                          |                |               | 10                |            |  |  |
| PDSCH transmissio                                                                                                                                                                                                                                                                                                  | on mode    |                                              |                |               | 4                 |            |  |  |
| Downlink power $\rho_A$ allocation $\rho_B$                                                                                                                                                                                                                                                                        |            | dB                                           |                |               |                   |            |  |  |
|                                                                                                                                                                                                                                                                                                                    |            | dB                                           | -3             |               |                   |            |  |  |
|                                                                                                                                                                                                                                                                                                                    | σ          | dB                                           | 0              |               |                   |            |  |  |
| Propagation condit<br>antenna configur                                                                                                                                                                                                                                                                             |            |                                              |                | Clause        | B.1 (2 x 2)       |            |  |  |
| CodeBookSubsetRe<br>bitmap                                                                                                                                                                                                                                                                                         | estriction |                                              |                | 010000        |                   |            |  |  |
| SNR (Note 2                                                                                                                                                                                                                                                                                                        | 2)         | dB                                           | 10             | 11            | 16                | 17         |  |  |
| $\hat{I}^{(j)}_{or}$                                                                                                                                                                                                                                                                                               |            | dB[mW/15kHz]                                 | -88            | -87           | -82               | -81        |  |  |
| $N_{oc}^{(j)}$                                                                                                                                                                                                                                                                                                     |            | dB[mW/15kHz]                                 | -98 -98        |               |                   |            |  |  |
| Max number of H<br>transmission                                                                                                                                                                                                                                                                                    |            |                                              | 1              |               |                   |            |  |  |
| Physical channel for<br>reporting                                                                                                                                                                                                                                                                                  | CQI/PMI    |                                              | PUCCH Format 2 |               |                   |            |  |  |
| PUCCH Report Ty<br>CQI/PMI                                                                                                                                                                                                                                                                                         | /pe for    |                                              | 2              |               |                   |            |  |  |
| PUCCH Report Typ                                                                                                                                                                                                                                                                                                   | e for RI   |                                              | 3              |               |                   |            |  |  |
| Reporting period                                                                                                                                                                                                                                                                                                   | dicity     | ms                                           |                | Np            | <sub>od</sub> = 5 |            |  |  |
| cqi-pmi-Configurati                                                                                                                                                                                                                                                                                                | onIndex    |                                              |                |               | 6                 |            |  |  |
| ri-ConfigInde                                                                                                                                                                                                                                                                                                      | x          |                                              |                | 1 (N          | lote 3)           |            |  |  |
| Note 1:       Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.         Note 2:       For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level. |            |                                              |                |               |                   |            |  |  |
| Note 3: It is intende                                                                                                                                                                                                                                                                                              | ed to have | UL collisions betwee<br>he eNB in this test. |                | and HARQ-A    | CK, since the     | RI reports |  |  |

#### Table 9.2.2.1-1: PUCCH 1-1 static test (FDD)

#### 9.2.2.2 TDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.2.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1 - 1$ , median  $CQI_1 + 1$ } for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

|                         | Parameter                                                                                                                                                                       |                              | Unit                                     | Те               | Test 1 Test 2    |                 |            |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|------------------|------------------|-----------------|------------|--|
|                         | Bandwidth                                                                                                                                                                       |                              | MHz                                      |                  |                  | 10              |            |  |
| PDSCH transmission mode |                                                                                                                                                                                 |                              |                                          |                  |                  | 4               |            |  |
|                         | ownlink conf                                                                                                                                                                    |                              |                                          |                  |                  | 2               |            |  |
|                         | ecial subfrai<br>configuratior                                                                                                                                                  |                              |                                          |                  |                  | 4               |            |  |
| Downlin                 | nk power                                                                                                                                                                        | $ ho_{\scriptscriptstyle A}$ | dB                                       |                  |                  | -3              |            |  |
|                         | ation                                                                                                                                                                           | $ ho_{\scriptscriptstyle B}$ | dB                                       |                  |                  | -3              |            |  |
|                         |                                                                                                                                                                                 | σ                            | dB                                       |                  |                  | 0               |            |  |
|                         | ation conditi                                                                                                                                                                   |                              |                                          |                  | Clause I         | 3.1 (2 x 2)     |            |  |
|                         | okSubsetRe<br>bitmap                                                                                                                                                            |                              |                                          |                  | 010              | 0000            |            |  |
| 5                       | SNR (Note 2                                                                                                                                                                     | )                            | dB                                       | 10               | 11               | 16              | 17         |  |
|                         | $\hat{I}_{or}^{(j)}$                                                                                                                                                            | /                            | dB[mW/15kHz]                             | -88              | -87              | -82             | -81        |  |
| $N_{oc}^{(j)}$          |                                                                                                                                                                                 | dB[mW/15kHz]                 | -98 -98                                  |                  |                  | 98              |            |  |
|                         | number of H<br>ransmission                                                                                                                                                      |                              |                                          | 1                |                  |                 |            |  |
| -                       | channel for                                                                                                                                                                     | -                            |                                          |                  |                  |                 |            |  |
| <b>,</b>                | reporting                                                                                                                                                                       |                              |                                          | PUSCH (Note 3)   |                  |                 |            |  |
|                         | CH Report                                                                                                                                                                       |                              |                                          | 2                |                  |                 |            |  |
|                         | orting period                                                                                                                                                                   |                              | ms                                       | $N_{\rm pd} = 5$ |                  |                 |            |  |
|                         | -Configuration                                                                                                                                                                  |                              |                                          |                  |                  | 3               |            |  |
|                         | i-ConfigInde                                                                                                                                                                    |                              |                                          | 805 (Note 4)     |                  |                 |            |  |
|                         | CK feedbac                                                                                                                                                                      |                              |                                          |                  |                  | plexing         |            |  |
| Note 1:                 |                                                                                                                                                                                 |                              | ent channel accord<br>described in Annex |                  | A.4-2 with one   | sided dynam     | ic OCNG    |  |
| Note 2:                 |                                                                                                                                                                                 |                              | imum requirements                        |                  | lled for at leas | t one of the tv | vo SNR(s)  |  |
|                         |                                                                                                                                                                                 |                              | anted signal input le                    |                  |                  |                 |            |  |
| Note 3:                 |                                                                                                                                                                                 |                              | tween CQI/PMI rep                        |                  |                  |                 |            |  |
|                         | PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and<br>#8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe |                              |                                          |                  |                  |                 |            |  |
|                         | SF#7 and                                                                                                                                                                        |                              |                                          |                  |                  |                 | k subirame |  |
| Note 4:                 |                                                                                                                                                                                 |                              | s set to the maximur                     | n allowable l    | enath of 160m    | s to minimise   | collisions |  |
| 11010 4.                |                                                                                                                                                                                 |                              | and HARQ-ACK re                          |                  |                  |                 |            |  |
|                         |                                                                                                                                                                                 |                              | I reports will be dro                    |                  |                  |                 |            |  |
|                         |                                                                                                                                                                                 |                              | ction shall be skippe                    |                  |                  |                 |            |  |

#### Table 9.2.2.2-1: PUCCH 1-1 static test (TDD)

## 9.2.3 Minimum requirement PUCCH 1-1 (CSI Reference Symbols)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

### 9.2.3.1 FDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.3.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband CQI<sub>1</sub> shall be within the set {median CQI<sub>1</sub> -1, median CQI<sub>1</sub> +1} for more than 90% of the time, where the resulting wideband values CQI<sub>1</sub> shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI<sub>0</sub> – 1 and median CQI<sub>1</sub> – 1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER

using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

| Parameter                                      | r                                  | Unit                                   | Те                            | st 1             | Tes                | st 2        |  |
|------------------------------------------------|------------------------------------|----------------------------------------|-------------------------------|------------------|--------------------|-------------|--|
| Bandwidth                                      |                                    | MHz                                    |                               |                  | 10                 |             |  |
| PDSCH transmissi                               | on mode                            |                                        |                               |                  | 9                  |             |  |
|                                                | $ ho_{\scriptscriptstyle A}$       | dB                                     | 0                             |                  |                    |             |  |
| Downlink power                                 | $ ho_{\scriptscriptstyle B}$       | dB                                     | 0                             |                  |                    |             |  |
| allocation                                     | P <sub>c</sub>                     | dB                                     |                               |                  | -3                 |             |  |
|                                                | σ                                  | dB                                     |                               |                  | -3                 |             |  |
| Cell-specific referen                          | ce signals                         |                                        |                               | Antenna          | ports 0, 1         |             |  |
| CSI reference s                                |                                    |                                        |                               |                  | orts 15,,18        |             |  |
| CSI-RS periodicity an                          |                                    |                                        |                               | •                |                    |             |  |
| offset                                         |                                    |                                        |                               | 5                | 5/1                |             |  |
| $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$ | -RS                                |                                        |                               |                  |                    |             |  |
| CSI reference signal c                         | onfiguration                       |                                        |                               |                  | 0                  |             |  |
| Propagation condition                          |                                    |                                        |                               | Clause           | $= 1 (4 \times 2)$ |             |  |
| configuratio                                   |                                    |                                        | Clause B.1 (4 x 2)            |                  |                    |             |  |
| Beamforming N                                  |                                    |                                        | As specified in Section B.4.3 |                  |                    |             |  |
| CodeBookSubsetRestr                            |                                    | dB                                     | 0x0000 0000 0100 0000         |                  |                    |             |  |
| SNR (Note :                                    | SNR (Note 2)                       |                                        | 7                             | 8                | 13                 | 14          |  |
| $\hat{I}^{(j)}_{or}$                           |                                    | dB[mW/15kHz]                           | -91                           | -90              | -85                | -84         |  |
| $N_{oc}^{(j)}$                                 |                                    | dB[mW/15kHz]                           | -98 -98                       |                  | 8                  |             |  |
| Max number of HARQ t                           | ransmissions                       |                                        |                               |                  | 1                  |             |  |
| Physical channel for                           | r CQI/PMI                          |                                        |                               | PUSCH            | H (Note3)          |             |  |
| reporting                                      |                                    |                                        |                               | 10301            | 1 (110185)         |             |  |
| PUCCH Report Type                              |                                    |                                        |                               |                  | 2                  |             |  |
| Physical channel for I                         |                                    |                                        |                               |                  | Format 2           |             |  |
| PUCCH Report Ty                                |                                    |                                        |                               |                  | 3                  |             |  |
| Reporting perio                                |                                    | ms                                     | $N_{\rm pd}=5$                |                  |                    |             |  |
| CQI delay                                      |                                    | ms                                     |                               |                  | 8                  |             |  |
| cqi-pmi-Configurat                             |                                    |                                        |                               |                  | 2                  |             |  |
| ri-ConfigInd                                   |                                    |                                        |                               |                  | 1                  |             |  |
|                                                |                                    | nannel according to T                  | Table A.4-1a                  | with one side    | d dynamic OCI      | NG Pattern  |  |
|                                                |                                    | Annex A.5.1.1.                         |                               |                  |                    |             |  |
|                                                | t, the minimum<br>anted signal inj | requirements shall t                   | be fulfilled for              | r at least one o | of the two SNR     | (s) and the |  |
| Note 3: To avoid coll                          | isions between                     | CQI/PMI reports an<br>PDCCH DCI format |                               |                  |                    |             |  |
|                                                |                                    | nultiplex with the HAF                 |                               |                  |                    |             |  |

Table 9.2.3.1-1: PUCCH 1-1 static test (FDD)

#### 9.2.3.2 TDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.3.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1$  -1, median  $CQI_1$  +1} for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

| Parameter                                                                |                                       |                              | Unit                                       | Tes              | st 1           | Tes                | st 2        |  |
|--------------------------------------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------|------------------|----------------|--------------------|-------------|--|
| Bandwidth                                                                |                                       | MHz                          |                                            |                  | 10             |                    |             |  |
| PDSCH transmission mode                                                  |                                       |                              | 9                                          |                  |                |                    |             |  |
| Uplink downlink configuration                                            |                                       |                              |                                            | 2                |                |                    |             |  |
|                                                                          | ubframe co                            |                              |                                            |                  |                | 4                  |             |  |
|                                                                          |                                       | $ ho_{\scriptscriptstyle A}$ | dB                                         |                  |                | 0                  |             |  |
| Downlink                                                                 |                                       | $ ho_{\scriptscriptstyle B}$ | dB                                         |                  |                | 0                  |             |  |
| allocat                                                                  | tion                                  | $P_c$                        | dB                                         |                  |                | -6                 |             |  |
|                                                                          |                                       | σ                            | dB                                         |                  |                | -3                 |             |  |
|                                                                          | reference s                           |                              |                                            |                  |                | ports 0, 1         |             |  |
| CSI r                                                                    | eference si                           | gnals                        |                                            |                  | Antenna p      | orts 15,,22        |             |  |
| CSI-RS pe                                                                | riodicity an                          | d subframe                   |                                            |                  |                |                    |             |  |
| 1                                                                        | offset                                |                              |                                            |                  | 5              | 5/3                |             |  |
| To                                                                       | $\Delta_{CSI-RS}$ / $\Delta_{CSI-RS}$ | RS                           |                                            |                  |                |                    |             |  |
| CSI referen                                                              | ice signal c                          | onfiguration                 |                                            |                  |                | 0                  |             |  |
|                                                                          |                                       | and antenna                  |                                            |                  | Clause         | B.1 (8 x 2)        |             |  |
|                                                                          | configuratio                          |                              |                                            |                  |                |                    |             |  |
| Bear                                                                     | mforming N                            | lodel                        |                                            |                  |                | n Section B.4.     |             |  |
|                                                                          |                                       | iction bitmap                |                                            |                  | 0 0000 0020    | 000 0000 000       |             |  |
| S                                                                        | SNR (Note 2                           | 2)                           | dB                                         | 4                | 5              | 10                 | 11          |  |
|                                                                          | $\hat{I}_{or}^{(j)}$                  |                              | dB[mW/15kHz]                               | -94              | -93            | -88                | -87         |  |
|                                                                          | $N_{oc}^{(j)}$                        |                              | dB[mW/15kHz]                               | -6               | -98 -98        |                    | 98          |  |
| Max number                                                               | of HARQ t                             | ransmissions                 |                                            |                  |                | 1                  |             |  |
|                                                                          | channel for                           |                              |                                            |                  | DUDO           |                    |             |  |
| ,                                                                        | reporting                             |                              |                                            |                  | PUSCE          | I (Note 3)         |             |  |
| PUCCH Rep                                                                |                                       | r CQI/second                 |                                            |                  |                | 2b                 |             |  |
| Physical cl                                                              | hannel for F                          | RI reporting                 |                                            |                  | PU             | SCH                |             |  |
|                                                                          |                                       | r RI/ first PMI              |                                            |                  |                | 5                  |             |  |
|                                                                          | orting perio                          |                              | ms                                         |                  | No             | d = 5              |             |  |
|                                                                          | CQI delay                             |                              | ms                                         |                  |                | or 11              |             |  |
| cai-pmi-                                                                 | -Configurat                           |                              |                                            |                  |                | 3                  |             |  |
|                                                                          | -ConfigInde                           |                              |                                            |                  | 805 (          | Note 4)            |             |  |
|                                                                          | CK feedba                             |                              |                                            |                  |                | plexing            |             |  |
|                                                                          |                                       |                              | annel according to                         | Table A.4-2a     | with one side  | d dynamic OC       | NG Pattern  |  |
|                                                                          |                                       | described in A               |                                            |                  |                |                    |             |  |
| Note 2: Fo                                                               | or each test                          | , the minimum                | requirements shall                         | be fulfilled for | at least one o | of the two SNR     | (s) and the |  |
|                                                                          |                                       | anted signal inp             |                                            |                  |                |                    |             |  |
| Note 3: To                                                               | avoid colli                           | sions between                | CQI/PMI reports an                         |                  |                |                    |             |  |
|                                                                          |                                       |                              | PDCCH DCI forma                            |                  |                |                    |             |  |
|                                                                          |                                       |                              | ultiplex with the HA                       |                  |                |                    |             |  |
| RI                                                                       | , CQI/PMI a                           | and HARQ-AC                  | the maximum allow<br>K reports. In the cas | se when all th   | ree reports co | ollide, it is expe | ected that  |  |
|                                                                          |                                       |                              | pped, while RI and H                       |                  |                | xed. At eNB, C     | QI report   |  |
| collection shall be skipped every 160ms during performance verification. |                                       |                              |                                            |                  |                |                    |             |  |

| Table 9.2.3.2-1: PUCCH 1-1 submode 1 static test (TDE |
|-------------------------------------------------------|
|-------------------------------------------------------|

## 9.2.4 Minimum requirement PUCCH 1-1 (With Single CSI Process)

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

#### 9.2.4.1 FDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.4.1-1, and using the downlink physical channels specified in tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial

differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

#### wideband $CQI_1$ = wideband $CQI_0$ – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1 - 1$ , median  $CQI_1 + 1$ } for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

| Parameter                                                               |                              | Unit         | Tes                        |                            |                        | Tes                                |                             |           |  |
|-------------------------------------------------------------------------|------------------------------|--------------|----------------------------|----------------------------|------------------------|------------------------------------|-----------------------------|-----------|--|
|                                                                         |                              |              | TP1                        | TP                         |                        | TP1                                | TF                          | 22        |  |
| Bandwidt                                                                |                              | MHz          |                            |                            | 0                      |                                    |                             |           |  |
| PDSCH transmission mode                                                 |                              | 15           |                            |                            |                        | 10                                 |                             |           |  |
| $\rho_{A}$                                                              |                              | dB           | [0]                        | [0                         | -                      | [0]                                |                             | [0]       |  |
| Downlink power                                                          | $ ho_{\scriptscriptstyle B}$ | dB           | [0]                        | [0                         |                        | [0]                                |                             | [0]       |  |
| allocation (Note 1)                                                     | Pc                           | dB           | [-3]                       | [-3                        | -                      | [-3]                               | [-:                         |           |  |
|                                                                         | σ                            | dB           | [-3]                       | N/                         | A                      | [-3]                               | N                           | /A        |  |
| Cell ID                                                                 |                              |              | C                          | )                          |                        | C                                  | )                           |           |  |
| Cell-specific refere                                                    | nce signals                  |              | Antenna ports<br>0, 1      | (Not                       | e 2)                   | Antenna ports<br>0, 1              | (Note 2)                    |           |  |
| CSI reference                                                           | signals                      |              | Antenna ports<br>15,,18    | N/                         | A                      | Antenna ports<br>15,,18            | N                           | /A        |  |
| CSI-RS periodi subframe offset $T_{CS}$                                 |                              |              | 5/1                        | N/                         | A                      | 5/1                                | N                           | /A        |  |
| CSI-RS config                                                           |                              |              | 0                          | N/                         | A                      | 0                                  | N                           | /A        |  |
| Zero-Power C<br>configurati<br>I <sub>CSI-RS</sub> / ZeroPowe<br>bitmap | on                           |              | 1 /<br>00100000000<br>0000 | 1 /<br>1000000000<br>00000 |                        | 1 /<br>00100000000<br>0000         | 1 /<br>10000000000<br>00000 |           |  |
| CSI-IM configuration<br>I <sub>CSI-RS</sub> / ZeroPowerCSI-RS<br>bitmap |                              |              | 1 /<br>00100000000<br>0000 | N/A                        |                        | 1 /<br>00100000000<br>0000         | N/A                         |           |  |
| CSI process configuration<br>Signal/Interference/Reporting<br>mode      |                              |              | CSI-RS/CSI-IM/PUCCH 1-1    |                            | CSI-RS/CSI-IM/PUCCH 1- |                                    | H 1-1                       |           |  |
| Propagation condition and<br>antenna configuration                      |                              |              | Clause B.1<br>(4 x 2)      | Claus<br>(2 x              |                        | Clause B.1<br>(4 x 2)              | Claus<br>(2 )               |           |  |
| CodeBookSubsetl<br>bitmap                                               | Restriction                  |              | 0x0000 0000<br>0100 0000   | 100000                     |                        | 0x0000 0000<br>0100 0000           | 100000                      |           |  |
| SNR (Note                                                               | : 3)                         | dB           | 20                         | 6                          | 7                      | 20                                 | 14                          | 15        |  |
| $\hat{I}_{or}^{(j)}$                                                    |                              | dB[mW/15kHz] | -78                        | -92                        | -91                    | -78                                | -84                         | -83       |  |
| $N_{oc}^{(j)}$                                                          |                              | dB[mW/15kHz] | -98                        |                            | -98                    |                                    |                             |           |  |
| Modulation / Infor<br>payload                                           |                              |              | (Note4)                    | QPSK / 4392                |                        | (Note4)                            | QPSK / 4392                 |           |  |
| Max number of<br>transmissio                                            |                              |              | 1                          | N/A                        |                        | 1                                  | N/A                         |           |  |
| Physical channel for<br>reporting                                       | 9                            |              | PUSCH<br>(Note5)           | N/A                        |                        | PUSCH<br>(Note5)                   | N                           | /A        |  |
| PUCCH Report<br>CQI/PM                                                  | l                            |              | 2                          | N/                         |                        | 2                                  | N                           |           |  |
| PUCCH Report T                                                          |                              |              | 3                          | N/                         |                        | 3                                  | N                           |           |  |
| Reporting peri                                                          |                              | ms           | $N_{\rm pd} = 5$           | N/                         |                        | $N_{\rm pd} = 5$                   | N                           |           |  |
| CQI Dela                                                                |                              | ms           | 8                          | N/                         |                        | 8                                  |                             | <u>/A</u> |  |
| cqi-pmi-Configura                                                       |                              |              | 2                          | N/                         |                        | 2                                  | N                           |           |  |
| ri-ConfigIn                                                             |                              |              | 1                          | N/                         | A                      | 1                                  | N/                          | /A        |  |
| PDSCH scheduled                                                         |                              |              | [1,2,3,4,                  |                            |                        | [1,2,3,4,                          |                             |           |  |
| Timing offset bety<br>Frequency offset be                               |                              | us<br>Hz     | 0                          |                            |                        | 0                                  |                             |           |  |
| Frequency offset he                                                     | erween LPS                   | H7           | 0                          |                            |                        | 0<br>dynamic OCNG Pattern OP.1 FDD |                             |           |  |

Note 2: REs for antenna ports 0 and 1 CRS have zero transmission power.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: Table A.4-3b is used for non CSI-RS subframes. Table A.4-3i is used for CSI-RS subframes.

Note 5: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

#### 9.2.4.2 TDD

The following requirements apply to UE Category  $\geq 2$ . For the parameters specified in table 9.2.4.2-1, and using the downlink physical channels specified in tables C.3.4-1 and C.3.4-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband  $CQI_1$  = wideband  $CQI_0$  – Codeword 1 offset level

The wideband  $CQI_1$  shall be within the set {median  $CQI_1 - 1$ , median  $CQI_1 + 1$ } for more than 90% of the time, where the resulting wideband values  $CQI_1$  shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median  $CQI_0 - 1$  and median  $CQI_1 - 1$  shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format  $CQI_0 + 1$  and median  $CQI_1 + 1$  shall be greater than or equal to 0.1.

| Paramete                                                                |                              | Unit         | Tes                                           |                                  |                     | Tes                                           |                             |           |
|-------------------------------------------------------------------------|------------------------------|--------------|-----------------------------------------------|----------------------------------|---------------------|-----------------------------------------------|-----------------------------|-----------|
|                                                                         |                              |              | TP1                                           | TF                               | <b>2</b> 2          | TP1                                           | TP2                         |           |
| Bandwidth                                                               |                              | MHz          |                                               |                                  |                     | 0                                             |                             |           |
| PDSCH transmission mode                                                 |                              |              |                                               |                                  |                     | 0                                             |                             |           |
| Uplink downlink co                                                      |                              |              |                                               |                                  |                     | 2                                             |                             |           |
| Special subframe c                                                      |                              |              | 4                                             |                                  |                     |                                               |                             |           |
| -                                                                       | $ ho_{\scriptscriptstyle A}$ | dB           | [0]                                           | [0                               | )]                  | [0]                                           | [0]                         |           |
| Downlink power                                                          | $ ho_{\scriptscriptstyle B}$ | dB           | [0]                                           | [0                               | )]                  | [0]                                           | [(                          | D]        |
| allocation (Note 1)                                                     | Pc                           | dB           | [-6]                                          | [-(                              | 6]                  | [-6]                                          | [-6]                        |           |
| -                                                                       | σ                            | dB           | [-3]                                          | N/                               | Ά                   | [-3]                                          | N                           | /A        |
| Cell ID                                                                 |                              |              | C                                             | )                                |                     | C                                             | )                           |           |
| Cell-specific refere                                                    | nce signals                  |              | Antenna ports<br>0, 1                         | (Not                             | e 2)                | Antenna ports<br>0, 1                         | (Not                        | te 2)     |
| CSI reference                                                           | signals                      |              | Antenna ports<br>15,,22                       | N/                               | Ά                   | Antenna ports<br>15,,22                       | N                           | /A        |
| CSI-RS periodi<br>subframe offset T <sub>CS</sub>                       |                              |              | 5/3                                           | N/                               | Ά                   | 5/3                                           | N                           | /A        |
| CSI-RS config                                                           |                              |              | 0                                             | N/                               | 'A                  | 0                                             | N                           | /A        |
| Zero-Power C<br>configurati<br>I <sub>CSI-RS</sub> / ZeroPowe<br>bitmap | on                           |              | 3 /<br>00100000000<br>0000                    | 3 /<br>10000100000 0010<br>00000 |                     | 3 /<br>00100000000<br>0000                    | 3 /<br>10000100000<br>00000 |           |
| CSI-IM configuration<br>I <sub>CSI-RS</sub> / ZeroPowerCSI-RS<br>bitmap |                              |              | 3 /<br>00100000000<br>0000                    | N/A                              |                     | 3 /<br>00100000000<br>0000                    | N/A                         |           |
| CSI process configuration<br>Signal/Interference/Reporting<br>mode      |                              |              | CSI-RS/CSI-IM/PUCCH 1-1                       |                                  | CSI-RS/CSI-IM/PUCCH |                                               | H 1-1                       |           |
| Propagation condition and<br>antenna configuration                      |                              |              | Clause B.1<br>(8 x 2)                         | Claus<br>(2 >                    |                     | Clause B.1<br>(8 x 2)                         | Claus<br>(2 x               |           |
| CodeBookSubsetl<br>bitmap                                               | Restriction                  |              | 0x0000 0000<br>0020 0000<br>0000 0001<br>0000 | 100000 0020 00<br>0000 00        |                     | 0x0000 0000<br>0020 0000<br>0000 0001<br>0000 | 100000                      |           |
| SNR (Note                                                               | : 3)                         | dB           | 17                                            | [6]                              | [7]                 | 17                                            | [14]                        | [15]      |
| $\hat{I}^{(j)}_{or}$                                                    |                              | dB[mW/15kHz] | -81                                           | [-92]                            | [-91]               | -81                                           | [-84]                       | [-83]     |
| $N_{oc}^{(j)}$                                                          |                              | dB[mW/15kHz] | -98                                           |                                  | -98                 |                                               |                             |           |
| Modulation / Infor<br>payload                                           |                              |              | (Note4)                                       | QPSK                             | / 4392              | (Note4)                                       | QPSK                        | / 4392    |
| Max number of<br>transmissio                                            | ons                          |              | 1                                             | N/                               | 'A                  | 1                                             | N/A                         |           |
| Physical channel for reporting                                          | 9                            |              | PUSCH<br>(Note5)                              | N/                               | 'A                  | PUSCH<br>(Note5)                              | N                           | /A        |
| PUCCH Report<br>CQI/second                                              | PMI                          |              | 2b                                            | N/                               |                     | 2b                                            |                             | /A        |
| Physical channel for                                                    |                              |              | PUSCH                                         | N/                               | A                   | PUSCH                                         | N                           | /A        |
| PUCCH Report Type for RI/ first<br>PMI                                  |                              |              | 5                                             | N/                               |                     | 5                                             |                             | /A        |
| Reporting peri                                                          |                              | ms           | $N_{\rm pd} = 5$                              | N/                               |                     | $N_{\rm pd} = 5$                              | N                           |           |
| CQI Dela                                                                |                              | ms           | 10 or 11                                      | N/                               |                     | 10 or 11                                      |                             | <u>/A</u> |
| cqi-pmi-Configura                                                       |                              |              | 3                                             | N/                               |                     | 3                                             |                             | /A        |
| ri-ConfigIn                                                             |                              |              | 805 (Note 6)                                  | N/                               |                     | 805 (Note 6)                                  | N                           |           |
| ACK/NACK feedb                                                          |                              |              | Multiplexing                                  | N/                               | А                   | Multiplexing                                  | N/                          | A         |
| PDSCH scheduled                                                         |                              | us           | [3,4,<br>0                                    |                                  |                     | [3,4,                                         |                             |           |
| Timing offset bety                                                      |                              |              |                                               |                                  |                     |                                               |                             |           |

| Table 9.2.4.2-1: PUCCH | 1-1 static test (TDD) |
|------------------------|-----------------------|
|------------------------|-----------------------|

| Note1:  | Reference measurement channel according to Table A.4-2d with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.                                                                                                                                                                                                                                            |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2: | REs for antenna ports 0 and 1 CRS have zero transmission power.                                                                                                                                                                                                                                                                                                                |
| Note 3: | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.                                                                                                                                                                                                                                    |
| Note 4: | Table A.4-3b is used for non CSI-RS subframes. Table A.4-3j is used for CSI-RS subframes.                                                                                                                                                                                                                                                                                      |
| Note 5: | To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead<br>of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to<br>multiplex with the HARQ-ACK on PUSCH in uplink SF#7 and #2.                                                                                              |
| Note 6: | RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification. |

## 9.3 CQI reporting under fading conditions

## 9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands can be used for frequently-selective scheduling. To account for sensitivity of the input SNR the sub-band CQI reporting under frequency selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

#### 9.3.1.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbols)

#### 9.3.1.1.1 FDD

For the parameters specified in Table 9.3.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.1-2 and by the following

a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

| Parameter         |                                                                                                                                                                                                                                                  | Unit         | Tes                                                                      | st 1 | Te  | st 2 |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|------|-----|------|--|
| Ba                | andwidth                                                                                                                                                                                                                                         | MHz          | 10 MHz                                                                   |      |     |      |  |
| Transmission mode |                                                                                                                                                                                                                                                  |              | 1 (port 0)                                                               |      |     |      |  |
| Downlink $\rho_A$ |                                                                                                                                                                                                                                                  | dB           |                                                                          | 0    |     |      |  |
| power             | $ ho_{\scriptscriptstyle B}$                                                                                                                                                                                                                     | dB           | 0                                                                        |      |     |      |  |
| allocation        | σ                                                                                                                                                                                                                                                | dB           |                                                                          |      | 0   |      |  |
| SN                | R (Note 3)                                                                                                                                                                                                                                       | dB           | 9                                                                        | 10   | 14  | 15   |  |
|                   | $\hat{I}^{(j)}_{or}$                                                                                                                                                                                                                             | dB[mW/15kHz] | -89                                                                      | -88  | -84 | -83  |  |
|                   | $N_{oc}^{(j)}$                                                                                                                                                                                                                                   | dB[mW/15kHz] | -98 -98                                                                  |      |     | 98   |  |
|                   |                                                                                                                                                                                                                                                  |              | Clause B.2.4 with $\tau_d = 0.45 \mu s$ ,                                |      |     |      |  |
| Propag            | ation channel                                                                                                                                                                                                                                    |              | $a = 1, f_D = 5 \text{ Hz}$                                              |      |     |      |  |
| Antenna           | a configuration                                                                                                                                                                                                                                  |              | <u>1 x 2</u><br>5                                                        |      |     |      |  |
| Repo              | rting interval                                                                                                                                                                                                                                   | ms           |                                                                          |      |     |      |  |
|                   | QI delay                                                                                                                                                                                                                                         | ms           | 8                                                                        |      |     |      |  |
|                   | orting mode                                                                                                                                                                                                                                      |              | PUSCH 3-0                                                                |      |     |      |  |
|                   | -band size                                                                                                                                                                                                                                       | RB           | 6 (full size)                                                            |      |     |      |  |
|                   | mber of HARQ<br>Ismissions                                                                                                                                                                                                                       |              | 1                                                                        |      |     |      |  |
|                   | If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) |              |                                                                          |      |     |      |  |
| Note 2:           |                                                                                                                                                                                                                                                  |              |                                                                          |      |     |      |  |
| Note 3:           |                                                                                                                                                                                                                                                  | •            | ents shall be fulfilled for at least<br>ctive wanted signal input level. |      |     |      |  |

 Table 9.3.1.1.1-1 Sub-band test for single antenna transmission (FDD)

| Table 9.3.1.1.1-2 | Minimum rec | quirement | (FDD) |
|-------------------|-------------|-----------|-------|
|-------------------|-------------|-----------|-------|

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 2      | 2      |
| β[%]        | 55     | 55     |
| γ           | 1.1    | 1.1    |
| UE Category | ≥1     | ≥1     |

#### 9.3.1.1.2 TDD

For the parameters specified in Table 9.3.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.2-2 and by the following

a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

| Para       | meter                                                                                                                                                               | Unit                 | Те                                     | st 1                  | Tes        | t 2   |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|-----------------------|------------|-------|--|
| Ban        | dwidth                                                                                                                                                              | MHz                  |                                        | 10 MHz                |            |       |  |
| Transmis   | sion mode                                                                                                                                                           |                      | 1 (port 0)                             |                       |            |       |  |
| Downlink   | $ ho_{\scriptscriptstyle A}$                                                                                                                                        | dB                   | 0                                      |                       |            |       |  |
| power      | $ ho_{\scriptscriptstyle B}$                                                                                                                                        | dB                   | 0                                      |                       |            |       |  |
| allocation | σ                                                                                                                                                                   | dB                   |                                        | (                     | 0          |       |  |
|            | downlink<br>guration                                                                                                                                                |                      |                                        | :                     | 2          |       |  |
|            | subframe<br>guration                                                                                                                                                |                      |                                        |                       | 4          |       |  |
| SNR        | (Note 3)                                                                                                                                                            | dB                   | 9                                      | 10                    | 14         | 15    |  |
| Í          | r(j)<br>or                                                                                                                                                          | dB[mW/15kHz]         | -89                                    | -88                   | -84        | -83   |  |
| Ν          | $N_{oc}^{(j)}$                                                                                                                                                      |                      | -98 -98                                |                       |            | 8     |  |
|            |                                                                                                                                                                     |                      | Clause B.2.4 with                      |                       |            |       |  |
| Propagat   | ion channel                                                                                                                                                         |                      | $	au_{d} = 0.45 \mu \text{s},  a = 1,$ |                       |            | 1,    |  |
|            |                                                                                                                                                                     |                      |                                        | $f_D = 5 \mathrm{Hz}$ |            |       |  |
|            | onfiguration                                                                                                                                                        |                      | 1 x 2                                  |                       |            |       |  |
|            | ng interval                                                                                                                                                         | ms                   | 5                                      |                       |            |       |  |
|            | delay                                                                                                                                                               | ms                   | 10 or 11                               |                       |            |       |  |
|            | ing mode                                                                                                                                                            |                      | PUSCH 3-0                              |                       |            |       |  |
|            | and size                                                                                                                                                            | RB                   | 6 (full size)                          |                       |            |       |  |
|            | er of HARQ                                                                                                                                                          |                      |                                        |                       | 1          |       |  |
|            | nissions                                                                                                                                                            |                      |                                        |                       |            |       |  |
|            | eedback mode                                                                                                                                                        |                      |                                        |                       | lexing     |       |  |
|            |                                                                                                                                                                     | an available uplink  |                                        |                       |            |       |  |
|            |                                                                                                                                                                     | l estimation at a do |                                        |                       |            |       |  |
|            |                                                                                                                                                                     | ted subband or wid   | leband (                               | JQI cann              | lot be app | blied |  |
|            | at the eNB downlink before SF#(n+4)<br>Reference measurement channel according to Table A.4-5 with<br>one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in |                      |                                        |                       |            |       |  |
|            |                                                                                                                                                                     |                      |                                        |                       |            | d in  |  |
|            | nex A.5.2.1/2.                                                                                                                                                      |                      | 01.1/2                                 | 100 45                |            |       |  |
|            |                                                                                                                                                                     | ninimum requiremer   | nts shall                              | l be fulfill          | ed for at  | least |  |
|            |                                                                                                                                                                     | (s) and the respect  |                                        |                       |            |       |  |

 Table 9.3.1.1.2-1 Sub-band test for single antenna transmission (TDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 2      | 2      |
| β[%]        | 55     | 55     |
| γ           | 1.1    | 1.1    |
| UE Category | ≥1     | ≥1     |

# 9.3.1.1.3 FDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.3-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.3-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to  $\varepsilon$ .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

|                                                  |                    |           |                                                           | Taa                                  | 4 4                                                                  |                                                           | Та                              | -+ 0                                                                 |
|--------------------------------------------------|--------------------|-----------|-----------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|
| Parameter                                        |                    | Unit      | Test 1<br>Cell 1 Cell 2 and 3                             |                                      | Test 2<br>Cell 1 Cell 2 an                                           |                                                           |                                 |                                                                      |
| Bandwidth                                        |                    | MHz       |                                                           | 10                                   |                                                                      | UCII                                                      |                                 | 0                                                                    |
| PDSCH transmission                               | on mode            |           | 1                                                         |                                      | Note 10                                                              | 1                                                         |                                 | Note 10                                                              |
| Downlink power $\rho_A$<br>allocation $\rho_B$   |                    | dB        | 0                                                         |                                      | 0                                                                    |                                                           |                                 |                                                                      |
|                                                  |                    | dB        | 0                                                         |                                      | 0                                                                    |                                                           |                                 |                                                                      |
| anocation                                        | σ                  | dB        |                                                           | 0                                    |                                                                      | 0                                                         |                                 | )                                                                    |
| Propagation condition                            |                    |           | Clause B.2.4<br>with Td = 0.45<br>us, a = 1, fd =<br>5 Hz |                                      | EVA5<br>Low antenna<br>correlation                                   | Clause B.2.4<br>with Td =<br>0.45 us, a =<br>1, fd = 5 Hz |                                 | EVA5<br>Low antenna<br>correlation                                   |
| Antenna configu                                  | ration             |           | 1x2                                                       |                                      | 1x2                                                                  |                                                           |                                 |                                                                      |
| $\widehat{E}_{s} ig / N_{oc2}$ (Not              | e 1)               | dB        | 4                                                         | 5                                    | Cell 2: 12<br>Cell 3: 10                                             | 14                                                        | 15                              | Cell 2: 12<br>Cell 3: 10                                             |
| (.)                                              | $N_{oc1}^{(j)}$    | dBm/15kHz | -98 (No                                                   | ote 7)                               | N/A                                                                  | -98 (Not                                                  | te 7)                           | N/A                                                                  |
| $N_{\scriptscriptstyle oc}^{(j)}$ at antenna     | $N_{oc2}^{(j)}$    | dBm/15kHz | -98 (No                                                   | ote 8)                               | N/A                                                                  | -98 (Note 8)                                              |                                 | N/A                                                                  |
| port                                             | $N_{oc3}^{(j)}$    | dBm/15kHz | -93 (Note 9)                                              |                                      | N/A                                                                  | -93 (Note 9)                                              |                                 | N/A                                                                  |
| Subframe Config                                  | uration            |           | Non-M                                                     | BSFN                                 | Non-MBSFN                                                            | Non-MB                                                    | SFN                             | Non-MBSFN                                                            |
| Cell Id                                          |                    |           | 0                                                         |                                      | Cell 2: 6<br>Cell 3: 1                                               | 0                                                         |                                 | Cell 2: 6<br>Cell 3: 1                                               |
| Time Offset betwee                               | en Cells           | μs        | Cell 2: 3 usec<br>Cell 3: -1usec                          |                                      | Cell 2: 3 usec<br>Cell 3: -1usec                                     |                                                           |                                 |                                                                      |
| Frequency Shift between Cells                    |                    | Hz        | Cell 2: 300Hz<br>Cell 3: -100Hz                           |                                      | Cell 2: 300Hz<br>Cell 3: -100Hz                                      |                                                           |                                 |                                                                      |
| ABS pattern (Note 2)                             |                    |           | 010<br>010<br>N/A 010<br>010                              |                                      | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 | N/A                                                       |                                 | 01010101<br>01010101<br>01010101<br>01010101<br>01010101<br>01010101 |
| RLM/RRM Measurement<br>Subframe Pattern (Note 4) |                    |           |                                                           | )100<br>)100<br>)100                 | N/A                                                                  | 000001<br>000001<br>000001<br>000001<br>000001            | 100<br>100<br>100               | N/A                                                                  |
| CSI Subframe Sets                                | C <sub>CSI,0</sub> |           | 01010<br>01010<br>01010<br>01010<br>01010                 | )101<br>)101<br>)101<br>)101<br>)101 | N/A                                                                  | 010101<br>010101<br>010101<br>010101<br>010101<br>010101  | 101<br>101<br>101<br>101        | N/A                                                                  |
| (Note 3)                                         | C <sub>CSI,1</sub> |           | 10101<br>10101<br>10101<br>10101<br>10101<br>10101        | 010<br>010<br>010<br>010             | N/A                                                                  | 101010<br>101010<br>101010<br>101010<br>101010<br>101010  | 010<br>010<br>010<br>010<br>010 | N/A                                                                  |
| Number of control OFDM symbols                   |                    |           | 3                                                         |                                      | 3                                                                    |                                                           |                                 |                                                                      |
| Max number of HARQ<br>transmissions              |                    |           | 1                                                         |                                      | 1                                                                    |                                                           |                                 |                                                                      |
| CQI delay                                        |                    | ms        | 8                                                         |                                      |                                                                      |                                                           |                                 |                                                                      |
| Reporting interval (                             | Note 13)           | ms        | 10                                                        |                                      |                                                                      |                                                           |                                 |                                                                      |
| Reporting mo                                     |                    |           | PUSCH 3-0                                                 |                                      |                                                                      |                                                           |                                 |                                                                      |
| Sub-band siz                                     | ze                 | RB        |                                                           |                                      | 6 (full                                                              | size)                                                     |                                 |                                                                      |

| Note 1:  | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the<br>respective wanted signal input level.                                                                                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | ABS pattern as defined in [9].                                                                                                                                                                                                                    |
| Note 3:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                     |
| Note 4:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7]                                                                                                                           |
| Note 5:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                     |
| Note 6:  | Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 are the same.                                                                                                       |
| Note 7:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.                                                                                                                  |
| Note 8:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.                                                                                                                                           |
| Note 9:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.                                                                                                                                                       |
| Note 10: | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.1.5                                                                                                             |
| Note 11: | Reference measurement channel in Cell 1 according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.                                                                                              |
| Note 12: | If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4). |

Note 13: The CSI reporting is such that reference subframes belong to C<sub>csi,0</sub>

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 2      | 2      |
| β[%]        | 55     | 55     |
| γ           | 1.1    | 1.1    |
| 3           | 0.01   | 0.01   |
| UE Category | ≥1     | ≥1     |

Table 9.3.1.1.3-2 Minimum requirement (FDD)

# 9.3.1.1.4 TDD (CSI measurements in case two CSI subframe sets are configured and with CRS assistance information)

For the parameters specified in Table 9.3.1.1.4-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.4-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput in ABS subframes obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER in ABS subframes for the indicated transport formats shall be greater than or equal to  $\varepsilon$ .

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

| Parameter                                |                              | Unit      | Test 1                              |                   |                                    | Test 2                   |                |                                    |
|------------------------------------------|------------------------------|-----------|-------------------------------------|-------------------|------------------------------------|--------------------------|----------------|------------------------------------|
|                                          |                              |           | Ce                                  |                   | Cell 2 and 3                       | Ce                       |                | Cell 2 and 3                       |
| Bandwidth                                |                              | MHz       |                                     |                   | 0                                  |                          |                | 0                                  |
|                                          | PDSCH transmission mode      |           | 1                                   | -                 | Note 10                            |                          | 1              | Note 10                            |
| Uplink downlink conf                     | iguration                    |           |                                     |                   | 1                                  | 1                        |                | 1                                  |
| Special subframe<br>configuration        |                              |           | 4                                   |                   | 4                                  |                          | 4              |                                    |
| Downlink power                           | $ ho_{\scriptscriptstyle A}$ | dB        |                                     | 0                 |                                    | 0                        |                |                                    |
| allocation                               | $ ho_{\scriptscriptstyle B}$ | dB        |                                     |                   | 0                                  | 0                        |                |                                    |
|                                          | σ                            | dB        | 0                                   |                   | 0                                  |                          |                |                                    |
| Propagation condition                    |                              |           | Clause<br>with Td<br>us, a =<br>5 ł | = 0.45<br>1, fd = | EVA5<br>Low antenna<br>correlation | with Td                  | 1, fd =        | EVA5<br>Low antenna<br>correlation |
| Antenna configuratio                     | n                            |           |                                     | 1)                |                                    | 1x2                      |                |                                    |
| $\widehat{E}_{s} \big/ N_{oc2}$ (Note 1) |                              | dB        | 4                                   | 5                 | Cell 2: 12<br>Cell 3: 10           | 14                       | 15             | Cell 2: 12<br>Cell 3: 10           |
|                                          | $N_{oc1}^{(j)}$              | dBm/15kHz | -98 (N                              | lote 7)           | N/A                                | -98 (N                   | lote 7)        | N/A                                |
| $N_{oc}^{(j)}$ at antenna                | $N_{oc2}^{(j)}$              | dBm/15kHz | -98 (Note 8)                        |                   | N/A                                | -98 (Note 8)             |                | N/A                                |
| port                                     | $N_{oc3}^{(j)}$              | dBm/15kHz | -93 (Note 9)                        |                   | N/A                                | -93 (Note 9)             |                | N/A                                |
| Subframe Configurat                      | ion                          |           | Non-MBSFN                           |                   | Non-MBSFN                          | Non-MBSFN                |                | Non-MBSFN                          |
| Cell Id                                  |                              |           | 0                                   | )                 | Cell 2: 6<br>Cell 3: 1             | 0 Cell 2: 6<br>Cell 3: 1 |                | Cell 2: 6<br>Cell 3: 1             |
| Time Offset between Cells                |                              | μs        | Cell 2: 3 usec<br>Cell 3: -1usec    |                   | Cell 2: 3 usec<br>Cell 3: -1usec   |                          |                |                                    |
| Frequency shift betw                     | een Cells                    | Hz        | Cell 2: 300Hz<br>Cell 3: -100Hz     |                   | Cell 2: 300Hz<br>Cell 3: -100Hz    |                          |                |                                    |
| ABS pattern (Note 2)                     |                              |           | 0100010001<br>0100010001            | ΝΙ/Δ              |                                    | 0100010001<br>0100010001 |                |                                    |
| RLM/RRM Measurer<br>Subframe Pattern (N  |                              |           | 000000001<br>000000001 N/A          |                   | 00000                              |                          | N/A            |                                    |
| CSI Subframe Sets                        | C <sub>CSI,0</sub>           |           | 01000<br>01000                      |                   | N/A                                | 01000<br>01000           |                | N.A                                |
| (Note 3)                                 | C <sub>CSI,1</sub>           |           | 10001<br>10001                      | 01000<br>01000    | N/A                                | 10001<br>10001           | 01000<br>01000 | N/A                                |
| Number of control OFDM symbols           |                              |           | 3                                   |                   | 3                                  |                          |                |                                    |
| Max number of HARQ<br>transmissions      |                              |           | 1                                   |                   |                                    | 1                        |                |                                    |
| CQI delay                                |                              | ms        | [14]                                |                   |                                    |                          |                |                                    |
| Reporting interval (N                    | ote 13)                      | ms        | 10                                  |                   |                                    |                          |                |                                    |
| Reporting mode                           |                              |           | PUSCH 3-0                           |                   |                                    |                          |                |                                    |
| Sub-band size                            |                              | RB        | 6 (full size)                       |                   |                                    |                          |                |                                    |
| ACK/NACK feedback                        | < mode                       |           |                                     | Multip            | lexing                             |                          | Multip         | lexing                             |

Table 9.3.1.1.4-1 Sub-band test for single antenna transmission (TDD)

| Note 1:  | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 2:  | ABS pattern as defined in [9].                                                                                                                                                                                                                    |
| Note 3:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                     |
| Note 4:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                                                                                                                          |
| Note 5:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7]                                                                                                                                                     |
| Note 6:  | Cell 1 is the serving cell. Cell 2 and Cell 3 are the aggressor cells. The number of the CRS ports in Cell1, Cell2, and Cell3 is the same.                                                                                                        |
| Note 7:  | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.                                                                                                                  |
| Note 8:  | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS                                                                                                                                            |
| Note 9:  | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS.                                                                                                                                                       |
| Note 10: | Downlink physical channel setup in Cell 2 and Cell 3 in accordance with Annex C.3.3 applying OCNG pattern as defined in Annex A.5.2.5                                                                                                             |
| Note 11: | Reference measurement channel in Cell 1 according to Table A.4-5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.                                                                                              |
| Note 12: | If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4). |
| Note 13: | The CSI reporting is such that reference subframes belong to $C_{csi,0}$ .                                                                                                                                                                        |

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 2      | 2      |
| β[%]        | 55     | 55     |
| γ           | 1.1    | 1.1    |
| 3           | 0.01   | 0.01   |
| UE Category | ≥1     | ≥1     |

Table 9.3.1.1.4-2 Minimum requirement (TDD)

#### 9.3.1.2 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

#### FDD 9.3.1.2.1

For the parameters specified in Table 9.3.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be  $\geq \gamma$ ;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6a or Table A.4-6b.

| Parameter         |                                                                                                                                                                                                                                                                | Unit                         | Те           | Test 1 Tes                    |                             | st 2                   |                  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|-------------------------------|-----------------------------|------------------------|------------------|--|
| Bandwidth         |                                                                                                                                                                                                                                                                | MHz                          |              | 10 MHz                        |                             |                        |                  |  |
| Transmission mode |                                                                                                                                                                                                                                                                |                              |              |                               | 9                           |                        |                  |  |
|                   |                                                                                                                                                                                                                                                                | $ ho_{\scriptscriptstyle A}$ | dB           |                               |                             | 0                      |                  |  |
| Downlink pov      | ver                                                                                                                                                                                                                                                            | $ ho_{\scriptscriptstyle B}$ | dB           | 0                             |                             |                        |                  |  |
| allocation        |                                                                                                                                                                                                                                                                | $P_c$                        | dB           |                               |                             |                        |                  |  |
|                   |                                                                                                                                                                                                                                                                | σ                            | dB           | 0                             |                             |                        |                  |  |
|                   | SNR (I                                                                                                                                                                                                                                                         | Note 3)                      | dB           | 4                             | 5                           | 11                     | 12               |  |
|                   | $\hat{I}_o^0$                                                                                                                                                                                                                                                  | j)<br>r                      | dB[mW/15kHz] | -94                           | -93                         | -87                    | 86               |  |
|                   | N                                                                                                                                                                                                                                                              | (j)                          | dB[mW/15kHz] | -!                            | 98                          | -9                     | 98               |  |
| Dror              | ogotio                                                                                                                                                                                                                                                         |                              |              | Clause                        | e B.2.4 wi                  | ith $	au_d = 0$        | ).45 <i>µ</i> s, |  |
| Piop              | agalic                                                                                                                                                                                                                                                         | n channel                    |              |                               | $a = 1, f_D = 5 \text{ Hz}$ |                        |                  |  |
| Ante              | nna co                                                                                                                                                                                                                                                         | nfiguration                  |              | 2x2                           |                             |                        |                  |  |
| Bea               | Beamforming Model                                                                                                                                                                                                                                              |                              |              | As specified in Section B.4.3 |                             |                        | B.4.3            |  |
| CRS               | refere                                                                                                                                                                                                                                                         | nce signals                  |              |                               | Antenna ports 0             |                        |                  |  |
|                   |                                                                                                                                                                                                                                                                | nce signals                  |              | A                             | ntenna p                    | oorts 15, <sup>2</sup> | 16               |  |
|                   |                                                                                                                                                                                                                                                                | and subframe offset          |              |                               | 5                           | / 1                    |                  |  |
|                   |                                                                                                                                                                                                                                                                | $\Delta_{CSI-RS}$            |              |                               | 0                           | / 1                    |                  |  |
|                   |                                                                                                                                                                                                                                                                | signal configuration         |              |                               | 4                           |                        |                  |  |
|                   |                                                                                                                                                                                                                                                                | Restriction bitmap           |              | 000001                        |                             |                        |                  |  |
| Reporti           |                                                                                                                                                                                                                                                                | erval (Note 4)               | ms           | 5                             |                             |                        |                  |  |
|                   | CQI                                                                                                                                                                                                                                                            |                              | ms           | 8                             |                             |                        |                  |  |
|                   |                                                                                                                                                                                                                                                                | g mode                       |              | PUSCH 3-1                     |                             |                        |                  |  |
|                   |                                                                                                                                                                                                                                                                | nd size                      | RB           | 6 (full size)                 |                             |                        |                  |  |
|                   | -                                                                                                                                                                                                                                                              | RQ transmissions             |              |                               |                             | 1                      |                  |  |
| CQ                | Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on<br>CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband<br>or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) |                              |              |                               |                             |                        |                  |  |
| Note 2: Ref       | Reference measurement channel according to Table A.4-4a with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.                                                                                                                    |                              |              |                               |                             |                        |                  |  |
| Note 3: For       | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.                                                                                                                    |                              |              |                               |                             | two                    |                  |  |
| Note 4: PD0       |                                                                                                                                                                                                                                                                |                              |              |                               |                             |                        |                  |  |

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 2      | 2      |
| $\beta$ [%] | 40     | 40     |
| γ           | 1.1    | 1.1    |

≥1

≥1

Table 9.3.1.2.1-2 Minimum requirement (FDD)

## 9.3.1.2.2 TDD

For the parameters specified in Table 9.3.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.2.2-2 and by the following

**UE** Category

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6a or Table A.4-6b.

| Parameter                                                                                                                                                   |               |                              | Unit                            | Те                 | Test 1 Test 2 |                 |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------|---------------------------------|--------------------|---------------|-----------------|------------------|
| Bandwidth                                                                                                                                                   |               | MHz                          | 10 MHz                          |                    |               |                 |                  |
| Tra                                                                                                                                                         | insmis        | sion mode                    |                                 | 9                  |               |                 |                  |
| Uplink downlink configuration                                                                                                                               |               |                              |                                 | 2                  |               |                 |                  |
| Special subframe configuration                                                                                                                              |               |                              |                                 |                    |               | 4               |                  |
| $ ho_{\scriptscriptstyle A}$                                                                                                                                |               |                              | dB                              |                    |               | 0               |                  |
| Downlink po                                                                                                                                                 |               | $ ho_{\scriptscriptstyle B}$ | dB                              | 0                  |               |                 |                  |
| allocation                                                                                                                                                  | ו             | P <sub>c</sub>               | dB                              | 0                  |               |                 |                  |
|                                                                                                                                                             |               | σ                            | dB                              | 0                  |               |                 |                  |
|                                                                                                                                                             | SNR (         | Note 3)                      | dB                              | 4                  | 5             | 11              | 12               |
|                                                                                                                                                             | $\hat{I}_{a}$ | (j)<br>pr                    | dB[mW/15kHz]                    | -94                | -93           | -87             | -86              |
|                                                                                                                                                             | N             | (j)<br>oc                    | dB[mW/15kHz]                    | -!                 | 98            | -6              | 98               |
|                                                                                                                                                             |               |                              |                                 | Clause             | e B.2.4 wi    | th $\tau_d = 0$ | ).45 <i>µ</i> s, |
| Propagation channel                                                                                                                                         |               |                              | ŭ                               |                    |               |                 |                  |
| Antenna configuration                                                                                                                                       |               |                              | $a = 1, f_D = 5 \text{ Hz}$ 2x2 |                    |               |                 |                  |
| Beamforming Model                                                                                                                                           |               |                              | As specified in Section B.4.3   |                    |               | B.4.3           |                  |
| CRS reference signals                                                                                                                                       |               |                              | 1                               | Antenna port 0     |               |                 |                  |
| CSI reference signals                                                                                                                                       |               |                              |                                 | Antenna port 15,16 |               |                 |                  |
|                                                                                                                                                             |               | and subframe offset          |                                 | 5/ 3               |               |                 |                  |
|                                                                                                                                                             |               | $/\Delta_{CSI-RS}$           |                                 | 3/ 3               |               |                 |                  |
|                                                                                                                                                             |               | signal configuration         |                                 |                    | 4             |                 |                  |
|                                                                                                                                                             |               | Restriction bitmap           |                                 | 000001             |               |                 |                  |
| Repor                                                                                                                                                       |               | erval (Note 4)               | ms                              | 5                  |               |                 |                  |
|                                                                                                                                                             |               | delay                        | ms                              | 10                 |               |                 |                  |
|                                                                                                                                                             |               | ng mode                      |                                 | PUSCH 3-1          |               |                 |                  |
|                                                                                                                                                             |               | and size                     | RB                              | 6 (full size)      |               |                 |                  |
|                                                                                                                                                             |               | ARQ transmissions            |                                 | 1                  |               |                 |                  |
|                                                                                                                                                             |               | edback mode                  |                                 | Multiplexing       |               |                 |                  |
|                                                                                                                                                             |               | reports in an available      |                                 |                    |               |                 |                  |
| CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband                                                                        |               |                              |                                 |                    | bband         |                 |                  |
| or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)<br>Note 2: Reference measurement channel according to Table A.4-5a with one/two sided |               |                              |                                 |                    |               |                 |                  |
|                                                                                                                                                             |               | OCNG Pattern OP.1/2          |                                 |                    |               | wo sided        |                  |
|                                                                                                                                                             |               | test, the minimum req        |                                 |                    |               | ne of the       | two              |
|                                                                                                                                                             |               | nd the respective want       |                                 |                    |               |                 |                  |
| Note 4: PD                                                                                                                                                  | CCH E         | OCI format 0 with a trig     | ger for aperiodic CQI           |                    |               |                 |                  |
| SF                                                                                                                                                          | #3 and        | #8 to allow aperiodic        | CQI/PMI/RI to be trar           | nsmitted           | on uplink     | SF#2 ar         | nd #7.           |

| Table 9.3.1.2.2-2 Minimu | m requirement (TDD) |
|--------------------------|---------------------|
|--------------------------|---------------------|

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 2      | 2      |
| β[%]        | 40     | 40     |
| γ           | 1.1    | 1.1    |
| UE Category | ≥1     | ≥1     |

## 9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by the reporting variance, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI. The purpose is to verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling. To account for sensitivity of the input SNR the CQI reporting under frequency non-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

## 9.3.2.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

### 9.3.2.1.1 FDD

For the parameters specified in Table 9.3.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.1-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least  $\alpha$ % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3 (for Category 2-8) or Table A.4-9 (for Category 1).

| Parameter                                                                                                                                                                                                                                                                                 |                                                                                                                                             | Unit                                                                                                           | Test 1 Tes                        |                         | st 2                    |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|-------------------------|---------------|
| Ban                                                                                                                                                                                                                                                                                       | dwidth                                                                                                                                      | MHz                                                                                                            |                                   | 10 MHz                  |                         |               |
| Transmi                                                                                                                                                                                                                                                                                   | ssion mode                                                                                                                                  |                                                                                                                |                                   | 1 (po                   | ort 0)                  |               |
| Downlink $\rho_A$                                                                                                                                                                                                                                                                         |                                                                                                                                             | dB                                                                                                             |                                   | (                       | )                       |               |
| power                                                                                                                                                                                                                                                                                     | $ ho_{\scriptscriptstyle B}$                                                                                                                | dB                                                                                                             |                                   | (                       | )                       |               |
| allocation                                                                                                                                                                                                                                                                                | σ                                                                                                                                           | dB                                                                                                             | 0                                 |                         |                         |               |
| SNR                                                                                                                                                                                                                                                                                       | (Note 3)                                                                                                                                    | dB                                                                                                             | 6                                 | 7                       | 12                      | 13            |
|                                                                                                                                                                                                                                                                                           | $\hat{I}_{or}^{(j)}$                                                                                                                        | dB[mW/15kHz]                                                                                                   | -92                               | -91                     | -86                     | -85           |
| 1                                                                                                                                                                                                                                                                                         | $V_{oc}^{(j)}$                                                                                                                              | dB[mW/15kHz]                                                                                                   | -6                                | 98                      | -9                      | 8             |
|                                                                                                                                                                                                                                                                                           | ion channel                                                                                                                                 |                                                                                                                |                                   | EP                      | A5                      |               |
|                                                                                                                                                                                                                                                                                           | ation and                                                                                                                                   |                                                                                                                |                                   | Hiah (                  | (1 x 2)                 |               |
|                                                                                                                                                                                                                                                                                           | configuration                                                                                                                               |                                                                                                                |                                   | •                       | . ,                     |               |
|                                                                                                                                                                                                                                                                                           | ing mode<br>g periodicity                                                                                                                   |                                                                                                                |                                   |                         | CH 1-0                  |               |
|                                                                                                                                                                                                                                                                                           | l delay                                                                                                                                     | ms                                                                                                             |                                   | 1                       | = 2                     |               |
|                                                                                                                                                                                                                                                                                           | channel for                                                                                                                                 | ms                                                                                                             | 8                                 |                         |                         |               |
|                                                                                                                                                                                                                                                                                           | eporting                                                                                                                                    |                                                                                                                |                                   | PUSCH                   | (Note 4)                |               |
|                                                                                                                                                                                                                                                                                           | Report Type                                                                                                                                 |                                                                                                                |                                   | 4                       | 4                       |               |
| cq                                                                                                                                                                                                                                                                                        | i-pmi-                                                                                                                                      |                                                                                                                |                                   |                         | 1                       |               |
|                                                                                                                                                                                                                                                                                           | rationIndex                                                                                                                                 |                                                                                                                |                                   |                         | I                       |               |
|                                                                                                                                                                                                                                                                                           | per of HARQ                                                                                                                                 |                                                                                                                |                                   |                         | 1                       |               |
|                                                                                                                                                                                                                                                                                           | nissions                                                                                                                                    |                                                                                                                |                                   |                         | -                       |               |
| Note 1:                                                                                                                                                                                                                                                                                   | subframe SF#<br>than SF#(n-4)<br>eNB downlink                                                                                               | orts in an available u<br>th based on CQI es<br>this reported wide<br>before SF#(n+4)                          | timation a<br>band CQ             | at a down<br>I cannot I | llink SF n<br>be applie | d at the      |
| Note 2: Reference measurement channel according to Table A.4-1 for<br>Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as<br>described in Annex A.5.1.1 and Table A.4-7 for Category 1 with<br>one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in<br>Annex A.5.1.1/2. |                                                                                                                                             |                                                                                                                |                                   |                         | DD as<br>vith           |               |
| Note 3:                                                                                                                                                                                                                                                                                   | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level. |                                                                                                                |                                   |                         |                         |               |
| Note 4:                                                                                                                                                                                                                                                                                   | To avoid collis<br>necessary to<br>DCI format 0<br>to allow period                                                                          | sions between CQI<br>report both on PUS<br>shall be transmitted<br>dic CQI to multiplex<br>rame SF#5, #7, #1 a | CH instea<br>in downl<br>with the | ad of PU0<br>ink SF#1   | CCH. PD0<br>, #3, #7 a  | CCH<br>ind #9 |

| Table 9.3.2.1.1-1 Fadin | g test for single antenna (Fl | DD) |
|-------------------------|-------------------------------|-----|
|-------------------------|-------------------------------|-----|

Table 9.3.2.1.1-2 Minimum requirement (FDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 20     | 20     |
| γ           | 1.05   | 1.05   |
| UE Category | ≥1     | ≥1     |

#### 9.3.2.1.2 TDD

For the parameters specified in Table 9.3.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.2-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least  $\alpha$  % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3 (for Category 2-8) or Table A.4-9 (for Category 1).

| Parameter                           |                                                                                                                                      | Unit                                          | Test 1 Test                    |           | st 2       |          |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|-----------|------------|----------|
|                                     | dwidth                                                                                                                               | MHz                                           | 10 MHz                         |           |            |          |
| Transmis                            | ssion mode                                                                                                                           |                                               |                                |           | ort 0)     |          |
| Downlink                            | $ ho_{\scriptscriptstyle A}$                                                                                                         | dB                                            |                                | , u       | )          |          |
| power $\rho_{\scriptscriptstyle B}$ |                                                                                                                                      | dB                                            |                                | (         | )          |          |
| allocation $\sigma$                 |                                                                                                                                      | dB                                            | 0                              |           |            |          |
| Uplink downlink<br>configuration    |                                                                                                                                      |                                               | 2                              |           |            |          |
|                                     | subframe<br>guration                                                                                                                 |                                               |                                | 2         | 1          |          |
|                                     | (Note 3)                                                                                                                             | dB                                            | 6                              | 7         | 12         | 13       |
| Ĵ                                   | (j)<br>or                                                                                                                            | dB[mW/15kHz]                                  | -92                            | -91       | -86        | -85      |
| Λ                                   | $V_{oc}^{(j)}$                                                                                                                       | dB[mW/15kHz]                                  | -6                             | 98        | -9         | 8        |
|                                     | ion channel                                                                                                                          |                                               |                                | EP        | A5         |          |
|                                     | ation and                                                                                                                            |                                               |                                | Hiah (    | (1 x 2)    |          |
|                                     | onfiguration                                                                                                                         |                                               |                                | -         |            |          |
|                                     | g periodicity                                                                                                                        | ms                                            | $\frac{PUCCH 1-0}{N_{pd} = 5}$ |           |            |          |
|                                     | delay                                                                                                                                | ms                                            | 10 or 11                       |           |            |          |
| Physical                            | channel for                                                                                                                          |                                               | PUSCH (Note 4)                 |           |            |          |
|                                     | eporting                                                                                                                             |                                               |                                |           | , ,        |          |
|                                     | Report Type                                                                                                                          |                                               |                                | 4         | 4          |          |
|                                     | i-pmi-<br>rationIndex                                                                                                                |                                               |                                | 3         | 3          |          |
|                                     | per of HARQ                                                                                                                          |                                               |                                |           |            |          |
|                                     | nissions                                                                                                                             |                                               |                                |           | 1          |          |
| ACK/NAC                             | K feedback                                                                                                                           |                                               | Multiplexing                   |           |            |          |
|                                     | ode                                                                                                                                  |                                               |                                |           | 0          |          |
|                                     |                                                                                                                                      | orts in an available u                        |                                |           |            |          |
|                                     |                                                                                                                                      | n based on CQI es<br>, this reported wide     |                                |           |            |          |
|                                     |                                                                                                                                      | before SF#(n+4).                              |                                |           | be applie  |          |
|                                     |                                                                                                                                      | easurement channel                            | l accordir                     | ng to Tab | le A.4-2 f | or       |
|                                     |                                                                                                                                      | with one sided dyna                           |                                |           |            |          |
|                                     |                                                                                                                                      | Annex A.5.2.1 and T                           |                                |           |            |          |
|                                     | one/two sided<br>Annex A.5.2.1                                                                                                       | l dynamic OCNG Pa                             | attern OP                      | 9.1/2 TDD | as desci   | ribed in |
| Note 3:                             | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input |                                               |                                |           |            |          |
|                                     | level.                                                                                                                               |                                               |                                |           |            |          |
|                                     |                                                                                                                                      | sions between CQI                             |                                |           |            |          |
|                                     | •                                                                                                                                    | report both on PUS                            |                                |           |            |          |
|                                     |                                                                                                                                      | shall be transmitted<br>to multiplex with the |                                |           |            |          |
|                                     | subframe SF#                                                                                                                         |                                               | - 17 (1 \ Q <sup>2</sup> /-    |           |            | ahuur    |

Table 9.3.2.1.2-1 Fading test for single antenna (TDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 20     | 20     |
| γ           | 1.05   | 1.05   |
| UE Category | ≥1     | ≥1     |

### 9.3.2.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

### 9.3.2.2.1 FDD

For the parameters specified in Table 9.3.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.1-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least  $\alpha$ % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3b or Table A.4-3c.

| Para                                                                                                                                                                                                                                                                                           | Unit                                                                                                                                                                                                                                          | Tes                    | st 1   | Tes             | st 2      |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|-----------------|-----------|-----|
| Bandwidth                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                               | MHz                    | 10 MHz |                 |           |     |
| Transmiss                                                                                                                                                                                                                                                                                      | Transmission mode                                                                                                                                                                                                                             |                        | 9      |                 |           |     |
|                                                                                                                                                                                                                                                                                                | $ ho_{\scriptscriptstyle A}$                                                                                                                                                                                                                  | dB                     | 0      |                 |           |     |
| Downlink power                                                                                                                                                                                                                                                                                 | $ ho_{\scriptscriptstyle B}$                                                                                                                                                                                                                  | dB                     | 0      |                 |           |     |
| allocation                                                                                                                                                                                                                                                                                     | $P_c$                                                                                                                                                                                                                                         | dB                     | -3     |                 |           |     |
|                                                                                                                                                                                                                                                                                                | σ                                                                                                                                                                                                                                             | dB                     |        | -               | 3         |     |
| SNR (1                                                                                                                                                                                                                                                                                         | Note 3)                                                                                                                                                                                                                                       | dB                     | 2      | 3               | 7         | 8   |
| $\hat{I}_{a}^{0}$                                                                                                                                                                                                                                                                              | (j)<br>pr                                                                                                                                                                                                                                     | dB[mW/15kHz]           | -96    | -95             | -91       | -90 |
| N                                                                                                                                                                                                                                                                                              | ( <i>j</i> )<br>oc                                                                                                                                                                                                                            | dB[mW/15kHz]           | -9     | 8               | -9        | 98  |
| Propagatio                                                                                                                                                                                                                                                                                     | on channel                                                                                                                                                                                                                                    |                        |        | EP              | A5        |     |
|                                                                                                                                                                                                                                                                                                | tenna configuration                                                                                                                                                                                                                           |                        |        | ULA Hig         |           |     |
|                                                                                                                                                                                                                                                                                                | ning Model                                                                                                                                                                                                                                    |                        |        |                 | Section   |     |
|                                                                                                                                                                                                                                                                                                | ference signals                                                                                                                                                                                                                               |                        |        |                 | ports 0,1 |     |
|                                                                                                                                                                                                                                                                                                | nce signals                                                                                                                                                                                                                                   |                        | An     | tenna po        | rts 15,   | ,18 |
|                                                                                                                                                                                                                                                                                                | and subframe offset                                                                                                                                                                                                                           |                        |        | 5/1             |           |     |
|                                                                                                                                                                                                                                                                                                | $\Delta_{CSI-RS}$                                                                                                                                                                                                                             |                        |        |                 |           |     |
|                                                                                                                                                                                                                                                                                                | signal configuration                                                                                                                                                                                                                          |                        | 2      |                 |           |     |
|                                                                                                                                                                                                                                                                                                | Restriction bitmap                                                                                                                                                                                                                            |                        | 0x0    |                 | 0 0000 0  | 001 |
| Reportir                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                        |        |                 | CH 1-1    |     |
|                                                                                                                                                                                                                                                                                                | periodicity                                                                                                                                                                                                                                   | ms                     |        | N <sub>pd</sub> | = 5       |     |
|                                                                                                                                                                                                                                                                                                | delay                                                                                                                                                                                                                                         | ms                     | 8      |                 |           |     |
|                                                                                                                                                                                                                                                                                                | nel for CQI/ PMI                                                                                                                                                                                                                              |                        |        | PUSCH (Note 4)  |           |     |
| repo                                                                                                                                                                                                                                                                                           | rting                                                                                                                                                                                                                                         |                        |        |                 | . ,       |     |
| PUCCH Report                                                                                                                                                                                                                                                                                   | Type for CQI/PMI                                                                                                                                                                                                                              |                        |        | -               | 2         |     |
|                                                                                                                                                                                                                                                                                                | I for RI reporting                                                                                                                                                                                                                            |                        |        |                 | Format 2  |     |
| PUCCH repo                                                                                                                                                                                                                                                                                     | ort type for RI                                                                                                                                                                                                                               |                        |        |                 | 3         |     |
|                                                                                                                                                                                                                                                                                                | gurationIndex                                                                                                                                                                                                                                 |                        |        |                 | 2         |     |
|                                                                                                                                                                                                                                                                                                | igIndex                                                                                                                                                                                                                                       |                        |        |                 | 1         |     |
|                                                                                                                                                                                                                                                                                                | RQ transmissions                                                                                                                                                                                                                              | le uplink reporting in |        | toubtrom        |           |     |
| on CQI e                                                                                                                                                                                                                                                                                       | Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based<br>on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband<br>CQI cannot be applied at the eNB downlink before SF#(n+4) |                        |        |                 |           |     |
| Note 2: Reference measurement channel according to Table A.4-1a with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.                                                                                                                                                    |                                                                                                                                                                                                                                               |                        |        |                 |           |     |
| SNR(s) a                                                                                                                                                                                                                                                                                       | Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.                                                                                           |                        |        |                 |           |     |
| Note 4: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5. |                                                                                                                                                                                                                                               |                        |        |                 |           |     |

| Table 9.3.2.2.1-2 Minimum | requirement ( | (FDD) |
|---------------------------|---------------|-------|
|---------------------------|---------------|-------|

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 20     | 20     |
| γ           | 1.05   | 1.05   |
| UE Category | ≥1     | ≥1     |

## 9.3.2.2.2 TDD

For the parameters specified in Table 9.3.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.2.2-2 and by the following

a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least  $\alpha$ % of the time;

b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be  $\geq \gamma$ ;

c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3b or Table A.4-3d.

| Parameter                        |                                                                                                                                                                   |                                                | Unit                                    | Tes       | st 1       | Test 2     |         |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------|------------|------------|---------|
| Bandwidth                        |                                                                                                                                                                   | MHz                                            | 10 MHz                                  |           |            |            |         |
| Т                                | ransmiss                                                                                                                                                          | ion mode                                       |                                         |           | 9          | 9          |         |
| Uplink                           | Uplink downlink configuration                                                                                                                                     |                                                |                                         |           |            | 2          |         |
| Specia                           | l subfram                                                                                                                                                         | e configuration                                |                                         |           |            | 4          |         |
|                                  |                                                                                                                                                                   | $ ho_{\scriptscriptstyle A}$                   | dB                                      | 0         |            |            |         |
| Downlink                         |                                                                                                                                                                   | $ ho_{\scriptscriptstyle B}$                   | dB                                      |           | (          | 0          |         |
| allocati                         | on                                                                                                                                                                | $P_c$                                          | dB                                      |           | -          | 6          |         |
|                                  |                                                                                                                                                                   | σ                                              | dB                                      |           | -          | 3          |         |
|                                  | SNR (N                                                                                                                                                            | lote 3)                                        | dB                                      | 1         | 2          | 7          | 8       |
|                                  | $\hat{I}_o^{(}$                                                                                                                                                   | j)<br>r                                        | dB[mW/15kHz]                            | -97       | -96        | -91        | -90     |
|                                  | $N_{a}$                                                                                                                                                           | (j)<br>00                                      | dB[mW/15kHz]                            | -9        | 8          | -9         | 98      |
| Pi                               | ropagatic                                                                                                                                                         | n channel                                      |                                         |           |            | PA5        |         |
|                                  |                                                                                                                                                                   | enna configuration                             |                                         |           |            | h (8 x 2)  |         |
|                                  |                                                                                                                                                                   | ing Model                                      |                                         |           |            | n Section  |         |
|                                  |                                                                                                                                                                   | nce signals                                    |                                         |           |            | ports 0, 1 |         |
|                                  |                                                                                                                                                                   | nce signals                                    |                                         | An        | tenna po   | orts 15,   | ,22     |
| CSI-RS pe                        |                                                                                                                                                                   | and subframe offset                            |                                         |           | 5/         | / 3        |         |
|                                  | T <sub>CSI-RS</sub> /                                                                                                                                             | <u>Acsi-Rs</u>                                 |                                         |           |            | 2          |         |
|                                  |                                                                                                                                                                   | × ×                                            |                                         | 0v000     |            | -          |         |
| CodeBookSubsetRestriction bitmap |                                                                                                                                                                   |                                                | 0x0000 0000 0000 0020 0000<br>0000 0001 |           |            |            |         |
|                                  | Reportin                                                                                                                                                          |                                                |                                         | PUC       |            | Sub-moc    | le: 2)  |
| R                                |                                                                                                                                                                   | periodicity                                    | ms                                      |           |            | = 5        |         |
|                                  |                                                                                                                                                                   |                                                | ms                                      |           | 1          | 0          |         |
| Physic                           | al chann<br>repo                                                                                                                                                  | el for CQI/ PMI<br>rting                       |                                         |           | PUSCH      | (Note 4)   |         |
| PUCCH                            |                                                                                                                                                                   | ype for CQI/ PMI                               |                                         |           | 2          | 2c         |         |
| Physica                          | l channe                                                                                                                                                          | for RI reporting                               |                                         |           |            | Format 2   |         |
|                                  |                                                                                                                                                                   | rt type for RI                                 |                                         |           |            | 3          |         |
|                                  |                                                                                                                                                                   | gurationIndex                                  |                                         |           | :          | 3          |         |
|                                  | ri-Confi                                                                                                                                                          | gIndex                                         |                                         |           | 805 (N     | Vote 5)    |         |
| Max numb                         | per of HA                                                                                                                                                         | RQ transmissions                               |                                         |           |            | 1          |         |
|                                  |                                                                                                                                                                   | edback mode                                    |                                         |           |            | lexing     |         |
|                                  |                                                                                                                                                                   | reports in an availabl                         |                                         |           |            |            |         |
|                                  |                                                                                                                                                                   | stimation at a downlir                         |                                         |           |            | orted wid  | leband  |
|                                  |                                                                                                                                                                   | ot be applied at the e                         |                                         |           |            |            | dunamia |
|                                  |                                                                                                                                                                   | e measurement chan<br>attern OP.1 TDD as o     |                                         |           | a with or  | ie slaed ( | lynamic |
|                                  |                                                                                                                                                                   | test, the minimum re                           |                                         |           | or at leas | st one of  | the two |
|                                  |                                                                                                                                                                   | nd the respective wa                           |                                         |           | or at load |            |         |
|                                  |                                                                                                                                                                   | collisions between C                           |                                         |           | CK it is i | necessar   | y to    |
| r                                | eport bot                                                                                                                                                         | h on PUSCH instead                             | of PUCCH. PDCC                          | H DCI for | mat 0 sh   | all be     |         |
|                                  | transmitted in downlink SF#3 and #8 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#2 and #7.                            |                                                |                                         |           |            | with the   |         |
| Note 5: F                        | RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three |                                                |                                         |           |            |            |         |
|                                  |                                                                                                                                                                   | ollide, it is expected the                     |                                         |           |            |            |         |
|                                  |                                                                                                                                                                   | CK will be multiplexed                         |                                         |           |            |            |         |
|                                  |                                                                                                                                                                   | ms during performar                            |                                         |           |            |            |         |
| 5                                | SF#7 of t                                                                                                                                                         | he previous frame is<br>dropping) is available | applied in downlink                     |           |            |            |         |

Table 9.3.2.2.2-1 Fading test for TDD

| Table 9.3.2.2.2-2 | Minimum | requirement | (TDD) |
|-------------------|---------|-------------|-------|
|-------------------|---------|-------------|-------|

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 20     | 20     |
| γ           | 1.05   | 1.05   |
| UE Category | ≥1     | ≥1     |

## 9.3.3 Frequency-selective interference

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective interference conditions is determined by a percentile of the reported differential CQI offset level +2 for a preferred sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands are used for frequently-selective scheduling under frequency-selective interference conditions.

## 9.3.3.1 Minimum requirement PUSCH 3-0 (Cell-Specific Reference Symbol)

### 9.3.3.1.1 FDD

For the parameters specified in Table 9.3.3.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.1-2 and by the following

a) a sub-band differential CQI offset level of +2 shall be reported at least  $\alpha$ % for at least one of the sub-bands of full size at the channel edges;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

| Par                                                                                                                                                                                                                                                                                                                                                                                                                                      | ameter                       | Unit         | Test 1                             | Test 2     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|------------------------------------|------------|
| Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | MHz          | 10 MHz                             | 10 MHz     |
| Transm                                                                                                                                                                                                                                                                                                                                                                                                                                   | ission mode                  |              | 1 (port 0)                         | 1 (port 0) |
| Downlink                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ ho_{\scriptscriptstyle A}$ | dB           | 0                                  | 0          |
| power                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ ho_{\scriptscriptstyle B}$ | dB           | 0                                  | 0          |
| allocation                                                                                                                                                                                                                                                                                                                                                                                                                               | σ                            | dB           | 0                                  | 0          |
| $I_{ot}^{(j)}$ fo                                                                                                                                                                                                                                                                                                                                                                                                                        | or RB 05                     | dB[mW/15kHz] | -102                               | -93        |
| $I_{\scriptscriptstyle ot}^{(j)}$ fo                                                                                                                                                                                                                                                                                                                                                                                                     | r RB 641                     | dB[mW/15kHz] | -93                                | -93        |
| $I_{\scriptscriptstyle ot}^{(j)}$ for                                                                                                                                                                                                                                                                                                                                                                                                    | RB 4249                      | dB[mW/15kHz] | -93                                | -102       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\hat{I}_{or}^{(j)}$         | dB[mW/15kHz] | -94 -94                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | ber of HARQ<br>missions      |              | 1                                  |            |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |              | Clause B.2.4 with $\tau_d=0.45\mu$ |            |
| Propaga                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion channel                 |              | $a = 1, f_D = 5 \text{ Hz}$        |            |
| Report                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing interval                 | ms           |                                    | 5          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | configuration                |              | 1:                                 | x 2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | l delay                      | ms           |                                    | 8          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | ting mode                    |              |                                    | CH 3-0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | oand size                    | RB           | 6 (full size)                      |            |
| <ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.</li> </ul> |                              |              |                                    |            |

#### Table 9.3.3.1.1-1 Sub-band test for single antenna transmission (FDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 60     | 60     |
| γ           | 1.6    | 1.6    |
| UE Category | ≥1     | ≥1     |

Table 9.3.3.1.1-2 Minimum requirement (FDD)

## 9.3.3.1.2 TDD

For the parameters specified in Table 9.3.3.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.2-2 and by the following

a) a sub-band differential CQI offset level of +2 shall be reported at least  $\alpha$ % for at least one of the sub-bands of full size at the channel edges;

b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

| Table 9.3.3.1.2-1 Sub-b | and test for sing | le antenna tran | smission (TDD) |
|-------------------------|-------------------|-----------------|----------------|
|                         |                   |                 |                |

| Parameter                                                                                                                                                                                                                                                 |                              | Unit         | Test 1                         | Test 2     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------------------------------|------------|
| Band                                                                                                                                                                                                                                                      | dwidth                       | MHz          | 10 MHz                         | 10 MHz     |
| Transmis                                                                                                                                                                                                                                                  | sion mode                    |              | 1 (port 0)                     | 1 (port 0) |
| Downlink                                                                                                                                                                                                                                                  | $ ho_{\scriptscriptstyle A}$ | dB           | 0                              | 0          |
| power                                                                                                                                                                                                                                                     | $ ho_{\scriptscriptstyle B}$ | dB           | 0                              | 0          |
| allocation                                                                                                                                                                                                                                                | σ                            | dB           | 0                              | 0          |
| config                                                                                                                                                                                                                                                    | downlink<br>juration         |              | 2                              |            |
|                                                                                                                                                                                                                                                           | subframe<br>juration         |              | 4                              |            |
| $I_{\scriptscriptstyle ot}^{(j)}$ for                                                                                                                                                                                                                     | RB 05                        | dB[mW/15kHz] | -102                           | -93        |
| $I_{\scriptscriptstyle ot}^{(j)}$ for                                                                                                                                                                                                                     | RB 641                       | dB[mW/15kHz] | -93                            | -93        |
| $I_{\mathit{ot}}^{(j)}$ for F                                                                                                                                                                                                                             | RB 4249                      | dB[mW/15kHz] | -93                            | -102       |
| Î                                                                                                                                                                                                                                                         | ( <i>j</i> )<br>or           | dB[mW/15kHz] | -94                            | -94        |
|                                                                                                                                                                                                                                                           | er of HARQ                   |              | 1                              |            |
| Propagati                                                                                                                                                                                                                                                 | ion channel                  |              | Clause B.2.4 with $a = 1, f_I$ |            |
| Antenna c                                                                                                                                                                                                                                                 | onfiguration                 |              | 1 x                            | 2          |
|                                                                                                                                                                                                                                                           | ng interval                  | ms           | 1 x<br>5                       | 2          |
|                                                                                                                                                                                                                                                           | delay                        | ms           | 10 0                           |            |
|                                                                                                                                                                                                                                                           | ng mode                      |              | PUSC                           |            |
|                                                                                                                                                                                                                                                           | and size                     | RB           | 6 (full                        |            |
|                                                                                                                                                                                                                                                           | K feedback<br>ode            |              | Multiplexing                   |            |
| Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4). |                              |              |                                |            |
| Note 2: Reference measurement channel according to table A.4-5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.                                                                                                        |                              |              |                                |            |

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| α[%]        | 60     | 60     |
| γ           | 1.6    | 1.6    |
| UE Category | ≥1     | ≥1     |

### 9.3.3.2 Void

9.3.3.2.1 Void

9.3.3.2.2 Void

## 9.3.4 UE-selected subband CQI

The accuracy of UE-selected subband channel quality indicator (CQI) reporting under frequency-selective fading conditions is determined by the relative increase of the throughput obtained when transmitting on the UE-selected subbands with the corresponding transport format compared to the case for which a fixed format is transmitted on any subband in set *S* of TS 36.213 [6]. The purpose is to verify that correct subbands are accurately reported for frequency-selective scheduling. To account for sensitivity of the input SNR the subband CQI reporting under frequency-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

### 9.3.4.1 Minimum requirement PUSCH 2-0 (Cell-Specific Reference Symbols)

### 9.3.4.1.1 FDD

For the parameters specified in Table 9.3.4.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{\text{PRB}}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

| Par                                                                                                                                                                                                                                                      | ameter                                                                                                                                      | Unit         | Tes                         | st 1      | Tes             | st 2             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|-----------|-----------------|------------------|
| Bar                                                                                                                                                                                                                                                      | dwidth                                                                                                                                      | MHz          |                             | 10 N      | MHz             |                  |
| Transmission mode                                                                                                                                                                                                                                        |                                                                                                                                             |              | 1 (port 0)                  |           |                 |                  |
| Downlink                                                                                                                                                                                                                                                 | $ ho_{\scriptscriptstyle A}$                                                                                                                | dB           | 0                           |           |                 |                  |
| power                                                                                                                                                                                                                                                    | $ ho_{\scriptscriptstyle B}$                                                                                                                | dB           |                             | (         | )               |                  |
| allocation                                                                                                                                                                                                                                               | σ                                                                                                                                           | dB           |                             | (         | )               |                  |
| SNR                                                                                                                                                                                                                                                      | (Note 3)                                                                                                                                    | dB           | 9                           | 10        | 14              | 15               |
| -                                                                                                                                                                                                                                                        | $\hat{I}_{or}^{(j)}$                                                                                                                        | dB[mW/15kHz] | -89                         | -88       | -84             | -83              |
| 1                                                                                                                                                                                                                                                        | $V_{oc}^{(j)}$                                                                                                                              | dB[mW/15kHz] | -9                          | 98        | -9              | 98               |
|                                                                                                                                                                                                                                                          |                                                                                                                                             |              | Clause                      | B.2.4 wit | th $\tau_d = 0$ | ).45 <i>μ</i> s, |
| Propagation channel                                                                                                                                                                                                                                      |                                                                                                                                             |              | $a = 1, f_D = 5 \text{ Hz}$ |           |                 |                  |
| Reporti                                                                                                                                                                                                                                                  | ng interval                                                                                                                                 | ms           | 5                           |           |                 |                  |
| CQI delay                                                                                                                                                                                                                                                |                                                                                                                                             | ms           | 8                           |           |                 |                  |
| Repor                                                                                                                                                                                                                                                    | ing mode                                                                                                                                    |              | PUSCH 2-0                   |           |                 |                  |
| Max num                                                                                                                                                                                                                                                  | per of HARQ                                                                                                                                 |              |                             | 1         |                 |                  |
|                                                                                                                                                                                                                                                          | missions                                                                                                                                    |              |                             |           |                 |                  |
|                                                                                                                                                                                                                                                          | nd size ( <i>k</i> )                                                                                                                        | RBs          | 3 (full size)               |           |                 |                  |
|                                                                                                                                                                                                                                                          | of preferred<br>ands ( <i>M</i> )                                                                                                           |              | 5                           |           |                 |                  |
| Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) |                                                                                                                                             |              |                             |           |                 |                  |
| Note 2:                                                                                                                                                                                                                                                  | Reference measurement channel according to Table A.4-10 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2. |              |                             |           |                 |                  |
| Note 3:                                                                                                                                                                                                                                                  | For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level. |              |                             |           |                 |                  |

 Table 9.3.4.1.1-1 Subband test for single antenna transmission (FDD)

Table 9.3.4.1.1-2 Minimum requirement (FDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| γ           | 1.2    | 1.2    |
| UE Category | ≥1     | ≥1     |

### 9.3.4.1.2 TDD

For the parameters specified in Table 9.3.4.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.1.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on a randomly selected subband among the best M subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{\text{PRB}}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

| Para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | meter                             | Unit         | Test 1 Test 2                         |         | st 2             |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|---------------------------------------|---------|------------------|-----|
| Ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dwidth                            | MHz          | 10 MHz                                |         |                  |     |
| Transmis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ssion mode                        |              | 1 (port 0)                            |         |                  |     |
| Downlink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ ho_{\scriptscriptstyle A}$      | dB           | 0                                     |         |                  |     |
| power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ ho_{\scriptscriptstyle B}$      | dB           |                                       | (       | )                |     |
| allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | σ                                 | dB           |                                       | (       | )                |     |
| config                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | downlink<br>guration              |              |                                       | 2       | 2                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | subframe<br>guration              |              |                                       | 2       | 4                |     |
| SNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Note 3)                          | dB           | 9                                     | 10      | 14               | 15  |
| ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\hat{f}(j)$ or                   | dB[mW/15kHz] | -89                                   | -88     | -84              | -83 |
| Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{oc}^{(j)}$                    | dB[mW/15kHz] | -9                                    | 8       | -6               | 98  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |              | Clause B.2.4 with $\tau_d = 0.45 \mu$ |         | ).45 <i>μ</i> s, |     |
| Propagat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion channel                       |              | $a = 1, f_D = 5 \text{ Hz}$           |         |                  |     |
| Reporti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng interval                       | ms           |                                       | 5       | 5                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | delay                             | ms           |                                       | 10 c    | or 11            |     |
| Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ing mode                          |              |                                       | PUSC    | CH 2-0           |     |
| Max numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | per of HARQ                       |              |                                       |         | 1                |     |
| transr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nissions                          |              |                                       |         |                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd size ( <i>k</i> )              | RBs          |                                       | 3 (full | size)            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of preferred<br>ands ( <i>M</i> ) |              |                                       | Ę       | 5                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K feedback                        |              |                                       | Multin  | lexing           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ode                               |              |                                       | -       | -                |     |
| Note 1:       If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)         Note 2:       Reference measurement channel according to Table A.4-11 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.         Note 3:       For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level. |                                   |              |                                       |         |                  |     |

#### Table 9.3.4.1.2-1 Sub-band test for single antenna transmission (TDD)

Table 9.3.4.1.2-2 Minimum requirement (TDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| γ           | 1.2    | 1.2    |
| UE Category | ≥1     | ≥1     |

### 9.3.4.2 Minimum requirement PUCCH 2-0 (Cell-Specific Reference Symbols)

#### 9.3.4.2.1 FDD

For the parameters specified in Table 9.3.4.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.1-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each TTI for FDD. The transport block size TBS (wideband CQI median) is that resulting

from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{PRB}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

| Para       | meter                                   | Unit                                                                                                     | Te            | st 1                    | Tes                   | st 2             |
|------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|-------------------------|-----------------------|------------------|
| Bandwidth  |                                         | MHz                                                                                                      |               | 10 MHz                  |                       |                  |
|            | sion mode                               |                                                                                                          |               | 1 (pc                   |                       |                  |
| Downlink   | $ ho_{\scriptscriptstyle A}$            | dB                                                                                                       | 0             |                         |                       |                  |
| power      |                                         | -                                                                                                        | 0             |                         |                       |                  |
| allocation | $ ho_{\scriptscriptstyle B}$            | dB                                                                                                       |               |                         |                       |                  |
|            | σ                                       | dB                                                                                                       | -             | (                       |                       |                  |
|            | (Note 3)                                | dB                                                                                                       | 8             | 9                       | 13                    | 14               |
|            | (j)<br>or                               | dB[mW/15kHz]                                                                                             | -90           | -89                     | -85                   | -84              |
| Ν          | $V_{oc}^{(j)}$                          | dB[mW/15kHz]                                                                                             | -6            | 98                      | -9                    | 98               |
| Propagat   | ion channel                             |                                                                                                          | Clause        | B.2.4 wit               | u                     | ).45 <i>μ</i> s, |
|            |                                         |                                                                                                          |               | a = 1, f<br>$N_{\rm P}$ | $_{D} = 5 \text{ Hz}$ |                  |
|            | periodicity                             | ms                                                                                                       |               |                         |                       |                  |
|            | delay                                   | ms                                                                                                       |               | 8                       | 3                     |                  |
|            | channel for<br>eporting                 |                                                                                                          |               | PUSCH                   | (Note 4)              |                  |
| PUCCH F    | Report Type                             |                                                                                                          |               |                         | 1                     |                  |
|            | band CQI                                |                                                                                                          |               | _                       | r                     |                  |
|            | Report Type                             |                                                                                                          |               |                         | 1                     |                  |
| -          | band CQI                                |                                                                                                          |               |                         |                       |                  |
|            | er of HARQ                              |                                                                                                          | 1             |                         |                       |                  |
|            | nd size ( <i>k</i> )                    | RBs                                                                                                      | 6 (full size) |                         |                       |                  |
| -          | f bandwidth                             | TLD3                                                                                                     |               |                         |                       |                  |
|            | ts (J)                                  |                                                                                                          | 3             |                         |                       |                  |
|            | K                                       |                                                                                                          |               |                         | 1                     |                  |
| cqi-pmi-C  | ConfigIndex                             |                                                                                                          | 1             |                         |                       |                  |
|            |                                         | orts in an available u                                                                                   | plink rep     | orting ins              | tance at              |                  |
|            | subframe SF#                            | n based on CQI es                                                                                        | timation a    | at a down               | link subfi            | rame             |
|            |                                         | SF#(n-4), this report                                                                                    |               |                         |                       | CQI              |
|            |                                         | olied at the eNB dov                                                                                     |               |                         |                       |                  |
|            |                                         | easurement channe                                                                                        |               |                         |                       |                  |
|            |                                         | I dynamic OCNG Pa                                                                                        | attern OP     | .1/2 FDD                | as desci              | ribed in         |
|            | Annex A.5.1.1                           |                                                                                                          |               |                         |                       | 1                |
|            |                                         | the minimum requi                                                                                        |               |                         |                       |                  |
|            | least one of tr                         | ne two SNR(s) and t                                                                                      | ne respe      | ctive war               | ited signa            | ai input         |
|            |                                         | sions between CQI                                                                                        | ronarte a     |                         |                       | c .              |
|            |                                         |                                                                                                          |               |                         |                       |                  |
|            |                                         | o report both on PUSCH instead of PUCCH. PDCCH<br>0 shall be transmitted in downlink SF#1, #3, #7 and #9 |               |                         |                       |                  |
|            |                                         | odic CQI to multiplex with the HARQ-ACK on PUSCH                                                         |               |                         |                       |                  |
|            | in uplink subframe SF#5, #7, #1 and #3. |                                                                                                          |               |                         |                       |                  |
|            |                                         |                                                                                                          |               |                         |                       |                  |
|            |                                         | rt) are to be disrega                                                                                    |               |                         |                       |                  |
|            |                                         | he most recent subl                                                                                      |               |                         |                       | dth part         |
|            | with j=1.                               |                                                                                                          |               |                         |                       |                  |
|            | • •                                     |                                                                                                          |               |                         |                       |                  |
|            |                                         | cording to the most                                                                                      | recently      | used sub                | band CQ               | I                |
| report.    |                                         |                                                                                                          |               |                         |                       |                  |

Table 9.3.4.2.1-1 Subband test for single antenna transmission (FDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| γ           | 1.15   | 1.15   |
| UE Category | ≥1     | ≥1     |

#### 9.3.4.2.2 TDD

For the parameters specified in Table 9.3.4.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.4.2.2-2 and by the following

a) the ratio of the throughput obtained when transmitting on subbands reported by the UE the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected subband in set *S* shall be  $\geq \gamma$ ;

The requirements only apply for subbands of full size and the random scheduling across the subbands is done by selecting a new subband in each available downlink transmission instance for TDD. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the  $N_{PRB}$  entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the subband size.

| Par        | ameter                                                                           | Unit                                                                                                                                                                                                                   | Tes                                                                              | st 1                               | Tes                               | st 2            |
|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|-----------------------------------|-----------------|
|            | ndwidth                                                                          | MHz                                                                                                                                                                                                                    | 10 MHz                                                                           |                                    |                                   |                 |
|            | ssion mode                                                                       |                                                                                                                                                                                                                        | 1 (port 0)                                                                       |                                    |                                   |                 |
| Downlink   | $ ho_{\scriptscriptstyle A}$                                                     | dB                                                                                                                                                                                                                     | 0                                                                                |                                    |                                   |                 |
| power      | $ ho_{\scriptscriptstyle B}$                                                     | dB                                                                                                                                                                                                                     | 0                                                                                |                                    |                                   |                 |
| allocation | σ                                                                                | dB                                                                                                                                                                                                                     |                                                                                  | (                                  | C                                 |                 |
| Uplink     | downlink                                                                         |                                                                                                                                                                                                                        |                                                                                  |                                    |                                   |                 |
|            | guration                                                                         |                                                                                                                                                                                                                        |                                                                                  | 2                                  | 2                                 |                 |
|            | l subframe                                                                       |                                                                                                                                                                                                                        |                                                                                  | 4                                  | 4                                 |                 |
|            | guration                                                                         | 15                                                                                                                                                                                                                     |                                                                                  |                                    | -                                 |                 |
|            | (Note 3)                                                                         | dB                                                                                                                                                                                                                     | 8                                                                                | 9                                  | 13                                | 14              |
| -          | $\hat{I}_{or}^{(j)}$                                                             | dB[mW/15kHz]                                                                                                                                                                                                           | -90                                                                              | -89                                | -85                               | -84             |
| 1          | $V_{oc}^{(j)}$                                                                   | dB[mW/15kHz]                                                                                                                                                                                                           | -6                                                                               | 98                                 | -9                                | 8               |
| Bronogo    | tion obonnol                                                                     |                                                                                                                                                                                                                        | Clause                                                                           | B.2.4 wi                           | th $	au_d = 0$                    | .45 <i>μ</i> s, |
| гторауа    | tion channel                                                                     |                                                                                                                                                                                                                        |                                                                                  |                                    | $D_D = 5 \text{ Hz}$              |                 |
|            | g periodicity                                                                    | ms                                                                                                                                                                                                                     |                                                                                  | NP                                 | = 5                               |                 |
|            | I delay                                                                          | ms                                                                                                                                                                                                                     |                                                                                  | 10 c                               | or 11                             |                 |
|            | channel for<br>reporting                                                         |                                                                                                                                                                                                                        |                                                                                  | PUSCH                              | (Note 4)                          |                 |
|            | Report Type                                                                      |                                                                                                                                                                                                                        |                                                                                  |                                    | 4                                 |                 |
|            | eband CQI                                                                        |                                                                                                                                                                                                                        |                                                                                  | 2                                  | +                                 |                 |
|            | Report Type                                                                      |                                                                                                                                                                                                                        |                                                                                  |                                    | 1                                 |                 |
|            | band CQI<br>ber of HARQ                                                          |                                                                                                                                                                                                                        |                                                                                  |                                    |                                   |                 |
|            | missions                                                                         |                                                                                                                                                                                                                        |                                                                                  |                                    | 1                                 |                 |
|            | nd size ( <i>k</i> )                                                             | RBs                                                                                                                                                                                                                    |                                                                                  | 6 (ful                             | l size)                           |                 |
|            | of bandwidth                                                                     |                                                                                                                                                                                                                        |                                                                                  | :                                  | 3                                 |                 |
| ра         | <u>rts (J)</u><br>K                                                              |                                                                                                                                                                                                                        |                                                                                  |                                    | 1                                 |                 |
| cai-pmi-   | ConfigIndex                                                                      |                                                                                                                                                                                                                        |                                                                                  |                                    | 3                                 |                 |
|            | CK feedback                                                                      |                                                                                                                                                                                                                        |                                                                                  |                                    |                                   |                 |
|            | node                                                                             |                                                                                                                                                                                                                        |                                                                                  | -                                  | lexing                            |                 |
| Note 1:    | subframe SF#<br>not later than<br>cannot be app                                  | orts in an available u<br>th based on CQI es<br>SF#(n-4), this repor<br>blied at the eNB dow                                                                                                                           | timation a<br>ted subb<br>vnlink bei                                             | at a dowr<br>and or w<br>fore SF#( | ilink subfi<br>ideband (<br>n+4). | CQI             |
| Note 2:    |                                                                                  | easurement channel                                                                                                                                                                                                     |                                                                                  |                                    |                                   |                 |
|            | Annex A.5.2.1                                                                    | l dynamic OCNG Pa                                                                                                                                                                                                      | attern OP                                                                        | .1/2 100                           | as desci                          | ni bea          |
| Note 3:    | For each test,<br>least one of th                                                | the minimum requine two SNR(s) and t                                                                                                                                                                                   |                                                                                  |                                    |                                   |                 |
| Note 4:    | necessary to<br>DCI format 0                                                     | ollisions between CQI reports and HARQ-ACK it is<br>to report both on PUSCH instead of PUCCH. PDCCH<br>0 shall be transmitted in downlink SF#3 and #8 to allow<br>QI to multiplex with the HARQ-ACK on PUSCH in uplink |                                                                                  |                                    |                                   |                 |
| Note 5:    | subframe SF#<br>CQI reports for<br>bandwidth para<br>according to t<br>with j=1. | #7 and #2.<br>for the short subband (having 2RBs in the last<br>art) are to be disregarded and data scheduling<br>the most recent subband CQI report for bandwidth part                                                |                                                                                  |                                    |                                   |                 |
| Note 6:    |                                                                                  |                                                                                                                                                                                                                        | wideband CQI is reported, data is to be ng to the most recently used subband CQI |                                    |                                   | I               |

## Table 9.3.4.2.2-1 Sub-band test for single antenna transmission (TDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| γ           | 1.15   | 1.15   |
| UE Category | ≥1     | ≥1     |

#### Table 9.3.4.2.2-2 Minimum requirement (TDD)

## 9.3.5 Additional requirements for enhanced receiver Type A

The purpose of the test is to verify that the reporting of the channel quality is based on the receiver of the enhanced Type A. Performance requirements are specified in terms of the relative increase of the throughput obtained when the transport format is that indicated by the reported CQI subject to an interference model compared to the case with a white Gaussian noise model, and a requirement on the minimum BLER of the transmitted transport formats indicated by the reported CQI subject to an interference model.

### 9.3.5.1 Minimum requirement PUCCH 1-0 (Cell-Specific Reference Symbol)

#### 9.3.5.1.1 FDD

For the parameters specified in Table 9.3.5.1.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.1.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

The transport block sizes indicated by the reported wideband CQI are selected according to Table A.4-3 (for Category 2-8) or Table A.4-9 (for Category 1).

| Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ameter                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit                                      | Cell 1              | Cell 2          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|-----------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MHz                                       |                     | MHz             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ission mode                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                     | ort 0)          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ic Prefix                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | Normal              | Normal          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ell ID                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 0                   | 1               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R (Note 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dB                                        | -2                  | N/A             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $N_{oc}^{(j)}$                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB[mW/15kHz]                              | -98                 | N/A             |  |  |
| Propaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion channel                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | EPA5                | Static (Note 7) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lation and                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                     |                 |  |  |
| antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | configuration                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | Low (1 x 2)         | (1 x 2)         |  |  |
| DIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dB                                        | N/A                 | -0.41           |  |  |
| Ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ference                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | Note 2              | N/A             |  |  |
| measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ment channel                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | Note 2              | N/A             |  |  |
| Repor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ting mode                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | PUCCH 1-0           | N/A             |  |  |
| Reportin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g periodicity                                                                                                                                                                                                                                                                                                                                                                                                                                              | ms                                        | $N_{\rm pd} = 2$    | N/A             |  |  |
| CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l delay                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ms                                        | 8                   | N/A             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l channel for<br>reporting                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | PUSCH (Note<br>3)   | N/A             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Report Type                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 4                   | N/A             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | qi-pmi-                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                     |                 |  |  |
| Configu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | irationIndex                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 1                   | N/A             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ber of HARQ                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 1                   | N/A             |  |  |
| Note 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rts in an available                       | uplink reporting in | stance at       |  |  |
| Note 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel according to Table A.4-1 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1 and Table A.4-7 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in</li> </ul> |                                           |                     |                 |  |  |
| Annex A.5.1.1/2.<br>Note 3: To avoid collisions between CQI reports and HARQ-ACK it is<br>necessary to report both on PUSCH instead of PUCCH. PDCCH<br>DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9<br>to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH<br>in uplink subframe SF#5, #7, #1 and #3.<br>Note 4: The respective received power spectral density of each interfering<br>cell relative to $N_{ac}$ is defined by its associated DIP value as |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                     |                 |  |  |
| <ul> <li>specified in clause B.5.1.</li> <li>Note 5: Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. The number of the CRS ports in both cells is the same. Intefering cell is fully loaded.</li> <li>Note 6: Both cells are time-synchronous.</li> <li>Note 7: Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.</li> </ul>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                     |                 |  |  |
| Note 8:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onds to $ \widehat{E}_{s} ig / N_{oc}   $ | of Cell 1 as define | ed in clause    |  |  |
| Note 9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sical channel setur<br>defined in Annex / |                     | OCNG pattern    |  |  |

 Table 9.3.5.1.1-1 Fading test for single antenna (FDD)



| γ           | 1.8 |
|-------------|-----|
| UE Category | ≥1  |

#### 9.3.5.1.2 TDD

For the parameters specified in Table 9.3.5.1.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.1.2-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

The transport block sizes indicated by the reported wideband CQI are selected according to Table A.4-3 (for Category 2-8) or Table A.4-9 (for Category 1).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Unit                              | Cell 1              | Cell 2          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|-----------------|
| Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MHz                               |                     | MHz             |
| Transmission mode                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 1 (po               | ort 0)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k downlink                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                     | 2               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iguration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al subframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 4                   | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iguration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lic Prefix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | Normal              | Normal          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                | 0                   | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R (Note 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB                                | -2                  | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $N_{oc}^{(j)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB[mW/15kHz]                      | -98                 | -98             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | EPA5                | Static (Note 7) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | Low (1 x 2)         | (1 x 2)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                     |                 |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dB                                | N/A                 | -0.41           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | Note 2              | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ment channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rting mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | PUCCH 1-0           | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng periodicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ms                                | $N_{\rm pd} = 5$    | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ms                                | 10 or 11            | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I channel for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | PUSCH (Note         | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 3)                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Report Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 4                   | N/A             |
| Configu                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | qi-pmi-<br>urationIndex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 3                   | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ber of HARQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 1                   | N/A             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CK feedback                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | Multiplexing        | N/A             |
| Note 1:<br>Note 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel according to Table A.4-2 for Category 2-8 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1 and Table A.4-8 for Category 1 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in</li> </ul> |                                   |                     |                 |
| Annex A.5.2.1/2.<br>Note 3: To avoid collisions between CQI reports and HARQ-ACK it is<br>necessary to report both on PUSCH instead of PUCCH. PDCCH<br>DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow<br>periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink<br>subframe SF#7 and #2.<br>Note 4: The respective received power spectral density of each interfering<br>cell relative to $N_{oc}$ is defined by its associated DIP value as |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                     |                 |
| Note 5:<br>Note 6:<br>Note 7:                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul><li>2 is the interfering cell. The number of the CRS ports in both cells is the same. Intefering cell is fully loaded.</li><li>Note 6: Both cells are time-synchronous.</li></ul>                                                                                                                                                                                                                                                                                                                                             |                                   |                     |                 |
| Note 8:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SINR corresp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onds to $\widehat{E}_{+}/N_{+}$ ( | of Cell 1 as define | d in clause     |
| Note 8: SINR corresponds to $\hat{E}_s / N_{oc}$ of Cell 1 as defined in clause<br>8.1.1.<br>Note 9: Downlink physical channel setup in Cell 2 applies OCNG pattern<br>OP.1 TDD as defined in Annex A.5.2.1.                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                     |                 |

| Table 9.3.5.1.2-1 | Fading to | est for singl | le antenna ( | (TDD) |  |
|-------------------|-----------|---------------|--------------|-------|--|
|-------------------|-----------|---------------|--------------|-------|--|

| Table 9.3.5.1.2-2 | Minimum re | quirement | (TDD) |
|-------------------|------------|-----------|-------|
|-------------------|------------|-----------|-------|

| γ           | 1.8 |
|-------------|-----|
| UE Category | ≥1  |

### 9.3.5.2 Minimum requirement PUCCH 1-1 (CSI Reference Symbol)

### 9.3.5.2.1 FDD

For the parameters specified in Table 9.3.5.2.1-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in Table 9.3.5.2.1-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

The transport block sizes indicated by the reported wideband CQI are selected according to Table A.4-3b or Table A.4-3h.

| _                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                              | -                      |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------|----------------------------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                        | Unit                                                                                           | Cell 1                 | Cell 2                     |
| Bandwidth<br>Transmission mode                                                                                                                                                                                                                                                                                                                                                                                   | MHz                                                                                            | 10                     | MHz<br>9                   |
| Cyclic Prefix                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                | Normal                 | Normal                     |
| Cell ID                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                | 0                      | 1                          |
| SINR (Note 8)                                                                                                                                                                                                                                                                                                                                                                                                    | dB                                                                                             | -2                     | N/A                        |
| $N_{oc}^{(j)}$                                                                                                                                                                                                                                                                                                                                                                                                   | dB[mW/15kHz]                                                                                   | -98                    | N/A                        |
| Propagation channel                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                | EPA5                   | Static (Note 7)            |
| Correlation and antenna configuration                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                | Low (2 x 2)            | (1 x 2)                    |
| DIP (Note 4)                                                                                                                                                                                                                                                                                                                                                                                                     | dB                                                                                             | N/A                    | -0.41                      |
| Cell-specific reference                                                                                                                                                                                                                                                                                                                                                                                          | 45                                                                                             | Antenna ports          | Antenna port 0             |
| signals                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                | 0,1                    | •                          |
| CSI reference signals                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                | Antenna ports<br>15,16 | N/A                        |
| CSI-RS periodicity and<br>subframe offset                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                | 5/1                    | N/A                        |
| CSI-RS reference<br>signal configuration                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                | 2                      | N/A                        |
| Zero-power CSI-RS                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                        |                            |
| configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPowerCSI-RS<br>bitmap                                                                                                                                                                                                                                                                                                                                              | Subframes /<br>bitmap                                                                          | N/A                    | 1 /<br>001000000000<br>000 |
| CodeBookSubsetRestr<br>iction bitmap                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                | 001111                 | N/A                        |
| Reference<br>measurement channel                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                | Note 2                 | N/A                        |
| Reporting mode                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | PUCCH 1-1              | N/A                        |
| Reporting periodicity                                                                                                                                                                                                                                                                                                                                                                                            | ms                                                                                             | $N_{\rm pd} = 5$       | N/A                        |
| CQI delay                                                                                                                                                                                                                                                                                                                                                                                                        | ms                                                                                             | 8                      | N/A                        |
| Physical channel for<br>CQI/PMI reporting                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                | PUSCH (Note 3)         | N/A                        |
| PUCCH Report Type<br>for CQI/PMI                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                | 2                      | N/A                        |
| PUCCH channel for RI<br>reporting                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | PUCCH<br>Format 2      | N/A                        |
| PUCCH Report Type<br>for RI                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                | 3                      | N/A                        |
| cqi-pmi-                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                | -                      | N1/A                       |
| ConfigurationIndex                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                | 2                      | N/A                        |
| ri-ConfigIndex                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | 1                      | N/A                        |
| Max number of HARQ                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                | 1                      | N/A                        |
| transmissions                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |                        | -                          |
| <ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel according to Table A.4-1c with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.</li> </ul> |                                                                                                |                        |                            |
| <ul> <li>Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#0 and #5.</li> <li>Note 4: The respective received power spectral density of each interfering</li> </ul>           |                                                                                                |                        |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                  | cell relative to $N_{oc}$ is defined by its associated DIP value as specified in clause B.5.1. |                        |                            |
| Note 5: Two cells are                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |                        |                            |
| Note 6:       Both cells are time-synchronous.         Note 7:       Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.                                                                                                                                                                                                                            |                                                                                                |                        |                            |

| Table 9.3.5.2.1-1 | Fading | test for | single | antenna | (FDD) |
|-------------------|--------|----------|--------|---------|-------|
|-------------------|--------|----------|--------|---------|-------|

| Note 8: | SINR corresponds to ${ar E}_s/N_{oc}$ ´ of Cell 1 as defined in clause                                            |
|---------|-------------------------------------------------------------------------------------------------------------------|
| Note 9: | 8.1.1.<br>Downlink physical channel setup in Cell 2 applies OCNG pattern<br>OP.1 FDD as defined in Annex A.5.1.1. |

| γ           | 1.8 |
|-------------|-----|
| UE Category | ≥1  |

### 9.3.5.2.2 TDD

For the parameters specified in Table 9.3.5.2.2-1, and using the downlink physical channels specified in Annex C, the minimum requirements are specified in 9.3.5.2.2-2 and by the following

- a) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP and that obtained when transmitting the transport format indicated by each reported wideband CQI index subject to a white Gaussian noise source shall be  $\geq \gamma$ ;
- b) when transmitting the transport format indicated by each reported wideband CQI index subject to an interference source with specified DIP, the average BLER for the indicated transport formats shall be greater than or equal to 2%.

The transport block sizes indicated by the reported wideband CQI are selected according to Table A.4-3b or Table A.4-3h.

|                                                                                                                                                                                                                                                                                                                                                                                                            |                       | <b>0</b>               | <b>0</b> " 0                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-----------------------------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                  | Unit                  | Cell 1                 | Cell 2<br>MHz               |
| Bandwidth<br>Transmission mode                                                                                                                                                                                                                                                                                                                                                                             | MHz                   |                        |                             |
| Uplink downlink                                                                                                                                                                                                                                                                                                                                                                                            |                       |                        | -                           |
| configuration                                                                                                                                                                                                                                                                                                                                                                                              |                       | 4                      | 2                           |
| Special subframe                                                                                                                                                                                                                                                                                                                                                                                           |                       |                        | 4                           |
| configuration                                                                                                                                                                                                                                                                                                                                                                                              |                       | 2                      | 1                           |
| Cyclic Prefix                                                                                                                                                                                                                                                                                                                                                                                              |                       | Normal                 | Normal                      |
| Cell ID                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 0                      | 1                           |
| SINR (Note 8)                                                                                                                                                                                                                                                                                                                                                                                              | dB                    | -2                     | N/A                         |
| $N_{oc}^{(j)}$                                                                                                                                                                                                                                                                                                                                                                                             | dB[mW/15kHz]          | -98                    | -98                         |
| Propagation channel                                                                                                                                                                                                                                                                                                                                                                                        |                       | EPA5                   | Static (Note 7)             |
| Correlation and                                                                                                                                                                                                                                                                                                                                                                                            |                       | Low (2 x 2)            | (1 x 2)                     |
| antenna configuration<br>DIP (Note 4)                                                                                                                                                                                                                                                                                                                                                                      | dB                    | N/A                    | -0.41                       |
| Cell-specific reference                                                                                                                                                                                                                                                                                                                                                                                    | uВ                    | Antenna ports          | Antenna port 0              |
| signals                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 0,1                    | Antenna port o              |
| CSI reference signals                                                                                                                                                                                                                                                                                                                                                                                      |                       | Antenna ports<br>15,16 | N/A                         |
| CSI-RS periodicity and<br>subframe offset                                                                                                                                                                                                                                                                                                                                                                  |                       | 5/3                    | N/A                         |
| CSI-RS reference                                                                                                                                                                                                                                                                                                                                                                                           |                       | 2                      | N/A                         |
| signal configuration                                                                                                                                                                                                                                                                                                                                                                                       |                       | 2                      |                             |
| Zero-power CSI-RS<br>configuration<br>I <sub>CSI-RS</sub> /<br>ZeroPowerCSI-RS                                                                                                                                                                                                                                                                                                                             | Subframes /<br>bitmap | N/A                    | 3 /<br>001000000000<br>0000 |
| bitmap<br>CodeBookSubsetRestr                                                                                                                                                                                                                                                                                                                                                                              |                       | 001111                 | N/A                         |
| iction bitmap<br>Reference                                                                                                                                                                                                                                                                                                                                                                                 |                       |                        | NI/A                        |
| measurement channel                                                                                                                                                                                                                                                                                                                                                                                        |                       | Note 2<br>PUCCH 1-1    | N/A                         |
| Reporting mode                                                                                                                                                                                                                                                                                                                                                                                             |                       | (Sub-mode: 2)          | N/A                         |
| Reporting periodicity                                                                                                                                                                                                                                                                                                                                                                                      | ms                    | $N_{\rm pd} = 5$       | N/A                         |
| CQI delay                                                                                                                                                                                                                                                                                                                                                                                                  | ms                    | 10                     | N/A                         |
| Physical channel for                                                                                                                                                                                                                                                                                                                                                                                       |                       | PUSCH (Note            | N/A                         |
| CQI/PMI reporting<br>PUCCH Report Type                                                                                                                                                                                                                                                                                                                                                                     |                       | 3)                     |                             |
| for CQI/PMI                                                                                                                                                                                                                                                                                                                                                                                                |                       | 2c                     | N/A                         |
| Physical channel for RI<br>reporting                                                                                                                                                                                                                                                                                                                                                                       |                       | PUCCH<br>Format 2      | N/A                         |
| PUCCH Report Type<br>for RI                                                                                                                                                                                                                                                                                                                                                                                |                       | 3                      | N/A                         |
| cqi-pmi-<br>ConfigurationIndex                                                                                                                                                                                                                                                                                                                                                                             |                       | 3                      | N/A                         |
| ri-ConfigIndex                                                                                                                                                                                                                                                                                                                                                                                             |                       | 805 (Note 9)           | N/A                         |
| Max number of HARQ<br>transmissions                                                                                                                                                                                                                                                                                                                                                                        |                       | 1                      | N/A                         |
| ACK/NACK feedback                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>              | Multiplexing           | N/A                         |
| mode                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                        | -                           |
| <ul> <li>Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)</li> <li>Note 2: Reference measurement channel according to Table A.4-2c with one sided dynamic OCNG Pattern OP.1 TDD as described in</li> </ul>          |                       |                        |                             |
| Annex A.5.2.1.<br>Note 3: To avoid collisions between CQI/ PMI reports and HARQ-ACK it is<br>necessary to report both on PUSCH instead of PUCCH. PDCCH<br>DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow<br>periodic CQI/ PMI to multiplex with the HARQ-ACK on PUSCH in<br>uplink subframe SF#2 and #7.<br>Note 4: The respective received power spectral density of each interfering |                       |                        |                             |

| Table 9.3.5.2.2-1 | Fading test | for single anter | nna (TDD) |
|-------------------|-------------|------------------|-----------|
|-------------------|-------------|------------------|-----------|

|          | cell relative to $N_{_{oc}}$ ´ is defined by its associated DIP value as                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | specified in clause B.5.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Note 5:  | Two cells are considered in which Cell 1 is the serving cell and Cell 2 is the interfering cell. Intefering cell is fully loaded.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Note 6:  | Both cells are time-synchronous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Note 7:  | Static channel is used for the interference model. In case for white Gaussian noise model Cell 2 is not present.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Note 8:  | SINR corresponds to $ \widehat{E}_{s} ig / N_{oc}   $ of Cell 1 as defined in clause                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | 8.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Note 9:  | RI reporting interval is set to the maximum allowable length of<br>160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK<br>reports. In the case when all three reports collide, it is expected that<br>CQI/PMI reports will be dropped, while RI and HARQ-ACK will be<br>multiplexed. At eNB, CQI report collection shall be skipped every<br>160ms during performance verification and the reported CQI in<br>subframe SF#7 of the previous frame is applied in downlink<br>subframes until a new CQI (after CQI/PMI dropping) is available. |
| Note 10: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | OP.1 TDD as defined in Annex A.5.2.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table 9.3.5.2.2-2 Minimum requirement (TDD)

| γ           | 1.8 |
|-------------|-----|
| UE Category | ≥1  |

## 9.3.6 Minimum requirement (With multiple CSI processes)

The purpose of the test is to verify the reporting accuracy of the CQI and the UE processing capability for multiple CSI processes. Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.3.6-1. For UE supports one CSI process, CSI process 2 is configured and the corresponding requirements shall be fulfilled. For UE supports three CSI processes, CSI processes 0, 1 and 2 are configured and the corresponding requirements shall be fulfilled. For UE supports four CSI processes, CSI processes 0, 1, 2 and 3 are configured and the corresponding requirements shall be fulfilled.

| Table 9.3.6-1 | Configuration of | of CSI processes |
|---------------|------------------|------------------|
|---------------|------------------|------------------|

|                 | CSI process 0     | CSI process 1     | CSI process 2     | CSI process 3     |
|-----------------|-------------------|-------------------|-------------------|-------------------|
| CSI-RS resource | CSI-RS signal 0   | CSI-RS signal 1   | CSI-RS signal 0   | CSI-RS signal 1   |
| CSI-IM resource | CSI-IM resource 0 | CSI-IM resource 0 | CSI-IM resource 1 | CSI-IM resource 2 |

## 9.3.6.1 FDD

For the parameters specified in Table 9.3.6.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.1-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least  $\delta$ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.1-3;
- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;

#### 3GPP TS 36.101 version 11.9.0 Release 11

e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6c.

| Table | 9.3.6.1-1 | Fading | test | for | FDD |
|-------|-----------|--------|------|-----|-----|
|-------|-----------|--------|------|-----|-----|

| Parameter           |                                                                         | l lucit      |                                                                                        | Tes                 | st 1                   |                           |                                                                                    | Te                 | st 2              |        |
|---------------------|-------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------|---------------------|------------------------|---------------------------|------------------------------------------------------------------------------------|--------------------|-------------------|--------|
|                     |                                                                         | Unit         | TP                                                                                     |                     | TF                     | 22                        | TI                                                                                 | P1                 | TF                | 2      |
|                     | width                                                                   | MHz          | <br>                                                                                   |                     | MHz                    |                           |                                                                                    |                    | MHz               |        |
| Iransmis            | sion mode                                                               |              | 10                                                                                     |                     | 10                     |                           | 1                                                                                  | 0                  | 1<br>0            | 0      |
|                     | $ ho_{\scriptscriptstyle A}$                                            | dB           |                                                                                        |                     | )                      |                           |                                                                                    |                    | -                 |        |
| Downlink power      | $ ho_{\scriptscriptstyle B}$                                            | dB           |                                                                                        | (                   | )                      |                           |                                                                                    |                    | 0                 |        |
| allocation          | $P_c$                                                                   | dB           | -3                                                                                     | 1                   | (                      | )                         | -:                                                                                 | 3                  | (                 | )      |
|                     | σ                                                                       | dB           |                                                                                        | -3                  | 3                      |                           |                                                                                    | -                  | 3                 |        |
|                     | Note 7)                                                                 | dB           | 10                                                                                     | 11                  | 7                      | 8                         | 14                                                                                 | 15                 | 9                 | 10     |
| Î                   | (j)<br>Dr                                                               | dB[mW/15kHz] | -88                                                                                    | -87                 | -91                    | -90                       | -84                                                                                | -85                | -89               | -88    |
| N                   | (j)<br>oc                                                               | dB[mW/15kHz] |                                                                                        | -9                  | 98                     |                           |                                                                                    | -6                 | 98                |        |
| Propagatio          | on channel                                                              |              | EPA 5 Low Clause B.2.4.1<br>with $\tau_d = 0.45 \mu s$ , $a = 1$ , $f_D = 5 \text{Hz}$ |                     |                        |                           | Clause B.2.4.1<br>with<br>$\tau_d = 0.45 \mu s$ ,<br>a = 1,<br>$f_D = 5 \text{Hz}$ |                    |                   |        |
| Antenna co          | onfiguration                                                            |              | 4x                                                                                     | 2                   | 2>                     | (2                        | 4)                                                                                 | <b>k</b> 2         | 2)                | (2     |
|                     | ning Model                                                              |              | As spe                                                                                 |                     | Section                | B.4.3                     | As sp                                                                              |                    | Section           | B.4.3  |
|                     | between TPs                                                             | us           |                                                                                        |                     | )                      |                           | 0                                                                                  |                    |                   |        |
|                     | et between TPs<br>ference signals                                       | Hz           | 4                                                                                      |                     | )<br>ports 0,1         |                           | 0<br>Antenna ports 0,1                                                             |                    |                   |        |
| •                   | signal 0                                                                |              | Antenna ports<br>15,,18                                                                |                     | N/A                    |                           | Antenn                                                                             | a ports<br>,18     | N/                | /Α     |
|                     | and subframe offset / $\Delta_{\rm CSI-RS}$                             |              | 5/1                                                                                    |                     | N/A                    |                           | 5/1                                                                                |                    | N                 | Ά      |
| CSI-RS 0 c          | onfiguration                                                            |              | 0                                                                                      |                     | N/A                    |                           | 0                                                                                  |                    | N/A               |        |
| CSI-RS              | -                                                                       |              | N/A                                                                                    |                     | Antenna ports<br>15,16 |                           | N/A                                                                                |                    | Antenn<br>15      |        |
|                     | CSI-RS 1 periodicity and subframe offset $T_{CSI-RS} / \Delta_{CSI-RS}$ |              | N/A                                                                                    |                     | 5/1                    |                           | N/A                                                                                |                    | 5/                | ′1     |
|                     | onfiguration                                                            |              | N/A                                                                                    |                     | 5                      |                           | N/A                                                                                |                    | Ę                 |        |
|                     | RS 0 configuration<br>erCSI-RS bitmap                                   |              | N//                                                                                    |                     | 111000                 | 1 /<br>00000000 N<br>0000 |                                                                                    | /A                 | 1<br>111000<br>00 | 000000 |
|                     | RS 1 configuration<br>rerCSI-RS bitmap                                  |              | 1 /<br>00100110000<br>00000                                                            |                     | N/A                    |                           | 00100 <sup>-</sup>                                                                 | /<br>110000<br>000 | N                 | /Α     |
| T <sub>CSI-RS</sub> | and subframe offset / $\Delta_{CSI-RS}$                                 |              | 5/1 5/1                                                                                |                     | /1                     | 5                         | /1                                                                                 | 5/                 |                   |        |
|                     | onfiguration                                                            |              | 2                                                                                      |                     |                        | 2 2                       |                                                                                    | 2                  | 2                 | 2      |
| T <sub>CSI-RS</sub> | and subframe offset / $\Delta_{\rm CSI-RS}$                             |              | 5/*                                                                                    | 1                   | N                      | /A                        | 5                                                                                  | /1                 | N                 | Ά      |
| CSI-IM 1 c          | onfiguration                                                            |              | 6                                                                                      |                     | N                      | /A                        | 6                                                                                  | 6                  | N                 | Ά      |
| T <sub>CSI-RS</sub> | and subframe offset $/ \Delta_{CSI-RS}$                                 |              | N//                                                                                    |                     | 5/                     | /1                        | N                                                                                  | /A                 | 5/                | ′1     |
| CSI-IM 2 c          | onfiguration                                                            |              | N//                                                                                    |                     | · · · · ·              | 1                         | N                                                                                  | /A                 |                   |        |
|                     | CSI-RS                                                                  |              |                                                                                        |                     | RS 0                   |                           |                                                                                    |                    | RS 0              |        |
|                     | CSI-IM<br>Reporting mode                                                |              |                                                                                        | PUCC                | ·IM 0                  |                           |                                                                                    |                    | -IM 0<br>CH 1-1   |        |
|                     | CodeBookSubsetR<br>estriction bitmap                                    |              | 0x00                                                                                   |                     | 0 0000 0               | 001                       | 0x0                                                                                |                    | 0 0000 0          | 001    |
|                     | Reporting<br>periodicity                                                | ms           |                                                                                        | N <sub>pd</sub> = 5 |                        | = 5 Nr                    |                                                                                    | N <sub>pd</sub>    | = 5               |        |
| CSI process 0       | CQI delay                                                               | ms           |                                                                                        | 1                   | 0                      |                           | 1                                                                                  | 1                  | 0                 |        |
|                     | Physical channel<br>for CQI/ PMI<br>reporting                           |              |                                                                                        |                     | (Note 6)               |                           |                                                                                    |                    | (Note 6)          |        |
|                     | PUCCH Report<br>Type for CQI/PMI                                        |              |                                                                                        |                     | 2                      |                           |                                                                                    |                    | 2                 |        |
|                     | PUCCH channel                                                           |              | F                                                                                      | PUCCH               | Format 2               |                           | PUCCH Format 2                                                                     |                    |                   |        |

|                   | for RI reporting                     |    |                           |                           |                           |                           |
|-------------------|--------------------------------------|----|---------------------------|---------------------------|---------------------------|---------------------------|
|                   | PUCCH report<br>type for RI          |    | :                         | 3                         | 3                         | 3                         |
|                   | cqi-pmi-<br>ConfigurationIndex       |    |                           | 2                         | 2                         | 2                         |
|                   | ri-ConfigIndex                       |    |                           | 1                         |                           |                           |
|                   | CSI-RS                               |    | CSI-                      | RS 1                      | CSI-                      | RS 1                      |
|                   | CSI-IM                               |    |                           | IM 0                      | CSI-                      |                           |
|                   | Reporting mode                       |    |                           | CH 3-1                    | PUSC                      | H 3-1                     |
| CSI process 1     | CodeBookSubsetR<br>estriction bitmap |    | 000                       | 001                       | 000                       | 001                       |
|                   | Reporting interval<br>(Note 9)       | ms |                           | 5                         | 5                         |                           |
|                   | CQI delay                            | ms |                           | 0                         | 1                         |                           |
|                   | Sub-band size                        | RB | 6 (ful                    |                           | 6 (full                   |                           |
|                   | CSI-RS                               |    |                           | RS 0                      | CSI-                      |                           |
|                   | CSI-IM                               |    |                           | ·IM 1                     | CSI-                      |                           |
|                   | Reporting mode                       |    | PUSC                      | CH 3-1                    | PUSCH 3-1                 |                           |
| CSI process 2     | CodeBookSubsetR<br>estriction bitmap |    | 0x0000 0000 0000 0001     |                           | 0x0000 0000 0000 0001     |                           |
|                   | Reporting interval<br>(Note 9)       | ms | Į                         | 5                         | Ę                         | 5                         |
|                   | CQI delay                            | ms | 10                        |                           | 1                         | 0                         |
|                   | Sub-band size                        | RB | 6 (full size              | e) (Note 8)               | 6 (full size) (Note 8)    |                           |
|                   | CSI-RS                               |    | CSI-RS 1 CSI-RS           |                           |                           |                           |
|                   | CSI-IM                               |    |                           | -IM 2                     | CSI-IM 2                  |                           |
|                   | Reporting mode                       |    | PUSC                      | CH 3-1                    | PUSCH 3-1                 |                           |
| CSI process 3     | CodeBookSubsetR<br>estriction bitmap |    | 000001 000001             |                           | 001                       |                           |
|                   | Reporting interval<br>(Note 9)       | ms | Į                         | 5 5                       |                           | 5                         |
|                   | CQI delay                            | ms | 1                         | 0                         | 1                         | 0                         |
|                   | Sub-band size                        | RB | 6 (ful                    | size)                     | 6 (full                   | size)                     |
| CSI process for F | PDSCH scheduling                     |    | CSI pro                   | ocess 2                   | CSI pro                   | ocess 2                   |
| Ce                | ell ID                               |    | 0                         | 6                         | 0                         | 6                         |
| Quasi-co-lo       | cated CSI-RS                         |    | CSI-RS 0                  | CSI-RS 1                  | CSI-RS 0                  | CSI-RS 1                  |
| Quasi-co-l        | ocated CRS                           |    | Same Cell ID<br>as Cell 1 | Same Cell ID<br>as Cell 2 | Same Cell ID<br>as Cell 1 | Same Cell IE<br>as Cell 2 |
| PMI for subframe  | e 2, 3, 4, 7, 8 and 9                |    | 0x0000 0000<br>0000 0001  | 100000                    | 0x0000 0000<br>0000 0001  | 100000                    |
| PMI for subf      | frame 1 and 6                        |    | 0x0000 0000<br>0001 0000  | 100000                    | 0x0000 0000<br>0001 0000  | 100000                    |
|                   | ARQ transmissions                    |    | 1                         | N/A                       | 4                         | N/A                       |

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
 Note 2: 3 symbols allocated to PDCCH.

Note 3: PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.

Note 4: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1 and 6 from TP1.

Note 5: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2

Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

Note 7: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Note 9: For these sub-bands which are not selected for PDSCH transmission, TM10 OCNG should be transmitted.

|              | CSI process 0 | CSI process 1 | CSI process 2 | CSI process 3 |  |  |
|--------------|---------------|---------------|---------------|---------------|--|--|
| α[%]         | N/A           | 2             | 2             | 2             |  |  |
| $\beta$ [%]  | N/A           | 40            | 40            | 40            |  |  |
| $\delta$ [%] | 10            | N/A           | N/A           | N/A           |  |  |
| γ            | N/A           | N/A           | 1.02          | N/A           |  |  |
| UE Category  | ≥1            |               |               |               |  |  |

Table 9.3.6.1-2 Minimum requirement (FDD)

#### Table 9.3.6.1-3 Minimum median CQI difference between configured CSI processes (FDD)

|               | CSI process 1 | CSI process 2 | CSI process 3 |
|---------------|---------------|---------------|---------------|
| CSI process 0 | N/A           | 1             | 3             |
| UE Category   |               | ≥1            |               |

### 9.3.6.2 TDD

For the parameters specified in Table 9.3.6.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.6.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least  $\alpha$ % of the time but less than  $\beta$ % for each sub-band for CSI process 1, 2, or 3;
- b) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least  $\delta$ % of the time for CSI process 0;
- c) the difference of the median CQIs of the reported wideband CQI for configurated CSI processes shall be greater or equal to the values as in Table 9.3.6.2-3;
- d) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be  $\geq \gamma$ ;
- e) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6c.

| Parameter                     |                                                                                       | Unit         |                                 | Tes           |                                |                    |                          |               | st 2                                    |                                    |
|-------------------------------|---------------------------------------------------------------------------------------|--------------|---------------------------------|---------------|--------------------------------|--------------------|--------------------------|---------------|-----------------------------------------|------------------------------------|
|                               |                                                                                       |              | TF                              | TP1 TP2       |                                | TP1 TP2            |                          |               | P2                                      |                                    |
| Bandwidth                     |                                                                                       | MHz          |                                 | 10            |                                |                    |                          |               | MHz                                     | <u>^</u>                           |
|                               | sion mode                                                                             |              | 1                               |               |                                | 0                  | 10                       |               | 10                                      |                                    |
|                               | nk configuration                                                                      |              |                                 | <u>2</u><br>1 |                                | <u>2</u><br>1      |                          | <u>2</u><br>1 |                                         | <u>2</u><br>4                      |
| Special Subilar               |                                                                                       | dB           | -                               |               | <u> </u>                       | +                  |                          |               | . · · · · · · · · · · · · · · · · · · · | +                                  |
|                               | $\rho_{\scriptscriptstyle A}$                                                         |              |                                 |               | -                              |                    |                          |               | -                                       |                                    |
| Downlink power                | $ ho_{\scriptscriptstyle B}$                                                          | dB           |                                 | (             | 0                              |                    |                          | (             | 0                                       |                                    |
| allocation                    | $P_c$                                                                                 | dB           | -:                              | 3             | (                              | )                  | -                        | 3             |                                         | C                                  |
|                               | σ                                                                                     | dB           |                                 |               | 3                              |                    |                          |               | 3                                       |                                    |
|                               | (Note 7)                                                                              | dB           | 10                              | 11            | 7                              | 8                  | 14                       | 15            | 9                                       | 10                                 |
| Ι                             | c(j)<br>or                                                                            | dB[mW/15kHz] | -88                             | -87           | -91                            | -90                | -84                      | -85           | -89                                     | -88                                |
| N                             | $T_{oc}^{(j)}$                                                                        | dB[mW/15kHz] |                                 | -6            | 98                             |                    |                          | -9            | 98                                      |                                    |
| Propagati                     | on channel                                                                            |              | EPA :                           | 5 Low         |                                | th<br>.45 μs,      | EPA                      | 5 Low         | $\tau_d = 0$                            | B.2.4.1<br>ith<br>).45 μs,<br>= 1, |
|                               |                                                                                       |              |                                 |               | a = 1,<br>$f_D = 5 \text{ Hz}$ |                    |                          |               |                                         | = 1,<br>= 5 Hz                     |
|                               | onfiguration                                                                          |              | 4>                              |               | 2                              | (2                 | 4x2                      |               | 2x2                                     |                                    |
|                               | ning Model                                                                            |              | As sp                           | ecified ir    | n Section                      | B.4.3              | As sp                    | ecified ir    | n Section                               | B.4.3                              |
|                               | t between TPs                                                                         | us           |                                 |               | 0                              |                    | 0                        |               |                                         |                                    |
|                               | set between TPs                                                                       | Hz           | 0                               |               | 0                              |                    |                          |               |                                         |                                    |
|                               | eference signals                                                                      |              | Antenn                          | Antenna       |                                |                    | Antenna<br>Antenna ports |               | ports 0,1                               |                                    |
|                               | signal 0                                                                              |              |                                 | ., 18         | N/A                            |                    | 15,, 18                  |               | N                                       | /A                                 |
|                               | CSI-RS 0 periodicity and subframe offset $T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$ |              | 5/                              | /3            | N                              | /A                 | 5/3                      |               | N                                       | /A                                 |
| CSI-RS 0 configuration        |                                                                                       |              | (                               | )             | N                              | /Α                 | (                        | )             | N                                       | /A                                 |
| CSI-RS                        | CSI-RS signal 1                                                                       |              | N/A                             |               | Antenr<br>15,                  | a ports<br>16      | N/A                      |               |                                         | a ports<br>16                      |
|                               | / and subframe offset / $\Delta_{CSI-RS}$                                             |              | N/A                             |               |                                | /3                 | N/A                      |               | 5                                       | /3                                 |
|                               | configuration                                                                         |              | N/A                             |               |                                | 5                  |                          | /A            |                                         | 5                                  |
|                               | RS 0 configuration<br>verCSI-RS bitmap                                                |              | N/A                             |               | 3 /<br>11100000000<br>00000    |                    |                          | /A            | 11100                                   | ; /<br>000000<br>000               |
| I <sub>CSI-RS</sub> / ZeroPow | RS 1 configuration<br>verCSI-RS bitmap                                                |              | 3 /<br>00100110000 N/A<br>00000 |               | 00100 <sup>-</sup>             | /<br>110000<br>000 | N                        | /A            |                                         |                                    |
|                               | $\prime$ and subframe offset $/ \Delta_{\rm CSI-RS}$                                  |              | 5,                              | /3            | 5                              | /3                 | 5,                       | /3            | 5                                       | /3                                 |
| CSI-IM 0 c                    | onfiguration                                                                          |              | 2                               | 2             |                                | 2                  | 1                        | 2             | :                                       | 2                                  |
|                               | / and subframe offset / $\Delta_{\rm CSI-RS}$                                         |              | 5/                              | /3            | N                              | /A                 | 5,                       | /3            | N                                       | /A                                 |
| CSI-IM 1 c                    | configuration                                                                         |              | 6                               | 6             | N                              | /Α                 | 6                        | 6             | N                                       | /A                                 |
|                               | $\prime$ and subframe offset $/ \Delta_{\rm CSI-RS}$                                  |              | N                               | /A            | 5                              | /3                 | N                        | /A            | 5                                       | /3                                 |
|                               | 7 Acsi-Rs                                                                             |              | N                               | Ά             |                                | 1                  | N                        | /A            |                                         | 1                                  |
|                               | CSI-RS                                                                                |              | 1                               |               | RS 0                           |                    |                          |               | RS 0                                    |                                    |
|                               | CSI-IM                                                                                |              |                                 | CSI-          | -IM 0                          |                    |                          | CSI-          | -IM 0                                   |                                    |
|                               | Reporting mode                                                                        |              |                                 | PUCC          | CH 1-1                         |                    |                          | PUCC          | CH 1-1                                  |                                    |
|                               | CodeBookSubsetR<br>estriction bitmap                                                  |              | 0x0                             | 000 000       | 0 0000 0                       | 001                | 0x0                      | 000 000       | 0 0000 0                                | 001                                |
| CSI process 0                 | Reporting periodicity                                                                 | ms           |                                 | $N_{\rm pd}$  | = 5                            |                    |                          | $N_{\rm pd}$  | = 5                                     |                                    |
|                               | CQI delay                                                                             | ms           |                                 | 1             | 2                              |                    |                          | 1             | 2                                       |                                    |
|                               | Physical channel<br>for CQI/ PMI<br>reporting                                         |              |                                 |               | (Note 6)                       |                    | PUSCH                    |               |                                         |                                    |
|                               | PUCCH Report                                                                          |              |                                 |               | 2                              |                    |                          |               | 2                                       |                                    |

## Table 9.3.6.2-1 Fading test for TDD

| PUCCH channel<br>for RI reporting<br>PUCCH report<br>type for RI<br><i>cqi-pmi-</i><br><i>ConfigurationIndex</i><br><i>ri-ConfigIndex</i><br>CSI-RS<br>CSI-IM<br>Reporting mode<br>CodeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM | ms<br>ms<br>RB                                                                                                                                                                                                                                                                                                                                                                               | 805 (N<br>805 (N<br>CSI-<br>CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>3<br>ote 10)<br>RS 1<br>IM 0<br>CH 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PUCCH I<br>3<br>3<br>805 (Ne<br>CSI-I<br>CSI-<br>CSI-<br>CSI-<br>DUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>3<br>ote 10)<br>RS 1<br>IM 0<br>:H 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PUCCH report<br>type for RI<br>cqi-pmi-<br>ConfigurationIndex<br>ri-ConfigIndex<br>CSI-RS<br>CSI-IM<br>Reporting mode<br>CodeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                           | ms                                                                                                                                                                                                                                                                                                                                                                                           | 805 (N<br>805 (N<br>CSI-<br>CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>ote 10)<br>RS 1<br>IM 0<br>CH 3-1<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>805 (No<br>CSI-I<br>CSI-<br>CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>ote 10)<br>RS 1<br>IM 0<br>:H 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ConfigurationIndex<br>ri-ConfigIndex<br>CSI-RS<br>CSI-IM<br>Reporting mode<br>CodeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                      | ms                                                                                                                                                                                                                                                                                                                                                                                           | 805 (N<br>CSI-<br>CSI-<br>CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ote 10)<br>RS 1<br>IM 0<br>CH 3-1<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 805 (Nr<br>CSI-I<br>CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ote 10)<br>RS 1<br>IM 0<br>:H 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ri-ConfigIndex<br>CSI-RS<br>CSI-IM<br>Reporting mode<br>CodeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                            | ms                                                                                                                                                                                                                                                                                                                                                                                           | CSI-<br>CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS 1<br>IM 0<br>CH 3-1<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI-I<br>CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS 1<br>IM 0<br>IH 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CSI-IM<br>Reporting mode<br>CodeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                                                        | ms                                                                                                                                                                                                                                                                                                                                                                                           | CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IM 0<br>CH 3-1<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSI-<br>PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IM 0<br>H 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reporting mode<br>CodeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                                                                  | ms                                                                                                                                                                                                                                                                                                                                                                                           | PUSC<br>000<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CH 3-1<br>001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PUSC<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CodeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                                                                                    | ms                                                                                                                                                                                                                                                                                                                                                                                           | 000<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                                                                                                       | ms                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                                                                                                                            | ms                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sub-band size<br>CSI-RS<br>CSI-IM                                                                                                                                                                                                                                                                           | RB                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CSI-IM                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                              | 6 (full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12<br>6 (full size)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | size)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              | CSI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSI-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                              | CSI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSI-IM 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IM 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Reporting mode                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                              | PUSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PUSCH 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CodeBookSubsetR<br>estriction bitmap                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                              | 0x0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0x0000 0000 0000 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reporting interval                                                                                                                                                                                                                                                                                          | ms                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                             | RB                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 (full size) (Note 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PUSCH 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CodeBookSubsetR                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reporting interval                                                                                                                                                                                                                                                                                          | ms                                                                                                                                                                                                                                                                                                                                                                                           | Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                             | ms                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sub-band size                                                                                                                                                                                                                                                                                               | RB                                                                                                                                                                                                                                                                                                                                                                                           | 6 (full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | size)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SCH scheduling                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                              | CSI pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ocess 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CSI pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ocess 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ed CSI-RS                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              | CSI-RS 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI-RS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSI-RS 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSI-RS 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ated CRS                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Same Cell ID<br>as Cell 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Same Cell IE<br>as Cell 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| me 4and 9                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                              | 0x0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| me 3 and 8                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                              | 0x0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q transmissions                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                              | Multiplexing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Multiplexina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ports in an available                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                              | ance at subframe S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SF#n based on CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I estimation at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                             | estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>CSI-RS<br>CSI-IM<br>Reporting mode<br>codeBookSubsetR<br>estriction bitmap<br>Reporting interval<br>(Note 9)<br>CQI delay<br>Sub-band size<br>SCH scheduling<br>D<br>ed CSI-RS<br>ted CRS<br>me 4and 9<br>me 3 and 8<br>Q transmissions<br>lback mode<br>orts in an available<br>F#(n-4), this reported | CodeBookSubsetR         estriction bitmap         Reporting interval<br>(Note 9)       ms         CQI delay       ms         Sub-band size       RB         CSI-RS       CSI-IM         Reporting mode       codeBookSubsetR         estriction bitmap       ms         Reporting interval<br>(Note 9)       ms         CQI delay       ms         CodeBookSubsetR       ms         estriction bitmap       ms         Reporting interval<br>(Note 9)       ms         CQI delay       ms         Sub-band size       RB         SCH scheduling       ms         D       cd CSI-RS         tted CRS       me 4and 9         me 3 and 8       Q transmissions         Iback mode       uplink reporting inst | CodeBookSubsetR<br>estriction bitmap0x0000 000Reporting interval<br>(Note 9)ms4CQI delayms1Sub-band sizeRB6 (full size<br>CSI-RSCSI-RSCSI-<br>CSI-IMCSI-<br>CSI-<br>CSI-<br>Reporting modeReporting modePUSC<br>CodeBookSubsetRcodeBookSubsetR0000estriction bitmap0000Reporting interval<br>(Note 9)msCQI delaymsCQI delaymsCQI delaymsCQI delaymsCQI delaymsCQI delaymsCQI delaymsCQI delayCSI pro00code CSI-RSCSI-RS 0code CSI-RSCSI-RS 0code CSI-RSCSI-RS 0as Cell 1as Cell 1ne 4and 90x0000 0000ne 4and 80x0000 000000001 0000Q transmissions1Iback modeMultiplexingorsts in an available uplink reporting instance at subframe S#(n-4), this reported wideband CQI cannot be applied at th | CodeBookSubsetR<br>estriction bitmap0x0000 0000 0000 0000 0001Reporting interval<br>(Note 9)ms5CQI delayms12Sub-band sizeRB6 (full size) (Note 8)CSI-RSCSI-RS 1CSI-IMCSI-IM 2Reporting modePUSCH 3-1CodeBookSubsetR<br>estriction bitmap000001Reporting interval<br>(Note 9)ms5CQI delayms5COL delayms5COL delayms12Sub-band sizeRB6 (full size)CQI delayms12Sub-band sizeRB6 (full size)CCI delayms12Sub-band sizeRB6 (full size)CCI stressCSI process 2D06ad CSI-RSCSI-RS 0CSI-RS 1sted CRSSame Cell ID<br>as Cell 1as Cell 2ne 4and 90x0000 0000<br>0001 0000100000ne 4and 80x0000 0000<br>0001 0000100000Q transmissions1N/AIback modeMultiplexingN/A | CodeBookSubsetR<br>estriction bitmap0x0000 0000 0000 00010x0000 0000Reporting interval<br>(Note 9)ms55CQI delayms121Sub-band sizeRB6 (full size) (Note 8)6 (full size)CSI-RSCSI-RSCSI-RS 1CSI-CSI-IMCSI-IM 2CSI-Reporting modePUSCH 3-1PUSCcodeBookSubsetR000001000estriction bitmap000001000Reporting interval<br>(Note 9)ms55CQI delayms121Sub-band sizeRB6 (full size)6 (full<br>size)CQI delayms1Same Cell ID<br>as Cell 1DSame Cell ID<br>as Cell 1Das Cell 1as Cell 1ne 4and 90x0000 0000<br>0000 00010x0000 0000<br>0000 00000001 00000x0000 0000<br>0001 00000x0000 0000<br>0001 0000001 00000x0000 0000<br>0001 00000x0 |

Note 3: PDSCH transmission is scheduled on subframe 4 and 9 from TP1.

Note 4: TM10 OCNG is transmitted as specified in A.5.2.8 on subframe 3 and 8 from TP1.

Note 5: TM10 OCNG is transmitted as specified in A.5.2.8 on subframe 3, 4, 8 and 9 from TP2.

Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

Note 7: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Note 9: For these sub-bands which are not selected for PDSCH transmission, TM10 OCNG should be transmitted.

Note 10: RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification and the reported CQI in subframe SF#7 of the previous frame is applied in downlink subframes until a new CQI (after CQI/PMI dropping) is available.

|              | CSI process 0 | CSI process 1 | CSI process 2 | CSI process 3 |  |  |  |
|--------------|---------------|---------------|---------------|---------------|--|--|--|
| α[%]         | N/A           | 2             | 2             | 2             |  |  |  |
| $\beta$ [%]  | N/A           | 40            | 40            | 40            |  |  |  |
| $\delta$ [%] | 10            | N/A           | N/A           | N/A           |  |  |  |
| γ            | N/A           | N/A           | 1.02          | N/A           |  |  |  |
| UE Category  | ≥1            |               |               |               |  |  |  |

Table 9.3.6.2-2 Minimum requirement (TDD)

Table 9.3.6.2-3 Minimum median CQI difference between configured CSI processes (TDD)

|               | CSI process 1 | CSI process 2 | CSI process 3 |
|---------------|---------------|---------------|---------------|
| CSI process 0 | N/A           | 1             | 3             |
| UE Category   | ≥1            |               |               |

# 9.4 Reporting of Precoding Matrix Indicator (PMI)

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding, respectively. When the transmitter uses random precoding, for each PDSCH allocation a precoder is randomly generated and applied to the PDSCH. A fixed transport format (FRC) is configured for all requirements.

The requirements for transmission mode 6 with 1 TX and transmission mode 9 with 4 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ue}}{t_{rnd}} \, \cdot \,$$

In the definition of  $\gamma$ , for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements,  $t_{rnd}$  is 60% of the maximum throughput obtained at  $SNR_{rnd}$  using random precoding, and  $t_{ue}$  the throughput measured at  $SNR_{rnd}$  with precoders configured according to the UE reports;

For the PUCCH 2-1 single PMI requirement,  $t_{rnd}$  is 60% of the maximum throughput obtained at  $SNR_{rnd}$  using random precoding on a randomly selected full-size subband in set S subbands, and  $t_{ue}$  the throughput measured at  $SNR_{rnd}$  with both the precoder and the preferred full-size subband applied according to the UE reports;

For PUSCH 2-2 multiple PMI requirements,  $t_{rnd}$  is 60% of the maximum throughput obtained at  $SNR_{rnd}$  using random precoding on a randomly selected full-size subband in set S subbands, and  $t_{ue}$  the throughput measured at  $SNR_{rnd}$  with both the subband precoder and a randomly selected full-size subband (within the preferred subbands) applied according to the UE reports.

The requirements for transmission mode 9 with 8 TX are specified in terms of the ratio

$$\gamma = \frac{t_{ue, follow1, follow2}}{t_{rnd1, rnd2}}$$

In the definition of  $\gamma$ , for PUSCH 3-1 single PMI and PUSCH 1-2 multiple PMI requirements,  $t_{follow1,follow2}$  is 70% of the maximum throughput obtained at  $SNR_{follow1,follow2}$  using the precoders configured according to the UE reports, and  $t_{rnd1, rnd2}$  is the throughput measured at  $SNR_{follow1, follow2}$  with random precoding.

## 9.4.1 Single PMI

## 9.4.1.1 Minimum requirement PUSCH 3-1 (Cell-Specific Reference Symbols)

### 9.4.1.1.1 FDD

For the parameters specified in Table 9.4.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.1.1-2.

| Para                                                                                                                                                                                                                                        | meter                        | Unit         | Test 1    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|-----------|
| Bandwidth                                                                                                                                                                                                                                   |                              | MHz          | 10        |
| Transmis                                                                                                                                                                                                                                    | sion mode                    |              | 6         |
| Propagati                                                                                                                                                                                                                                   | on channel                   |              | EVA5      |
| Precoding                                                                                                                                                                                                                                   | granularity                  | PRB          | 50        |
|                                                                                                                                                                                                                                             | tion and onfiguration        |              | Low 2 x 2 |
| Downlink                                                                                                                                                                                                                                    | $ ho_{\scriptscriptstyle A}$ | dB           | -3        |
| power                                                                                                                                                                                                                                       | $ ho_{\scriptscriptstyle B}$ | dB           | -3        |
| allocation                                                                                                                                                                                                                                  | σ                            | dB           | 0         |
| N                                                                                                                                                                                                                                           | oc                           | dB[mW/15kHz] | -98       |
| Reporti                                                                                                                                                                                                                                     | ng mode                      |              | PUSCH 3-1 |
| Reportin                                                                                                                                                                                                                                    | g interval                   | ms           | 1         |
| PMI dela                                                                                                                                                                                                                                    | y (Note 2)                   | ms           | 8         |
|                                                                                                                                                                                                                                             | ent channel                  |              | R. 10 FDD |
|                                                                                                                                                                                                                                             | Pattern                      |              | OP.1 FDD  |
| Max number of HARQ<br>transmissions                                                                                                                                                                                                         |                              |              | 4         |
| Redundancy version<br>coding sequence                                                                                                                                                                                                       |                              |              | {0,1,2,3} |
| Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).                                                                                                                                        |                              |              |           |
| Note 2: If the UE reports in an available uplink reporting<br>instance at subrame SF#n based on PMI<br>estimation at a downlink SF not later than SF#(n-<br>4), this reported PMI cannot be applied at the<br>eNB downlink before SF#(n+4). |                              |              |           |

Table 9.4.1.1.1-1 PMI test for single-layer (FDD)

| Table 9.4.1.1.1-2 | Minimum rec | quirement ( | (FDD) |
|-------------------|-------------|-------------|-------|
|-------------------|-------------|-------------|-------|

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 1.1    |
| UE Category | ≥1     |

### 9.4.1.1.2 TDD

For the parameters specified in Table 9.4.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.1.1.2-2.

| Para                                                                                            | meter                                                        | Unit                 | Test 1           |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|------------------|
| Bandwidth                                                                                       |                                                              | MHz                  | 10               |
|                                                                                                 | sion mode                                                    |                      | 6                |
|                                                                                                 | downlink                                                     |                      | -                |
|                                                                                                 | guration                                                     |                      | 1                |
|                                                                                                 | subframe                                                     |                      | 4                |
|                                                                                                 | guration                                                     |                      | 4                |
| Propagat                                                                                        | ion channel                                                  |                      | EVA5             |
| Precoding                                                                                       | g granularity                                                | PRB                  | 50               |
|                                                                                                 | ation and                                                    |                      | Low 2 x 2        |
| antenna c                                                                                       | onfiguration                                                 |                      |                  |
| Downlink                                                                                        | $ ho_{\scriptscriptstyle A}$                                 | dB                   | -3               |
| power                                                                                           | $ ho_{\scriptscriptstyle B}$                                 | dB                   | -3               |
| allocation                                                                                      | σ                                                            | dB                   | 0                |
| Ν                                                                                               | $V_{oc}^{(j)}$                                               | dB[mW/15kHz]         | -98              |
| Report                                                                                          | ing mode                                                     |                      | PUSCH 3-1        |
|                                                                                                 | ng interval                                                  | ms                   | 1                |
|                                                                                                 | ay (Note 2)                                                  | ms                   | 10 or 11         |
|                                                                                                 | nent channel                                                 |                      | R.10 TDD         |
|                                                                                                 | B Pattern                                                    |                      | OP.1 TDD         |
|                                                                                                 | per of HARQ                                                  |                      | 4                |
|                                                                                                 | nissions                                                     |                      | т<br>—           |
|                                                                                                 | ncy version                                                  |                      | {0,1,2,3}        |
| coding sequence                                                                                 |                                                              |                      | (0, . ,=,0)      |
| ACK/NACK feedback                                                                               |                                                              |                      | Multiplexing     |
| mode                                                                                            |                                                              |                      |                  |
| Note 1: For random precoder selection, the precoder shall be updated in each available downlink |                                                              |                      |                  |
|                                                                                                 | transmission i                                               |                      |                  |
| Note 2: If the UE reports in an available uplink reporting                                      |                                                              |                      | plink reporting  |
|                                                                                                 |                                                              | brame SF#n based     |                  |
|                                                                                                 | estimation at                                                | a downlink SF not la | ater than SF#(n- |
|                                                                                                 | <ol><li>this reported PMI cannot be applied at the</li></ol> |                      |                  |
|                                                                                                 | eNB downlink before SF#(n+4).                                |                      |                  |

Table 9.4.1.1.2-1 PMI test for single-layer (TDD)

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 1.1    |
| UE Category | ≥1     |

## 9.4.1.2 Minimum requirement PUCCH 2-1 (Cell-Specific Reference Symbols)

## 9.4.1.2.1 FDD

For the parameters specified in Table 9.4.1.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.1-2.

| ParameterUnitTest 1BandwidthMHz10Transmission mode6Propagation channelEVA5Correlation and<br>antenna configurationLow 4 x 2Downlink $P_A$ dBpower $\rho_B$ dBallocation $\sigma$ dB $\sigma$ dB-6allocation $\sigma$ dB $\sigma$ dB3 $N_{ac}^{(1)}$ dB[mW/15kHz]-98PMI delayms8 or 9Reporting modePUCCH 2-1 (Note 6)Reporting periodicityms $N_{rd} = 2$ Physical channel for<br>CQI reportingPUSCH (Note 3)PUCCH Report Type2for wideband CQI1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth<br>parts (J)3k1datundancy version<br>coding sequence $(0,1.2.3)$ Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>puck the not precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH PCCH DCI format 0 shall be transmitted on downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Der        | - motor                      | Unit         | Test 1                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|--------------|---------------------------------------|
| Transmission mode6Propagation channelEVA5Correlation and<br>antenna configurationLow 4 x 2Downlink<br>power<br>allocation $P_A$ dB-6 $\rho_B$ dB-6 $\sigma$ dBallocation $\sigma$ dB-7dB-6allocation $\sigma$ dB-8or9PMI delayms8 or 9Reporting modePUCCH 2-1 (Note 6)Reporting periodicityms $N_{pd} = 2$ Physical channel for<br>CQI reportingPUSCH (Note 3)PUCCH Report Type<br>for wideband CQI/PMI2PUCCH Report Type<br>for subband CQI1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)1Number of bandwidth<br>parts (J)3K1Max number of HARQ<br>transmissions4Redundancy version<br>coding sequence $\{0,1,2,3\}$ Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |                              |              |                                       |
| $\begin{array}{ c c c c c c } \hline Propagation channel & EVA5 \\ \hline Correlation and \\ antenna configuration & Low 4 x 2 \\ \hline Correlation and \\ antenna configuration & Low 4 x 2 \\ \hline Correlation and \\ \hline Downlink \\ \hline P_A & dB & -6 \\ \hline P_B & dB & -6 \\ \hline \sigma & dB & 3 \\ \hline \hline PUCH 2-1 (Note 6) \\ \hline Reporting mode & PUCCH 2-1 (Note 6) \\ \hline Reporting mode & PUSCH (Note 3) \\ \hline CQI reporting \\ PUSCH (Note 3) \\ \hline CQI reporting \\ PUCCH Report Type & 2 \\ \hline for subband CQI/PMI & 2 \\ \hline PUCCH Report Type & 1 \\ \hline for subband CQI \\ \hline Measurement channel & R.14-1 FDD \\ \hline OCNG Pattern & OP.1/2 FDD \\ \hline Precoding granularity & PRB & 6 (full size) \\ \hline Number of bandwidth & 3 \\ \hline parts (J) & 3 \\ \hline K & 1 \\ \hline Cqi-pmi-ConfigIndex & 1 \\ \hline Max number of HARQ & 4 \\ \hline transmissions & 4 \\ \hline Redundancy version \\ coding sequence & {0,1,2,3} \\ \hline Note 1: For random precoder selection, the precoder shall be updated \\ every two TTI (2 ms granularity). \\ Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink before SF#(n-4). \\ Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI Format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3. \\ Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband. \\ Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3.2.0 To 37.5.2.11 [4] according to the last PMI \\ \hline \eet transmitted on the most recently used subband. \\ \hline \eet transmitted on the most recently used subband. \\ \hline \eet transmitted on$ |            |                              | INITZ        | -                                     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                              |              | -                                     |
| antenna configurationLow 4 x 2Downlink<br>power<br>allocation $P_A$ dB-6 $O_B$ dB-6allocation $\sigma$ dB3 $N_{oc}^{(j)}$ dB[mW/15kHz]-98PMI delayms8 or 9Reporting modePUCCH 2-1 (Note 6)Reporting periodicityms $N_{bd} = 2$ Physical channel for<br>CQI reportingPUSCH (Note 3)PUCCH Report Type2for wideband CQI/PMI2PUCCH Report Type1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)1Number of bandwidth<br>parts (J)3K1Max number of HARQ<br>every two TTI (2 ms granularity).4Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrand SH(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n-4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH-PDCH DCCH I format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports the short subband for bandwidth part with j=1.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                              |              | EVAS                                  |
| Downink<br>power<br>allocation $P_B$ dB-6allocation $\sigma$ dB3 $N_{ac}^{(j)}$ dB[mW/15kHz]-98PMI delayms8 or 9Reporting periodicityms $N_{pd} = 2$ Physical channel for<br>CQI reportingPUSCH (Note 3)PUCCH Report Type2for wideband CQI/PMI2PUCCH Report Type1for subband CQI1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth3parts (J)3K1cqi-pmi-ConfigIndex1Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH.PDCH PDC DMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PNI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH.PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be<br>transmitted on the most recently used subband.Note 5:In the case where wideband PUI is reported, data is to be<br>transmitted on the most recently used subband.Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                              |              | Low 4 x 2                             |
| aliocation $r_{ac}$ dB $\sigma$ dB3 $N_{ac}^{(j)}$ dB[mW/15kHz]-98PMI delayms8 or 9Reporting periodicityms $N_{pd} = 2$ Physical channel for<br>CQI reportingPUCCH 2.1 (Note 6)Report Report Type<br>for wideband CQI/PMI2PUCCH Report Type<br>for wideband CQI1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth<br>parts (J)3K1Max number of HARQ<br>transmissions4Redundancy version<br>coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be<br>transmitted on the most recently used subband for bandwidth part with j=1.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | $ ho_{\scriptscriptstyle A}$ | dB           | -6                                    |
| N000PMI delayms8 or 9Reporting modePUCCH 2-1 (Note 6)Reporting periodicityms $N_{pd} = 2$ Physical channel for<br>CQI reportingPUSCH (Note 3)PUCCH Report Type<br>for subband CQI/PMI2PUCCH Report Type<br>for subband CQI1Measurement channelR:14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth<br>parts (J)3K1Cqi-pmi-ConfigIndex1Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH PDCCH DCI format 0 shall be transmited on<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted on<br>the most recently used subband for bandwidth<br>part) are to be disregarded and instead data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | $ ho_{\scriptscriptstyle B}$ | dB           | -6                                    |
| PMI delayms8 or 9Reporting periodicityms $N_{pd} = 2$ Physical channel forPUSCH (Note 3)CQI reportingPUSCH (Note 3)PUCCH Report Type2for wideband CQI/PMI2PUCCH Report Type1for subband CQI1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth3parts (J)4Max number of HARQ4transmissions4Redundancy version<br>coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to '0" and TPMI information shall indicate the codebook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | allocation | σ                            | dB           | 3                                     |
| Reporting modePUCCH 2-1 (Note 6)Reporting periodicityms $N_{pd} = 2$ Physical channel forPUSCH (Note 3)CQI reportingPUSCH (Note 3)PUCCH Report Type2for wideband CQI/PMI2PUCCH Report Type1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth3parts (J)3K1cqi-pmi-ConfigIndex1Max number of HARQ4transmissions4Redundancy version<br>coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband for bandwidth part) are to be disregarded and instead data is to be<br>transmitted on<br>the most recently used subband.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation shall indica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          | $V_{oc}^{(j)}$               | dB[mW/15kHz] | -98                                   |
| Reporting modePUCCH 2-1 (Note 6)Reporting periodicityms $N_{pd} = 2$ Physical channel forPUSCH (Note 3)CQI reportingPUSCH (Note 3)PUCCH Report Type2for wideband CQI/PMI2PUCCH Report Type1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth3parts (J)3K1cqi-pmi-ConfigIndex1Max number of HARQ4transmissions4Redundancy version<br>coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband for bandwidth part) are to be disregarded and instead data is to be<br>transmitted on<br>the most recently used subband.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation shall indica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PM         | l delav                      | ms           | 8 or 9                                |
| Reporting periodicityms $N_{pd} = 2$ Physical channel for<br>CQI reportingPUSCH (Note 3)PUCCH Report Type<br>for wideband CQI/PMI2PUCCH Report Type<br>for subband CQI1Measurement channelR.14-1 FDDOCNG PatternOP.1/2 FDDPrecoding granularityPRB6 (full size)Number of bandwidth<br>parts (J)3K1Max number of HARQ<br>transmissions4Redundancy version<br>coding sequence $\{0,1,2,3\}$ Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                              |              | PUCCH 2-1 (Note 6)                    |
| Physical channel for<br>CQI reporting         PUSCH (Note 3)           PUCCH Report Type<br>for wideband CQI/PMI         2           PUCCH Report Type<br>for subband CQI         1           Measurement channel         R.14-1 FDD           OCNG Pattern         OP.1/2 FDD           Precoding granularity         PRB           6 (full size)         3           Number of bandwidth<br>parts (J)         3           K         1           cqi-pmi-ConfigIndex         1           Max number of HARQ<br>transmissions         4           Redundancy version<br>coding sequence         {0,1,2,3}           Note 1:         For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).           Note 2:         If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).           Note 3:         To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.           Note 4:         Reports for the short subband for bandwidth part with j=1.           Note 5:         In the case where wideband PMI is reported, data is to be<br>transmitted on the most                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                              | ms           |                                       |
| PUCCH Report Type<br>for wideband CQI/PMI       2         PUCCH Report Type<br>for subband CQI       1         Measurement channel       R.14-1 FDD         OCNG Pattern       OP.1/2 FDD         Precoding granularity       PRB         6 (full size)         Number of bandwidth<br>parts (J)       3         K       1         Cappmi-ConfigIndex       1         Max number of HARQ       4         transmissions       4         Redundancy version<br>coding sequence       {0,1,2,3}         Note 1:       For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).         Note 2:       If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).         Note 3:       To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.         Note 4:       Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband.         Note 5:       In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Physical   | channel for                  |              | PUSCH (Note 3)                        |
| PUCCH Report Type<br>for subband CQI       1         Measurement channel       R.14-1 FDD         OCNG Pattern       OP.1/2 FDD         Precoding granularity       PRB       6 (full size)         Number of bandwidth<br>parts (J)       3         K       1         cqi-pmi-ConfigIndex       1         Max number of HARQ       4         transmissions       4         Redundancy version<br>coding sequence       {0,1,2,3}         Note 1:       For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).         Note 2:       If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).         Note 3:       To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.         Note 4:       Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.         Note 5:       In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.         Note 6:       The bit field fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PUCCH      | Report Type                  |              | 2                                     |
| Measurement channel         R.14-1 FDD           OCNG Pattern         OP.1/2 FDD           Precoding granularity         PRB         6 (full size)           Number of bandwidth<br>parts (J)         3           K         1           cqi-pmi-ConfigIndex         1           Max number of HARQ         4           transmissions         4           Redundancy version<br>coding sequence         {0,1,2,3}           Note 1:         For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).           Note 2:         If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).           Note 3:         To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.           Note 4:         Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.           Note 5:         In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.           Note 6:         The bit field for PMI confirmation in DCI format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PUCCH      | Report Type                  |              | 1                                     |
| OCNG Pattern         OP.1/2 FDD           Precoding granularity         PRB         6 (full size)           Number of bandwidth<br>parts (J)         3           K         1           cqi-pmi-ConfigIndex         1           Max number of HARQ<br>transmissions         4           Redundancy version<br>coding sequence         {0,1,2,3}           Note 1:         For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).           Note 2:         If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).           Note 3:         To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.           Note 4:         Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.           Note 5:         In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.           Note 6:         The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              |              | R.14-1 FDD                            |
| Precoding granularityPRB6 (full size)Number of bandwidth<br>parts (J)3K1cqi-pmi-ConfigIndex1Max number of HARQ<br>transmissions4Redundancy version<br>coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                              |              |                                       |
| Number of bandwidth<br>parts (J)       3         K       1         cqi-pmi-ConfigIndex       1         Max number of HARQ<br>transmissions       4         Redundancy version<br>coding sequence       {0,1,2,3}         Note 1:       For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).         Note 2:       If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).         Note 3:       To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.         Note 4:       Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.         Note 5:       In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.         Note 6:       The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                              | PRB          |                                       |
| K         1           cqi-pmi-ConfigIndex         1           Max number of HARQ         4           transmissions         4           Redundancy version         {0,1,2,3}           Note 1:         For random precoder selection, the precoder shall be updated every two TTI (2 ms granularity).           Note 2:         If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).           Note 3:         To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.           Note 4:         Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.           Note 5:         In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.           Note 6:         The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                              |              | , , , , , , , , , , , , , , , , , , , |
| K         1           cqi-pmi-ConfigIndex         1           Max number of HARQ         4           transmissions         4           Redundancy version         {0,1,2,3}           coding sequence         {0,1,2,3}           Note 1:         For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).           Note 2:         If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).           Note 3:         To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.           Note 4:         Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.           Note 5:         In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.           Note 6:         The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pa         | rts ( <i>J</i> )             |              | 3                                     |
| Max number of HARQ<br>transmissions4Redundancy version<br>coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | К                            |              | 1                                     |
| transmissions4Redundancy version<br>coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cqi-pmi-   | ConfigIndex                  |              | 1                                     |
| transmissions       {0,1,2,3}         Redundancy version<br>coding sequence       {0,1,2,3}         Note 1:       For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).         Note 2:       If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).         Note 3:       To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.         Note 4:       Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.         Note 5:       In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.         Note 6:       The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                              |              | 4                                     |
| coding sequence{0,1,2,3}Note 1:For random precoder selection, the precoder shall be updated<br>every two TTI (2 ms granularity).Note 2:If the UE reports in an available uplink reporting instance at<br>subrame SF#n based on PMI estimation at a downlink SF not later<br>than SF#(n-4), this reported PMI cannot be applied at the eNB<br>downlink before SF#(n+4).Note 3:To avoid collisions between HARQ-ACK and wideband CQI/PMI or<br>subband CQI, it is necessary to report both on PUSCH instead of<br>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink<br>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the<br>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.Note 4:Reports for the short subband (having 2RBs in the last bandwidth<br>part) are to be disregarded and instead data is to be transmitted on<br>the most recently used subband for bandwidth part with j=1.Note 5:In the case where wideband PMI is reported, data is to be<br>transmitted on the most recently used subband.Note 6:The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                              |              |                                       |
| <ul> <li>Note 1: For random precoder selection, the precoder shall be updated every two TTI (2 ms granularity).</li> <li>Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).</li> <li>Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | •                            |              | {0 1 2 3}                             |
| <ul> <li>every two TTI (2 ms granularity).</li> <li>Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).</li> <li>Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                              |              |                                       |
| <ul> <li>Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).</li> <li>Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note 1:    |                              |              | ne precoder shall be updated          |
| <ul> <li>than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).</li> <li>Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note 2:    |                              |              | plink reporting instance at           |
| <ul> <li>downlink before SF#(n+4).</li> <li>Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                              |              |                                       |
| <ul> <li>Note 3: To avoid collisions between HARQ-ACK and wideband CQI/PMI or subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                              |              | cannot be applied at the eNB          |
| <ul> <li>subband CQI, it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                              |              |                                       |
| <ul> <li>PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Note 3:    |                              |              |                                       |
| <ul> <li>SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                              |              |                                       |
| <ul> <li>HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.</li> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                              |              |                                       |
| <ul> <li>Note 4: Reports for the short subband (having 2RBs in the last bandwidth part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                              |              |                                       |
| <ul> <li>part) are to be disregarded and instead data is to be transmitted on the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Noto 4:    |                              |              |                                       |
| <ul> <li>the most recently used subband for bandwidth part with j=1.</li> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note 4.    |                              |              |                                       |
| <ul> <li>Note 5: In the case where wideband PMI is reported, data is to be transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                              |              |                                       |
| <ul> <li>transmitted on the most recently used subband.</li> <li>Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note 5     |                              |              |                                       |
| Note 6: The bit field for PMI confirmation in DCI format 1B shall be mapped<br>to "0" and TPMI information shall indicate the codebook index used<br>in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1010 0.    |                              |              |                                       |
| to "0" and TPMI information shall indicate the codebook index used in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Note 6:    |                              |              |                                       |
| in Table 6.3.4.2.3-2 of TS36.211 [4] according to the latest PMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                              |              |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                              |              |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | •••••                        |              |                                       |

Table 9.4.1.2.1-1 PMI test for single-layer (FDD)

| Table 9.4.1.2.1-2 Minimum requirement |  |
|---------------------------------------|--|

|             | Test 1 |
|-------------|--------|
| γ           | 1.2    |
| UE Category | ≥1     |

### 9.4.1.2.2 TDD

For the parameters specified in Table 9.4.1.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.2.2-2.

| Parameter                                                                                                                 |                                                                      | Unit                                               | Test 1                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|--|--|
| Bandwidth                                                                                                                 |                                                                      | MHz                                                | 10                                            |  |  |
| Transmission mode                                                                                                         |                                                                      |                                                    | 6                                             |  |  |
|                                                                                                                           | downlink<br>guration                                                 |                                                    | 1                                             |  |  |
| Special                                                                                                                   | subframe                                                             |                                                    | 4                                             |  |  |
|                                                                                                                           | guration                                                             |                                                    |                                               |  |  |
|                                                                                                                           | ion channel<br>ation and                                             |                                                    | EVA5                                          |  |  |
|                                                                                                                           | configuration                                                        |                                                    | Low 4 x 2                                     |  |  |
| Downlink                                                                                                                  | $ ho_{\scriptscriptstyle A}$                                         | dB                                                 | -6                                            |  |  |
| power                                                                                                                     | $ ho_{\scriptscriptstyle B}$                                         | dB                                                 | -6                                            |  |  |
| allocation                                                                                                                | σ                                                                    | dB                                                 | 3                                             |  |  |
| Ν                                                                                                                         | $V_{oc}^{(j)}$                                                       | dB[mW/15kHz]                                       | -98                                           |  |  |
|                                                                                                                           | delay                                                                | ms                                                 | 10                                            |  |  |
|                                                                                                                           | ing mode                                                             | 1110                                               | PUCCH 2-1 (Note 6)                            |  |  |
|                                                                                                                           | periodicity                                                          | ms                                                 | $N_{\rm P} = 5$                               |  |  |
| Physical                                                                                                                  | channel for                                                          |                                                    | PUSCH (Note 3)                                |  |  |
|                                                                                                                           | eporting                                                             |                                                    |                                               |  |  |
| for wideba                                                                                                                | Report Type<br>and CQI/PMI                                           |                                                    | 2                                             |  |  |
|                                                                                                                           | Report Type<br>band CQI                                              |                                                    | 1                                             |  |  |
|                                                                                                                           | nent channel                                                         |                                                    | R.14-1 TDD                                    |  |  |
|                                                                                                                           | Pattern                                                              |                                                    | OP.1/2 TDD                                    |  |  |
|                                                                                                                           | g granularity                                                        | PRB                                                | 6 (full size)                                 |  |  |
| Number of bandwidth                                                                                                       |                                                                      |                                                    | , <i>, , , , , , , , , , , , , , , , , , </i> |  |  |
|                                                                                                                           | rts (J)                                                              |                                                    | 3                                             |  |  |
| K                                                                                                                         |                                                                      |                                                    | 1                                             |  |  |
| cqi-pmi-ConfigIndex                                                                                                       |                                                                      |                                                    | 4                                             |  |  |
| Max numb                                                                                                                  | per of HARQ                                                          |                                                    | 4                                             |  |  |
| transr                                                                                                                    | nissions                                                             |                                                    | +                                             |  |  |
|                                                                                                                           | ncy version                                                          |                                                    | {0,1,2,3}                                     |  |  |
|                                                                                                                           | sequence                                                             |                                                    | [0,1,2,0]                                     |  |  |
|                                                                                                                           | CK fedback<br>ode                                                    |                                                    | Multiplexing                                  |  |  |
| Note 1:                                                                                                                   | For random p                                                         | recoder selection, th                              | ne precoder shall be updated in               |  |  |
|                                                                                                                           | each available                                                       | e downlink transmis                                | sion instance.                                |  |  |
| Note 2:                                                                                                                   | If the UE repo                                                       | rts in an available u                              | plink reporting instance at                   |  |  |
|                                                                                                                           |                                                                      |                                                    | imation at a downlink SF not later            |  |  |
|                                                                                                                           | ( ,                                                                  | · ·                                                | cannot be applied at the eNB                  |  |  |
|                                                                                                                           | downlink befo                                                        |                                                    |                                               |  |  |
|                                                                                                                           |                                                                      | sions between HARQ-ACK and wideband CQI/PMI or     |                                               |  |  |
|                                                                                                                           |                                                                      | it is necessary to report both on PUSCH instead of |                                               |  |  |
| PUCCH. PDCCH DCI format 0 shall be transmitted in downlir<br>SF#4 and #9 to allow periodic CQI to multiplex with the HARC |                                                                      |                                                    |                                               |  |  |
| on PUSCH in uplink subframe SF#8 and #3.                                                                                  |                                                                      |                                                    |                                               |  |  |
| Note 4: Reports for the short subband (having 2RBs in the last bandwidt                                                   |                                                                      |                                                    |                                               |  |  |
|                                                                                                                           | part) are to be disregarded and instead data is to be transmitted on |                                                    |                                               |  |  |
|                                                                                                                           | the most recently used subband for bandwidth part with j=1.          |                                                    |                                               |  |  |
| Note 5:                                                                                                                   | In the case wh                                                       | nere wideband PMI                                  | is reported, data is to be                    |  |  |
|                                                                                                                           |                                                                      | the most recently u                                |                                               |  |  |
|                                                                                                                           |                                                                      |                                                    | in DCI format 1B shall be mapped              |  |  |
|                                                                                                                           |                                                                      |                                                    | indicate the codebook index used              |  |  |
|                                                                                                                           |                                                                      |                                                    | [4] according to the latest PMI               |  |  |
| report on PUCCH.                                                                                                          |                                                                      |                                                    |                                               |  |  |

Table 9.4.1.2.2-1 PMI test for single-layer (TDD)

| Table 9.4.1.2.2-2 Minimum | requirement | (TDD) |
|---------------------------|-------------|-------|
|---------------------------|-------------|-------|

|             | Test 1 |
|-------------|--------|
| γ           | 1.2    |
| UE Category | ≥1     |

## 9.4.1.3 Minimum requirement PUSCH 3-1 (CSI Reference Symbol)

#### 9.4.1.3.1 FDD

For the parameters specified in Table 9.4.1.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.1-2.

|                                                                                                                                                                                                                            | neter                                               | Unit                | Test 1                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|-------------------------|--|
| Bandwidth                                                                                                                                                                                                                  |                                                     | MHz                 | 10                      |  |
| Transmiss                                                                                                                                                                                                                  |                                                     |                     | 9                       |  |
|                                                                                                                                                                                                                            | on channel                                          |                     | EPA5                    |  |
| Precoding                                                                                                                                                                                                                  | granularity                                         | PRB                 | 50                      |  |
|                                                                                                                                                                                                                            | tion and                                            |                     | Low                     |  |
| antenna co                                                                                                                                                                                                                 | onfiguration                                        |                     | ULA 4 x 2               |  |
|                                                                                                                                                                                                                            | c reference                                         |                     | Antenna ports           |  |
| sigr                                                                                                                                                                                                                       | nals                                                |                     | 0,1                     |  |
|                                                                                                                                                                                                                            | nce signals                                         |                     | Antenna ports<br>15,,18 |  |
|                                                                                                                                                                                                                            | ning model                                          |                     | Annex B.4.3             |  |
| CSI-RS per                                                                                                                                                                                                                 | iodicity and                                        |                     |                         |  |
|                                                                                                                                                                                                                            | ne offset                                           |                     | 5/ 1                    |  |
| T <sub>CSI-RS</sub>                                                                                                                                                                                                        | / Acsi-rs                                           |                     |                         |  |
|                                                                                                                                                                                                                            | eference                                            |                     | 6                       |  |
| signal cor                                                                                                                                                                                                                 | figuration                                          |                     |                         |  |
|                                                                                                                                                                                                                            | SubsetRestr                                         |                     | 0x0000 0000             |  |
| iction                                                                                                                                                                                                                     |                                                     |                     | 0000 FFFF               |  |
|                                                                                                                                                                                                                            | $ ho_{\scriptscriptstyle A}$                        | dB                  | 0                       |  |
| Downlink<br>power                                                                                                                                                                                                          | $ ho_{\scriptscriptstyle B}$                        | dB                  | 0                       |  |
| allocation                                                                                                                                                                                                                 | Pc                                                  | dB                  | -3                      |  |
|                                                                                                                                                                                                                            | σ                                                   | dB                  | -3                      |  |
| N                                                                                                                                                                                                                          | (j)<br>oc                                           | dB[mW/15kHz]        | -98                     |  |
| Reportir                                                                                                                                                                                                                   | ng mode                                             |                     | PUSCH 3-1               |  |
| Reporting                                                                                                                                                                                                                  | g interval                                          | ms                  | 5                       |  |
| PMI dela                                                                                                                                                                                                                   | y (Note 2)                                          | ms                  | 8                       |  |
|                                                                                                                                                                                                                            | ent channel                                         |                     | R.44 FDD                |  |
| OCNG                                                                                                                                                                                                                       | Pattern                                             |                     | OP.1 FDD                |  |
| Max numbe                                                                                                                                                                                                                  | er of HARQ                                          |                     | 4                       |  |
| transm                                                                                                                                                                                                                     |                                                     |                     | 4                       |  |
| Redundancy version                                                                                                                                                                                                         |                                                     |                     | {0,1,2,3}               |  |
| coding s                                                                                                                                                                                                                   | coding sequence {0,1,2,3}                           |                     |                         |  |
| Note 1: F                                                                                                                                                                                                                  | Note 1: For random precoder selection, the precoder |                     |                         |  |
| <ul> <li>shall be updated in each TTI (1 ms granularity)</li> <li>Note 2: If the UE reports in an available uplink reportininstance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#</li> </ul> |                                                     |                     |                         |  |
|                                                                                                                                                                                                                            |                                                     |                     |                         |  |
|                                                                                                                                                                                                                            |                                                     |                     |                         |  |
|                                                                                                                                                                                                                            |                                                     |                     |                         |  |
|                                                                                                                                                                                                                            |                                                     | ed PMI cannot be ap | oplied at the           |  |
|                                                                                                                                                                                                                            |                                                     | before SF#(n+4).    | OdD in and a            |  |
|                                                                                                                                                                                                                            | PDSCH_RA= 0 dB, PDSCH_RB= 0 dB in order             |                     |                         |  |
|                                                                                                                                                                                                                            | to have the same PDSCH and OCNG power per           |                     |                         |  |
| subcarrier at the receiver.                                                                                                                                                                                                |                                                     |                     |                         |  |

#### Table 9.4.1.3.1-1 PMI test for single-layer (FDD)

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 1.2    |
| UE Category | ≥1     |

Table 9.4.1.3.1-2 Minimum requirement (FDD)

#### 9.4.1.3.2 TDD

For the parameters specified in Table 9.4.1.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.3.2-2.

| Parameter<br>Bondwidth                                                       |                                                  | Unit                                           | Test 1                   |
|------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------|
| Bandwidth                                                                    |                                                  | MHz                                            | 10<br>9                  |
| Transmission mode<br>Uplink downlink                                         |                                                  |                                                | 9                        |
|                                                                              | uration                                          |                                                | 1                        |
| Special                                                                      | subframe                                         |                                                | 4                        |
|                                                                              | uration                                          |                                                | -                        |
|                                                                              | on channel                                       |                                                | EVA5                     |
|                                                                              | granularity                                      | PRB                                            | 50                       |
|                                                                              | •                                                |                                                | 8 x 2<br>High, Cross     |
| Correlation                                                                  | n modeling                                       |                                                | polarized                |
|                                                                              | c reference<br>nals                              |                                                | Antenna ports<br>0,1     |
| · · ·                                                                        | nce signals                                      |                                                | Antenna ports            |
|                                                                              | ning model                                       |                                                | 15,,22<br>Annex B.4.3    |
|                                                                              | riodicity and                                    |                                                | Annex D.4.0              |
|                                                                              | ne offset                                        |                                                | 5/ 4                     |
| T <sub>CSI-RS</sub>                                                          | / $\Delta_{CSI-RS}$                              |                                                |                          |
| CSI-RS                                                                       | reference                                        |                                                | 0                        |
| signal cor                                                                   | nfiguration                                      |                                                | -                        |
| CodeBook                                                                     | SubsetRestr                                      |                                                | 0x0000 0000<br>001F FFE0 |
|                                                                              | bitmap                                           |                                                | 0000 0000                |
| iction                                                                       | biinap                                           |                                                | FFFF                     |
|                                                                              | $ ho_{\scriptscriptstyle A}$                     | dB                                             | 0                        |
| Downlink                                                                     | $ ho_{\scriptscriptstyle B}$                     | dB                                             | 0                        |
| power<br>allocation                                                          | Pc                                               | dB                                             | -6                       |
| anocation                                                                    | σ                                                | dB                                             | -3                       |
|                                                                              |                                                  |                                                |                          |
|                                                                              | •(j)<br>oc                                       | dB[mW/15kHz]                                   | -98                      |
|                                                                              | ng mode                                          |                                                | PUSCH 3-1                |
|                                                                              | g interval                                       | ms                                             | 5                        |
| PMI dela                                                                     | y (Note 2)                                       | ms                                             | 10                       |
|                                                                              |                                                  |                                                | R.45-1 TDD               |
|                                                                              |                                                  |                                                | for UE<br>Category 1,    |
| Measurem                                                                     | ent channel                                      |                                                | R.45 TDD for             |
|                                                                              |                                                  |                                                | UE Category              |
|                                                                              |                                                  |                                                | ≥2                       |
| OCNG                                                                         | Pattern                                          |                                                | OP.1 TDD                 |
|                                                                              | er of HARQ                                       |                                                | 4                        |
|                                                                              | issions                                          |                                                | 4                        |
| Redundancy version                                                           |                                                  |                                                | {0,1,2,3}                |
| coding sequence                                                              |                                                  |                                                | رن, ۱,۷,۵٫               |
| ACK/NACK feedback<br>mode                                                    |                                                  |                                                | Multiplexing             |
| Note 1: For random precoder selection, the precoder                          |                                                  |                                                |                          |
|                                                                              | shall be updated in each TTI (1 ms granularity). |                                                |                          |
|                                                                              |                                                  | orts in an available uplink reporting          |                          |
|                                                                              |                                                  | brame SF#n based                               |                          |
|                                                                              |                                                  | a downlink SF not la                           |                          |
| 4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). |                                                  |                                                | oplied at the            |
|                                                                              |                                                  |                                                | or for one riadia        |
|                                                                              |                                                  | format 0 with a trigge<br>ransmitted in downli |                          |
|                                                                              |                                                  |                                                |                          |
| to allow aperiodic CQI/PMI/RI to be transm<br>on uplink SF#3 and #8.         |                                                  |                                                |                          |
| Note 4: Randomization of the principle beam direction                        |                                                  | am direction                                   |                          |
|                                                                              | shall be used as specified in B.2.3A.4           |                                                |                          |
|                                                                              |                                                  |                                                |                          |

Table 9.4.1.3.2-1 PMI test for single-layer (TDD)

| Table 9.4.1.3.2-2 Minimum | requirement | (TDD) |
|---------------------------|-------------|-------|
|---------------------------|-------------|-------|

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 3      |
| UE Category | ≥1     |

## 9.4.1a Void

- 9.4.1a.1 Void
- 9.4.1a.1.1 Void
- 9.4.1a.1.2 Void
- 9.4.2 Multiple PMI

## 9.4.2.1 Minimum requirement PUSCH 1-2 (Cell-Specific Reference Symbols)

9.4.2.1.1 FDD

For the parameters specified in Table 9.4.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.1-2.

| Parameter                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit         | Test 1                                                                   |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|
| Bandwidth                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               | MHz          | 10                                                                       |
|                                     | sion mode                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 6                                                                        |
|                                     | ion channel                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | EPA5                                                                     |
| (only for re<br>follow              | granularity<br>eporting and<br>ng PMI)                                                                                                                                                                                                                                                                                                                                                                                                        | PRB          | 6                                                                        |
|                                     | ation and onfiguration                                                                                                                                                                                                                                                                                                                                                                                                                        |              | Low 2 x 2                                                                |
| Downlink                            | $ ho_{\scriptscriptstyle A}$                                                                                                                                                                                                                                                                                                                                                                                                                  | dB           | -3                                                                       |
| power                               | $ ho_{\scriptscriptstyle B}$                                                                                                                                                                                                                                                                                                                                                                                                                  | dB           | -3                                                                       |
| allocation                          | σ                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB           | 0                                                                        |
| $N_{oc}^{(j)}$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB[mW/15kHz] | -98                                                                      |
| Reporting mode                      |                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | PUSCH 1-2                                                                |
| Reporting interval                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms           | 1                                                                        |
| PMI                                 | delay                                                                                                                                                                                                                                                                                                                                                                                                                                         | ms           | 8                                                                        |
| Measurement channel                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | R.11-3 FDD<br>for UE<br>Category 1,<br>R.11 FDD for<br>UE Category<br>≥2 |
| OCNG Pattern                        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | OP.1/2 FDD                                                               |
| Max number of HARQ<br>transmissions |                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 4                                                                        |
| Redundancy version coding sequence  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | {0,1,2,3}                                                                |
| Note 2:<br>Note 3:                  | For random precoder selection, the precoders<br>shall be updated in each TTI (1 ms granularity).<br>If the UE reports in an available uplink reporting<br>instance at subrame SF#n based on PMI<br>estimation at a downlink SF not later than SF#(n-<br>4), this reported PMI cannot be applied at the<br>eNB downlink before SF#(n+4).<br>One/two sided dynamic OCNG Pattern OP.1/2<br>FDD as described in Annex A.5.1.1/2 shall be<br>used. |              |                                                                          |

Table 9.4.2.1.1-1 PMI test for single-layer (FDD)

Table 9.4.2.1.1-2 Minimum requirement (FDD)

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 1.2    |
| UE Category | ≥1     |

### 9.4.2.1.2 TDD

For the parameters specified in Table 9.4.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.2-2.

| Para                                        | meter                                                                                                                                            | Unit                  | Test 1           |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| Band                                        | lwidth                                                                                                                                           | MHz                   | 10               |
| Transmis                                    | sion mode                                                                                                                                        |                       | 6                |
|                                             | downlink                                                                                                                                         |                       | 1                |
|                                             | uration                                                                                                                                          |                       | •                |
|                                             | subframe                                                                                                                                         |                       | 4                |
|                                             | uration                                                                                                                                          |                       | 5045             |
| Propagatio                                  | on channel                                                                                                                                       |                       | EPA5             |
| Precoding                                   | granularity porting and                                                                                                                          | ססס                   | 6                |
|                                             | ng PMI)                                                                                                                                          | PRB                   | 0                |
|                                             | tion and                                                                                                                                         |                       |                  |
|                                             | onfiguration                                                                                                                                     |                       | Low 2 x 2        |
|                                             | $\rho_A$                                                                                                                                         | dB                    | -3               |
| Downlink<br>power                           | $\rho_{\scriptscriptstyle B}$                                                                                                                    | dB                    | -3               |
| allocation                                  |                                                                                                                                                  |                       | -                |
|                                             | σ                                                                                                                                                | dB                    | 0                |
| $N_{oc}^{(j)}$                              |                                                                                                                                                  | dB[mW/15kHz]          | -98              |
| Reporting mode                              |                                                                                                                                                  |                       | PUSCH 1-2        |
| Reporting interval                          |                                                                                                                                                  | ms                    | 1                |
| PMI delay                                   |                                                                                                                                                  | ms                    | 10 or 11         |
|                                             |                                                                                                                                                  |                       | R.11-3 TDD       |
|                                             |                                                                                                                                                  |                       | for UE           |
| Measurem                                    | ent channel                                                                                                                                      |                       | Category 1       |
|                                             |                                                                                                                                                  |                       | R.11 TDD for     |
|                                             |                                                                                                                                                  |                       | UE Category      |
| OCNG Pattern                                |                                                                                                                                                  |                       | ≥2<br>OP.1/2 TDD |
|                                             | er of HARQ                                                                                                                                       |                       | 0P.1/2 TDD       |
|                                             | lissions                                                                                                                                         |                       | 4                |
|                                             | ncy version                                                                                                                                      |                       | (0, 4, 0, 0)     |
|                                             | equence                                                                                                                                          |                       | {0,1,2,3}        |
|                                             | K feedback                                                                                                                                       |                       | Multiplaying     |
|                                             | ode                                                                                                                                              |                       | Multiplexing     |
|                                             |                                                                                                                                                  | recoder selection, th |                  |
| shall be updated in each available downlink |                                                                                                                                                  |                       | e downlink       |
|                                             | transmission instance.                                                                                                                           |                       |                  |
|                                             | If the UE reports in an available uplink reporting<br>instance at subrame SF#n based on PMI<br>estimation at a downlink SF not later than SF#(n- |                       |                  |
|                                             |                                                                                                                                                  |                       |                  |
|                                             |                                                                                                                                                  |                       | ``               |
|                                             |                                                                                                                                                  | ed PMI cannot be a    | philed at the    |
|                                             |                                                                                                                                                  | t before SF#(n+4).    | ottorn OP 1/2    |
|                                             | One/two sided dynamic OCNG Pattern OP.1/2<br>TDD as described in Annex A.5.2.1/2 shall be                                                        |                       |                  |
|                                             | i DD as desci<br>ised.                                                                                                                           | ibeu in Annex A.J.Z   | . 1/2 SHAII DE   |
| uoou.                                       |                                                                                                                                                  |                       |                  |

Table 9.4.2.1.2-1 PMI test for single-layer (TDD)

#### Table 9.4.2.1.2-2 Minimum requirement (TDD)

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 1.2    |
| UE Category | ≥1     |

## 9.4.2.2 Minimum requirement PUSCH 2-2 (Cell-Specific Reference Symbols)

#### 9.4.2.2.1 FDD

For the parameters specified in Table 9.4.2.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.1-2.

| Parameter                                    |                              | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test 1                          |  |
|----------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| Bandwidth                                    |                              | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                              |  |
| Transmis                                     | sion mode                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                               |  |
| Propagati                                    | on channel                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EVA5                            |  |
|                                              | tion and onfiguration        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low 4 x 2                       |  |
| Downlink                                     | $ ho_{\scriptscriptstyle A}$ | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6                              |  |
| power                                        | $ ho_{\scriptscriptstyle B}$ | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6                              |  |
| allocation                                   | σ                            | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                               |  |
| Λ                                            | $V_{oc}^{(j)}$               | dB[mW/15kHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -98                             |  |
| PMI                                          | delay                        | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                               |  |
| Reporti                                      | ng mode                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PUSCH 2-2                       |  |
| Reportir                                     | ng interval                  | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                               |  |
| Measurem                                     | ent channel                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R.14-2 FDD                      |  |
| OCNG                                         | Pattern                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OP.1/2 FDD                      |  |
| Subban                                       | d size ( <i>k</i> )          | RBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 (full size)                   |  |
| Number of preferred<br>subbands ( <i>M</i> ) |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                               |  |
| Max number of HARQ<br>transmissions          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                               |  |
| Redundancy version<br>coding sequence        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | {0,1,2,3}                       |  |
| Note 1: For random p                         |                              | recoder selection, the selection sel | ne precoder shall be updated in |  |
|                                              |                              | orts in an available uplink reporting instance at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |  |
|                                              |                              | n based on PMI estimation at a downlink SF not later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |
|                                              |                              | ), this reported PMI cannot be applied at the eNB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |  |
| downlink befo                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |  |

Table 9.4.2.2.1-1 PMI test for single-layer (FDD)

| Table 9.4.2.2.1-2 Minimu | m requirement (FDD) |
|--------------------------|---------------------|
|--------------------------|---------------------|

|             | Test 1 |
|-------------|--------|
| γ           | 1.2    |
| UE Category | ≥1     |

#### 9.4.2.2.2 TDD

For the parameters specified in Table 9.4.2.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.2.2.2-2.

| Parameter                                                                                                                                                                                                                     |                              | Unit                                     | Test 1                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------|-------------------------------------------------|
| Bandwidth                                                                                                                                                                                                                     |                              | MHz                                      | 10                                              |
| Transmission mode                                                                                                                                                                                                             |                              |                                          | 6                                               |
|                                                                                                                                                                                                                               | downlink                     |                                          | 1                                               |
|                                                                                                                                                                                                                               | uration                      |                                          |                                                 |
|                                                                                                                                                                                                                               | subframe<br>uration          |                                          | 4                                               |
|                                                                                                                                                                                                                               | on channel                   |                                          | EVA5                                            |
| Correla                                                                                                                                                                                                                       | tion and                     |                                          | Low 4 x 2                                       |
| antenna co                                                                                                                                                                                                                    | onfiguration                 |                                          |                                                 |
| Downlink                                                                                                                                                                                                                      | $ ho_{\scriptscriptstyle A}$ | dB                                       | -6                                              |
| power                                                                                                                                                                                                                         | $ ho_{\scriptscriptstyle B}$ | dB                                       | -6                                              |
| allocation                                                                                                                                                                                                                    | σ                            | dB                                       | 3                                               |
|                                                                                                                                                                                                                               | r(j)<br>oc                   | dB[mW/15kHz]                             | -98                                             |
| PMI                                                                                                                                                                                                                           | delay                        | ms                                       | 10                                              |
| Reporti                                                                                                                                                                                                                       | ng mode                      |                                          | PUSCH 2-2                                       |
| Reportin                                                                                                                                                                                                                      | g interval                   | ms                                       | 1                                               |
|                                                                                                                                                                                                                               | ent channel                  |                                          | R.14-2 TDD                                      |
|                                                                                                                                                                                                                               | Pattern                      |                                          | OP.1/2 TDD                                      |
|                                                                                                                                                                                                                               | d size ( <i>k</i> )          | RBs                                      | 3 (full size)                                   |
| Number of preferred<br>subbands ( <i>M</i> )                                                                                                                                                                                  |                              |                                          | 5                                               |
| Max number of HARQ<br>transmissions                                                                                                                                                                                           |                              |                                          | 4                                               |
| Redundancy version<br>coding sequence                                                                                                                                                                                         |                              |                                          | {0,1,2,3}                                       |
| ACK/NACK feedback<br>mode                                                                                                                                                                                                     |                              |                                          | Multiplexing                                    |
| Note 1: For random p                                                                                                                                                                                                          |                              | recoder selection, the downlink transmis | ne precoders shall be updated in sion instance. |
| Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not late than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). |                              |                                          | imation at a downlink SF not later              |

| Table 9.4.2.2.2-2 | Minimum | requirement | (TDD) |
|-------------------|---------|-------------|-------|
|-------------------|---------|-------------|-------|

|             | Test 1 |
|-------------|--------|
| γ           | 1.15   |
| UE Category | ≥1     |

## 9.4.2.3 Minimum requirement PUSCH 1-2 (CSI Reference Symbol)

#### 9.4.2.3.1 FDD

For the parameters specified in Table 9.4.2.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.1-2.

| r                                   |                              | 1                                        |                                                     |
|-------------------------------------|------------------------------|------------------------------------------|-----------------------------------------------------|
|                                     | meter                        | Unit                                     | Test 1                                              |
| Bandwidth                           |                              | MHz                                      | 10                                                  |
| Transmission mode                   |                              |                                          | 9                                                   |
| Propagation channel                 |                              |                                          | EVA5                                                |
|                                     | granularity                  | ממח                                      | C                                                   |
|                                     | ng PMI)                      | PRB                                      | 6                                                   |
|                                     | ation and                    |                                          | Low                                                 |
|                                     | onfiguration                 |                                          | ULA 4 x 2                                           |
|                                     | ic reference                 |                                          | Antenna ports                                       |
|                                     | nals                         |                                          | 0,1                                                 |
| CSI refere                          | ence signals                 |                                          | Antenna ports<br>15,,18                             |
| Beamforr                            | ning model                   |                                          | Annex B.4.3                                         |
|                                     | riodicity and                |                                          |                                                     |
|                                     | ne offset                    |                                          | 5/ 1                                                |
| T <sub>CSI-RS</sub>                 | / $\Delta_{CSI-RS}$          |                                          |                                                     |
| CSI-RS                              | reference                    |                                          | 8                                                   |
| signal co                           | nfiguration                  |                                          | _                                                   |
|                                     | SubsetRestr                  |                                          | 0x0000 0000                                         |
| iction                              | bitmap                       |                                          | 0000 FFFF                                           |
|                                     | $ ho_{\scriptscriptstyle A}$ | dB                                       | 0                                                   |
| Downlink<br>power                   | $ ho_{\scriptscriptstyle B}$ | dB                                       | 0                                                   |
| allocation                          | Pc                           | dB                                       | -3                                                  |
|                                     | σ                            | dB                                       | -3                                                  |
| Λ                                   | $V_{oc}^{(j)}$               | dB[mW/15kHz]                             | -98                                                 |
|                                     | ng mode                      |                                          | PUSCH 1-2                                           |
|                                     | ng interval                  | ms                                       | 5                                                   |
| PMI                                 | delay                        | ms                                       | 8                                                   |
| Measurement channel                 |                              |                                          | R.45-1 FDD<br>for UE<br>Category 1,<br>R.45 FDD for |
|                                     |                              |                                          | UE Category                                         |
| 0.0110                              | <b>D</b> "                   |                                          | ≥2                                                  |
| OCNG Pattern                        |                              |                                          | OP.1 FDD                                            |
| Max number of HARQ                  |                              |                                          | 4                                                   |
| transmissions<br>Redundancy version |                              |                                          |                                                     |
| coding sequence                     |                              |                                          | {0,1,2,3}                                           |
|                                     |                              | recoder selection, th                    | ne precoders                                        |
|                                     |                              | ted in each TTI (1 m                     |                                                     |
|                                     |                              | orts in an available u                   |                                                     |
|                                     |                              | brame SF#n based                         |                                                     |
|                                     |                              | a downlink SF not la                     |                                                     |
|                                     |                              | ed PMI cannot be a                       | oplied at the                                       |
|                                     |                              | before SF#(n+4).                         |                                                     |
|                                     |                              | d dynamic OCNG Pa<br>ibed in Annex A.5.1 |                                                     |
|                                     | used.                        |                                          |                                                     |
| Note 4: PDSCH _RA= 0                |                              | = 0 dB, PDSCH_RB<br>ame PDSCH and O(     |                                                     |
| subcarrier at the receiver.         |                              |                                          |                                                     |

Table 9.4.2.3.1-1 PMI test for single-layer (FDD)

| Table 0.4.2.2.4.2 Minimum requirement (FDD) |   |
|---------------------------------------------|---|
| Table 9.4.2.3.1-2 Minimum requirement (FDD) | ) |

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 1.3    |
| UE Category | ≥1     |

#### 9.4.2.3.2 TDD

For the parameters specified in Table 9.4.2.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.3.2-2.

| Parameter Unit Test 1                                                        |                              |                                           |                     |
|------------------------------------------------------------------------------|------------------------------|-------------------------------------------|---------------------|
|                                                                              | meter<br>dwidth              | Unit<br>MHz                               | <b>Test 1</b><br>10 |
|                                                                              |                              | IVIEZ                                     | 9                   |
| Transmission mode<br>Uplink downlink                                         |                              |                                           | -                   |
| configuration                                                                |                              |                                           | 1                   |
|                                                                              | subframe                     |                                           | 4                   |
|                                                                              | uration                      |                                           | 4                   |
|                                                                              | on channel                   |                                           | EVA5                |
|                                                                              | granularity                  |                                           |                     |
|                                                                              | eporting and                 | PRB                                       | 6                   |
|                                                                              | ng PMI)<br>onfiguration      |                                           | 8 x 2               |
|                                                                              |                              |                                           | High, Cross         |
| Correlatio                                                                   | n modeling                   |                                           | polarized           |
| Cell-specif                                                                  | ic reference                 |                                           | Antenna ports       |
|                                                                              | nals                         |                                           | 0,1                 |
| CSI refere                                                                   | nce signals                  |                                           | Antenna ports       |
|                                                                              |                              |                                           | 15,,22              |
|                                                                              | ning model                   |                                           | Annex B.4.3         |
|                                                                              | riodicity and ne offset      |                                           | 5/ 4                |
|                                                                              | / $\Delta_{CSI-RS}$          |                                           | 5/ 4                |
| CSI-RS                                                                       | reference                    |                                           |                     |
|                                                                              | nfiguration                  |                                           | 4                   |
|                                                                              | U                            |                                           | 0x0000 0000         |
| CodeBook                                                                     | SubsetRestr                  |                                           | 001F FFE0           |
| iction                                                                       | bitmap                       |                                           | 0000 0000           |
|                                                                              | T                            |                                           | FFFF                |
|                                                                              | $ ho_{\scriptscriptstyle A}$ | dB                                        | 0                   |
| Downlink                                                                     | $ ho_{\scriptscriptstyle B}$ | dB                                        | 0                   |
| power<br>allocation                                                          | Pc                           | db                                        | -6                  |
| anocation                                                                    |                              | dB                                        | -3                  |
|                                                                              | σ                            | uв                                        | -3                  |
| N                                                                            | $q^{(j)}_{oc}$               | dB[mW/15kHz]                              | -98                 |
| Reporti                                                                      | ng mode                      |                                           | PUSCH 1-2           |
|                                                                              | ng interval                  | ms                                        | 5 (Note 4)          |
|                                                                              | delay                        | ms                                        | 8                   |
|                                                                              | 3                            |                                           | R.45-1 TDD          |
|                                                                              |                              |                                           | for UE              |
| Measurem                                                                     | ent channel                  |                                           | Category 1,         |
| modourom                                                                     |                              |                                           | R.45 TDD for        |
|                                                                              |                              |                                           | UE Category         |
| 0010                                                                         | <b>D</b> //                  |                                           | ≥2                  |
|                                                                              | Pattern                      |                                           | OP.1 TDD            |
| Max number of HARQ<br>transmissions                                          |                              |                                           | 4                   |
| Redundancy version                                                           |                              |                                           |                     |
| coding sequence                                                              |                              |                                           | {0,1,2,3}           |
| ACK/NACK feedback                                                            |                              |                                           | Multiplaying        |
| mode                                                                         |                              |                                           | Multiplexing        |
|                                                                              |                              | recoder selection, th                     |                     |
|                                                                              |                              | ted in each TTI (1 m                      |                     |
|                                                                              |                              | orts in an available u                    |                     |
|                                                                              |                              | lbrame SF#n based<br>a downlink SF not la |                     |
|                                                                              |                              |                                           |                     |
| 4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4). |                              | Splied at the                             |                     |
|                                                                              |                              | d dynamic OCNG Pa                         | attern OP 1/2       |
|                                                                              |                              | ibed in Annex A.5.2                       |                     |
|                                                                              | used.                        |                                           | •                   |
| Note 4: PDCCH DCI format 0 with a trigg<br>CQI shall be transmitted in down  |                              |                                           |                     |
|                                                                              |                              | ransmitted in downl                       | ink SF#4 and #9     |
| 1                                                                            | to allow aperi               | odic CQI/PMI/RI to b                      | be transmitted      |
|                                                                              |                              |                                           |                     |

Table 9.4.2.3.2-1 PMI test for single-layer (TDD)

|         | on uplink SF#3 and #8.                        |
|---------|-----------------------------------------------|
| Note 5: | Randomization of the principle beam direction |
|         | shall be used as specified in B.2.3A.4.       |

#### Table 9.4.2.3.2-2 Minimum requirement (TDD)

| Parameter   | Test 1 |
|-------------|--------|
| γ           | 3.5    |
| UE Category | ≥1     |

- 9.4.3 Void
- 9.4.3.1 Void
- 9.4.3.1.1 Void
- 9.4.3.1.2 Void

## 9.5 Reporting of Rank Indicator (RI)

The purpose of this test is to verify that the reported rank indicator accurately represents the channel rank. The accuracy of RI (CQI) reporting is determined by the relative increase of the throughput obtained when transmitting based on the reported rank compared to the case for which a fixed rank is used for transmission. Transmission mode 4 is used with the specified CodebookSubSetRestriction in section 9.5.1, transmission mode 9 is used with the specified CodebookSubSetRestriction in section 9.5.2 and transmission mode 3 is used with the specified CodebookSubSetRestriction in section 9.5.3, and transmission mode 10 is used with the specified CodebookSubSetRestriction in section 9.5.5.

For fixed rank 1 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to two singlelayer precoders, For fixed rank 2 transmission in sections 9.5.1, 9.5.2 and 9.5.5, the RI and PMI reporting is restricted to one two-layer precoder, For follow RI transmission in sections 9.5.1, 9.5.2, the RI and PMI reporting is restricted to select the union of these precoders. Channels with low and high correlation are used to ensure that RI reporting reflects the channel condition.

For fixed rank 1 transmission in section 9.5.3, the RI reporting is restricted to single-layer, for fixed rank 2 transmission in section 9.5.3, the RI reporting is restricted to two-layers. For follow RI transmission in section 9.5.3, the RI reporting is either one or two layers.

## 9.5.1 Minimum requirement (Cell-Specific Reference Symbols)

#### 9.5.1.1 FDD

The minimum performance requirement in Table 9.5.1.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.1-2.

| Parameter                                                                               | Parameter Unit Test 1 Test 2 Te |                      | Test 3                                             |                                       |                 |
|-----------------------------------------------------------------------------------------|---------------------------------|----------------------|----------------------------------------------------|---------------------------------------|-----------------|
| Bandwidth                                                                               |                                 | MHz                  | 10                                                 |                                       |                 |
| PDSCH transmission                                                                      | on mode                         |                      | 4                                                  |                                       |                 |
| Davaliates                                                                              | $ ho_{\scriptscriptstyle A}$    | dB                   | -3                                                 |                                       |                 |
| Downlink power<br>allocation                                                            | $ ho_{\scriptscriptstyle B}$    | dB                   |                                                    | -3                                    |                 |
|                                                                                         | σ                               | dB                   |                                                    | 0                                     |                 |
| Propagation condit<br>antenna configur                                                  |                                 |                      |                                                    | 2 x 2 EPA5                            |                 |
| CodeBookSubsetRe                                                                        | estriction                      |                      |                                                    | 11 for fixed $RI = 1$                 |                 |
| bitmap                                                                                  |                                 |                      |                                                    | 0 for fixed RI = 2<br>for UE reported |                 |
| Antenna correla                                                                         | ation                           |                      | Low                                                | Low                                   | High            |
|                                                                                         |                                 |                      | Fixed RI=2 and                                     | Fixed RI=1                            | Fixed RI=1      |
| RI configuration                                                                        | on                              |                      | follow RI                                          | and follow RI                         | and follow RI   |
| SNR                                                                                     |                                 | dB                   | 0                                                  | 20                                    | 20              |
| $N_{oc}^{(j)}$                                                                          |                                 | dB[mW/15kHz]         | -98                                                | -98                                   | -98             |
| $\hat{I}^{(j)}_{or}$                                                                    |                                 | dB[mW/15kHz]         | -98                                                | -78                                   | -78             |
| Maximum number o<br>transmission                                                        |                                 |                      | 1                                                  |                                       |                 |
| Reporting mo                                                                            |                                 |                      | PUC                                                | CH 1-1 (Note 4)                       |                 |
| Physical channel for                                                                    | CQI/PMI                         |                      | PL                                                 | ICCH Format 2                         |                 |
| reporting                                                                               |                                 |                      | 10001110111412                                     |                                       |                 |
| PUCCH Report Ty<br>CQI/PMI                                                              | •                               |                      | 2                                                  |                                       |                 |
| Physical channel reporting                                                              | for RI                          |                      | PL                                                 | JSCH (Note 3)                         |                 |
| PUCCH Report Typ                                                                        | e for RI                        |                      |                                                    | 3                                     |                 |
| Reporting period                                                                        | dicity                          | ms                   |                                                    | $N_{\rm pd}=5$                        |                 |
| PMI and CQI d                                                                           | elay                            | ms                   |                                                    | 8                                     |                 |
| cqi-pmi-Configurati                                                                     | onIndex                         |                      |                                                    | 6                                     |                 |
| ri-Configuratior                                                                        | nInd                            |                      |                                                    | 1 (Note 5)                            |                 |
| CQI estima                                                                              | ation at a do                   | ownlink subframe ne  | ting instance at subfra<br>ot later than SF#(n-4), | this reported PM                      |                 |
|                                                                                         |                                 |                      | NB downlink before S<br>to Table A.4-1 with or     |                                       |                 |
|                                                                                         |                                 | described in Annex   |                                                    | ie slueu uynamit                      |                 |
|                                                                                         |                                 |                      | Id HARQ-ACK it is neo                              | cessary to report                     | both on         |
|                                                                                         |                                 |                      | format 0 shall be trans                            |                                       |                 |
| #9 to allow periodic RI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 |                                 |                      |                                                    |                                       |                 |
| and #3.                                                                                 |                                 |                      |                                                    |                                       |                 |
|                                                                                         |                                 |                      | DCI format 2 shall be r                            |                                       |                 |
|                                                                                         |                                 |                      | recoding information b                             |                                       |                 |
|                                                                                         |                                 |                      | recoding information b                             |                                       |                 |
|                                                                                         |                                 |                      | recoding information b                             |                                       |                 |
|                                                                                         |                                 |                      | when applying CQI and                              |                                       |                 |
|                                                                                         |                                 | ied at the TE with o | ne subframe delay in a                             | addition to Note 1                    | I to align with |
| CQI and P                                                                               | MI reports.                     |                      |                                                    |                                       |                 |

Table 9.5.1.1-2 Minimum requirement (FDD)

|             | Test 1 | Test 2 | Test 3 |
|-------------|--------|--------|--------|
| <i>)</i> 1  | N/A    | 1.05   | 0.9    |
| 1/2         | 1      | N/A    | N/A    |
| UE Category | ≥2     | ≥2     | ≥2     |

## 9.5.1.2 TDD

The minimum performance requirement in Table 9.5.1.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.2-2.

| Parameter                                                                                                                                                                                                                                                                                                                                                                     |                                                 | Unit               | Test 1 Test 2 Test                                                              |                             |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|---------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| Bandwidth                                                                                                                                                                                                                                                                                                                                                                     |                                                 | MHz                | 10                                                                              |                             |                             |
| PDSCH transmission                                                                                                                                                                                                                                                                                                                                                            | on mode                                         |                    | 4                                                                               |                             |                             |
| Downlink power                                                                                                                                                                                                                                                                                                                                                                | $ ho_{\scriptscriptstyle A}$                    | dB                 |                                                                                 | -3                          |                             |
| Downlink power<br>allocation                                                                                                                                                                                                                                                                                                                                                  | $ ho_{\scriptscriptstyle B}$                    | dB                 |                                                                                 | -3                          |                             |
|                                                                                                                                                                                                                                                                                                                                                                               | σ                                               | dB                 | 0                                                                               |                             |                             |
| Uplink downlink con                                                                                                                                                                                                                                                                                                                                                           | figuration                                      |                    |                                                                                 | 2                           |                             |
| Special subfra<br>configuration                                                                                                                                                                                                                                                                                                                                               |                                                 |                    |                                                                                 | 4                           |                             |
| Propagation condit<br>antenna configu                                                                                                                                                                                                                                                                                                                                         |                                                 |                    |                                                                                 | 2 x 2 EPA5                  |                             |
| CodeBookSubsetRe<br>bitmap                                                                                                                                                                                                                                                                                                                                                    | estriction                                      |                    | 000011 for fixed RI = 1<br>010000 for fixed RI = 2<br>010011 for UE reported RI |                             |                             |
| Antenna correla                                                                                                                                                                                                                                                                                                                                                               | ation                                           |                    |                                                                                 |                             | High                        |
| RI configurati                                                                                                                                                                                                                                                                                                                                                                | on                                              |                    | Fixed RI=2 and<br>follow RI                                                     | Fixed RI=1<br>and follow RI | Fixed RI=1<br>and follow RI |
| SNR                                                                                                                                                                                                                                                                                                                                                                           |                                                 | dB                 | 0                                                                               | 20                          | 20                          |
| $N_{oc}^{(j)}$                                                                                                                                                                                                                                                                                                                                                                |                                                 | dB[mW/15kHz]       | z] -98 -98 -9                                                                   |                             | -98                         |
| $\hat{I}_{or}^{(j)}$                                                                                                                                                                                                                                                                                                                                                          |                                                 | dB[mW/15kHz]       | -98                                                                             | -78                         | -78                         |
| Maximum number of transmission                                                                                                                                                                                                                                                                                                                                                |                                                 |                    |                                                                                 | 1                           |                             |
| Reporting mo                                                                                                                                                                                                                                                                                                                                                                  | de                                              |                    | PUS                                                                             | CH 3-1 (Note 3)             |                             |
| Reporting interval                                                                                                                                                                                                                                                                                                                                                            |                                                 | ms                 |                                                                                 | 5                           |                             |
| PMI and CQI d                                                                                                                                                                                                                                                                                                                                                                 | PMI and CQI delay                               |                    | 10 or 11                                                                        |                             |                             |
| ACK/NACK feedba                                                                                                                                                                                                                                                                                                                                                               | ck mode                                         |                    | Bundling                                                                        |                             |                             |
| Note 1:       If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).         Note 2:       Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG |                                                 |                    |                                                                                 |                             |                             |
|                                                                                                                                                                                                                                                                                                                                                                               | Pattern OP.1 TDD as described in Annex A.5.2.1. |                    |                                                                                 |                             |                             |
| Note 3: Reported                                                                                                                                                                                                                                                                                                                                                              | wideband C                                      | QI and PMI are use | ed and sub-band CQI i                                                           | s discarded.                |                             |

#### Table 9.5.1.2-1 RI Test (TDD)

Table 9.5.1.2-2 Minimum requirement (TDD)

|             | Test 1 | Test 2 | Test 3 |
|-------------|--------|--------|--------|
| <i>γ</i> 1  | N/A    | 1.05   | 0.9    |
| <i>γ</i> 2  | 1      | N/A    | N/A    |
| UE Category | ≥2     | ≥2     | ≥2     |

## 9.5.2 Minimum requirement (CSI Reference Symbols)

#### 9.5.2.1 FDD

The minimum performance requirement in Table 9.5.2.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3e or Table A.4-3f.

For the parameters specified in Table 9.5.2.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.1-2.

| Paramete                                                     | r                            | Unit                                                                                                              | Test 1                                             | Test 2                                                        | Test 3              |
|--------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------------------|
| Bandwidt                                                     | h                            | MHz 10                                                                                                            |                                                    |                                                               |                     |
| PDSCH transmiss                                              | ion mode                     |                                                                                                                   | 9                                                  |                                                               |                     |
|                                                              | $ ho_{\scriptscriptstyle A}$ | dB                                                                                                                | 0                                                  |                                                               |                     |
| Downlink power                                               | $ ho_{\scriptscriptstyle B}$ | dB                                                                                                                | 0                                                  |                                                               |                     |
| allocation                                                   | Pc                           | dB                                                                                                                |                                                    | 0                                                             |                     |
|                                                              | σ                            | dB                                                                                                                |                                                    | 0                                                             |                     |
| Propagation cond                                             | lition and                   |                                                                                                                   |                                                    |                                                               |                     |
| antenna config                                               | uration                      |                                                                                                                   |                                                    | 2 x 2 EPA5                                                    |                     |
| Cell-specific referer                                        |                              |                                                                                                                   |                                                    | ntenna ports 0                                                |                     |
| Beamforming                                                  |                              |                                                                                                                   |                                                    | fied in Section B.                                            | .4.3                |
| CSI reference s                                              |                              |                                                                                                                   | Ante                                               | nna ports 15, 16                                              |                     |
| CSI-RS periodic<br>subframe of<br>$T_{CSI-RS} / \Delta_{CS}$ | fset                         |                                                                                                                   |                                                    | 5/1                                                           |                     |
| CSI reference<br>configuration                               | signal                       |                                                                                                                   |                                                    | 6                                                             |                     |
| CodeBookSubsetF<br>bitmap                                    | Restriction                  |                                                                                                                   | 01000                                              | 11 for fixed RI = 1<br>00 for fixed RI = 2<br>for UE reported | 2                   |
| Antenna corre                                                | lation                       |                                                                                                                   | Low                                                | Low                                                           | High                |
| RI configura                                                 | tion                         |                                                                                                                   | Fixed RI=2 and                                     | Fixed RI=1                                                    | Fixed RI=1          |
| SNR                                                          |                              | dB                                                                                                                | follow RI<br>0                                     | and follow RI<br>20                                           | and follow RI<br>20 |
| $N_{oc}^{(j)}$                                               |                              | dB[mW/15kHz]                                                                                                      | -98                                                | -98                                                           | -98                 |
| $\hat{I}_{or}^{(j)}$                                         |                              | dB[mW/15kHz]                                                                                                      | z] -98 -78                                         |                                                               | -78                 |
| Maximum number                                               | of HARQ                      |                                                                                                                   |                                                    | 4                                                             |                     |
| transmissio                                                  |                              |                                                                                                                   |                                                    | 1                                                             |                     |
| Reporting m                                                  |                              |                                                                                                                   |                                                    | PUCCH 1-1                                                     |                     |
| Physical channel for<br>reporting                            |                              |                                                                                                                   | PL                                                 | JSCH (Note 3)                                                 |                     |
| PUCCH Report<br>CQI/PMI                                      | Type for                     |                                                                                                                   |                                                    | 2                                                             |                     |
| Physical channe<br>reporting                                 | el for RI                    |                                                                                                                   | PU                                                 | CCH Format 2                                                  |                     |
| PUCCH Report Ty                                              |                              |                                                                                                                   |                                                    | 3                                                             |                     |
| Reporting perio                                              |                              | ms                                                                                                                |                                                    | $N_{\rm pd} = 5$                                              |                     |
| PMI and CQI                                                  |                              | ms                                                                                                                |                                                    | 8                                                             |                     |
| cqi-pmi-Configura                                            |                              | -                                                                                                                 |                                                    | 6                                                             |                     |
| ri-Configuratio                                              |                              |                                                                                                                   |                                                    | 1 (Note 4)                                                    |                     |
| Note 1: If the UE                                            | reports in ar                |                                                                                                                   | porting instance at sub<br>ot later than SF#(n-4), | oframe SF#n bas                                               |                     |
|                                                              |                              |                                                                                                                   | NB downlink before S                               |                                                               |                     |
|                                                              |                              | neasurement channel according to Table A.4-1b with one sided dynamic OCNG<br>1 FDD as described in Annex A.5.1.1. |                                                    |                                                               |                     |
| Note 3: To avoid                                             | collisions be                | etween CQI/ PMI reports and HARQ-ACK it is necessary to report both on                                            |                                                    |                                                               |                     |
| PUSCH i                                                      | nstead of Pl                 | JCCH. PDCCH DCİ                                                                                                   | format 0 shall be tran                             | smitted in downli                                             | nk SF#1 and         |
| #6 to allo<br>#5.                                            | w periodic C                 | QI/ PMI to multiple>                                                                                              | with the HARQ-ACK                                  | on PUSCH in up                                                | link SF#0 and       |
| _                                                            | the ambiguit                 | tv of TE behaviour v                                                                                              | when applying CQI and                              | d PMI during rank                                             | switching. RI       |
| reports a                                                    |                              | lied at the TE with o                                                                                             | ne subframe delay in a                             |                                                               |                     |

## Table 9.5.2.1-1 RI Test (FDD)

|             | Test 1 | Test 2 | Test 3 |
|-------------|--------|--------|--------|
| <i>)</i> 1  | N/A    | 1.05   | 0.9    |
| <i>7</i> 2  | 1      | N/A    | N/A    |
| UE Category | ≥2     | ≥2     | ≥2     |

### 9.5.2.2 TDD

The minimum performance requirement in Table 9.5.2.2-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;

b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3e or Table A.4-3f.

For the parameters specified in Table 9.5.2.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.2.2-2.

| Parameter                                      |                               | Unit               | Test 1                                                                     | Test 2                                         | Test 3        |
|------------------------------------------------|-------------------------------|--------------------|----------------------------------------------------------------------------|------------------------------------------------|---------------|
| Bandwidth                                      |                               | MHz                |                                                                            | 10                                             |               |
| PDSCH transmissi                               | on mode                       |                    | 9                                                                          |                                                |               |
|                                                | $\rho_{\scriptscriptstyle A}$ | dB                 | 0                                                                          |                                                |               |
| Downlink power                                 | $\rho_{B}$                    | dB                 | 0                                                                          |                                                |               |
| allocation                                     |                               | dB                 |                                                                            | 0                                              |               |
|                                                | σ                             | dB                 |                                                                            | 0                                              |               |
| Uplink downlink con                            |                               | <u>ub</u>          |                                                                            | 1                                              |               |
| Special subfra                                 |                               |                    |                                                                            |                                                |               |
| configuratio                                   |                               |                    |                                                                            | 4                                              |               |
| Propagation condi                              | tion and                      |                    |                                                                            | 2 x 2 EPA5                                     |               |
| antenna configu                                |                               |                    |                                                                            | ZXZEPAS                                        |               |
| Cell-specific referen                          | ce signals                    |                    | Ar                                                                         | ntenna ports 0                                 |               |
| CSI reference si                               |                               |                    |                                                                            | nna ports 15, 16                               |               |
| Beamforming N                                  |                               |                    | As speci                                                                   | fied in Section B                              | .4.3          |
| CSI reference s                                |                               |                    |                                                                            | 4                                              |               |
| configuratio                                   |                               |                    |                                                                            | •                                              |               |
| CSI-RS periodici                               |                               |                    |                                                                            | _ / .                                          |               |
| subframe offs                                  |                               |                    |                                                                            | 5/4                                            |               |
| $T_{\text{CSI-RS}}$ / $\Delta_{\text{CSI-RS}}$ | RS                            |                    | 0000                                                                       | 14 for five al DL                              | 1             |
| CodeBookSubsetR                                | estriction                    |                    |                                                                            | 11 for fixed RI = $2$<br>00 for fixed RI = $2$ |               |
| bitmap                                         |                               |                    |                                                                            | for UE reported                                |               |
| Antenna correl                                 | ation                         |                    | Low                                                                        | Low                                            | High          |
|                                                |                               |                    | Fixed RI=2 and                                                             | Fixed RI=1                                     | Fixed RI=1    |
| RI configuration                               |                               |                    | follow RI                                                                  | and follow RI                                  | and follow RI |
| SNR                                            |                               | dB                 | 0                                                                          | 20                                             | 20            |
| $N_{oc}^{(j)}$                                 |                               | dB[mW/15kHz]       |                                                                            |                                                | -98           |
| $\hat{I}_{or}^{(j)}$                           |                               | dB[mW/15kHz]       | -98                                                                        | -78                                            | -78           |
|                                                |                               | []                 |                                                                            |                                                |               |
| Maximum number of transmission                 |                               |                    |                                                                            | 1                                              |               |
| Reporting mc                                   |                               |                    |                                                                            | PUCCH 1-1                                      |               |
| Physical channel for                           |                               |                    |                                                                            |                                                |               |
| reporting                                      |                               |                    | PL                                                                         | JSCH (Note 3)                                  |               |
| PUCCH report type<br>PMI                       | for CQI/                      |                    |                                                                            | 2                                              |               |
| Physical channel                               | for RI                        |                    |                                                                            |                                                |               |
| reporting                                      |                               |                    | PU                                                                         | CCH Format 2                                   |               |
| Reporting perio                                | dicity                        | ms                 |                                                                            | $N_{\rm pd} = 5$                               |               |
| PMI and CQI d                                  |                               | ms                 |                                                                            | 10                                             |               |
| ACK/NACK feedba                                | ck mode                       |                    | Bundling                                                                   |                                                |               |
| cqi-pmi-Configurat                             | ionIndex                      |                    | 4                                                                          |                                                |               |
| <u>v</u>                                       | i-ConfigurationInd 1          |                    |                                                                            |                                                |               |
| CQI estim                                      | ation at a de                 | ownlink subframe n | porting instance at sub<br>ot later than SF#(n-4),<br>NB downlink before S | this reported PM                               |               |
|                                                |                               |                    | ing to Table A.4-2b wit                                                    |                                                | amic OCNG     |
| Pattern O                                      | P.1 TDD as                    | described in Annex | A.5.2.1.                                                                   | -                                              |               |
| PUSCH in                                       | stead of PL                   | JCCH. PDCCH DCI    | orts and HARQ-ACK i<br>format 0 shall be tran<br>with the HARQ-ACK o       | smitted in downli                              | nk SF#4 and   |

## Table 9.5.2.2-1 RI Test (TDD)

| Table 9.5.2.2-2 Mini | num requirement | (TDD) |
|----------------------|-----------------|-------|
|----------------------|-----------------|-------|

|             | Test 1 | Test 2 | Test 3 |
|-------------|--------|--------|--------|
| 2/1         | N/A    | 1.05   | 0.9    |
| 1/2         | 1      | N/A    | N/A    |
| UE Category | ≥2     | ≥2     | ≥2     |

# 9.5.3 Minimum requirement (CSI measurements in case two CSI subframe sets are configured)

### 9.5.3.1 FDD

The minimum performance requirement in Table 9.5.3.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ 

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.3.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.1-2.

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parameter                 |                     | Unit   |                                                                  | est 1                                    | Tes                                                     |                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|--------|------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Randwidth                 |                     | MH7    | Cell 1                                                           | <b>Cell 2</b>                            | Cell 1                                                  | Cell 2                                               |
| $ \begin{array}{ c c c c c c } \hline Downlink power allocation & $P_n$ & $dB$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $-3$ & $                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | n mode              | IVITIZ |                                                                  |                                          |                                                         |                                                      |
| $ \begin{array}{ c c c c c c } \hline Downlink power allocation \\ \hline Propagation condition and \\ \hline Propagation condition and \\ \hline antenna configuration \\ \hline CodeBookSubsetRestriction \\ bitmap \\ \hline \hline CodeBookSubsetRestriction \\ bitmap \\ \hline \hline \hline CodeBookSubsetRestriction \\ \hline \hline CodeBookSubsetRestriction \\ \hline \hline CodeBookSubsetRestriction \\ \hline \hline \hline \hline \hline \hline CodeBookSubsetRestriction \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | _                   | dB     |                                                                  | •                                        | •                                                       |                                                      |
| $ \frac{1}{1000000} \begin{tabular}{ c c c c c } \hline 0 & dB & 0 & 0 \\ \hline Propagation condition and antenna configuration & 2 x 2 EPA5 & 2 x 2 EPA5 \\ \hline 2 x 2 EPA5 & 2 x 2 EPA5 & 2 x 2 EPA5 & 0 1 for fixed RI = 1 & 0 10 for fixed RI = 1 & 0 10 for fixed RI = 2 & 0 1 for or fixed RI = 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                     |        |                                                                  |                                          |                                                         |                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | allocation                |                     | -      |                                                                  |                                          |                                                         |                                                      |
| antenna configuration         212 EPRO         212 EPRO           CodeBookSubsetRestriction<br>bitmap         01 for<br>fixed RI =<br>2         01 for fixed RI<br>= 1         01 for fixed RI<br>= 1           Antenna correlation         Low         Low         Low           Antenna correlation         Low         Low         Low           RI configuration         Rised RI<br>reported         N/A         Fixed RI<br>and follow RI         N/A $\hat{E}_s/N_{oc2}$ dB         0         -12         20         6 $N_{oc1}^{(J)}$ $N_{oc1}^{(J)}$ dBmW/15kH<br>z         -98 (Note<br>3)         N/A         -102 (Note 3)         N/A $\hat{N}_{oc2}^{(J)}$ dBmW/15kH<br>z         -98 (Note<br>5)         N/A         -98 (Note 4)         N/A $\hat{N}_{oc2}^{(J)}$ dBmW/15kH<br>z         -98         -110         -78         -92           Subframe Configuration         MSFN<br>Non-MBSFN         Non-MBSFN         Non-MBSFN         Non-MBSFN         Non-MBSFN           ABS Pattern (Note 6)         N/A         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         N/A           Cell Id         0         1         0         1         0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Propagation conditi       | -                   |        |                                                                  | -                                        |                                                         |                                                      |
| $ \begin{array}{c c} CodeBookSubsetRestriction bitmap \\ CodeBookSubsetRestriction bitmap \\ bitmap \\ \hline \\ CodeBookSubsetRestriction \\ \hline \\ CodeB$ |                           |                     |        |                                                                  | 2 EPA5                                   | 2 x 2                                                   | EPA5                                                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | estriction          |        | fixed RI =<br>10 for<br>fixed RI =<br>2<br>11 for UE<br>reported | N/A                                      | = 1<br>10 for fixed RI<br>= 2<br>11 for UE              | N/A                                                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Antenna correla           | tion                |        |                                                                  | OW                                       | Lo                                                      | W                                                    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | on                  |        | RI=1 and                                                         | N/A                                      |                                                         | N/A                                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\widehat{E}_{s}/N_{oc2}$ |                     | dB     | 0                                                                | -12                                      | 20                                                      | 6                                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | $N_{oc1}^{(j)}$     |        |                                                                  | N/A                                      | -102 (Note 3)                                           | N/A                                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N_{oc}^{(j)}$            | $N_{\rm oc2}^{(j)}$ |        | -98 (Note                                                        | N/A                                      | -98 (Note 4)                                            | N/A                                                  |
| I or         Hz]         -90         -110         -78         -92           Subframe Configuration         Non-<br>MBSFN         Non-MBSFN         Non0000         10000000         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | $N_{oc3}^{(j)}$     |        |                                                                  | N/A                                      | -94.8 (Note 5)                                          | N/A                                                  |
| Subtrame Configuration         MBSFN         Non-MBSFN         Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\hat{I}_{or}^{(j)}$      |                     |        | -98                                                              | -110                                     | -78                                                     | -92                                                  |
| Time Offset between Cells         μs         2.5 (synchronous cells)         2.5 (synchronous cells)         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         1000000         N/A         10000000         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                         | iration             |        |                                                                  | Non-MBSFN                                | Non-MBSFN                                               | Non-MBSFN                                            |
| ABS Pattern (Note 6)         N/A         10000000<br>10000000         N/A         10000000<br>10000000         N/A         10000000<br>10000000           RLM/RRM Measurement<br>Subframe Pattern (Note 7)         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         N/A         10000000<br>10000000         N/A           Ccsl.0         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         N/A         10000000<br>10000000         N/A           Ccsl.0         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         N/A         10000000<br>10000000         N/A           Ccsl.1         Ccsl.1         01111111<br>01111111         N/A         01111111<br>01111111         N/A           Number of control OFDM<br>Symbols         3         3         3         3         3           Maximum number of HARQ<br>transmissions         1         1         1         1           Reporting mode         PUCCH 1-0         PUCCH 1-0         PUCCH 1-0           Physical channel for CQI         PUCCH Format 2         PUCCH Format 2         PUCCH Format 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | <u> </u>            |        | -                                                                | -                                        |                                                         | =                                                    |
| RLM/RRM Measurement<br>Subframe Pattern (Note 7)         1000000<br>1000000<br>10000000         N/A         1000000<br>10000000         N/A           Ccsi,0         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         N/A           Csl Subframe Sets<br>(Note 8)         Ccsi,0         10000000<br>10000000         10000000<br>10000000         10000000<br>10000000         N/A           Mumber of control OFDM<br>Symbols         01111111<br>01111111         01111111<br>01111111         N/A         01111111<br>01111111         N/A           Maximum number of HARQ<br>transmissions         3         3         3         3         3         3           Maximum number of CQI         PUCCH 1-0         PUCCH 1-0         PUCCH 1-0         PUCCH 1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                     | μs     |                                                                  | 1000000<br>1000000<br>1000000<br>1000000 |                                                         | 10000000<br>1000000<br>1000000<br>1000000<br>1000000 |
| CSI Subframe Sets<br>(Note 8)         C <sub>CSI,0</sub> 1000000<br>10000000<br>10000000         N/A         1000000<br>10000000<br>10000000         N/A           CSI Subframe Sets<br>(Note 8)         C <sub>CSI,1</sub> 01111111<br>01111111         N/A         01111111<br>01111111         N/A           Ccsi,1         01111111<br>01111111         01111111<br>01111111         01111111<br>01111111         N/A           Number of control OFDM<br>Symbols         3         3         3         3           Maximum number of HARQ<br>transmissions         1         1         1           Reporting mode         PUCCH 1-0         PUCCH 1-0         PUCCH 1-0           Physical channel for CQI         PUCCH Format 2         PUCCH Format 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                     |        | 10000000<br>10000000<br>10000000                                 |                                          | 10000000<br>10000000<br>10000000                        |                                                      |
| Number of control OFDM<br>Symbols     3     3     3       Maximum number of HARQ<br>transmissions     1     1       Reporting mode     PUCCH 1-0     PUCCH 1-0       Physical channel for CQI     PUCCH Format 2     PUCCH Format 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                     |        | 10000000<br>1000000<br>1000000<br>1000000<br>0111111             | N/A                                      | 10000000<br>10000000<br>10000000<br>10000000<br>0111111 | N/A                                                  |
| Maximum number of HARQ<br>transmissions     1     1       Reporting mode     PUCCH 1-0     PUCCH 1-0       Physical channel for CQI     PUCCH Format 2     PUCCH Format 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | OFDM                |        | 3                                                                | 3                                        | 3                                                       | 3                                                    |
| transmissions     PUCCH 1-0       Reporting mode     PUCCH 1-0       Physical channel for CQI     PUCCH Format 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maximum number o          |                     |        |                                                                  | 1                                        | 1                                                       |                                                      |
| Physical channel for CQI PLICCH Format 2 PLICCH Format 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                     |        | 5110                                                             | -                                        |                                                         |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                     |        |                                                                  |                                          |                                                         |                                                      |
| reportingPOCCH Pointat 2POCCH Pointat 2PUCCH Report Type for CQI44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | reporting                 |                     |        | PUCCH                                                            |                                          |                                                         |                                                      |

## Table 9.5.3.1-1 RI Test (FDD)

| Physical | channel for RI reporting                                                                                                                     |                 | PUCCH I           | Format 2        | PUCCH              | Format 2      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-----------------|--------------------|---------------|
| PUCC     | PUCCH Report Type for RI                                                                                                                     |                 | 3                 |                 | 3                  |               |
| Re       | porting periodicity                                                                                                                          | ms              | N <sub>pd</sub> = | : 10            | N <sub>pd</sub> =  | = 10          |
| cqi-pn   | ni-ConfigurationIndex                                                                                                                        |                 | 1                 | 1               | 1                  | 1             |
| ri-      | ConfigurationInd                                                                                                                             |                 | 5                 |                 | 4                  | 5             |
| cqi-pm   | ni-ConfigurationIndex2                                                                                                                       |                 | 1                 | 0               | 1                  | 0             |
| ri-0     | ConfigurationInd2                                                                                                                            |                 | 2                 |                 | 4                  | 2             |
|          | Cyclic prefix                                                                                                                                |                 | Normal            | Normal          | Normal             | Normal        |
| Note 1:  | If the UE reports in an av<br>a downlink subframe not<br>downlink before SF#(n+4                                                             | later than SF#( |                   |                 |                    |               |
| Note 2:  | Reference measurement channel in Cell 1 according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1. |                 |                   |                 |                    |               |
| Note 3:  | 3: This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS.          |                 |                   |                 |                    | oframe        |
| Note 4:  | This noise is applied in C ABS.                                                                                                              | OFDM symbols #  | #0, #4, #7, #11   | of a subframe   | overlapping with t | he aggressor  |
| Note 5:  | This noise is applied in a                                                                                                                   | II OFDM symbo   | ls of a subfram   | e overlapping v | with aggressor no  | n-ABS         |
| Note 6:  | ABS pattern as defined i transmitted in the serving                                                                                          | n [9]. PDSCH of | ther than SIB1/   | baging and its  | associated PDCC    | H/PCFICH are  |
|          | aggressor cell and the su                                                                                                                    |                 |                   |                 |                    |               |
| Note 7:  | Time-domain measurem                                                                                                                         |                 |                   |                 |                    | ned in [7].   |
| Note 8:  | As configured according to the time-domain measurement resource restriction pattern for CSI measurements defined in [7].                     |                 |                   |                 |                    |               |
| Note 9:  | e 9: Cell 1 is the serving cell. Cell 2 is the aggressor cell. The number of the CRS ports in Cell 1 and Cell 2 is the same.                 |                 |                   |                 |                    |               |
| Note 10: | Downlink physical chann<br>defined in Annex A.5.1.5                                                                                          | •               | 2 in accordance   | e with Annex C  | 3.3 applying OCI   | NG pattern as |

#### Table 9.5.3.1-2 Minimum requirement (FDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| <i>γ</i> 1  | 0.9    | 1.05   |
| UE Category | ≥2     | ≥2     |

## 9.5.3.2 TDD

The minimum performance requirement in Table 9.5.3.2-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ .

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.3.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.3.2-2.

| Cell 1         10           1         1           4         -3           -3         -3           0         2 x 2 EPA           or fixed RI         1           = 1         0           or fixed RI         2           1 for UE         0           borted RI         Low           ked RI=1         1           1 follow RI         20           2 (Note 4)         1 | Cell 2<br>Note 11 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 3<br>1<br>4<br>-3<br>-3<br>0<br>2 x 2 EPA<br>or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>borted RI<br>Evored RI<br>Low<br>ked RI=1<br>1 follow RI<br>20                                                                                                                                                                                                    | 45<br>N/A<br>N/A  |  |
| $ \begin{array}{c} 1\\ 4\\ -3\\ -3\\ 0\\ 2 \times 2 EPA\\ 0r fixed RI\\ = 1\\ or fixed RI\\ = 2\\ 1 for UE\\ borted RI\\ \hline Low\\ ked RI=1\\ I follow RI\\ 20\\ \end{array} $                                                                                                                                                                                      | 45<br>N/A<br>N/A  |  |
| 4<br>-3<br>0<br>2 x 2 EPA<br>or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                 | N/A<br>N/A        |  |
| -3<br>-3<br>0<br>2 x 2 EPA<br>or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                | N/A<br>N/A        |  |
| -3<br>0<br>2 x 2 EPA<br>or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                      | N/A<br>N/A        |  |
| 0<br>2 x 2 EPA<br>or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                            | N/A<br>N/A        |  |
| 0<br>2 x 2 EPA<br>or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                            | N/A<br>N/A        |  |
| 2 x 2 EPA<br>or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                                 | N/A<br>N/A        |  |
| or fixed RI<br>= 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                                              | N/A<br>N/A        |  |
| = 1<br>or fixed RI<br>= 2<br>1 for UE<br>ported RI<br>Low<br>ked RI=1<br>1 follow RI<br>20                                                                                                                                                                                                                                                                             | N/A               |  |
| ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                                                                                                                          |                   |  |
| ked RI=1<br>I follow RI<br>20                                                                                                                                                                                                                                                                                                                                          |                   |  |
| 1 follow RI<br>20                                                                                                                                                                                                                                                                                                                                                      |                   |  |
|                                                                                                                                                                                                                                                                                                                                                                        | 6                 |  |
| 2 (Note 4)                                                                                                                                                                                                                                                                                                                                                             |                   |  |
| . ,                                                                                                                                                                                                                                                                                                                                                                    | N/A               |  |
| 8 (Note 5)                                                                                                                                                                                                                                                                                                                                                             | N/A               |  |
| 8 (Note 6)                                                                                                                                                                                                                                                                                                                                                             | N/A               |  |
| -78                                                                                                                                                                                                                                                                                                                                                                    | -92               |  |
| n-MBSFN N                                                                                                                                                                                                                                                                                                                                                              | Ion-MBSFN         |  |
| 0                                                                                                                                                                                                                                                                                                                                                                      | 1                 |  |
| 2.5 (synchrono                                                                                                                                                                                                                                                                                                                                                         | us cells)         |  |
| Ν/Δ 0                                                                                                                                                                                                                                                                                                                                                                  | 0000000001        |  |
|                                                                                                                                                                                                                                                                                                                                                                        | N/A               |  |
|                                                                                                                                                                                                                                                                                                                                                                        | N/A               |  |
|                                                                                                                                                                                                                                                                                                                                                                        |                   |  |
| 3                                                                                                                                                                                                                                                                                                                                                                      | 3                 |  |
| 1                                                                                                                                                                                                                                                                                                                                                                      | 1                 |  |
| 1                                                                                                                                                                                                                                                                                                                                                                      | PUCCH 1-0         |  |
| -                                                                                                                                                                                                                                                                                                                                                                      | PUCCH Format 2    |  |
| PUCCH 1                                                                                                                                                                                                                                                                                                                                                                | mat 2             |  |
|                                                                                                                                                                                                                                                                                                                                                                        | 1                 |  |

## Table 9.5.3.2-1 RI Test (TDD)

|          | channel for C <sub>CSI,1</sub> CQI<br>nd RI reporting                                                                                                                                                                                                                |                                | PUSCH                           | (Note 3)       | PUSCH               | (Note 3)         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|----------------|---------------------|------------------|
| PUCCH    | PUCCH Report Type for RI                                                                                                                                                                                                                                             |                                | 3                               |                | 3                   |                  |
| Rep      | orting periodicity                                                                                                                                                                                                                                                   | ms                             | N <sub>pd</sub> =               | = 10           | N <sub>pd</sub> =   | = 10             |
| ACK/NA   | CK feedback mode                                                                                                                                                                                                                                                     |                                | Multip                          | lexing         | Multip              | olexing          |
|          | -ConfigurationIndex                                                                                                                                                                                                                                                  |                                | 8                               |                |                     | 8                |
|          | ConfigurationInd                                                                                                                                                                                                                                                     |                                | 5                               |                |                     | 5                |
|          | ConfigurationIndex2                                                                                                                                                                                                                                                  |                                | ç                               | -              |                     | 9                |
|          | onfigurationInd2                                                                                                                                                                                                                                                     |                                | 0                               |                |                     | 0                |
|          | Cyclic prefix                                                                                                                                                                                                                                                        |                                | Normal                          | Normal         | Normal              | Normal           |
| Note 1:  | If the UE reports in an estimation at a downli be applied at the eNB                                                                                                                                                                                                 | nk subframe n<br>downlink befo | ot later than S<br>re SF#(n+4). | SF#(n-4), this | s reported wideba   | and CQI cannot   |
| Note 2:  | Reference measurem<br>OCNG Pattern OP.1                                                                                                                                                                                                                              |                                |                                 |                | A.4-2 with one si   | ded dynamic      |
| Note 3:  | To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#3. |                                |                                 |                |                     | ink SF#9 to      |
| Note 4:  | This noise is applied i overlapping with the a                                                                                                                                                                                                                       |                                | ols #1, #2, #3                  | 8, #5, #6, #8, | #9, #10,#12, #13    | 3 of a subframe  |
| Note 5:  | This noise is applied i aggressor ABS.                                                                                                                                                                                                                               | n OFDM symb                    | ols #0, #4, #7                  | 7, #11 of a su | ıbframe overlappi   | ing with the     |
| Note 6:  | This noise is applied i                                                                                                                                                                                                                                              | n all OFDM sy                  | mbols of a su                   | lbframe over   | apping with aggre   | essor non-ABS    |
| Note 7:  | ABS pattern as define                                                                                                                                                                                                                                                |                                |                                 |                |                     |                  |
|          | PDCCH/PCFICH are                                                                                                                                                                                                                                                     |                                | •                               |                |                     |                  |
|          | with the ABS subfram                                                                                                                                                                                                                                                 | e of aggressor                 | cell and the                    | subframe is a  | available in the de | efinition of the |
|          | reference channel.                                                                                                                                                                                                                                                   |                                |                                 |                |                     |                  |
| Note 8:  | Time-domain measurement resource restriction pattern for PCell measurements as defined in [7].                                                                                                                                                                       |                                |                                 |                |                     |                  |
| Note 9:  | <ol> <li>As configured according to the time-domain measurement resource restriction pattern for CSI<br/>measurements defined in [7].</li> </ol>                                                                                                                     |                                |                                 |                |                     |                  |
| Note 10: |                                                                                                                                                                                                                                                                      |                                |                                 |                |                     |                  |
| Note 11: | Downlink physical cha<br>pattern as defined in A                                                                                                                                                                                                                     | annel setup in (               | Cell 2 in acco                  | ordance with   | Annex C.3.3 appl    | ying OCNG        |

Table 9.5.3.2-2 Minimum requirement (TDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| <i>)</i> /1 | 0.9    | 1.05   |
| UE Category | ≥2     | ≥2     |

9.5.4 Minimum requirement (CSI measurements in case two CSI subframe sets are configured and CRS assistance information are configured)

#### 9.5.4.1 FDD

For the parameters specified in Table 9.5.4.1-1, the minimum performance requirement in Table 9.5.4.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_{1;}$
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband is selected according to Table A.4-3a. In Table 9.5.4.1-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Parameter                               |                              | Unit             | Cell 1                                                                 | Cell 2                                                  | Cell 3                                                  |
|-----------------------------------------|------------------------------|------------------|------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Bandwidth                               |                              | MHz              | 10                                                                     | 10                                                      | 10                                                      |
| PDSCH transmissio                       | n mode                       |                  | 3                                                                      | As defined in<br>Note 1                                 | As defined in<br>Note 1                                 |
|                                         | $ ho_{\scriptscriptstyle A}$ | dB               | -3                                                                     | -3                                                      | -3                                                      |
| Downlink power<br>allocation            | $ ho_{\scriptscriptstyle B}$ | dB               | -3                                                                     | -3                                                      | -3                                                      |
|                                         | σ                            | dB               | 0                                                                      | N/A                                                     | N/A                                                     |
| Propagation conditi<br>antenna configur |                              |                  | 2×2 EPA5 (Note 2)                                                      | 2x2 EPA5<br>(Note 2)                                    | 2x2 EPA5<br>(Note 2)                                    |
| CodeBookSubsetRe<br>bitmap              |                              |                  | 01 for fixed RI = 1<br>10 for fixed RI = 2<br>11 for UE<br>reported RI | As defined in<br>Note 1                                 | As defined in<br>Note 1                                 |
|                                         | N <sub>oc1</sub>             | dB[mW/15k<br>Hz] | -98 (Note 3)                                                           | N/A                                                     | N/A                                                     |
| $N_{oc}$ at antenna port                | $N_{oc2}$                    | dB[mW/15k<br>Hz] | -98 (Note 4)                                                           | N/A                                                     | N/A                                                     |
|                                         | N <sub>oc3</sub>             | dB[mW/15k<br>Hz] | -93 (Note 5)                                                           | N/A                                                     | N/A                                                     |
| $\widehat{E}_s/N_{oc2}$                 |                              | dB               | Reference Value<br>in Table 9.5.4.1-2<br>for each test                 | 12                                                      | 10                                                      |
| $\hat{I}_{or}^{(j)}$                    |                              | dB[mW/15k<br>Hz] | Reference Value<br>in Table 9.5.4.1-2<br>for each test                 | -86                                                     | -88                                                     |
| Subframe Configu                        | ration                       |                  | Non-MBSFN                                                              | Non-MBSFN                                               | Non-MBSFN                                               |
| Time Offset betwee                      | n Cells                      | μs               | N/A                                                                    | 3                                                       | -1                                                      |
| Frequency shift betwe                   | een Cells                    | Hz               | N/A                                                                    | 300                                                     | -100                                                    |
| Cell Id                                 |                              |                  | 0                                                                      | 126                                                     | 1                                                       |
| ABS pattern (No                         | te 6)                        |                  | N/A                                                                    | 10000000<br>10000000<br>10000000<br>10000000<br>1000000 | 10000000<br>10000000<br>10000000<br>10000000<br>1000000 |
| RLM/RRM Measur<br>Subframe Pattern (    |                              |                  | 10000000<br>10000000<br>10000000<br>10000000<br>1000000                | N/A                                                     | N/A                                                     |
| CSI Subframe Sets                       | C <sub>CSI,0</sub>           |                  | 1000000<br>1000000<br>1000000<br>1000000<br>1000000<br>1000000         | N/A                                                     | N/A                                                     |
| (Note 8)                                | C <sub>CSI,1</sub>           |                  | 01111111<br>01111111<br>01111111<br>01111111<br>0111111                | N/A                                                     | N/A                                                     |
| Number of control symbols               | OFDM                         |                  | 3                                                                      | Note 9                                                  | Note 9                                                  |
| Maximum number o                        |                              |                  | 1                                                                      | N/A                                                     | N/A                                                     |
| transmissions<br>Reporting mod          |                              |                  | PUCCH 1-0                                                              | N/A                                                     | N/A                                                     |
| Physical channel for                    |                              |                  | PUCCH format 2                                                         | N/A                                                     | N/A                                                     |
| reporting<br>PUCCH Report Type          | for COI                      |                  | 4                                                                      | N/A                                                     | N/A                                                     |
| Physical channel for R                  |                              |                  | PUCCH Format 2                                                         | N/A<br>N/A                                              | N/A<br>N/A                                              |
| PUCCH Report Typ                        |                              |                  | 3                                                                      | N/A                                                     | N/A                                                     |
| Reporting period                        |                              | ms               | $N_{pd}=10$                                                            | N/A                                                     | N/A                                                     |

## Table 9.5.4.1-1: RI Test (FDD)

| cqi-pm   | ni-ConfigurationIndex                                                                        |                   | 11                      | N/A                   | N/A              |  |
|----------|----------------------------------------------------------------------------------------------|-------------------|-------------------------|-----------------------|------------------|--|
| ri-      | ri-ConfigurationInd                                                                          |                   | 5                       | N/A                   | N/A              |  |
|          | i-ConfigurationIndex2                                                                        |                   | 10                      | N/A                   | N/A              |  |
| ri-C     | ConfigurationInd2                                                                            |                   | 2                       | N/A                   | N/A              |  |
|          | Cyclic prefix Normal Normal Normal                                                           |                   |                         |                       |                  |  |
| Note 1:  | Downlink physical chan                                                                       |                   |                         | n Annex C.3.3 app     | lying OCNG       |  |
|          | pattern OP.5 FDD as de                                                                       |                   |                         |                       |                  |  |
| Note 2:  | The propagation conditi                                                                      |                   |                         |                       |                  |  |
| Note 3:  | This noise is applied in                                                                     |                   | #1, #2, #3, #5, #6, #8  | 3, #9, #10,#12, #1    | 3 of a subframe  |  |
|          | overlapping with the age                                                                     |                   |                         |                       |                  |  |
| Note 4:  | This noise is applied in (                                                                   | OFDM symbols      | #0, #4, #7, #11 of a s  | subframe overlapp     | oing with the    |  |
|          | aggressor ABS.                                                                               |                   |                         |                       |                  |  |
| Note 5:  | This noise is applied in a                                                                   |                   |                         |                       |                  |  |
| Note 6:  | ABS pattern as defined                                                                       |                   |                         |                       |                  |  |
|          | PDCCH/PCFICH are tra                                                                         |                   |                         |                       |                  |  |
|          | overlapped with the ABS<br>definition of the reference                                       |                   | ggressor cell and the   | subframe is available | able in the      |  |
| Note 7:  | Time-domain measurem                                                                         |                   | striction nattern for P | Cell measuremen       | ts as defined in |  |
| Note 7.  | [7]                                                                                          | ient resource re  | Striction pattern for r | Cell measuremen       |                  |  |
| Note 8:  | As configured according                                                                      | to the time-don   | nain measurement re     | source restriction    | pattern for CSI  |  |
| 11010 0. | measurements defined                                                                         |                   |                         |                       |                  |  |
| Note 9:  | The number of control C                                                                      |                   | s not available for AE  | 3S and is 3 for the   | subframe         |  |
|          | indicated by "0" of ABS                                                                      |                   |                         |                       |                  |  |
| Note 10: | If the UE reports in an a                                                                    |                   | eporting instance at s  | subframe SF#n ba      | ased on CQI      |  |
|          | estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot |                   |                         |                       |                  |  |
|          | be applied at the eNB downlink before SF#(n+4).                                              |                   |                         |                       |                  |  |
| Note 11: | Reference measurement channel in Cell 1 according to Table A.4-1 with one sided dynamic      |                   |                         |                       |                  |  |
|          | OCNG Pattern OP.1 FD                                                                         |                   |                         |                       |                  |  |
| Note 12: | The number of the CRS                                                                        |                   |                         | e same.               |                  |  |
| Note 13: | SIB-1 will not be transm                                                                     | itted in Cell2 an | d Cell 3 in this test.  |                       |                  |  |

#### Table 9.5.4.1-2 Minimum requirement (FDD)

|                                                | Test 1                                        | Test 2                               | Test 3                                        |
|------------------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|
| $\widehat{E}_{s}/N_{oc2}$ for Cell 1 (dB)      | 4                                             | 20                                   | 20                                            |
| $\hat{I}_{or}^{(j)}$ for Cell 1 (dB[mW/15kHz]) | -94                                           | -78                                  | -78                                           |
| Antenna correlation                            | High for Cell 1, low for<br>Cell 2 and Cell 3 | Low for Cell 1, Cell 2<br>and Cell 3 | High for Cell 1, low for<br>Cell 2 and Cell 3 |
| 'n                                             | N/A                                           | 1.05                                 | 0.9                                           |
| 1/2                                            | [1.05]                                        | N/A                                  | N/A                                           |
| UE Category                                    | ≥2                                            | ≥2                                   | ≥2                                            |

#### 9.5.4.2 TDD

For the parameters specified in Table 9.5.4.2-1, the minimum performance requirement in Table 9.5.4.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_{1;}$
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband is selected according to Table A.4-3a. In Table 9.5.4.2-1, Cell 1 is the serving cell, and Cell 2 and Cell 3 are the aggresso cells. The downlink physical channel setup for Cell 1 is according to Annex C.3.2 and for Cell 2 and Cell 3 is according to Annex C.3.3, respectively. The CRS assistance information [7] including Cell 2 and Cell 3 is provided.

| Parameter                                 |                              | Unit             | Cell 1                                                                 | Cell 2                   | Cell 3                   |
|-------------------------------------------|------------------------------|------------------|------------------------------------------------------------------------|--------------------------|--------------------------|
| Bandwidth                                 |                              | MHz              | 10                                                                     | 10                       | 10                       |
| PDSCH transmissio                         | n mode                       |                  | 3                                                                      | As defined in<br>Note 1  | As defined in<br>Note 1  |
| Uplink downlink conf                      |                              |                  | 1                                                                      | 1                        | 1                        |
| Special subframe con                      | figuration                   |                  | 4                                                                      | 4                        | 4                        |
|                                           | $ ho_{\scriptscriptstyle A}$ | dB               | -3                                                                     | -3                       | -3                       |
| Downlink power<br>allocation              | $ ho_{\scriptscriptstyle B}$ | dB               | -3                                                                     | -3                       | -3                       |
|                                           | σ                            | dB               | 0                                                                      | N/A                      | N/A                      |
| Propagation conditi<br>antenna configur   |                              |                  | 2×2 EPA5 (Note 2)                                                      | 2×2 EPA5<br>(Note 2)     | 2×2 EPA5<br>(Note 2)     |
| CodeBookSubsetRe<br>bitmap                |                              |                  | 01 for fixed RI = 1<br>10 for fixed RI = 2<br>11 for UE<br>reported RI | As defined in<br>Note 1  | As defined in<br>Note 1  |
|                                           | $N_{oc1}$                    | dB[mW/15k<br>Hz] | -98 (Note 3)                                                           | N/A                      | N/A                      |
| $N_{oc}$ at antenna port                  | N <sub>oc2</sub>             | dB[mW/15k<br>Hz] | -98 (Note 4)                                                           | N/A                      | N/A                      |
|                                           | $N_{oc3}$                    | dB[mW/15k<br>Hz] | -93 (Note 5)                                                           | N/A                      | N/A                      |
| $\widehat{E}_s/N_{oc2}$                   |                              | dB               | Reference Value<br>in Table 9.5.4.2-2<br>for each test                 | 12                       | 10                       |
| $\hat{I}_{or}^{(j)}$                      |                              | dB[mW/15k<br>Hz] | Reference Value<br>in Table 9.5.4.2-2<br>for each test                 | -86                      | -88                      |
| Subframe Configu                          | ration                       |                  | Non-MBSFN                                                              | Non-MBSFN                | Non-MBSFN                |
| Time Offset betwee                        | n Cells                      | μs               | N/A                                                                    | 3                        | -1                       |
| Frequency shift betwe                     | een Cells                    | Hz               | N/A                                                                    | 300                      | -100                     |
| Cell Id                                   |                              |                  | 0                                                                      | 126                      | 1                        |
| ABS pattern (No                           | te 6)                        |                  | N/A                                                                    | 0000000001<br>0000000001 | 0000000001<br>0000000001 |
| RLM/RRM Measur<br>Subframe Pattern (      |                              |                  | 0000000001<br>0000000001                                               | N/A                      | N/A                      |
| CSI Subframe Sets                         | C <sub>CSI,0</sub>           |                  | 0000000001<br>0000000001                                               | N/A                      | N/A                      |
| (Note 8)                                  | C <sub>CSI,1</sub>           |                  | 1100111000<br>1100111000                                               | N/A                      | N/A                      |
| Number of control symbols                 | OFDM                         |                  | 3                                                                      | Note 9                   | Note 9                   |
| Maximum number o<br>transmission          |                              |                  | 1                                                                      | N/A                      | N/A                      |
| Reporting mod                             |                              |                  | PUCCH 1-0                                                              | N/A                      | N/A                      |
| Physical channel for (<br>and RI reportir | C <sub>CSI,0</sub> CQI       |                  | PUCCH format 2                                                         | N/A                      | N/A                      |
| Physical channel for (<br>and RI reportin | C <sub>CSI,1</sub> CQI       |                  | PUSCH (Note<br>14)                                                     | N/A                      | N/A                      |
| PUCCH Report Type                         |                              |                  | 4                                                                      | N/A                      | N/A                      |
| PUCCH Report Typ                          |                              |                  | 3                                                                      | N/A                      | N/A                      |
| Reporting period                          |                              | ms               | <i>N<sub>pd</sub></i> = 10                                             | N/A                      | N/A                      |
| ACK/NACK feedbac                          | k mode                       |                  | Multiplexing                                                           | N/A                      | N/A                      |
| cqi-pmi-Configuration                     |                              |                  | 8                                                                      | N/A                      | N/A                      |
| ri-Configuration                          |                              |                  | 5                                                                      | N/A                      | N/A                      |
| cqi-pmi-Configuratio                      |                              |                  | 9                                                                      | N/A                      | N/A                      |
| ri-Configuration                          |                              |                  | 0                                                                      | N/A                      | N/A                      |
| Cyclic prefix                             |                              |                  | Normal                                                                 | Normal                   | Normal                   |

## Table 9.5.4.2-1: RI Test (TDD)

| Note 1:   | Downlink physical channel setup in Cell 2 in accordance with Annex C.3.3 applying OCNG                                           |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|
|           | pattern OP.5 TDD as defined in Annex A.5.2.5.                                                                                    |
| Note 2:   | The propagation conditions for Cell 1, Cell 2 and Cell 3 are statistically independent.                                          |
| Note 3:   | This noise is applied in OFDM symbols #1, #2, #3, #5, #6, #8, #9, #10,#12, #13 of a subframe overlapping with the aggressor ABS. |
| Note 4:   | This noise is applied in OFDM symbols #0, #4, #7, #11 of a subframe overlapping with the aggressor ABS.                          |
| Note 5:   | This noise is applied in all OFDM symbols of a subframe overlapping with aggressor non-ABS                                       |
| Note 6:   | ABS pattern as defined in [9]. PDSCH other than SIB1/paging and its associated                                                   |
|           | PDCCH/PCFICH are transmitted in the serving cell subframe when the subframe is                                                   |
|           | overlapped with the ABS subframe of aggressor cell and the subframe is available in the                                          |
|           | definition of the reference channel.                                                                                             |
| Note 7:   | Time-domain measurement resource restriction pattern for PCell measurements as defined in                                        |
|           | [7]                                                                                                                              |
| Note 8:   | As configured according to the time-domain measurement resource restriction pattern for CSI                                      |
|           | measurements defined in [7].                                                                                                     |
| Note 9:   | The number of control OFDM symbols is not available for ABS and is 3 for the subframe                                            |
|           | indicated by "0" of ABS pattern.                                                                                                 |
| Note 10:  | If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI                                        |
| 11010 101 | estimation at a downlink subframe not later than SF#(n-4), this reported wideband CQI cannot                                     |
|           | be applied at the eNB downlink before SF# $(n+4)$ .                                                                              |
| Note 11:  | Reference measurement channel in Cell 1 according to Table A.4-2 with one sided dynamic                                          |
|           | OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.                                                                             |
| Note 12:  | The number of the CRS ports in Cell1, Cell2 and Cell 3 is the same.                                                              |
| Note 13:  | SIB-1 will not be transmitted in Cell2 and Cell 3 in this test.                                                                  |
|           | To avoid collisions between RI/CQI reports and HARQ-ACK it is necessary to report them on                                        |
|           | PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and                                             |
|           | #9 to allow periodic RI/CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe                                           |
|           | SF#8 and #3.                                                                                                                     |
|           |                                                                                                                                  |

#### Table 9.5.4.2-2 Minimum requirement (TDD)

|                                                | Test 1                                        | Test 2                               | Test 3                                        |
|------------------------------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------------------|
| ${\hat E}_{_s}/N_{_{oc2}}$ for Cell 1 (dB)     | 4                                             | 20                                   | 20                                            |
| $\hat{I}_{or}^{(j)}$ for Cell 1 (dB[mW/15kHz]) | -94                                           | -78                                  | -78                                           |
| Antenna correlation                            | High for Cell 1, low for<br>Cell 2 and Cell 3 | Low for Cell 1, Cell 2<br>and Cell 3 | High for Cell 1, low for<br>Cell 2 and Cell 3 |
| <i>)</i> /1                                    | N/A                                           | 1.05                                 | 0.9                                           |
| 1/2                                            | [1.05]                                        | N/A                                  | N/A                                           |
| UE Category                                    | ≥2                                            | ≥2                                   | ≥2                                            |

## 9.5.5 Minimum requirement (with CSI process)

Each CSI process is associated with a CSI-RS resource and a CSI-IM resource as shown in Table 9.5.5-1. For UE supports one CSI process, CSI process 0 is configured and the corresponding requirements shall be fulfilled. For UE supports multiple CSI processes, CSI processes 0 and 1 are configured for Test 2 and the corresponding requirements shall be fulfilled.

#### Table 9.5.5-1 Configuration of CSI processes

|                 | CSI process 0     | CSI process 1     |
|-----------------|-------------------|-------------------|
| CSI-RS resource | CSI-RS signal 0   | CSI-RS signal 1   |
| CSI-IM resource | CSI-IM resource 0 | CSI-IM resource 1 |

#### 9.5.5.1 FDD

The minimum performance requirement in Table 9.5.5.1-2 is defined as

a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;

- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3e.

For the parameters specified in Table 9.5.5.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.1-2.

## Table 9.5.5.1-1 RI Test (FDD)

| Der                                                                                             | amatar                         | l Init       | Te                          | st 1                        | Te                          | st 2                        |
|-------------------------------------------------------------------------------------------------|--------------------------------|--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                                                                                                 | ameter                         | Unit<br>MHz  | TP1                         | TP2                         | TP1                         | TP2                         |
| Bandwidth                                                                                       |                                |              | 10 MHz                      |                             | 10 MHz                      |                             |
| Transmission mode                                                                               |                                |              | 10                          | 10                          | 10                          | 10                          |
|                                                                                                 | $ ho_{\scriptscriptstyle A}$   | dB           | (                           | 0                           |                             | 0                           |
| Downlink power                                                                                  | $ ho_{\scriptscriptstyle B}$   | dB           |                             | 0                           |                             | 0                           |
| allocation                                                                                      | $P_c$                          | dB           | 0                           | 0                           | 0                           | 0                           |
|                                                                                                 | σ                              | dB           | (                           | 0                           |                             | 0                           |
| SNR                                                                                             |                                | dB           | 0                           | 0                           | 20                          | 20                          |
| $\hat{I}_{or}^{(j)}$                                                                            |                                | dB[mW/15kHz] | -98                         | -98                         | -78                         | -78                         |
| $N_{oc}^{(j)}$                                                                                  |                                | dB[mW/15kHz] |                             | 98                          | -9                          | 98                          |
| Propagation chann                                                                               | ما                             |              | EPA 5 Low                   | EPA 5 Low                   | EPA 5 Low                   | EPA 5 High                  |
| Antenna configurat                                                                              |                                |              | 2x2                         | 2x2                         | 2x2                         | 2x2                         |
| Beamforming Mode                                                                                |                                |              |                             | Section B.4.3               |                             | Section B.4.3               |
| Timing offset betwe                                                                             | en TPs                         | US           |                             | 0                           |                             | 0                           |
| Frequency offset be                                                                             |                                | Hz           |                             | 0                           |                             | 0                           |
| Cell-specific referen                                                                           | nce signals                    |              |                             | a ports 0                   |                             | a ports 0                   |
| CSI-RS signal 0                                                                                 |                                |              | Antenna ports<br>15,16      | N/A                         | Antenna ports<br>15,16      | N/A                         |
| CSI-RS 0 periodicit<br>$T_{CSI-RS} / \Delta_{CSI-RS}$                                           | y and subframe offset          |              | 5/1                         | N/A                         | 5/1                         | N/A                         |
| CSI-RS 0 configura                                                                              | ition                          |              | 0                           | N/A                         | 0                           | N/A                         |
| CSI-RS signal 1                                                                                 |                                |              | N/A                         | Antenna ports<br>15,16      | N/A                         | Antenna ports<br>15,16      |
| CSI-RS 1 periodicit<br>$T_{CSI-RS} / \Delta_{CSI-RS}$                                           | y and subframe offset          |              | N/A                         | 5/1                         | N/A                         | 5/1                         |
| CSI-RS 1 configuration                                                                          |                                |              | N/A                         | 3                           | N/A                         | 3                           |
| Zero-power CSI-RS 0 configuration<br>I <sub>CSI-RS</sub> / ZeroPowerCSI-RS bitmap               |                                |              | N/A                         | 1 /<br>10000010000<br>00000 | N/A                         | 1 /<br>10000010000<br>00000 |
| Zero-power CSI-RS 1 configuration<br><i>I</i> <sub>CSI-RS</sub> / <i>ZeroPowerCSI-RS</i> bitmap |                                |              | 1 /<br>00110000000<br>00000 | N/A                         | 1 /<br>00110000000<br>00000 | N/A                         |
| CSI-IM 0 periodicity<br>$T_{CSI-RS} / \Delta_{CSI-RS}$                                          | / and subframe offset          |              | 5/1                         | N/A                         | 5/1                         | N/A                         |
| CSI-IM 0 configurat                                                                             | tion                           |              | 2                           | N/A                         | 2                           | N/A                         |
| CSI-IM 1 periodicity<br>$T_{CSI-RS} / \Delta_{CSI-RS}$                                          | / and subframe offset          |              | N/A                         | 5/1                         | N/A                         | 5/1                         |
| CSI-IM 1 configurat                                                                             | tion                           |              | N/A                         | 6                           | N/A                         | 6                           |
| RI configuration                                                                                |                                |              | Fixed RI=2<br>and follow RI | N/A                         | Fixed RI=1<br>and follow RI | N/A                         |
| Physical channel for                                                                            | or CQI/PMI reporting           |              | PUSCH (Note<br>6)           | N/A                         | PUSCH (Note<br>6)           | PUSCH (Note<br>6)           |
| PUCCH Report Typ                                                                                | be for CQI/PMI                 |              | 2                           | N/A                         | 2                           | 2                           |
| Physical channel fo                                                                             | or RI reporting                |              | PUCCH<br>Format 2           | N/A                         | PUCCH<br>Format 2           | PUCCH<br>Format 2           |
| PUCCH Report Typ                                                                                |                                |              | 3                           | N/A                         | 3                           | 3                           |
|                                                                                                 | CSI-RS                         |              | CSI-RS 0                    | N/A                         | CSI-RS 0                    | N/A                         |
|                                                                                                 | CSI-IM                         |              | CSI-IM 0                    | N/A                         | CSI-IM 0                    | N/A                         |
|                                                                                                 | Reporting mode                 |              | PUCCH 1-1                   | N/A                         | PUCCH 1-1                   | N/A                         |
| CSI process 0<br>(Note 7)                                                                       | Reporting<br>periodicity       | ms           | $N_{\rm pd}=5$              | N/A                         | $N_{\rm pd}=5$              | N/A                         |
|                                                                                                 | CQI delay                      | ms           | 8                           | N/A                         | 10                          | N/A                         |
|                                                                                                 | cqi-pmi-<br>ConfigurationIndex |              | 6                           | N/A                         | 6                           | N/A                         |
|                                                                                                 | ri-ConfigIndex                 |              | 1                           | N/A                         | 1                           | N/A                         |
|                                                                                                 | CSI-RS                         |              | N/A                         | N/A                         | N/A                         | CSI-RS 1                    |
| CSI process 1                                                                                   | CSI-IM                         |              | N/A                         | N/A                         | N/A                         | CSI-IM 1                    |
| (Note 7)                                                                                        | Reporting mode                 |              | N/A                         | N/A                         | N/A                         | PUCCH 1-1                   |
| -                                                                                               | Reporting<br>periodicity       | ms           | N/A                         | N/A                         | N/A                         | $N_{\rm pd}=5$              |

|                      | CQI delay                      | ms | N/A                                                        | N/A          | N/A                                                        | 10           |
|----------------------|--------------------------------|----|------------------------------------------------------------|--------------|------------------------------------------------------------|--------------|
|                      | cqi-pmi-<br>ConfigurationIndex |    | N/A                                                        | N/A          | N/A                                                        | 4            |
|                      | ri-ConfigIndex                 |    | N/A                                                        | N/A          | N/A                                                        | 1            |
| CSI process for PDS  | CH scheduling                  |    | CSI pro                                                    | ocess 0      | CSI pro                                                    | ocess 0      |
| Cell ID              |                                |    | 0                                                          | 6            | 0                                                          | 6            |
| Quasi-co-located CS  | I-RS                           |    | CSI-RS 0                                                   | CSI-RS 1     | CSI-RS 0                                                   | CSI-RS 1     |
| Quasi-co-located CR  | S                              |    | Same Cell ID                                               | Same Cell ID | Same Cell ID                                               | Same Cell ID |
|                      |                                |    | as Cell 1                                                  | as Cell 2    | as Cell 1                                                  | as Cell 2    |
| PMI for subframe 2,  | 3, 4, 7, 8 and 9               |    | 010000 for<br>fixed RI = 2<br>010011 for UE<br>reported RI | 100000       | 000011 for<br>fixed RI = 1<br>010011 for UE<br>reported RI | N/A          |
| PMI for subframe 1 a | and 6                          |    | 100000                                                     | 100000       | 100000                                                     | N/A          |
| Max number of HAR    | Q transmissions                |    | 1                                                          | N/A          | 1                                                          | N/A          |

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: 3 symbols allocated to PDCCH

Note 3: PDSCH transmission is scheduled on subframe 2, 3, 4, 7, 8 and 9 from TP1.

Note 4: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1 and 6 from TP1.

Note 5: TM10 OCNG as specified in A.5.1.8 is transmitted on subframe 1, 2, 3, 4, 6, 7, 8 and 9 from TP2 for Test 1; TP2 is blanked for Test 2.

Note 6: To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1 and #6 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink SF#0 and #5.

Note 7: If UE supports multiple CSI processes, CSI process 0 is configured as 'RI-reference CSI process' for CSI process 1.

Note 8: PDCCH DCI format 0 with a trigger for aperiodic CQI shall be transmitted in downlink SF#1 and #6 to allow aperiodic CQI/PMI/RI to be transmitted in uplink SF#0 and #5.

Table 9.5.5.1-2 Minimum requirement (FDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| <i>7</i> 1  | N/A    | 1.0    |
| <i>Y</i> 2  | 1.0    | N/A    |
| UE Category | ≥2     | ≥2     |

#### 9.5.5.2 TDD

The minimum performance requirement in Table 9.5.5.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be  $\geq \gamma_1$ ;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be  $\geq \gamma_2$ ;
- c) For Test 2, the RI reported for CSI process 1 shall be the same as the most recent RI reported for CSI process 0 if UE is configured with multiple CSI processes.

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3e.

For the parameters specified in Table 9.5.5.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.5.2-2.

## Table 9.5.5.2-1 RI Test (TDD)

| Dar                                                                     |                                           | 11           | Te                                          | st 1                        | Te                                          | st 2                        |  |
|-------------------------------------------------------------------------|-------------------------------------------|--------------|---------------------------------------------|-----------------------------|---------------------------------------------|-----------------------------|--|
|                                                                         | ameter                                    | Unit<br>MHz  | TP1                                         | TP2                         | TP1                                         | TP2                         |  |
| Bandwidth                                                               |                                           |              | 10 MHz                                      |                             |                                             | 10 MHz                      |  |
| Transmission mode                                                       | e                                         |              | 10                                          | 10                          | 10                                          | 10                          |  |
|                                                                         | $ ho_{\scriptscriptstyle A}$              | dB           | (                                           | D                           |                                             | 0                           |  |
| Downlink power                                                          | $ ho_{\scriptscriptstyle B}$              | dB           |                                             | 0                           |                                             | C                           |  |
| allocation                                                              | $P_c$                                     | dB           | 0                                           | 0                           | 0                                           | 0                           |  |
|                                                                         |                                           | dB           | _                                           | 0                           | -                                           | 0                           |  |
| Uplink downlink co                                                      | o                                         | UD           | 2                                           | 2                           | 2                                           | 2                           |  |
| Special subframe of                                                     |                                           |              | 4                                           | 4                           | 4                                           | 4                           |  |
| SNR                                                                     | Johngulation                              | dB           | 0                                           | 0                           | 20                                          | 20                          |  |
|                                                                         |                                           |              | -                                           | -                           |                                             |                             |  |
| $\hat{I}^{(j)}_{or}$                                                    |                                           | dB[mW/15kHz] | -98                                         | -98                         | -78                                         | -78                         |  |
| $N_{oc}^{(j)}$                                                          |                                           | dB[mW/15kHz] | -9                                          | 98                          | -9                                          | 98                          |  |
| Propagation chann                                                       |                                           |              | EPA 5 Low                                   | EPA 5 Low                   | EPA 5 Low                                   | EPA 5 High                  |  |
| Antenna configurat                                                      |                                           |              | 2x2                                         | 2x2                         | 2x2                                         | 2x2                         |  |
| Beamforming Mode                                                        |                                           |              | As specified in                             | Section B.4.3               | As specified in                             | Section B.4.3               |  |
| Timing offset betwe                                                     |                                           | us           |                                             | 0                           |                                             | 0                           |  |
| Frequency offset b                                                      |                                           | Hz           |                                             | 0                           |                                             | 0                           |  |
| Cell-specific refere                                                    | nce signals                               |              |                                             | a ports 0                   |                                             | a ports 0                   |  |
| CSI-RS signal 0                                                         |                                           |              | Antenna ports<br>15,16                      | N/A                         | Antenna ports<br>15,16                      | N/A                         |  |
| CSI-RS 0 periodicit<br>T <sub>CSI-RS</sub> / $\Delta$ <sub>CSI-RS</sub> | ty and subframe offset                    |              | 5/3                                         | N/A                         | 5/3                                         | N/A                         |  |
| CSI-RS 0 configura                                                      | ation                                     |              | 0                                           | N/A                         | 0                                           | N/A                         |  |
| CSI-RS signal 1                                                         |                                           |              | N/A                                         | Antenna ports<br>15,16      | N/A                                         | Antenna ports<br>15,16      |  |
| CSI-RS 1 periodicit<br>T <sub>CSI-RS</sub> / A <sub>CSI-RS</sub>        | ty and subframe offset                    |              | N/A                                         | 5/3                         | N/A                                         | 5/3                         |  |
| CSI-RS 1 configura                                                      | ation                                     |              | N/A                                         | 3                           | N/A                                         | 3                           |  |
| Zero-power CSI-R<br>I <sub>CSI-RS</sub> / ZeroPower                     | S 0 configuration                         |              | N/A                                         | 3 /<br>10000010000<br>00000 | N/A                                         | 3 /<br>10000010000<br>00000 |  |
| Zero-power CSI-RS<br>I <sub>CSI-RS</sub> / ZeroPower                    | S 1 configuration<br><i>CSI-RS</i> bitmap |              | 3 /<br>00110000000<br>00000                 | N/A                         | 3 /<br>00110000000<br>00000                 | N/A                         |  |
| CSI-IM 0 periodicity                                                    | y and subframe offset                     |              | 5/3                                         | N/A                         | 5/3                                         | N/A                         |  |
| CSI-IM 0 configura                                                      | tion                                      |              | 2                                           | N/A                         | 2                                           | N/A                         |  |
| CSI-IM 1 periodicity                                                    | y and subframe offset                     |              | N/A                                         | 5/3                         | N/A                                         | 5/3                         |  |
| $T_{\text{CSI-RS}} / \Delta_{\text{CSI-RS}}$                            |                                           |              |                                             |                             |                                             |                             |  |
| CSI-IM 1 configura                                                      | tion                                      |              | N/A                                         | 6                           | N/A                                         | 6                           |  |
| RI configuration                                                        |                                           |              | Fixed RI=2<br>and follow RI                 | N/A                         | Fixed RI=1<br>and follow RI                 | N/A                         |  |
|                                                                         | CSI-RS                                    |              | CSI-RS 0                                    | N/A                         | CSI-RS 0                                    | N/A                         |  |
| CSI process 0                                                           | CSI-IM                                    |              | CSI-IM 0                                    | N/A                         | CSI-IM 0                                    | N/A                         |  |
| (Note 6, 7)                                                             | Reporting mode                            |              | PUSCH 3-1                                   | N/A                         | PUSCH 3-1                                   | N/A                         |  |
| (                                                                       | Reporting Interval                        | ms           | 5                                           | N/A                         | 5                                           | N/A                         |  |
|                                                                         | CQI delay                                 | ms           | 11                                          | N/A                         | 11                                          | N/A                         |  |
|                                                                         | CSI-RS                                    |              | N/A                                         | N/A                         | N/A                                         | CSI-RS 1                    |  |
| CSI process 1                                                           | CSI-IM                                    |              | N/A                                         | N/A                         | N/A                                         | CSI-IM 1                    |  |
| (Note 6, 7)                                                             | Reporting mode                            |              | N/A                                         | N/A                         | N/A                                         | PUSCH 3-1                   |  |
| · •                                                                     | Reporting Interval                        | ms           | N/A                                         | N/A<br>N/A                  | N/A<br>N/A                                  | 5<br>11                     |  |
| CSI process for PD                                                      | CQI delay                                 | ms           | N/A                                         | DCess 0                     |                                             | Dicess 0                    |  |
| Cell ID                                                                 |                                           |              | 0                                           | 6                           | 0                                           | 6                           |  |
| Quasi-co-located C                                                      | SI-RS                                     |              | CSI-RS 0                                    | CSI-RS 1                    | CSI-RS 0                                    | CSI-RS 1                    |  |
|                                                                         |                                           |              | Same Cell ID                                | Same Cell ID                | Same Cell ID                                | Same Cell ID                |  |
| Quasi-co-located C                                                      | CRS                                       |              | as Cell 1                                   | as Cell 2                   | as Cell 1                                   | as Cell 2                   |  |
| PMI for subframe 4                                                      | 1 and 9                                   |              | 010000 for<br>fixed RI = 2<br>010011 for UE | 100000                      | 000011 for<br>fixed RI = 1<br>010011 for UE | N/A                         |  |

|                                           | reported R                                                                                                              |                     | reported RI        |                 |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------|--|--|
| PMI for subframe 3 and 8                  | 100000                                                                                                                  | 100000              | 100000             | N/A             |  |  |
| Max number of HARQ transmissions          | 1                                                                                                                       | N/A                 | 1                  | N/A             |  |  |
| ACK/NACK feedback mode                    | Multiplexing                                                                                                            | g N/A               | Multiplexing       | N/A             |  |  |
| Note 1: If the UE reports in an available | e uplink reporting instance at subfran                                                                                  | ne SF#n based on C  | QI estimation at a | downlink SF not |  |  |
| later than SF#(n-4), this reported        | later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)                   |                     |                    |                 |  |  |
| Note 2: 3 symbols allocated to PDCCH      | 3 symbols allocated to PDCCH                                                                                            |                     |                    |                 |  |  |
| Note 3: PDSCH transmission is schedu      |                                                                                                                         |                     |                    |                 |  |  |
| Note 4: TM10 OCNG as specified in A.      | TM10 OCNG as specified in A.5.2.8 is transmitted on subframe 3 and 8 from TP1.                                          |                     |                    |                 |  |  |
| Note 5: TM10 OCNG as specified in A.      | TM10 OCNG as specified in A.5.2.8 is transmitted on subframe 3, 4, 8 and 9 from TP2 for Test 1; TP2 is blanked for Test |                     |                    |                 |  |  |
| 2.                                        | 2.                                                                                                                      |                     |                    |                 |  |  |
| Note 6: Reported wideband CQI and P       | Reported wideband CQI and PMI are used and sub-band CQI is discarded.                                                   |                     |                    |                 |  |  |
| Note 7: If UE supports multiple CSI pro   | cesses, CSI process 0 is configured                                                                                     | as 'RI-reference CS | process' for CSI   | process 1.      |  |  |

Table 9.5.5.2-2 Minimum requirement (TDD)

|             | Test 1 | Test 2 |
|-------------|--------|--------|
| <i>γ</i> 1  | N/A    | 1.0    |
| <i>7</i> 2  | 1.0    | N/A    |
| UE Category | ≥2     | ≥2     |

# 9.6 Additional requirements for carrier aggregation

This clause includes requirements for the reporting of channel state information (CSI) with the UE configured for carrier aggregation. The purpose is to verify that the channel state for each cell is correctly reported with multiple cells configured for periodic reporting.

# 9.6.1 Periodic reporting on multiple cells (Cell-Specific Reference Symbols)

### 9.6.1.1 FDD

The following requirements apply to UE Category  $\geq 3$ . For the parameters specified in Table 9.6.1.1-1 and Table 9.6.1.1-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported according to Table A.4-3 shall be such that

wideband  $CQI_{Pcell}-wideband\ CQI_{Scell} \geq 2$ 

for more than 90% of the time.

| Parameter                                                                                                                                                            | Parameter                             |              | Pcell             | Scell                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-------------------|-----------------------------------------|
| PDSCH transmission mode                                                                                                                                              |                                       |              | 1                 |                                         |
| Downlink power $\rho_A$                                                                                                                                              |                                       | dB           | 0                 |                                         |
| allocation                                                                                                                                                           | $ ho_{\scriptscriptstyle B}$          | dB           |                   | 0                                       |
| Propagation condit<br>antenna configur                                                                                                                               |                                       |              | AWGN (1 x 2)      |                                         |
| SNR                                                                                                                                                                  |                                       | dB           | 10                | 4                                       |
| $\hat{I}_{or}^{(j)}$                                                                                                                                                 |                                       | dB[mW/15kHz] | -88               | -94                                     |
| $N_{oc}^{(j)}$                                                                                                                                                       |                                       | dB[mW/15kHz] | -98               | -98                                     |
| Physical channel for<br>reporting                                                                                                                                    | vsical channel for CQI PUCCH Format 2 |              | Format 2          |                                         |
| PUCCH Report Type                                                                                                                                                    |                                       |              |                   | 4                                       |
| Reporting period                                                                                                                                                     | licity                                | ms           | $N_{\rm pd} = 10$ |                                         |
| cqi-pmi-ConfigurationIndex                                                                                                                                           |                                       |              | 11                | 16 [shift of 5 ms relative<br>to Pcell] |
| Note 1: 3 symbols are allocated to PDCCH. No PDSCH for user data is scheduled for the UE with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1. |                                       |              |                   |                                         |

#### Table 9.6.1.1-1: Parameters for PUCCH 1-0 static test on multiple cells (FDD)

#### Table 9.6.1.1-2: PUCCH 1-0 static test (FDD)

| Test number | Bandwidth combination | CA capability |
|-------------|-----------------------|---------------|
| 1           | 10MHz for both cells  | CL_A-A        |
| 2           | 20MHz for both cells  | CL_C          |

## 9.6.1.2 TDD

The following requirements apply to UE Category  $\geq 3$ . For the parameters specified in Table 9.6.1.2-1 and Table 9.6.1.2-2, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2 on each cell, the difference between the wideband CQI indices of Pcell and Scell reported according to Table A.4-3 shall be such that

wideband  $CQI_{Pcell}-wideband\ CQI_{Scell} \geq 2$ 

for more than 90% of the time.

| Parameter                                          |                              | Unit | Pcell                                  | Scell              |
|----------------------------------------------------|------------------------------|------|----------------------------------------|--------------------|
| PDSCH transmission                                 | PDSCH transmission mode      |      |                                        | 1                  |
| Uplink downlink con                                | figuration                   |      |                                        | 2                  |
| Special subfra<br>configuration                    |                              |      | 4                                      |                    |
| Downlink power                                     | $ ho_{\scriptscriptstyle A}$ | dB   |                                        | 0                  |
| allocation                                         | $ ho_{\scriptscriptstyle B}$ | dB   |                                        | 0                  |
| Propagation condition and<br>antenna configuration |                              |      | AWG                                    | GN (1 x 2)         |
| SNR                                                | SNR                          |      | 10                                     | 4                  |
| $\hat{I}^{(j)}_{or}$                               | $\hat{I}_{or}^{(j)}$         |      | -88                                    | -94                |
| $N_{oc}^{(j)}$                                     | $N_{oc}^{(j)}$               |      | -98                                    | -98                |
| Physical channel f<br>reporting                    | or CQI                       |      | PUCCI                                  | H Format 2         |
| PUCCH Report                                       | Туре                         |      | 4                                      |                    |
| Reporting period                                   | Reporting periodicity        |      | Nr                                     | <sub>bd</sub> = 10 |
| cqi-pmi-ConfigurationIndex                         |                              |      | 8 13 [shift of 5 ms relat<br>to Pcell] |                    |
|                                                    |                              |      |                                        |                    |

#### Table 9.6.1.2-1: PUCCH 1-0 static test on multiple cells (TDD)

#### Table 9.6.1.2-2: PUCCH 1-0 static test (TDD)

| Test number | Bandwidth combination | CA capability |
|-------------|-----------------------|---------------|
| 1           | 20MHz for both cells  | CL_C, CL_A-A  |

# 10 Performance requirement (MBMS)

# 10.1 FDD (Fixed Reference Channel)

The parameters specified in Table 10.1-1 are valid for all FDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

| Parameter                                                                                             | Unit                   | Value       |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------|-------------|--|--|
| Number of HARQ<br>processes                                                                           | Processes              | None        |  |  |
| Subcarrier spacing                                                                                    | kHz                    | 15 kHz      |  |  |
| Allocated subframes per<br>Radio Frame (Note 1)                                                       |                        | 6 subframes |  |  |
| Number of OFDM<br>symbols for PDCCH                                                                   |                        | 2           |  |  |
| Cyclic Prefix                                                                                         | Cyclic Prefix Extended |             |  |  |
| Note1: For FDD mode, up to 6 subframes (#1/2/3/6/7/8) are available for MBMS, in line with TS 36.331. |                        |             |  |  |

| Table 40.4.4. Common | Tool Devenedance    |       |
|----------------------|---------------------|-------|
| Table 10.1-1: Common | n Test Parameters ( | (FUU) |

## 10.1.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.1-1 and Table 10.1.1-1 and Annex A.3.8.1, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.1.1-2.

| Parameter                    |                              | Unit      | Test 1-4   |
|------------------------------|------------------------------|-----------|------------|
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle A}$ | dB        | 0          |
|                              | $ ho_{\scriptscriptstyle B}$ | dB        | 0 (Note 1) |
|                              | σ                            | dB        | 0          |
| $N_{oc}$ at antenna port     |                              | dBm/15kHz | -98        |
| Note 1: $P_B = 0$ .          |                              |           |            |

Table 10.1.1-1: Test Parameters for Testing

 Table 10.1.1-2: Minimum performance

| Test   | Bandwidth | Reference  | OCNG        | Propagation             | Correlation           | Referen     | ce value | MBMS           |
|--------|-----------|------------|-------------|-------------------------|-----------------------|-------------|----------|----------------|
| number |           | Channel    | Pattern     | condition               | Matrix and<br>antenna | BLER<br>(%) | SNR(dB)  | UE<br>Category |
| 1      | 10 MHz    | R.37 FDD   | OP.4<br>FDD |                         |                       |             | 4.1      | ≥1             |
| 2      | 10 MHz    | R.38 FDD   | OP.4<br>FDD | MBSFN                   |                       |             | 11.0     | ≥1             |
| 3      | 10 MHz    | R.39 FDD   | OP.4<br>FDD | channel<br>model (Table | 1x2 low               | 1           | 20.1     | ≥2             |
|        | 5.0MHz    | R.39-1 FDD | OP.4<br>FDD | B.2.6-1)                |                       |             | 20.5     | 1              |
| 4      | 1.4 MHz   | R.40 FDD   | OP.4<br>FDD | ]                       |                       |             | 6.6      | ≥1             |

# 10.2 TDD (Fixed Reference Channel)

The parameters specified in Table 10.2-1 are valid for all TDD tests unless otherwise stated. For the requirements defined in this section, the difference between CRS EPRE and the MBSFN RS EPRE should be set to 0 dB as the UE demodulation performance might be different when this condition is not met (e.g. in scenarios where power offsets are present, such as scenarios when reserved cells are present).

| Parameter                                                                                                                                        |  | Unit      | Value       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------|-------------|--|
| Number of HARQ<br>processes                                                                                                                      |  | Processes | None        |  |
| Subcarrier spacing                                                                                                                               |  | kHz       | 15 kHz      |  |
| Allocated subframes per<br>Radio Frame (Note 1)                                                                                                  |  |           | 5 subframes |  |
| Number of OFDM<br>symbols for PDCCH                                                                                                              |  |           | 2           |  |
| Cyclic Prefix                                                                                                                                    |  |           | Extended    |  |
| Note1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up to 5 subframes (#3/4/7/8/9) are available for MBMS. |  |           |             |  |

Table 10.2-1: Common Test Parameters (TDD)

360

# 10.2.1 Minimum requirement

The receive characteristic of MBMS is determined by the BLER. The requirement is valid for all RRC states for which the UE has capabilities for MBMS.

For the parameters specified in Table 10.2-1 and Table 10.2.1-1 and Annex A.3.8.2, the average downlink SNR shall be below the specified value for the BLER shown in Table 10.2.1-2.

| Parameter                    |                              | Unit      | Test 1-4   |
|------------------------------|------------------------------|-----------|------------|
|                              | $ ho_{\scriptscriptstyle A}$ | dB        | 0          |
| Downlink power<br>allocation | $ ho_{\scriptscriptstyle B}$ | dB        | 0 (Note 1) |
|                              | σ                            | dB        | 0          |
| $N_{oc}$ at antenna          | port                         | dBm/15kHz | -98        |
| Note 1: $P_B = 0$ .          |                              |           |            |

Table 10.2.1-1: Test Parameters for Testing

| Table 10.2.1-2: Minimum pe | erformance |
|----------------------------|------------|
|----------------------------|------------|

| Test   | Bandwidth | Reference  | OCNG        | Propagation             | Correlation        | Referen     | ce value | MBMS           |
|--------|-----------|------------|-------------|-------------------------|--------------------|-------------|----------|----------------|
| number |           | Channel    | Pattern     | condition               | Matrix and antenna | BLER<br>(%) | SNR(dB)  | UE<br>Category |
| 1      | 10 MHz    | R.37 TDD   | OP.4<br>TDD |                         |                    |             | 3.4      | ≥1             |
| 2      | 10 MHz    | R.38 TDD   | OP.4<br>TDD | MBSFN                   |                    |             | 11.1     | ≥1             |
| 3a     | 10 MHz    | R.39 TDD   | OP.4<br>TDD | channel<br>model (Table | 1x2 low            | 1           | 20.1     | ≥2             |
| 3b     | 5MHz      | R.39-1 TDD | OP.4<br>TDD | B.2.6-1)                |                    |             | 20.5     | 1              |
| 4      | 1.4 MHz   | R.40 TDD   | OP.4<br>TDD |                         |                    |             | 5.8      | ≥1             |

# Annex A (normative): Measurement channels

# A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

# A.2 UL reference measurement channels

# A.2.1 General

## A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [4] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [5] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

# A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation  $N_{\text{RB}}$ 

- 1. Calculate the number of channel bits  $N_{ch}$  that can be transmitted during the first transmission of a given sub-frame.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

 $\min |R - (A + 24*(N_{CB} + 1))/N_{ch}|, where N_{CB} = \begin{cases} 0, if C = 1\\ C, if C > 1 \end{cases}$  subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of  $N_{\text{RB}}$  resource blocks.
- b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].
- c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.

3. If there is more than one *A* that minimises the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

# A.2.1.3 Overview of UL reference measurement channels

In Table A.2.1.3-1 are listed the UL reference measurement channels specified in annexes A.2.2 and A.2.3 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.2.2 and A.2.3 as appropriate.

363

| Duplex   | Table                | Name | BW       | Mod   | TCR | RB  | RB<br>Off<br>set | UE<br>Cat<br>eg | Notes |
|----------|----------------------|------|----------|-------|-----|-----|------------------|-----------------|-------|
| FDD, Ful | I RB allocation, QP  | SK   |          |       |     |     |                  |                 |       |
| FDD      | Table A.2.2.1.1-1    |      | 1.4      | QPSK  | 1/3 | 6   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.1-1    |      | 3        | QPSK  | 1/3 | 15  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.1-1    |      | 5        | QPSK  | 1/3 | 25  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.1-1    |      | 10       | QPSK  | 1/3 | 50  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.1-1    |      | 15       | QPSK  | 1/5 | 75  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.1-1    |      | 20       | QPSK  | 1/6 | 100 |                  | ≥ 1             |       |
| FDD, Ful | I RB allocation, 16- | QAM  |          |       |     |     |                  | -               |       |
| FDD      | Table A.2.2.1.2-1    |      | 1.4      | 16QAM | 3/4 | 6   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.2-1    |      | 3        | 16QAM | 1/2 | 15  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.2-1    |      | 5        | 16QAM | 1/3 | 25  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.1.2-1    |      | 10       | 16QAM | 3/4 | 50  |                  | ≥ 2             |       |
| FDD      | Table A.2.2.1.2-1    |      | 15       | 16QAM | 1/2 | 75  |                  | ≥ 2             |       |
| FDD      | Table A.2.2.1.2-1    |      | 20       | 16QAM | 1/3 | 100 |                  | ≥ 2             |       |
| FDD, Par | rtial RB allocation, | QPSK |          |       |     |     |                  |                 |       |
| FDD      | Table A.2.2.2.1-1    |      | 1.4 - 20 | QPSK  | 1/3 | 1   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 1.4 - 20 | QPSK  | 1/3 | 2   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 1.4 - 20 | QPSK  | 1/3 | 3   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 1.4 - 20 | QPSK  | 1/3 | 4   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 1.4 - 20 | QPSK  | 1/3 | 5   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 3 - 20   | QPSK  | 1/3 | 6   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 3 - 20   | QPSK  | 1/3 | 8   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 3 - 20   | QPSK  | 1/3 | 9   |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 3 - 20   | QPSK  | 1/3 | 10  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 3 - 20   | QPSK  | 1/3 | 12  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 5 - 20   | QPSK  | 1/3 | 15  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 5 - 20   | QPSK  | 1/3 | 16  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 5 - 20   | QPSK  | 1/3 | 18  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 5 - 20   | QPSK  | 1/3 | 20  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 5 - 20   | QPSK  | 1/3 | 24  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 25  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 27  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 30  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 32  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 36  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 40  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 45  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 10 - 20  | QPSK  | 1/3 | 48  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 15 - 20  | QPSK  | 1/3 | 50  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 15 - 20  | QPSK  | 1/3 | 54  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 15 - 20  | QPSK  | 1/4 | 60  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 15 - 20  | QPSK  | 1/4 | 64  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 15 - 20  | QPSK  | 1/4 | 72  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 20       | QPSK  | 1/5 | 75  |                  | ≥ 1             |       |
| FDD      | Table A.2.2.2.1-1    |      | 20       | QPSK  | 1/5 | 80  |                  | ≥ 1             |       |

#### Table A.2.1.3-1: Overview of UL reference measurement channels

|          |                     |            | 20       | 0001    | A /F | 04 |     |  |
|----------|---------------------|------------|----------|---------|------|----|-----|--|
| FDD      | Table A.2.2.2.1-1   |            | 20       | QPSK    | 1/5  | 81 | ≥ 1 |  |
| FDD      | Table A.2.2.2.1-1   |            | 20       | QPSK    | 1/6  | 90 | ≥ 1 |  |
| FDD      | Table A.2.2.2.1-1   |            | 20       | QPSK    | 1/6  | 96 | ≥ 1 |  |
|          | tial RB allocation, | 16-QAM     |          | 400.000 |      |    |     |  |
| FDD      | Table A.2.2.2.2-1   |            | 1.4 - 20 | 16QAM   | 3/4  | 1  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 1.4 - 20 | 16QAM   | 3/4  | 2  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 1.4 - 20 | 16QAM   | 3/4  | 3  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 1.4 - 20 | 16QAM   | 3/4  | 4  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 1.4 - 20 | 16QAM   | 3/4  | 5  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 3 - 20   | 16QAM   | 3/4  | 6  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 3 - 20   | 16QAM   | 3/4  | 8  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 3 - 20   | 16QAM   | 3/4  | 9  | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 3 - 20   | 16QAM   | 3/4  | 10 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 3 - 20   | 16QAM   | 3/4  | 12 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 5 - 20   | 16QAM   | 1/2  | 15 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 5 - 20   | 16QAM   | 1/2  | 16 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 5 - 20   | 16QAM   | 1/2  | 18 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 5 - 20   | 16QAM   | 1/3  | 20 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 5 - 20   | 16QAM   | 1/3  | 24 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 1/3  | 25 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 1/3  | 27 | ≥ 1 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 3/4  | 30 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 3/4  | 32 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 3/4  | 36 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 3/4  | 40 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 3/4  | 45 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 10 - 20  | 16QAM   | 3/4  | 48 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 15 - 20  | 16QAM   | 3/4  | 50 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 15 - 20  | 16QAM   | 3/4  | 54 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 15 - 20  | 16QAM   | 2/3  | 60 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 15 - 20  | 16QAM   | 2/3  | 64 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 15 - 20  | 16QAM   | 1/2  | 72 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 20       | 16QAM   | 1/2  | 75 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 20       | 16QAM   | 1/2  | 80 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 20       | 16QAM   | 1/2  | 81 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 20       | 16QAM   | 2/5  | 90 | ≥ 2 |  |
| FDD      | Table A.2.2.2.2-1   |            | 20       | 16QAM   | 2/5  | 96 | ≥ 2 |  |
| FDD, Sus | stained data rate   |            |          |         |      |    |     |  |
| FDD      | Table A.2.2.3-1     | R.1-1 FDD  | ) 10     | QPSK    | 0.31 | 40 | ≥ 1 |  |
| FDD      | Table A.2.2.3-1     | R.1-2 FDD  | ) 10     | QPSK    | 0.31 | 40 | ≥ 1 |  |
| FDD      | Table A.2.2.3-1     | R.1-3 FDD  | ) 20     | QPSK    | 0.31 | 90 | ≥ 2 |  |
| FDD      | Table A.2.2.3-1     | R.1-3A FDI | D 10     | QPSK    | 0.31 | 40 | ≥ 1 |  |
| FDD      | Table A.2.2.3-1     | R.1-4 FDD  | ) 20     | QPSK    | 0.31 | 90 | ≥ 2 |  |
| TDD, Ful | I RB allocation, QP | SK         |          |         |      |    |     |  |
| TDD      | Table A.2.3.1.1-1   |            | 1.4      | QPSK    | 1/3  | 6  | ≥ 1 |  |
| TDD      | Table A.2.3.1.1-1   |            | 3        | QPSK    | 1/3  | 15 | ≥ 1 |  |
| TDD      | Table A.2.3.1.1-1   |            | 5        | QPSK    | 1/3  | 25 | ≥ 1 |  |
| TDD      | Table A.2.3.1.1-1   |            | 10       | QPSK    | 1/3  | 50 | ≥ 1 |  |

365

| TDD     | Table A.2.3.1.1-1    |        | 15       | QPSK    | 1/5 | 75  |   | ≥ 1 |   |
|---------|----------------------|--------|----------|---------|-----|-----|---|-----|---|
|         |                      |        |          |         |     |     |   |     |   |
| TDD     | Table A.2.3.1.1-1    |        | 20       | QPSK    | 1/6 | 100 |   | ≥ 1 |   |
| -       | I RB allocation, 16- | QAM    |          | 400.414 | 0/4 | 0   |   |     |   |
| TDD     | Table A.2.3.1.2-1    |        | 1.4      | 16QAM   | 3/4 | 6   |   | ≥ 1 |   |
| TDD     | Table A.2.3.1.2-1    |        | 3        | 16QAM   | 1/2 | 15  |   | ≥ 1 |   |
| TDD     | Table A.2.3.1.2-1    |        | 5        | 16QAM   | 1/3 | 25  |   | ≥1  |   |
| TDD     | Table A.2.3.1.2-1    |        | 10       | 16QAM   | 3/4 | 50  |   | ≥ 2 |   |
| TDD     | Table A.2.3.1.2-1    |        | 15       | 16QAM   | 1/2 | 75  |   | ≥2  |   |
| TDD     | Table A.2.3.1.2-1    |        | 20       | 16QAM   | 1/3 | 100 |   | ≥ 2 |   |
|         | rtial RB allocation, |        |          | 0.001/  |     |     | 1 |     |   |
| TDD     | Table A.2.3.2.1-1    |        | 1.4 - 20 | QPSK    | 1/3 | 1   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 1.4 - 20 | QPSK    | 1/3 | 2   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 1.4 - 20 | QPSK    | 1/3 | 3   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 1.4 - 20 | QPSK    | 1/3 | 4   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 1.4 - 20 | QPSK    | 1/3 | 5   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 3 - 20   | QPSK    | 1/3 | 6   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 3 - 20   | QPSK    | 1/3 | 8   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 3 - 20   | QPSK    | 1/3 | 9   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 3 - 20   | QPSK    | 1/3 | 10  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 3 - 20   | QPSK    | 1/3 | 12  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 5 - 20   | QPSK    | 1/3 | 15  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 5 - 20   | QPSK    | 1/3 | 16  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 5 - 20   | QPSK    | 1/3 | 18  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 5 - 20   | QPSK    | 1/3 | 20  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 5 - 20   | QPSK    | 1/3 | 24  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 25  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 27  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 30  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 32  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 36  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 40  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 45  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 10 - 20  | QPSK    | 1/3 | 48  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 15 - 20  | QPSK    | 1/3 | 50  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 15 - 20  | QPSK    | 1/3 | 54  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 15 - 20  | QPSK    | 1/4 | 60  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 15 - 20  | QPSK    | 1/4 | 64  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 15 - 20  | QPSK    | 1/4 | 72  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 20       | QPSK    | 1/5 | 75  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 20       | QPSK    | 1/5 | 80  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 20       | QPSK    | 1/5 | 81  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 20       | QPSK    | 1/6 | 90  |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.1-1    |        | 20       | QPSK    | 1/6 | 96  |   | ≥ 1 |   |
| TDD, Pa | tial RB allocation,  | 16-QAM |          |         |     |     |   |     |   |
| TDD     | Table A.2.3.2.2-1    |        | 1.4 - 20 | 16QAM   | 3/4 | 1   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1    |        | 1.4 - 20 | 16QAM   | 3/4 | 2   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1    |        | 1.4 - 20 | 16QAM   | 3/4 | 3   |   | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1    |        | 1.4 - 20 | 16QAM   | 3/4 | 4   |   | ≥ 1 |   |
| I       |                      | I I    |          |         |     |     |   | 1   | 1 |

| TDD     | Table A.2.3.2.2-1 |            | 1.4 - 20 | 16QAM | 3/4  | 5  |  | ≥ 1 |   |
|---------|-------------------|------------|----------|-------|------|----|--|-----|---|
|         |                   |            |          |       |      | -  |  |     |   |
| TDD     | Table A.2.3.2.2-1 |            | 3 - 20   | 16QAM | 3/4  | 6  |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 3 - 20   | 16QAM | 3/4  | 8  |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 3 - 20   | 16QAM | 3/4  | 9  |  | ≥1  |   |
| TDD     | Table A.2.3.2.2-1 |            | 3 - 20   | 16QAM | 3/4  | 10 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 3 - 20   | 16QAM | 3/4  | 12 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 5 - 20   | 16QAM | 1/2  | 15 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 5 - 20   | 16QAM | 1/2  | 16 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 5 - 20   | 16QAM | 1/2  | 18 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 5 - 20   | 16QAM | 1/3  | 20 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 5 - 20   | 16QAM | 1/3  | 24 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 1/3  | 25 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 1/3  | 27 |  | ≥ 1 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 3/4  | 30 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 3/4  | 32 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 3/4  | 36 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 3/4  | 40 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 3/4  | 45 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 10 - 20  | 16QAM | 3/4  | 48 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 15 - 20  | 16QAM | 3/4  | 50 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 15 - 20  | 16QAM | 3/4  | 54 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 15 - 20  | 16QAM | 2/3  | 60 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 15 - 20  | 16QAM | 2/3  | 64 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 15 - 20  | 16QAM | 1/2  | 72 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 20       | 16QAM | 1/2  | 75 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 20       | 16QAM | 1/2  | 80 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 20       | 16QAM | 1/2  | 81 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 20       | 16QAM | 2/5  | 90 |  | ≥ 2 |   |
| TDD     | Table A.2.3.2.2-1 |            | 20       | 16QAM | 2/5  | 96 |  | ≥ 2 |   |
| TDD, Su | stained data rate | <u> </u>   |          |       |      |    |  |     |   |
| TDD     | Table A.2.3.3-1   | R.1-1 TDD  | 10       | QPSK  | 0.43 | 40 |  | ≥ 1 |   |
| TDD     | Table A.2.3.3-1   | R.1-2 TDD  |          | QPSK  | 0.61 | 40 |  | ≥ 2 |   |
| TDD     | Table A.2.3.3-1   | R.1-3 TDD  |          | QPSK  | 0.49 | 90 |  | ≥ 2 |   |
| TDD     | Table A.2.3.3-1   | R.1-3B TDD |          | QPSK  | 0.42 | 60 |  | ≥ 2 |   |
| TDD     | Table A.2.3.3-1   | R.1-4 TDD  |          | QPSK  | 0.49 | 90 |  | ≥ 2 |   |
|         | 100107.12.0.01    | 1.1 4 100  | 20       |       | 0.40 | 00 |  |     | 1 |

# A.2.2 Reference measurement channels for FDD

# A.2.2.1 Full RB allocation

#### A.2.2.1.1 QPSK

#### Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

| Parameter                                                                                                                                    | Unit |      |      | Va   | lue   |       |       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|-------|-------|--|
| Channel bandwidth                                                                                                                            | MHz  | 1.4  | 3    | 5    | 10    | 15    | 20    |  |
| Allocated resource blocks                                                                                                                    |      | 6    | 15   | 25   | 50    | 75    | 100   |  |
| DFT-OFDM Symbols per Sub-Frame                                                                                                               |      | 12   | 12   | 12   | 12    | 12    | 12    |  |
| Modulation                                                                                                                                   |      | QPSK | QPSK | QPSK | QPSK  | QPSK  | QPSK  |  |
| Target Coding rate                                                                                                                           |      | 1/3  | 1/3  | 1/3  | 1/3   | 1/5   | 1/6   |  |
| Payload size                                                                                                                                 | Bits | 600  | 1544 | 2216 | 5160  | 4392  | 4584  |  |
| Transport block CRC                                                                                                                          | Bits | 24   | 24   | 24   | 24    | 24    | 24    |  |
| Number of code blocks per Sub-Frame (Note 1)                                                                                                 |      | 1    | 1    | 1    | 1     | 1     | 1     |  |
| Total number of bits per Sub-Frame                                                                                                           | Bits | 1728 | 4320 | 7200 | 14400 | 21600 | 28800 |  |
| Total symbols per Sub-Frame                                                                                                                  |      | 864  | 2160 | 3600 | 7200  | 10800 | 14400 |  |
| UE Category                                                                                                                                  |      | ≥1   | ≥ 1  | ≥ 1  | ≥ 1   | ≥ 1   | ≥1    |  |
| Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attact to each Code Block (otherwise L = 0 Bit) |      |      |      |      |       |       |       |  |

## A.2.2.1.2 16-QAM

#### Table A.2.2.1.2-1 Reference Channels for 16-QAM with full RB allocation

| Parameter                                                                | Unit |              |          | Va           | lue          |            |        |
|--------------------------------------------------------------------------|------|--------------|----------|--------------|--------------|------------|--------|
| Channel bandwidth                                                        | MHz  | 1.4          | 3        | 5            | 10           | 15         | 20     |
| Allocated resource blocks                                                |      | 6            | 15       | 25           | 50           | 75         | 100    |
| DFT-OFDM Symbols per Sub-Frame                                           |      | 12           | 12       | 12           | 12           | 12         | 12     |
| Modulation                                                               |      | 16QAM        | 16QAM    | 16QAM        | 16QAM        | 16QAM      | 16QAM  |
| Target Coding rate                                                       |      | 3/4          | 1/2      | 1/3          | 3/4          | 1/2        | 1/3    |
| Payload size                                                             | Bits | 2600         | 4264     | 4968         | 21384        | 21384      | 19848  |
| Transport block CRC                                                      | Bits | 24           | 24       | 24           | 24           | 24         | 24     |
| Number of code blocks per Sub-Frame (Note 1)                             |      | 1            | 1        | 1            | 4            | 4          | 4      |
| Total number of bits per Sub-Frame                                       | Bits | 3456         | 8640     | 14400        | 28800        | 43200      | 57600  |
| Total symbols per Sub-Frame                                              |      | 864          | 2160     | 3600         | 7200         | 10800      | 14400  |
| UE Category                                                              |      | ≥ 1          | ≥ 1      | ≥1           | ≥ 2          | ≥2         | ≥ 2    |
| Note 1: If more than one Code Block is<br>Code Block (otherwise L = 0 Bi |      | n additional | CRC sequ | ience of L : | = 24 Bits is | attached t | o each |

# A.2.2.1.3 64-QAM

[FFS]

# A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

# A.2.2.2.1 QPSK

| Paramet<br>er | Ch BW    | Allocate<br>d RBs | DFT-<br>OFDM<br>Symbols<br>per Sub-<br>Frame | Mod'n | Target<br>Coding<br>rate | Payload<br>size | Transpo<br>rt block<br>CRC | Number<br>of code<br>blocks<br>per Sub-<br>Frame<br>(Note 1) | Total<br>number<br>of bits<br>per Sub-<br>Frame | Total<br>symbols<br>per Sub-<br>Frame | UE<br>Categor<br>y |
|---------------|----------|-------------------|----------------------------------------------|-------|--------------------------|-----------------|----------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------------------------|--------------------|
| Unit          | MHz      |                   |                                              |       |                          | Bits            | Bits                       | , <i>,</i>                                                   | Bits                                            |                                       |                    |
|               | 1.4 - 20 | 1                 | 12                                           | QPSK  | 1/3                      | 72              | 24                         | 1                                                            | 288                                             | 144                                   | ≥1                 |
|               | 1.4 - 20 | 2                 | 12                                           | QPSK  | 1/3                      | 176             | 24                         | 1                                                            | 576                                             | 288                                   | ≥1                 |
|               | 1.4 - 20 | 3                 | 12                                           | QPSK  | 1/3                      | 256             | 24                         | 1                                                            | 864                                             | 432                                   | ≥1                 |
|               | 1.4 - 20 | 4                 | 12                                           | QPSK  | 1/3                      | 392             | 24                         | 1                                                            | 1152                                            | 576                                   | ≥1                 |
|               | 1.4 - 20 | 5                 | 12                                           | QPSK  | 1/3                      | 424             | 24                         | 1                                                            | 1440                                            | 720                                   | ≥1                 |
|               | 3-20     | 6                 | 12                                           | QPSK  | 1/3                      | 600             | 24                         | 1                                                            | 1728                                            | 864                                   | ≥1                 |
|               | 3-20     | 8                 | 12                                           | QPSK  | 1/3                      | 808             | 24                         | 1                                                            | 2304                                            | 1152                                  | ≥1                 |
|               | 3-20     | 9                 | 12                                           | QPSK  | 1/3                      | 776             | 24                         | 1                                                            | 2592                                            | 1296                                  | ≥1                 |
|               | 3-20     | 10                | 12                                           | QPSK  | 1/3                      | 872             | 24                         | 1                                                            | 2880                                            | 1440                                  | ≥1                 |
|               | 3-20     | 12                | 12                                           | QPSK  | 1/3                      | 1224            | 24                         | 1                                                            | 3456                                            | 1728                                  | ≥ 1                |
|               | 5-20     | 15                | 12                                           | QPSK  | 1/3                      | 1320            | 24                         | 1                                                            | 4320                                            | 2160                                  | ≥1                 |
|               | 5-20     | 16                | 12                                           | QPSK  | 1/3                      | 1384            | 24                         | 1                                                            | 4608                                            | 2304                                  | ≥ 1                |
|               | 5-20     | 18                | 12                                           | QPSK  | 1/3                      | 1864            | 24                         | 1                                                            | 5184                                            | 2592                                  | ≥ 1                |
|               | 5-20     | 20                | 12                                           | QPSK  | 1/3                      | 1736            | 24                         | 1                                                            | 5760                                            | 2880                                  | ≥1                 |
|               | 5-20     | 24                | 12                                           | QPSK  | 1/3                      | 2472            | 24                         | 1                                                            | 6912                                            | 3456                                  | ≥1                 |
|               | 10-20    | 25                | 12                                           | QPSK  | 1/3                      | 2216            | 24                         | 1                                                            | 7200                                            | 3600                                  | ≥ 1                |
|               | 10-20    | 27                | 12                                           | QPSK  | 1/3                      | 2792            | 24                         | 1                                                            | 7776                                            | 3888                                  | ≥ 1                |
|               | 10-20    | 30                | 12                                           | QPSK  | 1/3                      | 2664            | 24                         | 1                                                            | 8640                                            | 4320                                  | ≥1                 |
|               | 10-20    | 32                | 12                                           | QPSK  | 1/3                      | 2792            | 24                         | 1                                                            | 9216                                            | 4608                                  | ≥1                 |
|               | 10-20    | 36                | 12                                           | QPSK  | 1/3                      | 3752            | 24                         | 1                                                            | 10368                                           | 5184                                  | ≥ 1                |
|               | 10-20    | 40                | 12                                           | QPSK  | 1/3                      | 4136            | 24                         | 1                                                            | 11520                                           | 5760                                  | ≥ 1                |
|               | 10-20    | 45                | 12                                           | QPSK  | 1/3                      | 4008            | 24                         | 1                                                            | 12960                                           | 6480                                  | ≥1                 |
|               | 10-20    | 48                | 12                                           | QPSK  | 1/3                      | 4264            | 24                         | 1                                                            | 13824                                           | 6912                                  | ≥1                 |
|               | 15 - 20  | 50                | 12                                           | QPSK  | 1/3                      | 5160            | 24                         | 1                                                            | 14400                                           | 7200                                  | ≥1                 |
|               | 15 - 20  | 54                | 12                                           | QPSK  | 1/3                      | 4776            | 24                         | 1                                                            | 15552                                           | 7776                                  | ≥1                 |
|               | 15 - 20  | 60                | 12                                           | QPSK  | 1/4                      | 4264            | 24                         | 1                                                            | 17280                                           | 8640                                  | ≥1                 |
|               | 15 - 20  | 64                | 12                                           | QPSK  | 1/4                      | 4584            | 24                         | 1                                                            | 18432                                           | 9216                                  | ≥1                 |
|               | 15 - 20  | 72                | 12                                           | QPSK  | 1/4                      | 5160            | 24                         | 1                                                            | 20736                                           | 10368                                 | ≥1                 |
|               | 20       | 75                | 12                                           | QPSK  | 1/5                      | 4392            | 24                         | 1                                                            | 21600                                           | 10800                                 | ≥1                 |
|               | 20       | 80                | 12                                           | QPSK  | 1/5                      | 4776            | 24                         | 1                                                            | 23040                                           | 11520                                 | ≥1                 |
|               | 20       | 81                | 12                                           | QPSK  | 1/5                      | 4776            | 24                         | 1                                                            | 23328                                           | 11664                                 | ≥1                 |
|               | 20       | 90                | 12                                           | QPSK  | 1/6                      | 4008            | 24                         | 1                                                            | 25920                                           | 12960                                 | ≥1                 |
|               | 20       | 96                | 12                                           | QPSK  | 1/6                      | 4264            | 24                         | 1                                                            | 27648                                           | 13824                                 | ≥1                 |

# Table A.2.2.2.1-1 Reference Channels for QPSK with partial RB allocation

#### A.2.2.2.2 16-QAM

| Paramet<br>er | Ch BW    | Allocate<br>d RBs | DFT-<br>OFDM<br>Symbols<br>per Sub-<br>Frame | Mod'n | Target<br>Coding<br>rate | Payload<br>size | Transpo<br>rt block<br>CRC | Number<br>of code<br>blocks<br>per Sub-<br>Frame<br>(Note 1) | Total<br>number<br>of bits<br>per Sub-<br>Frame | Total<br>symbols<br>per Sub-<br>Frame | UE<br>Categor<br>y |
|---------------|----------|-------------------|----------------------------------------------|-------|--------------------------|-----------------|----------------------------|--------------------------------------------------------------|-------------------------------------------------|---------------------------------------|--------------------|
| Unit          | MHz      |                   |                                              |       |                          | Bits            | Bits                       |                                                              | Bits                                            |                                       |                    |
|               | 1.4 - 20 | 1                 | 12                                           | 16QAM | 3/4                      | 408             | 24                         | 1                                                            | 576                                             | 144                                   | ≥1                 |
|               | 1.4 - 20 | 2                 | 12                                           | 16QAM | 3/4                      | 840             | 24                         | 1                                                            | 1152                                            | 288                                   | ≥1                 |
|               | 1.4 - 20 | 3                 | 12                                           | 16QAM | 3/4                      | 1288            | 24                         | 1                                                            | 1728                                            | 432                                   | ≥1                 |
|               | 1.4 - 20 | 4                 | 12                                           | 16QAM | 3/4                      | 1736            | 24                         | 1                                                            | 2304                                            | 576                                   | ≥ 1                |
|               | 1.4 - 20 | 5                 | 12                                           | 16QAM | 3/4                      | 2152            | 24                         | 1                                                            | 2880                                            | 720                                   | ≥ 1                |
|               | 3-20     | 6                 | 12                                           | 16QAM | 3/4                      | 2600            | 24                         | 1                                                            | 3456                                            | 864                                   | ≥ 1                |
|               | 3-20     | 8                 | 12                                           | 16QAM | 3/4                      | 3496            | 24                         | 1                                                            | 4608                                            | 1152                                  | ≥ 1                |
|               | 3-20     | 9                 | 12                                           | 16QAM | 3/4                      | 3880            | 24                         | 1                                                            | 5184                                            | 1296                                  | ≥ 1                |
|               | 3-20     | 10                | 12                                           | 16QAM | 3/4                      | 4264            | 24                         | 1                                                            | 5760                                            | 1440                                  | ≥1                 |
|               | 3-20     | 12                | 12                                           | 16QAM | 3/4                      | 5160            | 24                         | 1                                                            | 6912                                            | 1728                                  | ≥ 1                |
|               | 5-20     | 15                | 12                                           | 16QAM | 1/2                      | 4264            | 24                         | 1                                                            | 8640                                            | 2160                                  | ≥1                 |
|               | 5-20     | 16                | 12                                           | 16QAM | 1/2                      | 4584            | 24                         | 1                                                            | 9216                                            | 2304                                  | ≥1                 |
|               | 5-20     | 18                | 12                                           | 16QAM | 1/2                      | 5160            | 24                         | 1                                                            | 10368                                           | 2592                                  | ≥ 1                |
|               | 5-20     | 20                | 12                                           | 16QAM | 1/3                      | 4008            | 24                         | 1                                                            | 11520                                           | 2880                                  | ≥1                 |
|               | 5-20     | 24                | 12                                           | 16QAM | 1/3                      | 4776            | 24                         | 1                                                            | 13824                                           | 3456                                  | ≥1                 |
|               | 10-20    | 25                | 12                                           | 16QAM | 1/3                      | 4968            | 24                         | 1                                                            | 14400                                           | 3600                                  | ≥1                 |
|               | 10-20    | 27                | 12                                           | 16QAM | 1/3                      | 4776            | 24                         | 1                                                            | 15552                                           | 3888                                  | ≥1                 |
|               | 10-20    | 30                | 12                                           | 16QAM | 3/4                      | 12960           | 24                         | 3                                                            | 17280                                           | 4320                                  | ≥2                 |
|               | 10-20    | 32                | 12                                           | 16QAM | 3/4                      | 13536           | 24                         | 3                                                            | 18432                                           | 4608                                  | ≥2                 |
|               | 10-20    | 36                | 12                                           | 16QAM | 3/4                      | 15264           | 24                         | 3                                                            | 20736                                           | 5184                                  | ≥2                 |
|               | 10-20    | 40                | 12                                           | 16QAM | 3/4                      | 16992           | 24                         | 3                                                            | 23040                                           | 5760                                  | ≥2                 |
|               | 10-20    | 45                | 12                                           | 16QAM | 3/4                      | 19080           | 24                         | 4                                                            | 25920                                           | 6480                                  | ≥2                 |
|               | 10-20    | 48                | 12                                           | 16QAM | 3/4                      | 20616           | 24                         | 4                                                            | 27648                                           | 6912                                  | ≥2                 |
|               | 15 - 20  | 50                | 12                                           | 16QAM | 3/4                      | 21384           | 24                         | 4                                                            | 28800                                           | 7200                                  | ≥2                 |
|               | 15 - 20  | 54                | 12                                           | 16QAM | 3/4                      | 22920           | 24                         | 4                                                            | 31104                                           | 7776                                  | ≥2                 |
|               | 15 - 20  | 60                | 12                                           | 16QAM | 2/3                      | 23688           | 24                         | 4                                                            | 34560                                           | 8640                                  | ≥2                 |
|               | 15 - 20  | 64                | 12                                           | 16QAM | 2/3                      | 25456           | 24                         | 4                                                            | 36864                                           | 9216                                  | ≥2                 |
|               | 15 - 20  | 72                | 12                                           | 16QAM | 1/2                      | 20616           | 24                         | 4                                                            | 41472                                           | 10368                                 | ≥2                 |
|               | 20       | 75                | 12                                           | 16QAM | 1/2                      | 21384           | 24                         | 4                                                            | 43200                                           | 10800                                 | ≥ 2                |
|               | 20       | 80                | 12                                           | 16QAM | 1/2                      | 22920           | 24                         | 4                                                            | 46080                                           | 11520                                 | ≥2                 |
|               | 20       | 81                | 12                                           | 16QAM | 1/2                      | 22920           | 24                         | 4                                                            | 46656                                           | 11664                                 | ≥2                 |
|               | 20       | 90                | 12                                           | 16QAM | 2/5                      | 20616           | 24                         | 4                                                            | 51840                                           | 12960                                 | ≥2                 |
|               | 20       | 96                | 12                                           | 16QAM | 2/5                      | 22152           | 24                         | 4                                                            | 55296                                           | 13824                                 | ≥2                 |

## Table A.2.2.2.2-1 Reference Channels for 16-QAM with partial RB allocation

#### A.2.2.2.3 64-QAM

[FFS]

# A.2.2.3 Reference measurement channels for sustained downlink data rate provided by lower layers

| Unit       |            |                                                                                                                                                                                                                                        |                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                         |
|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|            | R.1-1      | R.1-2                                                                                                                                                                                                                                  | R.1-3                                                    | R.1-3A                                                 | R.1-4                                                                                                                                                                                                                                                                                                                                         | FFS                                                     |
|            | FDD        | FDD                                                                                                                                                                                                                                    | FDD                                                      | FDD                                                    | FDD                                                                                                                                                                                                                                                                                                                                           |                                                         |
| MHz        | 10         | 10                                                                                                                                                                                                                                     | 20                                                       | 10                                                     | 20                                                                                                                                                                                                                                                                                                                                            |                                                         |
|            | 40         | 40                                                                                                                                                                                                                                     | 90                                                       | 40                                                     | 90                                                                                                                                                                                                                                                                                                                                            |                                                         |
|            | (Note 2)   | (Note 2)                                                                                                                                                                                                                               | (Note 3)                                                 | (Note 2)                                               | (Note 3)                                                                                                                                                                                                                                                                                                                                      |                                                         |
|            | 10         | 10                                                                                                                                                                                                                                     | 10                                                       | 10                                                     | 10                                                                                                                                                                                                                                                                                                                                            |                                                         |
|            | 12         | 12                                                                                                                                                                                                                                     | 12                                                       | 12                                                     | 12                                                                                                                                                                                                                                                                                                                                            |                                                         |
|            | QPSK       | QPSK                                                                                                                                                                                                                                   | QPSK                                                     | QPSK                                                   | QPSK                                                                                                                                                                                                                                                                                                                                          |                                                         |
|            | 0.31       | 0.31                                                                                                                                                                                                                                   | 0.31                                                     | 0.31                                                   | 0.31                                                                                                                                                                                                                                                                                                                                          |                                                         |
| Bits       | 3496       | 3496                                                                                                                                                                                                                                   | 7992                                                     | 3496                                                   | 7992                                                                                                                                                                                                                                                                                                                                          |                                                         |
|            | 1          | 1                                                                                                                                                                                                                                      | 2                                                        | 1                                                      | 2                                                                                                                                                                                                                                                                                                                                             |                                                         |
|            |            |                                                                                                                                                                                                                                        |                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                         |
|            | 5760       | 5760                                                                                                                                                                                                                                   | 12960                                                    | 5760                                                   | 12960                                                                                                                                                                                                                                                                                                                                         |                                                         |
|            | 11520      | 11520                                                                                                                                                                                                                                  | 25920                                                    | 11520                                                  | 25920                                                                                                                                                                                                                                                                                                                                         |                                                         |
| Mbps       | 3.496      | 3.496                                                                                                                                                                                                                                  | 7.992                                                    | 3.496                                                  | 7.992                                                                                                                                                                                                                                                                                                                                         |                                                         |
|            | ≥ 1        | ≥ 1                                                                                                                                                                                                                                    | ≥2                                                       | ≥ 1                                                    | ≥2                                                                                                                                                                                                                                                                                                                                            |                                                         |
| resent, an | additional | CRC seque                                                                                                                                                                                                                              | nce of $L = 2$                                           | 4 Bits is atta                                         | ached to ea                                                                                                                                                                                                                                                                                                                                   | ch Code                                                 |
|            |            |                                                                                                                                                                                                                                        |                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                         |
|            |            |                                                                                                                                                                                                                                        |                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                               |                                                         |
|            | Bits       | R.1-1       FDD         MHz       10         40       40         (Note 2)       10         12       QPSK         0.31       3496         1       5760         11520       Mbps         3.496       ≥ 1         resent, an additional ( | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | R.1-1<br>FDDR.1-2<br>FDDR.1-3<br>FDDR.1-3A<br>FDDMHz1010201040409040(Note 2)(Note 2)(Note 3)(Note 2)101010101012121212QPSKQPSKQPSKQPSK0.310.310.310.31Bits3496349679923496111215760576012960576011520115202592011520Mbps3.4963.4967.9923.496 $\geq 1$ $\geq 1$ $\geq 2$ $\geq 1$ resent, an additional CRC sequence of L = 24 Bits is attract | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

#### Table A.2.2.3-1: Uplink Reference Channels for sustained data-rate test (FDD)

Note 3: RB-s 5-94 allocated with PUSCH.

# A.2.3 Reference measurement channels for TDD

For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

# A.2.3.1 Full RB allocation

#### A.2.3.1.1 QPSK

Table A.2.3.1.1-1 Reference Channels for QPSK with full RB allocation

| Parameter                                                            | Unit |            |          | Va      | lue       |           |         |  |
|----------------------------------------------------------------------|------|------------|----------|---------|-----------|-----------|---------|--|
| Channel bandwidth                                                    | MHz  | 1.4        | 3        | 5       | 10        | 15        | 20      |  |
| Allocated resource blocks                                            |      | 6          | 15       | 25      | 50        | 75        | 100     |  |
| Uplink-Downlink Configuration (Note 2)                               |      | 1          | 1        | 1       | 1         | 1         | 1       |  |
| DFT-OFDM Symbols per Sub-Frame                                       |      | 12         | 12       | 12      | 12        | 12        | 12      |  |
| Modulation                                                           |      | QPSK       | QPSK     | QPSK    | QPSK      | QPSK      | QPSK    |  |
| Target Coding rate                                                   |      | 1/3        | 1/3      | 1/3     | 1/3       | 1/5       | 1/6     |  |
| Payload size                                                         |      |            |          |         |           |           |         |  |
| For Sub-Frame 2,3,7,8                                                | Bits | 600        | 1544     | 2216    | 5160      | 4392      | 4584    |  |
| Transport block CRC                                                  | Bits | 24         | 24       | 24      | 24        | 24        | 24      |  |
| Number of code blocks per Sub-Frame                                  |      |            |          |         |           |           |         |  |
| (Note 1)                                                             |      |            |          |         |           |           |         |  |
| For Sub-Frame 2,3,7,8                                                |      | 1          | 1        | 1       | 1         | 1         | 1       |  |
| Total number of bits per Sub-Frame                                   |      |            |          |         |           |           |         |  |
| For Sub-Frame 2,3,7,8                                                | Bits | 1728       | 4320     | 7200    | 14400     | 21600     | 28800   |  |
| Total symbols per Sub-Frame                                          |      |            |          |         |           |           |         |  |
| For Sub-Frame 2,3,7,8                                                |      | 864        | 2160     | 3600    | 7200      | 10800     | 14400   |  |
| UE Category                                                          |      | ≥1         | ≥ 1      | ≥ 1     | ≥ 1       | ≥1        | ≥1      |  |
| Note 1: If more than one Code Block is to each Code Block (otherwise |      | n addition | al CRC s | equence | of L = 24 | Bits is a | ttached |  |
| Note 2: As per Table 4.2-2 in TS 36.211 [4]                          |      |            |          |         |           |           |         |  |

#### A.2.3.1.2 16-QAM

#### Table A.2.3.1.2-1 Reference Channels for 16-QAM with full RB allocation

| Parameter                                                                                                        | Unit |              |            | Va         | lue           |            |         |
|------------------------------------------------------------------------------------------------------------------|------|--------------|------------|------------|---------------|------------|---------|
| Channel bandwidth                                                                                                | MHz  | 1.4          | 3          | 5          | 10            | 15         | 20      |
| Allocated resource blocks                                                                                        |      | 6            | 15         | 25         | 50            | 75         | 100     |
| Uplink-Downlink Configuration (Note 2)                                                                           |      | 1            | 1          | 1          | 1             | 1          | 1       |
| DFT-OFDM Symbols per Sub-Frame                                                                                   |      | 12           | 12         | 12         | 12            | 12         | 12      |
| Modulation                                                                                                       |      | 16QAM        | 16QAM      | 16QAM      | 16QAM         | 16QAM      | 16QAM   |
| Target Coding rate                                                                                               |      | 3/4          | 1/2        | 1/3        | 3/4           | 1/2        | 1/3     |
| Payload size                                                                                                     |      |              |            |            |               |            |         |
| For Sub-Frame 2,3,7,8                                                                                            | Bits | 2600         | 4264       | 4968       | 21384         | 21384      | 19848   |
| Transport block CRC                                                                                              | Bits | 24           | 24         | 24         | 24            | 24         | 24      |
| Number of code blocks per Sub-Frame (Note 1)                                                                     |      |              |            |            |               |            |         |
| For Sub-Frame 2,3,7,8                                                                                            |      | 1            | 1          | 1          | 4             | 4          | 4       |
| Total number of bits per Sub-Frame                                                                               |      |              |            |            |               |            |         |
| For Sub-Frame 2,3,7,8                                                                                            | Bits | 3456         | 8640       | 14400      | 28800         | 43200      | 57600   |
| Total symbols per Sub-Frame                                                                                      |      |              |            |            |               |            |         |
| For Sub-Frame 2,3,7,8                                                                                            |      | 864          | 2160       | 3600       | 7200          | 10800      | 14400   |
| UE Category                                                                                                      |      | ≥ 1          | ≥ 1        | ≥1         | ≥ 2           | ≥2         | ≥2      |
| Note 1: If more than one Code Block is<br>Code Block (otherwise L = 0 B<br>Note 2: As per Table 4.2-2 in TS 36.2 | Bit) | an additiona | al CRC seq | uence of L | . = 24 Bits i | s attached | to each |

#### A.2.3.1.3 64-QAM

[FFS]

# A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

# A.2.3.2.1 QPSK

| Parame<br>ter | Ch BW            | Allocat<br>ed RBs | UDL<br>Configu<br>ration<br>(Note 2) | DFT-<br>OFDM<br>Symbol<br>s per<br>Sub-<br>Frame | Mod'n        | Target<br>Coding<br>rate | Payloa<br>d size<br>for<br>Sub-<br>Frame<br>2, 3, 7,<br>8 | Transp<br>ort<br>block<br>CRC | Number<br>of code<br>blocks<br>per<br>Sub-<br>Frame<br>(Note 1) | Total<br>number<br>of bits<br>per<br>Sub-<br>Frame<br>for<br>Sub-<br>Frame<br>2, 3, 7,<br>8 | Total<br>symbol<br>s per<br>Sub-<br>Frame<br>for<br>Sub-<br>Frame<br>2, 3, 7,<br>8 | UE<br>Categor<br>y |
|---------------|------------------|-------------------|--------------------------------------|--------------------------------------------------|--------------|--------------------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------|
| Unit          | MHz              |                   |                                      |                                                  |              |                          | Bits                                                      | Bits                          |                                                                 | Bits                                                                                        |                                                                                    |                    |
|               | 1.4 - 20         | 1                 | 1                                    | 12                                               | QPSK         | 1/3                      | 72                                                        | 24                            | 1                                                               | 288                                                                                         | 144                                                                                | ≥ 1                |
|               | 1.4 - 20         | 2                 | 1                                    | 12                                               | QPSK         | 1/3                      | 176                                                       | 24                            | 1                                                               | 576                                                                                         | 288                                                                                | ≥1                 |
|               | 1.4 - 20         | 3                 | 1                                    | 12                                               | QPSK         | 1/3                      | 256                                                       | 24                            | 1                                                               | 864                                                                                         | 432                                                                                | ≥1                 |
|               | 1.4 - 20         | 4                 | 1                                    | 12                                               | QPSK         | 1/3                      | 392                                                       | 24                            | 1                                                               | 1152                                                                                        | 576                                                                                | ≥1                 |
|               | 1.4 - 20         | 5                 | 1                                    | 12<br>12                                         | QPSK<br>QPSK | 1/3<br>1/3               | 424<br>600                                                | 24<br>24                      | 1                                                               | 1440<br>1728                                                                                | 720<br>864                                                                         | ≥1                 |
|               | 3-20<br>3-20     | 8                 | 1                                    | 12                                               | QPSK         | 1/3                      | 808                                                       | 24                            | 1                                                               | 2304                                                                                        | 1152                                                                               | ≥ 1<br>≥ 1         |
|               | 3-20             | 9                 | 1                                    | 12                                               | QPSK         | 1/3                      | 776                                                       | 24                            | 1                                                               | 2592                                                                                        | 1296                                                                               | ≥1<br>≥1           |
|               | 3-20             | 10                | 1                                    | 12                                               | QPSK         | 1/3                      | 872                                                       | 24                            | 1                                                               | 2392                                                                                        | 1290                                                                               | ≥1                 |
|               | 3-20             | 10                | 1                                    | 12                                               | QPSK         | 1/3                      | 1224                                                      | 24                            | 1                                                               | 3456                                                                                        | 1728                                                                               | ≥1                 |
|               | 5-20             | 15                | 1                                    | 12                                               | QPSK         | 1/3                      | 1320                                                      | 24                            | 1                                                               | 4320                                                                                        | 2160                                                                               | ≥1                 |
|               | 5-20             | 16                | 1                                    | 12                                               | QPSK         | 1/3                      | 1384                                                      | 24                            | 1                                                               | 4608                                                                                        | 2304                                                                               | ≥ 1                |
|               | 5-20             | 18                | 1                                    | 12                                               | QPSK         | 1/3                      | 1864                                                      | 24                            | 1                                                               | 5184                                                                                        | 2592                                                                               | ≥ 1                |
|               | 5-20             | 20                | 1                                    | 12                                               | QPSK         | 1/3                      | 1736                                                      | 24                            | 1                                                               | 5760                                                                                        | 2880                                                                               | ≥ 1                |
|               | 5-20             | 24                | 1                                    | 12                                               | QPSK         | 1/3                      | 2472                                                      | 24                            | 1                                                               | 6912                                                                                        | 3456                                                                               | ≥1                 |
|               | 10-20            | 25                | 1                                    | 12                                               | QPSK         | 1/3                      | 2216                                                      | 24                            | 1                                                               | 7200                                                                                        | 3600                                                                               | ≥ 1                |
|               | 10-20            | 27                | 1                                    | 12                                               | QPSK         | 1/3                      | 2792                                                      | 24                            | 1                                                               | 7776                                                                                        | 3888                                                                               | ≥ 1                |
|               | 10-20            | 30                | 1                                    | 12                                               | QPSK         | 1/3                      | 2664                                                      | 24                            | 1                                                               | 8640                                                                                        | 4320                                                                               | ≥ 1                |
|               | 10-20            | 32                | 1                                    | 12                                               | QPSK         | 1/3                      | 2792                                                      | 24                            | 1                                                               | 9216                                                                                        | 4608                                                                               | ≥1                 |
|               | 10-20            | 36                | 1                                    | 12                                               | QPSK         | 1/3                      | 3752                                                      | 24                            | 1                                                               | 10368                                                                                       | 5184                                                                               | ≥1                 |
|               | 10-20            | 40                | 1                                    | 12                                               | QPSK         | 1/3                      | 4136                                                      | 24                            | 1                                                               | 11520                                                                                       | 5760                                                                               | ≥1                 |
|               | 10-20            | 45<br>48          | 1                                    | 12<br>12                                         | QPSK<br>QPSK | 1/3<br>1/3               | 4008                                                      | 24<br>24                      | 1                                                               | 12960                                                                                       | 6480<br>6912                                                                       | ≥ 1<br>≥ 1         |
|               | 10-20<br>15 - 20 | 48<br>50          | 1                                    | 12                                               | QPSK<br>QPSK | 1/3                      | 4264<br>5160                                              | 24                            | 1                                                               | 13824<br>14400                                                                              | 7200                                                                               | ≥1                 |
|               | 15 - 20          | 54                | 1                                    | 12                                               | QPSK         | 1/3                      | 4776                                                      | 24                            | 1                                                               | 15552                                                                                       | 7200                                                                               | ≥1                 |
|               | 15 - 20          | 60                | 1                                    | 12                                               | QPSK         | 1/3                      | 4264                                                      | 24                            | 1                                                               | 17280                                                                                       | 8640                                                                               | ≥1                 |
|               | 15 - 20          | 64                | 1                                    | 12                                               | QPSK         | 1/4                      | 4584                                                      | 24                            | 1                                                               | 18432                                                                                       | 9216                                                                               | ≥1                 |
|               | 15 - 20          | 72                | 1                                    | 12                                               | QPSK         | 1/4                      | 5160                                                      | 24                            | 1                                                               | 20736                                                                                       | 10368                                                                              | ≥1                 |
|               | 20               | 75                | 1                                    | 12                                               | QPSK         | 1/5                      | 4392                                                      | 24                            | 1                                                               | 21600                                                                                       | 10800                                                                              | ≥1                 |
|               | 20               | 80                | 1                                    | 12                                               | QPSK         | 1/5                      | 4776                                                      | 24                            | 1                                                               | 23040                                                                                       | 11520                                                                              | ≥ 1                |
|               | 20               | 81                | 1                                    | 12                                               | QPSK         | 1/5                      | 4776                                                      | 24                            | 1                                                               | 23328                                                                                       | 11664                                                                              | ≥ 1                |
|               | 20               | 90                | 1                                    | 12                                               | QPSK         | 1/6                      | 4008                                                      | 24                            | 1                                                               | 25920                                                                                       | 12960                                                                              | ≥ 1                |
|               | 20               | 96                | 1                                    | 12                                               | QPSK         | 1/6                      | 4264                                                      | 24                            | 1                                                               | 27648                                                                                       | 13824                                                                              | ≥ 1                |

# Table A.2.3.2.1-1 Reference Channels for QPSK with partial RB allocation

#### A.2.3.2.2 16-QAM

| Parame<br>ter | Ch BW              | Allocat<br>ed RBs | UDL<br>Configu<br>ration<br>(Note 2) | DFT-<br>OFDM<br>Symbol<br>s per<br>Sub-<br>Frame | Mod'n          | Target<br>Coding<br>rate | Payloa<br>d size<br>for<br>Sub-<br>Frame<br>2, 3, 7,<br>8 | Transp<br>ort<br>block<br>CRC | Number<br>of code<br>blocks<br>per<br>Sub-<br>Frame<br>(Note 1) | Total<br>number<br>of bits<br>per<br>Sub-<br>Frame<br>for<br>Sub-<br>Frame<br>2, 3, 7,<br>8 | Total<br>symbol<br>s per<br>Sub-<br>Frame<br>for<br>Sub-<br>Frame<br>2, 3, 7,<br>8 | UE<br>Categor<br>y |
|---------------|--------------------|-------------------|--------------------------------------|--------------------------------------------------|----------------|--------------------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------|
| Unit          | MHz                |                   |                                      |                                                  |                |                          | Bits                                                      | Bits                          |                                                                 | Bits                                                                                        |                                                                                    |                    |
|               | 1.4 - 20           | 1                 | 1                                    | 12                                               | 16QAM          | 3/4                      | 408                                                       | 24                            | 1                                                               | 576                                                                                         | 144                                                                                | ≥1                 |
|               | 1.4 - 20           | 2                 | 1                                    | 12                                               | 16QAM          | 3/4                      | 840                                                       | 24                            | 1                                                               | 1152                                                                                        | 288                                                                                | ≥ 1                |
|               | 1.4 - 20           | 3                 | 1                                    | 12                                               | 16QAM          | 3/4                      | 1288                                                      | 24                            | 1                                                               | 1728                                                                                        | 432                                                                                | ≥ 1                |
|               | 1.4 - 20           | 4                 | 1                                    | 12                                               | 16QAM          | 3/4                      | 1736                                                      | 24                            | 1                                                               | 2304                                                                                        | 576                                                                                | ≥ 1                |
|               | 1.4 - 20           | 5                 | 1                                    | 12                                               | 16QAM          | 3/4                      | 2152                                                      | 24                            | 1                                                               | 2880                                                                                        | 720                                                                                | ≥1                 |
|               | 3-20<br>3-20       | 6<br>8            | 1                                    | 12<br>12                                         | 16QAM<br>16QAM | 3/4<br>3/4               | 2600<br>3496                                              | 24<br>24                      | 1                                                               | 3456<br>4608                                                                                | 864<br>1152                                                                        | ≥1                 |
|               | 3-20               | 9                 | 1                                    | 12                                               | 16QAM<br>16QAM | 3/4                      | 3496                                                      | 24                            | 1                                                               | 5184                                                                                        | 1296                                                                               | ≥ 1<br>≥ 1         |
|               | 3-20               | 10                | 1                                    | 12                                               | 16QAM          | 3/4                      | 4264                                                      | 24                            | 1                                                               | 5760                                                                                        | 1290                                                                               | ≥1                 |
|               | 3-20               | 10                | 1                                    | 12                                               | 16QAM          | 3/4                      | 5160                                                      | 24                            | 1                                                               | 6912                                                                                        | 1728                                                                               | ≥1                 |
|               | 5-20               | 15                | 1                                    | 12                                               | 16QAM          | 1/2                      | 4264                                                      | 24                            | 1                                                               | 8640                                                                                        | 2160                                                                               | ≥1                 |
|               | 5-20               | 16                | 1                                    | 12                                               | 16QAM          | 1/2                      | 4584                                                      | 24                            | 1                                                               | 9216                                                                                        | 2304                                                                               | ≥1                 |
|               | 5-20               | 18                | 1                                    | 12                                               | 16QAM          | 1/2                      | 5160                                                      | 24                            | 1                                                               | 10368                                                                                       | 2592                                                                               | ≥ 1                |
|               | 5-20               | 20                | 1                                    | 12                                               | 16QAM          | 1/3                      | 4008                                                      | 24                            | 1                                                               | 11520                                                                                       | 2880                                                                               | ≥ 1                |
|               | 5-20               | 24                | 1                                    | 12                                               | 16QAM          | 1/3                      | 4776                                                      | 24                            | 1                                                               | 13824                                                                                       | 3456                                                                               | ≥ 1                |
|               | 10-20              | 25                | 1                                    | 12                                               | 16QAM          | 1/3                      | 4968                                                      | 24                            | 1                                                               | 14400                                                                                       | 3600                                                                               | ≥ 1                |
|               | 10-20              | 27                | 1                                    | 12                                               | 16QAM          | 1/3                      | 4776                                                      | 24                            | 1                                                               | 15552                                                                                       | 3888                                                                               | ≥ 1                |
|               | 10-20              | 30                | 1                                    | 12                                               | 16QAM          | 3/4                      | 12960                                                     | 24                            | 3                                                               | 17280                                                                                       | 4320                                                                               | ≥ 2                |
|               | 10-20              | 32                | 1                                    | 12                                               | 16QAM          | 3/4                      | 13536                                                     | 24                            | 3                                                               | 18432                                                                                       | 4608                                                                               | ≥ 2                |
|               | 10-20              | 36                | 1                                    | 12                                               | 16QAM          | 3/4                      | 15264                                                     | 24                            | 3                                                               | 20736                                                                                       | 5184                                                                               | ≥ 2                |
|               | 10-20              | 40                | 1                                    | 12                                               | 16QAM          | 3/4                      | 16992                                                     | 24                            | 3                                                               | 23040                                                                                       | 5760                                                                               | ≥ 2                |
|               | 10-20              | 45                | 1                                    | 12                                               | 16QAM          | 3/4                      | 19080                                                     | 24                            | 4                                                               | 25920                                                                                       | 6480                                                                               | ≥ 2                |
|               | 10-20              | 48                | 1                                    | 12                                               | 16QAM          | 3/4                      | 20616                                                     | 24                            | 4                                                               | 27648                                                                                       | 6912                                                                               | ≥2                 |
|               | 15 - 20<br>15 - 20 | 50<br>54          | 1                                    | 12<br>12                                         | 16QAM<br>16QAM | 3/4<br>3/4               | 21384<br>22920                                            | 24<br>24                      | 4                                                               | 28800<br>31104                                                                              | 7200<br>7776                                                                       | ≥2<br>≥2           |
|               | 15 - 20            | 54<br>60          | 1                                    | 12                                               | 16QAM<br>16QAM | 2/3                      | 22920                                                     | 24                            | 4                                                               | 31104                                                                                       | 8640                                                                               | ≥2<br>≥2           |
|               | 15 - 20            | 64                | 1                                    | 12                                               | 16QAM          | 2/3                      | 25456                                                     | 24                            | 4                                                               | 36864                                                                                       | 9216                                                                               | ≥2                 |
|               | 15 - 20            | 72                | 1                                    | 12                                               | 16QAM          | 1/2                      | 20616                                                     | 24                            | 4                                                               | 41472                                                                                       | 10368                                                                              | ≥ 2                |
|               | 20                 | 75                | 1                                    | 12                                               | 16QAM          | 1/2                      | 21384                                                     | 24                            | 4                                                               | 43200                                                                                       | 10800                                                                              | ≥2                 |
|               | 20                 | 80                | 1                                    | 12                                               | 16QAM          | 1/2                      | 22920                                                     | 24                            | 4                                                               | 46080                                                                                       | 11520                                                                              | ≥2                 |
|               | 20                 | 81                | 1                                    | 12                                               | 16QAM          | 1/2                      | 22920                                                     | 24                            | 4                                                               | 46656                                                                                       | 11664                                                                              | ≥2                 |
|               | 20                 | 90                | 1                                    | 12                                               | 16QAM          | 2/5                      | 20616                                                     | 24                            | 4                                                               | 51840                                                                                       | 12960                                                                              | ≥ 2                |
|               | 20                 | 96                | 1                                    | 12                                               | 16QAM          | 2/5                      | 22152                                                     | 24                            | 4                                                               | 55296                                                                                       | 13824                                                                              | ≥ 2                |

## Table A.2.3.2.2-1 Reference Channels for 16QAM with partial RB allocation

A.2.3.2.3 64-QAM

[FFS]

# A.2.3.3 Reference measurement channels for sustained downlink data rate provided by lower layers

| Parameter                                | Unit        |              |            | Value          |                |          |
|------------------------------------------|-------------|--------------|------------|----------------|----------------|----------|
| Reference Channel                        |             | R.1-1        | R.1-2      | R.1-3          | R.1-3B         | R.1-4    |
|                                          |             | TDD          | TDD        | TDD            | TDD            | TDD      |
| Channel Bandwidth                        | MHz         | 10           | 10         | 20             | 15             | 20       |
| Uplink-Downlink Configuration (Note 2)   |             | 5            | 5          | 5              | 1              | 1        |
| Allocated Resource Blocks                |             | 40           | 40         | 90             | 60             | 90       |
|                                          |             | (Note 3)     | (Note 3)   | (Note 5)       | (Note 4)       | (Note 5) |
| Allocated Sub-Frames per Radio-Frame     |             | 1            | 1          | 1              | 1              | 1        |
| DFT-OFDM Symbols per Sub-Frame           |             | 12           | 12         | 12             | 12             | 12       |
| Modulation                               |             | QPSK         | QPSK       | QPSK           | QPSK           | QPSK     |
| Coding Rate                              |             |              |            |                |                |          |
| For Sub-Frame 2                          |             | 0.43         | 0.61       | 0.49           | 0.42           | 0.49     |
| For Sub-Frame 3,7,8                      |             | n/a          | n/a        | n/a            | 0.42           | 0.49     |
| Information Bit Payload per Sub-Frame    | Bits        |              |            |                |                |          |
| For Sub-Frame 2                          |             | 4968         | 6968       | 12576          | 7224           | 12576    |
| For Sub-Frame 3,7,8                      |             | 0            | 0          | 0              | 7224           | 12576    |
| Number of Code Blocks per Sub-Frame      |             |              |            |                |                |          |
| (Note 1)                                 |             |              |            |                |                |          |
| For Sub-Frame 2                          |             | 1            | 2          | 3              | 2              | 3        |
| For Sub-Frame 3,7,8                      |             | 0            | 0          | 0              | 2              | 3        |
| Modulation Symbols per Sub-Frame         |             |              |            |                |                |          |
| For Sub-Frame 2                          |             | 5760         | 5760       | 12960          | 8640           | 10240    |
| For Sub-Frame 3,7,8                      |             | 0            | 0          | 0              | 8640           | 10240    |
| Binary Channel Bits per Sub-Frame        |             |              |            |                |                |          |
| For Sub-Frame 2                          |             | 11520        | 11520      | 25920          | 17280          | 25920    |
| For Sub-Frame 3,7,8                      |             | n/a          | n/a        | n/a            | 17280          | 25920    |
| Max Throughput over 1 Radio-Frame        | Mbps        | 0.4968       | 0.6968     | 1.2576         | 2.8896         | 5.0304   |
| UE Category                              |             | ≥ 1          | ≥ 2        | ≥2             | ≥ 2            | ≥2       |
| Note 1: If more than one Code Block is p | oresent, an | additional C | CRC sequer | nce of $L = 2$ | 4 Bits is atta | ached to |
| each Code Block (otherwise L =           |             |              |            |                |                |          |
| Note 2: As per Table 4.2-2 in TS 36.211  |             |              |            |                |                |          |
| Note 3: RB-s 5-44 allocated with PUSCH   |             |              |            |                |                |          |
| Note 4: RB-s 7-66 allocated with PUSCH   |             |              |            |                |                |          |
| Note 5: RB-s 5-94 allocated with PUSCH   | 1.          |              |            |                |                |          |

Table A.2.3.3-1: Uplink Reference Channels for sustained data-rate test (TDD)

# A.3 DL reference measurement channels

# A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation  $N_{\text{RB}}$ 

1. Calculate the number of channel bits  $N_{ch}$  that can be transmitted during the first transmission of a given sub-frame.

2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24*(N_{CB} + 1))/N_{ch}|, where N_{CB} = \begin{cases} 0, if C = 1\\ C, if C > 1 \end{cases}$$
 subject to

a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of  $N_{\rm RB}$  resource blocks.

b) C is the number of Code Blocks calculated according to section 5.1.2 of TS 36.212 [5].

3. If there is more than one *A* that minimizes the equation above, then the larger value is chosen per default and the chosen code rate should not exceed 0.93.

4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

# A.3.1.1 Overview of DL reference measurement channels

In Table A.3.1.1-1 are listed the DL reference measurement channels specified in annexes A.3.2 to A.3.10 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.3.2 to A.3.10 as appropriate.

376

| Duplex    | Table              | Name        | BW        | Mod       | TCR     | RB    | RB<br>Off<br>set | UE<br>Cat<br>eg | Notes |
|-----------|--------------------|-------------|-----------|-----------|---------|-------|------------------|-----------------|-------|
| FDD, Rece | iver requirements  |             |           |           |         |       |                  |                 |       |
| FDD       | Table A.3.2-1      |             | 1.4       | QPSK      | 1/3     | 6     |                  | ≥ 1             |       |
| FDD       | Table A.3.2-1      |             | 3         | QPSK      | 1/3     | 15    |                  | ≥ 1             |       |
| FDD       | Table A.3.2-1      |             | 5         | QPSK      | 1/3     | 25    |                  | ≥ 1             |       |
| FDD       | Table A.3.2-1      |             | 10        | QPSK      | 1/3     | 50    |                  | ≥ 1             |       |
| FDD       | Table A.3.2-1      |             | 15        | QPSK      | 1/3     | 75    |                  | ≥ 1             |       |
| FDD       | Table A.3.2-1      |             | 20        | QPSK      | 1/3     | 100   |                  | ≥ 1             |       |
| TDD, Rece | iver requirements  |             |           |           |         |       |                  |                 |       |
| TDD       | Table A.3.2-2      |             | 1.4       | QPSK      | 1/3     | 6     |                  | ≥ 1             |       |
| TDD       | Table A.3.2-2      |             | 3         | QPSK      | 1/3     | 15    |                  | ≥ 1             |       |
| TDD       | Table A.3.2-2      |             | 5         | QPSK      | 1/3     | 25    |                  | ≥ 1             |       |
| TDD       | Table A.3.2-2      |             | 10        | QPSK      | 1/3     | 50    |                  | ≥ 1             |       |
| TDD       | Table A.3.2-2      |             | 15        | QPSK      | 1/3     | 75    |                  | ≥ 1             |       |
| TDD       | Table A.3.2-2      |             | 20        | QPSK      | 1/3     | 100   |                  | ≥ 1             |       |
| FDD, Rece | iver requirements, | Maximum inp | out level | for UE Ca | tegorie | s 3-5 |                  |                 |       |
| FDD       | Table A.3.2-3      |             | 1.4       | 64QAM     | 3/4     | 6     |                  | -               |       |
| FDD       | Table A.3.2-3      |             | 3         | 64QAM     | 3/4     | 15    |                  | -               |       |
| FDD       | Table A.3.2-3      |             | 5         | 64QAM     | 3/4     | 25    |                  | -               |       |
| FDD       | Table A.3.2-3      |             | 10        | 64QAM     | 3/4     | 50    |                  | -               |       |
| FDD       | Table A.3.2-3      |             | 15        | 64QAM     | 3/4     | 75    |                  | -               |       |
| FDD       | Table A.3.2-3      |             | 20        | 64QAM     | 3/4     | 100   |                  | -               |       |
| FDD, Rece | iver requirements, | Maximum inp | out level | for UE Ca | tegorie | s 1   |                  | -               |       |
| FDD       | Table A.3.2-3a     |             | 1.4       | 64QAM     | 3/4     | 6     |                  | -               |       |
| FDD       | Table A.3.2-3a     |             | 3         | 64QAM     | 3/4     | 15    |                  | -               |       |
| FDD       | Table A.3.2-3a     |             | 5         | 64QAM     | 3/4     | 18    |                  | -               |       |
| FDD       | Table A.3.2-3a     |             | 10        | 64QAM     | 3/4     | 17    |                  | -               |       |
| FDD       | Table A.3.2-3a     |             | 15        | 64QAM     | 3/4     | 17    |                  | -               |       |
| FDD       | Table A.3.2-3a     |             | 20        | 64QAM     | 3/4     | 17    |                  | -               |       |
| FDD, Rece | iver requirements, | Maximum inp | out level | for UE Ca | tegorie | s 2   | 1                | T               |       |
| FDD       | Table A.3.2-3b     |             | 1.4       | 64QAM     | 3/4     | 6     |                  | -               |       |
| FDD       | Table A.3.2-3b     |             | 3         | 64QAM     | 3/4     | 15    |                  | -               |       |
| FDD       | Table A.3.2-3b     |             | 5         | 64QAM     | 3/4     | 25    |                  | -               |       |
| FDD       | Table A.3.2-3b     |             | 10        | 64QAM     | 3/4     | 50    |                  | -               |       |
| FDD       | Table A.3.2-3b     |             | 15        | 64QAM     | 3/4     | 75    |                  | -               |       |
| FDD       | Table A.3.2-3b     |             | 20        | 64QAM     | 3/4     | 83    |                  | -               |       |
| TDD, Rece | iver requirements, | Maximum inp | out level | for UE Ca | tegorie | s 3-5 | 1                | T               |       |
| TDD       | Table A.3.2-4      |             | 1.4       | 64QAM     | 3/4     | 6     |                  | -               |       |
| TDD       | Table A.3.2-4      |             | 3         | 64QAM     | 3/4     | 15    |                  | -               |       |
| TDD       | Table A.3.2-4      |             | 5         | 64QAM     | 3/4     | 25    |                  | -               |       |
| TDD       | Table A.3.2-4      |             | 10        | 64QAM     | 3/4     | 50    |                  | -               |       |
| TDD       | Table A.3.2-4      |             | 15        | 64QAM     | 3/4     | 75    |                  | -               |       |
| TDD       | Table A.3.2-4      |             | 20        | 64QAM     | 3/4     | 100   |                  | -               |       |
|           | iver requirements, | Maximum inp | 1         | 1         | _       | 1     |                  |                 |       |
| TDD       | Table A.3.2-4a     |             | 1.4       | 64QAM     | 3/4     | 6     |                  | -               |       |
| TDD       | Table A.3.2-4a     |             | 3         | 64QAM     | 3/4     | 15    |                  | -               |       |

|           |                     |                          | 1          |            |               |         |        |                | [             |
|-----------|---------------------|--------------------------|------------|------------|---------------|---------|--------|----------------|---------------|
| TDD       | Table A.3.2-4a      |                          | 5          | 64QAM      | 3/4           | 18      |        | -              |               |
| TDD       | Table A.3.2-4a      |                          | 10         | 64QAM      | 3/4           | 17      |        | -              |               |
| TDD       | Table A.3.2-4a      |                          | 15         | 64QAM      | 3/4           | 17      |        | -              |               |
| TDD       | Table A.3.2-4a      |                          | 20         | 64QAM      | 3/4           | 17      |        | -              |               |
| TDD, Reco | eiver requirements, | Maximum inp              | ut level   | for UE Ca  | tegorie       | s 2     |        |                |               |
| TDD       | Table A.3.2-4b      |                          | 1.4        | 64QAM      | 3/4           | 6       |        | -              |               |
| TDD       | Table A.3.2-4b      |                          | 3          | 64QAM      | 3/4           | 15      |        | -              |               |
| TDD       | Table A.3.2-4b      |                          | 5          | 64QAM      | 3/4           | 25      |        | -              |               |
| TDD       | Table A.3.2-4b      |                          | 10         | 64QAM      | 3/4           | 50      |        | -              |               |
| TDD       | Table A.3.2-4b      |                          | 15         | 64QAM      | 3/4           | 75      |        | -              |               |
| TDD       | Table A.3.2-4b      |                          | 20         | 64QAM      | 3/4           | 83      |        | -              |               |
| FDD, PDS  | CH Performance, S   | ingle-antenna            | transm     | ission (CR | (S)           |         |        |                |               |
| FDD       | Table A.3.3.1-1     | R.4 FDD                  | 1.4        | QPSK       | 1/3           | 6       |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-1     | R.42 FDD                 | 20         | QPSK       | 1/3           | 100     |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-1     | R.2 FDD                  | 10         | QPSK       | 1/3           | 50      |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-2     | R.3-1 FDD                | 5          | 16QAM      | 1/2           | 25      |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-2     | R.3 FDD                  | 10         | 16QAM      | 1/2           | 50      |        | ≥ 2            |               |
| FDD       | Table A.3.3.1-3     | R.5 FDD                  | 3          | 64QAM      | 3/4           | 15      |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-3     | R.6 FDD                  | 5          | 64QAM      | 3/4           | 25      |        | ≥ 2            |               |
| FDD       | Table A.3.3.1-3     | R.7 FDD                  | 10         | 64QAM      | 3/4           | 50      |        | ≥ 2            |               |
| FDD       | Table A.3.3.1-3     | R.8 FDD                  | 15         | 64QAM      | 3/4           | 75      |        | ≥ 2            |               |
| FDD       | Table A.3.3.1-3     | R.9 FDD                  | 20         | 64QAM      | 3/4           | 100     |        | ≥ 3            |               |
| FDD       | Table A.3.3.1-3a    | R.6-1 FDD                | 5          | 64QAM      | 3/4           | 18      |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-3a    | R.7-1 FDD                | 10         | 64QAM      | 3/4           | 17      |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-3a    | R.8-1 FDD                | 15         | 64QAM      | 3/4           | 17      |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-3a    | R.9-1 FDD                | 20         | 64QAM      | 3/4           | 17      |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-3a    | R.9-2 FDD                | 20         | 64QAM      | 3/4           | 83      |        | ≥ 2            |               |
| FDD       | Table A.3.3.1-6     | R.41 FDD                 | 10         | QPSK       | 1/10          | 50      |        | ≥ 1            |               |
| FDD, PDS  | CH Performance, S   | ingle-antenna            | transm     | ission (CR | S), Sin       | gle PRE | 3 (Cha | innel e        | edge)         |
| FDD       | Table A.3.3.1-4     | R.0 FDD                  | 3          | 16QAM      | 1/2           | 1       |        | ≥ 1            |               |
| FDD       | Table A.3.3.1-4     | R.1 FDD                  | 10 /<br>20 | 16QAM      | 1/2           | 1       |        | ≥ 1            |               |
| FDD, PDS  | CH Performance, S   | ingle-antenna            |            | ission (CR | S), Sin       | qle PRE | 3 (MB  | SFN C          | onfiguration) |
| FDD       | Table A.3.3.1-5     | R.29 FDD                 | 10         | 16QAM      | 1/2           | 1       | •      | ≥ 1            |               |
| FDD, PDS  | CH Performance: C   | arrier aggrega           | ation wit  | h power i  | mbalan        | се      |        |                |               |
| FDD       | Table A.3.3.1-7     | R.49 FDD                 | 20         | 64QAM      | 0.84-<br>0.87 | 100     |        | ≥5             |               |
| FDD       | Table A.3.3.1-7     | R.49-1 FDD               | 20         | 64QAM      | 0.89-         | 100     |        | ≥ 5            |               |
|           | CH Performance, M   |                          |            |            | 0.92          |         | a port |                |               |
| FDD       | Table A.3.3.2.1-1   | R.10 FDD                 | 10         | QPSK       | 1/3           | 50      |        | <b>3</b><br>≥1 |               |
| FDD       | Table A.3.3.2.1-1   | R.11 FDD                 | 10         | 16QAM      | 1/2           | 50      |        | ≥ 2            |               |
| FDD       | Table A.3.3.2.1-1   | R.11-2 FDD               | 5          | 16QAM      | 1/2           | 25      |        | ≥ 1            |               |
| FDD       | Table A.3.3.2.1-1   | R.11-3 FDD               | 10         | 16QAM      | 1/2           | 40      |        | ≥ 1<br>≥ 1     |               |
| FDD       | Table A.3.3.2.1-1   | R.11-3 FDD               | 10         | QPSK       | 1/2           | 50      |        | ≥ 1<br>≥ 1     |               |
| FDD       | Table A.3.3.2.1-1   | R.30 FDD                 | 20         | 16QAM      | 1/2           | 100     |        | ≥ 2            |               |
| FDD       | Table A.3.3.2.1-1   | R.30-1 FDD               | 15         | 16QAM      | 1/2           | 75      |        | ≥ 2<br>≥ 2     |               |
| FDD       | Table A.3.3.2.1-1   | R.35 FDD                 | 10         | 64QAM      | 1/2           | 50      |        | ≥ 2<br>≥ 2     |               |
| FDD       | Table A.3.3.2.1-1   | R.35-1 FDD               | 20         | 64QAM      | 0.39          | 100     |        | <u> </u>       |               |
| FDD       | Table A.3.3.2.1-1   | R.35-1 FDD<br>R.35-2 FDD | 15         | 64QAM      | 0.39          | 75      |        | 4<br>≥ 2       |               |
| רטש       | Table A.3.3.2.1-1   | R.33-2 FUD               | 10         | 04QAIVI    | 0.39          | 10      |        | < Z            |               |

| 500      |                   |                | 40            | 040404      | 0.00     | 50     |        |              |               |
|----------|-------------------|----------------|---------------|-------------|----------|--------|--------|--------------|---------------|
| FDD      | Table A.3.3.2.1-1 | R.35-3 FDD     | 10            | 64QAM       | 0.39     | 50     |        | ≥2           |               |
| FDD      | Table A.3.3.2.1-2 | R.35-4 FDD     | 10            | 64QAM       | 0.47     | 50     |        | ≥2           |               |
| FDD      | Table A.3.3.2.1-2 | R.46 FDD       | 10            | QPSK        |          | 50     |        | ≥ 1          |               |
| FDD      | Table A.3.3.2.1-2 | R.47 FDD       | 10            | 16QAM       |          | 50     |        | ≥ 1          |               |
| -        | CH Performance, N |                | [             |             | 1        |        | na por | ts           |               |
| FDD      | Table A.3.3.2.2-1 | R.12 FDD       | 1.4           | QPSK        | 1/3      | 6      |        | ≥ 1          |               |
| FDD      | Table A.3.3.2.2-1 | R.13 FDD       | 10            | QPSK        | 1/3      | 50     |        | ≥ 1          |               |
| FDD      | Table A.3.3.2.2-1 | R.14 FDD       | 10            | 16QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD      | Table A.3.3.2.2-1 | R.14-1 FDD     | 10            | 16QAM       | 1/2      | 6      |        | ≥ 1          |               |
| FDD      | Table A.3.3.2.2-1 | R.14-2 FDD     | 10            | 16QAM       | 1/2      | 3      |        | ≥ 1          |               |
| FDD      | Table A.3.3.2.2-1 | R.14-3 FDD     | 20            | 16QAM       | 1/2      | 100    |        | ≥ 2          |               |
| FDD      | Table A.3.3.2.2-1 | R.36 FDD       | 10            | 64QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD, PDS | CH Performance (U | E specific RS  | ) Two ar      | ntenna por  | rts (CSI | -RS)   |        |              |               |
| FDD      | Table A.3.3.3.1-1 | R.51 FDD       | 10            | 16QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD, PDS | CH Performance (U | IE specific RS | ) Two ar      | ntenna por  | rts (CSI | -RS, n | on Qua | asi Co-      | located)      |
| FDD      | Table A.3.3.3.1-2 | R.52 FDD       | 10            | 64QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD      | Table A.3.3.3.1-2 | R.53 FDD       | 10            | 64QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD      | Table A.3.3.3.1-2 | R.54 FDD       | 10            | 16QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD, PDS | CH Performance (U | E specific RS  | ) Four a      | ntenna po   | rts (CS  | I-RS)  |        |              |               |
| FDD      | Table A.3.3.3.2-1 | R.43 FDD       | 10            | QPSK        | 1/3      | 50     |        | ≥ 1          |               |
| FDD      | Table A.3.3.3.2-1 | R.50 FDD       | 10            | 64QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD      | Table A.3.3.3.2-2 | R.44 FDD       | 10            | QPSK        | 1/3      | 50     |        | ≥ 1          |               |
| FDD      | Table A.3.3.3.2-2 | R.45 FDD       | 10            | 16QAM       | 1/2      | 50     |        | ≥ 2          |               |
| FDD      | Table A.3.3.3.2-2 | R.45-1 FDD     | 10            | 16QAM       | 1/2      | 39     |        | ≥ 1          |               |
| FDD      | Table A.3.3.3.2-1 | R.48 FDD       | 10            | QPSK        |          | 50     |        | ≥ 1          |               |
| TDD, PDS | CH Performance, S | ingle-antenna  | transmi       | ission (CR  | S)       |        |        |              |               |
| TDD      | Table A.3.4.1-1   | R.4 TDD        | 1.4           | QPSK        | 1/3      | 6      |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-1   | R.42 TDD       | 20            | QPSK        | 1/3      | 100    |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-1   | R.2 TDD        | 10            | QPSK        | 1/3      | 50     |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-2   | R.3-1 TDD      | 5             | 16QAM       | 1/2      | 25     |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-2   | R.3 TDD        | 10            | 16QAM       | 1/2      | 50     |        | ≥ 2          |               |
| TDD      | Table A.3.4.1-3   | R.5 TDD        | 3             | 64QAM       | 3/4      | 15     |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-3   | R.6 TDD        | 5             | 64QAM       | 3/4      | 25     |        | ≥ 2          |               |
| TDD      | Table A.3.4.1-3   | R.7 TDD        | 10            | 64QAM       | 3/4      | 50     |        | ≥ 2          |               |
| TDD      | Table A.3.4.1-3   | R.8 TDD        | 15            | 64QAM       | 3/4      | 75     |        | ≥ 2          |               |
| TDD      | Table A.3.4.1-3   | R.9 TDD        | 20            | 64QAM       | 3/4      | 100    |        | ≥ 3          |               |
| TDD      | Table A.3.4.1-3a  | R.6-1 TDD      | 5             | 64QAM       | 3/4      | 18     |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-3a  | R.7-1 TDD      | 10            | 64QAM       | 3/4      | 17     |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-3a  | R.8-1 TDD      | 15            | 64QAM       | 3/4      | 17     |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-3a  | R.9-1 TDD      | 20            | 64QAM       | 3/4      | 17     |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-3a  | R.9-2 TDD      | 20            | 64QAM       | 3/4      | 83     |        | ≥ 2          |               |
| TDD      | Table A.3.4.1-6   | R.41 TDD       | 10            | QPSK        | 1/10     | 50     |        | ≥ 1          |               |
| TDD, PDS | CH Performance, S | ingle-antenna  | transmi       | ission (CR  | S), Sin  | gle PR | B (Cha | annel e      | edge)         |
| TDD      | Table A.3.4.1-4   | R.0 TDD        | 3             | 16QAM       | 1/2      | 1      |        | ≥ 1          |               |
| TDD      | Table A.3.4.1-4   | R.1 TDD        | 10 /          | 16QAM       | 1/2      | 1      |        | ≥ 1          |               |
|          | CH Performance, S |                | 20<br>transmi |             | I        |        | B (MP  |              | onfiguration) |
| TDD, PDS | Table A.3.4.1-5   | R.29 TDD       | 10            | 16QAM       | 1/2      |        |        | SFN C<br>≥ 1 |               |
|          | CH Performance: C |                | -             |             |          |        |        | <u> </u>     |               |
| 100, 205 | on renormance: C  | anner aggrega  | ation wit     | in power li | ninaian  | LE     |        |              |               |

| Г — Г     |                   |                 |          | r          |               | 1 1     |         |         |          |
|-----------|-------------------|-----------------|----------|------------|---------------|---------|---------|---------|----------|
| TDD       | Table A.3.4.1-7   | R.49 TDD        | 20       | 64QAM      | 0.81-<br>087  | 100     |         | ≥ 5     |          |
| TDD       | Table A.3.4.1-7   | R.49-1 TDD      | 20       | 64QAM      | 0.86-<br>0.92 | 100     |         | ≥ 5     |          |
| TDD, PDSC | CH Performance, N | lulti-antenna t | ransmis  | sion (CRS  |               | antenn  | na port | s       |          |
| TDD       | Table A.3.4.2.1-1 | R.10 TDD        | 10       | QPSK       | 1/3           | 50      |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.1-1 | R.11 TDD        | 10       | 16QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.2.1-1 | R.11-1 TDD      | 10       | 16QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.2.1-1 | R.11-2 TDD      | 5        | 16QAM      | 1/2           | 25      |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.1-1 | R.11-3 TDD      | 10       | 16QAM      | 1/2           | 40      |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.1-1 | R.11-4 TDD      | 10       | QPSK       | 1/2           | 50      |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.1-1 | R.30 TDD        | 20       | 16QAM      | 1/2           | 100     |         | ≥ 2     |          |
| TDD       | Table A.3.4.2.1-1 | R.30-1 TDD      | 20       | 16QAM      | 1/2           | 100     |         | ≥ 2     |          |
| TDD       | Table A.3.4.2.1-1 | R.30-2 TDD      | 20       | 16QAM      | 1/2           | 100     |         | 3       |          |
| TDD       | Table A.3.4.2.1-1 | R.35 TDD        | 10       | 64QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.2.1-1 | R.35-1 TDD      | 20       | 64QAM      | 0.39          | 100     |         | 4       |          |
| TDD       | Table A.3.4.2.1-2 | R.35-2 TDD      | 10       | 64QAM      | 0.47          | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.2.1-2 | R.46 TDD        | 10       | QPSK       |               | 50      |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.1-2 | R.47 TDD        | 10       | 16QAM      |               | 50      |         | ≥ 1     |          |
| TDD, PDSC | CH Performance, N | lulti-antenna t | ransmis  | sion (CRS  | ), Four       | antenr  | na por  | ts      |          |
| TDD       | Table A.3.4.2.2-1 | R.12 TDD        | 1.4      | QPSK       | 1/3           | 6       |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.2-1 | R.13 TDD        | 10       | QPSK       | 1/3           | 50      |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.2-1 | R.14 TDD        | 10       | 16QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.2.2-1 | R.14-1 TDD      | 10       | 16QAM      | 1/2           | 6       |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.2-1 | R.14-2 TDD      | 10       | 16QAM      | 1/2           | 3       |         | ≥ 1     |          |
| TDD       | Table A.3.4.2.2-1 | R.43 TDD        | 20       | 16QAM      | 1/2           | 100     |         | ≥2      |          |
| TDD       | Table A.3.4.2.2-1 | R.36 TDD        | 10       | 64QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD, PDSC | CH Performance, S | ingle antenna   | port (DI | RS)        |               |         |         |         |          |
| TDD       | Table A.3.4.3.1-1 | R.25 TDD        | 10       | QPSK       | 1/3           | 50      |         | ≥ 1     |          |
| TDD       | Table A.3.4.3.1-1 | R.26 TDD        | 10       | 16QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.3.1-1 | R.26-1 TDD      | 5        | 16QAM      | 1/2           | 25      |         | ≥ 1     |          |
| TDD       | Table A.3.4.3.1-1 | R.27 TDD        | 10       | 64QAM      | 3/4           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.3.1-1 | R.27-1 TDD      | 10       | 64QAM      | 3/4           | 18      |         | ≥ 1     |          |
| TDD       | Table A.3.4.3.1-1 | R.28 TDD        | 10       | 16QAM      | 1/2           | 1       |         | ≥ 1     |          |
| TDD, PDSC | CH Performance, T | wo antenna p    | orts (DR | S)         |               |         |         |         |          |
| TDD       | Table A.3.4.3.2-1 | R.31 TDD        | 10       | QPSK       | 1/3           | 50      |         | ≥ 1     |          |
| TDD       | Table A.3.4.3.2-1 | R.32 TDD        | 10       | 16QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.3.2-1 | R.32-1 TDD      | 5        | 16QAM      | 1/2           | [25]    |         | ≥ 1     |          |
| TDD       | Table A.3.4.3.2-1 | R.33 TDD        | 10       | 64QAM      | 3/4           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.3.2-1 | R.33-1 TDD      | 10       | 64QAM      | 3/4           | [18]    |         | ≥ 1     |          |
| TDD       | Table A.3.4.3.2-1 | R.34 TDD        | 10       | 64QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD, PDSC | CH Performance (U | E specific RS   | ) Two ar | ntenna por | ts (CSI       | -RS)    |         |         |          |
| TDD       | Table A.3.4.3.3-1 | R.51 TDD        | 10       | 16QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD, PDSC | CH Performance (U | E specific RS   | ) Two ar | ntenna por | ts (CSI       | -RS, no | on Qua  | isi Co- | located) |
| TDD       | Table A.3.4.3.3-2 | R.52 TDD        | 10       | 64QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.3.3-2 | R.53 TDD        | 10       | 64QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.3.3-2 | R.54 TDD        | 10       | 16QAM      | 1/2           | 50      |         | ≥ 2     |          |
|           | CH Performance (U |                 | ) Four a |            | rts (CS       | I-RS)   |         |         |          |
| TDD       | Table A.3.4.3.4-1 | R.44 TDD        | 10       | 64QAM      | 1/2           | 50      |         | ≥ 2     |          |
| TDD       | Table A.3.4.3.4-1 | R.48 TDD        | 10       | QPSK       | 1             | 50      |         | ≥ 1     |          |

| TDD, PDSCH Performance (UE specific RS) Eight antenna ports (CSI-RS) |                      |                |     |       |                     |    |   |   |  |
|----------------------------------------------------------------------|----------------------|----------------|-----|-------|---------------------|----|---|---|--|
| TDD                                                                  | Table A.3.4.3.5-1    | R.50 TDD       | 10  | QPSK  | 1/3                 | 50 | 2 | 1 |  |
| TDD                                                                  | Table A.3.4.3.5-2    | R.45 TDD       | 10  | 16QAM | 1/2                 | 50 | ≥ | 2 |  |
| TDD                                                                  | Table A.3.4.3.5-2    | R.45-1 TDD     | 10  | 16QAM | 1/2                 | 39 | ≥ | 1 |  |
| FDD, PDC                                                             | CH / PCFICH Perfo    | rmance         |     |       |                     |    |   |   |  |
| FDD                                                                  | Table A.3.5.1-1      | R.15 FDD       | 10  | PDCCH |                     |    |   |   |  |
| FDD                                                                  | Table A.3.5.1-1      | R.15-1 FDD     | 10  | PDCCH |                     |    |   |   |  |
| FDD                                                                  | Table A.3.5.1-1      | R.15-2 FDD     | 10  | PDCCH |                     |    |   |   |  |
| FDD                                                                  | Table A.3.5.1-1      | R.16 FDD       | 10  | PDCCH |                     |    |   |   |  |
| FDD                                                                  | Table A.3.5.1-1      | R.17 FDD       | 5   | PDCCH |                     |    |   |   |  |
| TDD, PDC                                                             | CH / PCFICH Perfo    | rmance         |     |       |                     |    |   |   |  |
| TDD                                                                  | Table A.3.5.2-1      | R.15 TDD       | 10  | PDCCH |                     |    |   |   |  |
| TDD                                                                  | Table A.3.5.2-1      | R.15-1 TDD     | 10  | PDCCH |                     |    |   |   |  |
| TDD                                                                  | Table A.3.5.2-1      | R.15-2 TDD     | 10  | PDCCH |                     |    |   |   |  |
| TDD                                                                  | Table A.3.5.2-1      | R.16 TDD       | 10  | PDCCH |                     |    |   |   |  |
| TDD                                                                  | Table A.3.5.2-1      | R.17 TDD       | 5   | PDCCH |                     |    |   |   |  |
|                                                                      | ), PHICH Performar   | nce            |     |       |                     |    |   |   |  |
| FDD /<br>TDD                                                         | Table A.3.6-1        | R.18           | 10  | PHICH |                     |    |   |   |  |
| FDD /<br>TDD                                                         | Table A.3.6-1        | R.19           | 10  | PHICH |                     |    |   |   |  |
| FDD /<br>TDD                                                         | Table A.3.6-1        | R.20           | 5   | PHICH |                     |    |   |   |  |
| FDD /<br>TDD                                                         | Table A.3.6-1        | R.24           | 10  | PHICH |                     |    |   |   |  |
|                                                                      | ), PBCH Performan    | ce             |     |       |                     |    |   |   |  |
| FDD /                                                                | Table A.3.7-1        | R.21           | 1.4 | QPSK  | 40/                 |    |   |   |  |
| TDD<br>FDD /<br>TDD                                                  | Table A.3.7-1        | R.22           | 1.4 | QPSK  | 1920<br>40/<br>1920 |    |   |   |  |
| FDD /<br>TDD                                                         | Table A.3.7-1        | R.23           | 1.4 | QPSK  | 40/ 1920            |    |   |   |  |
| FDD, PMC                                                             | H Performance        |                |     |       |                     |    |   |   |  |
| FDD                                                                  | Table A.3.8.1-1      | R.40 FDD       | 1.4 | QPSK  | 1/3                 | 6  | ≥ | 1 |  |
| FDD                                                                  | Table A.3.8.1-1      | R.37 FDD       | 10  | QPSK  | 1/3                 | 50 | ≥ | 1 |  |
| FDD                                                                  | Table A.3.8.1-2      | R.38 FDD       | 10  | 16QAM | 1/2                 | 50 | ≥ | 1 |  |
| FDD                                                                  | Table A.3.8.1-3      | R.39-1 FDD     | 5   | 64QAM | 2/3                 | 25 | ≥ | 1 |  |
| FDD                                                                  | Table A.3.8.1-3      | R.39 FDD       | 10  | 64QAM | 2/3                 | 50 | ≥ | 2 |  |
| TDD, PMC                                                             | CH Performance       |                |     |       |                     |    |   |   |  |
| TDD                                                                  | Table A.3.8.2-1      | R.40 TDD       | 1.4 | QPSK  | 1/3                 | 6  | ≥ | 1 |  |
| TDD                                                                  | Table A.3.8.2-1      | R.37 TDD       | 10  | QPSK  | 1/3                 | 50 | ≥ | 1 |  |
| TDD                                                                  | Table A.3.8.2-2      | R.38 TDD       | 10  | 16QAM | 1/2                 | 50 | ≥ | 1 |  |
| TDD                                                                  | Table A.3.8.2-3      | R.39-1 TDD     | 5   | 64QAM | 2/3                 | 25 | ≥ | 1 |  |
| TDD                                                                  | Table A.3.8.2-3      | R.39 TDD       | 10  | 64QAM | 2/3                 | 50 | 2 | 2 |  |
| FDD, Sust                                                            | tained data rate (CR | (S)            | F   | Γ     |                     |    | T |   |  |
| FDD                                                                  | Table A.3.9.1-1      | R.31-1 FDD     | 10  | 64QAM | 0.40                |    | ≥ | 1 |  |
| FDD                                                                  | Table A.3.9.1-1      | R.31-2 FDD     | 10  | 64QAM | 0.59-<br>0.64       |    | 2 | 2 |  |
| FDD                                                                  | Table A.3.9.1-1      | R.31-3 FDD     | 20  | 64QAM | 0.59-<br>0.62       |    | 2 | 2 |  |
| FDD                                                                  | Table A.3.9.1-1      | R.31-3A FDD    | 10  | 64QAM | 0.85-<br>0.90       |    | 2 | 2 |  |
| FDD                                                                  | Table A.3.9.1-1      | R.31-3C<br>FDD | 15  | 64QAM | 0.87-<br>0.91       |    | 2 | 3 |  |
| FDD                                                                  | Table A.3.9.1-1      | R.31-4 FDD     | 20  | 64QAM | 0.87-<br>0.90       |    |   | 3 |  |
| FDD                                                                  | Table A.3.9.1-1      | R.31-4B FDD    | 15  | 64QAM | 0.85-               |    | ≥ | 4 |  |

| FDD         Table A.3.9.11         R.315 FDD         15         64QAM         0.81<br>0.81         2           TDD         Table A.3.9.2-1         R.31-1 TDD         10         64QAM         0.40         2         2           TDD         Table A.3.9.2-1         R.31-1 TDD         10         64QAM         0.60         2         2           TDD         Table A.3.9.2-1         R.31-3 TDD         20         64QAM         0.67         2         2           TDD         Table A.3.9.2-1         R.31-3 TDD         20         64QAM         0.67         2         2           TDD         Table A.3.9.2-1         R.31-4 TDD         0         64QAM         0.67         2         2           TDD         Table A.3.9.2-1         R.31E-1 FDD         10         64QAM         0.40         2         2           FDD         Table A.3.9.1         R.31E-2 FDD         10         64QAM         0.67         2         2           FDD         Table A.3.9.1         R.31E-3 FDD         20         64QAM         0.87         2         2           FDD         Table A.3.9.1         R.31E-4 FDD         20         64QAM         0.87         2         2           FD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                      |               |         |            | 0.88  |  |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|---------------|---------|------------|-------|--|-----|--|
| TDD. Sustained data rate (CRS)         Union         Union <thunion< th="">         &lt;</thunion<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EDD      | Table & 3.9.1-1      | R 31-5 EDD    | 15      | 640AM      | 0.85- |  | > 3 |  |
| TDD         Table A.3.9.2-1         R.31-1 TDD         10         64QAM         0.40 $\geq 1$ TDD         Table A.3.9.2-1         R.31-2 TDD         10         64QAM         0.58-<br>0.684 $\geq 2$ TDD         Table A.3.9.2-1         R.31-3 TDD         20         64QAM         0.69-<br>0.69 $\geq 2$ TDD         Table A.3.9.2-1         R.31-3 TDD         20         64QAM         0.67-<br>0.690 $\geq 3$ FDD         Table A.3.9.2-1         R.31-4 TDD         20         64QAM         0.40-<br>0.40 $\geq 3$ FDD         Table A.3.9.2-1         R.31-1 FDD         10         64QAM         0.69-<br>0.690 $\geq 2$ FDD         Table A.3.9.3-1         R.31E-2 FDD         10         64QAM         0.69-<br>0.69 $\geq 2$ FDD         Table A.3.9.1         R.31E-3 FDD         20         64QAM         0.67-<br>0.87 $\geq 2$ FDD         Table A.3.9.1         R.31E-3 FDD         20         64QAM         0.87-<br>0.87 $\geq 2$ FDD         Table A.3.9.1         R.31E-3 FDD         20         64QAM         0.87-<br>0.90 $\geq 2$ FDD         Table A.3.9.4.1         R.31E-2 TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                      |               | 10      | 0+QAW      | 0.91  |  | - 0 |  |
| TDD         Table A.3.9.2.1         R.31.2 TDD         10         640AM $0.64$ 2           TDD         Table A.3.9.2.1         R.31.3 TDD         20         640AM $0.62$ 22           TDD         Table A.3.9.2.1         R.31.3 TDD         20         640AM $0.67$ 22           TDD         Table A.3.9.2.1         R.31.4 TDD         20         640AM $0.67$ 23           FDD         Table A.3.9.2.1         R.31.4 TDD         20         640AM $0.67$ 23           FDD         Table A.3.9.3.1         R.31E-1 FDD         10         640AM $0.67$ 22           FDD         Table A.3.9.3.1         R.31E-3 FDD         20         640AM $0.56$ 22           FDD         Table A.3.9.1.1         R.31E-3 FDD         20         640AM $0.52$ 23           FDD         Table A.3.9.1.1         R.31E-3 FDD         20         640AM $0.62$ 22           FDD         Table A.3.9.1.1         R.31E-4 FDD         20         640AM $0.62$ 22           FDD         Table A.3.9.4.1         R.31E-4 FDD         20         640AM $0.63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      | -             | 10      | 64QAM      | 0.40  |  | ≥ 1 |  |
| TDD         Table A.3.9.2.1         R.31-3 TDD         20         64QAM         0.62<br>0.90         22           TDD         Table A.3.9.2.1         R.31-3 TDD         15         64QAM         0.87<br>0.90         23           TDD         Table A.3.9.2.1         R.31-4 TDD         20         64QAM         0.87<br>0.90         23           FDD         Table A.3.9.2.1         R.31E-1 FDD         10         64QAM         0.40<br>0.66         22           FDD         Table A.3.9.3.1         R.31E-2 FDD         10         64QAM         0.69<br>0.66         22           FDD         Table A.3.9.3.1         R.31E-3 FDD         20         64QAM         0.69<br>0.63         22           FDD         Table A.3.9.1.1         R.31E-3FDD         20         64QAM         0.87<br>0.92         23           FDD         Table A.3.9.1.1         R.31E-3FDD         20         64QAM         0.87<br>0.92         23           FDD         Table A.3.9.1.1         R.31E-3FDD         10         64QAM         0.87<br>0.92         23           FDD         Table A.3.9.1.1         R.31E-4FDD         20         64QAM         0.87<br>0.92         24           FDD         Table A.3.9.1.1         R.31E-3FDD         10         64QAM </td <td>TDD</td> <td></td> <td></td> <td>10</td> <td></td> <td>0.59-</td> <td></td> <td>≥ 2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TDD      |                      |               | 10      |            | 0.59- |  | ≥ 2 |  |
| TDD         Table A.3.9.2-1         R.31-3A TDD         15         64QAM $0.67$<br>0.00 $\geq 2$ TDD         Table A.3.9.2-1         R.31-4 TDD         20         64QAM $0.67$<br>0.87 $\geq 3$ FDD, Sustified data rate test with EPDCC         Schedal $0.67$<br>0.80 $\geq 2$ $0.67$<br>0.86 $\geq 2$ FDD         Table A.3.9.3-1         R.31E-1 FDD         10         64QAM $0.40$<br>0.66 $\geq 2$ FDD         Table A.3.9.3-1         R.31E-3 FDD         20         64QAM $0.66$<br>0.83 $\geq 2$ FDD         Table A.3.9.1-1         R.31E-3 FDD         20         64QAM $0.67$<br>0.83 $\geq 2$ FDD         Table A.3.9.1-1         R.31E-3 FDD         20         64QAM $0.67$<br>0.87 $\geq 2$ FDD         Table A.3.9.1         R.31E-4 FDD         20         64QAM $0.67$<br>0.87 $\geq 2$ FDD         Table A.3.9.1         R.31E-4 FDD         20         64QAM $0.67$<br>0.87 $\geq 2$ FDD         Table A.3.9.1         R.31E-3 TDD         0.0 $0.40$ M $0.47$ $\geq 2$ TDD         Table A.3.9.4 <td< td=""><td>TDD</td><td>Table A.3.9.2-1</td><td>R.31-3 TDD</td><td>20</td><td>64QAM</td><td>0.59-</td><td></td><td>≥ 2</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TDD      | Table A.3.9.2-1      | R.31-3 TDD    | 20      | 64QAM      | 0.59- |  | ≥ 2 |  |
| TDD         Table A.3.9.2-1         R.31-4 TDD         20         64QAM $0.87$ $2$ 3           FDD         Table A.3.9.3-1         R.31E-1 FDD         10         64QAM $0.40^{\circ}$ $0.40^{\circ}$ FDD         Table A.3.9.3-1         R.31E-1 FDD         10         64QAM $0.59^{\circ}$ $2$ 2           FDD         Table A.3.9.3-1         R.31E-3 FDD         20         64QAM $0.59^{\circ}$ $2$ 2           FDD         Table A.3.9.1-1         R.31E-3 FDD         20         64QAM $0.87^{\circ}$ $2$ 3           FDD         Table A.3.9.1-1         R.31E-3 FDD         10         64QAM $0.87^{\circ}$ $2$ 3           FDD         Table A.3.9.1-1         R.31E-3 FDD         20         64QAM $0.87^{\circ}$ $2$ 3           FDD         Table A.3.9.1-1         R.31E-4 FDD         20         64QAM $0.87^{\circ}$ $2$ 3           FDD         Table A.3.9.1-1         R.31E-4 TDD         10         64QAM $0.87^{\circ}$ $2$ 2           FDD         Table A.3.9.4-1         R.31E-3 TDD         64QAM $0.87^{\circ}$ $2$ 2           TDD         Table A.3.9.4-1         R.31E-3 TDD <th< td=""><td>TDD</td><td>Table A.3.9.2-1</td><td></td><td>15</td><td>64QAM</td><td>0.87-</td><td></td><td>≥ 2</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TDD      | Table A.3.9.2-1      |               | 15      | 64QAM      | 0.87- |  | ≥ 2 |  |
| FDD, Sustained data rate test with EPDCCH scheduling (CRS)           FDD         Table A.3.9.3-1         R.31E-1 FDD         10         64QAM         0.40<br>0.41 $\geq 1$ FDD         Table A.3.9.3-1         R.31E-2 FDD         10         64QAM         0.59<br>0.66 $\geq 2$ FDD         Table A.3.9.3-1         R.31E-3 FDD         20         64QAM         0.59<br>0.63 $\geq 2$ FDD         Table A.3.9.1-1         R.31E-3C<br>FDD         15         64QAM         0.87<br>0.82 $\geq 2$ FDD         Table A.3.9.1-1         R.31E-3C<br>FDD         10         64QAM         0.87<br>0.92 $\geq 3$ FDD         Table A.3.9.1-1         R.31E-3C<br>FDD         10         64QAM         0.87<br>0.92 $\geq 2$ FDD         Table A.3.9.1-1         R.31E-4FD         20         64QAM         0.87<br>0.99 $\geq 4$ FDD         Table A.3.9.1-1         R.31E-4FD         10         64QAM         0.87<br>0.99 $\geq 4$ TDD         Table A.3.9.4-1         R.31E-3TDD         10         64QAM         0.41<br>0.41 $\geq 1$ TDD         Table A.3.9.4-1         R.31E-3 TDD         20         64QAM         0.87<br>0.92 $\geq 2$ <td>TDD</td> <td>Table A.3.9.2-1</td> <td>R.31-4 TDD</td> <td>20</td> <td>64QAM</td> <td>0.87-</td> <td></td> <td>≥ 3</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TDD      | Table A.3.9.2-1      | R.31-4 TDD    | 20      | 64QAM      | 0.87- |  | ≥ 3 |  |
| FDD       Table A.3.9.3-1       R.31E-1 FDD       10 $64QAM$ $0.41$ $\geq 1$ FDD       Table A.3.9.3-1       R.31E-2 FDD       10 $64QAM$ $0.59$ $\geq 2$ FDD       Table A.3.9.3-1       R.31E-3 FDD       20 $64QAM$ $0.66$ $\geq 2$ FDD       Table A.3.9.3-1       R.31E-3C FDD       15 $64QAM$ $0.87$ - $2.3$ FDD       Table A.3.9.3-1       R.31E-3A FDD       20 $64QAM$ $0.87$ - $2.3$ FDD       Table A.3.9.3-1       R.31E-4A FDD       20 $64QAM$ $0.87$ - $2.3$ FDD       Table A.3.9.1-1       R.31E-4B FDD       10 $64QAM$ $0.87$ - $2.3$ FDD       Table A.3.9.1-1       R.31E-4D FDD       10 $64QAM$ $0.87$ - $2.4$ TDD       Table A.3.9.4-1       R.31E-1TDD       10 $64QAM$ $0.67$ - $2.2$ TDD       Table A.3.9.4-1       R.31E-3TDD       20 $64QAM$ $0.69$ - $2.2$ TDD       Table A.3.9.4-1       R.31E-3TDD       20 $64QAM$ $0.67$ - $2.3$ TDD       Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FDD, Sus | tained data rate tes | t with EPDCCI | H sched | uling (CRS |       |  |     |  |
| FDD         Table A.3.9.3-1         R.31E-2 FDD         10         64QAM $0.66$ $\geq 2$ FDD         Table A.3.9.3-1         R.31E-3 FDD         20         64QAM $0.63$ $\geq 2$ FDD         Table A.3.9.3-1         R.31E-3C         15         64QAM $0.63$ $\geq 2$ FDD         Table A.3.9.3-1         R.31E-3C         10         64QAM $0.65$ $\geq 2$ FDD         Table A.3.9.3-1         R.31E-3C         10         64QAM $0.65$ $\geq 2$ FDD         Table A.3.9.3-1         R.31E-4B         10         64QAM $0.87$ $\geq 3$ FDD         Table A.3.9.4-1         R.31E-4B         15         64QAM $0.87$ $\geq 2$ TDD         Table A.3.9.4-1         R.31E-2TDD         10         64QAM $0.40^{-1}$ $\geq 2$ TDD         Table A.3.9.4-1         R.31E-3TDD         20         64QAM $0.65$ $\geq 2$ TDD         Table A.3.9.4-1         R.31E-3TDD         20         64QAM $0.67$ $\geq 2$ TDD         Table A.3.9.4-1         R.31E-3TDD         20         64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |               | 1       |            | 0.40- |  | ≥ 1 |  |
| FDD       Table A.3.9.3-1       R.31E-3 FDD       20       64QAM $0.59$ -<br>0.63       2       2         FDD       Table A.3.9.1-1       R.31E-3C<br>FDD       15       64QAM $0.87$ -<br>0.92       2       23         FDD       Table A.3.9.1-1       R.31E-3C<br>FDD       10       64QAM $0.87$ -<br>0.92       2       23         FDD       Table A.3.9.1-1       R.31E-4B<br>FDD       20       64QAM $0.87$ -<br>0.99       2       24         FDD       Table A.3.9.1-1       R.31E-4B<br>FDD       15       64QAM $0.87$ -<br>0.99       2       4         FDD       Table A.3.9.1-1       R.31E-4B<br>FDD       15       64QAM $0.87$ -<br>$0.99$ 2       4         TDD       Table A.3.9.4-1       R.31E-1TDD       10       64QAM $0.40^-$<br>0.55       2       2         TDD       Table A.3.9.4-1       R.31E-3TDD       20       64QAM $0.57$ -<br>0.63       2       2         TDD       Table A.3.9.4-1       R.31E-3TDD       20       64QAM $0.87$ -<br>0.63       2       2         TDD       Table A.3.10.1-1       R.55 FDD       10       64QAM $0.87$ -<br>0.87       2       2         FDD       T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FDD      | Table A.3.9.3-1      | R.31E-2 FDD   | 10      | 64QAM      | 0.59- |  | ≥ 2 |  |
| FDD         Table A.3.9.1-1 $R.31E-3C$<br>PDD         15 $64QAM$ $0.87-0.92 \geq 3           FDD         Table A.3.9.3-1         R.31E-3APDD$ 10 $64QAM$ $0.87-0.97 \geq 3           FDD         Table A.3.9.3-1         R.31E-4FDD         20         64QAM 0.87-0.90 \geq 3           FDD         Table A.3.9.1-1         R.31E-4FDD         20         64QAM 0.87-0.90 \geq 3           FDD         Table A.3.9.1-1         R.31E-4EBFDD$ $64QAM$ $0.87-0.90 \geq 3           TDD         Table A.3.9.1-1         R.31E-1TDD 10 64QAM 0.65 \geq 2           TDD         Table A.3.9.4-1         R.31E-3TDD 20 64QAM 0.65 \geq 2           TDD         Table A.3.9.4-1         R.31E-3TDD 20 64QAM 0.87 \geq 2           TDD         Table A.3.9.4-1         R.31E-3TDD 20 64QAM 0.87 \geq 3           TDD         Table A.3.10.1-1         R.55 FDD 10 EPDCC = 2 = 2           FDD         Table$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FDD      | Table A.3.9.3-1      | R.31E-3 FDD   | 20      | 64QAM      | 0.59- |  | ≥ 2 |  |
| FDD       Table A.3.9.3-1 $R.31E-3A$<br>FDD       10 $64QAM$<br>$0.97$ $0.85$ -<br>$0.97$ $\geq 2$ FDD       Table A.3.9.3-1 $R.31E-4$ FDD       20 $64QAM$<br>$0.97$ $0.87$ -<br>$0.90$ $\geq 3$ FDD       Table A.3.9.1-1 $R.31E-4$ FDD       20 $64QAM$<br>$0.90$ $0.87$ -<br>$0.90$ $\geq 3$ FDD       Table A.3.9.1-1 $R.31E-4$ FDD       10 $64QAM$<br>$0.90$ $0.87$ -<br>$0.90$ $\geq 4$ TDD       Table A.3.9.1-1 $R.31E-4$ TDD       10 $64QAM$<br>$0.90$ $0.87$ -<br>$0.90$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-3$ TDD       10 $64QAM$<br>$0.65$ $0.59$ -<br>$0.65$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-3$ TDD       20 $64QAM$<br>$0.87$ $0.87$ -<br>$0.82$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-4$ TDD       20 $64QAM$<br>$0.87$ $0.87$ -<br>$0.92$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-4$ TDD       20 $64QAM$<br>$0.87$ $0.87$ -<br>$0.92$ $\geq 2$ TDD       Table A.3.10.1-1 $R.55$ FDD       10 $EPDCC$<br>H       L       L       L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FDD      | Table A.3.9.1-1      |               | 15      | 64QAM      | 0.87- |  | ≥ 3 |  |
| FDD       Table A.3.9.3-1       R.31E-4 FDD       20       64QAM $0.87$ -<br>.0.91       23         FDD       Table A.3.9.1-1       R.31E-4B<br>FDD       15       64QAM $0.87$ -<br>.0.90       24         TDD, Sustimed data rate test with EPDCCH scheduling (CRS)       Table A.3.9.4-1       R.31E-1 TDD       10       64QAM $0.40^{-}$<br>.0.41       21         TDD       Table A.3.9.4-1       R.31E-1 TDD       10       64QAM $0.65^{-}$ 22         TDD       Table A.3.9.4-1       R.31E-2 TDD       10       64QAM $0.59^{-}$ 22         TDD       Table A.3.9.4-1       R.31E-3 TDD       20       64QAM $0.67^{-}$ 22         TDD       Table A.3.9.4-1       R.31E-4 TDD       20       64QAM $0.92^{-}$ 22         TDD       Table A.3.9.4-1       R.31E-4 TDD       20       64QAM $0.92^{-}$ 23         TDD       Table A.3.10.1-1       R.55 FDD       10       EPDCC       24       23         FDD       Table A.3.10.1-1       R.56 FDD       10       EPDCC H H       24       24         FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC H H       24       24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FDD      | Table A.3.9.3-1      | R.31E-3A      | 10      | 64QAM      | 0.85- |  | ≥ 2 |  |
| FDD       Table A.3.9.1-1 $R.31E-4B$<br>FDD       15 $64QAM$ $0.67^{-}$<br>$0.90$ $\geq 4$ TDD, Sustained data rate test with EPDCCH scheduling (CRS)         TDD       Table A.3.9.4-1 $R.31E-1$ TDD       10 $64QAM$ $0.40^{-}$<br>$0.41$ $\geq 1$ TDD       Table A.3.9.4-1 $R.31E-2$ TDD       10 $64QAM$ $0.65^{-1}$<br>$0.65$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-3$ TDD       20 $64QAM$ $0.65^{-1}$<br>$0.65$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-3$ TDD       20 $64QAM$ $0.65^{-1}$<br>$0.65$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-3$ TDD       20 $64QAM$ $0.67^{-1}$<br>$0.63$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-3$ TDD       20 $64QAM$ $0.63^{-1}$<br>$0.63$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-4$ TDD       20 $64QAM$ $0.63^{-1}$<br>$0.63$ $\geq 2$ TDD       Table A.3.9.4-1 $R.31E-4$ TDD       20 $64QAM$ $0.63^{-1}$<br>$0.63^{-1}$ $\geq 2$ TDD       Table A.3.10.1-1 $R.55$ FDD       10       EPDCC<br>HC $=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FDD      | Table A.3.9.3-1      |               | 20      | 64QAM      | 0.87- |  | ≥ 3 |  |
| TDD       Table A.3.9.4-1       R.31E-1 TDD       10 $64QAM$ $0.40^{-}_{0.41}$ $\geq 1$ TDD       Table A.3.9.4-1       R.31E-2 TDD       10 $64QAM$ $0.59^{-}_{0.65}$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-3 TDD       20 $64QAM$ $0.59^{-}_{0.63}$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-3 TDD       20 $64QAM$ $0.87^{-}_{0.92}$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-4 TDD       20 $64QAM$ $0.87^{-}_{0.92}$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-4 TDD       20 $64QAM$ $0.87^{-}_{0.92}$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-4 TDD       20 $64QAM$ $0.87^{-}_{0.92}$ $\geq 3$ FDD       Table A.3.10.1-1       R.55 FDD       10       EPDCC       H       I         FDD       Table A.3.10.1-1       R.56 FDD       10       EPDCC       I       I         FDD       Table A.3.10.1-1       R.57 FDD       10       EPDCC       I       I         FDD       Table A.3.10.1-1       R.59 FDD       10       EPDCC       I       I         FDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FDD      | Table A.3.9.1-1      |               | 15      | 64QAM      |       |  | ≥ 4 |  |
| TDD       Table A.3.9.4-1       R.31E-1 TDD       10       64QAM       0.41       21         TDD       Table A.3.9.4-1       R.31E-2 TDD       10       64QAM       0.59-<br>0.63       22         TDD       Table A.3.9.4-1       R.31E-3 TDD       20       64QAM       0.69-<br>0.63       22         TDD       Table A.3.9.4-1       R.31E-3A TDD       20       64QAM       0.87-<br>0.92       22         TDD       Table A.3.9.4-1       R.31E-3TDD       20       64QAM       0.87-<br>0.92       22         TDD       Table A.3.9.4-1       R.31E-4 TDD       20       64QAM       0.87-<br>0.92       23         FDD, ePDCCH performance       E       E       0.90-<br>0.63       23       23         FDD       Table A.3.10.1-1       R.55 FDD       10       EPDCC H H       10       10         FDD       Table A.3.10.1-1       R.56 FDD       10       EPDCC H H       10       10         FDD       Table A.3.10.1-1       R.57 FDD       10       EPDCC H       10       10       10         FDD       Table A.3.10.1-1       R.59 FDD       10       EPDCC H       10       10       10         FDD       Table A.3.10.2-1       R.56 TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDD, Sus | tained data rate tes | t with EPDCC  | H sched | uling (CRS |       |  |     |  |
| TDD       Table A.3.9.4-1       R.31E-2 TDD       10       64QAM $0.59 \\ 0.63$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-3 TDD       20       64QAM $0.63 \\ 0.63$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-3 TDD       20       64QAM $0.87 \\ 0.92 \\ 0.90$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-3 TDD       20       64QAM $0.87 \\ 0.90$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-4 TDD       20       64QAM $0.87 \\ 0.90$ $\geq 3$ FDD, ePDCCH performance       EPDCC Herformance       EPDCC Herformance $\geq 3$ $\geq 3$ FDD       Table A.3.10.1-1       R.55 FDD       10       EPDCC H H $\geq 3$ FDD       Table A.3.10.1-1       R.56 FDD       10       EPDCC H $= 1$ $= 1$ FDD       Table A.3.10.1-1       R.56 FDD       10       EPDCC H $= 1$ $= 1$ FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC H $= 1$ $= 1$ FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC H $= 1$ $= 1$ TDD       Table A.3.10.2-1 <td< td=""><td>TDD</td><td>Table A.3.9.4-1</td><td>R.31E-1 TDD</td><td>10</td><td>64QAM</td><td></td><td></td><td>≥ 1</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TDD      | Table A.3.9.4-1      | R.31E-1 TDD   | 10      | 64QAM      |       |  | ≥ 1 |  |
| TDD       Table A.3.9.4-1       R.31E-3 TDD       20       64QAM $0.59$ -<br>$0.63$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-3A<br>TDD       15       64QAM $0.87$ -<br>$0.92$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-4 TDD       20       64QAM $0.87$ -<br>$0.92$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-4 TDD       20       64QAM $0.87$ -<br>$0.92$ $\geq 3$ FDD, ePDCCH performance       E       E       E       E       E       E         FDD       Table A.3.10.1-1       R.55 FDD       10 $\frac{FPDCC}{H}$ $=$ $=$ $=$ FDD       Table A.3.10.1-1       R.56 FDD       10 $\frac{FPDCC}{H}$ $=$ $=$ $=$ FDD       Table A.3.10.1-1       R.57 FDD       10 $\frac{FPDCC}{H}$ $=$ $=$ $=$ FDD       Table A.3.10.1-1       R.58 FDD       10 $\frac{FPDCC}{H}$ $=$ $=$ $=$ FDD       Table A.3.10.2-1       R.55 TDD       10 $\frac{FPDCC}{H}$ $=$ $=$ $=$ TDD       Table A.3.10.2-1       R.56 TDD       10 $\frac{FPDCC}{H}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TDD      | Table A.3.9.4-1      | R.31E-2 TDD   | 10      | 64QAM      | 0.59- |  | ≥ 2 |  |
| TDD       Table A.3.9.4-1 $\begin{array}{c} R.31E-3A\\ TDD \end{array}$ 15       64QAM $\begin{array}{c} 0.87\\ 0.90 \end{array}$ $\geq 2$ TDD       Table A.3.9.4-1       R.31E-4 TDD       20       64QAM $\begin{array}{c} 0.87\\ 0.90 \end{array}$ $\geq 3$ FDD, ePD-CCH performance       F         FDD       Table A.3.10.1-1       R.55 FDD       10 $\begin{array}{c} PPDCC\\ H\\ C\\ C\\ H\\ C\\ C\\ H\\ C\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TDD      | Table A.3.9.4-1      | R.31E-3 TDD   | 20      | 64QAM      | 0.59- |  | ≥2  |  |
| IDD       Table A.3.9.4-1       R.3TE-4 TDD       20       64QAM       0.90       23         FDD, ePDCCH performance         FDD       Table A.3.10.1-1       R.55 FDD       10       EPDCC<br>H       A       C       A         FDD       Table A.3.10.1-1       R.55 FDD       10       EPDCC<br>H       A       C       A         FDD       Table A.3.10.1-1       R.56 FDD       10       EPDCC<br>H       A       C       A         FDD       Table A.3.10.1-1       R.57 FDD       10       EPDCC<br>H       A       C       A         FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC<br>H       A       C       A         FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC<br>H       A       C       A         FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC<br>H       A       C       A       C         FDD       Table A.3.10.2-1       R.55 TDD       10       EPDCC<br>H       A       C       A       C         TDD       Table A.3.10.2-1       R.56 TDD       10       EPDCC<br>H       A       C       A       C         TDD       Table A.3.10.2-1       R.58 TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TDD      | Table A.3.9.4-1      |               | 15      | 64QAM      | 0.87- |  | ≥ 2 |  |
| FDD       Table A.3.10.1-1       R.55 FDD       10       EPDCC<br>H       Image: Constraint of the state of the st | TDD      | Table A.3.9.4-1      | R.31E-4 TDD   | 20      | 64QAM      |       |  | ≥ 3 |  |
| FDD       Table A.3.10.1-1       R.55 FDD       10       H       Image: Constraint of the state of    | FDD, ePD | CCH performance      |               |         |            |       |  |     |  |
| FDD       Table A.3.10.1-1       R.56 FDD       10       EPDCC<br>H       A       A       A         FDD       Table A.3.10.1-1       R.57 FDD       10       EPDCC<br>H       A       A       A         FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC<br>H       A       A       A         FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC<br>H       A       A       A         FDD       Table A.3.10.1-1       R.59 FDD       10       EPDCC<br>H       A       A       A         FDD       Table A.3.10.1-1       R.59 FDD       10       EPDCC<br>H       A       A       A         TDD, ePDCCH performance       FDD       10       EPDCC<br>H       A       A       A         TDD       Table A.3.10.2-1       R.55 TDD       10       EPDCC<br>H       A       A         TDD       Table A.3.10.2-1       R.56 TDD       10       EPDCC<br>H       A       A         TDD       Table A.3.10.2-1       R.58 TDD       10       EPDCC<br>H       A       A         TDD       Table A.3.10.2-1       R.58 TDD       10       EPDCC<br>H       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FDD      | Table A.3.10.1-1     | R.55 FDD      | 10      |            |       |  |     |  |
| FDD       Table A.3.10.1-1       R.57 FDD       10       EPDCC<br>H       Image: Constraint of the state of the st | FDD      | Table A.3.10.1-1     | R.56 FDD      | 10      | EPDCC      |       |  |     |  |
| FDD       Table A.3.10.1-1       R.58 FDD       10       EPDCC H H       Image: Constraint of the state of the     | FDD      | Table A.3.10.1-1     | R.57 FDD      | 10      | EPDCC      |       |  |     |  |
| FDD       Table A.3.10.1-1       R.59 FDD       10       EPDCC<br>H       Image: Constraint of the state of the st | FDD      | Table A.3.10.1-1     | R.58 FDD      | 10      |            |       |  |     |  |
| TDD, ePDCCH performance         TDD       Table A.3.10.2-1       R.55 TDD       10       EPDCC<br>H       Image: Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5">Colspan="5"Colspan="5">Colspan="5"Colspan="5">Colspan="5"Colspan="5">Colspan="5"Colspan="5">Colspan="5"Colspan="5"Colspan="5">Colspan="5"Colspan="5"Colspan="5"Colspan="5">Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"Colspan="5"                                       | FDD      | Table A.3.10.1-1     | R.59 FDD      | 10      | EPDCC      |       |  |     |  |
| TDD     Table A.3.10.2-1     R.55 TDD     10     H       TDD     Table A.3.10.2-1     R.56 TDD     10     EPDCC<br>H       TDD     Table A.3.10.2-1     R.57 TDD     10     EPDCC<br>H       TDD     Table A.3.10.2-1     R.58 TDD     10     EPDCC<br>H       TDD     Table A.3.10.2-1     R.58 TDD     10     EPDCC<br>H       TDD     Table A.3.10.2-1     R.58 TDD     10     EPDCC<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TDD, ePD | CCH performance      |               |         |            |       |  |     |  |
| TDD     Table A.3.10.2-1     R.56 TDD     10     EPDCC<br>H       TDD     Table A.3.10.2-1     R.57 TDD     10     EPDCC<br>H       TDD     Table A.3.10.2-1     R.58 TDD     10     EPDCC<br>H       TDD     Table A.3.10.2-1     R.58 TDD     10     EPDCC<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TDD      | Table A.3.10.2-1     | R.55 TDD      | 10      |            |       |  |     |  |
| TDD         Table A.3.10.2-1         R.57 TDD         10         EPDCC<br>H         EPDCC<br>H         In           TDD         Table A.3.10.2-1         R.58 TDD         10         EPDCC<br>H         In         In           TDD         Table A.3.10.2-1         R.58 TDD         10         EPDCC<br>H         In         In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TDD      | Table A.3.10.2-1     | R.56 TDD      | 10      | EPDCC      |       |  |     |  |
| TDD         Table A.3.10.2-1         R.58 TDD         10         EPDCC<br>H         EPDCC           TDD         Table A.3.10.2-1         R.59 TDD         10         EPDCC         Image: Comparison of the second secon                                                                | TDD      | Table A.3.10.2-1     | R.57 TDD      | 10      | EPDCC      |       |  |     |  |
| TDD Table A 3 10 2-1 R 59 TDD 10 EPDCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TDD      | Table A.3.10.2-1     | R.58 TDD      | 10      | EPDCC      |       |  |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TDD      | Table A.3.10.2-1     | R.59 TDD      | 10      | EPDCC      |       |  |     |  |

# A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of subclause 7.4 (Maximum input level).

Tables A.3.2-3, A.3.2-3a, A.3.2-3b, A.3.2-4, A.3.2-4a and A.3.2-4b are applicable for subclause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

| Parameter                                                                                 | Unit                                  |           |         | Va         | lue       |            |          |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------|-----------|---------|------------|-----------|------------|----------|--|--|--|
| Channel bandwidth                                                                         | MHz                                   | 1.4       | 3       | 5          | 10        | 15         | 20       |  |  |  |
| Allocated resource blocks                                                                 |                                       | 6         | 15      | 25         | 50        | 75         | 100      |  |  |  |
| Subcarriers per resource block                                                            |                                       | 12        | 12      | 12         | 12        | 12         | 12       |  |  |  |
| Allocated subframes per Radio Frame                                                       |                                       | 9         | 9       | 9          | 9         | 9          | 9        |  |  |  |
| Modulation                                                                                |                                       | QPSK      | QPSK    | QPSK       | QPSK      | QPSK       | QPSK     |  |  |  |
| Target Coding Rate                                                                        |                                       | 1/3       | 1/3     | 1/3        | 1/3       | 1/3        | 1/3      |  |  |  |
| Number of HARQ Processes                                                                  | Processes                             | 8         | 8       | 8          | 8         | 8          | 8        |  |  |  |
| Maximum number of HARQ transmissions                                                      |                                       | 1         | 1       | 1          | 1         | 1          | 1        |  |  |  |
| Information Bit Payload per Sub-Frame                                                     |                                       |           |         |            |           |            |          |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                            | Bits                                  | 408       | 1320    | 2216       | 4392      | 6712       | 8760     |  |  |  |
| For Sub-Frame 5                                                                           | Bits                                  | N/A       | N/A     | N/A        | N/A       | N/A        | N/A      |  |  |  |
| For Sub-Frame 0                                                                           | Bits                                  | 152       | 872     | 1800       | 4392      | 6712       | 8760     |  |  |  |
| Transport block CRC                                                                       | Bits                                  | 24        | 24      | 24         | 24        | 24         | 24       |  |  |  |
| Number of Code Blocks per Sub-Frame                                                       |                                       |           |         |            |           |            |          |  |  |  |
| (Note 3)                                                                                  |                                       |           |         |            |           |            |          |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                            | Bits                                  | 1         | 1       | 1          | 1         | 2          | 2        |  |  |  |
| For Sub-Frame 5                                                                           | Bits                                  | N/A       | N/A     | N/A        | N/A       | N/A        | N/A      |  |  |  |
| For Sub-Frame 0                                                                           | Bits                                  | 1         | 1       | 1          | 1         | 2          | 2        |  |  |  |
| Binary Channel Bits Per Sub-Frame                                                         |                                       |           |         |            |           |            |          |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                            | Bits                                  | 1368      | 3780    | 6300       | 13800     | 20700      | 27600    |  |  |  |
| For Sub-Frame 5                                                                           | Bits                                  | N/A       | N/A     | N/A        | N/A       | N/A        | N/A      |  |  |  |
| For Sub-Frame 0                                                                           | Bits                                  | 528       | 2940    | 5460       | 12960     | 19860      | 26760    |  |  |  |
| Max. Throughput averaged over 1 frame                                                     | kbps                                  | 341.6     | 1143.   | 1952.      | 3952.     | 6040.      | 7884     |  |  |  |
|                                                                                           |                                       |           | 2       | 8          | 8         | 8          |          |  |  |  |
| UE Category                                                                               |                                       | ≥1        | ≥1      | ≥ 1        | ≥1        | ≥1         | ≥ 1      |  |  |  |
| Note 1: 2 symbols allocated to PDCCH for                                                  |                                       |           |         |            |           | bols allo  | cated to |  |  |  |
| PDCCH for 5 MHz and 3 MHz. 4 s                                                            |                                       |           |         |            |           |            |          |  |  |  |
| Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4] |                                       |           |         |            |           |            |          |  |  |  |
| Note 3: If more than one Code Block is pro                                                |                                       | tional CR | C seque | nce of L = | = 24 Bits | is attache | ed to    |  |  |  |
| each Code Block (otherwise L = 0                                                          | each Code Block (otherwise L = 0 Bit) |           |         |            |           |            |          |  |  |  |

Table A.3.2-1 Fixed Reference Channel for Receiver Requirements (FDD)

| Parameter                                                                   | Unit            |                     |           | Va         | lue        |       |           |
|-----------------------------------------------------------------------------|-----------------|---------------------|-----------|------------|------------|-------|-----------|
| Channel Bandwidth                                                           | MHz             | 1.4                 | 3         | 5          | 10         | 15    | 20        |
| Allocated resource blocks                                                   |                 | 6                   | 15        | 25         | 50         | 75    | 100       |
| Uplink-Downlink Configuration (Note 5)                                      |                 | 1                   | 1         | 1          | 1          | 1     | 1         |
| Allocated subframes per Radio Frame (D+S)                                   |                 | 3                   | 3+2       | 3+2        | 3+2        | 3+2   | 3+2       |
| Number of HARQ Processes                                                    | Processes       | 7                   | 7         | 7          | 7          | 7     | 7         |
| Maximum number of HARQ transmission                                         |                 | 1                   | 1         | 1          | 1          | 1     | 1         |
| Modulation                                                                  |                 | QPSK                | QPSK      | QPSK       | QPSK       | QPSK  | QPSK      |
| Target coding rate                                                          |                 | 1/3                 | 1/3       | 1/3        | 1/3        | 1/3   | 1/3       |
| Information Bit Payload per Sub-Frame                                       | Bits            |                     |           |            |            |       |           |
| For Sub-Frame 4, 9                                                          |                 | 408                 | 1320      | 2216       | 4392       | 6712  | 8760      |
| For Sub-Frame 1, 6                                                          |                 | N/A                 | 968       | 1544       | 3240       | 4968  | 6712      |
| For Sub-Frame 5                                                             |                 | N/A                 | N/A       | N/A        | N/A        | N/A   | N/A       |
| For Sub-Frame 0                                                             |                 | 208                 | 1064      | 1800       | 4392       | 6712  | 8760      |
| Transport block CRC                                                         | Bits            | 24                  | 24        | 24         | 24         | 24    | 24        |
| Number of Code Blocks per Sub-Frame                                         |                 |                     |           |            |            |       |           |
| (Note 4)                                                                    |                 |                     |           |            |            |       |           |
| For Sub-Frame 4, 9                                                          |                 | 1                   | 1         | 1          | 1          | 2     | 2         |
| For Sub-Frame 1, 6                                                          |                 |                     |           |            |            |       | 2         |
| For Sub-Frame 5                                                             |                 | N/A N/A N/A N/A N/A |           |            |            |       | N/A       |
| For Sub-Frame 0                                                             |                 | 1                   | 1         | 1          | 1          | 2     | 2         |
| Binary Channel Bits Per Sub-Frame                                           | Bits            |                     |           |            |            |       |           |
| For Sub-Frame 4, 9                                                          |                 | 1368                | 3780      | 6300       | 13800      | 20700 | 27600     |
| For Sub-Frame 1, 6                                                          |                 | N/A                 | 3276      | 5556       | 11256      | 16956 | 22656     |
| For Sub-Frame 5                                                             |                 | N/A                 | N/A       | N/A        | N/A        | N/A   | N/A       |
| For Sub-Frame 0                                                             |                 | 672                 | 3084      | 5604       | 13104      | 20004 | 26904     |
| Max. Throughput averaged over 1 frame                                       | kbps            | 102.4               | 564       | 932        | 1965.      | 3007. | 3970.     |
|                                                                             |                 |                     |           |            | 6          | 2     | 4         |
| UE Category                                                                 | L               | ≥1                  | ≥1        | ≥1         | ≥ 1        | ≥1    | ≥1        |
| Note 1: For normal subframes(0,4,5,9), 2<br>channel BW; 3 symbols allocated |                 |                     |           |            |            |       |           |
| for 1.4 MHz. For special subframe                                           |                 |                     |           |            |            |       |           |
| Note 2: For 1.4MHz, no data shall be sche                                   |                 |                     |           |            |            |       | all DVV5. |
| insufficient PDCCH performance                                              |                 |                     |           | 0) 10 avoi |            |       |           |
| Note 3: Reference signal, Synchronization                                   | n signals and F | BCH allo            | ocated as | per TS 3   | 86.211 [4] | 1     |           |
| Note 4: If more than one Code Block is pro-                                 |                 |                     |           |            |            |       | ed to     |
| each Code Block (otherwise L = 0                                            |                 |                     |           |            |            |       |           |
| Note 5: As per Table 4.2-2 in TS 36.211 [4                                  | ,               |                     |           |            |            |       |           |

## Table A.3.2-2 Fixed Reference Channel for Receiver Requirements (TDD)

| Parameter                             | Unit            |                                                                                                                                                                            |        | Va    | lue   |       |       |  |  |  |  |
|---------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|-------|-------|--|--|--|--|
| Channel bandwidth                     | MHz             | 1.4                                                                                                                                                                        | 3      | 5     | 10    | 15    | 20    |  |  |  |  |
| Allocated resource blocks             |                 | 6                                                                                                                                                                          | 15     | 25    | 50    | 75    | 100   |  |  |  |  |
| Subcarriers per resource block        |                 | 12                                                                                                                                                                         | 12     | 12    | 12    | 12    | 12    |  |  |  |  |
| Allocated subframes per Radio Frame   |                 | 8                                                                                                                                                                          | 9      | 9     | 9     | 9     | 9     |  |  |  |  |
| Modulation                            |                 | 64QAM                                                                                                                                                                      | 64QAM  | 64QAM | 64QAM | 64QAM | 64QAM |  |  |  |  |
| Target Coding Rate                    |                 | 3/4                                                                                                                                                                        | 3/4    | 3/4   | 3/4   | 3/4   | 3/4   |  |  |  |  |
| Number of HARQ Processes              | Processes       | 8                                                                                                                                                                          | 8      | 8     | 8     | 8     | 8     |  |  |  |  |
| Maximum number of HARQ transmissions  |                 | 1                                                                                                                                                                          | 1      | 1     | 1     | 1     | 1     |  |  |  |  |
| Information Bit Payload per Sub-Frame |                 |                                                                                                                                                                            |        |       |       |       |       |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9        | Bits            | 2984                                                                                                                                                                       | 8504   | 14112 | 30576 | 46888 | 61664 |  |  |  |  |
| For Sub-Frame 5                       | Bits            | N/A                                                                                                                                                                        | N/A    | N/A   | N/A   | N/A   | N/A   |  |  |  |  |
| For Sub-Frame 0                       | Bits            | N/A                                                                                                                                                                        | 6456   | 12576 | 28336 | 45352 | 61664 |  |  |  |  |
| Transport block CRC                   | Bits            | 24                                                                                                                                                                         | 24     | 24    | 24    | 24    | 24    |  |  |  |  |
| Number of Code Blocks per Sub-Frame   |                 |                                                                                                                                                                            |        |       |       |       |       |  |  |  |  |
| (Note 3)                              |                 |                                                                                                                                                                            |        |       |       |       |       |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9        |                 | 1                                                                                                                                                                          | 2      | 3     | 5     | 8     | 11    |  |  |  |  |
| For Sub-Frame 5                       |                 | N/A                                                                                                                                                                        | N/A    | N/A   | N/A   | N/A   | N/A   |  |  |  |  |
| For Sub-Frame 0                       |                 | N/A                                                                                                                                                                        | 2      | 3     | 5     | 8     | 11    |  |  |  |  |
| Binary Channel Bits Per Sub-Frame     |                 |                                                                                                                                                                            |        |       |       |       |       |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9        | Bits            | 4104                                                                                                                                                                       | 11340  | 18900 | 41400 | 62100 | 82800 |  |  |  |  |
| For Sub-Frame 5                       | Bits            | N/A                                                                                                                                                                        | N/A    | N/A   | N/A   | N/A   | N/A   |  |  |  |  |
| For Sub-Frame 0                       | Bits            | N/A                                                                                                                                                                        | 8820   | 16380 | 38880 | 59580 | 80280 |  |  |  |  |
| Max. Throughput averaged over 1 frame | kbps            | 2387.2                                                                                                                                                                     | 7448.8 | 12547 | 27294 | 42046 | 55498 |  |  |  |  |
| for 5 MHz and 3 MHz. 4 symbols        | allocated to PI | Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz. |        |       |       |       |       |  |  |  |  |

#### Table A.3.2-3 Fixed Reference Channel for Maximum input level for UE Categories 3-8 (FDD)

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

#### Table A.3.2-3a Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

| Parameter                                                                                                                                                                                                                                                                                          | Unit      |        |        | Va     | lue    |        |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|--------|--------|--------|--------|--|
| Channel bandwidth                                                                                                                                                                                                                                                                                  | MHz       | 1.4    | 3      | 5      | 10     | 15     | 20     |  |
| Allocated resource blocks                                                                                                                                                                                                                                                                          |           | 6      | 15     | 18     | 17     | 17     | 17     |  |
| Subcarriers per resource block                                                                                                                                                                                                                                                                     |           | 12     | 12     | 12     | 12     | 12     | 12     |  |
| Allocated subframes per Radio Frame                                                                                                                                                                                                                                                                |           | 8      | 9      | 9      | 9      | 9      | 9      |  |
| Modulation                                                                                                                                                                                                                                                                                         |           | 64QAM  | 64QAM  | 64QAM  | 64QAM  | 64QAM  | 64QAM  |  |
| Target Coding Rate                                                                                                                                                                                                                                                                                 |           | 3/4    | 3/4    | 3/4    | 3/4    | 3/4    | 3/4    |  |
| Number of HARQ Processes                                                                                                                                                                                                                                                                           | Processes | 8      | 8      | 8      | 8      | 8      | 8      |  |
| Maximum number of HARQ transmissions                                                                                                                                                                                                                                                               |           | 1      | 1      | 1      | 1      | 1      | 1      |  |
| Information Bit Payload                                                                                                                                                                                                                                                                            |           |        |        |        |        |        |        |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                                                                                                                                                                                                     | Bits      | 2984   | 8504   | 10296  | 10296  | 10296  | 10296  |  |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                    | Bits      | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    |  |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                    | Bits      | N/A    | 6456   | 8248   | 10296  | 10296  | 10296  |  |
| Transport block CRC                                                                                                                                                                                                                                                                                | Bits      | 24     | 24     | 24     | 24     | 24     | 24     |  |
| Number of Code Blocks per Sub-Frame (Note 3)                                                                                                                                                                                                                                                       |           |        |        |        |        |        |        |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                                                                                                                                                                                                     |           | 1      | 2      | 2      | 2      | 2      | 2      |  |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                    |           | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    |  |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                    |           | N/A    | 2      | 2      | 2      | 2      | 2      |  |
| Binary Channel Bits Per Sub-Frame                                                                                                                                                                                                                                                                  |           |        |        |        |        |        |        |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                                                                                                                                                                                                     | Bits      | 4104   | 11340  | 13608  | 14076  | 14076  | 14076  |  |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                    | Bits      | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    |  |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                    | Bits      | N/A    | 8820   | 11088  | 14076  | 14076  | 14076  |  |
| Max. Throughput averaged over 1 frame                                                                                                                                                                                                                                                              | kbps      | 2387.2 | 7448.8 | 9079.6 | 9266.4 | 9266.4 | 9266.4 |  |
| <ul> <li>Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz.</li> <li>Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].</li> </ul> |           |        |        |        |        |        |        |  |
| Note 2. If mere then one Code Plagk is present on additional CPC assumption of $L = 24$ Pita is attached to each Code                                                                                                                                                                              |           |        |        |        |        |        |        |  |

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

| Parameter                                                                                                              | Unit            |            |         | Va    | lue   |             |       |
|------------------------------------------------------------------------------------------------------------------------|-----------------|------------|---------|-------|-------|-------------|-------|
| Channel bandwidth                                                                                                      | MHz             | 1.4        | 3       | 5     | 10    | 15          | 20    |
| Allocated resource blocks                                                                                              |                 | 6          | 15      | 25    | 50    | 75          | 83    |
| Subcarriers per resource block                                                                                         |                 | 12         | 12      | 12    | 12    | 12          | 12    |
| Allocated subframes per Radio Frame                                                                                    |                 | 8          | 9       | 9     | 9     | 9           | 9     |
| Modulation                                                                                                             |                 | 64QAM      | 64QAM   | 64QAM | 64QAM | 64QAM       | 64QAM |
| Target Coding Rate                                                                                                     |                 | 3/4        | 3/4     | 3/4   | 3/4   | 3/4         | 3/4   |
| Number of HARQ Processes                                                                                               | Processes       | 8          | 8       | 8     | 8     | 8           | 8     |
| Maximum number of HARQ transmissions                                                                                   |                 | 1          | 1       | 1     | 1     | 1           | 1     |
| Information Bit Payload                                                                                                |                 |            |         |       |       |             |       |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                         | Bits            | 2984       | 8504    | 14112 | 30576 | 46888       | 51024 |
| For Sub-Frame 5                                                                                                        | Bits            | N/A        | N/A     | N/A   | N/A   | N/A         | N/A   |
| For Sub-Frame 0                                                                                                        | Bits            | N/A        | 6456    | 12576 | 28336 | 45352       | 51024 |
| Transport block CRC                                                                                                    | Bits            | 24         | 24      | 24    | 24    | 24          | 24    |
| Number of Code Blocks per Sub-Frame                                                                                    |                 |            |         |       |       |             |       |
| (Note 3)                                                                                                               |                 |            |         |       |       |             |       |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                         |                 | 1          | 2       | 3     | 5     | 8           | 9     |
| For Sub-Frame 5                                                                                                        |                 | N/A        | N/A     | N/A   | N/A   | N/A         | N/A   |
| For Sub-Frame 0                                                                                                        |                 | N/A        | 2       | 3     | 5     | 8           | 9     |
| Binary Channel Bits Per Sub-Frame                                                                                      |                 |            |         |       |       |             |       |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                         | Bits            | 4104       | 11340   | 18900 | 41400 | 62100       | 68724 |
| For Sub-Frame 5                                                                                                        | Bits            | N/A        | N/A     | N/A   | N/A   | N/A         | N/A   |
| For Sub-Frame 0                                                                                                        | Bits            | N/A        | 8820    | 16380 | 38880 | 59580       | 66204 |
| Max. Throughput averaged over 1 frame                                                                                  | kbps            | 2387.2     | 7448.8  | 12547 | 27294 | 42046       | 45922 |
| Note 1: 2 symbols allocated to PDCCH fo<br>for 5 MHz and 3 MHz. 4 symbols<br>Note 2: Reference signal. Synchronization | allocated to PI | DCCH for 1 | .4 MHz. |       | -     | llocated to | PDCCH |

#### Table A.3.2-3b Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4].
Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

| Parameter                                                                                                          | Unit          |              |             | Va          | lue        |             |           |
|--------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------|-------------|------------|-------------|-----------|
| Channel bandwidth                                                                                                  | MHz           | 1.4          | 3           | 5           | 10         | 15          | 20        |
| Allocated resource blocks                                                                                          |               | 6            | 15          | 25          | 50         | 75          | 100       |
| Subcarriers per resource block                                                                                     |               | 12           | 12          | 12          | 12         | 12          | 12        |
| Uplink-Downlink Configuration (Note 5)                                                                             |               | 1            | 1           | 1           | 1          | 1           | 1         |
| Allocated subframes per Radio Frame                                                                                |               | 2            | 3+2         | 3+2         | 3+2        | 3+2         | 3+2       |
| Modulation                                                                                                         |               | 64QAM        | 64QAM       | 64QAM       | 64QAM      | 64QAM       | 64QAM     |
| Target Coding Rate                                                                                                 |               | 3/4          | 3/4         | 3/4         | 3/4        | 3/4         | 3/4       |
| Number of HARQ Processes                                                                                           | Processes     | 7            | 7           | 7           | 7          | 7           | 7         |
| Maximum number of HARQ transmissions                                                                               |               | 1            | 1           | 1           | 1          | 1           | 1         |
| Information Bit Payload per Sub-Frame                                                                              |               |              |             |             |            |             |           |
| For Sub-Frames 4,9                                                                                                 | Bits          | 2984         | 8504        | 14112       | 30576      | 46888       | 61664     |
| For Sub-Frames 1,6                                                                                                 | Bits          | N/A          | 6968        | 11448       | 23688      | 35160       | 46888     |
| For Sub-Frame 5                                                                                                    | Bits          | N/A          | N/A         | N/A         | N/A        | N/A         | N/A       |
| For Sub-Frame 0                                                                                                    | Bits          | N/A          | 6968        | 12576       | 30576      | 45352       | 61664     |
| Transport block CRC                                                                                                | Bits          | 24           | 24          | 24          | 24         | 24          | 24        |
| Number of Code Blocks per Sub-Frame                                                                                |               |              |             |             |            |             |           |
| (Note 4)                                                                                                           |               |              |             |             |            |             |           |
| For Sub-Frames 4,9                                                                                                 |               | 1            | 2           | 3           | 5          | 8           | 11        |
| For Sub-Frames 1,6                                                                                                 |               | N/A          | 2           | 2           | 4          | 6           | 8         |
| For Sub-Frame 5                                                                                                    |               | N/A          | N/A         | N/A         | N/A        | N/A         | N/A       |
| For Sub-Frame 0                                                                                                    |               | N/A          | 2           | 3           | 5          | 8           | 11        |
| Binary Channel Bits per Sub-Frame                                                                                  |               |              |             |             |            |             |           |
| For Sub-Frames 4,9                                                                                                 | Bits          | 4104         | 11340       | 18900       | 41400      | 62100       | 82800     |
| For Sub-Frames 1,6                                                                                                 |               | N/A          | 9828        | 16668       | 33768      | 50868       | 67968     |
| For Sub-Frame 5                                                                                                    | Bits          | N/A          | N/A         | N/A         | N/A        | N/A         | N/A       |
| For Sub-Frame 0                                                                                                    | Bits          | N/A          | 9252        | 16812       | 39312      | 60012       | 80712     |
| Max. Throughput averaged over 1 frame                                                                              | kbps          | 596.8        | 3791.2      | 6369.6      | 13910      | 20945       | 27877     |
| Note 1: For normal subframes(0,4,5,9), 2                                                                           |               |              |             |             |            |             |           |
| 3 symbols allocated to PDCCH for                                                                                   |               |              |             |             | OCCH for 1 | .4 MHz. Fo  | r special |
| subframe (1&6), only 2 OFDM syn                                                                                    |               |              |             |             |            |             |           |
| Note 2: For 1.4MHz, no data shall be sche                                                                          | eduled on spe | cial subfrar | nes(1&6) to | o avoid pro | blems with | insufficien | t PDCCH   |
| performance.                                                                                                       |               |              |             |             |            |             |           |
| Note 3: Reference signal, Synchronization                                                                          |               |              |             |             |            |             |           |
| Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code |               |              |             |             |            |             |           |
| Block (otherwise $L = 0$ Bit).                                                                                     | 41            |              |             |             |            |             |           |
| Note 5: As per Table 4.2-2 in TS 36.211 [4                                                                         | ¥J.           |              |             |             |            |             |           |

## Table A.3.2-4 Fixed Reference Channel for Maximum input level for UE Categories 3-8 (TDD)

| Parameter                                                                                                                                                                                                                                                                                                                                              | Unit                                                                  |                                                        |                                                         | Va                                              | lue                                |            |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|------------------------------------|------------|----------------------|
| Channel bandwidth                                                                                                                                                                                                                                                                                                                                      | MHz                                                                   | 1.4                                                    | 3                                                       | 5                                               | 10                                 | 15         | 20                   |
| Allocated resource blocks                                                                                                                                                                                                                                                                                                                              |                                                                       | 6                                                      | 15                                                      | 18                                              | 17                                 | 17         | 17                   |
| Subcarriers per resource block                                                                                                                                                                                                                                                                                                                         |                                                                       | 12                                                     | 12                                                      | 12                                              | 12                                 | 12         | 12                   |
| Uplink-Downlink Configuration (Note 5)                                                                                                                                                                                                                                                                                                                 |                                                                       | 1                                                      | 1                                                       | 1                                               | 1                                  | 1          | 1                    |
| Allocated subframes per Radio Frame                                                                                                                                                                                                                                                                                                                    |                                                                       | 2                                                      | 3+2                                                     | 3+2                                             | 3+2                                | 3+2        | 3+2                  |
| Modulation                                                                                                                                                                                                                                                                                                                                             |                                                                       | 64QAM                                                  | 64QAM                                                   | 64QAM                                           | 64QAM                              | 64QAM      | 64QAM                |
| Target Coding Rate                                                                                                                                                                                                                                                                                                                                     |                                                                       | 3/4                                                    | 3/4                                                     | 3/4                                             | 3/4                                | 3/4        | 3/4                  |
| Number of HARQ Processes                                                                                                                                                                                                                                                                                                                               | Processes                                                             | 7                                                      | 7                                                       | 7                                               | 7                                  | 7          | 7                    |
| Maximum number of HARQ transmissions                                                                                                                                                                                                                                                                                                                   |                                                                       | 1                                                      | 1                                                       | 1                                               | 1                                  | 1          | 1                    |
| Information Bit Payload per Sub-Frame                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                        |                                                         |                                                 |                                    |            |                      |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                                                                                     | Bits                                                                  | 2984                                                   | 8504                                                    | 10296                                           | 10296                              | 10296      | 10296                |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                                                                                     | Bits                                                                  | N/A                                                    | 6968                                                    | 8248                                            | 7480                               | 7480       | 7480                 |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                                                                        | Bits                                                                  | N/A                                                    | N/A                                                     | N/A                                             | N/A                                | N/A        | N/A                  |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                                                                        | Bits                                                                  | N/A                                                    | 6968                                                    | 8248                                            | 10296                              | 10296      | 10296                |
| Transport block CRC                                                                                                                                                                                                                                                                                                                                    | Bits                                                                  | 24                                                     | 24                                                      | 24                                              | 24                                 | 24         | 24                   |
| Number of Code Blocks per Sub-Frame                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                        |                                                         |                                                 |                                    |            |                      |
| (Note 4)                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                        |                                                         |                                                 |                                    |            |                      |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                                                                                     |                                                                       | 1                                                      | 2                                                       | 2                                               | 2                                  | 2          | 2                    |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                                                                                     |                                                                       | N/A                                                    | 2                                                       | 2                                               | 2                                  | 2          | 2                    |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                                                                        |                                                                       | N/A                                                    | N/A                                                     | N/A                                             | N/A                                | N/A        | N/A                  |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                                                                        |                                                                       | N/A                                                    | 2                                                       | 2                                               | 2                                  | 2          | 2                    |
| Binary Channel Bits per Sub-Frame                                                                                                                                                                                                                                                                                                                      |                                                                       |                                                        |                                                         |                                                 |                                    |            |                      |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                                                                                     | Bits                                                                  | 4104                                                   | 11340                                                   | 13608                                           | 14076                              | 14076      | 14076                |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                                                                                     |                                                                       | N/A                                                    | 9828                                                    | 11880                                           | 11628                              | 11628      | 11628                |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                                                                        | Bits                                                                  | N/A                                                    | N/A                                                     | N/A                                             | N/A                                | N/A        | N/A                  |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                                                                        | Bits                                                                  | N/A                                                    | 9252                                                    | 11520                                           | 14076                              | 14076      | 14076                |
| Max. Throughput averaged over 1 frame                                                                                                                                                                                                                                                                                                                  | kbps                                                                  | 596.8                                                  | 3791.2                                                  | 4533.6                                          | 4584.8                             | 4584.8     | 4584.8               |
| <ul> <li>Note 1: For normal subframes(0,4,5,9), 2<br/>3 symbols allocated to PDCCH for<br/>subframe (1&amp;6), only 2 OFDM syr</li> <li>Note 2: For 1.4MHz, no data shall be sche<br/>performance.</li> <li>Note 3: Reference signal, Synchronization</li> <li>Note 4: If more than one Code Block is pro-<br/>Block (otherwise L = 0 Bit).</li> </ul> | r 5 MHz and 3<br>nbols are alloc<br>eduled on spec<br>n signals and F | MHz; 4 sy<br>cated to PD<br>cial subfran<br>PBCH alloc | mbols alloc<br>OCCH for al<br>nes(1&6) to<br>ated as pe | ated to PD<br>I BWs.<br>avoid pro<br>r TS 36.21 | OCCH for 1<br>blems with<br>1 [4]. | .4 MHz. Fo | r special<br>t PDCCH |
| Note 5: As per Table 4.2-2 in TS $36.211$ [4                                                                                                                                                                                                                                                                                                           | 41                                                                    |                                                        |                                                         |                                                 |                                    |            |                      |

## Table A.3.2-4a Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

| Parameter                                  | Unit           |              |            | Va            | lue           |               |           |
|--------------------------------------------|----------------|--------------|------------|---------------|---------------|---------------|-----------|
| Channel bandwidth                          | MHz            | 1.4          | 3          | 5             | 10            | 15            | 20        |
| Allocated resource blocks                  |                | 6            | 15         | 25            | 50            | 75            | 83        |
| Subcarriers per resource block             |                | 12           | 12         | 12            | 12            | 12            | 12        |
| Uplink-Downlink Configuration (Note 5)     |                | 1            | 1          | 1             | 1             | 1             | 1         |
| Allocated subframes per Radio Frame        |                | 2            | 3+2        | 3+2           | 3+2           | 3+2           | 3+2       |
| Modulation                                 |                | 64QAM        | 64QAM      | 64QAM         | 64QAM         | 64QAM         | 64QAM     |
| Target Coding Rate                         |                | 3/4          | 3/4        | 3/4           | 3/4           | 3/4           | 3/4       |
| Number of HARQ Processes                   | Processes      | 7            | 7          | 7             | 7             | 7             | 7         |
| Maximum number of HARQ transmissions       |                | 1            | 1          | 1             | 1             | 1             | 1         |
| Information Bit Payload per Sub-Frame      |                |              |            |               |               |               |           |
| For Sub-Frames 4,9                         | Bits           | 2984         | 8504       | 14112         | 30576         | 46888         | 51024     |
| For Sub-Frames 1,6                         | Bits           | N/A          | 6968       | 11448         | 23688         | 35160         | 39232     |
| For Sub-Frame 5                            | Bits           | N/A          | N/A        | N/A           | N/A           | N/A           | N/A       |
| For Sub-Frame 0                            | Bits           | N/A          | 6968       | 12576         | 30576         | 45352         | 51024     |
| Transport block CRC                        | Bits           | 24           | 24         | 24            | 24            | 24            | 24        |
| Number of Code Blocks per Sub-Frame        |                |              |            |               |               |               |           |
| (Note 4)                                   |                |              |            |               |               |               |           |
| For Sub-Frames 4,9                         |                | 1            | 2          | 3             | 5             | 8             | 9         |
| For Sub-Frames 1,6                         |                | N/A          | 2          | 3             | 5             | 7             | 7         |
| For Sub-Frame 5                            |                | N/A          | N/A        | N/A           | N/A           | N/A           | N/A       |
| For Sub-Frame 0                            |                | N/A          | 2          | 3             | 5             | 8             | 9         |
| Binary Channel Bits per Sub-Frame          |                |              |            |               |               |               |           |
| For Sub-Frames 4,9                         | Bits           | 4104         | 11340      | 18900         | 41400         | 62100         | 68724     |
| For Sub-Frames 1,6                         |                | N/A          | 9828       | 16668         | 33768         | 50868         | 56340     |
| For Sub-Frame 5                            | Bits           | N/A          | N/A        | N/A           | N/A           | N/A           | N/A       |
| For Sub-Frame 0                            | Bits           | N/A          | 9252       | 16380         | 39312         | 60012         | 66636     |
| Max. Throughput averaged over 1 frame      | kbps           | 596.8        | 3791.2     | 6369.6        | 13910         | 20945         | 23154     |
| Note 1: For normal subframes(0,4,5,9), 2 s |                |              |            |               |               |               |           |
| 3 symbols allocated to PDCCH for           |                |              |            |               | CCH for 1     | .4 MHz. Fo    | r special |
| subframe (1&6), only 2 OFDM syn            |                |              |            |               |               |               |           |
| Note 2: For 1.4MHz, no data shall be sch   | eduled on spe  | ecial subfra | mes(1&6) t | o avoid pro   | blems with    | n insufficier | nt        |
| PDCCH performance.                         |                |              |            |               |               |               |           |
| Note 3: Reference signal, Synchronization  |                |              |            |               |               |               |           |
| Note 4: If more than one Code Block is pre | esent, an addi | tional CRC   | sequence   | of $L = 24 E$ | Bits is attac | ched to eac   | h Code    |
| Block (otherwise $L = 0$ Bit).             |                |              |            |               |               |               |           |
| Note 5: As per Table 4.2-2 in TS 36.211 [4 | ŀ].            |              |            |               |               |               |           |

## Table A.3.2-4b Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

# A.3.3 Reference measurement channels for PDSCH performance requirements (FDD)

# A.3.3.1 Single-antenna transmission (Common Reference Symbols)

| Parameter                                  | Unit     |           |          | Value                 |               |
|--------------------------------------------|----------|-----------|----------|-----------------------|---------------|
| Reference channel                          |          | R.4       | R.42     | R.2                   |               |
|                                            |          | FDD       | FDD      | FDD                   |               |
| Channel bandwidth                          | MHz      | 1.4       | 20       | 10                    |               |
| Allocated resource blocks (Note 4)         |          | 6         | 100      | 50                    |               |
| Allocated subframes per Radio Frame        |          | 9         | 9        | 9                     |               |
| Modulation                                 |          | QPSK      | QPSK     | QPSK                  |               |
| Target Coding Rate                         |          | 1/3       | 1/3      | 1/3                   |               |
| Information Bit Payload (Note 4)           |          |           |          |                       |               |
| For Sub-Frames 1,2,3,4,6,7,8,9             | Bits     | 408       | 8760     | 4392                  |               |
| For Sub-Frame 5                            | Bits     | N/A       | N/A      | N/A                   |               |
| For Sub-Frame 0                            | Bits     | 152       | 8760     | 4392                  |               |
| Number of Code Blocks                      |          |           |          |                       |               |
| (Notes 3 and 4)                            |          |           |          |                       |               |
| For Sub-Frames 1,2,3,4,6,7,8,9             |          | 1         | 2        | 1                     |               |
| For Sub-Frame 5                            |          | N/A       | N/A      | N/A                   |               |
| For Sub-Frame 0                            |          | 1         | 2        | 1                     |               |
| Binary Channel Bits (Note 4)               |          |           |          |                       |               |
| For Sub-Frames 1,2,3,4,6,7,8,9             | Bits     | 1368      | 27600    | 13800                 |               |
| For Sub-Frame 5                            | Bits     | N/A       | N/A      | N/A                   |               |
| For Sub-Frame 0                            | Bits     | 528       | 26760    | 12960                 |               |
| Max. Throughput averaged over 1 frame      | Mbps     | 0.342     | 7.884    | 3.953                 |               |
| (Note 4)                                   |          |           |          |                       |               |
| UE Category                                |          | ≥ 1       | ≥ 1      | ≥ 1                   |               |
| Note 1: 2 symbols allocated to PDCCH for   |          |           |          |                       | ols allocated |
| to PDCCH for 5 MHz and 3 MHz;              |          |           |          |                       |               |
| Note 2: Reference signal, synchronization  |          |           |          |                       |               |
| Note 3: If more than one Code Block is pre |          | tional CR | C sequer | nce of L = 24 Bits is | attached to   |
| each Code Block (otherwise L = 0           |          |           |          |                       |               |
| Note 4: Given per component carrier per c  | odeword. |           |          |                       |               |

#### Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

| Parameter                                 | Unit          |            |       | V           | alue          |            |        |
|-------------------------------------------|---------------|------------|-------|-------------|---------------|------------|--------|
| Reference channel                         |               |            |       | R.3-1       | R.3           |            |        |
|                                           |               |            |       | FDD         | FDD           |            |        |
| Channel bandwidth                         | MHz           | 1.4        | 3     | 5           | 10            | 15         | 20     |
| Allocated resource blocks                 |               |            |       | 25          | 50            |            |        |
| Allocated subframes per Radio Frame       |               |            |       | 9           | 9             |            |        |
| Modulation                                |               |            |       | 16QAM       | 16QAM         |            |        |
| Target Coding Rate                        |               |            |       | 1/2         | 1/2           |            |        |
| Information Bit Payload                   |               |            |       |             |               |            |        |
| For Sub-Frames 1,2,3,4,6,7,8,9            | Bits          |            |       | 6456        | 14112         |            |        |
| For Sub-Frame 5                           | Bits          |            |       | N/A         | N/A           |            |        |
| For Sub-Frame 0                           | Bits          |            |       | 5736        | 12960         |            |        |
| Number of Code Blocks per Sub-Frame       |               |            |       |             |               |            |        |
| (Note 3)                                  |               |            |       |             |               |            |        |
| For Sub-Frames 1,2,3,4,6,7,8,9            |               |            |       | 2           | 3             |            |        |
| For Sub-Frame 5                           |               |            |       | N/A         | N/A           |            |        |
| For Sub-Frame 0                           |               |            |       | 1           | 3             |            |        |
| Binary Channel Bits Per Sub-Frame         |               |            |       |             |               |            |        |
| For Sub-Frames 1,2,3,4,6,7,8,9            | Bits          |            |       | 12600       | 27600         |            |        |
| For Sub-Frame 5                           | Bits          |            |       | N/A         | N/A           |            |        |
| For Sub-Frame 0                           | Bits          |            |       | 10920       | 25920         |            |        |
| Max. Throughput averaged over 1 frame     | Mbps          |            |       | 5.738       | 12.586        |            |        |
| UE Category                               |               |            |       | ≥1          | ≥2            |            |        |
| Note 1: 2 symbols allocated to PDCCH for  | or 20 MHz, 15 | MHz and    | 10 MI | Iz channel  | BW; 3 sym     | nbols allo | ocated |
| to PDCCH for 5 MHz and 3 MHz;             |               |            |       |             |               |            |        |
| Note 2: Reference signal, synchronization |               |            |       |             |               |            |        |
| Note 3: If more than one Code Block is p  |               | itional CR | C sec | quence of L | . = 24 Bits i | s attache  | ed to  |
| each Code Block (otherwise L = 0          | ) Bit).       |            |       |             |               |            |        |

| Table A.3.3.1-2: Fixed Reference Cha | annel 16QAM R=1/2 |
|--------------------------------------|-------------------|
|--------------------------------------|-------------------|

#### Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

| MHz          | 1.4                                                          | R.5<br>FDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R.6                                                                                                                                                                                                               | R.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R.9 FDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz          | 1.4                                                          | FDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MHz          | 1/                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FDD                                                                                                                                                                                                               | FDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 1.7                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 64QAM                                                        | 64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64QAM                                                                                                                                                                                                             | 64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              | 3/4                                                          | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/4                                                                                                                                                                                                               | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bits         |                                                              | 8504                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14112                                                                                                                                                                                                             | 30576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bits         |                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bits         |                                                              | 6456                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12576                                                                                                                                                                                                             | 28336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bits         |                                                              | 11340                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18900                                                                                                                                                                                                             | 41400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bits         |                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bits         |                                                              | 8820                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16380                                                                                                                                                                                                             | 38880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mbps         |                                                              | 7.449                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.547                                                                                                                                                                                                            | 27.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                              | ≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≥2                                                                                                                                                                                                                | ≥ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≥ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ≥ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20 MHz, 1    | 5 MHz and                                                    | 10 MHz ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | annel BW;                                                                                                                                                                                                         | 3 symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | allocated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o PDCCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| esent, an ac | ditional CR                                                  | C sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e of L = 24                                                                                                                                                                                                       | Bits is atta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ached to ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ich Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Bits<br>Bits<br>Bits<br>Bits<br>Bits<br>Bits<br>Bits<br>Bits | 64QAM       3/4       Bits       Bits       Bits       Bits       Bits       Sits       Bits       Comparison       Sits       Bits       Mbps       Comparison       Signals and PBCH alloc | 15964QAM $3/4$ $3/4$ $3/4$ BitsBitsN/ABits64562221Bits11340BitsBits11340BitsBits11340Bits11340Bits11340Bits120Mbps7.449212020MHz, 15MHz and 10MHz challocated to PDCCH for 1.4MHz.signals and PBCH allocated as p | 15       25         9       9         64QAM       64QAM         3/4       3/4         3/4       3/4         Bits       8504         14112         Bits       8504         14112         Bits       6456         12576         2       3         2       3         1       2         1340       18900         Bits       11340         Bits       11340         Bits       16380         Mbps       7.449         12.547         2       1         20       1         20       1         20       12.547         21       2         22       1         23       20         MHz, 15       10         Allocated to PDCCH for 1.4         MHz.       signals and PBCH allocated as per TS 36.2 | 15       25       50         9       9       9       9         64QAM       64QAM       64QAM       64QAM         3/4       3/4       3/4       3/4         Bits       8504       14112       30576         Bits       N/A       N/A       N/A         Bits       6456       12576       28336         2       3       5       5         1       2       3       5         2       3       5       5         1       1340       18900       41400         Bits       11340       18900       41400         Bits       11340       18900       41400         Bits       11340       18900       41400         Bits       12547       27.294         2       1       2       2         20       Mbps       7.449       12.547       27.294         21       2       2       2         20       MHz and 10 MHz channel BW; 3 symbols       allocated to PDCCH for 1.4 MHz.         signals and PBCH allocated as per TS 36.211 [4].       4]. | 15       25       50       75         9       9       9       9       9       9         64QAM       64QAM       64QAM       64QAM       64QAM       64QAM         3/4       3/4       3/4       3/4       3/4       3/4       3/4         Bits       8504       14112       30576       46888       88         Bits       N/A       N/A       N/A       N/A       N/A         Bits       6456       12576       28336       45352         2       3       5       8       8         M/A       N/A       N/A       N/A       N/A         2       3       5       8       8         9       9       9       9       9       9         2       3       5       8       8       8         11340       18900       41400       62100       8820         Bits       11340       18900       41400       62100         Bits       8820       16380       38880       59580         Mbps       7.449       12.547       27.294       42.046         21       2       2 <td< td=""></td<> |

Block (otherwise L = 0 Bit).

| Parameter Unit Value                                                                                          |                 |                  |            |            |              |        |  |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------|------------|--------------|--------|--|--|--|
| Reference channel                                                                                             |                 | R.6-1            | R.7-1      | R.8-1      | R.9-1        | R.9-2  |  |  |  |
|                                                                                                               |                 | FDD              | FDD        | FDD        | FDD          | FDD    |  |  |  |
| Channel bandwidth                                                                                             | MHz             | 5                | 10         | 15         | 20           | 20     |  |  |  |
| Allocated resource blocks (Note 3)                                                                            |                 | 18               | 17         | 17         | 17           | 83     |  |  |  |
| Allocated subframes per Radio Frame                                                                           |                 | 9                | 9          | 9          | 9            | 9      |  |  |  |
| Modulation                                                                                                    |                 | 64QAM            | 64QAM      | 64QAM      | 64QAM        | 64QAM  |  |  |  |
| Target Coding Rate                                                                                            |                 | 3/4              | 3/4        | 3/4        | 3/4          | 3/4    |  |  |  |
| Information Bit Payload                                                                                       |                 |                  |            |            |              |        |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                | Bits            | 10296            | 10296      | 10296      | 10296        | 51024  |  |  |  |
| For Sub-Frame 5                                                                                               | Bits            | N/A              | N/A        | N/A        | N/A          | N/A    |  |  |  |
| For Sub-Frame 0                                                                                               | Bits            | 8248             | 10296      | 10296      | 10296        | 51024  |  |  |  |
| Number of Code Blocks per Sub-Frame                                                                           |                 |                  |            |            |              |        |  |  |  |
| (Note 4)                                                                                                      |                 |                  |            |            |              |        |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                |                 | 2                | 2          | 2          | 2            | 9      |  |  |  |
| For Sub-Frame 5                                                                                               |                 | N/A              | N/A        | N/A        | N/A          | N/A    |  |  |  |
| For Sub-Frame 0                                                                                               |                 | 2                | 2          | 2          | 2            | 9      |  |  |  |
| Binary Channel Bits Per Sub-Frame                                                                             |                 |                  |            |            |              |        |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                | Bits            | 13608            | 14076      | 14076      | 14076        | 68724  |  |  |  |
| For Sub-Frame 5                                                                                               | Bits            | N/A              | N/A        | N/A        | N/A          | N/A    |  |  |  |
| For Sub-Frame 0                                                                                               | Bits            | 11088            | 14076      | 14076      | 14076        | 66204  |  |  |  |
| Max. Throughput averaged over 1 frame                                                                         | Mbps            | 9.062            | 9.266      | 9.266      | 9.266        | 45.922 |  |  |  |
| UE Category                                                                                                   |                 | ≥ 1              | ≥1         | ≥ 1        | ≥1           | ≥ 2    |  |  |  |
| Note 1: 2 symbols allocated to PDCCH for<br>PDCCH for 5 MHz and 3 MHz; 4                                      |                 |                  |            | /; 3 symbo | ls allocated | to     |  |  |  |
| Note 2: Reference signal, synchronizatio                                                                      | n signals and P | BCH allocated as | per TS 36. | 211 [4].   |              |        |  |  |  |
| Note 3: Localized allocation started from RB #0 is applied.                                                   |                 |                  |            |            |              |        |  |  |  |
| Note 4: If more than one Code Block is present, an additional CRC sequence of L - 24 Bits is attached to each |                 |                  |            |            |              |        |  |  |  |

| Table A.3.3.1-3a: Fixed Reference Cha | annel 64QAM R=3/4 |
|---------------------------------------|-------------------|
|---------------------------------------|-------------------|

 Note 3:
 Localized allocation started from RB #0 is applied.

 Note 4:
 If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

| Parameter                                                                | Unit                                                                                                                                                                                                                                                                                                                                                              | Value |            |   |            |    |    |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---|------------|----|----|--|--|--|--|
| Reference channel                                                        |                                                                                                                                                                                                                                                                                                                                                                   |       | R.0<br>FDD |   | R.1<br>FDD |    |    |  |  |  |  |
| Channel bandwidth                                                        | MHz                                                                                                                                                                                                                                                                                                                                                               | 1.4   | 3          | 5 | 10/20      | 15 | 20 |  |  |  |  |
| Allocated resource blocks                                                |                                                                                                                                                                                                                                                                                                                                                                   |       | 1          |   | 1          |    |    |  |  |  |  |
| Allocated subframes per Radio Frame                                      |                                                                                                                                                                                                                                                                                                                                                                   |       | 9          |   | 9          |    |    |  |  |  |  |
| Modulation                                                               |                                                                                                                                                                                                                                                                                                                                                                   |       | 16QAM      |   | 16QAM      |    |    |  |  |  |  |
| Target Coding Rate                                                       |                                                                                                                                                                                                                                                                                                                                                                   |       | 1/2        |   | 1/2        |    |    |  |  |  |  |
| Information Bit Payload                                                  |                                                                                                                                                                                                                                                                                                                                                                   |       |            |   |            |    |    |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                           | Bits                                                                                                                                                                                                                                                                                                                                                              |       | 224        |   | 256        |    |    |  |  |  |  |
| For Sub-Frame 5                                                          | Bits                                                                                                                                                                                                                                                                                                                                                              |       | N/A        |   | N/A        |    |    |  |  |  |  |
| For Sub-Frame 0                                                          | Bits                                                                                                                                                                                                                                                                                                                                                              |       | 224        |   | 256        |    |    |  |  |  |  |
| Number of Code Blocks per Sub-Frame (Note 3)                             |                                                                                                                                                                                                                                                                                                                                                                   |       |            |   |            |    |    |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                           |                                                                                                                                                                                                                                                                                                                                                                   |       | 1          |   | 1          |    |    |  |  |  |  |
| For Sub-Frame 5                                                          |                                                                                                                                                                                                                                                                                                                                                                   |       | N/A        |   | N/A        |    |    |  |  |  |  |
| For Sub-Frame 0                                                          |                                                                                                                                                                                                                                                                                                                                                                   |       | 1          |   | 1          |    |    |  |  |  |  |
| Binary Channel Bits Per Sub-Frame                                        |                                                                                                                                                                                                                                                                                                                                                                   |       |            |   |            |    |    |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                           | Bits                                                                                                                                                                                                                                                                                                                                                              |       | 504        |   | 552        |    |    |  |  |  |  |
| For Sub-Frame 5                                                          | Bits                                                                                                                                                                                                                                                                                                                                                              |       | N/A        |   | N/A        |    |    |  |  |  |  |
| For Sub-Frame 0                                                          | Bits                                                                                                                                                                                                                                                                                                                                                              |       | 504        |   | 552        |    |    |  |  |  |  |
| Max. Throughput averaged over 1 frame                                    | Mbps                                                                                                                                                                                                                                                                                                                                                              |       | 0.202      |   | 0.230      |    |    |  |  |  |  |
| UE Category                                                              |                                                                                                                                                                                                                                                                                                                                                                   |       | ≥ 1        |   | ≥ 1        |    |    |  |  |  |  |
| PDCCH for 5 MHz and 3 MHz; 4<br>Note 2: Reference signal, synchronizatio | 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz.<br>Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].<br>If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each |       |            |   |            |    |    |  |  |  |  |

|            | Parameter                         | Unit         | Value     |
|------------|-----------------------------------|--------------|-----------|
| Referenc   | e channel                         |              | R.29 FDD  |
|            |                                   |              | (MBSFN)   |
| Channel    | bandwidth                         | MHz          | 10        |
| Allocated  | resource blocks                   |              | 1         |
| MBSFN (    | Configuration                     |              | TBD       |
| Allocated  | subframes per Radio Frame         |              | 3         |
| Modulatio  | วท                                |              | 16QAM     |
| Target Co  | oding Rate                        |              | 1/2       |
| Informatio | on Bit Payload                    |              |           |
| For Sub    | -Frames 4,9                       | Bits         | 256       |
| For Sub    | -Frame 5                          | Bits         | N/A       |
| For Sub    | -Frame 0                          | Bits         | 256       |
| For Sub    | -Frame 1,2,3,6,7,8                | Bits         | 0 (MBSFN) |
| Number of  | of Code Blocks per Sub-Frame      |              |           |
| (Note 3)   |                                   |              |           |
| For Sub    | -Frames 4,9                       |              | 1         |
| For Sub    | -Frame 5                          |              | N/A       |
| For Sub    | -Frame 0                          |              | 1         |
|            | -Frame 1,2,3,6,7,8                |              | 0 (MBSFN) |
| Binary Ch  | nannel Bits Per Sub-Frame         |              |           |
| For Sub    | -Frames 4,9                       | Bits         | 552       |
| For Sub    | -Frame 5                          | Bits         | N/A       |
| For Sub    | -Frame 0                          | Bits         | 552       |
| For Sub    | -Frame 1,2,3,6,7,8                | Bits         | 0 (MBSFN) |
| Max. Thre  | oughput averaged over 1 frame     | kbps         | 76.8      |
| UE Categ   |                                   |              | ≥ 1       |
| Note 1:    | 2 symbols allocated to PDCCH.     |              |           |
| Note 2:    | Reference signal, synchronization | on signals a | and PBCH  |
|            | allocated as per TS 36.211 [4].   |              |           |
| Note 3:    | If more than one Code Block is p  | ,            |           |
|            | CRC sequence of $L = 24$ Bits is  | attached to  | each Code |
|            | Block (otherwise $L = 0$ Bit).    |              |           |

## Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

| Parameter                                 | Unit            | Value      |          |          |              |           |       |  |  |
|-------------------------------------------|-----------------|------------|----------|----------|--------------|-----------|-------|--|--|
| Reference channel                         |                 |            |          |          | R.41         |           |       |  |  |
|                                           |                 |            |          |          | FDD          |           |       |  |  |
| Channel bandwidth                         | MHz             | 1.4        | 3        | 5        | 10           | 15        | 20    |  |  |
| Allocated resource blocks                 |                 |            |          |          | 50           |           |       |  |  |
| Allocated subframes per Radio Frame       |                 |            |          |          | 9            |           |       |  |  |
| Modulation                                |                 |            |          |          | QPSK         |           |       |  |  |
| Target Coding Rate                        |                 |            |          |          | 1/10         |           |       |  |  |
| Information Bit Payload                   |                 |            |          |          |              |           |       |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9            | Bits            |            |          |          | 1384         |           |       |  |  |
| For Sub-Frame 5                           | Bits            |            |          |          | N/A          |           |       |  |  |
| For Sub-Frame 0                           | Bits            |            |          |          | 1384         |           |       |  |  |
| Number of Code Blocks per Sub-Frame       |                 |            |          |          |              |           |       |  |  |
| (Note 3)                                  |                 |            |          |          |              |           |       |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9            |                 |            |          |          | 1            |           |       |  |  |
| For Sub-Frame 5                           |                 |            |          |          | N/A          |           |       |  |  |
| For Sub-Frame 0                           |                 |            |          |          | 1            |           |       |  |  |
| Binary Channel Bits Per Sub-Frame         |                 |            |          |          |              |           |       |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9            | Bits            |            |          |          | 13800        |           |       |  |  |
| For Sub-Frame 5                           | Bits            |            |          |          | N/A          |           |       |  |  |
| For Sub-Frame 0                           | Bits            |            |          |          | 12960        |           |       |  |  |
| Max. Throughput averaged over 1 frame     | Mbps            |            |          |          | 1.246        |           |       |  |  |
| UE Category                               |                 |            |          |          | ≥1           |           |       |  |  |
| Note 1: 2 symbols allocated to PDCCH fo   | or 20 MHz, 15   | MHz and    | 10 MHz   | channel  | BW; 3 sym    | bols allo | cated |  |  |
| to PDCCH for 5 MHz and 3 MHz;             |                 |            |          |          |              |           |       |  |  |
| Note 2: Reference signal, synchronization | n signals and F | PBCH allo  | cated as | per TS 3 | 36.211 [4].  |           |       |  |  |
| Note 3: If more than one Code Block is pr | resent, an add  | itional CR | C seque  | nce of L | = 24 Bits is | s attache | ed to |  |  |
| each Code Block (otherwise L = 0          | ) Bit).         |            |          |          |              |           |       |  |  |

| Table A.3.3.1-6: Fixed Reference Chan | nel QPSK R=1/10 |
|---------------------------------------|-----------------|
|---------------------------------------|-----------------|

| Parameter                                                           | Unit        | Va              | lue            |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|-------------|-----------------|----------------|--|--|--|--|--|--|--|
| Reference channel                                                   |             | R.49 FDD        | R.49-1 FDD     |  |  |  |  |  |  |  |
| Channel bandwidth                                                   | MHz         | 20              | 20             |  |  |  |  |  |  |  |
| Number of CRS ports                                                 |             | 1               | 2              |  |  |  |  |  |  |  |
| Allocated resource blocks                                           |             | 100             | 100            |  |  |  |  |  |  |  |
| Allocated subframes per Radio Frame                                 |             | 9               | 9              |  |  |  |  |  |  |  |
| Modulation                                                          |             | 64QAM           | 64QAM          |  |  |  |  |  |  |  |
| Coding Rate                                                         |             |                 |                |  |  |  |  |  |  |  |
| For Sub-Frame 1,2,3,4,6,7,8,9,                                      |             | 0.84            | 0.89           |  |  |  |  |  |  |  |
| For Sub-Frame 5                                                     |             | n/a             | n/a            |  |  |  |  |  |  |  |
| For Sub-Frame 0                                                     |             | 0.87            | 0.92           |  |  |  |  |  |  |  |
| Information Bit Payload                                             |             |                 |                |  |  |  |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                      | Bits        | 63776           | 63776          |  |  |  |  |  |  |  |
| For Sub-Frame 5                                                     | Bits        | n/a             | n/a            |  |  |  |  |  |  |  |
| For Sub-Frame 0                                                     | Bits        | 63776           | 63776          |  |  |  |  |  |  |  |
| Number of Code Blocks per Sub-Frame                                 |             |                 |                |  |  |  |  |  |  |  |
| (Note 3)                                                            |             |                 |                |  |  |  |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                      | Code        | 11              | 11             |  |  |  |  |  |  |  |
|                                                                     | Blocks      |                 |                |  |  |  |  |  |  |  |
| For Sub-Frame 5                                                     | Code        | n/a             | n/a            |  |  |  |  |  |  |  |
|                                                                     | Blocks      |                 |                |  |  |  |  |  |  |  |
| For Sub-Frame 0                                                     | Code        | 11              | 11             |  |  |  |  |  |  |  |
|                                                                     | Blocks      |                 |                |  |  |  |  |  |  |  |
| Binary Channel Bits Per Sub-Frame                                   |             |                 |                |  |  |  |  |  |  |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                      | Bits        | 75600           | 72000          |  |  |  |  |  |  |  |
| For Sub-Frame 5                                                     | Bits        | n/a             | n/a            |  |  |  |  |  |  |  |
| For Sub-Frame 0                                                     | Bits        | 73080           | 69552          |  |  |  |  |  |  |  |
| Max. Throughput averaged over 1 frame                               | Mbps        | 57.398          | 57.398         |  |  |  |  |  |  |  |
| UE Category                                                         |             | ≥ 5             | ≥ 5            |  |  |  |  |  |  |  |
| Note 1: 3 symbols allocated to PDCCH.                               |             |                 |                |  |  |  |  |  |  |  |
| Note 2: Reference signal, synchronizatio                            | n signals a | ind PBCH alloca | ated as per TS |  |  |  |  |  |  |  |
|                                                                     | 36.211 [4]. |                 |                |  |  |  |  |  |  |  |
| Note 3: If more than one Code Block is p                            |             |                 |                |  |  |  |  |  |  |  |
| L = 24 Bits is attached to each Code Block (otherwise $L = 0$ Bit). |             |                 |                |  |  |  |  |  |  |  |

## Table A.3.3.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

395

# A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

# A.3.3.2.1 Two antenna ports

| Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

| Parameter                                   | Unit                  |                          |                         |                            |                  |               | Val       | ue         |             |            |          |            |           |
|---------------------------------------------|-----------------------|--------------------------|-------------------------|----------------------------|------------------|---------------|-----------|------------|-------------|------------|----------|------------|-----------|
| Reference                                   |                       | R.10                     | R.11                    | R.11-1                     | R.11-            | R.11-         | R.11-     | R.30       | R.30-       | R.35-      | R.35     | R.35-      | R.35-3    |
| channel                                     |                       | FDD                      | FDD                     | FDD                        | 2                | 3             | 4         | FDD        | 1           | 1          | FDD      | 2          | FDD       |
|                                             |                       |                          |                         |                            | FDD              | FDD<br>Note 5 | FDD       |            | FDD         | FDD        |          | FDD        |           |
| Channel<br>bandwidth                        | MHz                   | 10                       | 10                      | 10                         | 5                | 10            | 10        | 20         | 15          | 20         | 10       | 15         | 10        |
| Allocated                                   |                       | 50                       | 50                      | 50                         | 25               | 40            | 50        | 100        | 75          | 100        | 50       | 75         | 50        |
| resource blocks (Note 4)                    |                       |                          |                         |                            |                  |               |           |            |             |            |          |            |           |
| Allocated<br>subframes per<br>Radio Frame   |                       | 9                        | 9                       | 9                          | 9                | 9             | 9         | 9          | 8           | 8          | 9        | 8          | 8         |
| Modulation                                  |                       | QPSK                     | 16QAM                   | 16QAM                      | 16QA<br>M        | 16QA<br>M     | QPS<br>K  | 16QA<br>M  | 16QA<br>M   | 64QA<br>M  | 64QAM    | 64QA<br>M  | 64QA<br>M |
| Target Coding<br>Rate                       |                       | 1/3                      | 1/2                     | 1/2                        | 1/2              | 1/2           | 1/2       | 1/2        | 1/2         | 0.39       | 1/2      | 0.39       | 0.39      |
| Information Bit<br>Payload (Note<br>4)      |                       |                          |                         |                            |                  |               |           |            |             |            |          |            |           |
| For Sub-<br>Frames<br>1,2,3,4,6,7,8,9       | Bits                  | 4392                     | 12960                   | 12960                      | 5736             | 1029<br>6     | 6968      | 2545<br>6  | 1908<br>0   | 3057<br>6  | 19848    | 2292<br>0  | 15264     |
| For Sub-<br>Frame 5                         | Bits                  | N/A                      | N/A                     | N/A                        | N/A              | N/A           | N/A       | N/A        | N/A         | N/A        | N/A      | N/A        | N/A       |
| For Sub-<br>Frame 0                         | Bits                  | 4392                     | 12960                   | N/A                        | 4968             | 1029<br>6     | 6968      | 2545<br>6  | N/A         | N/A        | 18336    | N/A        | N/A       |
| Number of<br>Code Blocks<br>(Notes 3 and 4) |                       |                          |                         |                            |                  |               |           |            |             |            |          |            |           |
| For Sub-<br>Frames<br>1,2,3,4,6,7,8,9       | Bits                  | 1                        | 3                       | 3                          | 1                | 2             | 2         | 5          | 4           | 5          | 4        | 4          | 3         |
| For Sub-<br>Frame 5                         | Bits                  | N/A                      | N/A                     | N/A                        | N/A              | N/A           | N/A       | N/A        | N/A         | N/A        | N/A      | N/A        | N/A       |
| For Sub-<br>Frame 0                         | Bits                  | 1                        | 3                       | N/A                        | 1                | 2             | 2         | 5          | N/A         | N/A        | 3        | N/A        | N/A       |
| Binary Channel<br>Bits (Note 4)             |                       |                          |                         |                            |                  |               |           |            |             |            |          |            |           |
| For Sub-<br>Frames<br>1,2,3,4,6,7,8,9       | Bits                  | 13200                    | 26400                   | 26400                      | 1200<br>0        | 2112<br>0     | 1320<br>0 | 5280<br>0  | 3960<br>0   | 7920<br>0  | 39600    | 5940<br>0  | 39600     |
| For Sub-<br>Frame 5                         | Bits                  | N/A                      | N/A                     | N/A                        | N/A              | N/A           | N/A       | N/A        | N/A         | N/A        | N/A      | N/A        | N/A       |
| For Sub-<br>Frame 0                         | Bits                  | 12384                    | 24768                   | N/A                        | 1036<br>8        | 1948<br>8     | 1238<br>4 | 5116<br>8  | N/A         | N/A        | 37152    | N/A        | N/A       |
| Max.<br>Throughput<br>averaged over         | Mbps                  | 3.953                    | 11.664                  | 10.368                     | 5.086            | 9.266         | 6.271     | 22.91<br>0 | 15.26<br>4  | 24.46<br>1 | 17.712   | 18.33<br>6 | 12.211    |
| 1 frame (Note<br>4)                         |                       |                          |                         |                            |                  |               |           |            |             |            |          |            |           |
| UE Category                                 |                       | ≥1                       | ≥2                      | ≥2                         | ≥1               | ≥ 1           | ≥1        | ≥2         | ≥2          | 4          | ≥2       | ≥2         | ≥2        |
| MHz; 4<br>Note 2: Refere                    | 1 symbol:<br>nce sign | s allocate<br>al, synchi | d to PDCC<br>ronization | H for 1.4 M<br>signals and | ИНz.<br>J PBCH a | allocated     | as per TS | 6 36.211   | [4].        |            | to PDCCH |            |           |
| L = 0 E                                     | Bit).                 |                          | •                       |                            | ditional (       | CRC seq       | uence of  | L = 24 B   | its is atta | ched to e  | ach Code | Block (otl | herwise   |
| Note 4: Given                               | per comp              | ponent ca                | rrier per co            | deword.                    |                  |               |           |            |             |            |          |            |           |

Note 5: For R.11-3 resource blocks of RB6–RB45 are allocated.

| Parameter                                                                                                                | Unit       |       |       |            | Va      | alue    |           |          |             |
|--------------------------------------------------------------------------------------------------------------------------|------------|-------|-------|------------|---------|---------|-----------|----------|-------------|
| Reference channel                                                                                                        |            | R.46  | R.47  | R.35-4     |         |         |           |          |             |
|                                                                                                                          |            | FDD   | FDD   | FDD        |         |         |           |          |             |
| Channel bandwidth                                                                                                        | MHz        | 10    | 10    | 10         |         |         |           |          |             |
| Allocated resource blocks (Note 4)                                                                                       |            | 50    | 50    | 50         |         |         |           |          |             |
| Allocated subframes per Radio Frame                                                                                      |            | 9     | 9     | 9          |         |         |           |          |             |
| Modulation                                                                                                               |            | QPSK  | 16QAM | 64QAM      |         |         |           |          |             |
| Target Coding Rate                                                                                                       |            |       |       | 0.47       |         |         |           |          |             |
| Information Bit Payload (Note 4)                                                                                         |            |       |       |            |         |         |           |          |             |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                           | Bits       | 5160  | 8760  | 18336      |         |         |           |          |             |
| For Sub-Frame 5                                                                                                          | Bits       | N/A   | N/A   | N/A        |         |         |           |          |             |
| For Sub-Frame 0                                                                                                          | Bits       | 5160  | 8760  | 16416      |         |         |           |          |             |
| Number of Code Blocks                                                                                                    |            |       |       |            |         |         |           |          |             |
| (Notes 3 and 4)                                                                                                          |            |       |       |            |         |         |           |          |             |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                           | Bits       | 1     | 2     | 3          |         |         |           |          |             |
| For Sub-Frame 5                                                                                                          | Bits       | N/A   | N/A   | N/A        |         |         |           |          |             |
| For Sub-Frame 0                                                                                                          | Bits       | 1     | 2     | 3          |         |         |           |          |             |
| Binary Channel Bits (Note 4)                                                                                             |            |       |       |            |         |         |           |          |             |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                           | Bits       | 13200 | 26400 | 39600      |         |         |           |          |             |
| For Sub-Frame 5                                                                                                          | Bits       | N/A   | N/A   | N/A        |         |         |           |          |             |
| For Sub-Frame 0                                                                                                          | Bits       | 12384 | 24768 | 37152      |         |         |           |          |             |
| Max. Throughput averaged over 1                                                                                          | Mbps       | 4.644 | 7.884 | 16.310     |         |         |           |          |             |
| frame (Note 4)                                                                                                           |            |       |       |            |         |         |           |          |             |
| UE Category                                                                                                              |            | ≥ 1   | ≥ 1   | ≥2         |         |         |           |          |             |
| Note 1: 2 symbols allocated to PDCCI                                                                                     |            |       |       | IHz channe | I BW; 3 | symbols | allocated | to PDCCH | I for 5 MHz |
| and 3 MHz; 4 symbols allocate                                                                                            |            |       |       |            |         |         |           |          |             |
| Note 2: Reference signal, synchroniza                                                                                    |            |       |       |            |         |         |           |          |             |
| Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block |            |       |       |            |         |         |           | Block    |             |
| (otherwise L = 0 Bit)                                                                                                    |            |       |       |            |         |         |           |          |             |
| Note 4: Given per component carrier p                                                                                    | per codewo | ord.  |       |            |         |         |           |          |             |

Table A.3.3.2.1-2: Fixed Reference Channel two antenna ports

# A.3.3.2.2 Four antenna ports

| Parameter                            | Unit      |              |            |            | Value       |              |             |         |
|--------------------------------------|-----------|--------------|------------|------------|-------------|--------------|-------------|---------|
| Reference channel                    |           | R.12         | R.13       | R.14       | R.14-1      | R.14-2       | R.14-3      | R.36    |
|                                      |           | FDD          | FDD        | FDD        | FDD         | FDD          | FDD         | FDD     |
| Channel bandwidth                    | MHz       | 1.4          | 10         | 10         | 10          | 10           | 20          | 10      |
| Allocated resource blocks (Note 4)   |           | 6            | 50         | 50         | 6           | 3            | 100         | 50      |
| Allocated subframes per Radio Frame  |           | 9            | 9          | 9          | 8           | 8            | 9           | 9       |
| Modulation                           |           | QPSK         | QPSK       | 16QAM      | 16QAM       | 16QAM        | 16QAM       | 64QAM   |
| Target Coding Rate                   |           | 1/3          | 1/3        | 1/2        | 1/2         | 1/2          | 1/2         | 1/2     |
| Information Bit Payload (Note 4)     |           |              |            |            |             |              |             |         |
| For Sub-Frames 1,2,3,4,6,7,8,9       | Bits      | 408          | 4392       | 12960      | 1544        | 744          | [25456]     | 18336   |
| For Sub-Frame 5                      | Bits      | N/A          | N/A        | N/A        | N/A         | N/A          | n/a         | N/A     |
| For Sub-Frame 0                      | Bits      | 152          | 3624       | 11448      | N/A         | N/A          | [22920]     | 18336   |
| Number of Code Blocks                |           |              |            |            |             |              |             |         |
| (Notes 3 and 4)                      |           |              |            |            |             |              |             |         |
| For Sub-Frames 1,2,3,4,6,7,8,9       |           | 1            | 1          | 3          | 1           | 1            | 5           | 3       |
| For Sub-Frame 5                      |           | N/A          | N/A        | N/A        | N/A         | N/A          | n/a         | N/A     |
| For Sub-Frame 0                      |           | 1            | 1          | 2          | N/A         | N/A          | 4           | 3       |
| Binary Channel Bits (Note 4)         |           |              |            |            |             |              |             |         |
| For Sub-Frames 1,2,3,4,6,7,8,9       | Bits      | 1248         | 12800      | 25600      | 3072        | 1536         | 51200       | 38400   |
| For Sub-Frame 5                      | Bits      | N/A          | N/A        | N/A        | N/A         | N/A          | n/a         | N/A     |
| For Sub-Frame 0                      | Bits      | 480          | 12032      | 24064      | N/A         | N/A          | 49664       | 36096   |
| Max. Throughput averaged over 1      | Mbps      | 0.342        | 3.876      | 11.513     | 1.235       | 0.595        | [22.656]    | 16.502  |
| frame (Note 4)                       |           |              |            |            |             |              |             |         |
| UE Category                          |           | ≥ 1          | ≥ 1        | ≥ 2        | ≥ 1         | ≥ 1          | ≥2          | ≥ 2     |
| Note 1: 2 symbols allocated to PDCC  |           |              |            |            | el BW; 3 sy | mbols allo   | cated to PD | CCH for |
| 5 MHz and 3 MHz; 4 symbols           |           |              |            |            | 0 00 04 4 5 | 41           |             |         |
| Note 2: Reference signal, synchroniz |           |              |            |            |             |              |             |         |
| Note 3: If more than one Code Block  | is presen | t, an additi | onal CRC s | equence of | L = 24 Bits | s is attache | d to each C | ode     |
| Block (otherwise $L = 0$ Bit).       |           |              |            |            |             |              |             |         |
| Note 4: Given per component carrier  | per code  | word.        |            |            |             |              |             |         |

#### Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Note 4: Given per component carrier per codeword.

# A.3.3.3 Reference Measurement Channel for UE-Specific Reference Symbols

## A.3.3.3.1 Two antenna port (CSI-RS)

The reference measurement channels in Table A.3.3.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

|                                | Devenueter                      | Unit         | Value          |  |  |  |
|--------------------------------|---------------------------------|--------------|----------------|--|--|--|
| D (                            | Parameter                       | Unit         | Value          |  |  |  |
|                                | e channel                       |              | R.51 FDD       |  |  |  |
|                                | bandwidth                       | MHz          | 10             |  |  |  |
|                                | I resource blocks               |              | 50 (Note 3)    |  |  |  |
|                                | I subframes per Radio Frame     |              | 9              |  |  |  |
| Modulatio                      |                                 |              | 16QAM          |  |  |  |
|                                | oding Rate                      |              | 1/2            |  |  |  |
|                                | on Bit Payload                  |              |                |  |  |  |
| For Sub                        | -Frames 1,4,6,9                 | Bits         | 11448          |  |  |  |
| For Sub                        | -Frames 2,3,7,8                 | Bits         | 11448          |  |  |  |
| For Sub                        | -Frame 5                        | Bits         | N/A            |  |  |  |
| For Sub                        | -Frame 0                        | Bits         | 9528           |  |  |  |
| Number                         | of Code Blocks (Note 4)         |              |                |  |  |  |
| For Sub                        | -Frames 1,4,6,9                 | Code         | 2              |  |  |  |
|                                |                                 | blocks       |                |  |  |  |
| For Sub                        | -Frames 2,3,7,8                 | Code         | 2              |  |  |  |
|                                |                                 | blocks       |                |  |  |  |
| For Sub                        | For Sub-Frame 5 Bits            |              |                |  |  |  |
| For Sub                        | -Frame 0                        | Bits         | 2              |  |  |  |
| Binary Cl                      | hannel Bits                     |              |                |  |  |  |
| For Sub                        | -Frames 1,4,6,9                 | Bits         | 24000          |  |  |  |
| For Sub                        | -Frames 2,7                     |              | 23600          |  |  |  |
| For Sub                        | -Frames 3,8                     |              | 23200          |  |  |  |
| For Sub                        | -Frame 5                        | Bits         | N/A            |  |  |  |
| For Sub                        | -Frame 0                        | Bits         | 19680          |  |  |  |
| Max. Thr                       | oughput averaged over 1         | Mbps         | 10.1112        |  |  |  |
| frame                          |                                 | -            |                |  |  |  |
| UE Cate                        | gory                            |              | ≥ 2            |  |  |  |
| Note 1:                        | 2 symbols allocated to PDCC     | H.           |                |  |  |  |
| Note 2:                        | Reference signal, synchroniza   | ation signal | s and PBCH     |  |  |  |
|                                | allocated as per TS 36.211 [4   |              |                |  |  |  |
| Note 3:                        | 50 resource blocks are alloca   |              |                |  |  |  |
|                                | 4, 6, 7, 8, 9 and 41 resource I |              |                |  |  |  |
|                                | RB30–RB49) are allocated in     |              |                |  |  |  |
| Note 4:                        | If more than one Code Block     |              |                |  |  |  |
|                                | CRC sequence of $L = 24$ Bits   | is attached  | I to each Code |  |  |  |
| Block (otherwise $L = 0$ Bit). |                                 |              |                |  |  |  |

# Table A.3.3.3.1-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports

The reference measurement channels in Table A.3.3.3.1-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

| Parameter                                | Unit        |                     | Value                  |                   |
|------------------------------------------|-------------|---------------------|------------------------|-------------------|
| Reference channel                        |             | R.52 FDD            | R.53 FDD               | R.54 FDD          |
| Channel bandwidth                        | MHz         | 10                  | 10                     | 10                |
| Allocated resource blocks                |             | 50 (Note 3)         | 50 (Note 3)            | 50 (Note 3)       |
| Allocated subframes per Radio Frame      |             | 9                   | 9                      | 9                 |
| Modulation                               |             | 64QAM               | 64QAM                  | 16QAM             |
| Target Coding Rate                       |             | 1/2                 | 1/2                    | 1/2               |
| Information Bit Payload                  |             |                     |                        |                   |
| For Sub-Frames 1,3,4,6,8,9               | Bits        | 18336               | 18336                  | 11448             |
| For Sub-Frames 2,7                       | Bits        | 16416               | 16416                  | 11448             |
| For Sub-Frame 5                          | Bits        | n/a                 | n/a                    | n/a               |
| For Sub-Frame 0                          | Bits        | 14688               | 14688                  | 9528              |
| Number of Code Blocks (Note 4)           |             |                     |                        |                   |
| For Sub-Frames 1,3,4,6,8,9               | Code        | 3                   | 3                      | 2                 |
|                                          | blocks      |                     |                        |                   |
| For Sub-Frames 2, 7                      | Code        | 3                   | 3                      | 2                 |
|                                          | blocks      |                     |                        |                   |
| For Sub-Frame 5                          | Bits        | n/a                 | n/a                    | n/a               |
| For Sub-Frame 0                          | Bits        | 3                   | 3                      | 2                 |
| Binary Channel Bits                      |             |                     |                        |                   |
| For Sub-Frames 1,3,4,6,8,9               | Bits        | 36000               | 36000                  | 24000             |
| For Sub-Frames 2,7                       |             | 34200               | 33600                  | 22800             |
| For Sub-Frame 5                          | Bits        | n/a                 | n/a                    | n/a               |
| For Sub-Frame 0                          | Bits        | 29520               | 29520                  | 19680             |
| Max. Throughput averaged over 1          | Mbps        | 15.7536             | 15.7536                | 10.1112           |
| frame                                    |             |                     |                        |                   |
| Note 1: 2 symbols allocated to PDCC      |             |                     |                        |                   |
| Note 2: Reference signal, synchroniza    |             |                     |                        |                   |
| Note 3: 50 resource blocks are allocated |             |                     | 7, 8, 9 and 41 resourc | ce blocks (RB0–   |
| RB20 and RB30–RB49) are a                |             |                     |                        |                   |
| Note 4: If more than one Code Block      |             | in additional CRC s | sequence of L = 24 Bi  | ts is attached to |
| each Code Block (otherwise L             | _ = 0 Bit). |                     |                        |                   |

# Table A.3.3.3.1-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

# A.3.3.3.2 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.3.3.2-1 apply for verifying demodulation performance for UE-specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

| Parameter                                                                              | Unit        |                | Value          |              |  |  |
|----------------------------------------------------------------------------------------|-------------|----------------|----------------|--------------|--|--|
| Reference channel                                                                      |             | R.43 FDD       | R.50 FDD       | R.48 FDD     |  |  |
| Channel bandwidth                                                                      | MHz         | 10             | 10             | 10           |  |  |
| Allocated resource blocks                                                              |             | 50 (Note 3)    | 50 (Note 3)    | 50 (Note     |  |  |
|                                                                                        |             |                |                | 3)           |  |  |
| Allocated subframes per Radio Frame                                                    |             | 9              | 9              | 9            |  |  |
| Modulation                                                                             |             | QPSK           | 64QAM          | QPSK         |  |  |
| Target Coding Rate                                                                     |             | 1/3            | 1/2            |              |  |  |
| Information Bit Payload                                                                |             |                |                |              |  |  |
| For Sub-Frames 1,4,6,9                                                                 | Bits        | 3624           | 18336          | 6200         |  |  |
| For Sub-Frames 2,3,7,8                                                                 | Bits        | 3624           | 16416          | 6200         |  |  |
| For Sub-Frame 5                                                                        | Bits        | N/A            | N/A            | N/A          |  |  |
| For Sub-Frame 0                                                                        | Bits        | 2984           | 14688          | 4968         |  |  |
| Number of Code Blocks (Note 4)                                                         |             |                |                |              |  |  |
| For Sub-Frames 1,4,6,9                                                                 | Code        | 1              | 3              | 2            |  |  |
|                                                                                        | blocks      |                |                |              |  |  |
| For Sub-Frames 2,3,7,8                                                                 | Code        | 1              | 3              | 2            |  |  |
|                                                                                        | blocks      |                |                |              |  |  |
| For Sub-Frame 5                                                                        | Bits        | N/A            | N/A            | N/A          |  |  |
| For Sub-Frame 0                                                                        | Bits        | Bits 1 3 1     |                |              |  |  |
| Binary Channel Bits                                                                    |             |                |                |              |  |  |
| For Sub-Frames 1,4,6,9                                                                 | Bits        | 12000          | 36000          | 12000        |  |  |
| For Sub-Frames 2,7                                                                     |             | 11600          | 34800          | 11600        |  |  |
| For Sub-Frames 3,8                                                                     |             | 11600          | 34800          | 12000        |  |  |
| For Sub-Frame 5                                                                        | Bits        | N/A            | N/A            | N/A          |  |  |
| For Sub-Frame 0                                                                        | Bits        | 9840           | 29520          | 9840         |  |  |
| Max. Throughput averaged over 1                                                        | Mbps        | 3.1976         | 15.3696        | 5.4568       |  |  |
| frame                                                                                  |             |                |                |              |  |  |
| UE Category                                                                            |             | ≥ 1            | ≥2             | ≥ 1          |  |  |
| Note 1: 2 symbols allocated to PDCCH                                                   |             |                |                |              |  |  |
| Note 2: Reference signal, synchroniza                                                  | tion signal | s and PBCH a   | llocated as pe | r TS 36.211  |  |  |
| [4].                                                                                   |             |                |                |              |  |  |
| Note 3: For R.31-1 and R.34-1, 50 res                                                  |             |                |                |              |  |  |
| 6, 7, 8, 9 and 41 resource bloc                                                        | ks (RB0–I   | RB20 and RB3   | 80–RB49) are a | allocated in |  |  |
| sub-frame 0.                                                                           |             | an addition of |                | - ( ) 0 (    |  |  |
| Note 4: If more than one Code Block is present, an additional CRC sequence of $L = 24$ |             |                |                |              |  |  |
| Bits is attached to each Code Block (otherwise $L = 0$ Bit).                           |             |                |                |              |  |  |

# Table A.3.3.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

The reference measurement channels in Table A.3.3.3.2-2 apply for verifying FDD PMI accuracy measurement with two CRS antenna ports and four CSI-RS antenna ports.

| Parameter                                                                                                                                                                       | Unit           |                | Value           |         |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------|---------|--|--|--|--|
| Reference channel                                                                                                                                                               |                | R.44           | R.45            | R.45-1  |  |  |  |  |
|                                                                                                                                                                                 |                | FDD            | FDD             | FDD     |  |  |  |  |
| Channel bandwidth                                                                                                                                                               | MHz            | 10             | 10              | 10      |  |  |  |  |
| Allocated resource blocks                                                                                                                                                       |                | $50^{3}$       | 50 <sup>3</sup> | 39      |  |  |  |  |
| Allocated subframes per Radio Frame                                                                                                                                             |                | 10             | 10              | 10      |  |  |  |  |
| Modulation                                                                                                                                                                      |                | QPSK           | 16QAM           | 16QAM   |  |  |  |  |
| Target Coding Rate                                                                                                                                                              |                | 1/3            | 1/2             | 1/2     |  |  |  |  |
| Information Bit Payload                                                                                                                                                         |                |                |                 |         |  |  |  |  |
| For Sub-Frames (Non CSI-RS subframe)                                                                                                                                            | Bits           | 3624           | 11448           | 8760    |  |  |  |  |
| For Sub-Frames (CSI-RS subframe)                                                                                                                                                | Bits           | 3624           | 11448           | 8760    |  |  |  |  |
| For Sub-Frames (ZeroPowerCSI-RS subframe)                                                                                                                                       | Bits           | N/A            | N/A             | N/A     |  |  |  |  |
| For Sub-Frame 5                                                                                                                                                                 | Bits           | N/A            | N/A             | N/A     |  |  |  |  |
| For Sub-Frame 0                                                                                                                                                                 | Bits           | 2984           | 9528            | 8760    |  |  |  |  |
| Number of Code Blocks per Sub-Frame (Note 4)                                                                                                                                    |                |                |                 |         |  |  |  |  |
| For Sub-Frames (Non CSI-RS subframe)                                                                                                                                            |                | 1              | 2               | 2       |  |  |  |  |
| For Sub-Frames (CSI-RS subframe)                                                                                                                                                |                | 1              | 2               | 2       |  |  |  |  |
| For Sub-Frames (ZeroPowerCSI-RS                                                                                                                                                 | Bits           | N/A            | N/A             | N/A     |  |  |  |  |
| subframe)                                                                                                                                                                       |                |                |                 |         |  |  |  |  |
| For Sub-Frame 5                                                                                                                                                                 |                | N/A            | N/A             | N/A     |  |  |  |  |
| For Sub-Frame 0                                                                                                                                                                 |                | 1              | 2               | 2       |  |  |  |  |
| Binary Channel Bits Per Sub-Frame                                                                                                                                               |                |                |                 |         |  |  |  |  |
| For Sub-Frames (Non CSI-RS subframe)                                                                                                                                            | Bits           | 12000          | 24000           | 18720   |  |  |  |  |
| For Sub-Frames (CSI-RS subframe)                                                                                                                                                | Bits           | 11600          | 23200           | 18096   |  |  |  |  |
| For Sub-Frames (ZeroPowerCSI-RS                                                                                                                                                 | Bits           | N/A            | N/A             | N/A     |  |  |  |  |
| subframe)                                                                                                                                                                       |                |                |                 |         |  |  |  |  |
| For Sub-Frame 5                                                                                                                                                                 | Bits           | N/A            | N/A             | N/A     |  |  |  |  |
| For Sub-Frame 0                                                                                                                                                                 | Bits           | 9840           | 19680           | 18720   |  |  |  |  |
| Max. Throughput averaged over 1 frame                                                                                                                                           | Mbps           | 3.1976         | 10.1112         | 7.884   |  |  |  |  |
| UE Category                                                                                                                                                                     |                | ≥ 1            | ≥2              | ≥ 1     |  |  |  |  |
| Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3<br>symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH<br>for 1.4 MHz |                |                |                 |         |  |  |  |  |
| Note 2: Reference signal, synchronization                                                                                                                                       | signals and PB | CH allocated a | s per TS 36.    | 211 [4] |  |  |  |  |
| Note 3: For R. 44 and R.45, 50 resource b                                                                                                                                       |                |                |                 |         |  |  |  |  |
| and 41 resource blocks (RB0-RB2                                                                                                                                                 |                |                |                 |         |  |  |  |  |
| Note 4: If more than one Code Block is pre                                                                                                                                      |                |                |                 |         |  |  |  |  |

## Table A.3.3.3.2-2: Fixed Reference Channel for four antenna ports (CSI-RS)

# A.3.4 Reference measurement channels for PDSCH performance requirements (TDD)

# A.3.4.1 Single-antenna transmission (Common Reference Symbols)

|                    | Parameter                                                                   | Unit         |             | Value       | e           |       |
|--------------------|-----------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------|
| Reference          | e channel                                                                   |              | R.4         | R.42        |             | R.2   |
|                    |                                                                             |              | TDD         | TDD         |             | TDD   |
| Channel b          | pandwidth                                                                   | MHz          | 1.4         | 20          |             | 10    |
| Allocated          | resource blocks (Note 6)                                                    |              | 6           | 100         |             | 50    |
|                    | wnlink Configuration (Note 4)                                               |              | 1           | 1           |             | 1     |
| Allocated          | subframes per Radio Frame (D+S)                                             |              | 3           | 3+2         |             | 3+2   |
| Modulatio          | n                                                                           |              | QPSK        | QPSK        |             | QPSK  |
| Target Co          | oding Rate                                                                  |              | 1/3         | 1/3         |             | 1/3   |
| Informatio         | on Bit Payload (Note 6)                                                     |              |             |             |             |       |
| For Sub-           | -Frames 4,9                                                                 | Bits         | 408         | 8760        |             | 4392  |
| For Sub-           | -Frames 1,6                                                                 | Bits         | N/A         | 7736        |             | 3240  |
| For Sub-           | -Frame 5                                                                    | Bits         | N/A         | N/A         |             | N/A   |
| For Sub-           | -Frame 0                                                                    | Bits         | 208         | 8760        |             | 4392  |
| Number of          | of Code Blocks                                                              |              |             |             |             |       |
| (Notes 5 a         | and 6)                                                                      |              |             |             |             |       |
| For Sub-           | -Frames 4,9                                                                 |              | 1           | 2           |             | 1     |
| For Sub-           | -Frames 1,6                                                                 |              | N/A         | 2           |             | 1     |
| For Sub-           | -Frame 5                                                                    |              | N/A         | N/A         |             | N/A   |
| For Sub-           | -Frame 0                                                                    |              | 1           | 2           |             | 1     |
| Binary Ch          | nannel Bits (Note 6)                                                        |              |             |             |             |       |
| For Sub-           | -Frames 4,9                                                                 | Bits         | 1368        | 27600       |             | 13800 |
| For Sub-           | -Frames 1,6                                                                 | Bits         | N/A         | 22656       |             | 11256 |
|                    | -Frame 5                                                                    | Bits         | N/A         | N/A         |             | N/A   |
|                    | -Frame 0                                                                    | Bits         | 672         | 26904       |             | 13104 |
| Max. Thro          | oughput averaged over 1 frame                                               | Mbps         | 0.102       | 4.175       |             | 1.966 |
| (Note 6)           |                                                                             |              |             |             |             |       |
| UE Categ           |                                                                             |              | ≥ 1         | ≥ 1         |             | ≥ 1   |
| Note 1:            | 2 symbols allocated to PDCCH for 2                                          |              |             |             |             |       |
|                    | symbols allocated to PDCCH for 5 M                                          |              |             |             |             |       |
|                    | PDCCH for 1.4 MHz. For subframe                                             | 1&6, only 2  | OFDM sy     | mbols are a | allocate    | ed to |
|                    | PDCCH.                                                                      |              |             |             |             |       |
| Note 2:            | For BW=1.4 MHz, the information bi                                          |              |             |             |             |       |
|                    | zero (no scheduling) to avoid proble                                        | ms with ins  | ufficient P | DCCH perf   | orman       | ce at |
|                    | the test point.                                                             |              |             |             | <b>TO</b> 0 | 0.044 |
| Note 3:            | Reference signal, synchronization s                                         | ignals and H | -BCH allo   | cated as pe | er 153      | 6.211 |
| Note 4:            | [4].                                                                        |              |             |             |             |       |
| Note 4:<br>Note 5: | As per Table 4.2-2 in TS 36.211 [4].<br>If more than one Code Block is pres |              | itional CP  | Coquere     | o of L      | - 24  |
| NOLE 5.            | Bits is attached to each Code Block                                         |              |             |             |             | - 24  |
| Note 6:            | Given per component carrier per co                                          | •            | с – о ын).  |             |             |       |

## Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

| Parameter                                    | Unit       |             |            | Va              | lue           |             |      |
|----------------------------------------------|------------|-------------|------------|-----------------|---------------|-------------|------|
| Reference channel                            |            |             |            | R.3-1           | R.3           |             |      |
|                                              |            |             |            | TDD             | TDD           |             |      |
| Channel bandwidth                            | MHz        | 1.4         | 3          | 5               | 10            | 15          | 20   |
| Allocated resource blocks                    |            |             |            | 25              | 50            |             |      |
| Uplink-Downlink Configuration (Note 3)       |            |             |            | 1               | 1             |             |      |
| Allocated subframes per Radio Frame (D+S)    |            |             |            | 3+2             | 3+2           |             |      |
| Modulation                                   |            |             |            | 16QAM           | 16QAM         |             |      |
| Target Coding Rate                           |            |             |            | 1/2             | 1/2           |             |      |
| Information Bit Payload                      |            |             |            |                 |               |             |      |
| For Sub-Frames 4,9                           | Bits       |             |            | 6456            | 14112         |             |      |
| For Sub-Frames 1,6                           | Bits       |             |            | 5160            | 11448         |             |      |
| For Sub-Frame 5                              | Bits       |             |            | N/A             | N/A           |             |      |
| For Sub-Frame 0                              | Bits       |             |            | 5736            | 12960         |             |      |
| Number of Code Blocks per Sub-Frame          |            |             |            |                 |               |             |      |
| (Note 4)                                     |            |             |            |                 |               |             |      |
| For Sub-Frames 4,9                           |            |             |            | 2               | 3             |             |      |
| For Sub-Frames 1,6                           |            |             |            | 1               | 2             |             |      |
| For Sub-Frame 5                              |            |             |            | N/A             | N/A           |             |      |
| For Sub-Frame 0                              |            |             |            | 1               | 3             |             |      |
| Binary Channel Bits Per Sub-Frame            |            |             |            |                 |               |             |      |
| For Sub-Frames 4,9                           | Bits       |             |            | 12600           | 27600         |             |      |
| For Sub-Frames 1,6                           | Bits       |             |            | 11112           | 22512         |             |      |
| For Sub-Frame 5                              | Bits       |             |            | N/A             | N/A           |             |      |
| For Sub-Frame 0                              | Bits       |             |            | 11208           | 26208         |             |      |
| Max. Throughput averaged over 1 frame        | Mbps       |             |            | 2.897           | 6.408         |             |      |
| UE Category                                  |            |             |            | ≥ 1             | ≥ 2           |             |      |
| Note 1: 2 symbols allocated to PDCCH for 2   | 20 MHz, 1  | 5 MHz an    | d 10 MHz   | channel BW      | /; 3 symbol   | s allocated | d to |
| PDCCH for 5 MHz and 3 MHz; 4 sy              | mbols allo | ocated to F | DCCH fo    | r 1.4 MHz. F    | or subfram    | ne 1&6, on  | ly 2 |
| OFDM symbols are allocated to PD             |            |             |            |                 |               |             |      |
| Note 2: Reference signal, synchronization s  | ignals and | d PBCH a    | located as | s per TS 36.    | 211 [4]       |             |      |
| Note 3: As per Table 4.2-2 in TS 36.211 [4]. |            |             |            |                 |               |             |      |
| Note 4: If more than one Code Block is pres  | ent, an a  | dditional C | RC seque   | ence of $L = 2$ | 24 Bits is at | tached to   | each |
| Code Block (otherwise $L = 0$ Bit).          |            |             |            |                 |               |             |      |

#### Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

| Parameter                                                                                                                                                                                                                                                                                | Unit |       |       | Val     | ue     |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|---------|--------|--------|--------|
| Reference channel                                                                                                                                                                                                                                                                        |      |       | R.5   | R.6 TDD | R.7    | R.8    | R.9    |
|                                                                                                                                                                                                                                                                                          |      |       | TDD   |         | TDD    | TDD    | TDD    |
| Channel bandwidth                                                                                                                                                                                                                                                                        | MHz  | 1.4   | 3     | 5       | 10     | 15     | 20     |
| Allocated resource blocks                                                                                                                                                                                                                                                                |      |       | 15    | 25      | 50     | 75     | 100    |
| Uplink-Downlink Configuration (Note 3)                                                                                                                                                                                                                                                   |      |       | 1     | 1       | 1      | 1      | 1      |
| Allocated subframes per Radio Frame (D+S)                                                                                                                                                                                                                                                |      |       | 3+2   | 3+2     | 3+2    | 3+2    | 3+2    |
| Modulation                                                                                                                                                                                                                                                                               |      | 64QAM | 64QAM | 64QAM   | 64QAM  | 64QAM  | 64QAM  |
| Target Coding Rate                                                                                                                                                                                                                                                                       |      |       | 3/4   | 3/4     | 3/4    | 3/4    | 3/4    |
| Information Bit Payload                                                                                                                                                                                                                                                                  |      |       |       |         |        |        |        |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                       | Bits |       | 8504  | 14112   | 30576  | 46888  | 61664  |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                       | Bits |       | 6968  | 11448   | 23688  | 35160  | 46888  |
| For Sub-Frame 5                                                                                                                                                                                                                                                                          | Bits |       | N/A   | N/A     | N/A    | N/A    | N/A    |
| For Sub-Frame 0                                                                                                                                                                                                                                                                          | Bits |       | 6968  | 12576   | 30576  | 45352  | 61664  |
| Number of Code Blocks per Sub-Frame                                                                                                                                                                                                                                                      |      |       |       |         |        |        |        |
| (Note 4)                                                                                                                                                                                                                                                                                 |      |       |       |         |        |        |        |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                       |      |       | 2     | 3       | 5      | 8      | 11     |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                       |      |       | 2     | 2       | 4      | 6      | 8      |
| For Sub-Frame 5                                                                                                                                                                                                                                                                          |      |       | N/A   | N/A     | N/A    | N/A    | N/A    |
| For Sub-Frame 0                                                                                                                                                                                                                                                                          |      |       | 2     | 3       | 5      | 8      | 11     |
| Binary Channel Bits Per Sub-Frame                                                                                                                                                                                                                                                        |      |       |       |         |        |        |        |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                       | Bits |       | 11340 | 18900   | 41400  | 62100  | 82800  |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                       | Bits |       | 9828  | 16668   | 33768  | 50868  | 67968  |
| For Sub-Frame 5                                                                                                                                                                                                                                                                          | Bits |       | N/A   | N/A     | N/A    | N/A    | N/A    |
| For Sub-Frame 0                                                                                                                                                                                                                                                                          | Bits |       | 9252  | 16812   | 39312  | 60012  | 80712  |
| Max. Throughput averaged over 1 frame                                                                                                                                                                                                                                                    | Mbps |       | 3.791 | 6.370   | 13.910 | 20.945 | 27.877 |
| UE Category                                                                                                                                                                                                                                                                              |      |       | ≥1    | ≥2      | ≥2     | ≥ 2    | ≥ 3    |
| Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.                                                 |      |       |       |         |        |        |        |
| Note 2:       Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]         Note 3:       As per Table 4.2-2 TS 36.211 [4].         Note 4:       If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code |      |       |       |         |        |        |        |

Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

Block (otherwise L = 0 Bit).

| Parameter                                                                                                                                                                                                                                | Unit |  |       | Va    | lue   |       |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|-------|-------|-------|-------|--------|
| Reference channel                                                                                                                                                                                                                        |      |  | R.6-1 | R.7-1 | R.8-1 | R.9-1 | R.9-2  |
|                                                                                                                                                                                                                                          |      |  | TDD   | TDD   | TDD   | TDD   | TDD    |
| Channel bandwidth                                                                                                                                                                                                                        | MHz  |  | 5     | 10    | 15    | 20    | 20     |
| Allocated resource blocks (Note 3)                                                                                                                                                                                                       |      |  | 18    | 17    | 17    | 17    | 83     |
| Uplink-Downlink Configuration (Note 4)                                                                                                                                                                                                   |      |  | 1     | 1     | 1     | 1     | 1      |
| Allocated subframes per Radio Frame (D+S)                                                                                                                                                                                                |      |  | 3+2   | 3+2   | 3+2   | 3+2   | 3+2    |
| Modulation                                                                                                                                                                                                                               |      |  | 64QAM | 64QAM | 64QAM | 64QAM | 64QAM  |
| Target Coding Rate                                                                                                                                                                                                                       |      |  | 3/4   | 3/4   | 3/4   | 3/4   | 3/4    |
| Information Bit Payload                                                                                                                                                                                                                  |      |  |       |       |       |       |        |
| For Sub-Frames 4,9                                                                                                                                                                                                                       | Bits |  | 10296 | 10296 | 10296 | 10296 | 51024  |
| For Sub-Frames 1,6                                                                                                                                                                                                                       | Bits |  | 8248  | 7480  | 7480  | 7480  | 39232  |
| For Sub-Frame 5                                                                                                                                                                                                                          | Bits |  | N/A   | N/A   | N/A   | N/A   | N/A    |
| For Sub-Frame 0                                                                                                                                                                                                                          | Bits |  | 8248  | 10296 | 10296 | 10296 | 51024  |
| Number of Code Blocks per Sub-Frame                                                                                                                                                                                                      |      |  |       |       |       |       |        |
| (Note 5)                                                                                                                                                                                                                                 |      |  |       |       |       |       |        |
| For Sub-Frames 4,9                                                                                                                                                                                                                       |      |  | 2     | 2     | 2     | 2     | 9      |
| For Sub-Frames 1,6                                                                                                                                                                                                                       |      |  | 2     | 2     | 2     | 2     | 7      |
| For Sub-Frame 5                                                                                                                                                                                                                          |      |  | N/A   | N/A   | N/A   | N/A   | N/A    |
| For Sub-Frame 0                                                                                                                                                                                                                          |      |  | 2     | 2     | 2     | 2     | 9      |
| Binary Channel Bits Per Sub-Frame                                                                                                                                                                                                        |      |  |       |       |       |       |        |
| For Sub-Frames 4,9                                                                                                                                                                                                                       | Bits |  | 13608 | 14076 | 14076 | 14076 | 68724  |
| For Sub-Frames 1,6                                                                                                                                                                                                                       | Bits |  | 11880 | 11628 | 11628 | 11628 | 56340  |
| For Sub-Frame 5                                                                                                                                                                                                                          | Bits |  | N/A   | N/A   | N/A   | N/A   | N/A    |
| For Sub-Frame 0                                                                                                                                                                                                                          | Bits |  | 11520 | 14076 | 14076 | 14076 | 66636  |
| Max. Throughput averaged over 1 frame                                                                                                                                                                                                    | Mbps |  | 4.534 | 4.585 | 4.585 | 4.585 | 23.154 |
| UE Category                                                                                                                                                                                                                              |      |  | ≥1    | ≥ 1   | ≥1    | ≥ 1   | ≥ 2    |
| Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. |      |  |       |       |       |       |        |
| Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]                                                                                                                                                |      |  |       |       |       |       |        |

#### Table A.3.4.1-3a: Fixed Reference Channel 64QAM R=3/4

Note 3: Note 4:

Exercicle signal, synchronization signals and PBCH allocated as per TS 36.211 [4] Localized allocation started from RB #0 is applied. As per Table 4.2-2 TS 36.211 [4]. If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit). Note 5:

| Parameter                                                                                                          | Unit         |             |               | Va         | lue             |          |     |
|--------------------------------------------------------------------------------------------------------------------|--------------|-------------|---------------|------------|-----------------|----------|-----|
| Reference channel                                                                                                  |              |             | R.0           |            | R.1 TDD         |          |     |
|                                                                                                                    |              |             | TDD           |            |                 |          |     |
| Channel bandwidth                                                                                                  | MHz          | 1.4         | 3             | 5          | 10/20           | 15       | 20  |
| Allocated resource blocks                                                                                          |              |             | 1             |            | 1               |          |     |
| Uplink-Downlink Configuration (Note 3)                                                                             |              |             | 1             |            | 1               |          |     |
| Allocated subframes per Radio Frame (D+S)                                                                          |              |             | 3+2           |            | 3+2             |          |     |
| Modulation                                                                                                         |              |             | 16QAM         |            | 16QAM           |          |     |
| Target Coding Rate                                                                                                 |              |             | 1/2           |            | 1/2             |          |     |
| Information Bit Payload                                                                                            |              |             |               |            |                 |          |     |
| For Sub-Frames 4,9                                                                                                 | Bits         |             | 224           |            | 256             |          |     |
| For Sub-Frames 1,6                                                                                                 | Bits         |             | 208           |            | 208             |          |     |
| For Sub-Frame 5                                                                                                    | Bits         |             | N/A           |            | N/A             |          |     |
| For Sub-Frame 0                                                                                                    | Bits         |             | 224           |            | 256             |          |     |
| Number of Code Blocks per Sub-Frame                                                                                |              |             |               |            |                 |          |     |
| (Note 4)                                                                                                           |              |             |               |            |                 |          |     |
| For Sub-Frames 4,9                                                                                                 |              |             | 1             |            | 1               |          |     |
| For Sub-Frames 1,6                                                                                                 |              |             | 1             |            | 1               |          |     |
| For Sub-Frame 5                                                                                                    |              |             | N/A           |            | N/A             |          |     |
| For Sub-Frame 0                                                                                                    |              |             | 1             |            | 1               |          |     |
| Binary Channel Bits Per Sub-Frame                                                                                  |              |             |               |            |                 |          |     |
| For Sub-Frames 4,9                                                                                                 | Bits         |             | 504           |            | 552             |          |     |
| For Sub-Frames 1,6                                                                                                 | Bits         |             | 456           |            | 456             |          |     |
| For Sub-Frame 5                                                                                                    | Bits         |             | N/A           |            | N/A             |          |     |
| For Sub-Frame 0                                                                                                    | Bits         |             | 504           |            | 552             |          |     |
| Max. Throughput averaged over 1 frame                                                                              | Mbps         |             | 0.109         |            | 0.118           |          |     |
| UE Category                                                                                                        |              |             | ≥ 1           |            | ≥ 1             |          |     |
| Note 1: 2 symbols allocated to PDCCH for 2<br>PDCCH for 5 MHz and 3 MHz; 4 syn<br>OFDM symbols are allocated to PD | mbols alloca |             |               |            |                 |          |     |
| Note 2: Reference signal, synchronization s                                                                        |              | PBCH allo   | ocated as per | · TS 36.2  | 211 [4]         |          |     |
| Note 3: As per Table 4.2-2 in TS 36.211 [4].                                                                       |              |             | ···· •        |            |                 |          |     |
| Note 4: If more than one Code Block is pres                                                                        |              | litional CF | RC sequence   | of $L = 2$ | 4 Bits is attac | hed to e | ach |
| Code Pleak (otherwise L - 0 Pit)                                                                                   |              |             |               |            |                 |          |     |

# Table A.3.4.1-4: Fixed Reference Channel Single PRB

Note 4: Code Block (otherwise L = 0 Bit).

|             | Parameter                             | Unit         | Value               |
|-------------|---------------------------------------|--------------|---------------------|
| Referenc    | e channel                             |              | R.29 TDD            |
|             |                                       |              | (MBSFN)             |
| Channel     | bandwidth                             | MHz          | 10                  |
| Allocated   | resource blocks                       |              | 1                   |
|             | Configuration                         |              | [TBD]               |
| Uplink-Do   | ownlink Configuration (Note 3)        |              | 1                   |
| Allocated   | subframes per Radio Frame (D+S)       |              | 1+2                 |
| Modulatio   | วท                                    |              | 16QAM               |
| Target Co   | oding Rate                            |              | 1/2                 |
| Information | on Bit Payload                        |              |                     |
| For Sub     | -Frames 4,9                           | Bits         | 0 (MBSFN)           |
| For Sub     | -Frames 1,6                           | Bits         | 208                 |
| For Sub     | -Frame 5                              | Bits         | N/A                 |
| For Sub     | -Frame 0                              | Bits         | 256                 |
| Number of   | of Code Blocks per Sub-Frame          |              |                     |
| (Note 4)    |                                       |              |                     |
| For Sub     | -Frames 4,9                           | Bits         | 0 (MBSFN)           |
|             | -Frames 1,6                           | Bits         | 1                   |
| For Sub     | -Frame 5                              | Bits         | N/A                 |
|             | -Frame 0                              | Bits         | 1                   |
| Binary Cl   | nannel Bits Per Sub-Frame             |              |                     |
| For Sub     | -Frames 4,9                           | Bits         | 0 (MBSFN)           |
| For Sub     | -Frames 1,6                           | Bits         | 456                 |
| For Sub     | -Frame 5                              | Bits         | N/A                 |
| For Sub     | -Frame 0                              | Bits         | 552                 |
| Max. Thre   | oughput averaged over 1 frame         | kbps         | 67.2                |
| UE Cateo    |                                       |              | ≥ 1                 |
|             | 2 symbols allocated to PDCCH.         |              |                     |
| Note 2:     |                                       | ignals and I | PBCH allocated as   |
|             | per TS 36.211 [4].                    |              |                     |
| Note 3:     |                                       |              |                     |
| Note 4:     | If more than one Code Block is pres   |              |                     |
|             | sequence of $L = 24$ Bits is attached | to each Co   | ae Block (otherwise |
|             | L = 0 Bit).                           |              |                     |

## Table A.3.4.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

| Parameter                                   | Unit  | Value      |          |           |               |           |         |
|---------------------------------------------|-------|------------|----------|-----------|---------------|-----------|---------|
| Reference channel                           |       |            |          |           | R.41          |           |         |
|                                             |       |            |          |           | TDD           |           |         |
| Channel bandwidth                           | MHz   | 1.4        | 3        | 5         | 10            | 15        | 20      |
| Allocated resource blocks                   |       |            |          |           | 50            |           |         |
| Uplink-Downlink Configuration (Note 4)      |       |            |          |           | 1             |           |         |
| Allocated subframes per Radio Frame (D+S)   |       |            |          |           | 3+2           |           |         |
| Modulation                                  |       |            |          |           | QPSK          |           |         |
| Target Coding Rate                          |       |            |          |           | 1/10          |           |         |
| Information Bit Payload                     |       |            |          |           |               |           |         |
| For Sub-Frames 4,9                          | Bits  |            |          |           | 1384          |           |         |
| For Sub-Frames 1,6                          | Bits  |            |          |           | 1032          |           |         |
| For Sub-Frame 5                             | Bits  |            |          |           | N/A           |           |         |
| For Sub-Frame 0                             | Bits  |            |          |           | 1384          |           |         |
| Number of Code Blocks per Sub-Frame         |       |            |          |           |               |           |         |
| (Note 5)                                    |       |            |          |           |               |           |         |
| For Sub-Frames 4,9                          |       |            |          |           | 1             |           |         |
| For Sub-Frames 1,6                          |       |            |          |           | 1             |           |         |
| For Sub-Frame 5                             |       |            |          |           | N/A           |           |         |
| For Sub-Frame 0                             |       |            |          |           | 1             |           |         |
| Binary Channel Bits Per Sub-Frame           |       |            |          |           |               |           |         |
| For Sub-Frames 4,9                          | Bits  |            |          |           | 13800         |           |         |
| For Sub-Frames 1,6                          | Bits  |            |          |           | 11256         |           |         |
| For Sub-Frame 5                             | Bits  |            |          |           | N/A           |           |         |
| For Sub-Frame 0                             | Bits  |            |          |           | 13104         |           |         |
| Max. Throughput averaged over 1 frame       | Mbps  |            |          |           | 0.622         |           |         |
| UE Category                                 |       |            |          |           | ≥ 1           |           |         |
| Note 1: 2 symbols allocated to PDCCH for 2  |       |            |          |           |               |           |         |
| to PDCCH for 5 MHz and 3 MHz; 4             |       |            | PDCCH    | for 1.4 N | IHz. For su   | bframe    | 1&6,    |
| only 2 OFDM symbols are allocated           |       |            |          |           |               |           |         |
| Note 2: For BW=1.4 MHz, the information b   |       |            |          |           | et to zero (i | no scheo  | duling) |
| to avoid problems with insufficient F       |       |            |          |           | <b>.</b> .    |           |         |
| Note 3: Reference signal, synchronization s |       | PBCH allo  | cated as | per TS 3  | 36.211 [4]    |           |         |
| Note 4: As per Table 4.2-2 in TS 36.211 [4] |       |            |          |           |               |           |         |
| Note 5: If more than one Code Block is pres |       | itional CR | C seque  | nce of L  | = 24 Bits is  | s attache | ed to   |
| each Code Block (otherwise L = 0 E          | Bit). |            |          |           |               |           |         |

### Table A.3.4.1-6: Fixed Reference Channel QPSK R=1/10

| Parameter                                                                                                         | Parameter Unit Value                                                          |                |                |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|----------------|--|--|--|--|--|
| Reference channel                                                                                                 |                                                                               | R.49 TDD       | R.49-1 TDD     |  |  |  |  |  |
| Channel bandwidth                                                                                                 | MHz                                                                           | 20             | 20             |  |  |  |  |  |
| Number of CRS ports                                                                                               |                                                                               | 1              | 2              |  |  |  |  |  |
| Allocated resource blocks                                                                                         |                                                                               | 100            | 100            |  |  |  |  |  |
| Uplink-Downlink Configuration (Note 2)                                                                            |                                                                               | 1              | 1              |  |  |  |  |  |
| Allocated subframes per Radio Frame                                                                               |                                                                               | 3+2            | 3+2            |  |  |  |  |  |
| (D+S)                                                                                                             |                                                                               |                |                |  |  |  |  |  |
| Modulation                                                                                                        |                                                                               | 64QAM          | 64QAM          |  |  |  |  |  |
| Coding Rate                                                                                                       |                                                                               |                |                |  |  |  |  |  |
| For Sub-Frames 4,9                                                                                                |                                                                               | 0.84           | 0.89           |  |  |  |  |  |
| For Sub-Frames 1,6                                                                                                |                                                                               | 0.81           | 0.86           |  |  |  |  |  |
| For Sub-Frames 5                                                                                                  |                                                                               | n/a            | n/a            |  |  |  |  |  |
| For Sub-Frames 0                                                                                                  |                                                                               | 0.87           | 0.92           |  |  |  |  |  |
| Information Bit Payload                                                                                           |                                                                               |                |                |  |  |  |  |  |
| For Sub-Frames 4,9                                                                                                | Bits                                                                          | 63776          | 63776          |  |  |  |  |  |
| For Sub-Frame 1,6                                                                                                 | Bits                                                                          | 55056          | 55056          |  |  |  |  |  |
| For Sub-Frame 5                                                                                                   | Bits                                                                          | n/a            | n/a            |  |  |  |  |  |
| For Sub-Frames 0                                                                                                  | Bits                                                                          | 63776          | 63776          |  |  |  |  |  |
| Number of Code Blocks per Sub-Frame                                                                               |                                                                               |                |                |  |  |  |  |  |
| (Note 3)                                                                                                          |                                                                               |                |                |  |  |  |  |  |
| For Sub-Frames 4,9                                                                                                | Code                                                                          | 11             | 11             |  |  |  |  |  |
|                                                                                                                   | Blocks                                                                        |                |                |  |  |  |  |  |
| For Sub-Frame 1,6                                                                                                 | Code                                                                          | 9              | 9              |  |  |  |  |  |
|                                                                                                                   | Blocks                                                                        |                |                |  |  |  |  |  |
| For Sub-Frame 5                                                                                                   | Code                                                                          | n/a            | n/a            |  |  |  |  |  |
|                                                                                                                   | Blocks                                                                        |                |                |  |  |  |  |  |
| For Sub-Frames 0                                                                                                  | Code                                                                          | 11             | 11             |  |  |  |  |  |
|                                                                                                                   | Blocks                                                                        |                |                |  |  |  |  |  |
| Binary Channel Bits Per Sub-Frame                                                                                 |                                                                               |                |                |  |  |  |  |  |
| For Sub-Frames 4,9                                                                                                | Bits                                                                          | 75600          | 72000          |  |  |  |  |  |
| For Sub-Frame 1,6                                                                                                 | Bits                                                                          | 67968          | 64368          |  |  |  |  |  |
| For Sub-Frame 5                                                                                                   | Bits                                                                          | n/a            | n/a            |  |  |  |  |  |
| For Sub-Frame 0                                                                                                   | Bits                                                                          | 73512          | 69984          |  |  |  |  |  |
| Max. Throughput averaged over 1 frame                                                                             | Mbps                                                                          | 30.144         | 30.144         |  |  |  |  |  |
| UE Category ≥5 ≥5                                                                                                 |                                                                               |                |                |  |  |  |  |  |
| Note 1:3 symbols allocated to PDCCH.Note 2:Reference signal, synchronization signals and PBCH allocated as per TS |                                                                               |                |                |  |  |  |  |  |
| Note 2: Reference signal, synchronization                                                                         | on signals a                                                                  | nd PBCH alloc  | ated as per IS |  |  |  |  |  |
| 36.211 [4].                                                                                                       |                                                                               | additional ODO |                |  |  |  |  |  |
|                                                                                                                   | Note 3: If more than one Code Block is present, an additional CRC sequence of |                |                |  |  |  |  |  |
| L = 24 Bits is attached to each Code Block (otherwise $L = 0$ Bit).                                               |                                                                               |                |                |  |  |  |  |  |

## Table A.3.4.1-7: PCell Fixed Reference Channel for CA demodulation with power imbalance

410

# A.3.4.2 Multi-antenna transmission (Common Reference Signals)

### A.3.4.2.1 Two antenna ports

| Reference channel         R.10         R.11         R.11-1         R.11-2         R.11-2         R.11-4         R.30         R.30-1         R.30-2         TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Parameter              | Unit |       |       |       |       |       | Value |        |       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| Allocated resource<br>blocks (Note 5)         50         50         50         25         40         50         100         100         100           Uplink-Downlink<br>Configuration (Note<br>3)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 </td <td>Reference channel</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TDD</td> <td></td> <td></td> <td></td> <td>TDD</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference channel      |      |       |       |       |       | TDD   |       |        |       | TDD   |
| blocks (Note 5)         Image: stress of the stress of       | Channel bandwidth      | MHz  | 10    | 10    | 10    | 5     | 10    | 10    | 20     | 20    | 20    |
| Configuration (Note<br>3)         Note         Note         Note         Note         Note           Allocated subframes<br>per Radio Frame<br>(D+S)         3+2         3+2         2+2         3+2         3+2         2         3+2         2         2           Modulation         QPSK         16QAM         16QAM         16QAM         16QAM         QPSK         16QAM         1/2         1/2         1/2 <td></td> <td></td> <td>50</td> <td>50</td> <td>50</td> <td>25</td> <td>40</td> <td>50</td> <td>100</td> <td>100</td> <td>100</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |      | 50    | 50    | 50    | 25    | 40    | 50    | 100    | 100   | 100   |
| per Radio Frame<br>(D+S)         QPSK         16QAM         16QAM         16QAM         16QAM         QPSK         16QAM         16QA         16QA         16QA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Configuration (Note 3) |      | -     |       |       | 1     |       | 1     |        |       |       |
| Target Coding Rate         1/3         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | per Radio Frame        |      |       |       |       |       | 3+2   |       |        | 2+2   |       |
| Information Bit<br>Payload (Note 5)         Bits         4392         12960         12960         5736         10296         6968         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         25456         N/A         N/A<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Modulation             |      | QPSK  | 16QAM | 16QAM | 16QAM | 16QAM | QPSK  | 16QAM  | 16QAM | 16QAM |
| Payload (Note 5)         Image: constraint of the state of the s       | Target Coding Rate     |      | 1/3   | 1/2   | 1/2   | 1/2   | 1/2   | 1/2   | 1/2    | 1/2   | 1/2   |
| For Sub-Frames 1,6         3240         9528         9528         5160         9144         N/A         22920         21384         N/A           For Sub-Frame 5         Bits         N/A           For Sub-Frame 0         Bits         4392         12960         N/A         4968         10296         N/A         25456         N/A         N/A           Number of Code         Blocks         N/A         A         4968         10296         N/A         25456         N/A         N/A           For Sub-Frames 4,9         1         3         3         1         2         2         5         5         5           For Sub-Frames 1,6         1         2         2         1         2         N/A         N/A         N/A         N/A           For Sub-Frame 0         1         3         N/A         1         2         N/A         N/A         N/A           Binary Channel Bits<br>(Note 5)         13200         26400         26400         12000         21120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |      |       |       |       |       |       |       |        |       |       |
| For Sub-Frame 5         Bits         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | For Sub-Frames 4,9     | Bits | 4392  | 12960 | 12960 | 5736  | 10296 | 6968  | 25456  | 25456 |       |
| For Sub-Frame 0         Bits         4392         12960         N/A         4968         10296         N/A         25456         N/A         N/A           Number of Code<br>Blocks<br>(Notes 4 and 5)         Image: Constraint of Code<br>Blocks         Image: Code<br>Blocks                                                                                                                                                                                                                                                                                                                                                                     | For Sub-Frames 1,6     |      | 3240  | 9528  | 9528  | 5160  | 9144  | N/A   | 22920  | 21384 | N/A   |
| Number of Code<br>Blocks<br>(Notes 4 and 5)         Image: Second s | For Sub-Frame 5        | Bits | N/A   | N/A   |       | N/A   | N/A   | N/A   | N/A    | N/A   |       |
| Blocks<br>(Notes 4 and 5)         Image: Marcol and Stress Stres    | For Sub-Frame 0        | Bits | 4392  | 12960 | N/A   | 4968  | 10296 | N/A   | 25456  | N/A   | N/A   |
| For Sub-Frames 1,6         1         2         2         1         2         N/A         4         4         N/A           For Sub-Frame 5         N/A           For Sub-Frame 0         1         3         N/A         1         2         N/A         5         N/A         N/A           Binary Channel Bits<br>(Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blocks                 |      |       |       |       |       |       |       |        |       |       |
| For Sub-Frame 5         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | For Sub-Frames 4,9     |      | 1     | 3     | 3     | 1     | 2     | 2     | 5      | 5     | 5     |
| For Sub-Frame 0         1         3         N/A         1         2         N/A         5         N/A         N/A           Binary Channel Bits<br>(Note 5)         1         3         N/A         1         2         N/A         5         N/A         N/A           For Sub-Frames 4,9         Bits         13200         26400         26400         12000         21120         13200         52800         52800         52800           For Sub-Frames 1,6         10656         21312         21312         10512         16992         10656         42912         42912         N/A           For Sub-Frame 5         Bits         N/A         N/A         N/A         N/A         N/A         N/A         N/A           For Sub-Frame 0         Bits         12528         25056         N/A         10656         19776         12528         51456         N/A         N/A           Max. Throughput<br>averaged over 1<br>frame (Note 5)         1.966         5.794         4.498         2.676         4.918         1.39         12.221         9.368         5.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For Sub-Frames 1,6     |      | 1     | 2     | 2     | 1     | 2     | N/A   | 4      | 4     | N/A   |
| Binary Channel Bits<br>(Note 5)         Image: Second sec    | For Sub-Frame 5        |      | N/A    | N/A   | N/A   |
| (Note 5)         Image: Constraint of the system         Image: Consystem         Ima                                                                                                                                                                                                                                                                                                                                                                                        | For Sub-Frame 0        |      | 1     | 3     | N/A   | 1     | 2     | N/A   | 5      | N/A   | N/A   |
| For Sub-Frames 1,6         10656         21312         21312         10512         16992         10656         42912         42912         N/A           For Sub-Frame 5         Bits         N/A         N/A <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |      |       |       |       |       |       |       |        |       |       |
| For Sub-Frame 5         Bits         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | For Sub-Frames 4,9     | Bits | 13200 | 26400 | 26400 | 12000 | 21120 | 13200 | 52800  | 52800 | 52800 |
| For Sub-Frame 0         Bits         12528         25056         N/A         10656         19776         12528         51456         N/A         N/A           Max. Throughput<br>averaged over 1<br>frame (Note 5)         Mbps         1.966         5.794         4.498         2.676         4.918         1.39         12.221         9.368         5.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For Sub-Frames 1,6     |      |       |       |       |       |       |       |        |       |       |
| Max. Throughput<br>averaged over 1<br>frame (Note 5)         Mbps         1.966         5.794         4.498         2.676         4.918         1.39         12.221         9.368         5.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | For Sub-Frame 5        | Bits |       | N/A   | N/A   | N/A   | N/A   | N/A   | N/A    | N/A   |       |
| averaged over 1<br>frame (Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |      |       |       |       |       |       |       |        |       |       |
| UE Category $\geq 1  \geq 2  \geq 2  \geq 1  \geq 1  \geq 2  \geq 2  3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | averaged over 1        | Mbps | 1.966 | 5.794 | 4.498 | 2.676 | 4.918 | 1.39  | 12.221 | 9.368 |       |
| Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW: 3 symbols allocated to PDCCH for 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UE Category            |      | -     |       |       | -     |       | -     |        |       |       |

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz; symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].

Note 3: As per Table 4.2-2 in TS 36.211 [4].

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (other

Note 5: Given per component carrier per codeword.

Note 6: For R.11-3 resource blocks of RB6–RB45 are allocated.

| Parameter                             | Unit                                                                                                                                       | Value           |                |              |              |              |               |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|--------------|--------------|--------------|---------------|--|--|
| Reference channel                     | •                                                                                                                                          | R.46 TDD        | R.47 TDD       | R.35-2       |              |              |               |  |  |
|                                       |                                                                                                                                            | 14.10 122       |                | TDD          |              |              |               |  |  |
| Channel bandwidth                     | MHz                                                                                                                                        | 10              | 10             | 10           |              |              |               |  |  |
| Allocated resource                    |                                                                                                                                            | 50              | 50             | 50           |              |              |               |  |  |
| blocks (Note 5)                       |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| Uplink-Downlink                       |                                                                                                                                            | 1               | 1              | 1            |              |              |               |  |  |
| Configuration (Note                   |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| 3)                                    |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| Allocated subframes                   |                                                                                                                                            | 3+2             | 3+2            | 2+2          |              |              |               |  |  |
| per Radio Frame                       |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| (D+S)                                 |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| Modulation                            |                                                                                                                                            | QPSK            | 16QAM          | 64QAM        |              |              |               |  |  |
| Target Coding Rate                    |                                                                                                                                            |                 |                | 0.47         |              | _            |               |  |  |
| Information Bit                       |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| Payload (Note 5)                      |                                                                                                                                            | - /             |                |              |              |              |               |  |  |
| For Sub-Frames 4,9                    | Bits                                                                                                                                       | 5160            | 8760           | 18336        |              |              |               |  |  |
| For Sub-Frames 1,6                    |                                                                                                                                            | 3880            | 7480           | 14688        |              |              |               |  |  |
| For Sub-Frame 5                       | Bits                                                                                                                                       | N/A             | N/A            | N/A          |              |              |               |  |  |
| For Sub-Frame 0                       | Bits                                                                                                                                       | 5160            | 8760           | N/A          |              |              |               |  |  |
| Number of Code                        |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| Blocks                                |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| (Notes 4 and 5)<br>For Sub-Frames 4,9 |                                                                                                                                            | 1               | 2              | 3            |              |              |               |  |  |
| For Sub-Frames 1,6                    |                                                                                                                                            | 1               | 2              | 3            | -            | -            | _             |  |  |
| For Sub-Frame 5                       |                                                                                                                                            | N/A             | N/A            | N/A          |              | _            | _             |  |  |
| For Sub-Frame 0                       |                                                                                                                                            | 1               | 2              | N/A          |              |              |               |  |  |
| Binary Channel Bits                   |                                                                                                                                            | 1               | 2              | 11/7         |              |              |               |  |  |
| (Note 5)                              |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| For Sub-Frames 4,9                    | Bits                                                                                                                                       | 13200           | 26400          | 39600        |              |              |               |  |  |
| For Sub-Frames 1,6                    | Bito                                                                                                                                       | 10656           | 21312          | 31968        |              |              |               |  |  |
| For Sub-Frame 5                       | Bits                                                                                                                                       | N/A             | N/A            | N/A          |              |              |               |  |  |
| For Sub-Frame 0                       | Bits                                                                                                                                       | 12528           | 25056          | N/A          |              |              |               |  |  |
| Max. Throughput                       | Mbps                                                                                                                                       | 2.324           | 4.124          | 6.604        |              |              |               |  |  |
| averaged over 1                       | -1 -                                                                                                                                       | _               |                |              |              |              |               |  |  |
| frame (Note 5)                        |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| UE Category                           |                                                                                                                                            | ≥ 1             | ≥ 1            | ≥ 2          |              |              |               |  |  |
| Note 1: 2 symbols a                   | llocated to                                                                                                                                | PDCCH for 2     | 0 MHz, 15 MH   | Iz and 10 MI | Iz channel   | BW; 3 symb   | ols allocated |  |  |
|                                       |                                                                                                                                            |                 | symbols alloca | ted to PDCC  | CH for 1.4 N | IHz. For sub | frame 1&6,    |  |  |
|                                       |                                                                                                                                            | are allocated   |                |              |              |              |               |  |  |
|                                       |                                                                                                                                            |                 | gnals and PB   | CH allocated | l as per TS  | 36.211 [4].  |               |  |  |
|                                       |                                                                                                                                            |                 |                |              |              |              |               |  |  |
|                                       | If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to<br>each Code Block (otherwise L = 0 Bit). |                 |                |              |              |              |               |  |  |
|                                       |                                                                                                                                            |                 |                |              |              |              |               |  |  |
| Note 5: Given per co                  | omponent o                                                                                                                                 | carrier per cod | ieword         |              |              |              |               |  |  |

Table A.3.4.2.1-2: Fixed Reference Channel two antenna ports

#### 412

### A.3.4.2.2 Four antenna ports

| Parameter                                                                                                                                                                                                                                | Unit         | Value          |             |             |             |               |            |          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-------------|-------------|-------------|---------------|------------|----------|--|
| Reference channel                                                                                                                                                                                                                        |              | R.12           | R.13        | R.14        | R.14-1      | R.14-2        | R.43       | R.36     |  |
|                                                                                                                                                                                                                                          |              | TDD            | TDD         | TDD         | TDD         | TDD           | TDD        | TDD      |  |
| Channel bandwidth                                                                                                                                                                                                                        | MHz          | 1.4            | 10          | 10          | 10          | 10            | 20         | 10       |  |
| Allocated resource blocks (Note 6)                                                                                                                                                                                                       |              | 6              | 50          | 50          | 6           | 3             | 100        | 50       |  |
| Uplink-Downlink Configuration (Note 4)                                                                                                                                                                                                   |              | 1              | 1           | 1           | 1           | 1             | 1          | 1        |  |
| Allocated subframes per Radio                                                                                                                                                                                                            |              | 3              | 3+2         | 2+2         | 2           | 2             | 2+2        | 2+2      |  |
| Frame (D+S)                                                                                                                                                                                                                              |              |                |             |             |             |               |            |          |  |
| Modulation                                                                                                                                                                                                                               |              | QPSK           | QPSK        | 16QAM       | 16QAM       | 16QAM         | 16QAM      | 64QAM    |  |
| Target Coding Rate                                                                                                                                                                                                                       |              | 1/3            | 1/3         | 1/2         | 1/2         | 1/2           | 1/2        | 1/2      |  |
| Information Bit Payload (Note 6)                                                                                                                                                                                                         |              |                |             |             |             |               |            |          |  |
| For Sub-Frames 4,9                                                                                                                                                                                                                       | Bits         | 408            | 4392        | 12960       | 1544        | 744           | 25456      | 18336    |  |
| For Sub-Frames 1,6                                                                                                                                                                                                                       | Bits         | N/A            | 3240        | 9528        | N/A         | N/A           | 21384      | 15840    |  |
| For Sub-Frame 5                                                                                                                                                                                                                          | Bits         | N/A            | N/A         | N/A         | N/A         | N/A           | N/A        | N/A      |  |
| For Sub-Frame 0                                                                                                                                                                                                                          | Bits         | 208            | 4392        | N/A         | N/A         | N/A           | N/A        | N/A      |  |
| Number of Code Blocks                                                                                                                                                                                                                    |              |                |             |             |             |               |            |          |  |
| (Notes 5 and 6)                                                                                                                                                                                                                          |              |                |             |             |             |               |            |          |  |
| For Sub-Frames 4,9                                                                                                                                                                                                                       |              | 1              | 1           | 3           | 1           | 1             | 5          | 3        |  |
| For Sub-Frames 1,6                                                                                                                                                                                                                       |              | N/A            | 1           | 2           | N/A         | N/A           | 4          | 3        |  |
| For Sub-Frame 5                                                                                                                                                                                                                          |              | N/A            | N/A         | N/A         | N/A         | N/A           | N/A        | N/A      |  |
| For Sub-Frame 0                                                                                                                                                                                                                          |              | 1              | 1           | N/A         | N/A         | N/A           | N/A        | N/A      |  |
| Binary Channel Bits (Note 6)                                                                                                                                                                                                             |              |                |             |             |             |               |            |          |  |
| For Sub-Frames 4,9                                                                                                                                                                                                                       | Bits         | 1248           | 12800       | 25600       | 3072        | 1536          | 51200      | 38400    |  |
| For Sub-Frames 1,6                                                                                                                                                                                                                       |              | N/A            | 10256       | 20512       | N/A         | N/A           | 41312      | 30768    |  |
| For Sub-Frame 5                                                                                                                                                                                                                          | Bits         | N/A            | N/A         | N/A         | N/A         | N/A           | N/A        | N/A      |  |
| For Sub-Frame 0                                                                                                                                                                                                                          | Bits         | 624            | 12176       | N/A         | N/A         | N/A           | N/A        | N/A      |  |
| Max. Throughput averaged over 1                                                                                                                                                                                                          | Mbps         | 0.102          | 1.966       | 4.498       | 0.309       | 0.149         | 9.368      | 6.835    |  |
| frame (Note 6)                                                                                                                                                                                                                           |              |                |             |             |             |               |            |          |  |
| UE Category                                                                                                                                                                                                                              |              | ≥ 1            | ≥ 1         | ≥2          | ≥ 1         | ≥ 1           | ≥ 2        | ≥2       |  |
| Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH. |              |                |             |             |             |               |            |          |  |
| Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.                                                       |              |                |             |             |             |               |            |          |  |
| Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].                                                                                                                                               |              |                |             |             |             |               |            |          |  |
| Note 4: As per Table 4.2-2 in TS 36                                                                                                                                                                                                      |              |                |             |             |             |               |            |          |  |
| Note 5: If more than one Code Bloc<br>(otherwise L = 0 Bit).                                                                                                                                                                             | k is preser: | nt, an additio | nal CRC sec | luence of L | = 24 Bits i | s attached to | o each Coo | le Block |  |
| Note 6: Given per component carrie                                                                                                                                                                                                       | ar nor oodo  | word           |             |             |             |               |            |          |  |

#### Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Note 6: Given per component carrier per codeword.

# A.3.4.3 Reference Measurement Channels for UE-Specific Reference Symbols

### A.3.4.3.1 Single antenna port (Cell Specific)

The reference measurement channels in Table A.3.4.3.1-1 apply for verifying demodulation performance for UE-specific reference symbols with one cell-specific antenna port.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit       |                 |                 | Val             | ue              |                 |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------|
| Reference channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | R.25<br>TDD     | R.26<br>TDD     | R.26-1<br>TDD   | R.27<br>TDD     | R.27-1<br>TDD   | R.28<br>TDD |
| Channel bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHz        | 10              | 10              | 5               | 10              | 10              | 10          |
| Allocated resource blocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 50 <sup>4</sup> | 50 <sup>4</sup> | 25 <sup>4</sup> | 50 <sup>4</sup> | 18 <sup>6</sup> | 1           |
| Uplink-Downlink Configuration (Note 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 1               | 1               | 1               | 1               | 1               | 1           |
| Allocated subframes per Radio Frame (D+S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 3+2             | 3+2             | 3+2             | 3+2             | 3+2             | 3+2         |
| Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | QPSK            | 16QAM           | 16QAM           | 64QAM           | 64QAM           | 16QAM       |
| Target Coding Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1/3             | 1/2             | 1/2             | 3/4             | 3/4             | 1/2         |
| Information Bit Payload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                 |                 |                 |                 |                 |             |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bits       | 4392            | 12960           | 5736            | 28336           | 10296           | 224         |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bits       | 3240            | 9528            | 4584            | 22920           | 8248            | 176         |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bits       | N/A             | N/A             | N/A             | N/A             | N/A             | N/A         |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bits       | 2984            | 9528            | 3880            | 22152           | 10296           | 224         |
| Number of Code Blocks per Sub-Frame (Note 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                 |                 |                 |                 |                 |             |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1               | 3               | 1               | 5               | 2               | 1           |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1               | 2               | 1               | 4               | 2               | 1           |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | N/A             | N/A             | N/A             | N/A             | N/A             | N/A         |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1               | 2               | 1               | 4               | 2               | 1           |
| Binary Channel Bits Per Sub-Frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                 |                 |                 |                 |                 |             |
| For Sub-Frames 4,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bits       | 12600           | 25200           | 11400           | 37800           | 13608           | 504         |
| For Sub-Frames 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bits       | 10356           | 20712           | 10212           | 31068           | 11340           | 420         |
| For Sub-Frame 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bits       | N/A             | N/A             | N/A             | N/A             | N/A             | N/A         |
| For Sub-Frame 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bits       | 10332           | 20664           | 7752            | 30996           | 13608           | 504         |
| Max. Throughput averaged over 1 frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mbps       | 1.825           | 5.450           | 2.452           | 12.466          | 4.738           | 0.102       |
| UE Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | ≥ 1             | ≥ 2             | ≥ 1             | ≥ 2             | ≥1              | ≥ 1         |
| <ul> <li>Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&amp;6, only 2 OFDM symbols are allocated to PDCCH.</li> <li>Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4].</li> <li>Note 3: as per Table 4.2-2 in TS 36.211 [4].</li> <li>Note 4: For R.25, R.26 and R.27, 50 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0. For R.26-1, 25 resource blocks are allocated in sub-frames 1, 4, 6, 9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame 0.</li> <li>Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).</li> </ul> |            |                 |                 |                 |                 |                 |             |
| Note 6: Localized allocation started from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB #0 is a | pplied.         |                 |                 |                 |                 |             |

# Two antenna ports (Cell Specific)

A.3.4.3.2

The reference measurement channels in Table A.3.4.3.2-1 apply for verifying demodulation performance for CDM-

multiplexed UE specific reference symbols with two cell-specific antenna ports.

| Referer   | nce channel                                                                                                                                                                  |      | R.31            | R.32            | R.32-1          | R.33            | R.33-1           | R.34            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|
|           |                                                                                                                                                                              |      | TDD             | TDD             | TDD             | TDD             | TDD              | TDD             |
| Channel b | bandwidth MHz 10 10 5 10 10 10                                                                                                                                               |      |                 |                 |                 |                 |                  |                 |
| Allocated | resource                                                                                                                                                                     |      | 50 <sup>4</sup> | 50 <sup>4</sup> | 25 <sup>4</sup> | 50 <sup>4</sup> | 18 <sup>6</sup>  | 50 <sup>4</sup> |
| blocks    |                                                                                                                                                                              |      |                 |                 |                 |                 |                  |                 |
| Uplink-Do |                                                                                                                                                                              |      | 1               | 1               | 1               | 1               | 1                | 1               |
|           | tion (Note 3)                                                                                                                                                                |      |                 |                 |                 |                 |                  |                 |
| Allocated | subframes                                                                                                                                                                    |      | 3+2             | 3+2             | 3+2             | 3+2             | 3+2              | 3+2             |
|           | Frame (D+S)                                                                                                                                                                  |      |                 |                 |                 |                 |                  |                 |
| Modulatio |                                                                                                                                                                              |      | QPSK            | 16QAM           | 16QAM           | 64QAM           | 64QAM            | 64QAM           |
| Target Co |                                                                                                                                                                              |      | 1/3             | 1/2             | 1/2             | 3/4             | 3/4              | 1/2             |
|           | n Bit Payload                                                                                                                                                                |      |                 |                 |                 |                 |                  |                 |
|           | Frames 4,9                                                                                                                                                                   | Bits | 3624            | 11448           | 5736            | 27376           | 9528             | 18336           |
|           | Frames 1,6                                                                                                                                                                   |      | 2664            | 7736            | 3112            | 16992           | 7480             | 11832           |
| For Sub-  |                                                                                                                                                                              | Bits | N/A             | N/A             | N/A             | N/A             | N/A              | N/A             |
| For Sub-  |                                                                                                                                                                              | Bits | 2984            | 9528            | 3496            | 22152           | 9528             | 14688           |
|           | f Code Blocks                                                                                                                                                                |      |                 |                 |                 |                 |                  |                 |
| per Sub-F | rame                                                                                                                                                                         |      |                 |                 |                 |                 |                  |                 |
| (Note 5)  |                                                                                                                                                                              |      |                 |                 |                 |                 |                  |                 |
|           | Frames 4,9                                                                                                                                                                   |      | 1               | 2               | 1               | 5               | 2                | 3               |
|           | Frames 1,6                                                                                                                                                                   |      | 1               | 2               | 1               | 3               | 2                | 2               |
| For Sub-  |                                                                                                                                                                              |      | N/A             | N/A             | N/A             | N/A             | N/A              | N/A             |
|           | Frame 0                                                                                                                                                                      |      | 1               | 2               | 1               | 4               | 2                | 3               |
|           | annel Bits Per                                                                                                                                                               |      |                 |                 |                 |                 |                  |                 |
| Sub-Fram  |                                                                                                                                                                              |      |                 |                 |                 |                 |                  |                 |
|           | Frames 4,9                                                                                                                                                                   | Bits | 12000           | 24000           | 10800           | 36000           | 12960            | 36000           |
|           | Frames 1,6                                                                                                                                                                   |      | 7872            | 15744           | 6528            | 23616           | 10368            | 23616           |
| For Sub-  |                                                                                                                                                                              | Bits | N/A             | N/A             | N/A             | N/A             | N/A              | N/A             |
| For Sub-  |                                                                                                                                                                              | Bits | 9840            | 19680           | 7344            | 29520           | 12960            | 29520           |
| Max. Thro |                                                                                                                                                                              | Mbps | 1.556           | 4.79            | 2.119           | 11.089          | 4.354            | 7.502           |
|           | over 1 frame                                                                                                                                                                 |      |                 |                 |                 |                 |                  |                 |
| UE Categ  |                                                                                                                                                                              |      | ≥ 1             | ≥2              | ≥1              | ≥2              | ≥ 1              | ≥2              |
| Note 1:   | 2 symbols allo                                                                                                                                                               |      |                 |                 |                 |                 |                  |                 |
|           | allocated to PD                                                                                                                                                              |      |                 |                 |                 |                 | DCCH for 1.      | .4 MHz.         |
|           | For subframe 1                                                                                                                                                               |      |                 |                 |                 |                 | <b>TO</b> 00 044 |                 |
| Note 2:   | Reference sign                                                                                                                                                               |      |                 | gnais and       | PBCH allo       | cated as pe     | er 1S 36.211     | 1 [4].          |
| Note 3:   | as per Table 4.                                                                                                                                                              |      |                 | a a una a la la | alia ara alli   |                 | uh franca 4      | 0 and 11        |
| Note 4:   | Note 4: For R.31, R.32, R.33and R.34, 50 resource blocks are allocated in sub-frames 4,9 and 41                                                                              |      |                 |                 |                 |                 |                  |                 |
|           | resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0 and the DwDTS parties of sub-frames 1.6. For R 22.1.25 resource blocks are allocated in sub-           |      |                 |                 |                 |                 |                  |                 |
|           | DwPTS portion of sub-frames 1,6. For R.32-1, 25 resouce blocks are allocated in sub-<br>frames 4,9 and 17 resource blocks (RB0–RB7 and RB16–RB24) are allocated in sub-frame |      |                 |                 |                 |                 |                  |                 |
|           | 0 and the DwP                                                                                                                                                                |      |                 |                 |                 | -11024) die     | anocated II      | i sub-iranie    |
| Note 5:   | If more than or                                                                                                                                                              |      |                 |                 | litional CR     | C sequence      | of I – 24 F      | Rits is         |
| 11016 0.  | attached to ead                                                                                                                                                              |      |                 |                 |                 | C SCYLENC       | 5 51 2 - 2 + 1   | 2110 10         |
| Note 6:   | Localized alloc                                                                                                                                                              |      |                 |                 |                 |                 |                  |                 |
| 11010 0.  |                                                                                                                                                                              |      |                 | " 0 10 uppli    |                 |                 |                  |                 |

Table A.3.4.3.2-1: Fixed Reference Channel for CDM-multiplexed DM RS

## A.3.4.3.3 Two antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.3-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports and two CSI-RS antenna ports.

| Table A.3.4.3.3-1: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenn | а |
|---------------------------------------------------------------------------------------------|---|
| ports                                                                                       |   |

|                                                               | Parameter                       | Unit        | Value          |  |  |  |  |  |
|---------------------------------------------------------------|---------------------------------|-------------|----------------|--|--|--|--|--|
| Deference                                                     | e channel                       | Unit        | R.51 TDD       |  |  |  |  |  |
|                                                               |                                 | MHz         | 10             |  |  |  |  |  |
|                                                               | bandwidth                       |             | . 🗸            |  |  |  |  |  |
|                                                               | I resource blocks               |             | 50 (Note 5)    |  |  |  |  |  |
|                                                               | ownlink Configuration (Note 3)  |             | 1              |  |  |  |  |  |
|                                                               | I subframes per Radio Frame     |             | 3+2            |  |  |  |  |  |
| (D+S)                                                         |                                 |             |                |  |  |  |  |  |
| Modulatio                                                     |                                 |             | 16QAM          |  |  |  |  |  |
|                                                               | oding Rate                      |             | 1/2            |  |  |  |  |  |
|                                                               | on Bit Payload                  |             |                |  |  |  |  |  |
|                                                               | -Frames 4,9 (non CSI-RS         | Bits        | 11448          |  |  |  |  |  |
| subframe                                                      | /                               |             |                |  |  |  |  |  |
|                                                               | -Frame 4,9                      | Bits        | 11448          |  |  |  |  |  |
|                                                               | -Frames 1,6                     | Bits        | 7736           |  |  |  |  |  |
| For Sub                                                       | -Frame 5                        | Bits        | N/A            |  |  |  |  |  |
| For Sub                                                       | -Frame 0                        | Bits        | 9528           |  |  |  |  |  |
|                                                               | of Code Blocks                  |             |                |  |  |  |  |  |
| (Note 4)                                                      |                                 |             |                |  |  |  |  |  |
| For Sub                                                       | -Frames 4, 9 (non CSI-RS        | Code        | 2              |  |  |  |  |  |
| subframe                                                      | e)                              | blocks      |                |  |  |  |  |  |
| For Sub                                                       | -Frames 4,9                     | Code        | 2              |  |  |  |  |  |
|                                                               |                                 | blocks      |                |  |  |  |  |  |
| For Sub                                                       | -Frames 1,6                     | Code        | 2              |  |  |  |  |  |
|                                                               |                                 | blocks      |                |  |  |  |  |  |
| For Sub                                                       | -Frame 5                        |             | N/A            |  |  |  |  |  |
|                                                               | -Frame 0                        | Code        | N/A<br>2       |  |  |  |  |  |
|                                                               |                                 | blocks      |                |  |  |  |  |  |
| Binary Cl                                                     | hannel Bits                     |             |                |  |  |  |  |  |
| For Sub                                                       | -Frames 4, 9 (non CSI-RS        | Bits        | 24000          |  |  |  |  |  |
| subframe                                                      |                                 |             |                |  |  |  |  |  |
|                                                               | -Frames 4,9                     |             | 22800          |  |  |  |  |  |
|                                                               | -Frames 1,6                     |             | 15744          |  |  |  |  |  |
|                                                               | -Frame 5                        | Bits        | N/A            |  |  |  |  |  |
|                                                               | -Frame 0                        | Bits        | 19680          |  |  |  |  |  |
|                                                               | oughput averaged over 1         | Mbps        | 4.7896         |  |  |  |  |  |
| frame                                                         |                                 | Mopo        | 1.7000         |  |  |  |  |  |
| UE Cate                                                       |                                 |             | ≥ 2            |  |  |  |  |  |
| Note 1:                                                       | 2 symbols allocated to PDCC     | 4           | - 2            |  |  |  |  |  |
| Note 2:                                                       | Reference signal, synchroniza   |             | s and PRCH     |  |  |  |  |  |
| 11010 2.                                                      | allocated as per TS 36.211 [4]  |             |                |  |  |  |  |  |
| Note 3: as per Table 4.2-2 in TS 36.211 [4].                  |                                 |             |                |  |  |  |  |  |
| Note 4: If more than one Code Block is present, an additional |                                 |             |                |  |  |  |  |  |
| CRC sequence of $L = 24$ Bits is attached to each Code        |                                 |             |                |  |  |  |  |  |
| Block (otherwise L = $0$ Bit).                                |                                 |             |                |  |  |  |  |  |
| Note 5:                                                       | 50 resource blocks are allocat  | ed in sub-f | frames 4.9 and |  |  |  |  |  |
| 11010 0.                                                      | 41 resource blocks (RB0–RB2     |             |                |  |  |  |  |  |
|                                                               | allocated in sub-frame 0 and th |             |                |  |  |  |  |  |
|                                                               | sub-frames 1,6.                 |             |                |  |  |  |  |  |
| L                                                             |                                 |             |                |  |  |  |  |  |

The reference measurement channels in Table A.3.4.3.3-2 apply for verifying demudlation performance for UE-specific reference symbols with two cell specific antenna ports and two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS in same subframe.

| Parameter Unit Value                   |              |                 |                 |                |  |  |
|----------------------------------------|--------------|-----------------|-----------------|----------------|--|--|
| Reference channel                      |              | R.52 TDD        | R.53 TDD        | R.54 TDD       |  |  |
| Channel bandwidth                      | MHz          | 10              | 10              | 10             |  |  |
| Allocated resource blocks              |              | 50 (Note 5)     | 50 (Note 5)     | 50 (Note 5)    |  |  |
| Uplink-Downlink Configuration (Note 3) |              | 1               | 1               | 1              |  |  |
| Allocated subframes per Radio Frame    |              | 3+2             | 3+2             | 3+2            |  |  |
| (D+S)                                  |              |                 |                 |                |  |  |
| Modulation                             |              | 64QAM           | 64QAM           | 16QAM          |  |  |
| Target Coding Rate                     |              | 1/2             | 1/2             | 1/2            |  |  |
| Information Bit Payload                |              |                 |                 |                |  |  |
| For Sub-Frame 4,9                      | Bits         | 16416           | 16416           | 11448          |  |  |
| For Sub-Frames 1,6                     | Bits         | 11832           | 11832           | 7736           |  |  |
| For Sub-Frame 5                        | Bits         | n/a             | n/a             | n/a            |  |  |
| For Sub-Frame 0                        | Bits         | 14688           | 14688           | 9528           |  |  |
| Number of Code Blocks                  |              |                 |                 |                |  |  |
| (Note 4)                               |              |                 |                 |                |  |  |
| For Sub-Frames 4,9                     | Code         | 3               | 3               | 2              |  |  |
|                                        | blocks       |                 |                 |                |  |  |
| For Sub-Frames 1,6                     | Code         | 2               | 2               | 2              |  |  |
|                                        | blocks       |                 |                 |                |  |  |
| For Sub-Frame 5                        |              | n/a             | n/a             | n/a            |  |  |
| For Sub-Frame 0                        | Code         | 3               | 3               | 2              |  |  |
|                                        | blocks       |                 |                 |                |  |  |
| Binary Channel Bits                    |              |                 |                 |                |  |  |
| For Sub-Frames 4,9                     |              | 34200           | 33600           | 22800          |  |  |
| For Sub-Frames 1,6                     |              | 23616           | 23616           | 15744          |  |  |
| For Sub-Frame 5                        | Bits         | n/a             | n/a             | n/a            |  |  |
| For Sub-Frame 0                        | Bits         | 29520           | 29520           | 19680          |  |  |
| Max. Throughput averaged over 1        | Mbps         | 7.1184          | 7.1184          | 4.7896         |  |  |
| frame                                  |              |                 |                 |                |  |  |
| UE Category                            |              | ≥ 2             | ≥ 2             | ≥ 2            |  |  |
| Note 1: 2 symbols allocated to PDCCH   |              |                 |                 |                |  |  |
| Note 2: Reference signal, synchroniza  |              | s and PBCH allo | cated as per TS | 36.211 [4].    |  |  |
| Note 3: as per Table 4.2-2 in TS 36.21 |              |                 |                 |                |  |  |
| Note 4: If more than one Code Block i  |              |                 | C sequence of L | . = 24 Bits is |  |  |
| attached to each Code Block (          |              |                 |                 |                |  |  |
| Note 5: 50 resource blocks are allocat |              |                 |                 |                |  |  |
| and RB30–RB49) are allocate            | d in sub-fra | ame 0 and the D | wPTS portion of | sub-frames 1,  |  |  |
| 6.                                     |              |                 |                 |                |  |  |

# Table A.3.4.3.3-2: Fixed Reference Channel for CDM-multiplexed DM RS with two CSI-RS antenna ports with ZP CSI-RS and NZP CSI-RS

## A.3.4.3.4 Four antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.4-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports and four CSI-RS antenna ports.

| Parameter Unit Value                         |              |                      |          |  |  |  |  |  |  |  |
|----------------------------------------------|--------------|----------------------|----------|--|--|--|--|--|--|--|
|                                              | Unit         |                      |          |  |  |  |  |  |  |  |
| Reference channel                            |              | R.44 TDD R.48<br>TDD |          |  |  |  |  |  |  |  |
| Channel bandwidth                            | MHz          | 10                   | 10       |  |  |  |  |  |  |  |
| Allocated resource blocks                    |              | 50 (Note 4)          | 50 (Note |  |  |  |  |  |  |  |
|                                              | 4)           |                      |          |  |  |  |  |  |  |  |
| Uplink-Downlink Configuration<br>(Note 3)    |              | 1                    | 1        |  |  |  |  |  |  |  |
| Allocated subframes per Radio<br>Frame (D+S) |              | 3+2                  | 3+2      |  |  |  |  |  |  |  |
| Modulation                                   |              | 64QAM                | QPSK     |  |  |  |  |  |  |  |
| Target Coding Rate                           |              |                      |          |  |  |  |  |  |  |  |
| Information Bit Payload                      |              |                      |          |  |  |  |  |  |  |  |
| For Sub-Frames 4,9 (non CSI-RS               | Bits         | 18336                | N/A      |  |  |  |  |  |  |  |
| subframe)                                    |              |                      |          |  |  |  |  |  |  |  |
| For Sub-Frames 4,9 (CSI-RS                   | Bits         | 16416                | 6200     |  |  |  |  |  |  |  |
| subframe)                                    |              |                      |          |  |  |  |  |  |  |  |
| For Sub-Frames 1,6                           |              | 11832                | 4264     |  |  |  |  |  |  |  |
| For Sub-Frame 5                              | Bits         | N/A                  | N/A      |  |  |  |  |  |  |  |
| For Sub-Frame 0                              | Bits         | 14688                | 4968     |  |  |  |  |  |  |  |
| Number of Code Blocks per Sub-               |              |                      |          |  |  |  |  |  |  |  |
| Frame                                        |              |                      |          |  |  |  |  |  |  |  |
| (Note 5)                                     |              |                      |          |  |  |  |  |  |  |  |
| For Sub-Frames 4,9 (non CSI-RS               |              | 3                    | 2        |  |  |  |  |  |  |  |
| subframe)                                    |              | -                    |          |  |  |  |  |  |  |  |
| For Sub-Frames 4,9 (CSI-RS                   |              | 3                    | 2        |  |  |  |  |  |  |  |
| subframe)                                    |              | -                    |          |  |  |  |  |  |  |  |
| For Sub-Frames 1,6                           |              | 2                    | 1        |  |  |  |  |  |  |  |
| For Sub-Frame 5                              |              | N/A                  | N/A      |  |  |  |  |  |  |  |
| For Sub-Frame 0                              |              | 3                    | 1        |  |  |  |  |  |  |  |
| Binary Channel Bits Per Sub-                 |              |                      |          |  |  |  |  |  |  |  |
| Frame                                        |              |                      |          |  |  |  |  |  |  |  |
| For Sub-Frames 4,9 (non CSI-RS               | Bits         | 36000                | 12000    |  |  |  |  |  |  |  |
| subframe)                                    |              |                      |          |  |  |  |  |  |  |  |
| For Sub-Frames 4,9 (CSI-RS                   | Bits         | 33600                | 11600    |  |  |  |  |  |  |  |
| subframe)                                    |              |                      |          |  |  |  |  |  |  |  |
| For Sub-Frames 1,6                           |              | 23616                | 7872     |  |  |  |  |  |  |  |
| For Sub-Frame 5                              | Bits         | N/A                  | N/A      |  |  |  |  |  |  |  |
| For Sub-Frame 0                              | Bits         | 29520                | 9840     |  |  |  |  |  |  |  |
| Max. Throughput averaged over 1              | Mbps         | 7.1184               | 2.5896   |  |  |  |  |  |  |  |
| frame                                        | -            |                      |          |  |  |  |  |  |  |  |
| UE Category                                  |              | ≥ 2                  | ≥ 1      |  |  |  |  |  |  |  |
| Note 1: 2 symbols allocated to PD            | OCCH.        |                      |          |  |  |  |  |  |  |  |
| Note 2: Reference signal, synchro            | nization sig | gnals and PBCI       | Н        |  |  |  |  |  |  |  |
| allocated as per TS 36.21                    |              |                      |          |  |  |  |  |  |  |  |
| Note 3: as per Table 4.2-2 in TS 3           |              |                      |          |  |  |  |  |  |  |  |
| Note 4: 50 resource blocks are allo          |              |                      |          |  |  |  |  |  |  |  |
| resource blocks (RB0–RB                      |              |                      |          |  |  |  |  |  |  |  |
| in sub-frame 0 and the Dw                    |              |                      |          |  |  |  |  |  |  |  |
| Note 5: If more than one Code Blo            |              |                      |          |  |  |  |  |  |  |  |
| sequence of $L = 24$ Bits is                 | attached t   | o each Code B        | lock     |  |  |  |  |  |  |  |
| (otherwise L = 0 Bit).                       |              |                      |          |  |  |  |  |  |  |  |

# Table A.3.4.3.4-1: Fixed Reference Channel for CDM-multiplexed DM RS with four CSI-RS antenna ports

# A.3.4.3.5 Eight antenna ports (CSI-RS)

The reference measurement channels in Table A.3.4.3.5-1 apply for verifying demodulation performance for CDMmultiplexed UE specific reference symbols with two cell-specific antenna ports and eight CSI-RS antenna ports.

# Table A.3.4.3.5-1: Fixed Reference Channel for CDM-multiplexed DM RS with eight CSI-RS antenna ports

| Reference channelReformReference channelR.50 TDDChannel bandwidthMHz10Allocated resource blocksUplink-Downlink Configuration (Note13)3Allocated subframes per Radio3+2Frame (D+S)0ModulationQPSKTarget Coding Rate1/3Information Bit Payload1For Sub-Frames 4,9 (non CSI-RSBitsSubframe)3624For Sub-Frames 1,62664For Sub-Frames 1,62664For Sub-Frames 1,62664For Sub-Frame 0BitsNumber of Code Blocks per Sub-<br>Frame1Subframe)1For Sub-Frames 4,9 (non CSI-RS1subframe)1For Sub-Frames 4,9 (non CSI-RS1Subframe)1For Sub-Frames 4,9 (non CSI-RS1Subframe)1For Sub-Frames 4,9 (non CSI-RS1Subframe)1For Sub-Frames 4,9 (non CSI-RS1For Sub-Frames 4,9 (non CSI-RS1Subframe)1For Sub-Frames 4,9 (non CSI-RSBitsSubframe)1For Sub-Frames 4,9 (non CSI-RSBitsFor Sub-Frames 4,9 (non CSI-RSBitsSubframe)1For Sub-Frames 4,9 (non CSI-RSBitsSubframe)1For Sub-Frames 4,9 (non CSI-RSBitsSubframe)1For Sub-Frames 4,9 (non CSI-RSBitsSubframe)1For Sub-Fram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Parameter                      | Unit          | Value             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|---------------|-------------------|
| Channel bandwidthMHz10Allocated resource blocks50 (Note 4)Uplink-Downlink Configuration (Note<br>3)1Allocated subframes per Radio3+2Frame (D+S)3+2ModulationQPSKTarget Coding Rate1/3Information Bit Payload1For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsStorb-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,62664For Sub-Frames 1,62664For Sub-Frame 5BitsNumber of Code Blocks per Sub-<br>Frame1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frame 5BitsPor Sub-Frame 61For Sub-Frame 71Subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)12000Subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)10400Subframe)10400For Sub-Frames 4,9 (CSI-RS<br>subframe)1.556For Sub-Frames 4,9 (CSI-RS<br>subframe)1.556For Sub-Frame 5Bits9840Max. Throughput averaged over 1<br>frameMbpsUE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peferenc   |                                |               |                   |
| Allocated resource blocks       50 (Note 4)         Uplink-Downlink Configuration (Note<br>3)       1         Allocated subframes per Radio       3+2         Frame (D+S)       QPSK         Modulation       QPSK         Target Coding Rate       1/3         Information Bit Payload       1/3         For Sub-Frames 4,9 (non CSI-RS<br>subframe)       Bits       3624         For Sub-Frames 1,6       2664         For Sub-Frames 1,6       2664         For Sub-Frame 5       Bits       N/A         For Sub-Frame 0       Bits       2984         Number of Code Blocks per Sub-<br>Frame<br>(Note 5)       1       subframe)         For Sub-Frames 4,9 (non CSI-RS<br>subframe)       1       1         For Sub-Frames 4,9 (non CSI-RS       1       1         Subframe)       1       1       1         For Sub-Frames 4,9 (non CSI-RS       1       1         Subframe)       1       1       1         For Sub-Frames 4,9 (CSI-RS       1       1       1         subframe)       1       1       1       1         For Sub-Frame 5       N/A       1       1       1         For Sub-Frame 4,9 (non CSI-RS       Bits       12000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                |               |                   |
| Uplink-Downlink Configuration (Note<br>3)1Allocated subframes per Radio<br>Frame (D+S) $3+2$ ModulationQPSKTarget Coding Rate $1/3$ Information Bit Payload $1/3$ For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,62664For Sub-Frames 1,62664For Sub-Frame 5BitsN/ABitsFor Sub-Frame 0BitsSubframe)1For Sub-Frame 1,62984Number of Code Blocks per Sub-<br>Frame1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frame 5<br>For Sub-Frame 4,9 (non CSI-RS<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                                |               | -                 |
| 3)Allocated subframes per Radio3+2Frame (D+S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                | -             |                   |
| Frame (D+S)QPSKModulationQPSKTarget Coding Rate1/3Information Bit Payload1/3For Sub-Frames 4,9 (non CSI-RSBitssubframe)3624For Sub-Frames 4,9 (CSI-RSBitssubframe)70For Sub-Frames 1,62664For Sub-Frame 5BitsNumber of Code Blocks per Sub-Frame(Note 5)1For Sub-Frames 4,9 (non CSI-RS1subframe)1For Sub-Frames 4,9 (non CSI-RS1subframe)1For Sub-Frames 4,9 (CSI-RS1Subframe)1For Sub-Frames 4,9 (CSI-RS1For Sub-Frames 4,9 (CSI-RS1subframe)1For Sub-Frames 4,9 (CSI-RS1For Sub-Frames 4,9 (CSI-RS1For Sub-Frames 4,9 (non CSI-RS1Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (non CSI-RS1Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (CSI-RSBitsSubframe)10400Subframe)1556For Sub-Frames 4,9 (CSI-RSBitsFor Sub-Frames 4,9 (CSI-RSBitsMax. Throughput averaged over 1MbpsMax. Throughput averaged over 1MbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3)         |                                |               |                   |
| ModulationQPSKTarget Coding Rate1/3Information Bit Payload1/3For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,62664For Sub-Frames 1,62664For Sub-Frame 5BitsNumber of Code Blocks per Sub-<br>Frame<br>(Note 5)For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (cSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frames 4,9 (non CSI-RS<br>subframe)1Binary Channel Bits Per Sub-Frame<br>For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 5N/AFor Sub-Frames 4,9 (cSI-RS<br>subframe)10400Subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (cSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (cSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frame 5<br>For Sub-Frame 5BitsFor Sub-Frame 5<br>For Sub-Frame 5BitsSubframe)1.556For Sub-Frame 67872For Sub-Frame 7BitsSubframe1.556If ame1.556If ame1.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                |               | 3+2               |
| Target Coding Rate $1/3$ Information Bit Payload                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                |               |                   |
| Information Bit PayloadBits $3624$ For Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits $3624$ For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits $3624$ For Sub-Frames 1,6 $2664$ For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits $2984$ Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frames 1,61For Sub-Frames 4,9 (CSI-RS<br>subframe)1Binary Channel Bits Per Sub-Frame<br>For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 5N/AFor Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 5N/AFor Sub-Frame 5N/AFor Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frame 5N/AFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frames 1,67872For Sub-Frame 5BitsFor Sub-Frame 5BitsFor Sub-Frame 610400Subframe)1.556For Sub-Frame 7MbpsFor Sub-Frame 89840Max. Throughput averaged over 1MbpsMax. Throughput averaged over 1MbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                |               |                   |
| For Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits $3624$ For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits $3624$ For Sub-Frames 1,6 $2664$ For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits $2984$ Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>sub-Frame 51For Sub-Frames 4,9 (non CSI-RS<br>subframe)1Binary Channel Bits Per Sub-Frame<br>For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,6 $7872$ For Sub-Frames 1,6 $7872$ For Sub-Frame 5BitsMax. Throughput averaged over 1<br>frameMbpsUE Category $\geq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                |               | 1/3               |
| subframe)Image: subframe subfr | Informatio | on Bit Payload                 |               |                   |
| For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits $3624$ For Sub-Frames 1,6 $2664$ For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits $2984$ Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frames 4,9 (CSI-RS<br>subframe)1Binary Channel Bits Per Sub-Frame<br>For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 5N/AFor Sub-Frame 61For Sub-Frame 71Binary Channel Bits Per Sub-Frame<br>For Sub-Frames 4,9 (non CSI-RS<br>subframe)10400For Sub-Frames 4,9 (CSI-RS<br>BitsBitsFor Sub-Frames 4,9 (CSI-RS<br>BitsBitsFor Sub-Frames 4,9 (CSI-RS<br>BitsBitsSubframe)0For Sub-Frames 1,67872For Sub-Frames 1,67872For Sub-Frame 0BitsBits9840Max. Throughput averaged over 1<br>frameMbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For Sub    | -Frames 4,9 (non CSI-RS        | Bits          | 3624              |
| subframe)2664For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits2984Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS1Subframe)1For Sub-Frames 1,61For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsIf or Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frame 0BitsMax. Throughput averaged over 1<br>frameMbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                |               |                   |
| For Sub-Frames 1,62664For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits2984Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS1Subframe)1For Sub-Frames 1,61For Sub-Frames 5N/AFor Sub-Frame 61Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (CSI-RS<br>subframe)1Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsIf or Sub-Frames 1,67872For Sub-Frame 5<br>For Sub-Frame 0BitsMax. Throughput averaged over 1<br>frameMbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For Sub-   | Frames 4,9 (CSI-RS             | Bits          | 3624              |
| For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits2984Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS1Subframe)1For Sub-Frames 1,61For Sub-Frames 5N/AFor Sub-Frame 61Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (CSI-RS<br>subframe)1Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsSubframe)1.556For Sub-Frame 5<br>For Sub-Frame 5BitsMax. Throughput averaged over 1<br>frameMbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                |               |                   |
| For Sub-Frame 0Bits2984Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frames 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (CSI-RS<br>subframe)1Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frame 5<br>For Sub-Frame 0BitsMax. Throughput averaged over 1<br>frameMbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                |               | 2664              |
| Number of Code Blocks per Sub-<br>Frame<br>(Note 5)1For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-FrameFor Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frame 5BitsMax. Throughput averaged over 1<br>frameMbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For Sub    | -Frame 5                       | Bits          | N/A               |
| Frame<br>(Note 5)IFor Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-FrameFor Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000Subframe)For Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 5BitsFor Sub-Frames 5BitsFor Sub-Frame 5BitsFor Sub-Frame 0BitsSub-Frame 1,67872For Sub-Frame 0BitsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | For Sub    | -Frame 0                       | Bits          | 2984              |
| Frame<br>(Note 5)IFor Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-FrameFor Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000Subframe)For Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 5BitsFor Sub-Frames 5BitsFor Sub-Frame 5BitsFor Sub-Frame 0BitsSub-Frame 1,67872For Sub-Frame 0BitsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                |               |                   |
| For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-FrameFor Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000Subframe)For Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frame 5BitsFor Sub-Frame 5BitsFor Sub-Frame 610400Subframe)1.556frame1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | ·                              |               |                   |
| For Sub-Frames 4,9 (non CSI-RS<br>subframe)1For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-FrameFor Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000Subframe)For Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frame 5BitsFor Sub-Frame 5BitsFor Sub-Frame 610400Subframe)1.556frame1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Note 5)   |                                |               |                   |
| For Sub-Frames 4,9 (CSI-RS<br>subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-FrameFor Sub-Frames 4,9 (non CSI-RS<br>subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)BitsFor Sub-Frames 1,67872For Sub-Frame 5BitsFor Sub-Frame 5BitsFor Sub-Frame 67872For Sub-Frame 7BitsBits9840Max. Throughput averaged over 1<br>frameMbpsUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | -Frames 4,9 (non CSI-RS        |               | 1                 |
| subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits10400For Sub-Frames 1,67872For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1<br>frameMbps1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                |               |                   |
| subframe)1For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits10400For Sub-Frames 1,67872For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1<br>frameMbps1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For Sub-   | Frames 4,9 (CSI-RS             |               | 1                 |
| For Sub-Frames 1,61For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-Frame1For Sub-Frames 4,9 (non CSI-RSBitsSubframe)10400For Sub-Frames 4,9 (CSI-RSBitsFor Sub-Frames 1,67872For Sub-Frame 5BitsFor Sub-Frame 0BitsMax. Throughput averaged over 1MbpsIt Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                |               |                   |
| For Sub-Frame 5N/AFor Sub-Frame 01Binary Channel Bits Per Sub-Frame $1$ For Sub-Frames 4,9 (non CSI-RSBits12000subframe) $1$ $1$ For Sub-Frames 4,9 (CSI-RSBits10400subframe) $1$ $10400$ For Sub-Frames 1,6 $7872$ For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1Mbps $1.556$ frame $1.556$ $1.556$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | For Sub    | -Frames 1,6                    |               | 1                 |
| Binary Channel Bits Per Sub-FrameFor Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits10400For Sub-Frames 1,67872For Sub-Frame 5<br>For Sub-Frame 0BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1<br>frameMbps1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | For Sub    | -Frame 5                       |               | N/A               |
| For Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits10400For Sub-Frames 1,67872For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1<br>frameMbps1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | For Sub    | -Frame 0                       |               | 1                 |
| For Sub-Frames 4,9 (non CSI-RS<br>subframe)Bits12000For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits10400For Sub-Frames 1,67872For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1<br>frameMbps1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Binary Ch  | nannel Bits Per Sub-Frame      |               |                   |
| subframe)BitsFor Sub-Frames 4,9 (CSI-RS<br>subframe)Bits10400For Sub-Frames 1,67872For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1<br>frameMbps1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | For Sub    | -Frames 4,9 (non CSI-RS        | Bits          | 12000             |
| For Sub-Frames 4,9 (CSI-RS<br>subframe)Bits10400For Sub-Frames 1,67872For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1<br>frameMbps1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                |               |                   |
| subframe)7872For Sub-Frames 1,67872For Sub-Frame 5BitsFor Sub-Frame 0BitsMax. Throughput averaged over 1Mbpsframe1.556UE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                | Bits          | 10400             |
| For Sub-Frames 1,67872For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1Mbps1.556frameUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                |               |                   |
| For Sub-Frame 5BitsN/AFor Sub-Frame 0Bits9840Max. Throughput averaged over 1Mbps1.556frameUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | For Sub    | -Frames 1,6                    |               | 7872              |
| Max. Throughput averaged over 1Mbps1.556frameUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                | Bits          | N/A               |
| Max. Throughput averaged over 1Mbps1.556frameUE Category≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | For Sub    | -Frame 0                       | Bits          | 9840              |
| frame ≥ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                | Mbps          | 1.556             |
| UE Category     ≥ 1       Note 1:     2 symbols allocated to PDCCH.       Note 2:     Reference signal, synchronization signals and PBCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 51 5                           |               |                   |
| Note 1: 2 symbols allocated to PDCCH.<br>Note 2: Reference signal, synchronization signals and PBCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UE Cateo   | lory                           |               | ≥1                |
| Note 2: Reference signal, synchronization signals and PBCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note 1:    | 2 symbols allocated to PDC     | CH.           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note 2:    | Reference signal, synchron     | ization sign  | als and PBCH      |
| allocated as per TS 36.211 [4].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | allocated as per TS 36.211     | [4].          |                   |
| Note 3: as per Table 4.2-2 in TS 36.211 [4].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note 3:    |                                |               |                   |
| Note 4: 50 resource blocks are allocated in sub-frames 4,9 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Note 4:    |                                |               | o-frames 4,9 and  |
| 41 resource blocks (RB0–RB20 and RB30–RB49) are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 41 resource blocks (RB0-R      | B20 and RI    | B30–RB49) are     |
| allocated in sub-frame 0 and the DwPTS portion of sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | allocated in sub-frame 0 and   | d the DwPT    | S portion of sub- |
| frames 1,6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | ,                              |               |                   |
| Note 5: If more than one Code Block is present, an additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note 5:    |                                |               |                   |
| CRC sequence of L = 24 Bits is attached to each Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                | ts is attache | ed to each Code   |
| Block (otherwise L = 0 Bit).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Block (otherwise $L = 0$ Bit). |               |                   |

The reference measurement channels in Table A.3.4.3.5-2 apply for verifying TDD PMI accuracy measurement with two CRS antenna ports and eight CSI-RS antenna ports.

|                                                             | Parameter                                                       | Unit             | Val             | ue        |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------|------------------|-----------------|-----------|--|--|--|--|--|--|--|
| Reference                                                   | e channel                                                       |                  | R.45            | R.45-1    |  |  |  |  |  |  |  |
|                                                             |                                                                 |                  | TDD             | TDD       |  |  |  |  |  |  |  |
| Channel                                                     | bandwidth                                                       | MHz              | 10              | 10        |  |  |  |  |  |  |  |
|                                                             | I resource blocks                                               |                  | 50 <sup>4</sup> | 39        |  |  |  |  |  |  |  |
|                                                             | ownlink Configuration (Note 3)                                  |                  | 1               | 1         |  |  |  |  |  |  |  |
|                                                             | I subframes per Radio Frame                                     |                  | 4+2             | 4+2       |  |  |  |  |  |  |  |
| (D+S)                                                       |                                                                 |                  | 112             | 112       |  |  |  |  |  |  |  |
|                                                             | I subframes per Radio Frame                                     |                  | 10              | 10        |  |  |  |  |  |  |  |
| Modulatio                                                   |                                                                 |                  | 16QAM           | 16QAM     |  |  |  |  |  |  |  |
|                                                             | Target Coding Rate 1/2 1/2                                      |                  |                 |           |  |  |  |  |  |  |  |
| Information Bit Payload 1/2 1/2                             |                                                                 |                  |                 |           |  |  |  |  |  |  |  |
|                                                             | p-Frames 4 and 9                                                | Bits             | N/A             | N/A       |  |  |  |  |  |  |  |
|                                                             | SI-RS subframe)                                                 | Dito             |                 | 11/7      |  |  |  |  |  |  |  |
|                                                             | p-Frames 4 and 9                                                | Bits             | 11448           | 8760      |  |  |  |  |  |  |  |
|                                                             | S subframe)                                                     | Dito             | 11440           | 0700      |  |  |  |  |  |  |  |
|                                                             | Frames 1,6                                                      | Bits             | 7736            | 7480      |  |  |  |  |  |  |  |
|                                                             | -Frame 5                                                        | Bits             | N/A             | N/A       |  |  |  |  |  |  |  |
|                                                             | p-Frame 0                                                       | Bits             | 9528            | 8760      |  |  |  |  |  |  |  |
|                                                             | of Code Blocks per Sub-Frame                                    | Dits             | 9526            | 8700      |  |  |  |  |  |  |  |
| (Note 5)                                                    | DI COUE BIOCKS PEI SUD-FTAILIE                                  |                  |                 |           |  |  |  |  |  |  |  |
|                                                             | -Frames 4 and 9                                                 |                  | N/A             | N/A       |  |  |  |  |  |  |  |
|                                                             | SI-RS subframe)                                                 |                  | IN/A            | IN/A      |  |  |  |  |  |  |  |
|                                                             | Frames 4 and 9                                                  |                  | 2               | 2         |  |  |  |  |  |  |  |
|                                                             | S subframe)                                                     |                  | 2               | 2         |  |  |  |  |  |  |  |
|                                                             | Frames 1,6                                                      |                  | 2               | 2         |  |  |  |  |  |  |  |
|                                                             | -Frame 5                                                        |                  | N/A             | Z<br>N/A  |  |  |  |  |  |  |  |
|                                                             | p-Frame 0                                                       |                  | 2               | 2         |  |  |  |  |  |  |  |
|                                                             | hannel Bits Per Sub-Frame                                       |                  | 2               | 2         |  |  |  |  |  |  |  |
|                                                             | p-Frames 4 and 9                                                | Bits             | N/A             | N/A       |  |  |  |  |  |  |  |
|                                                             | SI-RS subframe)                                                 | DIIS             | IN/A            | IN/A      |  |  |  |  |  |  |  |
|                                                             | p-Frames 4 and 9                                                | Bits             | 22400           | 17472     |  |  |  |  |  |  |  |
|                                                             | S subframe)                                                     | DIIS             | 22400           | 1/4/2     |  |  |  |  |  |  |  |
|                                                             | Frames 1,6                                                      | Bits             | 15744           | 14976     |  |  |  |  |  |  |  |
|                                                             | -Frame 5                                                        | Bits             | N/A             | N/A       |  |  |  |  |  |  |  |
|                                                             | p-Frame 0                                                       |                  |                 | 18720     |  |  |  |  |  |  |  |
|                                                             |                                                                 | Bits             | 19680           |           |  |  |  |  |  |  |  |
|                                                             | oughput averaged over 1 frame                                   | Mbps             | 4.7896          | 4.1240    |  |  |  |  |  |  |  |
| UE Categ                                                    |                                                                 |                  | ≥ 2             | ≥1        |  |  |  |  |  |  |  |
| Note 1:                                                     | 2 symbols allocated to PDCCH fo                                 |                  |                 |           |  |  |  |  |  |  |  |
|                                                             | BW; 3 symbols allocated to PDCC                                 |                  |                 |           |  |  |  |  |  |  |  |
|                                                             | allocated to PDCCH for 1.4 MHz.                                 |                  | 1&6, Only 2 OF  | ·DIVI     |  |  |  |  |  |  |  |
| Note 2:                                                     | symbols are allocated to PDCCH.                                 |                  |                 |           |  |  |  |  |  |  |  |
| Note 2:                                                     | Reference signal, synchronization                               | i signals and Pl | BCH allocated   | as per 15 |  |  |  |  |  |  |  |
| Note 3:                                                     | 36.211 [4].                                                     | 41               |                 |           |  |  |  |  |  |  |  |
| Note 3:<br>Note 4:                                          | As per Table 4.2-2 in TS 36.211 [4                              |                  | oub fromas 4    | 0 and 11  |  |  |  |  |  |  |  |
| NOLE 4.                                                     | for For R. 45, 50 resource blocks resource blocks (RB0–RB20 and |                  |                 |           |  |  |  |  |  |  |  |
|                                                             |                                                                 |                  |                 | Sub-      |  |  |  |  |  |  |  |
| Noto 5:                                                     | frame 0 and the DwPTS portion of                                |                  |                 | ulonce of |  |  |  |  |  |  |  |
| Note 5:                                                     | If more than one Code Block is pr                               |                  |                 |           |  |  |  |  |  |  |  |
| Noto 6:                                                     | L = 24 Bits is attached to each Co                              |                  |                 | ).        |  |  |  |  |  |  |  |
| Note 6: Localized allocation started from RB #0 is applied. |                                                                 |                  |                 |           |  |  |  |  |  |  |  |

# A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

# A.3.5.1 FDD

| Parameter                        | Unit    | Value    |            |            |          |          |  |  |  |  |
|----------------------------------|---------|----------|------------|------------|----------|----------|--|--|--|--|
| Reference channel                |         | R.15 FDD | R.15-1 FDD | R.15-2 FDD | R.16 FDD | R.17 FDD |  |  |  |  |
| Number of transmitter antennas   |         | 1        | 2          | 2          | 2        | 4        |  |  |  |  |
| Channel bandwidth                | MHz     | 10       | 10         | 10         | 10       | 5        |  |  |  |  |
| Number of OFDM symbols for PDCCH | symbols | 2        | 3          | 2          | 2        | 2        |  |  |  |  |
| Aggregation level                | CCE     | 8        | 8          | 8          | 4        | 2        |  |  |  |  |
| DCI Format                       |         | Format 1 | Format 1   | Format 1   | Format 2 | Format 2 |  |  |  |  |
| Cell ID                          |         | 0        | 0          | 0          | 0        | 0        |  |  |  |  |
| Payload (without CRC)            | Bits    | 31       | 31         | 31         | 43       | 42       |  |  |  |  |

#### Table A.3.5.1-1: Reference Channel FDD

# A.3.5.2 TDD

#### Table A.3.5.2-1: Reference Channel TDD

| Parameter                        | Unit    | Value    |            |            |          |          |  |  |  |  |
|----------------------------------|---------|----------|------------|------------|----------|----------|--|--|--|--|
| Reference channel                |         | R.15 TDD | R.15-1 TDD | R.15-2 TDD | R.16 TDD | R.17 TDD |  |  |  |  |
| Number of transmitter antennas   |         | 1        | 2          | 2          | 2        | 4        |  |  |  |  |
| Channel bandwidth                | MHz     | 10       | 10         | 10         | 10       | 5        |  |  |  |  |
| Number of OFDM symbols for PDCCH | symbols | 2        | 3          | 2          | 2        | 2        |  |  |  |  |
| Aggregation level                | CCE     | 8        | 8          | 8          | 4        | 2        |  |  |  |  |
| DCI Format                       |         | Format 1 | Format 1   | Format 1   | Format 2 | Format 2 |  |  |  |  |
| Cell ID                          |         | 0        | 0          | 0          | 0        | 0        |  |  |  |  |
| Payload (without CRC)            | Bits    | 34       | 34         | 34         | 46       | 45       |  |  |  |  |

# A.3.6 Reference measurement channels for PHICH performance requirements

### Table A.3.6-1: Reference Channel FDD/TDD

| Parameter                                                                                                                         | Unit                                                  | Value               |                 |         |             |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|-----------------|---------|-------------|--|--|--|--|
| Reference channel                                                                                                                 |                                                       | R.18 R.19 R.20 R.24 |                 |         |             |  |  |  |  |
| Number of transmitter antennas                                                                                                    |                                                       | 1                   | 2               | 4       | 1           |  |  |  |  |
| Channel bandwidth                                                                                                                 | MHz                                                   | 10                  | 10              | 5       | 10          |  |  |  |  |
| User roles (Note 1)                                                                                                               |                                                       | W I1 I2             | W I1 I2         | W I1 I2 | W I1        |  |  |  |  |
| Resource allocation (Note 2)                                                                                                      | (0,0) (0,1) (0,4) (0,0) (0,1) (0,4) (0,0) (0,1) (0,4) |                     |                 |         |             |  |  |  |  |
| Power offsets (Note 3)                                                                                                            | dB                                                    | -4 0 -3             | -4 0 -3         | -4 0 -3 | +3 0        |  |  |  |  |
| Payload (Note 4)                                                                                                                  |                                                       | A R R               | ARR             | ARR     | A R         |  |  |  |  |
| Note 1:W=wanted user, I1=interfNote 2:The resource allocation pNote 3:The power offsets (per us<br>relative to the first interfer | er user is ger) repres                                | given as (N_group_  | PHICH, N_seq_PH |         | l per PHICH |  |  |  |  |

Note 4: A=fixed ACK, R=random ACK/NACK.

# A.3.7 Reference measurement channels for PBCH performance requirements

#### Table A.3.7-1: Reference Channel FDD/TDD

| Parameter                      | Unit | Value   |         |         |  |  |  |  |
|--------------------------------|------|---------|---------|---------|--|--|--|--|
| Reference channel              |      | R.21    | R.22    | R.23    |  |  |  |  |
| Number of transmitter antennas |      | 1       | 2       | 4       |  |  |  |  |
| Channel bandwidth              | MHz  | 1.4     | 1.4     | 1.4     |  |  |  |  |
| Modulation                     |      | QPSK    | QPSK    | QPSK    |  |  |  |  |
| Target coding rate             |      | 40/1920 | 40/1920 | 40/1920 |  |  |  |  |
| Payload (without CRC)          | Bits | 24      | 24      | 24      |  |  |  |  |

# A.3.8 Reference measurement channels for MBMS performance requirements

# A.3.8.1 FDD

| Parameter                                                        | Parameter PMCH |          |         |        |                |           |    |  |  |  |
|------------------------------------------------------------------|----------------|----------|---------|--------|----------------|-----------|----|--|--|--|
|                                                                  | Unit           |          | Value   |        |                |           |    |  |  |  |
| Reference channel                                                |                | R.40 FDD |         |        | R.37 FDD       |           |    |  |  |  |
| Channel bandwidth                                                | MHz            | 1.4      | 3       | 5      | 10             | 15        | 20 |  |  |  |
| Allocated resource blocks                                        |                | 6        |         |        | 50             |           |    |  |  |  |
| Allocated subframes per Radio<br>Frame (Note 1)                  |                | 6        |         |        | 6              |           |    |  |  |  |
| Modulation                                                       |                | QPSK     |         |        | QPSK           |           |    |  |  |  |
| Target Coding Rate                                               |                | 1/3      |         |        | 1/3            |           |    |  |  |  |
| Information Bit Payload (Note 2)                                 |                |          |         |        |                |           |    |  |  |  |
| For Sub-Frames 1,2,3,6,7,8                                       | Bits           | 408      |         |        | 3624           |           |    |  |  |  |
| For Sub-Frames 0,4,5,9                                           | Bits           | N/A      |         |        | N/A            |           |    |  |  |  |
| Number of Code Blocks per<br>Subframe (Note 3)                   |                | 1        |         |        | 1              |           |    |  |  |  |
| Binary Channel Bits Per Subframe                                 |                |          |         |        |                |           |    |  |  |  |
| For Sub-Frames 1,2,3,6,7,8                                       | Bits           | 1224     |         |        | 10200          |           |    |  |  |  |
| For Sub-Frames 0,4,5,9                                           | Bits           | N/A      |         |        | N/A            |           |    |  |  |  |
| MBMS UE Category                                                 |                | ≥ 1      |         |        | ≥ 1            |           |    |  |  |  |
| Note 1: For FDD mode, up to 6 sub 36.331.                        |                |          |         |        |                |           |    |  |  |  |
| Note 2: 2 OFDM symbols are reser<br>36.211.                      |                |          |         | Ū      |                |           |    |  |  |  |
| Note 3: If more than one Code Bloo<br>attached to each Code Bloo |                |          | nal CR0 | C sequ | ence of L = 24 | 4 Bits is | 6  |  |  |  |

#### Table A.3.8.1-1: Fixed Reference Channel QPSK R=1/3

| Parameter                                                                               | РМСН      |         |         |         |                |         |    |
|-----------------------------------------------------------------------------------------|-----------|---------|---------|---------|----------------|---------|----|
|                                                                                         | Unit      |         |         |         |                |         |    |
| Reference channel                                                                       |           |         |         |         | R.38 FDD       |         |    |
| Channel bandwidth                                                                       | MHz       | 1.4     | 3       | 5       | 10             | 15      | 20 |
| Allocated resource blocks                                                               |           |         |         |         | 50             |         |    |
| Allocated subframes per Radio Frame (Note 1)                                            |           |         |         |         | 6              |         |    |
| Modulation                                                                              |           |         |         |         | 16QAM          |         |    |
| Target Coding Rate                                                                      |           |         |         |         | 1/2            |         |    |
| Information Bit Payload (Note 2)                                                        |           |         |         |         |                |         |    |
| For Sub-Frames 1,2,3,6,7,8                                                              | Bits      |         |         |         | 9912           |         |    |
| For Sub-Frames 0,4,5,9                                                                  | Bits      |         |         |         | N/A            |         |    |
| Number of Code Blocks per Subframe (Note 3)                                             |           |         |         |         | 2              |         |    |
| Binary Channel Bits Per Subframe                                                        |           |         |         |         |                |         |    |
| For Sub-Frames 1,2,3,6,7,8                                                              | Bits      |         |         |         | 20400          |         |    |
| For Sub-Frames 0,4,5,9                                                                  | Bits      |         |         |         | N/A            |         |    |
| MBMS UE Category                                                                        |           |         |         |         | ≥ 1            |         |    |
| Note 1: For FDD mode, up to 6 subframes (#1 36.331.                                     | /2/3/6/7/ | 8) are  | availal | ble for | MBMS, in lin   | e with  | TS |
| Note 2: 2 OFDM symbols are reserved for PD 36.211.                                      | CCH; an   | d refer | ences   | signal  | allocated as p | er TS   |    |
| Note 3: If more than one Code Block is preser<br>attached to each Code Block (otherwise |           |         | CRC     | seque   | ence of L = 24 | Bits is | 1  |

Table A.3.8.1-2: Fixed Reference Channel 16QAM R=1/2

### Table A.3.8.1-3: Fixed Reference Channel 64QAM R=2/3

| Parameter                                                                                                                                                                           | РМСН       |          |         |               |               |    |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------|---------------|---------------|----|-----|--|
|                                                                                                                                                                                     | Unit       |          |         | Value         |               |    |     |  |
| Reference channel                                                                                                                                                                   |            |          |         | R.39-1<br>FDD | R.39 FDD      |    |     |  |
| Channel bandwidth                                                                                                                                                                   | MHz        | 1.4      | 3       | 5             | 10            | 15 | 20  |  |
| Allocated resource blocks                                                                                                                                                           |            |          |         | 25            | 50            |    |     |  |
| Allocated subframes per Radio Frame(Note1)                                                                                                                                          |            |          |         | 6             | 6             |    |     |  |
| Modulation                                                                                                                                                                          |            |          |         | 64QAM         | 64QAM         |    |     |  |
| Target Coding Rate                                                                                                                                                                  |            |          |         | 2/3           | 2/3           |    |     |  |
| Information Bit Payload (Note 2)                                                                                                                                                    |            |          |         | 1             |               |    |     |  |
| For Sub-Frames 1,2,3,6,7,8                                                                                                                                                          | Bits       |          |         | 9912          | 19848         |    |     |  |
| For Sub-Frames 0,4,5,9                                                                                                                                                              | Bits       |          |         | N/A           | N/A           |    |     |  |
| Number of Code Blocks per Sub-Frame (Note 3)                                                                                                                                        |            |          |         | 2             | 4             |    |     |  |
| Binary Channel Bits Per Subframe                                                                                                                                                    |            | 11       |         | 1             |               |    |     |  |
| For Sub-Frames 1,2,3,6,7,8                                                                                                                                                          | Bits       |          |         | 15300         | 30600         |    |     |  |
| For Sub-Frames 0,4,5,9                                                                                                                                                              | Bits       |          |         | N/A           | N/A           |    |     |  |
| MBMS UE Category                                                                                                                                                                    |            |          |         | ≥ 1           | ≥ 2           |    |     |  |
| Note 1:For FDD mode, up to 6 subframes (#1/2/3/6Note 2:2 OFDM symbols are reserved for PDCCH;Note 3:If more than one Code Block is present, an<br>Code Block (otherwise L = 0 Bit). | and refere | ence sig | nal all | ocated as p   | er TS 36.211. |    | ach |  |

# A.3.8.2 TDD

| Parameter                                                                    | РМСН      |                |          |         |                  |           |       |  |
|------------------------------------------------------------------------------|-----------|----------------|----------|---------|------------------|-----------|-------|--|
|                                                                              | Unit      | Value          |          |         |                  |           |       |  |
| Reference channel                                                            |           | R.40 TDD       |          |         | R.37 TDD         |           |       |  |
| Channel bandwidth                                                            | MHz       | 1.4            | 3        | 5       | 10               | 15        | 20    |  |
| Allocated resource blocks                                                    |           | 6              |          |         | 50               |           |       |  |
| Uplink-Downlink Configuration(Note 1)                                        |           | 5              |          |         | 5                |           |       |  |
| Allocated subframes per Radio Frame                                          |           | 5              |          |         | 5                |           |       |  |
| Modulation                                                                   |           | QPSK           |          |         | QPSK             |           |       |  |
| Target Coding Rate                                                           |           | 1/3            |          |         | 1/3              |           |       |  |
| Information Bit Payload (Note 2)                                             |           |                |          |         |                  |           |       |  |
| For Sub-Frames 3,4,7,8,9                                                     | Bits      | 408            |          |         | 3624             |           |       |  |
| For Sub-Frames 0,1,2,5,6                                                     | Bits      | N/A            |          |         | N/A              |           |       |  |
| Number of Code Blocks per Subframe                                           |           | 1              |          |         | 1                |           |       |  |
| (Note 3)                                                                     |           |                |          |         |                  |           |       |  |
| Binary Channel Bits Per Subframe                                             |           |                |          |         | -                |           | -     |  |
| For Sub-Frames 3,4,7,8,9                                                     | Bits      | 1224           |          |         | 10200            |           |       |  |
| For Sub-Frames 0,1,2,5,6                                                     | Bits      | N/A            |          |         | N/A              |           |       |  |
| MBMS UE Category                                                             |           | ≥ 1            |          |         | ≥1               |           |       |  |
| Note 1: For TDD mode, in line with TS 36                                     | .331, Up  | link-Downlink  | Config   | uratior | n 5 is propose   | d, up to  | 5     |  |
| subframes (#3/4/7/8/9) are availa                                            | ble for M | BMS.           | 0        |         |                  | · •       |       |  |
| Note 2: 2 OFDM symbols are reserved fo                                       |           |                | ignal al | locate  | d as per TS 3    | 6.211.    |       |  |
| Note 3: If more than one Code Block is pr<br>to each Code Block (otherwise L |           | n additional C | RC sec   | quence  | of $L = 24$ Bits | s is atta | iched |  |

### Table A.3.8.2-1: Fixed Reference Channel QPSK R=1/3

423

 Table A.3.8.2-2: Fixed Reference Channel 16QAM R=1/2

| Parameter                                                                                     | РМСН       |          |       |       |               |         |    |  |  |
|-----------------------------------------------------------------------------------------------|------------|----------|-------|-------|---------------|---------|----|--|--|
|                                                                                               | Unit       |          |       |       | Value         |         |    |  |  |
| Reference channel                                                                             |            |          |       |       | R.38 TDD      |         |    |  |  |
| Channel bandwidth                                                                             | MHz        | 1.4      | 3     | 5     | 10            | 15      | 20 |  |  |
| Allocated resource blocks                                                                     |            |          |       |       | 50            |         |    |  |  |
| Uplink-Downlink Configuration(Note 1)                                                         |            |          |       |       | 5             |         |    |  |  |
| Allocated subframes per Radio Frame                                                           |            |          |       |       | 5             |         |    |  |  |
| Modulation                                                                                    |            |          |       |       | 16QAM         |         |    |  |  |
| Target Coding Rate                                                                            |            |          |       |       | 1/2           |         |    |  |  |
| Information Bit Payload (Note 2)                                                              |            |          |       |       |               |         |    |  |  |
| For Sub-Frames 3,4,7,8,9                                                                      | Bits       |          |       |       | 9912          |         |    |  |  |
| For Sub-Frames 0,1,2,5,6                                                                      | Bits       |          |       |       | N/A           |         |    |  |  |
| Number of Code Blocks per Subframe (Note 3)                                                   |            |          |       |       | 2             |         |    |  |  |
| Binary Channel Bits Per Subframe                                                              |            |          |       |       |               |         |    |  |  |
| For Sub-Frames 3,4,7,8,9                                                                      | Bits       |          |       |       | 20400         |         |    |  |  |
| For Sub-Frames 0,1,2,5,6                                                                      | Bits       |          |       |       | N/A           |         |    |  |  |
| MBMS UE Category                                                                              |            |          |       |       | ≥ 1           |         |    |  |  |
| Note 1: For TDD mode, in line with TS 36.331, Uplink-Downlink Configuration 5 is proposed, up |            |          |       |       |               |         |    |  |  |
| 5 subframes (#3/4/7/8/9) are available for MBMS.                                              |            |          |       |       |               |         |    |  |  |
| Note 2: 2 OFDM symbols are reserved for PDCCH; reference signal allocated as per TS 36.211.   |            |          |       |       |               |         |    |  |  |
| Note 3: If more than one Code Block is preser                                                 | nt, an ado | ditional | CRC s | seque | nce of L = 24 | Bits is |    |  |  |

attached to each Code Block (otherwise L = 0 Bit).

| Parameter                                                                                                                                                                              |                                     |                             |                         | PMCH              |                |        |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|-------------------------|-------------------|----------------|--------|----|
|                                                                                                                                                                                        | Unit                                |                             |                         | Val               | ue             |        |    |
| Reference channel                                                                                                                                                                      |                                     |                             |                         | R.39-1TDD         | R.39 TDD       |        |    |
| Channel bandwidth                                                                                                                                                                      | MHz                                 | 1.4                         | 3                       | 5                 | 10             | 15     | 20 |
| Allocated resource blocks                                                                                                                                                              | ocated resource blocks              |                             | 25                      | 50                |                |        |    |
| Uplink-Downlink Configuration(Note 1)                                                                                                                                                  |                                     |                             |                         | 5                 | 5              |        |    |
| Allocated subframes per Radio Frame                                                                                                                                                    |                                     |                             |                         | 5                 | 5              |        |    |
| Modulation                                                                                                                                                                             |                                     |                             |                         | 64QAM             | 64QAM          |        |    |
| Target Coding Rate                                                                                                                                                                     |                                     |                             |                         | 2/3               | 2/3            |        |    |
| Information Bit Payload (Note 2)                                                                                                                                                       |                                     |                             |                         | 1                 | 1              |        |    |
| For Sub-Frames 3,4,7,8,9                                                                                                                                                               | Bits                                |                             |                         | 9912              | 19848          |        |    |
| For Sub-Frames 0,1,2,5,6                                                                                                                                                               | Bits                                |                             |                         | N/A               | N/A            |        |    |
| Number of Code Blocks per Sub-Frame (Note 3)                                                                                                                                           |                                     |                             |                         | 2                 | 4              |        |    |
| Binary Channel Bits Per Subframe                                                                                                                                                       |                                     |                             |                         |                   | •              |        |    |
| For Sub-Frames 3,4,7,8,9                                                                                                                                                               | Bits                                |                             |                         | 15300             | 30600          |        |    |
| For Sub-Frames 0,1,2,5,6                                                                                                                                                               | Bits                                |                             |                         | N/A               | N/A            |        |    |
| MBMS UE Category                                                                                                                                                                       |                                     |                             |                         | ≥ 1               | ≥ 2            |        |    |
| Note 1:For TDD mode, in line with TS<br>subframes (#3/4/7/8/9) are ava<br>2 OFDM symbols are reserved<br>Note 3:Note 3:If more than one Code Block is<br>attached to each Code Block ( | ailable for<br>for PDC<br>s present | r MBMS<br>CH; re<br>, an ad | S.<br>ferenc<br>ditiona | ce signal allocat | ed as per TS : | 36.211 |    |

#### Table A.3.8.2-3: Fixed Reference Channel 64QAM R=2/3

# A.3.9 Reference measurement channels for sustained downlink data rate provided by lower layers

# A.3.9.1 FDD

#### Table A.3.9.1-1: Fixed Reference Channel for sustained data-rate test (FDD)

| Parameter                                                                                                                                         | Unit       |             |             |              | Va           | lue          |            |            |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|--------------|--------------|--------------|------------|------------|-----------|--|
| Reference channel                                                                                                                                 |            | R.31-1      | R.31-2      | R.31-3       | R.31-3A      | R.31-3C      | R.31-4     | R.31-4B    | R.31-5    |  |
|                                                                                                                                                   |            | FDD         | FDD         | FDD          | FDD          | FDD          | FDD        | FDD        | FDD       |  |
| Channel bandwidth                                                                                                                                 | MHz        | 10          | 10          | 20           | 10           | 15           | 20         | 15         | 15        |  |
| Allocated resource blocks (Note 8)                                                                                                                |            | Note 5      | Note 6      | Note 7       | Note 6       | Note 10      | Note 7     | Note 11    | Note 9    |  |
| Allocated subframes per Radio                                                                                                                     |            | 10          | 10          | 10           | 10           | 10           | 10         | 10         | 10        |  |
| Frame                                                                                                                                             |            |             |             |              |              |              |            |            |           |  |
| Modulation                                                                                                                                        |            | 64QAM       | 64QAM       | 64QAM        | 64QAM        | 64QAM        | 64QAM      | 64QAM      | 64QAM     |  |
| Coding Rate                                                                                                                                       |            |             |             |              |              |              |            |            |           |  |
|                                                                                                                                                   |            |             |             |              |              |              |            |            | 0.85      |  |
|                                                                                                                                                   |            |             |             |              |              |              |            |            | 0.91      |  |
| For Sub-Frame 0         0.40         0.63         0.61         0.90         0.91         0.90         0.88         0.88                           |            |             |             |              |              |              |            |            |           |  |
| Information Bit Payload (Note 8)                                                                                                                  |            |             |             |              |              |              |            |            |           |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                                                    | Bits       | 10296       | 25456       | 51024        | 36696        | 51024        | 75376      | 55056      | 55056     |  |
| For Sub-Frame 5                                                                                                                                   | Bits       | 10296       | 25456       | 51024        | 35160        | 51024        | 71112      | 52752      | 52752     |  |
| For Sub-Frame 0                                                                                                                                   | Bits       | 10296       | 25456       | 51024        | 36696        | 51024        | 75376      | 55056      | 55056     |  |
| Number of Code Blocks                                                                                                                             |            |             |             |              |              |              |            |            |           |  |
| (Notes 3 and 8)                                                                                                                                   |            |             |             |              |              |              |            |            |           |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                                                    | Bits       | 2           | 5           | 9            | 6            | 9            | 13         | 9          | 9         |  |
| For Sub-Frame 5                                                                                                                                   | Bits       | 2           | 5           | 9            | 6            | 9            | 12         | 9          | 9         |  |
| For Sub-Frame 0                                                                                                                                   | Bits       | 2           | 5           | 9            | 6            | 9            | 13         | 9          | 9         |  |
| Binary Channel Bits (Note 8)                                                                                                                      |            |             |             |              |              |              |            |            |           |  |
| For Sub-Frames 1,2,3,4,6,7,8,9                                                                                                                    | Bits       | 26100       | 43200       | 86400        | 43200        | 58752        | 86400      | 64800      | 64800     |  |
| For Sub-Frame 5                                                                                                                                   | Bits       | 26100       | 39744       | 82080        | 39744        | 57888        | 82080      | 60480      | 60480     |  |
| For Sub-Frame 0                                                                                                                                   | Bits       | 26100       | 40752       | 83952        | 40752        | 56304        | 83952      | 62352      | 62352     |  |
| Number of layers                                                                                                                                  |            | 1           | 2           | 2            | 2            | 2            | 2          | 2          | 2         |  |
| Max. Throughput averaged over 1                                                                                                                   | Mbps       | 10.296      | 25.456      | 51.024       | 36.542       | 51.024       | 74.950     | 54.826     | 54.826    |  |
| frame (Note 8)                                                                                                                                    |            |             |             |              |              |              |            |            |           |  |
| UE Categories                                                                                                                                     |            | ≥ 1         | ≥ 2         | ≥ 2          | ≥ 2          | ≥ 3          | ≥ 3        | ≥ 4        | ≥ 3       |  |
| Note 1: 1 symbol allocated to PDC                                                                                                                 | CH for al  | l tests.    |             |              |              |              |            |            |           |  |
| Note 2: Reference signal, synchro                                                                                                                 |            |             |             |              |              |              |            |            |           |  |
| Note 3: If more than one Code Blo                                                                                                                 | ck is pres | sent, an ad | ditional CF | RC sequen    | ce of L = 24 | Bits is atta | ched to ea | ch Code Bl | ock       |  |
| (otherwise L = 0 Bit).                                                                                                                            |            |             |             |              |              |              |            |            |           |  |
| Note 4: Resource blocks n <sub>PRB</sub> = 02 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.                              |            |             |             |              |              |              |            |            |           |  |
| Note 5: Resource blocks $n_{PRB} = 614,3049$ are allocated for the user data in all sub-frames.                                                   |            |             |             |              |              |              |            |            |           |  |
| Note 6: Resource blocks n <sub>PRB</sub> = 349 are allocated for the user data in sub-frame 5, and resource blocks n <sub>PRB</sub> = 049 in sub- |            |             |             |              |              |              |            |            |           |  |
| frames 0,1,2,3,4,6,7,8,9.                                                                                                                         |            |             |             |              |              |              |            |            |           |  |
| Note 7: Resource blocks n <sub>PRB</sub> = 499 are allocated for the user data in sub-frame 5, and resource blocks n <sub>PRB</sub> = 099 in sub- |            |             |             |              |              |              |            |            |           |  |
| frames 0,1,2,3,4,6,7,8,9.                                                                                                                         |            |             |             |              |              |              |            |            |           |  |
| Note 8: Given per component carr                                                                                                                  |            |             |             |              |              |              |            |            |           |  |
| Note 9: Resource blocks nPRB =                                                                                                                    | 474 are    | allocated f | for the use | r data in si | ib-frame 5   | and resource | e blocks n | PRB = 0.7  | 4 in sub- |  |

Note 9: Resource blocks nPRB = 4..74 are allocated for the user data in sub-frame 5, and resource blocks nPRB = 0..74 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 10: Resource blocks  $n_{PRB} = 4..71$  are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.

Note 11: Resource blocks n<sub>PRB</sub> = 4..74 are allocated for the user data in sub-frame 5, and resource blocks n<sub>PRB</sub> = 0..74 in sub-frames 0,1,2,3,4,6,7,8,9.

# A.3.9.2 TDD

| Table A.3.9.2-1: Fixed Reference Channel for sustained data-rate test ( | (TDD) |  |
|-------------------------------------------------------------------------|-------|--|
|-------------------------------------------------------------------------|-------|--|

| Parameter                                                                 | Unit          |              |             | Value       |                |         |
|---------------------------------------------------------------------------|---------------|--------------|-------------|-------------|----------------|---------|
| Reference channel                                                         |               | R.31-1       | R.31-2      | R.31-3      | R.31-3A        | R.31-4  |
|                                                                           |               | TDD          | TDD         | TDD         | TDD            | TDD     |
| Channel bandwidth                                                         | MHz           | 10           | 10          | 20          | 15             | 20      |
| Allocated resource blocks                                                 |               | Note 6       | Note 7      | Note 8      | Note 9         | Note 8  |
| Uplink-Downlink Configuration (Note 3)                                    |               | 5            | 5           | 5           | 1              | 1       |
| Number of HARQ Processes per                                              | Proces        | 15           | 15          | 15          | 7              | 7       |
| component carrier                                                         | ses           |              |             |             |                |         |
| Allocated subframes per Radio Frame                                       |               | 8+1          | 8+1         | 8+1         | 4              | 4       |
| (D+S)                                                                     |               |              |             |             |                |         |
| Modulation                                                                |               | 64QAM        | 64QAM       | 64QAM       | 64QAM          | 64QAM   |
| Target Coding Rate                                                        |               |              |             |             |                |         |
| For Sub-Frames 4,9                                                        |               | 0.40         | 0.59        | 0.59        | 0.87           | 0.88    |
| For Sub-Frames 3,7,8                                                      |               | 0.40         | 0.59        | 0.59        | N/A            | N/A     |
| For Sub-Frames 1                                                          |               | N/A          | N/A         | N/A         | N/A            | N/A     |
| For Sub-Frames 5                                                          |               | 0.40         | 0.64        | 0.62        | 0.88           | 0.87    |
| For Sub-Frames 6                                                          |               | 0.40         | 0.60        | 0.60        | N/A            | N/A     |
| For Sub-Frames 0                                                          |               | 0.40         | 0.62        | 0.61        | 0.90           | 0.90    |
| Information Bit Payload                                                   |               |              |             |             |                |         |
| For Sub-Frames 4,9                                                        | Bits          | 10296        | 25456       | 51024       | 51024          | 75376   |
| For Sub-Frames 3,7,8                                                      | Bits          | 10296        | 25456       | 51024       | 0              | 0       |
| For Sub-Frame 1                                                           | Bits          | 0            | 0           | 0           | 0              | 0       |
| For Sub-Frame 5                                                           | Bits          | 10296        | 25456       | 51024       | 51024          | 71112   |
| For Sub-Frame 6                                                           | Bits          | 10296        | 25456       | 51024       | 0              | 0       |
| For Sub-Frame 0                                                           | Bits          | 10296        | 25456       | 51024       | 51024          | 75376   |
| Number of Code Blocks per Sub-Frame                                       |               |              |             |             |                |         |
| (Note 4)                                                                  |               |              |             |             |                |         |
| For Sub-Frames 4,9                                                        |               | 2            | 5           | 9           | 9              | 13      |
| For Sub-Frames 3,7,8                                                      |               | 2            | 5           | 9           | N/A            | N/A     |
| For Sub-Frame 1                                                           |               | N/A          | N/A         | N/A         | N/A            | N/A     |
| For Sub-Frame 5                                                           |               | 2            | 5           | 9           | 9              | 12      |
| For Sub-Frame 6                                                           | Bits          | 2            | 5           | 9           | n/a            | N/A     |
| For Sub-Frame 0                                                           |               | 2            | 5           | 9           | 9              | 13      |
| Binary Channel Bits Per Sub-Frame                                         |               |              |             |             |                |         |
| For Sub-Frames 4,9                                                        | Bits          | 26100        | 43200       | 86400       | 58752          | 86400   |
| For Sub-Frames 3,7,8                                                      | Bits          | 26100        | 43200       | 86400       | 0              | 0       |
| For Sub-Frame 1                                                           | Bits          | 0            | 0           | 0           | 0              | 0       |
| For Sub-Frame 5                                                           | Bits          | 26100        | 40176       | 82512       | 58320          | 82512   |
| For Sub-Frame 6                                                           | Bits          | 26100        | 42768       | 85968       | N/A            | N/A     |
| For Sub-Frame 0                                                           | Bits          | 26100        | 41184       | 84384       | 56736          | 84384   |
| Number of layers                                                          |               | 1            | 2           | 2           | 2              | 2       |
| Max. Throughput averaged over 1 frame                                     | Mbps          | 8.237        | 20.365      | 40.819      | 20.409         | 29.724  |
| (Note 10)                                                                 |               |              |             |             |                |         |
| UE Category                                                               |               | ≥ 1          | ≥ 2         | ≥2          | ≥2             | ≥ 3     |
| Note 1: 1 symbol allocated to PDCCH for                                   | or all tests. |              |             | ·           |                |         |
| Note 2: Reference signal, synchronization                                 | on signals a  | and PBCH     | allocated a | s per TS 3  | 6.211 [4].     |         |
| Note 3: As per Table 4.2-2 in TS 36.211                                   | [4].          |              |             | -           |                |         |
| Note 4: If more than one Code Block is<br>to each Code Block (otherwise L |               | additional   | CRC sequ    | ence of L = | = 24 Bits is a | ttached |
| Note 5: Resource blocks $n_{PRB} = 02$ are bandwidths.                    |               | for SIB tran | smissions   | in sub-fram | ne 5 for all   |         |
|                                                                           | 10 ara -      | loootod for  | the user de |             | h fu a va a a  |         |

Note 6: Resource blocks  $n_{PRB} = 6..14,30..49$  are allocated for the user data in all subframes.

Note 7: Resource blocks  $n_{PRB} = 3..49$  are allocated for the user data in sub-frame 5, and resource blocks  $n_{PRB} = 0..49$  in sub-frames 0,3,4,6,7,8,9.

Note 8: Resource blocks  $n_{PRB} = 4..99$  are allocated for the user data in sub-frame 5, and resource blocks  $n_{PRB} = 0..99$  in sub-frames 0,3,4,6,7,8,9.

Note 9: Resource blocks  $n_{PRB} = 4..71$  are allocated for the user data in all sub-frames

Note10: Given per component carrier per codeword.

# A.3.9.3 FDD (EPDCCH scheduling)

#### Table A.3.9.3-1: Fixed Reference Channel for sustained data-rate test with EPDCCH scheduling (FDD)

| Parameter                                         | Unit  |        |        |        | Value  |        |        |          |
|---------------------------------------------------|-------|--------|--------|--------|--------|--------|--------|----------|
| Reference channel                                 | ••••• | R.31E- | R.31E- | R.31E- | R.31E- | R.31E- | R.31E- | R.31E-4B |
|                                                   |       | 1 FDD  | 2 FDD  | 3 FDD  | 3A FDD | 3C FDD | 4 FDD  | FDD      |
| Channel bandwidth                                 | MHz   | 10     | 10     | 20     | 10     | 15     | 20     | 15       |
| Allocated resource blocks (Note 8)                |       | Note 5 | Note 6 | Note 7 | Note 6 | Note 9 | Note 7 | Note 10  |
| Allocated subframes per Radio Frame               |       | 10     | 10     | 10     | 10     | 10     | 10     | 10       |
| Modulation                                        |       | 64QAM    |
| Coding Rate                                       |       |        |        |        |        |        |        |          |
| (subframes with PDCCH USS                         |       |        |        |        |        |        |        |          |
| monitoring)                                       |       |        |        |        |        |        |        |          |
| For Sub-Frame 1,2,3,4,6,7,8,9,                    |       | 0.3972 | 0.5926 | 0.5933 | 0.8533 | 0.8725 | 0.8763 | 0.8533   |
| For Sub-Frame 5                                   |       | 0.3972 | 0.6441 | 0.6246 | 0.8889 | 0.8855 | 0.8702 | 0.8762   |
| For Sub-Frame 0                                   |       | 0.3972 | 0.6282 | 0.6106 | 0.9046 | 0.9105 | 0.9018 | 0.8868   |
| Coding Rate                                       |       |        |        |        |        |        |        |          |
| (subframes with EPDCCH USS                        |       |        |        |        |        |        |        |          |
| monitoring)                                       |       |        |        |        |        |        |        |          |
| For Sub-Frame 1,2,3,4,6,7,8,9,                    |       | 0.4114 | 0.6047 | 0.5993 | 0.8707 | 0.8855 | 0.8851 | 0.8649   |
| For Sub-Frame 5                                   |       | 0.4114 | 0.6584 | 0.6312 | 0.9086 | 0.8990 | 0.8794 | 0.8889   |
| For Sub-Frame 0                                   |       | 0.4114 | 0.6418 | 0.6170 | 0.9242 | 0.9246 | 0.9112 | 0.8993   |
| Information Bit Payload (Note 8)                  |       |        |        |        |        |        |        |          |
| For Sub-Frames 1,2,3,4,6,7,8,9                    | Bits  | 10296  | 25456  | 51024  | 36696  | 51024  | 75376  | 55056    |
| For Sub-Frame 5                                   | Bits  | 10296  | 25456  | 51024  | 35160  | 51024  | 71112  | 52752    |
| For Sub-Frame 0                                   | Bits  | 10296  | 25456  | 51024  | 36696  | 51024  | 75376  | 55056    |
| Number of Code Blocks                             |       |        |        |        |        |        |        |          |
| (Notes 3 and 8)                                   |       |        |        |        |        |        |        |          |
| For Sub-Frames 1,2,3,4,6,7,8,9                    | Bits  | 2      | 5      | 9      | 6      | 9      | 13     | 9        |
| For Sub-Frame 5                                   | Bits  | 2      | 5      | 9      | 6      | 9      | 12     | 9        |
| For Sub-Frame 0                                   | Bits  | 2      | 5      | 9      | 6      | 9      | 13     | 9        |
| Binary Channel Bits (Note 8)                      |       |        |        |        |        |        |        |          |
| (subframes with PDCCH USS                         |       |        |        |        |        |        |        |          |
| monitoring)                                       |       |        |        |        |        |        |        |          |
| For Sub-Frames 1,2,3,4,6,7,8,9                    | Bits  | 26100  | 43200  | 86400  | 43200  | 58752  | 86400  | 64800    |
| For Sub-Frame 5                                   | Bits  | 26100  | 39744  | 82080  | 39744  | 57888  | 82080  | 60480    |
| For Sub-Frame 0                                   | Bits  | 26100  | 40752  | 83952  | 40752  | 56304  | 83952  | 62352    |
| Binary Channel Bits (Note 8)                      |       |        |        |        |        |        |        |          |
| (subframes with EPDCCH USS                        |       |        |        |        |        |        |        |          |
| monitoring)                                       |       |        |        |        |        |        |        |          |
| For Sub-Frames 1,2,3,4,6,7,8,9                    | Bits  | 25200  | 42336  | 85536  | 42336  | 57888  | 85536  | 63936    |
| For Sub-Frame 5                                   | Bits  | 25200  | 38880  | 81216  | 38880  | 57024  | 81216  | 59616    |
| For Sub-Frame 0                                   | Bits  | 25200  | 39888  | 83088  | 39888  | 55440  | 83088  | 61488    |
| Number of layers                                  |       | 1      | 2      | 2      | 2      | 2      | 2      | 2        |
| Max. Throughput averaged over 1                   | Mbps  | 10.296 | 25.456 | 51.024 | 36.542 | 51.024 | 74.950 | 54.826   |
| frame (Note 8)                                    |       |        |        |        |        |        |        |          |
| UE Categories Note 1: 1 symbol allocated to PDCCE |       | ≥1     | ≥2     | ≥2     | ≥2     | ≥ 3    | ≥ 3    | ≥ 4      |

Note 1: 1 symbol allocated to PDCCH for all tests.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211.

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).

Note 4: Resource blocks n<sub>PRB</sub> = 0..2 are allocated for SIB transmissions in sub-frame 5 for all bandwidths.

Note 5: Resource blocks  $n_{PRB} = 6..14,30..49$  are allocated for the user data in all sub-frames.

Note 6: Resource blocks n<sub>PRB</sub> = 3..49 are allocated for the user data in sub-frame 5, and resource blocks n<sub>PRB</sub> = 0..49 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 7: Resource blocks n<sub>PRB</sub> = 4..99 are allocated for the user data in sub-frame 5, and resource blocks n<sub>PRB</sub> = 0..99 in sub-frames 0,1,2,3,4,6,7,8,9.

Note 8: Given per component carrier per codeword.

Note 9: Resource blocks n<sub>PRB</sub> = 4..71 are allocated for the user data in sub-frames 0,1,2,3,4,5,6,7,8,9.

Note 10: Resource blocks  $n_{PRB} = 4..74$  are allocated for the user data in sub-frame 5, and resource blocks  $n_{PRB} = 0..74$  in sub-frames 0,1,2,3,4,6,7,8,9.

# A.3.9.4 TDD (EPDCCH scheduling)

# Table A.3.9.4-1: Fixed Reference Channel for sustained data-rate with EPDCCH scheduling (TDD)

| Parameter                                                                          | Unit         |         |            | Value      |              |              |
|------------------------------------------------------------------------------------|--------------|---------|------------|------------|--------------|--------------|
| Reference channel                                                                  | 0            | R.31E-1 | R.31E-2    | R.31E-3    | R.31E-3A     | R.31E-4      |
|                                                                                    |              | TDD     | TDD        | TDD        | TDD          | TDD          |
| Channel bandwidth                                                                  | MHz          | 10      | 10         | 20         | 15           | 20           |
| Allocated resource blocks                                                          |              | Note 6  | Note 7     | Note 8     | Note 9       | Note 8       |
| Uplink-Downlink Configuration (Note 3)                                             |              | 5       | 5          | 5          | 1            | 1            |
| Number of HARQ Processes per<br>component carrier                                  | Processes    | 15      | 15         | 15         | 7            | 7            |
| Allocated subframes per Radio<br>Frame (D+S)                                       |              | 8+1     | 8+1        | 8+1        | 4            | 4            |
| Coding Rate<br>(subframes with PDCCH USS<br>monitoring)                            |              |         |            |            |              |              |
| For Sub-Frames 4,9                                                                 |              | 0.3972  | 0.5926     | 0.5933     | 0.8725       | 0.8763       |
| For Sub-Frames 3,7,8                                                               |              | 0.3972  | 0.5926     | 0.5933     | N/A          | N/A          |
| For Sub-Frames 1                                                                   |              | N/A     | N/A        | N/A        | N/A          | N/A          |
| For Sub-Frames 5                                                                   |              | 0.3972  | 0.6372     | 0.6213     | 0.8790       | 0.8656       |
| For Sub-Frames 6                                                                   |              | 0.3972  | 0.5986     | 0.5963     | N/A          | N/A          |
| For Sub-Frames 0                                                                   |              | 0.3972  | 0.6216     | 0.6075     | 0.9036       | 0.8972       |
| Coding Rate<br>(subframes with EPDCCH USS<br>monitoring)                           |              |         |            |            |              |              |
| For Sub-Frames 4,9                                                                 |              | 0.4114  | 0.6047     | 0.5993     | 0.8856       | 0.8851       |
| For Sub-Frames 3,7,8                                                               |              | 0.4114  | 0.6047     | 0.5993     | N/A          | N/A          |
| For Sub-Frames 1                                                                   |              | N/A     | N/A        | N/A        | N/A          | N/A          |
| For Sub-Frames 5                                                                   |              | 0.4114  | 0.6512     | 0.6279     | 0.8922       | 0.8748       |
| For Sub-Frames 6                                                                   |              | 0.4114  | 0.6109     | 0.6024     | N/A          | N/A          |
| For Sub-Frames 0                                                                   | -            | 0.4114  | 0.6349     | 0.6138     | 0.9175       | 0.9065       |
| Information Bit Payload                                                            |              |         |            |            |              |              |
| For Sub-Frames 4,9                                                                 | Bits         | 10296   | 25456      | 51024      | 51024        | 75376        |
| For Sub-Frames 3,7,8                                                               | Bits         | 10296   | 25456      | 51024      | N/A          | N/A          |
| For Sub-Frame 1<br>For Sub-Frame 5                                                 | Bits<br>Bits | 0 10296 | 0<br>25456 | 0<br>51024 | N/A<br>51024 | N/A<br>71112 |
| For Sub-Frame 6                                                                    | Bits         | 10296   | 25456      | 51024      | N/A          | N/A          |
| For Sub-Frame 0                                                                    | Bits         | 10296   | 25456      | 51024      | 51024        | 75376        |
| Number of Code Blocks per Sub-                                                     | DIG          | 10290   | 20400      | 51024      | 51024        | 75570        |
| Frame (Note 4)                                                                     |              |         |            |            |              | 4.0          |
| For Sub-Frames 4,9                                                                 |              | 2       | 5          | 9          | 9            | 13           |
| For Sub-Frames 3,7,8                                                               |              | 2       | 5          | 9          | N/A          | N/A          |
| For Sub-Frame 1                                                                    |              | N/A     | N/A        | N/A        | N/A          | N/A          |
| For Sub-Frame 5<br>For Sub-Frame 6                                                 | Bits         | 2       | 5<br>5     | 9<br>9     | 9<br>N/A     | 12<br>N/A    |
| For Sub-Frame 0                                                                    | DIIS         | 2       | 5          | 9          | 9            | 13           |
| Binary Channel Bits per Sub-Frame<br>(subframes with PDCCH USS<br>monitoring)      |              | 2       |            |            |              | 10           |
| For Sub-Frames 4,9                                                                 | Bits         | 26100   | 43200      | 86400      | 58752        | 86400        |
| For Sub-Frames 3,7,8                                                               | Bits         | 26100   | 43200      | 86400      | N/A          | N/A          |
| For Sub-Frame 1                                                                    | Bits         | 0       | 0          | 0          | N/A          | N/A          |
| For Sub-Frame 5                                                                    | Bits         | 26100   | 40176      | 82512      | 58320        | 82512        |
| For Sub-Frame 6                                                                    | Bits         | 26100   | 42768      | 85968      | N/A          | N/A          |
| For Sub-Frame 0<br>Binary Channel Bits per Sub-Frame<br>(subframes with EPDCCH USS | Bits         | 26100   | 41184      | 84384      | 56736        | 84384        |
| monitoring)<br>For Sub-Frames 4,9                                                  | Bits         | 25200   | 42336      | 85536      | 57888        | 85536        |
| For Sub-Frames 3,7,8                                                               | Bits         | 25200   | 42336      | 85536      | 57888<br>N/A | N/A          |
| For Sub-Frame 1                                                                    | Bits         | 25200   | 42330      | 0          | N/A<br>N/A   | N/A          |
| For Sub-Frame 5                                                                    | Bits         | 25200   | 39312      | 81648      | 57456        | 81648        |
| For Sub-Frame 6                                                                    | Bits         | 25200   | 41904      | 85104      | N/A          | N/A          |
|                                                                                    | 210          | 20200   |            | 00101      |              |              |

429

| For Sub  | -Frame 0                                                                                                               | Bits            | 25200            | 40320           | 83520           | 55872           | 83520           |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|--|--|
| Number   | of layers                                                                                                              |                 | 1                | 2               | 2               |                 |                 |  |  |
| Max. Thr | oughput averaged over 1                                                                                                | 40.819          | 20.409           | 29.724          |                 |                 |                 |  |  |
| frame (N | ote 10)                                                                                                                |                 |                  |                 |                 |                 |                 |  |  |
| UE Cate  | gory                                                                                                                   |                 | ≥ 1              | ≥2              | ≥ 2             | ≥ 2             | ≥ 3             |  |  |
| Note 1:  | 1 symbol allocated to PDCC                                                                                             | H for all tests | i.               |                 |                 |                 |                 |  |  |
| Note 2:  | Reference signal, synchroni                                                                                            | zation signals  | and PBCH al      | located as pe   | r TS 36.211 [4  | ·].             |                 |  |  |
| Note 3:  | As per Table 4.2-2 in TS 36.                                                                                           |                 |                  |                 |                 |                 |                 |  |  |
| Note 4:  | ote 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code      |                 |                  |                 |                 |                 |                 |  |  |
|          | Block (otherwise L = 0 Bit).                                                                                           |                 |                  |                 |                 |                 |                 |  |  |
| Note 5:  | Resource blocks n <sub>PRB</sub> = 02                                                                                  | are allocated   | for SIB trans    | missions in su  | b-frame 5 for a | all bandwidths. |                 |  |  |
| Note 6:  | Resource blocks n <sub>PRB</sub> = 61                                                                                  | 4,3049 are a    | allocated for th | ne user data ir | all subframes   | S.              |                 |  |  |
| Note 7:  | Resource blocks n <sub>PRB</sub> = 34                                                                                  | 9 are allocate  | ed for the user  | data in sub-fr  | ame 5, and re   | source blocks r | $n_{PRB} = 049$ |  |  |
|          | in sub-frames 0,3,4,6,7,8,9.                                                                                           |                 |                  |                 |                 |                 |                 |  |  |
| Note 8:  | 3: Resource blocks $n_{PRB} = 499$ are allocated for the user data in sub-frame 5, and resource blocks $n_{PRB} = 099$ |                 |                  |                 |                 |                 |                 |  |  |
|          | in sub-frames 0,3,4,6,7,8,9.                                                                                           |                 |                  |                 |                 |                 |                 |  |  |
| Note 9:  | te 9: Resource blocks n <sub>PRB</sub> = 471 are allocated for the user data in all sub-frames                         |                 |                  |                 |                 |                 |                 |  |  |
| Note10:  | Given per component carrie                                                                                             | r per codewo    | rd.              |                 |                 |                 |                 |  |  |

# A.3.10 Reference Measurement Channels for EPDCCH performance requirements

A.3.10.1 FDD

#### Table A.3.10.1-1: Reference Channel FDD

| Parameter                           | Unit    | Value    |          |          |          |          |  |  |  |  |
|-------------------------------------|---------|----------|----------|----------|----------|----------|--|--|--|--|
| Reference channel                   |         | R.55 FDD | R.56 FDD | R.57 FDD | R.58 FDD | R.59 FDD |  |  |  |  |
| Number of transmitter antennas      |         | 2        | 2        | 2        | 2        | 2        |  |  |  |  |
| Channel bandwidth                   | MHz     | 10       | 10       | 10       | 10       | 10       |  |  |  |  |
| Number of OFDM symbols for<br>PDCCH | symbols | 2        | 2        | 1        | 1        | 1        |  |  |  |  |
| Aggregation level                   | ECCE    | 4        | 16       | 2        | 8        | 2        |  |  |  |  |
| DCI Format                          |         | 2A       | 2A       | 2C       | 2C       | 2D       |  |  |  |  |

# A.3.10.2 TDD

#### Table A.3.10.2-1: Reference Channel TDD

| Parameter                           | Unit    | Value    |          |          |          |          |  |  |  |  |
|-------------------------------------|---------|----------|----------|----------|----------|----------|--|--|--|--|
| Reference channel                   |         | R.55 TDD | R.56 TDD | R.57 TDD | R.58 TDD | R.59 TDD |  |  |  |  |
| Number of transmitter antennas      |         | 2        | 2        | 2        | 2        | 2        |  |  |  |  |
| Channel bandwidth                   | MHz     | 10       | 10       | 10       | 10       | 10       |  |  |  |  |
| Number of OFDM symbols for<br>PDCCH | symbols | 2        | 2        | 1        | 1        | 1        |  |  |  |  |
| Aggregation level                   | CCE     | 4        | 16       | 2        | 8        | 2        |  |  |  |  |
| DCI Format                          |         | 2A       | 2A       | 2C       | 2C       | 2D       |  |  |  |  |

# A.4 CSI reference measurement channels

| CSI Performance for CA, PDSCH, Full allocation |             |  |    |     |     |     |  |  |  |
|------------------------------------------------|-------------|--|----|-----|-----|-----|--|--|--|
| TDD                                            | Table A.4-2 |  | 20 | CQI | CQI | 100 |  |  |  |

This section defines the DL signal applicable to the reporting of channel quality information (Clause 9.2, 9.3 and 9.5).

430

In Table A.4-0 are listed the UL/DL reference measurement channels specified in annex A.4 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are the other tables of this annex as appropriate.

| Duplex    | Table             | Name             | BW        | Mod        | TCR     | RB    | RB<br>Off<br>set | UE<br>Cat<br>eg | Notes |
|-----------|-------------------|------------------|-----------|------------|---------|-------|------------------|-----------------|-------|
| CSI Perfo | rmance, PDSCH, F  | ull allocation ( | (CRS)     |            |         |       |                  |                 |       |
| FDD       | Table A.4-1       |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| TDD       | Table A.4-2       |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| CSI Perfo | rmance for CA, PD | SCH, Full allo   | cation    |            |         |       |                  |                 |       |
| TDD       | Table A.4-2       |                  | 20        | CQI        | CQI     | 100   |                  |                 |       |
| CSI Perfo | rmance, PDSCH, F  | ull allocation ( | CSI-RS    | ): 2 CRS p | orts, 4 | CSI-R | S ports          | 5               |       |
| FDD       | Table A.4-1a      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| CSI Perfo | rmance, PDSCH, F  | ull allocation ( | CSI-RS    | ): 2 CRS p | orts, 8 | CSI-R | S ports          | 5               |       |
| TDD       | Table A.4-2a      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| CSI Perfo | rmance, PDSCH, F  | ull allocation ( | CSI-RS    | ): 1 CRS p | ort     |       |                  |                 |       |
| FDD       | Table A.4-1b      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| TDD       | Table A.4-2b      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| CSI Perfo | rmance, PDSCH, F  | ull allocation ( | CSI-RS    | ): 2 CRS p | orts, 2 | CSI-R | S ports          | 5               |       |
| FDD       | Table A.4-1c      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| TDD       | Table A.4-2c      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| CSI Perfo | rmance, PDSCH, F  | ull allocation ( | CSI-RS    | and CSI-I  | M): 2 C | RS po | rts              |                 |       |
| FDD       | Table A.4-1d      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| TDD       | Table A.4-2d      |                  | 10        | CQI        | CQI     | 50    |                  |                 |       |
| CSI Perfo | rmance, PDSCH, Pa | artial allocatio | on (CRS   | ) (6 RB-s) |         |       |                  |                 |       |
| FDD       | Table A.4-4       |                  | 10        | CQI        | CQI     | 6     |                  |                 |       |
| TDD       | Table A.4-5       |                  | 10        | CQI        | CQI     | 6     |                  |                 |       |
| CSI Perfo | rmance, PDSCH, Pa | artial allocatio | on (CSI-l | RS) (6 RB· | ·s)     |       |                  |                 |       |
| FDD       | Table A.4-4a      |                  | 10        | CQI        | CQI     | 6     |                  |                 |       |
| TDD       | Table A.4-5a      |                  | 10        | CQI        | CQI     | 6     |                  |                 |       |
| CSI Perfo | rmance, PDSCH, Pa | artial allocatio | on (CSI j | orocess) ( | 6 RB-s) | )     |                  |                 |       |
| FDD       | Table A.4-4b      |                  | 10        | CQI        | CQI     | 6     |                  |                 |       |
| TDD       | Table A.4-5b      |                  | 10        | CQI        | CQI     | 6     |                  |                 |       |
| CSI Perfo | rmance, PDSCH, Pa | artial allocatio | on (CRS   | ) (15 RB-s | )       |       |                  |                 |       |
| FDD       | Table A.4-7       |                  | 10        | CQI        | CQI     | 15    |                  |                 |       |
| TDD       | Table A.4-8       |                  | 10        | CQI        | CQI     | 15    |                  |                 |       |
| CSI Perfo | rmance, PDSCH, Pa | artial allocatio | on (CRS   | ) (3 RB-s) |         |       |                  |                 |       |
| FDD       | Table A.4-10      |                  | 10        | CQI        | CQI     | 3     |                  |                 |       |
| TDD       | Table A.4-11      |                  | 10        | CQI        | CQI     | 3     |                  |                 |       |
|           |                   |                  |           |            |         |       |                  |                 |       |

The reference channel in Table A.4-1 complies with the CQI definition specified in Sec. 7.2.3 of [6]. Table A.4-3 specifies the transport format corresponding to each CQI for single antenna transmission. Table A.4-3a specifies the transport format corresponding to each CQI for dual antenna transmission.

### Table A.4-1: Reference channel for CQI requirements (FDD) full PRB allocation (CRS)

| Parameter                                                                         | Unit            | Value      |          |           |                       |            |         |                 |  |
|-----------------------------------------------------------------------------------|-----------------|------------|----------|-----------|-----------------------|------------|---------|-----------------|--|
| Channel bandwidth                                                                 | MHz             | 1.4        | 3        | 5         | 10                    |            | 15      | 20              |  |
| Allocated resource blocks                                                         |                 | 6          | 15       | 25        | 50                    |            | 75      | 100             |  |
| Subcarriers per resource block                                                    |                 | 12         | 12       | 12        | 12                    |            | 12      | 12              |  |
| Allocated subframes per Radio Frame                                               |                 | 8          | 8        | 8         | 8                     |            | 8       | 8               |  |
| Modulation                                                                        |                 |            |          |           | Table                 | Table      |         | Table           |  |
|                                                                                   |                 |            |          |           | A.4-3                 | A.4-<br>3a |         | A.4-3g          |  |
| Target coding rate                                                                |                 |            |          |           | TableTableA.4-3A.4-3a |            |         | Table<br>A.4-3g |  |
| Number of HARQ Processes                                                          | Processes       | 8          | 8        | 8         | 8                     |            | 8       | 8               |  |
| Maximum number of HARQ transmissions                                              |                 | 1          | 1        | 1         | 1                     |            | 1       | 1               |  |
| Note 1: 3 symbols allocated to PDCCH.<br>Note 2: Only subframes 1,2,3,4,6,7,8, an | d 9 are allocat | ted to avo | oid PBCH | and syncl | nronizatio            | on signal  | overhea | d.              |  |

#### Table A.4-1a: Reference channel for CQI requirements (FDD) full PRB allocation (CSI-RS) : 2 CRS ports, 4 CSI-RS ports

| Parameter                                                                                                    | Unit      | Value |    |    |                              |                 |    |     |
|--------------------------------------------------------------------------------------------------------------|-----------|-------|----|----|------------------------------|-----------------|----|-----|
| Channel bandwidth                                                                                            | MHz       | 1.4   | 3  | 5  | 10                           |                 | 15 | 20  |
| Allocated resource blocks                                                                                    |           | 6     | 15 | 25 | 50                           |                 | 75 | 100 |
| Subcarriers per resource block                                                                               |           | 12    | 12 | 12 | 12                           |                 | 12 | 12  |
| Allocated subframes per Radio Frame                                                                          |           | 8     | 8  | 8  | 8                            |                 | 8  | 8   |
| Modulation                                                                                                   |           |       |    |    | Table<br>A.4-3b              | Table<br>A.4-3c |    |     |
| Target coding rate                                                                                           |           |       |    |    | Table Table<br>A.4-3b A.4-3c |                 |    |     |
| Number of HARQ Processes                                                                                     | Processes | 8     | 8  | 8  | 8                            |                 | 8  | 8   |
| Maximum number of HARQ transmissions                                                                         |           | 1     | 1  | 1  | 1                            |                 | 1  | 1   |
| Note 1: 3 symbols allocated to PDCCH                                                                         | ۱.        |       |    |    |                              |                 |    |     |
| Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |           |       |    |    |                              |                 |    |     |

#### Table A.4-1b: Reference channel for CQI requirements (FDD) full PRB allocation (CSI-RS): 1 CRS port

| Parameter                                                                    | Unit      | Value     |         |         |                              |                 |           |        |
|------------------------------------------------------------------------------|-----------|-----------|---------|---------|------------------------------|-----------------|-----------|--------|
| Channel bandwidth                                                            | MHz       | 1.4       | 3       | 5       | 10                           |                 | 15        | 20     |
| Allocated resource blocks                                                    |           | 6         | 15      | 25      | 50                           |                 | 75        | 100    |
| Subcarriers per resource block                                               |           | 12        | 12      | 12      | 12                           |                 | 12        | 12     |
| Allocated subframes per Radio Frame                                          |           | 8         | 8       | 8       | 8                            |                 | 8         | 8      |
| Modulation                                                                   |           |           |         |         | Table<br>A.4-3e              | Table<br>A.4-3f |           |        |
| Target coding rate                                                           |           |           |         |         | Table Table<br>A.4-3e A.4-3f |                 |           |        |
| Number of HARQ Processes                                                     | Processes | 8         | 8       | 8       | 8                            |                 | 8         | 8      |
| Maximum number of HARQ<br>transmissions                                      |           | 1         | 1       | 1       | 1                            |                 | 1         | 1      |
| Note 1: 3 symbols allocated to PDCC<br>Note 2: Only subframes 1,2,3,4,6,7,8, |           | ated to a | avoid P | BCH and | d synchron                   | ization si      | gnal ovei | rhead. |

# Table A.4-1c: Reference channel for CQI requirements (FDD) full PRB allocation (CSI-RS) : 2 CRS ports, 2 CSI-RS ports

| Parameter                                                                                                                                                              | Unit      | Value |    |    |                 |                 |    |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|----|----|-----------------|-----------------|----|-----|
| Channel bandwidth                                                                                                                                                      | MHz       | 1.4   | 3  | 5  | 1               | 0               | 15 | 20  |
| Allocated resource blocks                                                                                                                                              |           | 6     | 15 | 25 | 5               | 60              | 75 | 100 |
| Subcarriers per resource block                                                                                                                                         |           | 12    | 12 | 12 | 1               | 2               | 12 | 12  |
| Allocated subframes per Radio Frame                                                                                                                                    |           | 8     | 8  | 8  |                 | 8               | 8  | 8   |
| Modulation                                                                                                                                                             |           |       |    |    | Table<br>A.4-3b | Table<br>A.4-3h |    |     |
| Target coding rate                                                                                                                                                     |           |       |    |    | Table<br>A.4-3b | Table<br>A.4-3h |    |     |
| Number of HARQ Processes                                                                                                                                               | Processes | 8     | 8  | 8  | 1               | 8               | 8  | 8   |
| Maximum number of HARQ     1     1     1       transmissions     1     1     1                                                                                         |           |       |    |    | 1               | 1               | 1  |     |
| Note 1:       3 symbols allocated to PDCCH.         Note 2:       Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |           |       |    |    |                 |                 |    |     |

# Table A.4-1d: Reference channel for CQI requirements (FDD) full PRB allocation (CSI-RS and CSI-IM) : 2 CRS ports

| Parameter                                                                                                                                                                       | Unit      |     |    |    | Value           |                 |    |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|----|----|-----------------|-----------------|----|-----|
| Channel bandwidth                                                                                                                                                               | MHz       | 1.4 | 3  | 5  | 10              |                 | 15 | 20  |
| Allocated resource blocks                                                                                                                                                       |           | 6   | 15 | 25 | 5               | 0               | 75 | 100 |
| Subcarriers per resource block                                                                                                                                                  |           | 12  | 12 | 12 | 1               | 2               | 12 | 12  |
| Allocated subframes per Radio Frame                                                                                                                                             |           | 8   | 8  | 8  | 8               | 3               | 8  | 8   |
| Modulation                                                                                                                                                                      |           |     |    |    | Table<br>A.4-3b | Table<br>A.4-3i |    |     |
| Target coding rate                                                                                                                                                              |           |     |    |    | Table<br>A.4-3b | Table<br>A.4-3i |    |     |
| Number of HARQ Processes                                                                                                                                                        | Processes | 8   | 8  | 8  | 8               | 3               | 8  | 8   |
| Maximum number of HARQ 1 1 1 1 1<br>transmissions                                                                                                                               |           |     |    |    |                 | 1               | 1  |     |
| <ul> <li>Note 1: 3 symbols allocated to PDCCH.</li> <li>Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead.</li> </ul> |           |     |    |    |                 |                 |    |     |

# Table A.4-1e: Reference channel for CQI requirements (FDD) full PRB allocation (CSI-RS and CSI-IM): 1 CRS port

| Parameter                                                                                                    | Unit      |     |    |    | Value        |    |     |  |
|--------------------------------------------------------------------------------------------------------------|-----------|-----|----|----|--------------|----|-----|--|
| Channel bandwidth                                                                                            | MHz       | 1.4 | 3  | 5  | 10           | 15 | 20  |  |
| Allocated resource blocks                                                                                    |           | 6   | 15 | 25 | 50           | 75 | 100 |  |
| Subcarriers per resource block                                                                               |           | 12  | 12 | 12 | 12           | 12 | 12  |  |
| Allocated subframes per Radio Frame                                                                          |           | 8   | 8  | 8  | 8            | 8  | 8   |  |
| Modulation                                                                                                   |           |     |    |    | Table A.4-3e |    |     |  |
| Target coding rate                                                                                           |           |     |    |    | Table A.4-3e |    |     |  |
| Number of HARQ Processes                                                                                     | Processes | 8   | 8  | 8  | 8            | 8  | 8   |  |
| Maximum number of HARQ                                                                                       |           | 1   | 1  | 1  | 1            | 1  | 1   |  |
| transmissions                                                                                                |           |     |    |    |              |    |     |  |
| Note 1: 3 symbols allocated to PDCCH.                                                                        |           |     |    |    |              |    |     |  |
| Note 2: Only subframes 2, 3, 4, 7, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |           |     |    |    |              |    |     |  |

### Table A.4-2: Reference channel for CQI requirements (TDD) full PRB allocation (CRS)

| Parameter                                                                                              | Unit      |     |    |    | Value |       |    |        |  |
|--------------------------------------------------------------------------------------------------------|-----------|-----|----|----|-------|-------|----|--------|--|
| Channel bandwidth                                                                                      | MHz       | 1.4 | 3  | 5  | 1     | 0     | 15 | 20     |  |
| Allocated resource blocks                                                                              |           | 6   | 15 | 25 | 5     | 50    |    | 100    |  |
| Subcarriers per resource block                                                                         |           | 12  | 12 | 12 | 1     | 2     | 12 | 12     |  |
| Allocated subframes per Radio Frame                                                                    |           | 4   | 4  | 4  | 4     | 1     | 4  | 4      |  |
| Modulation                                                                                             |           |     |    |    | Table | Table |    | Table  |  |
|                                                                                                        |           |     |    |    | A.4-3 | A.4-  |    | A.4-3g |  |
|                                                                                                        |           |     |    |    |       | 3a    |    |        |  |
| Target coding rate                                                                                     |           |     |    |    | Table | Table |    | Table  |  |
|                                                                                                        |           |     |    |    | A.4-3 | A.4-  |    | A.4-3g |  |
|                                                                                                        |           |     |    |    |       | 3a    |    | _      |  |
| Number of HARQ Processes                                                                               | Processes | 10  | 10 | 10 | 1     | 0     | 10 | 10     |  |
| Maximum number of HARQ transmissions 1 1 1 1 1 1                                                       |           |     |    |    |       | 1     |    |        |  |
| Note 1: 3 symbols allocated to PDCCH.                                                                  |           |     |    |    |       |       |    |        |  |
| Note 2: When UL-DL configuration 1 is used and only subframes 4 and 9 are allocated to avoide PBCH and |           |     |    |    |       |       |    |        |  |

synchronization signal overhead. When UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and 9 are allocated to avoid PBCH and synchronization signal overhead.

# Table A.4-2a: Reference channel for CQI requirements (TDD) full PRB allocation (CSI-RS) : 2 CRS ports, 8 CSI-RS ports

| Parameter                                                                                                                                                                                          | Unit      | Value |    |    |                 |                 |    |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|----|----|-----------------|-----------------|----|-----|
| Channel bandwidth                                                                                                                                                                                  | MHz       | 1.4   | 3  | 5  | 10              |                 | 15 | 20  |
| Allocated resource blocks                                                                                                                                                                          |           | 6     | 15 | 25 | 5               | 0               | 75 | 100 |
| Subcarriers per resource block                                                                                                                                                                     |           | 12    | 12 | 12 | 1               | 2               | 12 | 12  |
| Allocated subframes per Radio Frame                                                                                                                                                                |           | 4     | 4  | 4  | 4               | 4               | 4  | 4   |
| Modulation                                                                                                                                                                                         |           |       |    |    | Table<br>A.4-3b | Table<br>A.4-3d |    |     |
| Target coding rate                                                                                                                                                                                 |           |       |    |    | Table<br>A.4-3b | Table<br>A.4-3d |    |     |
| Number of HARQ Processes                                                                                                                                                                           | Processes | 10    | 10 | 10 | 1               | 0               | 10 | 10  |
| Maximum number of HARQ<br>transmissions                                                                                                                                                            |           | 1     | 1  | 1  |                 | 1               | 1  | 1   |
| Note 1:       3 symbols allocated to PDCCH.         Note 2:       UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |           |       |    |    |                 |                 |    |     |

#### Table A.4-2b: Reference channel for CQI requirements (TDD) full PRB allocation (CSI-RS): 1 CRS port

| Parameter                                                                                                                                                  | Unit      | Value |    |    |                 |                 |    |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|----|----|-----------------|-----------------|----|-----|
| Channel bandwidth                                                                                                                                          | MHz       | 1.4   | 3  | 5  | 1               | 0               | 15 | 20  |
| Allocated resource blocks                                                                                                                                  |           | 6     | 15 | 25 | 5               | 0               | 75 | 100 |
| Subcarriers per resource block                                                                                                                             |           | 12    | 12 | 12 | 1               | 2               | 12 | 12  |
| Allocated subframes per Radio Frame                                                                                                                        |           | 2     | 2  | 2  | 1               | 2               | 2  | 2   |
| Modulation                                                                                                                                                 |           |       |    |    | Table<br>A.4-3e | Table<br>A.4-3f |    |     |
| Target coding rate                                                                                                                                         |           |       |    |    | Table<br>A.4-3e | Table<br>A.4-3f |    |     |
| Number of HARQ Processes                                                                                                                                   | Processes | 10    | 10 | 10 | 1               | 0               | 10 | 10  |
| Maximum number of HARQ     1     1     1     1     1       transmissions                                                                                   |           |       |    |    |                 |                 | 1  |     |
| Note 1:       3 symbols allocated to PDCCH.         Note 2:       UL-DL configuration 1 is used and only subframes 4 and 9 are allocated to avoid PBCH and |           |       |    |    |                 |                 |    |     |

Note 2: UL-DL configuration 1 is used and only subframes 4 and 9 are allocated to avoid PBCH and synchronization signal overhead.

# Table A.4-2c: Reference channel for CQI requirements (TDD) full PRB allocation (CSI-RS) : 2 CRS ports, 2 CSI-RS ports

| Parameter                                                                                                                                                                                          | Unit      |     |    |    | Value           |                 |    |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|----|----|-----------------|-----------------|----|-----|
| Channel bandwidth                                                                                                                                                                                  | MHz       | 1.4 | 3  | 5  | 1               | 10              |    | 20  |
| Allocated resource blocks                                                                                                                                                                          |           | 6   | 15 | 25 | 5               | 0               | 75 | 100 |
| Subcarriers per resource block                                                                                                                                                                     |           | 12  | 12 | 12 | 1               | 2               | 12 | 12  |
| Allocated subframes per Radio Frame                                                                                                                                                                |           | 4   | 4  | 4  | 4               | 4               | 4  | 4   |
| Modulation                                                                                                                                                                                         |           |     |    |    | Table<br>A.4-3b | Table<br>A.4-3h |    |     |
| Target coding rate                                                                                                                                                                                 |           |     |    |    | Table<br>A.4-3b | Table<br>A.4-3h |    |     |
| Number of HARQ Processes                                                                                                                                                                           | Processes | 10  | 10 | 10 | 1               | 0               | 10 | 10  |
| Maximum number of HARQ   1   1   1   1     transmissions   1   1   1   1                                                                                                                           |           |     |    |    |                 |                 | 1  |     |
| Note 1:       3 symbols allocated to PDCCH.         Note 2:       UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |           |     |    |    |                 |                 |    |     |

# Table A.4-2d: Reference channel for CQI requirements (TDD) full PRB allocation (CSI-RS and CSI-IM) : 2 CRS ports

| Parameter                                                                                                                                                                                          | Unit      | Value |    |    |                 |                 |    |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|----|----|-----------------|-----------------|----|-----|
| Channel bandwidth                                                                                                                                                                                  | MHz       | 1.4   | 3  | 5  | 10              |                 | 15 | 20  |
| Allocated resource blocks                                                                                                                                                                          |           | 6     | 15 | 25 | 5               | 0               | 75 | 100 |
| Subcarriers per resource block                                                                                                                                                                     |           | 12    | 12 | 12 | 1               | 2               | 12 | 12  |
| Allocated subframes per Radio Frame                                                                                                                                                                |           | 4     | 4  | 4  | 4               | 1               | 4  | 4   |
| Modulation                                                                                                                                                                                         |           |       |    |    | Table<br>A.4-3b | Table<br>A.4-3j |    |     |
| Target coding rate                                                                                                                                                                                 |           |       |    |    | Table<br>A.4-3b | Table<br>A.4-3j |    |     |
| Number of HARQ Processes                                                                                                                                                                           | Processes | 10    | 10 | 10 | 1               | 0               | 10 | 10  |
| Maximum number of HARQ     1     1     1     1       transmissions     1     1     1     1                                                                                                         |           |       |    |    |                 |                 | 1  | 1   |
| Note 1:       3 symbols allocated to PDCCH.         Note 2:       UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |           |       |    |    |                 |                 |    |     |

# Table A.4-2e: Reference channel for CQI requirements (TDD) full PRB allocation (CSI-RS and CSI-IM):1 CRS port

| Parameter                                                                                                                                                                                                                                                                                                                  | Unit      | Value |    |    |                                                     |          |     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|----|----|-----------------------------------------------------|----------|-----|--|
| Channel bandwidth                                                                                                                                                                                                                                                                                                          | MHz       | 1.4   | 3  | 5  | 10                                                  | 15       | 20  |  |
| Allocated resource blocks                                                                                                                                                                                                                                                                                                  |           | 6     | 15 | 25 | 50                                                  | 75       | 100 |  |
| Subcarriers per resource block                                                                                                                                                                                                                                                                                             |           | 12    | 12 | 12 | 12                                                  | 12       | 12  |  |
| Allocated subframes per Radio Frame                                                                                                                                                                                                                                                                                        |           | 2     | 2  | 2  | 2                                                   | 2        | 2   |  |
| Modulation                                                                                                                                                                                                                                                                                                                 |           |       |    |    | Table Table<br>A.4-3e A.4-3<br>or<br>Table<br>A.4-3 | ¢        |     |  |
| Target coding rate                                                                                                                                                                                                                                                                                                         |           |       |    |    | Table Table<br>A.4-3e A.4-3<br>or<br>Table<br>A.4-3 | <b>K</b> |     |  |
| Number of HARQ Processes                                                                                                                                                                                                                                                                                                   | Processes | 10    | 10 | 10 | 10                                                  | 10       | 10  |  |
| Maximum number of HARQ transmissions                                                                                                                                                                                                                                                                                       |           | 1     | 1  | 1  | 1                                                   | 1        | 1   |  |
| Note 1:       3 symbols allocated to PDCCH.         Note 2:       UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead.         Note 3:       Table A.4-3k or Table A.4-3l is used for UE configured with 2 or 1 CSI process(es), respectively. |           |       |    |    |                                                     |          |     |  |

| CQI index | Modulation       | Target code rate        | Imcs           | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|------------------|-------------------------|----------------|----------------------------|---------------------------------------------|
| 0         | out of range     | out of range            | DTX            | -                          | -                                           |
| 1         | QPSK             | 0.0762                  | 0              | 1384                       | 12600                                       |
| 2         | QPSK             | 0.1172                  | 0              | 1384                       | 12600                                       |
| 3         | QPSK             | 0.1885                  | 2              | 2216                       | 12600                                       |
| 4         | QPSK             | 0.3008                  | 4              | 3624                       | 12600                                       |
| 5         | QPSK             | 0.4385                  | 6              | 5160                       | 12600                                       |
| 6         | QPSK             | 0.5879                  | 8              | 6968                       | 12600                                       |
| 7         | 16QAM            | 0.3691                  | 11             | 8760                       | 25200                                       |
| 8         | 16QAM            | 0.4785                  | 13             | 11448                      | 25200                                       |
| 9         | 16QAM            | 0.6016                  | 16             | 15264                      | 25200                                       |
| 10        | 64QAM            | 0.4551                  | 18             | 16416                      | 37800                                       |
| 11        | 64QAM            | 0.5537                  | 21             | 21384                      | 37800                                       |
| 12        | 64QAM            | 0.6504                  | 23             | 25456                      | 37800                                       |
| 13        | 64QAM            | 0.7539                  | 25             | 28336                      | 37800                                       |
| 14        | 64QAM            | 0.8525                  | 27             | 31704                      | 37800                                       |
| 15        | 64QAM            | 0.9258                  | 27             | 31704                      | 37800                                       |
| Note1: Su | ub-frame#0 and a | #5 are not used for the | e correspondir | ng requirement.            |                                             |

# Table A.4-3: Transport format corresponding to each CQI index for 50 PRB allocation single antenna transmission (CRS)

# Table A.4-3a: Transport format corresponding to each CQI index for 50 PRB allocation dual antenna transmission (CRS)

| CQI index                                                                                                                                                  | Modulation   | Target code rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------|----------------------------|---------------------------------------------|--|--|--|
| 0                                                                                                                                                          | out of range | out of range     | DTX  | -                          | -                                           |  |  |  |
| 1                                                                                                                                                          | QPSK         | 0.0762           | 0    | 1384                       | 12000                                       |  |  |  |
| 2                                                                                                                                                          | QPSK         | 0.1172           | 0    | 1384                       | 12000                                       |  |  |  |
| 3                                                                                                                                                          | QPSK         | 0.1885           | 2    | 2216                       | 12000                                       |  |  |  |
| 4                                                                                                                                                          | QPSK         | 0.3008           | 4    | 3624                       | 12000                                       |  |  |  |
| 5                                                                                                                                                          | QPSK         | 0.4385           | 6    | 5160                       | 12000                                       |  |  |  |
| 6                                                                                                                                                          | QPSK         | 0.5879           | 8    | 6968                       | 12000                                       |  |  |  |
| 7                                                                                                                                                          | 16QAM        | 0.3691           | 11   | 8760                       | 24000                                       |  |  |  |
| 8                                                                                                                                                          | 16QAM        | 0.4785           | 13   | 11448                      | 24000                                       |  |  |  |
| 9                                                                                                                                                          | 16QAM        | 0.6016           | 15   | 14112                      | 24000                                       |  |  |  |
| 10                                                                                                                                                         | 64QAM        | 0.4551           | 18   | 16416                      | 36000                                       |  |  |  |
| 11                                                                                                                                                         | 64QAM        | 0.5537           | 20   | 19848                      | 36000                                       |  |  |  |
| 12                                                                                                                                                         | 64QAM        | 0.6504           | 22   | 22920                      | 36000                                       |  |  |  |
| 13                                                                                                                                                         | 64QAM        | 0.7539           | 24   | 27376                      | 36000                                       |  |  |  |
| 14                                                                                                                                                         | 64QAM        | 0.8525           | 26   | 30576                      | 36000                                       |  |  |  |
| 15                                                                                                                                                         | 64QAM        | 0.9258           | 27   | 31704                      | 36000                                       |  |  |  |
| Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                  |      |                            |                                             |  |  |  |

| CQI index | Modulation                                     | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|------------------------------------------------|---------------------|------|----------------------------|---------------------------------------------|
| 0         | out of range                                   | out of range        | DTX  | -                          | -                                           |
| 1         | QPSK                                           | 0.0762              | 0    | 1384                       | 10800                                       |
| 2         | QPSK                                           | 0.1172              | 0    | 1384                       | 10800                                       |
| 3         | QPSK                                           | 0.1885              | 2    | 2216                       | 10800                                       |
| 4         | QPSK                                           | 0.3008              | 3    | 2856                       | 10800                                       |
| 5         | QPSK                                           | 0.4385              | 5    | 4392                       | 10800                                       |
| 6         | QPSK                                           | 0.5879              | 7    | 6200                       | 10800                                       |
| 7         | 16QAM                                          | 0.3691              | 10   | 7992                       | 21600                                       |
| 8         | 16QAM                                          | 0.4785              | 12   | 9912                       | 21600                                       |
| 9         | 16QAM                                          | 0.6016              | 14   | 12960                      | 21600                                       |
| 10        | 64QAM                                          | 0.4551              | 17   | 15264                      | 32400                                       |
| 11        | 64QAM                                          | 0.5537              | 19   | 18336                      | 32400                                       |
| 12        | 64QAM                                          | 0.6504              | 21   | 21384                      | 32400                                       |
| 13        | 64QAM                                          | 0.7539              | 23   | 25456                      | 32400                                       |
| 14        | 64QAM                                          | 0.8525              | 24   | 27376                      | 32400                                       |
| 15        | 64QAM                                          | 0.9258              | 25   | 28336                      | 32400                                       |
|           | ub-frame#0 and #5 ar<br>ubframe (i.e. sub-fram |                     |      |                            |                                             |

# Table A.4-3b: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 2CRS ports, Non CSI-RS subframe

| Table A.4-3c: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 2 |
|--------------------------------------------------------------------------------------------------|
| CRS ports, 4 CSI-RS ports, CSI-RS Subframe                                                       |

| CQI index | Modulation                                                                                                                                                 | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|----------------------------|---------------------------------------------|--|--|
| 0         | out of range                                                                                                                                               | out of range        | DTX  | -                          | -                                           |  |  |
| 1         | QPSK                                                                                                                                                       | 0.0762              | 0    | 1384                       | 10400                                       |  |  |
| 2         | QPSK                                                                                                                                                       | 0.1172              | 0    | 1384                       | 10400                                       |  |  |
| 3         | QPSK                                                                                                                                                       | 0.1885              | 1    | 1800                       | 10400                                       |  |  |
| 4         | QPSK                                                                                                                                                       | 0.3008              | 3    | 2856                       | 10400                                       |  |  |
| 5         | QPSK                                                                                                                                                       | 0.4385              | 5    | 4392                       | 10400                                       |  |  |
| 6         | QPSK                                                                                                                                                       | 0.5879              | 7    | 6200                       | 10400                                       |  |  |
| 7         | 16QAM                                                                                                                                                      | 0.3691              | 10   | 7992                       | 20800                                       |  |  |
| 8         | 16QAM                                                                                                                                                      | 0.4785              | 12   | 9912                       | 20800                                       |  |  |
| 9         | 16QAM                                                                                                                                                      | 0.6016              | 14   | 12960                      | 20800                                       |  |  |
| 10        | 64QAM                                                                                                                                                      | 0.4551              | 17   | 15264                      | 31200                                       |  |  |
| 11        | 64QAM                                                                                                                                                      | 0.5537              | 18   | 16416                      | 31200                                       |  |  |
| 12        | 64QAM                                                                                                                                                      | 0.6504              | 20   | 19848                      | 31200                                       |  |  |
| 13        | 64QAM                                                                                                                                                      | 0.7539              | 22   | 22920                      | 31200                                       |  |  |
| 14        | 64QAM                                                                                                                                                      | 0.8525              | 24   | 27376                      | 31200                                       |  |  |
| 15        | 64QAM                                                                                                                                                      | 0.9258              | 25   | 28336                      | 31200                                       |  |  |
|           | Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |                     |      |                            |                                             |  |  |

| CQI index                                                                                                                                                  | Modulation   | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------|----------------------------|---------------------------------------------|--|--|
| 0                                                                                                                                                          | out of range | out of range        | DTX  | -                          | -                                           |  |  |
| 1                                                                                                                                                          | QPSK         | 0.0762              | 0    | 1384                       | 10000                                       |  |  |
| 2                                                                                                                                                          | QPSK         | 0.1172              | 0    | 1384                       | 10000                                       |  |  |
| 3                                                                                                                                                          | QPSK         | 0.1885              | 1    | 1800                       | 10000                                       |  |  |
| 4                                                                                                                                                          | QPSK         | 0.3008              | 3    | 2856                       | 10000                                       |  |  |
| 5                                                                                                                                                          | QPSK         | 0.4385              | 5    | 4392                       | 10000                                       |  |  |
| 6                                                                                                                                                          | QPSK         | 0.5879              | 7    | 6200                       | 10000                                       |  |  |
| 7                                                                                                                                                          | 16QAM        | 0.3691              | 10   | 7992                       | 20000                                       |  |  |
| 8                                                                                                                                                          | 16QAM        | 0.4785              | 12   | 9912                       | 20000                                       |  |  |
| 9                                                                                                                                                          | 16QAM        | 0.6016              | 13   | 11448                      | 20000                                       |  |  |
| 10                                                                                                                                                         | 64QAM        | 0.4551              | 17   | 15264                      | 30000                                       |  |  |
| 11                                                                                                                                                         | 64QAM        | 0.5537              | 18   | 16416                      | 30000                                       |  |  |
| 12                                                                                                                                                         | 64QAM        | 0.6504              | 20   | 19848                      | 30000                                       |  |  |
| 13                                                                                                                                                         | 64QAM        | 0.7539              | 22   | 22920                      | 30000                                       |  |  |
| 14                                                                                                                                                         | 64QAM        | 0.8525              | 23   | 25456                      | 30000                                       |  |  |
| 15                                                                                                                                                         | 64QAM        | 0.9258              | 24   | 27376                      | 30000                                       |  |  |
| Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                     |      |                            |                                             |  |  |

# Table A.4-3d: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 2CRS ports, 8 CSI-RS ports, CSI-RS Subframe

| Table A.4-3e: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 1 |
|--------------------------------------------------------------------------------------------------|
| CRS port, Non CSI-RS subframe                                                                    |

| CQI inde | ex                                                                                                                                                  | Modulation   | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------|----------------------------|---------------------------------------------|--|
| 0        |                                                                                                                                                     | out of range | out of range        | DTX  | -                          | -                                           |  |
| 1        |                                                                                                                                                     | QPSK         | 0.0762              | 0    | 1384                       | 11400                                       |  |
| 2        |                                                                                                                                                     | QPSK         | 0.1172              | 0    | 1384                       | 11400                                       |  |
| 3        |                                                                                                                                                     | QPSK         | 0.1885              | 2    | 2216                       | 11400                                       |  |
| 4        |                                                                                                                                                     | QPSK         | 0.3008              | 4    | 3624                       | 11400                                       |  |
| 5        |                                                                                                                                                     | QPSK         | 0.4385              | 6    | 5160                       | 11400                                       |  |
| 6        |                                                                                                                                                     | QPSK         | 0.5879              | 8    | 6968                       | 11400                                       |  |
| 7        |                                                                                                                                                     | 16QAM        | 0.3691              | 10   | 7992                       | 22800                                       |  |
| 8        |                                                                                                                                                     | 16QAM        | 0.4785              | 13   | 11448                      | 22800                                       |  |
| 9        |                                                                                                                                                     | 16QAM        | 0.6016              | 15   | 14112                      | 22800                                       |  |
| 10       |                                                                                                                                                     | 64QAM        | 0.4551              | 17   | 15264                      | 34200                                       |  |
| 11       |                                                                                                                                                     | 64QAM        | 0.5537              | 19   | 18336                      | 34200                                       |  |
| 12       |                                                                                                                                                     | 64QAM        | 0.6504              | 21   | 21384                      | 34200                                       |  |
| 13       |                                                                                                                                                     | 64QAM        | 0.7539              | 23   | 25456                      | 34200                                       |  |
| 14       |                                                                                                                                                     | 64QAM        | 0.8525              | 25   | 28336                      | 34200                                       |  |
| 15       |                                                                                                                                                     | 64QAM        | 0.9258              | 26   | 30576                      | 34200                                       |  |
|          | Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                     |      |                            |                                             |  |

| CQI index                                                                                                                                                  | Modulation   | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------|----------------------------|---------------------------------------------|--|--|
| 0                                                                                                                                                          | out of range | out of range        | DTX  | -                          | -                                           |  |  |
| 1                                                                                                                                                          | QPSK         | 0.0762              | 0    | 1384                       | 11200                                       |  |  |
| 2                                                                                                                                                          | QPSK         | 0.1172              | 0    | 1384                       | 11200                                       |  |  |
| 3                                                                                                                                                          | QPSK         | 0.1885              | 2    | 2216                       | 11200                                       |  |  |
| 4                                                                                                                                                          | QPSK         | 0.3008              | 4    | 3624                       | 11200                                       |  |  |
| 5                                                                                                                                                          | QPSK         | 0.4385              | 6    | 5160                       | 11200                                       |  |  |
| 6                                                                                                                                                          | QPSK         | 0.5879              | 7    | 6200                       | 11200                                       |  |  |
| 7                                                                                                                                                          | 16QAM        | 0.3691              | 10   | 7992                       | 22400                                       |  |  |
| 8                                                                                                                                                          | 16QAM        | 0.4785              | 12   | 9912                       | 22400                                       |  |  |
| 9                                                                                                                                                          | 16QAM        | 0.6016              | 14   | 12960                      | 22400                                       |  |  |
| 10                                                                                                                                                         | 64QAM        | 0.4551              | 17   | 15264                      | 33600                                       |  |  |
| 11                                                                                                                                                         | 64QAM        | 0.5537              | 19   | 18336                      | 33600                                       |  |  |
| 12                                                                                                                                                         | 64QAM        | 0.6504              | 21   | 21384                      | 33600                                       |  |  |
| 13                                                                                                                                                         | 64QAM        | 0.7539              | 23   | 25456                      | 33600                                       |  |  |
| 14                                                                                                                                                         | 64QAM        | 0.8525              | 25   | 28336                      | 33600                                       |  |  |
| 15                                                                                                                                                         | 64QAM        | 0.9258              | 26   | 30576                      | 33600                                       |  |  |
| Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                     |      |                            |                                             |  |  |

# Table A.4-3f: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 1CRS port, 2 CSI-RS ports, CSI-RS Subframe

| Table A.4-3g: Transport format corresponding to each CQI index for 100 PRB allocation single |
|----------------------------------------------------------------------------------------------|
| antenna transmission (CRS)                                                                   |

| CQI index | Modulation                                                                | Target code rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |  |
|-----------|---------------------------------------------------------------------------|------------------|------|----------------------------|---------------------------------------------|--|--|--|
| 0         | out of range                                                              | out of range     | DTX  | -                          | -                                           |  |  |  |
| 1         | QPSK                                                                      | 0.0762           | 0    | 2792                       | 25200                                       |  |  |  |
| 2         | QPSK                                                                      | 0.1172           | 0    | 2792                       | 25200                                       |  |  |  |
| 3         | QPSK                                                                      | 0.1885           | 2    | 4584                       | 25200                                       |  |  |  |
| 4         | QPSK                                                                      | 0.3008           | 4    | 7224                       | 25200                                       |  |  |  |
| 5         | QPSK                                                                      | 0.4385           | 6    | 10296                      | 25200                                       |  |  |  |
| 6         | QPSK                                                                      | 0.5879           | 8    | 14112                      | 25200                                       |  |  |  |
| 7         | 16QAM                                                                     | 0.3691           | 11   | 17568                      | 50400                                       |  |  |  |
| 8         | 16QAM                                                                     | 0.4785           | 13   | 22920                      | 50400                                       |  |  |  |
| 9         | 16QAM                                                                     | 0.6016           | 16   | 30576                      | 50400                                       |  |  |  |
| 10        | 64QAM                                                                     | 0.4551           | 18   | 32856                      | 75600                                       |  |  |  |
| 11        | 64QAM                                                                     | 0.5537           | 21   | 43816                      | 75600                                       |  |  |  |
| 12        | 64QAM                                                                     | 0.6504           | 23   | 51024                      | 75600                                       |  |  |  |
| 13        | 64QAM                                                                     | 0.7539           | 25   | 57336                      | 75600                                       |  |  |  |
| 14        | 64QAM                                                                     | 0.8525           | 27   | 63776                      | 75600                                       |  |  |  |
| 15        | 64QAM                                                                     | 0.9258           | 27   | 63776                      | 75600                                       |  |  |  |
| Note1: Su | Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. |                  |      |                            |                                             |  |  |  |

| CQI index                                                                                                                                                  | Modulation   | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------|----------------------------|---------------------------------------------|--|
| 0                                                                                                                                                          | out of range | out of range        | DTX  | -                          | -                                           |  |
| 1                                                                                                                                                          | QPSK         | 0.0762              | 0    | 1384                       | 10600                                       |  |
| 2                                                                                                                                                          | QPSK         | 0.1172              | 0    | 1384                       | 10600                                       |  |
| 3                                                                                                                                                          | QPSK         | 0.1885              | 1    | 1800                       | 10600                                       |  |
| 4                                                                                                                                                          | QPSK         | 0.3008              | 3    | 2856                       | 10600                                       |  |
| 5                                                                                                                                                          | QPSK         | 0.4385              | 5    | 4392                       | 10600                                       |  |
| 6                                                                                                                                                          | QPSK         | 0.5879              | 7    | 6200                       | 10600                                       |  |
| 7                                                                                                                                                          | 16QAM        | 0.3691              | 10   | 7992                       | 21200                                       |  |
| 8                                                                                                                                                          | 16QAM        | 0.4785              | 12   | 9912                       | 21200                                       |  |
| 9                                                                                                                                                          | 16QAM        | 0.6016              | 14   | 12960                      | 21200                                       |  |
| 10                                                                                                                                                         | 64QAM        | 0.4551              | 17   | 15264                      | 31800                                       |  |
| 11                                                                                                                                                         | 64QAM        | 0.5537              | 19   | 16416                      | 31800                                       |  |
| 12                                                                                                                                                         | 64QAM        | 0.6504              | 21   | 19848                      | 31800                                       |  |
| 13                                                                                                                                                         | 64QAM        | 0.7539              | 22   | 22920                      | 31800                                       |  |
| 14                                                                                                                                                         | 64QAM        | 0.8525              | 24   | 27376                      | 31800                                       |  |
| 15                                                                                                                                                         | 64QAM        | 0.9258              | 25   | 28336                      | 31800                                       |  |
| Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                     |      |                            |                                             |  |

# Table A.4-3h: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS): 2CRS ports, 2 CSI-RS ports, CSI-RS Subframe

| Table A.4-3i: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS and |
|--------------------------------------------------------------------------------------------------|
| CSI-IM): 2 CRS ports, 4 CSI-RS ports, 4 zero power CSI-RS ports, CSI-RS Subframe                 |

| CQI index | Modulation                                                                                                                                                 | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|----------------------------|---------------------------------------------|--|--|--|
| 0         | out of range                                                                                                                                               | out of range        | DTX  | -                          | -                                           |  |  |  |
| 1         | QPSK                                                                                                                                                       | 0.0762              | 0    | 1384                       | 10000                                       |  |  |  |
| 2         | QPSK                                                                                                                                                       | 0.1172              | 0    | 1384                       | 10000                                       |  |  |  |
| 3         | QPSK                                                                                                                                                       | 0.1885              | 1    | 1800                       | 10000                                       |  |  |  |
| 4         | QPSK                                                                                                                                                       | 0.3008              | 3    | 2856                       | 10000                                       |  |  |  |
| 5         | QPSK                                                                                                                                                       | 0.4385              | 5    | 4392                       | 10000                                       |  |  |  |
| 6         | QPSK                                                                                                                                                       | 0.5879              | 7    | 6200                       | 10000                                       |  |  |  |
| 7         | 16QAM                                                                                                                                                      | 0.3691              | 10   | 7992                       | 20000                                       |  |  |  |
| 8         | 16QAM                                                                                                                                                      | 0.4785              | 12   | 9912                       | 20000                                       |  |  |  |
| 9         | 16QAM                                                                                                                                                      | 0.6016              | 13   | 11448                      | 20000                                       |  |  |  |
| 10        | 64QAM                                                                                                                                                      | 0.4551              | 17   | 15264                      | 30000                                       |  |  |  |
| 11        | 64QAM                                                                                                                                                      | 0.5537              | 18   | 16416                      | 30000                                       |  |  |  |
| 12        | 64QAM                                                                                                                                                      | 0.6504              | 20   | 19848                      | 30000                                       |  |  |  |
| 13        | 64QAM                                                                                                                                                      | 0.7539              | 22   | 22920                      | 30000                                       |  |  |  |
| 14        | 64QAM                                                                                                                                                      | 0.8525              | 23   | 25456                      | 30000                                       |  |  |  |
| 15        | 64QAM                                                                                                                                                      | 0.9258              | 24   | 27376                      | 30000                                       |  |  |  |
|           | Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |                     |      |                            |                                             |  |  |  |

| CQI index                                                                                                                                                  | Modulation   | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------|----------------------------|---------------------------------------------|--|
| 0                                                                                                                                                          | out of range | out of range        | DTX  | -                          | -                                           |  |
| 1                                                                                                                                                          | QPSK         | 0.0762              | 0    | 1384                       | 9600                                        |  |
| 2                                                                                                                                                          | QPSK         | 0.1172              | 0    | 1384                       | 9600                                        |  |
| 3                                                                                                                                                          | QPSK         | 0.1885              | 1    | 1800                       | 9600                                        |  |
| 4                                                                                                                                                          | QPSK         | 0.3008              | 3    | 2856                       | 9600                                        |  |
| 5                                                                                                                                                          | QPSK         | 0.4385              | 5    | 4392                       | 9600                                        |  |
| 6                                                                                                                                                          | QPSK         | 0.5879              | 7    | 5160                       | 9600                                        |  |
| 7                                                                                                                                                          | 16QAM        | 0.3691              | 10   | 6968                       | 19200                                       |  |
| 8                                                                                                                                                          | 16QAM        | 0.4785              | 12   | 8760                       | 19200                                       |  |
| 9                                                                                                                                                          | 16QAM        | 0.6016              | 13   | 11448                      | 19200                                       |  |
| 10                                                                                                                                                         | 64QAM        | 0.4551              | 17   | 12960                      | 28800                                       |  |
| 11                                                                                                                                                         | 64QAM        | 0.5537              | 18   | 16416                      | 28800                                       |  |
| 12                                                                                                                                                         | 64QAM        | 0.6504              | 20   | 18336                      | 28800                                       |  |
| 13                                                                                                                                                         | 64QAM        | 0.7539              | 22   | 21384                      | 28800                                       |  |
| 14                                                                                                                                                         | 64QAM        | 0.8525              | 23   | 25456                      | 28800                                       |  |
| 15                                                                                                                                                         | 64QAM        | 0.9258              | 24   | 25456                      | 28800                                       |  |
| Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                     |      |                            |                                             |  |

# Table A.4-3j: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS and<br/>CSI-IM): 2 CRS ports, 8 CSI-RS ports, 4 zero power CSI-RS ports, CSI-RS Subframe

| Table A.4-3k: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS and |
|--------------------------------------------------------------------------------------------------|
| CSI-IM): 1 CRS port, 2 CSI-RS ports, 2 CSI processes, CSI-RS and CSI-IM subframe                 |
|                                                                                                  |

| CQI index                                                                                                                                                          | Modulation   | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------|----------------------------|---------------------------------------------|--|--|--|
| 0                                                                                                                                                                  | out of range | out of range        | DTX  | -                          | -                                           |  |  |  |
| 1                                                                                                                                                                  | QPSK         | 0.0762              | 0    | 1384                       | 9800                                        |  |  |  |
| 2                                                                                                                                                                  | QPSK         | 0.1172              | 0    | 1384                       | 9800                                        |  |  |  |
| 3                                                                                                                                                                  | QPSK         | 0.1885              | 1    | 1800                       | 9800                                        |  |  |  |
| 4                                                                                                                                                                  | QPSK         | 0.3008              | 3    | 2856                       | 9800                                        |  |  |  |
| 5                                                                                                                                                                  | QPSK         | 0.4385              | 5    | 4392                       | 9800                                        |  |  |  |
| 6                                                                                                                                                                  | QPSK         | 0.5879              | 7    | 6200                       | 9800                                        |  |  |  |
| 7                                                                                                                                                                  | 16QAM        | 0.3691              | 10   | 7992                       | 19600                                       |  |  |  |
| 8                                                                                                                                                                  | 16QAM        | 0.4785              | 11   | 8760                       | 19600                                       |  |  |  |
| 9                                                                                                                                                                  | 16QAM        | 0.6016              | 13   | 11448                      | 19600                                       |  |  |  |
| 10                                                                                                                                                                 | 64QAM        | 0.4551              | 17   | 15264                      | 29400                                       |  |  |  |
| 11                                                                                                                                                                 | 64QAM        | 0.5537              | 18   | 16416                      | 29400                                       |  |  |  |
| 12                                                                                                                                                                 | 64QAM        | 0.6504              | 19   | 18336                      | 29400                                       |  |  |  |
| 13                                                                                                                                                                 | 64QAM        | 0.7539              | 21   | 21384                      | 29400                                       |  |  |  |
| 14                                                                                                                                                                 | 64QAM        | 0.8525              | 23   | 25456                      | 29400                                       |  |  |  |
| 15                                                                                                                                                                 | 64QAM        | 0.9258              | 23   | 25456                      | 29400                                       |  |  |  |
| Note1:         Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                     |      |                            |                                             |  |  |  |

| CQI index                                                                                                                                                  | Modulation   | Target code<br>rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------|----------------------------|---------------------------------------------|--|--|--|
| 0                                                                                                                                                          | out of range | out of range        | DTX  | -                          | -                                           |  |  |  |
| 1                                                                                                                                                          | QPSK         | 0.0762              | 0    | 1384                       | 10600                                       |  |  |  |
| 2                                                                                                                                                          | QPSK         | 0.1172              | 0    | 1384                       | 10600                                       |  |  |  |
| 3                                                                                                                                                          | QPSK         | 0.1885              | 1    | 1800                       | 10600                                       |  |  |  |
| 4                                                                                                                                                          | QPSK         | 0.3008              | 3    | 2856                       | 10600                                       |  |  |  |
| 5                                                                                                                                                          | QPSK         | 0.4385              | 5    | 4392                       | 10600                                       |  |  |  |
| 6                                                                                                                                                          | QPSK         | 0.5879              | 7    | 6200                       | 10600                                       |  |  |  |
| 7                                                                                                                                                          | 16QAM        | 0.3691              | 10   | 7992                       | 21200                                       |  |  |  |
| 8                                                                                                                                                          | 16QAM        | 0.4785              | 12   | 9912                       | 21200                                       |  |  |  |
| 9                                                                                                                                                          | 16QAM        | 0.6016              | 14   | 12960                      | 21200                                       |  |  |  |
| 10                                                                                                                                                         | 64QAM        | 0.4551              | 17   | 15264                      | 31800                                       |  |  |  |
| 11                                                                                                                                                         | 64QAM        | 0.5537              | 19   | 18336                      | 31800                                       |  |  |  |
| 12                                                                                                                                                         | 64QAM        | 0.6504              | 20   | 19848                      | 31800                                       |  |  |  |
| 13                                                                                                                                                         | 64QAM        | 0.7539              | 22   | 22920                      | 31800                                       |  |  |  |
| 14                                                                                                                                                         | 64QAM        | 0.8525              | 24   | 27376                      | 31800                                       |  |  |  |
| 15                                                                                                                                                         | 64QAM        | 0.9258              | 25   | 28336                      | 31800                                       |  |  |  |
| Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. sub-frame#1 or #6) shall be used for the retransmission. |              |                     |      |                            |                                             |  |  |  |

# Table A.4-3I: Transport format corresponding to each CQI index for 50 PRB allocation (CSI-RS and<br/>CSI-IM): 1 CRS port, 2 CSI-RS ports, 1 CSI process, CSI-RS and CSI-IM subframe

## Table A.4-4: Reference channel for CQI requirements (FDD) 6 PRB allocation (CRS)

| Parameter                                                                    | Unit           |            |          | Va          | lue            |            |    |
|------------------------------------------------------------------------------|----------------|------------|----------|-------------|----------------|------------|----|
| Channel bandwidth                                                            | MHz            | 1.4        | 3        | 5           | 10             | 15         | 20 |
| Allocated resource blocks                                                    |                | 6          | 6        | 6           | 6              | 6          | 6  |
| Subcarriers per resource block                                               |                | 12         | 12       | 12          | 12             | 12         | 12 |
| Allocated subframes per Radio Frame                                          |                | 8          | 8        | 8           | 8              | 8          | 8  |
| Modulation                                                                   |                |            |          |             | Table<br>A.4-6 |            |    |
| Target coding rate                                                           |                |            |          |             | Table<br>A.4-6 |            |    |
| Number of HARQ Processes                                                     | Processes      | 8          | 8        | 8           | 8              | 8          | 8  |
| Maximum number of HARQ transmissions                                         |                | 1          | 1        | 1           | 1              | 1          | 1  |
| Note 1:3 symbols allocated to PDCCH.Note 2:Only subframes 1,2,3,4,6,7,8, and | 9 are allocate | d to avoid | PBCH and | l synchroni | zation signa   | al overhea | d. |

### Table A.4-4a: Reference channel for CQI requirements (FDD) 6 PRB allocation (CSI-RS)

| Parameter                                                              | Unit          |               |           |          | Value           |                 |          |    |
|------------------------------------------------------------------------|---------------|---------------|-----------|----------|-----------------|-----------------|----------|----|
| Channel bandwidth                                                      | MHz           | 1.4           | 3         | 5        | 1               | 0               | 15       | 20 |
| Allocated resource blocks                                              |               | 6             | 6         | 6        | (               | 6               | 6        | 6  |
| Subcarriers per resource block                                         |               | 12            | 12        | 12       | 1               | 2               | 12       | 12 |
| Allocated subframes per Radio Frame                                    |               | 8             | 8         | 8        |                 | 8               | 8        | 8  |
| Modulation                                                             |               |               |           |          | Table<br>A.4-6a | Table<br>A.4-6b |          |    |
| Target coding rate                                                     |               |               |           |          | Table<br>A.4-6a | Table<br>A.4-6b |          |    |
| Number of HARQ Processes                                               | Proces<br>ses | 8             | 8         | 8        |                 | 8               | 8        | 8  |
| Maximum number of HARQ<br>transmissions                                |               | 1             | 1         | 1        |                 | 1               | 1        | 1  |
| Note 1:3 symbols allocated to PDCCNote 2:Only subframes 1,2,3,4,6,7,8, |               | llocated to a | avoid PB( | CH and s | ynchroniza      | tion signal     | overhead | d. |

#### Table A.4-4b: Reference channel for CQI requirements (FDD) 6 PRB allocation (CSI process)

| /alue        |          |                        |                                |
|--------------|----------|------------------------|--------------------------------|
| 10           | 10       | 15                     | 20                             |
| 6            | 6        | 6                      | 6                              |
| 12           | 12       | 12                     | 12                             |
| 8            | 8        | 8                      | 8                              |
| Table A.4-6c | e A.4-6c |                        |                                |
| Table A.4-6c | e A.4-6c |                        |                                |
| 8            | 8        | 8                      | 8                              |
| 1            | 1        | 1                      | 1                              |
| ni:          | zatio    | 1<br>zation signal ove | 1 1<br>zation signal overhead. |

### Table A.4-5: Reference channel for CQI requirements (TDD) 6 PRB allocation (CRS)

| Parameter                                                                                                                                  | Unit            |             |             | Va           | lue            |        |    |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|--------------|----------------|--------|----|
| Channel bandwidth                                                                                                                          | MHz             | 1.4         | 3           | 5            | 10             | 15     | 20 |
| Allocated resource blocks                                                                                                                  |                 | 6           | 6           | 6            | 6              | 6      | 6  |
| Subcarriers per resource block                                                                                                             |                 | 12          | 12          | 12           | 12             | 12     | 12 |
| Allocated subframes per Radio Frame                                                                                                        |                 | 4           | 4           | 4            | 4              | 4      | 4  |
| Modulation                                                                                                                                 |                 |             |             |              | Table<br>A.4-6 |        |    |
| Target coding rate                                                                                                                         |                 |             |             |              | Table<br>A.4-6 |        |    |
| Number of HARQ Processes                                                                                                                   | Processes       | 10          | 10          | 10           | 10             | 10     | 10 |
| Maximum number of HARQ transmissions                                                                                                       |                 | 1           | 1           | 1            | 1              | 1      | 1  |
| Note 1:         3 symbols allocated to PDCCH.           Note 2:         UL-DL configuration 2 is used and synchronization signal overhead. | d only subframe | es 3, 4, 8, | and 9 are a | allocated to | o avoid PBC    | CH and |    |

## Table A.4-5a: Reference channel for CQI requirements (TDD) 6 PRB allocation (CSI-RS)

| Parameter                                                                                                                                                                                          | Unit          |     |    |    | Value           |                 |    |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|----|----|-----------------|-----------------|----|----|
| Channel bandwidth                                                                                                                                                                                  | MHz           | 1.4 | 3  | 5  | 10              |                 | 15 | 20 |
| Allocated resource blocks                                                                                                                                                                          |               | 6   | 6  | 6  | 6               |                 | 6  | 6  |
| Subcarriers per resource block                                                                                                                                                                     |               | 12  | 12 | 12 | 12              |                 | 12 | 12 |
| Allocated subframes per Radio Frame                                                                                                                                                                |               | 4   | 4  | 4  | 4               |                 | 4  | 4  |
| Modulation                                                                                                                                                                                         |               |     |    |    | Table<br>A.4-6a | Table<br>A.4-6b |    |    |
| Target coding rate                                                                                                                                                                                 |               |     |    |    | Table<br>A.4-6a | Table<br>A.4-6b |    |    |
| Number of HARQ Processes                                                                                                                                                                           | Proces<br>ses | 10  | 10 | 10 | 10              |                 | 10 | 10 |
| Maximum number of HARQ<br>transmissions                                                                                                                                                            |               | 1   | 1  | 1  | 1               |                 | 1  | 1  |
| Note 1:       3 symbols allocated to PDCCH.         Note 2:       UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |               |     |    |    |                 |                 |    |    |

### Table A.4-5b: Reference channel for CQI requirements (TDD) 6 PRB allocation (CSI-RS and CSI-IM)

| Parameter                                                                                                                                                                                                       | Unit               |     |    |    | Value           | e                                                             |    |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|----|----|-----------------|---------------------------------------------------------------|----|----|
| Channel bandwidth                                                                                                                                                                                               | MHz                | 1.4 | 3  | 5  | 10              |                                                               | 15 | 20 |
| Allocated resource blocks                                                                                                                                                                                       |                    | 6   | 6  | 6  |                 | 6                                                             | 6  | 6  |
| Subcarriers per resource block                                                                                                                                                                                  |                    | 12  | 12 | 12 | 1               | 12                                                            | 12 | 12 |
| Allocated subframes per Radio Frame                                                                                                                                                                             |                    | 4   | 4  | 4  |                 | 4                                                             | 4  | 4  |
| Modulation                                                                                                                                                                                                      |                    |     |    |    | Table<br>A.4-6c | Table<br>A.4-6d,<br>or Table<br>A.4-6e,<br>or Table<br>A.4-6f |    |    |
| Target coding rate                                                                                                                                                                                              |                    |     |    |    | Table<br>A.4-6c | Table<br>A.4-6d,<br>or Table<br>A.4-6e,<br>or Table<br>A.4-6f |    |    |
| Number of HARQ Processes                                                                                                                                                                                        | Proces<br>ses      | 10  | 10 | 10 | 1               | 10                                                            | 10 | 10 |
| Maximum number of HARQ<br>transmissions                                                                                                                                                                         |                    | 1   | 1  | 1  |                 | 1                                                             | 1  | 1  |
| Note 1:         3 symbols allocated to PDCCI           Note 2:         UL-DL configuration 2 is used<br>synchronization signal overhe           Note 3:         Table A.4-6d, Table A.4-6e, or<br>respectively. | and only so<br>ad. |     |    |    |                 |                                                               |    |    |

г

| CQI index | Modulation     | Target code rate        | Imcs          | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub- |
|-----------|----------------|-------------------------|---------------|----------------------------|------------------------------------|
|           |                |                         |               |                            | Frame                              |
| 0         | out of range   | out of range            | DTX           | -                          | -                                  |
| 1         | QPSK           | 0.0762                  | 0             | 152                        | 1512                               |
| 2         | QPSK           | 0.1172                  | 0             | 152                        | 1512                               |
| 3         | QPSK           | 0.1885                  | 2             | 256                        | 1512                               |
| 4         | QPSK           | 0.3008                  | 4             | 408                        | 1512                               |
| 5         | QPSK           | 0.4385                  | 6             | 600                        | 1512                               |
| 6         | QPSK           | 0.5879                  | 8             | 808                        | 1512                               |
| 7         | 16QAM          | 0.3691                  | 11            | 1032                       | 3024                               |
| 8         | 16QAM          | 0.4785                  | 13            | 1352                       | 3024                               |
| 9         | 16QAM          | 0.6016                  | 16            | 1800                       | 3024                               |
| 10        | 64QAM          | 0.4551                  | 19            | 2152                       | 4536                               |
| 11        | 64QAM          | 0.5537                  | 21            | 2600                       | 4536                               |
| 12        | 64QAM          | 0.6504                  | 23            | 2984                       | 4536                               |
| 13        | 64QAM          | 0.7539                  | 25            | 3496                       | 4536                               |
| 14        | 64QAM          | 0.8525                  | 27            | 3752                       | 4536                               |
| 15        | 64QAM          | 0.9258                  | 27            | 3752                       | 4536                               |
| Note1: Se | ub-frame#0 and | #5 are not used for the | e correspondi | ng requirement.            |                                    |

Table A.4-6: Transport format corresponding to each CQI index for 6 PRB allocation (CRS)

### Table A.4-6a: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS): 1 CRS port, Non CSI-RS subframe

| CQI index | Modulation     | Target code rate        | Imcs           | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|----------------|-------------------------|----------------|----------------------------|---------------------------------------------|
| 0         | out of range   | out of range            | DTX            | -                          | -                                           |
| 1         | QPSK           | 0.0762                  | 0              | 152                        | 1368                                        |
| 2         | QPSK           | 0.1172                  | 0              | 152                        | 1368                                        |
| 3         | QPSK           | 0.1885                  | 2              | 256                        | 1368                                        |
| 4         | QPSK           | 0.3008                  | 4              | 408                        | 1368                                        |
| 5         | QPSK           | 0.4385                  | 6              | 600                        | 1368                                        |
| 6         | QPSK           | 0.5879                  | 8              | 808                        | 1368                                        |
| 7         | 16QAM          | 0.3691                  | 11             | 1032                       | 2736                                        |
| 8         | 16QAM          | 0.4785                  | 13             | 1352                       | 2736                                        |
| 9         | 16QAM          | 0.6016                  | 14             | 1544                       | 2736                                        |
| 10        | 64QAM          | 0.4551                  | 17             | 1800                       | 4104                                        |
| 11        | 64QAM          | 0.5537                  | 20             | 2344                       | 4104                                        |
| 12        | 64QAM          | 0.6504                  | 21             | 2600                       | 4104                                        |
| 13        | 64QAM          | 0.7539                  | 23             | 2984                       | 4104                                        |
| 14        | 64QAM          | 0.8525                  | 25             | 3496                       | 4104                                        |
| 15        | 64QAM          | 0.9258                  | 27             | 3752                       | 4104                                        |
| Note1: Su | ub-frame#0 and | #5 are not used for the | e correspondir | ng requirement.            |                                             |

| CQI index | Modulation       | Target code rate        | Imcs           | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|------------------|-------------------------|----------------|----------------------------|---------------------------------------------|
| 0         | out of range     | out of range            | DTX            | -                          | -                                           |
| 1         | QPSK             | 0.0762                  | 0              | 152                        | 1344                                        |
| 2         | QPSK             | 0.1172                  | 0              | 152                        | 1344                                        |
| 3         | QPSK             | 0.1885                  | 1              | 208                        | 1344                                        |
| 4         | QPSK             | 0.3008                  | 4              | 408                        | 1344                                        |
| 5         | QPSK             | 0.4385                  | 6              | 600                        | 1344                                        |
| 6         | QPSK             | 0.5879                  | 8              | 808                        | 1344                                        |
| 7         | 16QAM            | 0.3691                  | 10             | 936                        | 2688                                        |
| 8         | 16QAM            | 0.4785                  | 12             | 1192                       | 2688                                        |
| 9         | 16QAM            | 0.6016                  | 14             | 1544                       | 2688                                        |
| 10        | 64QAM            | 0.4551                  | 17             | 1800                       | 4032                                        |
| 11        | 64QAM            | 0.5537                  | 19             | 2152                       | 4032                                        |
| 12        | 64QAM            | 0.6504                  | 21             | 2600                       | 4032                                        |
| 13        | 64QAM            | 0.7539                  | 23             | 2984                       | 4032                                        |
| 14        | 64QAM            | 0.8525                  | 25             | 3496                       | 4032                                        |
| 15        | 64QAM            | 0.9258                  | 26             | 3624                       | 4032                                        |
| Note1: Su | ub-frame#0 and a | #5 are not used for the | e correspondir | ng requirement.            |                                             |

#### Table A.4-6b: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS): 1 CRS port , 2 CSI-RS ports, CSI-RS Subframe

# Table A.4-6c: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS and CSI-IM): 2 CRS ports, Non CSI-RS and Non CSI-IM subframe

| CQI index | Modulation       | Target code rate        | Imcs           | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|------------------|-------------------------|----------------|----------------------------|---------------------------------------------|
| 0         | out of range     | out of range            | DTX            | -                          | -                                           |
| 1         | QPSK             | 0.0762                  | 0              | 152                        | 1296                                        |
| 2         | QPSK             | 0.1172                  | 0              | 152                        | 1296                                        |
| 3         | QPSK             | 0.1885                  | 2              | 256                        | 1296                                        |
| 4         | QPSK             | 0.3008                  | 4              | 408                        | 1296                                        |
| 5         | QPSK             | 0.4385                  | 6              | 600                        | 1296                                        |
| 6         | QPSK             | 0.5879                  | 8              | 808                        | 1296                                        |
| 7         | 16QAM            | 0.3691                  | 11             | 1032                       | 2592                                        |
| 8         | 16QAM            | 0.4785                  | 13             | 1352                       | 2592                                        |
| 9         | 16QAM            | 0.6016                  | 15             | 1736                       | 2592                                        |
| 10        | 64QAM            | 0.4551                  | 18             | 1928                       | 3888                                        |
| 11        | 64QAM            | 0.5537                  | 20             | 2344                       | 3888                                        |
| 12        | 64QAM            | 0.6504                  | 22             | 2792                       | 3888                                        |
| 13        | 64QAM            | 0.7539                  | 24             | 3240                       | 3888                                        |
| 14        | 64QAM            | 0.8525                  | 26             | 3624                       | 3888                                        |
| 15        | 64QAM            | 0.9258                  | 27             | 3752                       | 3888                                        |
| Note1: S  | ub-frame#0 and a | #5 are not used for the | e correspondii | ng requirement.            |                                             |

| CQI index | Modulation       | Target code rate        | Imcs          | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|------------------|-------------------------|---------------|----------------------------|---------------------------------------------|
| 0         | out of range     | out of range            | DTX           | -                          | -                                           |
| 1         | QPSK             | 0.0762                  | 0             | 152                        | 1056                                        |
| 2         | QPSK             | 0.1172                  | 0             | 152                        | 1056                                        |
| 3         | QPSK             | 0.1885                  | 0             | 152                        | 1056                                        |
| 4         | QPSK             | 0.3008                  | 3             | 328                        | 1056                                        |
| 5         | QPSK             | 0.4385                  | 4             | 408                        | 1056                                        |
| 6         | QPSK             | 0.5879                  | 6             | 600                        | 1056                                        |
| 7         | 16QAM            | 0.3691                  | 10            | 936                        | 2112                                        |
| 8         | 16QAM            | 0.4785                  | 11            | 1032                       | 2112                                        |
| 9         | 16QAM            | 0.6016                  | 12            | 1192                       | 2112                                        |
| 10        | 64QAM            | 0.4551                  | 17            | 1800                       | 3168                                        |
| 11        | 64QAM            | 0.5537                  | 17            | 1800                       | 3168                                        |
| 12        | 64QAM            | 0.6504                  | 18            | 1928                       | 3168                                        |
| 13        | 64QAM            | 0.7539                  | 20            | 2344                       | 3168                                        |
| 14        | 64QAM            | 0.8525                  | 21            | 2600                       | 3168                                        |
| 15        | 64QAM            | 0.9258                  | 22            | 2792                       | 3168                                        |
| Note1: Su | ub-frame#0 and a | #5 are not used for the | e correspondi | ng requirement.            |                                             |

# Table A.4-6d: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS and<br/>CSI-IM): 2 CRS ports, 4 CSI-RS ports, 4 CSI processes, CSI-RS and CSI-IM subframe

Table A.4-6e: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS and CSI-IM): 2 CRS ports, 4 CSI-RS ports, 3 CSI processes, CSI-RS and CSI-IM subframe

| CQI index | Modulation     | Target code rate        | Imcs          | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|----------------|-------------------------|---------------|----------------------------|---------------------------------------------|
| 0         | out of range   | out of range            | DTX           | -                          | -                                           |
| 1         | QPSK           | 0.0762                  | 0             | 152                        | 1104                                        |
| 2         | QPSK           | 0.1172                  | 0             | 152                        | 1104                                        |
| 3         | QPSK           | 0.1885                  | 1             | 208                        | 1104                                        |
| 4         | QPSK           | 0.3008                  | 3             | 328                        | 1104                                        |
| 5         | QPSK           | 0.4385                  | 5             | 504                        | 1104                                        |
| 6         | QPSK           | 0.5879                  | 6             | 600                        | 1104                                        |
| 7         | 16QAM          | 0.3691                  | 10            | 936                        | 2208                                        |
| 8         | 16QAM          | 0.4785                  | 11            | 1032                       | 2208                                        |
| 9         | 16QAM          | 0.6016                  | 13            | 1352                       | 2208                                        |
| 10        | 64QAM          | 0.4551                  | 17            | 1800                       | 3312                                        |
| 11        | 64QAM          | 0.5537                  | 17            | 1800                       | 3312                                        |
| 12        | 64QAM          | 0.6504                  | 19            | 2152                       | 3312                                        |
| 13        | 64QAM          | 0.7539                  | 21            | 2600                       | 3312                                        |
| 14        | 64QAM          | 0.8525                  | 22            | 2792                       | 3312                                        |
| 15        | 64QAM          | 0.9258                  | 23            | 2984                       | 3312                                        |
| Note1: S  | ub-frame#0 and | #5 are not used for the | e correspondi | ng requirement.            |                                             |

| CQI index                                                                 | Modulation   | Target code rate | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |  |
|---------------------------------------------------------------------------|--------------|------------------|------|----------------------------|---------------------------------------------|--|
| 0                                                                         | out of range | out of range     | DTX  | -                          | -                                           |  |
| 1                                                                         | QPSK         | 0.0762           | 0    | 152                        | 1200                                        |  |
| 2                                                                         | QPSK         | 0.1172           | 0    | 152                        | 1200                                        |  |
| 3                                                                         | QPSK         | 0.1885           | 1    | 208                        | 1200                                        |  |
| 4                                                                         | QPSK         | 0.3008           | 3    | 328                        | 1200                                        |  |
| 5                                                                         | QPSK         | 0.4385           | 5    | 504                        | 1200                                        |  |
| 6                                                                         | QPSK         | 0.5879           | 7    | 712                        | 1200                                        |  |
| 7                                                                         | 16QAM        | 0.3691           | 10   | 936                        | 2400                                        |  |
| 8                                                                         | 16QAM        | 0.4785           | 12   | 1192                       | 2400                                        |  |
| 9                                                                         | 16QAM        | 0.6016           | 13   | 1352                       | 2400                                        |  |
| 10                                                                        | 64QAM        | 0.4551           | 17   | 1800                       | 3600                                        |  |
| 11                                                                        | 64QAM        | 0.5537           | 18   | 1928                       | 3600                                        |  |
| 12                                                                        | 64QAM        | 0.6504           | 20   | 2344                       | 3600                                        |  |
| 13                                                                        | 64QAM        | 0.7539           | 21   | 2600                       | 3600                                        |  |
| 14                                                                        | 64QAM        | 0.8525           | 23   | 2984                       | 3600                                        |  |
| 15                                                                        | 64QAM        | 0.9258           | 24   | 3240                       | 3600                                        |  |
| Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. |              |                  |      |                            |                                             |  |

# Table A.4-6f: Transport format corresponding to each CQI index for 6 PRB allocation (CSI-RS and<br/>CSI-IM): 2 CRS ports, 4 CSI-RS ports, 1 CSI process, CSI-RS and CSI-IM subframe

### Table A.4-7: Reference channel for CQI requirements (FDD) partial PRB allocation (CRS)

| Parameter                        | Unit                                                                                | Value      |             |               |       |    |
|----------------------------------|-------------------------------------------------------------------------------------|------------|-------------|---------------|-------|----|
| Channel bandwidth                | MHz                                                                                 | 3          | 5           | 10            | 15    | 20 |
| Allocated resource blocks        |                                                                                     |            |             | 15            |       |    |
|                                  |                                                                                     |            |             | (Note 3)      |       |    |
| Subcarriers per resource block   |                                                                                     |            |             | 12            |       |    |
| Allocated subframes per Radio    |                                                                                     |            |             | 8             |       |    |
| Frame                            |                                                                                     |            |             |               |       |    |
| Modulation                       |                                                                                     |            |             | Table A.4-9   |       |    |
| Target coding rate               |                                                                                     |            |             | Table A.4-9   |       |    |
| Number of HARQ processes         |                                                                                     |            |             | 8             |       |    |
| Maximum number of HARQ           |                                                                                     |            |             | 1             |       |    |
| transmissions                    |                                                                                     |            |             |               |       |    |
| Note 1: 3 symbols allocated to P | DCCH.                                                                               |            |             |               |       |    |
| Note 2: Only subframes 1,2,3,4,  | Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization |            |             |               |       |    |
| signal overhead.                 | signal overhead.                                                                    |            |             |               |       |    |
| Note 3: Centered within the Tran | smission Ba                                                                         | andwidth C | Configurati | on (Figure 5. | 6-1). |    |

**ETSI** 

### Table A.4-8: Reference channel for CQI requirements (TDD) partial PRB allocation (CRS)

| Parameter                 |                                                                                      | Unit       |             |             | Value        |           |           |
|---------------------------|--------------------------------------------------------------------------------------|------------|-------------|-------------|--------------|-----------|-----------|
| Channel bandwidth         |                                                                                      | MHz        | 3 5 10 15   |             |              |           | 20        |
| Allocated resource blo    | cks                                                                                  |            |             |             | 15           |           |           |
|                           |                                                                                      |            |             |             | (Note 3)     |           |           |
| Subcarriers per resour    | ce block                                                                             |            |             |             | 12           |           |           |
| Allocated subframes p     | er Radio                                                                             |            |             |             | 4            |           |           |
| Frame                     |                                                                                      |            |             |             |              |           |           |
| Modulation                |                                                                                      |            | Table A.4-9 |             |              |           |           |
| Target coding rate        |                                                                                      |            |             | -           | Table A.4-9  |           |           |
| Number of HARQ proc       | esses                                                                                |            |             |             | 10           |           |           |
| Maximum number of H       | ARQ                                                                                  |            |             |             | 1            |           |           |
| transmissions             |                                                                                      |            |             |             |              |           |           |
| Note 1: 3 symbols a       | llocated to PDC                                                                      | CH.        |             |             |              |           |           |
| Note 2: When UL-D         | L configuration                                                                      | 1 is used  | and only s  | subframes   | 4 and 9 are  | allocated | to avoide |
| PBCH and s                | PBCH and synchronizaiton signal overhead. When UL-DL configuration 2 is used and     |            |             |             |              |           | ed and    |
| only subfran<br>overhead. | only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and synchronization signal |            |             |             |              |           | signal    |
|                           | thin the Transm                                                                      | nission Ba | andwidth C  | onfiguratio | n (Figure 5. | 6-1).     |           |

### Table A.4-9: Transport format corresponding to each CQI index for 15 PRB allocation (CRS)

| CQI index | Modulation     | Target code rate        | Imcs          | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|-----------|----------------|-------------------------|---------------|----------------------------|---------------------------------------------|
| 0         | out of range   | out of range            | DTX           | -                          | -                                           |
| 1         | QPSK           | 0.0762                  | 0             | 392                        | 3780                                        |
| 2         | QPSK           | 0.1172                  | 0             | 392                        | 3780                                        |
| 3         | QPSK           | 0.1885                  | 2             | 648                        | 3780                                        |
| 4         | QPSK           | 0.3008                  | 4             | 1064                       | 3780                                        |
| 5         | QPSK           | 0.4385                  | 6             | 1544                       | 3780                                        |
| 6         | QPSK           | 0.5879                  | 8             | 2088                       | 3780                                        |
| 7         | 16QAM          | 0.3691                  | 11            | 2664                       | 7560                                        |
| 8         | 16QAM          | 0.4785                  | 13            | 3368                       | 7560                                        |
| 9         | 16QAM          | 0.6016                  | 16            | 4584                       | 7560                                        |
| 10        | 64QAM          | 0.4551                  | 18            | 4968                       | 11340                                       |
| 11        | 64QAM          | 0.5537                  | 21            | 6456                       | 11340                                       |
| 12        | 64QAM          | 0.6504                  | 23            | 7480                       | 11340                                       |
| 13        | 64QAM          | 0.7539                  | 25            | 8504                       | 11340                                       |
| 14        | 64QAM          | 0.8525                  | 27            | 9528                       | 11340                                       |
| 15        | 64QAM          | 0.9258                  | 27            | 9528                       | 11340                                       |
| Note1: S  | ub-frame#0 and | #5 are not used for the | e correspondi | ng requirement.            |                                             |

### Table A.4-10: Reference channel for CQI requirements (FDD) 3 PRB allocation (CRS)

| Parameter                                                                                                                                             | Unit      |     |    | Va | lue             |    |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|----|----|-----------------|----|----|
| Channel bandwidth                                                                                                                                     | MHz       | 1.4 | 3  | 5  | 10              | 15 | 20 |
| Allocated resource blocks                                                                                                                             |           | 3   | 3  | 3  | 3               | 3  | 3  |
| Subcarriers per resource block                                                                                                                        |           | 12  | 12 | 12 | 12              | 12 | 12 |
| Allocated subframes per Radio Frame                                                                                                                   |           | 8   | 8  | 8  | 8               | 8  | 8  |
| Modulation                                                                                                                                            |           |     |    |    | Table<br>A.4-12 |    |    |
| Target coding rate                                                                                                                                    |           |     |    |    | Table<br>A.4-12 |    |    |
| Number of HARQ Processes                                                                                                                              | Processes | 8   | 8  | 8  | 8               | 8  | 8  |
| Maximum number of HARQ transmissions                                                                                                                  |           | 1   | 1  | 1  | 1               | 1  | 1  |
| Note 1: 3 symbols allocated to PDCCH.<br>Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead. |           |     |    |    |                 |    |    |

| Parameter                                                                                                                                  | Unit            |             |             | Va           | alue            |       |    |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-------------|--------------|-----------------|-------|----|
| Channel bandwidth                                                                                                                          | MHz             | 1.4         | 3           | 5            | 10              | 15    | 20 |
| Allocated resource blocks                                                                                                                  |                 | 3           | 3           | 3            | 3               | 3     | 3  |
| Subcarriers per resource block                                                                                                             |                 | 12          | 12          | 12           | 12              | 12    | 12 |
| Allocated subframes per Radio Frame                                                                                                        |                 | 4           | 4           | 4            | 4               | 4     | 4  |
| Modulation                                                                                                                                 |                 |             |             |              | Table<br>A.4-12 |       |    |
| Target coding rate                                                                                                                         |                 |             |             |              | Table<br>A.4-12 |       |    |
| Number of HARQ Processes                                                                                                                   | Processes       | 10          | 10          | 10           | 10              | 10    | 10 |
| Maximum number of HARQ transmissions                                                                                                       |                 | 1           | 1           | 1            | 1               | 1     | 1  |
| Note 1:         3 symbols allocated to PDCCH.           Note 2:         UL-DL configuration 2 is used and synchronization signal overhead. | d only subframe | es 3, 4, 8, | and 9 are a | allocated to | o avoid PBC     | H and |    |

### Table A.4-12: Transport format corresponding to each CQI index for 3 PRB allocation (CRS)

|    |              | -            | Imcs | Information<br>Bit Payload | Binary<br>Channel Bits<br>Per Sub-<br>Frame |
|----|--------------|--------------|------|----------------------------|---------------------------------------------|
| 0  | out of range | out of range | DTX  | -                          | -                                           |
| 1  | QPSK         | 0.0762       | 0    | 56                         | 756                                         |
| 2  | QPSK         | 0.1172       | 1    | 88                         | 756                                         |
| 3  | QPSK         | 0.1885       | 2    | 144                        | 756                                         |
| 4  | QPSK         | 0.3008       | 5    | 224                        | 756                                         |
| 5  | QPSK         | 0.4385       | 7    | 328                        | 756                                         |
| 6  | QPSK         | 0.5879       | 9    | 456                        | 756                                         |
| 7  | 16QAM        | 0.3691       | 12   | 584                        | 1512                                        |
| 8  | 16QAM        | 0.4785       | 13   | 744                        | 1512                                        |
| 9  | 16QAM        | 0.6016       | 16   | 904                        | 1512                                        |
| 10 | 64QAM        | 0.4551       | 19   | 1064                       | 2268                                        |
| 11 | 64QAM        | 0.5537       | 21   | 1288                       | 2268                                        |
| 12 | 64QAM        | 0.6504       | 23   | 1480                       | 2268                                        |
| 13 | 64QAM        | 0.7539       | 25   | 1736                       | 2268                                        |
| 14 | 64QAM        | 0.8525       | 27   | 1864                       | 2268                                        |
| 15 | 64QAM        | 0.9258       | 27   | 1864                       | 2268                                        |

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement.

# A.5 OFDMA Channel Noise Generator (OCNG)

## A.5.1 OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test) and/or allocations used for MBSFN. The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG\_RA and OCNG\_RB which together with a relative power level ( $\gamma$ ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i \_RA / OCNG \_RA = PDSCH_i \_RB / OCNG \_RB,$$

where  $\gamma_i$  denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG\_RA, OCNG\_RB, and the set of relative power levels  $\gamma$  are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a constant transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH\_RA/RB and PHICH\_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

For the performance requirements of UE with the CA capability, the OCNG patterns apply for each CC.

## A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

### Table A.5.1.1-1: OP.1 FDD: One sided dynamic OCNG FDD Pattern

| Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB] |                                                                                                                                                                                                        |                                             |                                                                        |                |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|----------------|--|--|
| Subframe                                                    |                                                                                                                                                                                                        |                                             |                                                                        |                |  |  |
|                                                             | 0 5 1-4,6-9                                                                                                                                                                                            |                                             |                                                                        |                |  |  |
|                                                             |                                                                                                                                                                                                        | Allocation                                  |                                                                        | Data           |  |  |
| First u                                                     | unallocated PRB                                                                                                                                                                                        | First unallocated PRB                       | First unallocated PRB                                                  |                |  |  |
| Last u                                                      | unallocated PRB                                                                                                                                                                                        | Last unallocated PRB                        | Last unallocated PRB                                                   |                |  |  |
|                                                             | 0                                                                                                                                                                                                      | 0                                           | 0                                                                      | Note 1         |  |  |
| Note 1:                                                     |                                                                                                                                                                                                        |                                             | arbitrary number of virtual UEs wit<br>PDSCHs shall be uncorrelated ps |                |  |  |
|                                                             | data, which is QPS                                                                                                                                                                                     | K modulated. The parameter $\gamma_{_{Pl}}$ | $_{RB}$ is used to scale the power of PI                               | DSCH.          |  |  |
| Note 2:                                                     | Note 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The |                                             |                                                                        |                |  |  |
|                                                             | parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is equal between all                                                                                        |                                             |                                                                        |                |  |  |
|                                                             | the transmit antenn section 7.1 in 3GPF                                                                                                                                                                |                                             | e antenna transmission modes ar                                        | e specified in |  |  |

## A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB  $N_{_{RB}}-1$ .

|           | R                                                                                                                     |                                                               |                             |             |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|-------------|--|--|
|           |                                                                                                                       |                                                               |                             |             |  |  |
|           | 0                                                                                                                     | 5                                                             | 1-4,6-9                     | 1           |  |  |
|           |                                                                                                                       | Allocation                                                    |                             | PDSCH Data  |  |  |
| 0 – (Firs | t allocated PRB-1)                                                                                                    | 0 – (First allocated PRB-1)                                   | 0 – (First allocated PRB-1) | i boon bulu |  |  |
|           | and                                                                                                                   | and                                                           | and                         |             |  |  |
| (Last all | located PRB+1) –                                                                                                      | (Last allocated PRB+1) –                                      | (Last allocated PRB+1) –    |             |  |  |
|           | $(N_{RB} - 1)$                                                                                                        | $(N_{RB} - 1)$                                                | $(N_{RB} - 1)$              |             |  |  |
|           | 0                                                                                                                     | 0                                                             | 0                           | Note 1      |  |  |
| Note 1:   |                                                                                                                       | ource blocks are assigned to a<br>mitted over the OCNG PDSCHs |                             |             |  |  |
|           | modulated. The pa                                                                                                     | rameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale t  | he power of PDSCH.          |             |  |  |
| Note 2:   |                                                                                                                       |                                                               |                             |             |  |  |
|           | users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ applies |                                                               |                             |             |  |  |
|           |                                                                                                                       | ort separately, so the transmit p                             |                             |             |  |  |

Table A.5.1.2-1: OP.2 FDD: Two sided dynamic OCNG FDD Pattern

# A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

|                         |                                                                            | Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |      |              |               | PMCH<br>Data |
|-------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|--------------|---------------|--------------|
| Allocation<br>$n_{PRB}$ |                                                                            | Subframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |      |              | PDSCH<br>Data |              |
|                         |                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                        | 4, 9 | 1 – 3, 6 – 8 | Duiu          | Dulu         |
| 1 – 49                  |                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>(Allocation:<br>all empty<br>PRB-s) | 0    | N/A          | Note 1        | N/A          |
| 0 – 49                  |                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A                                      | N/A  | 0            | N/A           | Note 2       |
| Note 1:<br>Note 2:      | one PDS<br>uncorrel<br>used to<br>Each ph<br>each PF<br>measure<br>contain | These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{PRB}$ is used to scale the power of PDSCH.<br>Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter $\gamma_{PRB}$ is used to scale the power of PMCH. |                                          |      |              |               |              |
| Note 3:                 | the virtu<br>transmit                                                      | f two or more transmit antennas are used in the test, the OCNG shall be transmitted to<br>he virtual users by all the transmit antennas according to transmission mode 2. The<br>ransmit power shall be equally split between all the transmit antennas used in the test.<br>The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.                                                                                                                                                                                                                                                                                                                                            |                                          |      |              |               |              |
| N/A:                    | Not App                                                                    | licable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |      |              |               |              |

Table A.5.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

## A.5.1.4 OCNG FDD pattern 4: One sided dynamic OCNG FDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

|                                                          |                               | Re                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                            |               |                        |  |
|----------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|---------------|------------------------|--|
| Alloca                                                   |                               | Subframe                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                            | PDSCH<br>Data | PMCH<br>Data           |  |
| $n_{PR}$                                                 | В                             | 0, 4, 9                                                                                                                                                                                                                                                                                                                                                                              | 5                                        | 1 – 3, 6 – 8                                               | Dulu          | Duiu                   |  |
| First unallocated<br>PRB<br>–<br>Last unallocated<br>PRB |                               | 0                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>(Allocation:<br>all empty<br>PRB-s) | N/A                                                        | Note 1        | N/A                    |  |
| First unallocated<br>PRB<br>–<br>Last unallocated<br>PRB |                               | N/A                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                      | N/A                                                        | N/A           | Note 2                 |  |
| Note 1:                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                      |                                          | ssigned to an arbitrary numb<br>ransmitted over the OCNG F |               |                        |  |
|                                                          | uncorrel                      | ated pseudo ra                                                                                                                                                                                                                                                                                                                                                                       | ndom data, wł                            | nich is QPSK modulated. The                                | e paramete    | r $\gamma_{_{PRB}}$ is |  |
| Note 2:                                                  | Each ph<br>each PF<br>measure | used to scale the power of PDSCH.<br>Each physical resource block (PRB) is assigned to MBSFN transmission. The data in<br>each PRB shall be uncorrelated with data in other PRBs over the period of any<br>neasurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall<br>contain cell-specific Reference Signals only in the first symbol of the first time slot. The |                                          |                                                            |               |                        |  |
|                                                          | paramet                       | er $\gamma_{\scriptscriptstyle PRB}$ is used                                                                                                                                                                                                                                                                                                                                         | I to scale the p                         | ower of PMCH.                                              |               |                        |  |
| Note 3:                                                  | the virtu<br>transmit         | If two or more transmit antennas are used in the test, the OCNG shall be transmitted to<br>the virtual users by all the transmit antennas according to transmission mode 2. The<br>transmit power shall be equally split between all the transmit antennas used in the test.<br>The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.                       |                                          |                                                            |               |                        |  |
| N/A:                                                     | Not App                       | licable                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                            |               |                        |  |

### Table A.5.1.4-1: OP.4 FDD: One sided dynamic OCNG FDD Pattern for MBMS transmission

## A.5.1.5 OCNG FDD pattern 5: One sided dynamic 16QAM modulated OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of DL sub-frames, when the unallocated area is continuous in the frequency domain (one sided).

|                                                                               | Relative power level $\gamma_{_{PRB}}$ [dB]                                                                                                                                                              |                                                                     |                                                                        |         |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------|--|--|--|
| Subframe                                                                      |                                                                                                                                                                                                          |                                                                     |                                                                        |         |  |  |  |
|                                                                               | 0 5 1-4,6-9                                                                                                                                                                                              |                                                                     |                                                                        |         |  |  |  |
|                                                                               |                                                                                                                                                                                                          | Allocation                                                          |                                                                        | Data    |  |  |  |
| First unallocated PRB         First unallocated PRB         First unallocated |                                                                                                                                                                                                          |                                                                     |                                                                        |         |  |  |  |
| Last u                                                                        | unallocated PRB                                                                                                                                                                                          | Last unallocated PRB                                                | Last unallocated PRB                                                   |         |  |  |  |
|                                                                               | 0                                                                                                                                                                                                        | 0                                                                   | 0                                                                      | Note 1  |  |  |  |
| Note 1:                                                                       |                                                                                                                                                                                                          |                                                                     | arbitrary number of virtual UEs wit<br>PDSCHs shall be uncorrelated ps |         |  |  |  |
|                                                                               | data, which is 16QA                                                                                                                                                                                      | AM modulated. The parameter $\gamma$                                | $_{PRB}$ is used to scale the power of F                               | PDSCH.  |  |  |  |
| Note 2:                                                                       | lote 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large |                                                                     |                                                                        |         |  |  |  |
|                                                                               | Delay CDD). The parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is                                                                                            |                                                                     |                                                                        |         |  |  |  |
|                                                                               |                                                                                                                                                                                                          | ne transmit antennas with CRS u<br>d in section 7.1 in 3GPP TS 36.2 | ised in the test. The antenna trans<br>13.                             | mission |  |  |  |

### Table A.5.1.5-1: OP.5 FDD: One sided dynamic 16QAM modulated OCNG FDD Pattern

# A.5.1.6 OCNG FDD pattern 6: dynamic OCNG FDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB  $N_{RB} - 1$ .

|           | R                                                                                                                     |                                                                    |                              |            |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------|------------|--|--|
|           |                                                                                                                       |                                                                    |                              |            |  |  |
|           | 0                                                                                                                     | 5                                                                  | 1-4,6-9                      |            |  |  |
|           |                                                                                                                       | Allocation                                                         |                              |            |  |  |
| 0 – (Firs | t allocated PRB of                                                                                                    | 0 – (First allocated PRB of                                        | 0 – (First allocated PRB of  | PDSCH Data |  |  |
| fii       | rst block -1)                                                                                                         | first block -1)                                                    | first block -1)              |            |  |  |
|           | and                                                                                                                   | and                                                                | and                          |            |  |  |
|           | ocated PRB of first                                                                                                   | (Last allocated PRB of first                                       | (Last allocated PRB of first |            |  |  |
| block +1  | ) – (First allocated                                                                                                  | block +1) – (First allocated                                       | block +1) – (First allocated |            |  |  |
| PRB of    | second block -1)                                                                                                      | PRB of second block -1)                                            | PRB of second block -1)      |            |  |  |
|           | 0                                                                                                                     | 0                                                                  | 0                            | Note 1     |  |  |
| Note 1:   |                                                                                                                       | ource blocks are assigned to a<br>nitted over the OCNG PDSCHs      |                              |            |  |  |
|           | modulated. The pa                                                                                                     | rameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale t       | he power of PDSCH.           |            |  |  |
| Note 2:   | lote 2: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the          |                                                                    |                              |            |  |  |
|           | users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ applies |                                                                    |                              |            |  |  |
|           | •                                                                                                                     | ort separately, so the transmit p<br>ne antenna transmission modes | •                            |            |  |  |

# A.5.1.7 OCNG FDD pattern 7: dynamic OCNG FDD pattern when user data is in multiple non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in

multiple parts by the *M* allocated blocks for data transmission). The *m*-th allocated block starts with RPB  $N_{Start,m}$  and ends with PRB  $N_{End,m} - 1$ , where m = 1, ..., M. The system bandwidth starts with RPB 0 and ends with  $N_{RB} - 1$ .

| F                           |                                                                                                                       |                             |            |  |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|--|--|--|
|                             |                                                                                                                       |                             |            |  |  |  |
| 0                           |                                                                                                                       |                             |            |  |  |  |
|                             | Allocation                                                                                                            |                             |            |  |  |  |
| $0 - (PRB N_{Start,1} - 1)$ | $0 - (PRB N_{Start,1} - 1)$                                                                                           | $0 - (PRB N_{Start,1} - 1)$ |            |  |  |  |
|                             |                                                                                                                       |                             | PDSCH Data |  |  |  |
| $(PRBN_{End,(m-1)}) - (PRB$ | $(PRBN_{End,(m-1)}) - (PRB$                                                                                           | $(PRBN_{End,(m-1)}) - (PRB$ |            |  |  |  |
| $N_{Start,m} - 1$ )         | $N_{Start,m} - 1$ )                                                                                                   | $N_{Start,m} - 1$ )         |            |  |  |  |
|                             |                                                                                                                       |                             |            |  |  |  |
| $(PRBN_{End,M}) - (PRB$     | $(PRBN_{End,M}) - (PRB$                                                                                               | $(PRBN_{End,M})$ – $(PRB$   |            |  |  |  |
| $N_{RB} - 1$ )              | $N_{RB} - 1$ )                                                                                                        | $N_{RB} - 1$ )              |            |  |  |  |
| 0                           | 0                                                                                                                     | 0                           | Note 1     |  |  |  |
|                             | source blocks are assigned to a<br>mitted over the OCNG PDSCHs                                                        |                             |            |  |  |  |
| modulated. The pa           | arameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale t                                                         | he power of PDSCH.          |            |  |  |  |
|                             |                                                                                                                       |                             |            |  |  |  |
| users by all the tra        | users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ applies |                             |            |  |  |  |
|                             | ort separately, so the transmit p                                                                                     |                             |            |  |  |  |

#### Table A.5.1.7-1: OP.7 FDD: OCNG FDD Pattern when user data is in multiple non-contiguous blocks

## A.5.1.8 OCNG FDD pattern 8: One sided dynamic OCNG FDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

|                      |                                                                                                                                                                                                        | Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dl | 3]                                  |               |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|---------------|--|--|--|
| Subframe             |                                                                                                                                                                                                        |                                                            |                                     |               |  |  |  |
|                      | 0 5 1-4,6-9                                                                                                                                                                                            |                                                            |                                     |               |  |  |  |
|                      |                                                                                                                                                                                                        | Allocation                                                 |                                     | Data          |  |  |  |
| First u              | unallocated PRB                                                                                                                                                                                        | First unallocated PRB                                      |                                     |               |  |  |  |
| Last unallocated PRB |                                                                                                                                                                                                        | Last unallocated PRB                                       | Last unallocated PRB                |               |  |  |  |
|                      | 0 0                                                                                                                                                                                                    |                                                            | 0                                   | Note 1,2,3    |  |  |  |
| Note 1:              | Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random |                                                            |                                     |               |  |  |  |
|                      | data, which is 16QAM modulated. The parameter $\gamma_{_{PRB}}$ is used to scale the power of PDSCH.                                                                                                   |                                                            |                                     |               |  |  |  |
| Note 2:              | transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.                |                                                            |                                     |               |  |  |  |
| Note 3:              | The detailed test se                                                                                                                                                                                   | t-up for TM10 transmission i.e P                           | MI configuration is specified to ea | ch test case. |  |  |  |

# A.5.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG\_RA and OCNG\_RB which together with a relative power level ( $\gamma$ ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i \_RA / OCNG \_RA = PDSCH_i \_RB / OCNG \_RB,$$

where  $\gamma_i$  denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG\_RA, OCNG\_RB, and the set of relative power levels  $\gamma$  are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH\_RA/RB and PHICH\_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

## A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

|                                     |                                                                                                                                                                                                      | Relative power             | level $\gamma_{\scriptscriptstyle PRB}$ [dB]                       |                            |                |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|----------------------------|----------------|--|
| Subframe (only if available for DL) |                                                                                                                                                                                                      |                            |                                                                    |                            |                |  |
| 0 5                                 |                                                                                                                                                                                                      | 5                          | 3, 4, 7, 8, 9<br>5 and 6 (as normal<br>subframe) <sup>Note 2</sup> |                            | PDSCH<br>Data  |  |
|                                     |                                                                                                                                                                                                      | Allo                       | cation                                                             |                            |                |  |
| First unallocated PRB               |                                                                                                                                                                                                      | First unallocated PRB<br>– | First unallocated PRB<br>–                                         | First unallocated PRB<br>– |                |  |
| Last una                            | llocated PRB                                                                                                                                                                                         | Last unallocated PRB       | Last unallocated PRB                                               | Last unallocated PRB       |                |  |
|                                     | 0                                                                                                                                                                                                    | 0                          | 0                                                                  | 0                          | Note 1         |  |
| Note 1:                             |                                                                                                                                                                                                      |                            | ssigned to an arbitrary num<br>ne OCNG PDSCHs shall be             |                            |                |  |
|                                     | which is QPS                                                                                                                                                                                         | SK modulated. The param    | neter $\gamma_{\scriptscriptstyle PRB}$ is used to scale           | the power of PDSCH.        |                |  |
| Note 2:                             | Subframes a<br>3GPP TS 36                                                                                                                                                                            |                            | ion depends on the Uplink-                                         | Downlink configuration in  | Table 4.2-2 in |  |
| Note 3:                             | te 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The |                            |                                                                    |                            |                |  |
|                                     | parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is equal between all the                                                                                  |                            |                                                                    |                            |                |  |
|                                     | transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.                                                                          |                            |                                                                    |                            |                |  |

### Table A.5.2.1-1: OP.1 TDD: One sided dynamic OCNG TDD Pattern

## A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is

discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB  $N_{\rm _{RB}}$  –1.

|                                                                                                                    | Relative power level $\gamma_{PRB}$ [dB]                                                                     |                                                            |                                                                 |                                                           |                      |  |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|----------------------|--|
| Subframe (only if available for DL)                                                                                |                                                                                                              |                                                            |                                                                 |                                                           |                      |  |
|                                                                                                                    | 0                                                                                                            | 5                                                          | 3, 4, 6, 7, 8, 9                                                | 1,6                                                       |                      |  |
|                                                                                                                    |                                                                                                              |                                                            | (6 as normal subframe)                                          | (6 as special subframe)                                   |                      |  |
|                                                                                                                    |                                                                                                              | Alloc                                                      | ation                                                           |                                                           |                      |  |
|                                                                                                                    | 0 —                                                                                                          | 0 —                                                        | 0 —                                                             | 0 —                                                       |                      |  |
| (First all                                                                                                         | ocated PRB-1)                                                                                                | (First allocated PRB-1)                                    | (First allocated PRB-1)                                         | (First allocated PRB-1)                                   |                      |  |
|                                                                                                                    | and                                                                                                          | and                                                        | and                                                             | and                                                       |                      |  |
|                                                                                                                    | cated PRB+1) –                                                                                               | (Last allocated PRB+1) –                                   | (Last allocated PRB+1) –                                        | (Last allocated PRB+1) –                                  |                      |  |
| ( )                                                                                                                | $N_{RB} - 1$ )                                                                                               | $(N_{RB} - 1)$                                             | $(N_{RB} - 1)$                                                  | $(N_{RB} - 1)$                                            |                      |  |
|                                                                                                                    | 0                                                                                                            | 0                                                          | 0                                                               | 0                                                         | Note 1               |  |
| Note 1:                                                                                                            | These physical UE; the data tra                                                                              | resource blocks are assigned<br>nsmitted over the OCNG PD  | d to an arbitrary number of vi<br>SCHs shall be uncorrelated (  | rtual UEs with one PDSCH p<br>oseudo random data, which i | er virtual<br>s QPSK |  |
|                                                                                                                    | modulated. The                                                                                               | parameter $\gamma_{\scriptscriptstyle PRB}$ is used to set | cale the power of PDSCH.                                        |                                                           |                      |  |
| Note 2:                                                                                                            |                                                                                                              |                                                            |                                                                 |                                                           |                      |  |
| Note 3:                                                                                                            | If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual |                                                            |                                                                 |                                                           |                      |  |
| users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{_{PRB}}$ appl |                                                                                                              |                                                            |                                                                 |                                                           | applies to           |  |
|                                                                                                                    |                                                                                                              |                                                            | it power is equal between all<br>are specified in section 7.1 i | the transmit antennas with C<br>n 3GPP TS 36.213.         | CRS used             |  |

# A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

| Table A.5.2.3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5ms downlink-to-uplink switch-point periodicity |
|---------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------|

| Allocation |                                                                                                                                                                                                                                                                                                                                                                                                                           |           | Relative power level $\gamma_{_{PRB}}$ [dB] |                        |           |        |        |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------|------------------------|-----------|--------|--------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                           |           | Subf                                        | PDSCH Data             | PMCH Data |        |        |
| $n_{PR}$   | В                                                                                                                                                                                                                                                                                                                                                                                                                         | 0         | 5                                           | 4, 9 <sup>Note 2</sup> | 1, 6      |        |        |
| 1 – 49     |                                                                                                                                                                                                                                                                                                                                                                                                                           | 0         | 0<br>(Allocation: all<br>empty PRB-s)       | N/A                    | 0         | Note 1 | N/A    |
| 0 - 4      | 19                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A       | N/A                                         | 0                      | N/A       | N/A    | Note 3 |
| Note 2:    | Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{PRB}$ is used to scale the power of PDSCH.<br>Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in |           |                                             |                        |           |        |        |
| Note 3:    | 3GPP TS 36.211.                                                                                                                                                                                                                                                                                                                                                                                                           |           |                                             |                        |           |        |        |
| Note 4:    | If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.                                                                     |           |                                             |                        |           |        |        |
| N/A        | Not A                                                                                                                                                                                                                                                                                                                                                                                                                     | pplicable |                                             |                        |           |        |        |

## A.5.2.4 OCNG TDD pattern 4: One sided dynamic OCNG TDD pattern for MBMS transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided) and MBMS performance is tested.

|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       | Relative power                                    | PDSCH Data                            | PMCH Data   |             |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------|-------------|-------------|
| Allocation                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                       | Subframe (                                        |                                       |             |             |             |
| n <sub>PRB</sub>                                                                                                                                                                                                                                                                                        | 0 and 6 (as<br>normal<br>subframe)                                                                                                                                                                                                                                                                                                                    | 1 (as special subframe)                           | 5                                     | 3, 4, 7 – 9 | 1 Door Data | 1 morr Bata |
| First<br>unallocate<br>d PRB<br>–<br>Last<br>unallocate<br>d PRB                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                     | 0<br>(Allocation: all<br>empty PRB-s<br>of DwPTS) | 0<br>(Allocation: all<br>empty PRB-s) | N/A         | Note 1      | N/A         |
| First<br>unallocate<br>d PRB<br>–<br>Last<br>unallocate<br>d PRB                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                   | N/A                                               | N/A                                   | N/A         | N/A         | Note2       |
| Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{PRB}$ is used to scale the power of PDSCH. |                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                       |             |             |             |
| u<br>C                                                                                                                                                                                                                                                                                                  | Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be<br>uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be<br>QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals.                                                            |                                                   |                                       |             |             |             |
| b<br>b                                                                                                                                                                                                                                                                                                  | If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213. |                                                   |                                       |             |             |             |
| N/A N                                                                                                                                                                                                                                                                                                   | lot Applicable                                                                                                                                                                                                                                                                                                                                        |                                                   |                                       |             |             |             |

Table A.5.2.4-1: OP.4 TDD: One sided dynamic OCNG TDD Pattern for MBMS transmission

## A.5.2.5 OCNG TDD pattern 5: One sided dynamic 16QAM modulated OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the sub-frames available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

|           | Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]                                                                                                                                                    |                        |                                                                  |                                                       |               |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------|-------------------------------------------------------|---------------|--|
|           |                                                                                                                                                                                                                | Subframe (only i       | if available for DL)                                             |                                                       |               |  |
| 0         |                                                                                                                                                                                                                | 5                      | 3, 4, 7, 8, 9<br>and 6 (as normal<br>subframe) <sup>Note 2</sup> | 1<br>and 6 (as special<br>subframe) <sup>Note 2</sup> | PDSCH<br>Data |  |
|           |                                                                                                                                                                                                                | Allo                   | cation                                                           |                                                       |               |  |
| First una | llocated PRB                                                                                                                                                                                                   | First unallocated PRB  | First unallocated PRB                                            | First unallocated PRB                                 |               |  |
| Last una  | located PRB                                                                                                                                                                                                    | Last unallocated PRB   | Last unallocated PRB                                             | Last unallocated PRB                                  |               |  |
|           | 0                                                                                                                                                                                                              | 0                      | 0                                                                | 0                                                     | Note 1        |  |
| Note 1:   | lote 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data,   |                        |                                                                  |                                                       |               |  |
|           | which is 16Q                                                                                                                                                                                                   | AM modulated. The para | meter $\gamma_{\scriptscriptstyle PRB}$ is used to scale         | e the power of PDSCH.                                 |               |  |
| Note 2:   | 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in<br>3GPP TS 36.211                                                                                    |                        |                                                                  |                                                       |               |  |
| Note 3:   | Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 3 (Large Delay |                        |                                                                  |                                                       |               |  |
|           | CDD). The parameter $\gamma_{_{PRB}}$ applies to each antenna port separately, so the transmit power is equal                                                                                                  |                        |                                                                  |                                                       |               |  |
|           | between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.                                                                    |                        |                                                                  |                                                       |               |  |

#### Table A.5.2.5-1: OP.5 TDD: One sided dynamic 16QAM modulated OCNG TDD Pattern

# A.5.2.6 OCNG TDD pattern 6: dynamic OCNG TDD pattern when user data is in 2 non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the first allocated block). The second allocated block ends with PRB  $N_{RB} - 1$ .

| Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]                                                                                                                                                                |                                                                                                              |                                                            |                                                                 |                          | PDSCH<br>Data |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|---------------|--|
|                                                                                                                                                                                                                            |                                                                                                              | Subframe (only in                                          | f available for DL)                                             |                          | Data          |  |
|                                                                                                                                                                                                                            | 0                                                                                                            | 5                                                          | 3, 4, 6, 7, 8, 9                                                | 1,6                      |               |  |
|                                                                                                                                                                                                                            |                                                                                                              |                                                            | (6 as normal subframe)                                          | (6 as special subframe)  |               |  |
|                                                                                                                                                                                                                            |                                                                                                              | Alloc                                                      | ation                                                           |                          |               |  |
| 0 – (Firs                                                                                                                                                                                                                  | t allocated PRB                                                                                              | 0 – (First allocated PRB                                   | 0 – (First allocated PRB                                        | 0 – (First allocated PRB |               |  |
| of fir                                                                                                                                                                                                                     | st block -1)                                                                                                 | of first block -1)                                         | of first block -1)                                              | of first block -1)       |               |  |
|                                                                                                                                                                                                                            | and                                                                                                          | and                                                        | and                                                             | and                      |               |  |
| (Last al                                                                                                                                                                                                                   | located PRB of                                                                                               | (Last allocated PRB of                                     | (Last allocated PRB of                                          | (Last allocated PRB of   |               |  |
|                                                                                                                                                                                                                            | ock +1) – (First                                                                                             | first block +1) – (First                                   | first block +1) – (First                                        | first block +1) – (First |               |  |
| allocated                                                                                                                                                                                                                  | PRB of second                                                                                                | allocated PRB of second                                    | allocated PRB of second                                         | allocated PRB of second  |               |  |
| block -1)                                                                                                                                                                                                                  |                                                                                                              | block -1)                                                  | block -1)                                                       | block -1)                |               |  |
| 0                                                                                                                                                                                                                          |                                                                                                              | 0                                                          | 0                                                               | 0                        | Note 1        |  |
| Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK |                                                                                                              |                                                            |                                                                 |                          |               |  |
|                                                                                                                                                                                                                            | modulated. The                                                                                               | parameter $\gamma_{\scriptscriptstyle PRB}$ is used to set | cale the power of PDSCH.                                        |                          |               |  |
| Note 2:                                                                                                                                                                                                                    |                                                                                                              |                                                            |                                                                 |                          |               |  |
| Note 3:                                                                                                                                                                                                                    | If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual |                                                            |                                                                 |                          |               |  |
| users by all the transmit antennas with CRS according to transmission mode 2. The parameter ${\gamma}_{_{PRB}}$ app                                                                                                        |                                                                                                              |                                                            |                                                                 |                          |               |  |
|                                                                                                                                                                                                                            |                                                                                                              |                                                            | it power is equal between all<br>are specified in section 7.1 i |                          | CRS used      |  |

# A.5.2.7 OCNG TDD pattern 7: dynamic OCNG TDD pattern when user data is in multiple non-contiguous blocks

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data, EPDCCH or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in multiple parts by the *M* allocated blocks for data transmission). The *m*-th allocated block starts with RPB  $N_{Start,m}$  and ends with PRB  $N_{End,m}$  -1, where m = 1, ..., M. The system bandwidth starts with RPB 0 and ends with  $N_{RB}$  -1.

### The system bandwidth starts with Ki b 0 and ends with $N_{RB}$ 1.

### Table A.5.2.7-1: OP.7 TDD: OCNG TDD Pattern when user data is in multiple non-contiguous blocks

| Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB]                                                                                                                                                                                                                                             |                                                             |                             |                             |          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|-----------------------------|----------|--|--|
|                                                                                                                                                                                                                                                                                                         | Subframe (only if                                           | f available for DL)         |                             | Data     |  |  |
| 0                                                                                                                                                                                                                                                                                                       | 5                                                           | 3, 4, 6, 7, 8, 9            | 1,6                         |          |  |  |
|                                                                                                                                                                                                                                                                                                         |                                                             | (6 as normal subframe)      | (6 as special subframe)     |          |  |  |
|                                                                                                                                                                                                                                                                                                         | Alloc                                                       | ation                       |                             |          |  |  |
| $0 - (PRB N_{Start,1} - 1)$                                                                                                                                                                                                                                                                             | $0 - (PRB N_{Start,1} - 1)$                                 | $0 - (PRB N_{Start,1} - 1)$ | 0 – (PRB $N_{Start,1}$ –1 ) |          |  |  |
|                                                                                                                                                                                                                                                                                                         |                                                             |                             |                             |          |  |  |
| $(PRBN_{End,(m-1)})$ –                                                                                                                                                                                                                                                                                  | $(PRBN_{End,(m-1)})$ –                                      | $(PRBN_{End,(m-1)})$ –      | $(PRBN_{End,(m-1)})$ –      |          |  |  |
| (PRB $N_{Start,m} - 1$ )                                                                                                                                                                                                                                                                                | (PRB $N_{Start,m} - 1$ )                                    | (PRB $N_{Start,m} - 1$ )    | (PRB $N_{Start,m} - 1$ )    |          |  |  |
|                                                                                                                                                                                                                                                                                                         |                                                             |                             |                             |          |  |  |
| $(PRBN_{End,M})$ – $(PRB$                                                                                                                                                                                                                                                                               | $(PRBN_{End,M}) - (PRB$                                     | $(PRBN_{End,M})$ – $(PRB$   | $(PRBN_{End,M})$ – $(PRB$   |          |  |  |
| $N_{RB} - 1$ )                                                                                                                                                                                                                                                                                          | $N_{RB} - 1$ )                                              | $N_{RB} - 1$ )              | $N_{RB} - 1$ )              |          |  |  |
| 0 0 0                                                                                                                                                                                                                                                                                                   |                                                             | 0                           | Note 1                      |          |  |  |
| Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{PRB}$ is used to scale the power of PDSCH. |                                                             |                             |                             |          |  |  |
| Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.                                                                                                                                                                          |                                                             |                             |                             |          |  |  |
| Note 3: If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{PRB}$ applies to                                                              |                                                             |                             |                             |          |  |  |
| -                                                                                                                                                                                                                                                                                                       | ort separately, so the transm<br>antenna transmission modes |                             |                             | CRS used |  |  |

# A.5.2.8 OCNG TDD pattern 8: One sided dynamic OCNG TDD pattern for TM10 transmission

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

| Relative power level $\gamma_{\scriptscriptstyle PRB}$ [dB] |                                                                                                                                                                                                                                                                                              |                       |                                     |            |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|------------|--|--|
| Subframe                                                    |                                                                                                                                                                                                                                                                                              |                       |                                     |            |  |  |
| 0 5 1-4,6-9                                                 |                                                                                                                                                                                                                                                                                              |                       |                                     |            |  |  |
| Allocation                                                  |                                                                                                                                                                                                                                                                                              |                       |                                     |            |  |  |
| First u                                                     | unallocated PRB                                                                                                                                                                                                                                                                              | First unallocated PRB | First unallocated PRB               |            |  |  |
| Last unallocated PRB                                        |                                                                                                                                                                                                                                                                                              | Last unallocated PRB  | Last unallocated PRB                |            |  |  |
| 0                                                           |                                                                                                                                                                                                                                                                                              | 0                     | 0                                   | Note 1,2,3 |  |  |
| Note 1:                                                     | Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random                                                                                       |                       |                                     |            |  |  |
|                                                             | data, which is 16QAM modulated. The parameter $\gamma_{\scriptscriptstyle PRB}$ is used to scale the power of PDSCH.                                                                                                                                                                         |                       |                                     |            |  |  |
| Note 2:                                                     | Note 2: The OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode10. The the transmit power is equal between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213. |                       |                                     |            |  |  |
| Note 3:                                                     |                                                                                                                                                                                                                                                                                              |                       | MI configuration is specified to ea |            |  |  |

## Table A.5.1.1-1: OP.8 TDD: One sided dynamic OCNG TDD Pattern

# Annex B (normative): Propagation conditions

# B.1 Static propagation condition

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}.$$

For 4 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & j & j \\ 1 & 1 - j & -j \end{bmatrix}$$

For 8 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 1 & j & j & j & j \\ 1 & 1 & 1 & 1 & -j & -j & -j & -j \end{bmatrix}$$

## B.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.

- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency

- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multi-antenna systems.

- Additional multi-path models used for CQI (Channel Quality Indication) tests

## B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

| Model                              | Number of<br>channel taps | Delay spread<br>(r.m.s.) | Maximum excess<br>tap delay (span) |
|------------------------------------|---------------------------|--------------------------|------------------------------------|
| Extended Pedestrian A (EPA)        | 7                         | 45 ns                    | 410 ns                             |
| Extended Vehicular A model (EVA)   | 9                         | 357 ns                   | 2510 ns                            |
| Extended Typical Urban model (ETU) | 9                         | 991 ns                   | 5000 ns                            |

Table B.2.1-1 Delay profiles for E-UTRA channel models

| Excess tap delay<br>[ns] | Relative power<br>[dB] |
|--------------------------|------------------------|
| 0                        | 0.0                    |
| 30                       | -1.0                   |
| 70                       | -2.0                   |
| 90                       | -3.0                   |
| 110                      | -8.0                   |
| 190                      | -17.2                  |
| 410                      | -20.8                  |

Table B.2.1-2 Extended Pedestrian A model (EPA)

| Table B.2.1-3 Extended | Vehicular A | A model ( | (EVA) |
|------------------------|-------------|-----------|-------|
|------------------------|-------------|-----------|-------|

| Excess tap delay<br>[ns] | Relative power<br>[dB] |
|--------------------------|------------------------|
| 0                        | 0.0                    |
| 30                       | -1.5                   |
| 150                      | -1.4                   |
| 310                      | -3.6                   |
| 370                      | -0.6                   |
| 710                      | -9.1                   |
| 1090                     | -7.0                   |
| 1730                     | -12.0                  |
| 2510                     | -16.9                  |

#### Table B.2.1-4 Extended Typical Urban model (ETU)

| Excess tap delay<br>[ns] | Relative power<br>[dB] |
|--------------------------|------------------------|
| 0                        | -1.0                   |
| 50                       | -1.0                   |
| 120                      | -1.0                   |
| 200                      | 0.0                    |
| 230                      | 0.0                    |
| 500                      | 0.0                    |
| 1600                     | -3.0                   |
| 2300                     | -5.0                   |
| 5000                     | -7.0                   |

## B.2.2 Combinations of channel model parameters

The propagation conditions used for the performance measurements in multi-path fading environment are indicated as EVA[number], EPA[number] or ETU[number] where 'number' indicates the maximum Doppler frequency (Hz).

#### Table B.2.2-1 Void

## B.2.3 MIMO Channel Correlation Matrices

The MIMO channel correlation matrices defined in B.2.3 apply for the antenna configuration using uniform linear arrays at both eNodeB and UE.

## B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

|                     | One antenna   | Two antennas                                                         | Four antennas                                                                                                                                                                                                                                                                                                          |
|---------------------|---------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eNode B Correlation | $R_{eNB} = 1$ | $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$ | $R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$ |

### Table B.2.3.1-1 eNodeB correlation matrix

Table B.2.3.1-2 defines the correlation matrix for the UE:

|                | One antenna               | Two antennas                                                      | Four antennas                                                                                                                                                                                                                                                                                                                 |
|----------------|---------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UE Correlation | <i>R<sub>UE</sub></i> = 1 | $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$ | $R_{UE} = \begin{pmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{*} & \beta^{\frac{4}{9}^{*}} & \beta^{\frac{1}{9}^{*}} & 1 \end{pmatrix}$ |

### Table B.2.3.1-2 UE correlation matrix

Table B.2.3.1-3 defines the channel spatial correlation matrix  $R_{spat}$ . The parameters,  $\alpha$  and  $\beta$  in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

| Table B.2.3.1-3: | $R_{spat}$ | correlation matrices |
|------------------|------------|----------------------|
|------------------|------------|----------------------|

| 1x2 case | $R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2x2 case | $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix} = \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^* & \alpha^*\beta & 1 & \beta \\ \alpha^*\beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                  |
| 4x2 case | $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^{*} & 1 \end{bmatrix}$                                                                                                                                                                                                                                                           |
| 4x4 case | $R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 \end{bmatrix}$ |

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of  $R_{eNB}$  and  $R_{UE}$  according to  $R_{spat} = R_{eNB} \otimes R_{UE}$ .

## B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The  $\alpha$  and  $\beta$  for different correlation types are given in Table B.2.3.2-1.

| Low co | rrelation | Medium C | orrelation | High Correlation |     |  |
|--------|-----------|----------|------------|------------------|-----|--|
| α      | β         | α        | β          | α                | β   |  |
| 0      | 0         | 0.3      | 0.9        | 0.9              | 0.9 |  |

### Table B.2.3.2-1

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.1-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in Table B.2.3.2-2 have been adjusted for the  $4x^2$  and  $4x^4$  high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the  $4x^2$  high correlation case, a=0.00010. For the  $4x^4$  high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a = 0.00012.

| 1x2 case |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 2x2 case |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| 4x2 case | $R_{high} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{bmatrix} 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 & 0.8999 & 0.8099 \\ 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 & 0.8099 & 0.8999 \\ 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 \\ 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 \\ 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 \\ 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 \\ 0.8999 & 0.8099 & 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8894 \\ 0.8099 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8894 \\ 0.8099 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8894 \\ 1.0000 & 0.8894 & 1.0000 & 0.8894 & 0.9883 \\ 0.8999 & 0.8099 & 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 \\ 0.8099 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
| 4x4 case | $R_{high} = \left( \begin{array}{c} 0.9882\ 1.0000\ 0.9541\ 0.9882\ 0.999\ 0.9541\ 0.9882\ 0.9767\ 0.9882\ 0.9767\ 0.9882\ 0.9430\ 0.9767\ 0.9884\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.9541\ 0.9430\ 0.8587\ 0.9105\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.8894\ 0.$ | $\begin{array}{c} 0.9541 \ 0.8999 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.8894 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \ 0.8099 \\ 0.9882 \ 0.9541 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8587 \ 0.8999 \ 0.8894 \ 0.8587 \ 0.8999 \\ 0.9882 \ 0.9541 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9105 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.8587 \ 0.8894 \ 0.8999 \ 0.8894 \ 0.8999 \\ 0.9882 \ 1.0000 \ 0.8894 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.8587 \ 0.9105 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.8587 \ 0.8894 \ 0.8999 \ 0.8894 \\ 0.9882 \ 1.0000 \ 0.8894 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8587 \\ 0.9430 \ 0.8894 \ 1.0000 \ 0.9882 \ 0.9541 \ 0.8999 \ 0.8824 \ 0.9767 \ 0.9430 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9105 \ 0.8587 \\ 0.9767 \ 0.9430 \ 0.9882 \ 1.0000 \ 0.9882 \ 0.9541 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9430 \ 0.9541 \ 0.9682 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9430 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.9767 \ 0.9882 \ 0.976$ |  |  |  |  |  |  |  |  |

Table B.2.3.2-2: MIMO correlation matrices for high correlation

| 1x2<br>case |                       | N/A                                                                                                                                       |                                                                                                                      |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                      |                                                                                                                                          |                                                                                                                                          |
|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 2x2<br>case |                       | $R_{medium} = \begin{pmatrix} 1 & 0.9 & 0.3 & 0.27 \\ 0.9 & 1 & 0.27 & 0.3 \\ 0.3 & 0.27 & 1 & 0.9 \\ 0.27 & 0.3 & 0.9 & 1 \end{pmatrix}$ |                                                                                                                      |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                          |                                                                                                                                          |                                                                                                                      |                                                                                                                                          |                                                                                                                                          |
| 4x2<br>case |                       | R <sub>m</sub>                                                                                                                            | edium =                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                          | 0000<br>.9000<br>.8748<br>.7873<br>.5856<br>.5271<br>.3000<br>.2700                                                                      | 0.900<br>1.000<br>0.787<br>0.874<br>0.527<br>0.585<br>0.270<br>0.300                                                                     | 00       0.         73       1.         48       0.         71       0.         56       0.         00       0.                          | 8748<br>7873<br>0000<br>9000<br>8748<br>7873<br>5856<br>5271                                                                             | 0.787<br>0.874<br>0.900<br>1.000<br>0.787<br>0.874<br>0.527<br>0.585                                                                     | 8       0.         0       0.         0       0.         3       1.         8       0.         '1       0.                               | 8748<br>7873<br>0000<br>9000<br>.8748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.527<br>0.5850<br>0.7872<br>0.8743<br>0.9000<br>1.0000<br>0.7872<br>0.8744                                                              | 5 0.2<br>3 0.5<br>8 0.5<br>0 0.8<br>0 0.7<br>3 1.0                                                                                       | 700<br>856<br>271<br>748<br>873<br>000                                                                                                   | 0.2700<br>0.3000<br>0.5271<br>0.5856<br>0.7873<br>0.8748<br>0.9000<br>1.0000                                         |                                                                                                                                          |                                                                                                                                          |
| 4x4<br>case | R <sub>medium</sub> = | 0.9882<br>0.9541<br>0.8999<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>0.5855<br>0.5787<br>0.5588<br>0.5270<br>0.3000<br>0.2965<br>0.2862  | 1.0000<br>0.9882<br>0.9541<br>0.8645<br>0.8747<br>0.8645<br>0.8347<br>0.5787<br>0.5588<br>0.2965<br>0.3000<br>0.2965 | 0.9882<br>1.0000<br>0.9882<br>0.8347<br>0.8645<br>0.8747<br>0.8645<br>0.5588<br>0.5787<br>0.5855<br>0.5787<br>0.2862<br>0.2965<br>0.3000 | 0.9541<br>0.9882<br>1.0000<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.5270<br>0.5588<br>0.5787<br>0.5855<br>0.2700<br>0.2862<br>0.2965 | 0.8645<br>0.8347<br>0.7872<br>1.0000<br>0.9882<br>0.9541<br>0.8999<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>0.5855<br>0.5787<br>0.5588 | 0.8747<br>0.8645<br>0.8347<br>0.9882<br>1.0000<br>0.9882<br>0.9541<br>0.8645<br>0.8747<br>0.8645<br>0.8347<br>0.5787<br>0.5855<br>0.5787 | 0.8645<br>0.8747<br>0.8645<br>0.9541<br>0.9882<br>1.0000<br>0.9882<br>0.8347<br>0.8645<br>0.8747<br>0.8645<br>0.5588<br>0.5787<br>0.5855 | 0.8347<br>0.8645<br>0.8747<br>0.8999<br>0.9541<br>0.9882<br>1.0000<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.5270<br>0.5588<br>0.5787 | 0.5787<br>0.5588<br>0.5270<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>1.0000<br>0.9882<br>0.9541<br>0.8999<br>0.8747<br>0.8645<br>0.8347 | 5         0.5787           7         0.5855           3         0.5787           9         0.5588           7         0.8645           5         0.8747           7         0.8645           2         0.8347           9         0.9882           2         1.0000           1         0.9882           9         0.9541           7         0.86455           5         0.8747           7         0.86452           2         0.8747           7         0.8645           5         0.8747           7         0.86452           0.86452         0.8347 | 0.5787<br>0.5855<br>0.5787<br>0.8347<br>0.8645<br>0.8747<br>0.8645<br>0.9541<br>0.9882<br>1.0000<br>0.9882<br>0.8347<br>0.8645<br>0.8747 | 0.5588<br>0.5787<br>0.5855<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.8999<br>0.9541<br>0.9882<br>1.0000<br>0.7872<br>0.8347<br>0.8645 | 0.2965<br>0.2862<br>0.2700<br>0.5855<br>0.5787<br>0.5588<br>0.5270<br>0.8747<br>0.8645<br>0.8347<br>0.7872<br>1.0000<br>0.9882<br>0.9541 | 0.3000<br>0.2965<br>0.2862<br>0.5787<br>0.5588<br>0.8645<br>0.8747<br>0.8645<br>0.8347<br>0.9882<br>1.0000<br>0.9882 | 0.2965<br>0.3000<br>0.2965<br>0.5588<br>0.5787<br>0.5855<br>0.5787<br>0.8347<br>0.8645<br>0.8747<br>0.8645<br>0.9541<br>0.9882<br>1.0000 | 0.2862<br>0.2965<br>0.3000<br>0.5270<br>0.5588<br>0.5787<br>0.5855<br>0.7872<br>0.8347<br>0.8645<br>0.8747<br>0.8999<br>0.9541<br>0.9882 |

| Table B.2.3.2-3: MIMO corre | elation matrices for | medium correlation |
|-----------------------------|----------------------|--------------------|
|-----------------------------|----------------------|--------------------|

Table B.2.3.2-4: MIMO correlation matrices for low correlation

| 1x2 case | $R_{low} = \mathbf{I}_2$    |
|----------|-----------------------------|
| 2x2 case | $R_{low} = \mathbf{I}_4$    |
| 4x2 case | $R_{low} = \mathbf{I}_8$    |
| 4x4 case | $R_{low} = \mathbf{I}_{16}$ |

In Table B.2.3.2-4,  $\mathbf{I}_d$  is the  $d \times d$  identity matrix.

# B.2.3A MIMO Channel Correlation Matrices using cross polarized antennas

The MIMO channel correlation matrices defined in B.2.3A apply for the antenna configuration using cross polarized antennas at both eNodeB and UE. The cross-polarized antenna elements with +/-45 degrees polarization slant angles are deployed at eNB and cross-polarized antenna elements with +90/0 degrees polarization slant angles are deployed at UE.

#### 3GPP TS 36.101 version 11.9.0 Release 11

467

For the cross-polarized antennas, the N antennas are labelled such that antennas for one polarization are listed from 1 to N/2 and antennas for the other polarization are listed from N/2+1 to N, where N is the number of transmit or receive antennas.

# B.2.3A.1 Definition of MIMO Correlation Matrices using cross polarized antennas

For the channel spatial correlation matrix, the following is used:

$$R_{spat} = P(R_{eNB} \otimes \Gamma \otimes R_{UE})P^{T}$$

where

- $R_{UE}$  is the spatial correlation matrix at the UE with same polarization,
- $R_{eNB}$  is the spatial correlation matrix at the eNB with same polarization,
- $\Gamma$  is a polarization correlation matrix, and
- $(\bullet)^T$  denotes transpose.

The matrix  $\Gamma$  is defined as

$$\Gamma = \begin{bmatrix} 1 & 0 & -\gamma & 0 \\ 0 & 1 & 0 & \gamma \\ -\gamma & 0 & 1 & 0 \\ 0 & \gamma & 0 & 1 \end{bmatrix}$$

A permutation matrix P elements are defined as

$$P(a,b) = \begin{cases} 1 & for \ a = (j-1)Nr + i \ and \ b = 2(j-1)Nr + i, \\ 1 & for \ a = (j-1)Nr + i \ and \ b = 2(j-Nt/2)Nr - Nr + i, \\ 0 & otherwise \end{cases} i = 1, \dots, Nr, \ j = Nt/2 + 1, \dots, Nt + i \\ 0 & otherwise \end{cases}$$

where  $N_t$  and  $N_r$  is the number of transmitter and receiver respectively. This is used to map the spatial correlation coefficients in accordance with the antenna element labelling system described in B.2.3A.

# B.2.3A.2 Spatial Correlation Matrices using cross polarized antennas at eNB and UE sides

#### B.2.3A.2.1 Spatial Correlation Matrices at eNB side

For 2-antenna transmitter using one pair of cross-polarized antenna elements,  $R_{eNB} = 1$ .

For 4-antenna transmitter using two pairs of cross-polarized antenna elements,  $R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & I \end{pmatrix}$ .

For 8-antenna transmitter using four pairs of cross-polarized antenna elements, 
$$R_{eNB} = \begin{pmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{pmatrix}$$

#### B.2.3A.2.2 Spatial Correlation Matrices at UE side

For 2-antenna receiver using one pair of cross-polarized antenna elements,  $R_{UE} = 1$ .

For 4-antenna receiver using two pairs of cross-polarized antenna elements,  $R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$ .

#### B.2.3A.3 MIMO Correlation Matrices using cross polarized antennas

The values for parameters  $\alpha$ ,  $\beta$  and  $\gamma$  for high spatial correlation are given in Table B.2.3A.3-1.

|  | Table | B | 3.2. | 3A.3-1 |  |
|--|-------|---|------|--------|--|
|  |       |   |      |        |  |

| High spatial correlation                                                                                   |                                 |                                          |                             |  |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|-----------------------------|--|--|
|                                                                                                            |                                 |                                          |                             |  |  |
|                                                                                                            | 0.9                             | 0.9                                      | 0.3                         |  |  |
| Note 1: Value of $\alpha$ applies when more than one pair of cross-polarized antenna elements at eNB side. |                                 |                                          |                             |  |  |
| Note 2:                                                                                                    | Value of $\beta$ applies when n | nore than one pair of cross-polarized ar | ntenna elements at UE side. |  |  |

The correlation matrices for high spatial correlation are defined in Table B.2.3A.3-2 as below.

The values in Table B.2.3A.3-2 have been adjusted to insure the correlation matrix is positive semi-definite after roundoff to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spat} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 8x2 high spatial correlation case, a=0.00010.

#### Table B.2.3A.3-2: MIMO correlation matrices for high spatial correlation

|          |              | 1.0000  | 0.0000 | 0.9883  | 0.0000 | 0.9542  | 0.0000 | 0.8999  | 0.0000 | -0.3000 | 0.0000 | -0.2965 | 0.0000 | -0.2862 | 0.0000 | -0.2700 | 0.0000 |
|----------|--------------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|--------|
|          |              | 0.0000  | 1.0000 | 0.0000  | 0.9883 | 0.0000  | 0.9542 | 0.0000  | 0.8999 | 0.0000  | 0.3000 | 0.0000  | 0.2965 | 0.0000  | 0.2862 | 0.0000  | 0.2700 |
|          |              | 0.9883  | 0.0000 | 1.0000  | 0.0000 | 0.9883  | 0.0000 | 0.9542  | 0.0000 | -0.2965 | 0.0000 | -0.3000 | 0.0000 | -0.2965 | 0.0000 | -0.2862 | 0.0000 |
|          |              | 0.0000  | 0.9883 | 0.0000  | 1.0000 | 0.0000  | 0.9883 | 0.0000  | 0.9542 | 0.0000  | 0.2965 | 0.0000  | 0.3000 | 0.0000  | 0.2965 | 0.0000  | 0.2862 |
|          |              | 0.9542  | 0.0000 | 0.9883  | 0.0000 | 1.0000  | 0.0000 | 0.9883  | 0.0000 | -0.2862 | 0.0000 | -0.2965 | 0.0000 | -0.3000 | 0.0000 | -0.2965 | 0.0000 |
|          |              | 0.0000  | 0.9542 | 0.0000  | 0.9883 | 0.0000  | 1.0000 | 0.0000  | 0.9883 | 0.0000  | 0.2862 | 0.0000  | 0.2965 | 0.0000  | 0.3000 | 0.0000  | 0.2965 |
|          |              | 0.8999  | 0.0000 | 0.9542  | 0.0000 | 0.9883  | 0.0000 | 1.0000  | 0.0000 | -0.2700 | 0.0000 | -0.2862 | 0.0000 | -0.2965 | 0.0000 | -0.3000 | 0.0000 |
| 942 0000 | D _          | 0.0000  | 0.8999 | 0.0000  | 0.9542 | 0.0000  | 0.9883 | 0.0000  | 1.0000 | 0.0000  | 0.2700 | 0.0000  | 0.2862 | 0.0000  | 0.2965 | 0.0000  | 0.3000 |
| 8x2 case | $R_{high} =$ | -0.3000 | 0.0000 | -0.2965 | 0.0000 | -0.2862 | 0.0000 | -0.2700 | 0.0000 | 1.0000  | 0.0000 | 0.9883  | 0.0000 | 0.9542  | 0.0000 | 0.8999  | 0.0000 |
|          |              | 0.0000  | 0.3000 | 0.0000  | 0.2965 | 0.0000  | 0.2862 | 0.0000  | 0.2700 | 0.0000  | 1.0000 | 0.0000  | 0.9883 | 0.0000  | 0.9542 | 0.0000  | 0.8999 |
|          |              | -0.2965 | 0.0000 | -0.3000 | 0.0000 | -0.2965 | 0.0000 | -0.2862 | 0.0000 | 0.9883  | 0.0000 | 1.0000  | 0.0000 | 0.9883  | 0.0000 | 0.9542  | 0.0000 |
|          |              | 0.0000  | 0.2965 | 0.0000  | 0.3000 | 0.0000  | 0.2965 | 0.0000  | 0.2862 | 0.0000  | 0.9883 | 0.0000  | 1.0000 | 0.0000  | 0.9883 | 0.0000  | 0.9542 |
|          |              | -0.2862 | 0.0000 | -0.2965 | 0.0000 | -0.3000 | 0.0000 | -0.2965 | 0.0000 | 0.9542  | 0.0000 | 0.9883  | 0.0000 | 1.0000  | 0.0000 | 0.9883  | 0.0000 |
|          |              | 0.0000  | 0.2862 | 0.0000  | 0.2965 | 0.0000  | 0.3000 | 0.0000  | 0.2965 | 0.0000  | 0.9542 | 0.0000  | 0.9883 | 0.0000  | 1.0000 | 0.0000  | 0.9883 |
|          |              | -0.2700 | 0.0000 | -0.2862 | 0.0000 | -0.2965 | 0.0000 | -0.3000 | 0.0000 | 0.8999  | 0.0000 | 0.9542  | 0.0000 | 0.9883  | 0.0000 | 1.0000  | 0.0000 |
|          |              | 0.0000  | 0.2700 | 0.0000  | 0.2862 | 0.0000  | 0.2965 | 0.0000  | 0.3000 | 0.0000  | 0.8999 | 0.0000  | 0.9542 | 0.0000  | 0.9883 | 0.0000  | 1.0000 |

#### B.2.3A.4 Beam steering approach

Given the channel spatial correlation matrix in B.2.3A.1, the corresponding random channel matrix H can be calculated. The signal model for the k-th subframe is denoted as

$$y = HD_{\theta_{L}}Wx + n$$

Where

- H is the Nr xNt channel matrix per subcarrier.

-  $D_{\theta_k}$  is the steering matrix, which is  $D_{\theta_k} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{j\theta_k} & 0 & 0 \\ 0 & 0 & e^{j2\theta_k} & 0 \\ 0 & 0 & 0 & e^{j3\theta_k} \end{bmatrix}$ ,

-  $\theta_k$  controls the phase variation, and the phase for k-th subframe is denoted by  $\theta_k = \theta_0 + \Delta \theta \cdot k$ , where  $\theta_0$  is the random start value with the uniform distribution, i.e.,  $\theta_0 \in [0, 2\pi]$ ,  $\Delta \theta$  is the step of phase variation, which is defined in Table B.2.3A.4-1, and *k* is the linear increment of 1 for every subframe throughout the simulation,

- W is the precoding matrix for 8 transmission antennas,
- y is the received signal, x is the transmitted signal, and n is AWGN.

Table B.2.3A.4-1: The step of phase variation

| Variation Step | Value (rad/subframe)    |
|----------------|-------------------------|
| $\Delta 	heta$ | 1.2566×10 <sup>-3</sup> |

#### B.2.4 Propagation conditions for CQI tests

For Channel Quality Indication (CQI) tests, the following additional multi-path profile is used:

$$h(t,\tau) = \delta(\tau) + a \exp(-i2\pi f_D t) \delta(\tau - \tau_d),$$

in continuous time  $(t, \tau)$  representation, with  $\tau_d$  the delay, *a* a constant and  $f_D$  the Doppler frequency. The same  $h(t, \tau)$  is used to describe the fading channel between every pair of Tx and Rx.

#### B.2.4.1 Propagation conditions for CQI tests with multiple CSI processes

For CQI tests with multiple CSI processes, the following additional multi-path profile is used for 2 port transmission:

$$H = \begin{bmatrix} 1 & j \\ 1 & -j \end{bmatrix} \circ H_{MP}$$

Where  $\circ$  represents Hadamard product,  $H_{MP}$  indicates the 2x2 propagation channel generated in the manner defined in Clause B.2.4.

#### B.2.5 Void

#### **B.2.6 MBSFN Propagation Channel Profile**

Table B.2.6-1 shows propagation conditions that are used for the MBSFN performance requirements in multi-path fading environment in an extended delay spread environment.

| Table B.2.6-1: Propagation Conditions for Multi-Path Fading Environments for MBSFN Performance |
|------------------------------------------------------------------------------------------------|
| Requirements in an extended delay spread environment                                           |

| Extended Delay Spread           |                          |  |  |  |  |
|---------------------------------|--------------------------|--|--|--|--|
| Maximum Doppler frequency [5Hz] |                          |  |  |  |  |
| Relative Delay [ns]             | Relative Mean Power [dB] |  |  |  |  |
|                                 |                          |  |  |  |  |
| 0                               | 0                        |  |  |  |  |
| 30                              | -1.5                     |  |  |  |  |
| 150                             | -1.4                     |  |  |  |  |
| 310                             | -3.6                     |  |  |  |  |
| 370                             | -0.6                     |  |  |  |  |
| 1090                            | -7.0                     |  |  |  |  |
| 12490                           | -10                      |  |  |  |  |
| 12520                           | -11.5                    |  |  |  |  |
| 12640                           | -11.4                    |  |  |  |  |
| 12800                           | -13.6                    |  |  |  |  |
| 12860                           | -10.6                    |  |  |  |  |
| 13580                           | -17.0                    |  |  |  |  |
| 27490                           | -20                      |  |  |  |  |
| 27520                           | -21.5                    |  |  |  |  |
| 27640                           | -21.4                    |  |  |  |  |
| 27800                           | -23.6                    |  |  |  |  |
| 27860                           | -20.6                    |  |  |  |  |
| 28580                           | -27.0                    |  |  |  |  |

### B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where  $f_s(t)$  is the Doppler shift and  $f_d$  is the maximum Doppler frequency. The cosine of angle  $\theta(t)$  is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos\theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), t > 2D_s/v \tag{B.3.4}$$

where  $D_s/2$  is the initial distance of the train from eNodeB, and  $D_{\min}$  is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 are applied for all frequency bands.

| Parameter  | Value    |
|------------|----------|
| $D_s$      | 300 m    |
| $D_{\min}$ | 2 m      |
| V          | 300 km/h |
| $f_d$      | 750 Hz   |

Table B.3-1: High speed train scenario

NOTE 1: Parameters for HST conditions in table B.3-1 including  $f_d$  and Doppler shift trajectories presented on figure B.3-1 were derived for Band 7.

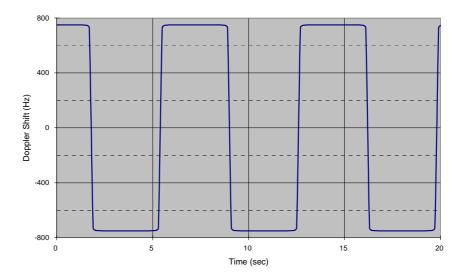



Figure B.3-1: Doppler shift trajectory

For 1x2 antenna configuration, the same  $h(t,\tau)$  is used to describe the channel between every pair of Tx and Rx.

For 2x2 antenna configuration, the same  $h(t,\tau)$  is used to describe the channel between every pair of Tx and Rx with phase shift according to  $\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}$ .

#### B.4 Beamforming Model

#### B.4.1 Single-layer random beamforming (Antenna port 5, 7, or 8)

Single-layer transmission on antenna port 5 or on antenna port 7 or 8 without a simultaneous transmission on the other antenna port, is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal  $y^{(p)}(i)$ ,  $i = 0,1,...,M_{symb}^{ap} - 1$ , for antenna port  $p \in \{5, 7, 8\}$ , with  $M_{symb}^{ap}$  the number of modulation symbols including the user-specific reference symbols (DRS), and generates a block of signals  $y_{bf}(i) = [y_{bf}(i) \quad \tilde{y}_{bf}(i)]^{T}$  the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(p)}(i)$$

Single-layer transmission on antenna port 7 or 8 with a simultaneous transmission on the other antenna port, is defined by using a pair of precoder vectors  $W_1(i)$  and  $W_2(i)$  each of size 2×1, which are not identical and randomly selected with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4], as beamforming weights, and normalizing the transmit power as follows:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = \frac{1}{\sqrt{2}} \left( W_1(i) y^{(7)}(i) + W_2(i) y^{(8)}(i) \right)$$

The precoder update granularity is specific to a test case.

The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 1$ ,  $p \in \{15, 16, ..., 22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $y_{bf}(i)$ . The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 0$ ,  $p \in \{15, 16, ..., 22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $\tilde{y}_{bf}(i)$ .

#### B.4.2 Dual-layer random beamforming (antenna ports 7 and 8)

Dual-layer transmission on antenna ports 7 and 8 is defined by using a precoder matrix W(i) of size  $2 \times 2$  randomly selected with the number of layers v = 2 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input a block of signals for antenna ports 7 and 8,  $y(i) = \begin{bmatrix} y^{(7)}(i) & y^{(8)}(i) \end{bmatrix}^T$ ,  $i = 0, 1, ..., M_{symb}^{ap} - 1$ , with  $M_{symb}^{ap}$  being the number of modulation symbols per antenna port including the user-specific reference symbols, and generates a block of signals  $y_{bf}(i) = \begin{bmatrix} y_{bf}(i) & \tilde{y}_{bf}(i) \end{bmatrix}^T$  the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \end{bmatrix},$$

The precoder update granularity is specific to a test case.

The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 1$ ,  $p \in \{15, 16, ..., 22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $y_{bf}(i)$ . The CSI reference symbols  $a_{k,l}^{(p)}$  satisfying  $p \mod 2 = 0$ ,  $p \in \{15, 16, ..., 22\}$ , are transmitted on the same physical antenna element as the modulation symbols  $\tilde{y}_{bf}(i)$ .

#### B.4.3 Generic beamforming model (antenna ports 7-14)

The transmission on antenna port(s) p = 7,8,...,v + 6 is defined by using a precoder matrix W(i) of size  $N_{CSI} \times v$ , where  $N_{CSI}$  is the number of CSI reference signals configured per test and v is the number of spatial layers. This precoder takes as an input a block of signals for antenna port(s) p = 7,8,...,v + 6,  $y^{(p)}(i) = \left[y^{(7)}(i) \quad y^{(8)}(i) \quad \cdots \quad y^{(6+v)}(i)\right], i = 0,1,...,M_{symb}^{ap} - 1$ , with  $M_{symb}^{ap}$  being the number of modulation symbols per antenna port including the user-specific reference symbols (DM-RS), and generates a block of signals  $y_{bf}^{(q)}(i) = \left[y_{bf}^{(0)}(i) \quad y_{bf}^{(1)}(i) \quad \ldots \quad y_{bf}^{(N_{CSI}-1)}(i)\right]^{T}$  the elements of which are to be mapped onto the same time-frequency index pair (k, l) but transmitted on different physical antenna elements:

$$\begin{bmatrix} y_{bf}^{(0)}(i) \\ y_{bf}^{(1)}(i) \\ \vdots \\ y_{bf}^{(N_{CSI}-1)}(i) \end{bmatrix} = W(i) \begin{bmatrix} y^{(7)}(i) \\ y^{(8)}(i) \\ \vdots \\ y^{(6+\nu)}(i) \end{bmatrix}$$

The precoder matrix W(i) is specific to a test case.

The physical antenna elements are identified by indices  $j = 0, 1, ..., N_{ANT} - 1$ , where  $N_{ANT} = N_{CSI}$  is the number of physical antenna elements configured per test.

Modulation symbols  $y_{bf}^{(q)}(i)$  with  $q \in \{0,1,...,N_{CSI}-1\}$  (i.e. beamformed PDSCH and DM-RS) are mapped to the physical antenna index j = q.

Modulation symbols  $y^{(p)}(i)$  with  $p \in \{0,1,..., P-1\}$  (i.e. PBCH, PDCCH, PHICH, PCFICH) are mapped to the physical antenna index j = p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols  $a_{k,l}^{(p)}$  with  $p \in \{0,1,..., P-1\}$  (i.e. CRS) are mapped to the physical antenna index j = p, where P is the number of cell-specific reference signals configured per test.

Modulation symbols  $a_{k,l}^{(p)}$  with  $p \in \{15, 16, ..., 14 + N_{CSI}\}$  (i.e. CSI-RS) are mapped to the physical antenna index j = p - 15, where  $N_{CSI}$  is the number of CSI reference signals configured per test.

## B.4.4 Random beamforming for EPDCCH distributed transmission (Antenna port 107 and 109)

EPDCCH distributed transmission on antenna port 107 and antenna port 109 is defined by using a pair of precoder vectors  $W_1(i)$  and  $W_2(i)$  each of size 2×1, which are not identical and randomly selected per EPDCCH PRB pair with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4], as beamforming weights. This precoder takes as an input the signal  $y^{(p)}(i)$ ,  $i = 0,1,...,M_{symb}^{ap} - 1$ , for antenna port  $p \in \{107, 109\}$ , with  $M_{symb}^{ap}$  the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a block of signals  $y_{bf}(i) = [y_{bf}(i) \ \tilde{y}_{bf}(i)]^{t}$ . When EPDCCH is associated with port 107, the transmitted block of signals is deonted as

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W_1(i) y^{(107)}(i).$$

When EPDCCH is associated with port 109, the transmitted block of signals is denoted as

$$\begin{bmatrix} y_{bf}(i) \\ \tilde{y}_{bf}(i) \end{bmatrix} = W_2(i) y^{(109)}(i).$$

## B.4.5 Random beamforming for EPDCCH localized transmission (Antenna port 107, 108, 109 or 110)

EPDCCH localized transmission on antenna port 107, 108, 109 or 110 is defined by using a precoder vector W(i) of size 2×1 randomly selected with the number of layers v = 1 from Table 6.3.4.2.3-1 in [4] as beamforming weights. This precoder takes as an input the signal  $y^{(p)}(i)$ ,  $i = 0,1,...,M_{symb}^{ap} - 1$ , for antenna port  $p \in \{107, 108, 109, 110\}$ , with  $M_{symb}^{ap}$  the number of modulation symbols including the user-specific reference symbols (DMRS), and generates a

block of signals  $y_{bf}(i) = [y_{bf}(i) \quad \tilde{y}_{bf}(i)]^T$  the elements of which are to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i) y^{(p)}(i) \, .$$

# B.5 Interference models for enhanced performance requirements Type-A

This clause provides a description for the modelling of interfering cell transmissions for enhanced performance requirements Type-A including: definition of dominant interferer proportion, transmission mode 3, 4 and 9 type of interference modelling.

#### B.5.1 Dominant interferer proportion

Each interfering cell involved in enhanced performance requirements Type-A is characterized by its associated dominant interferer proportion (DIP) value:

$$DIP_i = \frac{\hat{I}_{or(i+1)}}{N_{oc}}$$

where is  $\hat{I}_{or(i+1)}$  is the average received power spectral density from the i-th strongest interfering cell involved in the requirement scenario ( $\hat{I}_{or(1)}$  is assumed to be the power spectral density associated with the serving cell) and

 $N_{oc}' = \sum_{i=2}^{N} \hat{I}_{or(j)} + N_{oc}$  where  $N_{oc}$  is the average power spectral density of a white noise source consistent with the

definition provided in subclause 3.2 and N is the total number of cells involved in a given requirement scenario.

#### B.5.2 Transmission mode 3 interference model

This subclause provides transmission mode 3 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For rank-1 transmission over a subband, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4].

For rank-2 transmission over a subband, precoding for spatial multiplexing with large delay CDD over two layers for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.2 of [4].

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

#### B.5.3 Transmission mode 4 interference model

This subclause provides transmission mode 4 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-1 of [4]. Note that codebook index 0 shall be excluded from random precoder selection when the number of layers is v = 2.

Precoding for spatial multiplexing with cell-specific reference signals for the number of antenna ports in the requirement scenario shall be applied to 16QAM randomly modulated layer symbols, as specified in subclause 6.3.4.2.1 of [4] with the selected precoding matrices for each subframe and each CQI subband.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

#### B.5.4 Transmission mode 9 interference model

This subclause provides transmission mode 9 interference modelling for each explicitly modelled interfering cell in the requirement scenario. In each subframe, each interfering cell shall transmit randomly modulated data over the entire PDSCH region and the full transmission bandwidth. Transmitted physical channels shall include PSS, SSS and PBCH.

For each subframe and each CQI subband as defined in subclause 7.2 of [6], a transmission rank shall be randomly determined independently from other CQI subbands as well as other interfering cells. Probabilities of occurrence of each possible transmission rank are as specified in the requirement scenario.

For each subframe and each CQI subband, a precoding matrix for the number of layers v associated to the selected rank shall be selected randomly from Table 6.3.4.2.3-2 of [4].

The generic beamforming model in subclause B.4.3 shall be applied assuming cell-specific reference signals and CSI reference signals as specified in the requirement scenario. Random precoding with selected rank and precoding matrices for each subframe and each CQI subband shall be applied to 16QAM randomly modulated layer symbols including the user-specific reference symbols over antenna port 7 when the rank is one and antenna ports 7, 8 when the rank is two.

For unallocated REs in the control region, precoding for transmit diversity for the number of antenna ports in the requirement scenario shall be applied to QPSK randomly modulated layer symbols, as specified in subclause 6.3.4.3 of [4]. The EPRE ratio for these REs shall be as defined for PDCCH in Annex C.3.2.

### Annex C (normative): Downlink Physical Channels

### C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

### C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

| Physical Channel |
|------------------|
| PBCH             |
| SSS              |
| PSS              |
| PCFICH           |
| PDCCH            |
| EPDCCH           |
| PHICH            |
| PDSCH            |

### Table C.2-1: Downlink Physical Channels required for connection set-up

### C.3 Connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

#### C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

| Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD) |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

| Physical Channel | EPRE Ratio         |
|------------------|--------------------|
| PBCH             | $PBCH_RA = 0 dB$   |
|                  | $PBCH_RB = 0 dB$   |
| PSS              | $PSS_RA = 0 dB$    |
| SSS              | $SSS_RA = 0 dB$    |
| PCFICH           | $PCFICH_RB = 0 dB$ |
| PDCCH            | $PDCCH_RA = 0 dB$  |
|                  | $PDCCH_RB = 0 dB$  |
| PDSCH            | $PDSCH_RA = 0 dB$  |
|                  | $PDSCH_RB = 0 dB$  |
| OCNG             | $OCNG_RA = 0 dB$   |
|                  | $OCNG_RB = 0 dB$   |

NOTE 1: No boosting is applied.

| Parameter                                                              | Unit       | Value         | Note                                                           |
|------------------------------------------------------------------------|------------|---------------|----------------------------------------------------------------|
| Transmitted power spectral density $I_{or}$                            | dBm/15 kHz | Test specific | 1. $I_{or}$ shall be kept constant throughout all OFDM symbols |
| Cell-specific reference signal power ratio $E_{\rm RS}$ / $I_{\rm or}$ |            | 0 dB          |                                                                |

Table C.3.1-2: Power allocation for OFDM symbols and reference signals

#### C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

| Physical Channel | EPRE Ratio                      |
|------------------|---------------------------------|
| PBCH             | $PBCH_RA = \rho_A + \sigma$     |
|                  | $PBCH_RB = \rho_B + \sigma$     |
| PSS              | $PSS_RA = 0$ (Note 3)           |
| SSS              | SSS_RA = 0 (Note 3)             |
| PCFICH           | PCFICH_RB = $\rho_B$ + $\sigma$ |
| PDCCH            | PDCCH_RA = $\rho_A$ + $\sigma$  |
|                  | PDCCH_RB = $\rho_B + \sigma$    |
| EPDCCH           | EPDCCH_RA = $\rho_A + \delta$   |
|                  | EPDCCH_RB = $\rho_B + \delta$   |
| PDSCH            | PDSCH_RA = $\rho_A$             |
|                  | PDSCH_RB = $\rho_B$             |
| PMCH             | PMCH_RA = $\rho_A$              |
|                  | $PMCH_RB = \rho_B$              |
| MBSFN RS         | MBSFN RS_RA = $\rho_A$          |
|                  | MBSFN RS_RB = $\rho_B$          |
| OCNG             | OCNG_RA = $\rho_A$ + $\sigma$   |
|                  | OCNG_RB = $\rho_B$ + $\sigma$   |

NOTE 1:  $\rho_A = \rho_B = 0$  dB means no RS boosting.

NOTE 2: MBSFN RS and OCNG are not defined downlink physical channels in [4].

NOTE 3: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 4:  $\rho_A$ ,  $\rho_B$ ,  $\sigma$  and  $\delta$  are test specific.

NOTE 5: For TM 8, TM 9 and TM10  $\rho_A$ ,  $\rho_B$  are used for the purpose of the test set up only.

| Parameter                                                              | Unit       | Value         | Note                                                                                                                                        |
|------------------------------------------------------------------------|------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Total transmitted power spectral density $I_{or}$                      | dBm/15 kHz | Test specific | 1. $I_{or}$ shall be kept constant throughout all OFDM symbols                                                                              |
| Cell-specific reference signal power ratio $E_{\rm RS}$ / $I_{\rm or}$ |            | Test specific | 1. Applies for antenna port <i>p</i>                                                                                                        |
| Energy per resource<br>element EPRE                                    |            | Test specific | 1. The complex-valued<br>symbols $y^{(p)}(i)$ and $a_{k,l}^{(p)}$ defined in [4] shall                                                      |
|                                                                        |            |               | conform to the given<br>EPRE value.<br>2. For TM8, TM9, and<br>TM10 the reference point<br>for EPRE is before the<br>precoder in Annex B.4. |

Table C.3.2-2: Power allocation for OFDM symbols and reference signals

#### C.3.3 Aggressor cell power allocation for Measurement of Performance Requirements when ABS is Configured

For the performance requirements and channel state information reporting when ABS is configured, the power allocation for the physical channels of the aggressor cell in non-ABS and ABS is listed in Table C.3.3-1.

### Table C.3.3-1: Downlink physical channels transmitted in aggressor cell when ABS is configured in this cell

| Physical Channel | Parameters U |    | EPI            | EPRE Ratio |  |
|------------------|--------------|----|----------------|------------|--|
| Physical Channel |              |    | Non-ABS        | ABS        |  |
| PBCH             | PBCH_RA      | dB | ρΑ             | Note 1     |  |
| РЬСП             | PBCH_RB      | dB | ρ <sub>в</sub> | Note 1     |  |
| PSS              | PSS_RA       | dB | ρΑ             | Note 1     |  |
| SSS              | SSS_RA       | dB | ρΑ             | Note 1     |  |
| PCFICH           | PCFICH_RB    | dB | ρ <sub>в</sub> | Note 1     |  |
| PHICH            | PHICH_RA     | dB | ρΑ             | Note 1     |  |
|                  | PHICH_RB     | dB | ρв             | Note 1     |  |
| PDCCH            | PDCCH_RA     | dB | ρΑ             | Note 1     |  |
| PDCCH            | PDCCH_RB     | dB | ρ <sub>в</sub> | Note 1     |  |
| PDSCH            | PDSCH_RA     | dB | N/A            | Note 1     |  |
|                  | PDSCH_RB     | dB | N/A            | Note 1     |  |
| <b>OCNG</b>      | OCNG_RA      | dB | ρΑ             | Note 1     |  |
| OCNG             | OCNG_RB      | dB | ρ <sub>Β</sub> | Note 1     |  |

| Physical Channel                                                 | Parameters | Unit | EPRE Ratio     |                |
|------------------------------------------------------------------|------------|------|----------------|----------------|
| Filysical Chamler                                                |            | Unit | Non-ABS        | ABS            |
| PBCH                                                             | PBCH_RA    | dB   | ρΑ             | ρΑ             |
| FBCH                                                             | PBCH_RB    | dB   | ρ <sub>B</sub> | ρ <sub>B</sub> |
| PSS                                                              | PSS_RA     | dB   | ρΑ             | ρ <sub>Α</sub> |
| SSS                                                              | SSS_RA     | dB   | ρΑ             | ρΑ             |
| PCFICH                                                           | PCFICH_RB  | dB   | ρв             | Note 1         |
| PHICH                                                            | PHICH_RA   | dB   | ρΑ             | Note 1         |
|                                                                  | PHICH_RB   | dB   | ρ <sub>B</sub> | Note 1         |
| PDCCH                                                            | PDCCH_RA   | dB   | ρΑ             | Note 1         |
| PDCCH                                                            | PDCCH_RB   | dB   | ρ <sub>B</sub> | Note 1         |
| PDSCH                                                            | PDSCH_RA   | dB   | N/A            | Note 1         |
| FDSCH                                                            | PDSCH_RB   | dB   | N/A            | Note 1         |
| OCNG                                                             | OCNG_RA    | dB   | ρΑ             | Note 1         |
| OCING                                                            | OCNG_RB    | dB   | ρв             | Note 1         |
| Note 1: $-\infty$ dB is allocated for this channel in this test. |            |      |                |                |

| Table C.3.3-2: Downlink physical channels transmitted in aggressor cell when ABS is configured in |
|---------------------------------------------------------------------------------------------------|
| this cell when the CRS assistance information is provided                                         |

#### C.3.4 Power Allocation for Measurement of Performance Requirements when Quasi Co-location Type B: same Cell ID

For the performance requirements related to quasi-colocation type B behaviour when transmission points share the same Cell ID, the power allocation for the physical channels of the serving cell is listed in table C.3.4-1 and the power allocation for the physical channels of the cell transmitting PDSCH is listed in table C.3-4-2

| Physical Channel | EPRE Ratio                      |
|------------------|---------------------------------|
| PBCH             | PBCH_RA = $\rho_A$ + $\sigma$   |
|                  | PBCH_RB = $\rho_B$ + $\sigma$   |
| PSS              | PSS_RA = 0 (Note 2)             |
| SSS              | $SSS_RA = 0$ (Note 2)           |
| PDSCH            | PDSCH_RA = $\rho_A$             |
|                  | PDSCH_RB = $\rho_B$             |
| PCFICH           | PCFICH_RB = $\rho_B$ + $\sigma$ |
| PDCCH            | PDCCH_RA = $\rho_A$ + $\sigma$  |
|                  | PDCCH_RB = $\rho_B + \sigma$    |

Table C.3.4-1: Downlink physical channels transmitted in the serving cell (TP1)

NOTE 1:  $\rho_A = \rho_B = 0$  dB means no RS boosting.

NOTE 2: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 3:  $\rho_A$ ,  $\rho_B$  and  $\sigma$  are test specific.

#### Table C.3.4-2: Downlink physical channels for the transmission point transmitting PDSCH (TP2)

| Physical Channel | Value         |
|------------------|---------------|
| PDSCH            | Test Specific |
|                  |               |

### Annex D (normative): Characteristics of the interfering signal

#### D.1 General

When the channel band width is wider or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal and CW signal are used as interfering signals when RF performance requirements for E-UTRA UE receiver are defined. For channel band widths below 5MHz, the band width of modulated interferer should be equal to band width of the received signal.

### D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

|                      | Channel bandwidth |       |       |        |        |        |
|----------------------|-------------------|-------|-------|--------|--------|--------|
|                      | 1.4 MHz           | 3 MHz | 5 MHz | 10 MHz | 15 MHz | 20 MHz |
| <b>BW</b> Interferer | 1.4 MHz           | 3 MHz | 5 MHz | 5 MHz  | 5 MHz  | 5 MHz  |
| RB                   | 6                 | 15    | 25    | 25     | 25     | 25     |

### Annex E (normative): Environmental conditions

#### E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

#### E.2 Environmental

The requirements in this clause apply to all types of UE(s).

#### E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

#### Table E.2.1-1

| +15°C to +35°C                           | for normal conditions (with relative humidity of 25 % to 75 %)  |
|------------------------------------------|-----------------------------------------------------------------|
| -10 <sup>°</sup> C to +55 <sup>°</sup> C | for extreme conditions (see IEC publications 68-2-1 and 68-2-2) |

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

#### E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

| Power source                | Lower extreme voltage | Higher extreme<br>voltage | Normal conditions voltage |
|-----------------------------|-----------------------|---------------------------|---------------------------|
| AC mains                    | 0,9 * nominal         | 1,1 * nominal             | nominal                   |
| Regulated lead acid battery | 0,9 * nominal         | 1,3 * nominal             | 1,1 * nominal             |
| Non regulated batteries:    |                       |                           |                           |
| Leclanché                   | 0,85 * nominal        | Nominal                   | Nominal                   |
| Lithium                     | 0,95 * nominal        | 1,1 * Nominal             | 1,1 * Nominal             |
| Mercury/nickel & cadmium    | 0,90 * nominal        |                           | Nominal                   |

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

#### E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

| Frequency       | ASD (Acceleration Spectral Density) random vibration                  |
|-----------------|-----------------------------------------------------------------------|
| 5 Hz to 20 Hz   | 0,96 m <sup>2</sup> /s <sup>3</sup>                                   |
| 20 Hz to 500 Hz | 0,96 m <sup>2</sup> /s <sup>3</sup> at 20 Hz, thereafter –3 dB/Octave |

#### Table E.2.3-1

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 36.101 for extreme operation.

#### Annex F (normative): Transmit modulation

#### F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

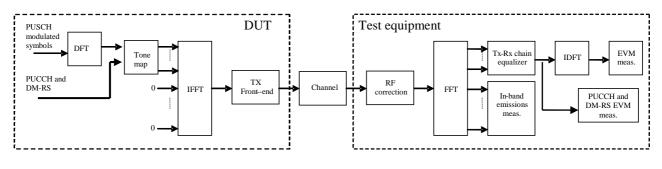



Figure F.1-1: EVM measurement points

#### F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}}$$

where

 $T_m$  is a set of  $|T_m|$  modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 $P_0$  is the average power of the ideal signal. For normalized modulation symbols  $P_0$  is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.

### F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{max(f_{\min}, f_l + 12 \cdot \Delta_{RB} + \Delta f) \\ min(f_{\max}, f_l + 12 \cdot \Delta_{RB} + \Delta f) \\ min(f_{\max}, f_h + 12 \cdot \Delta_{RB} + \Delta f) \\ \frac{1}{|T_s|} \sum_{t \in T_s} \sum_{\substack{f_h + (12 \cdot \Delta_{RB} - 11) + \Delta f \\ f_h + (12 \cdot \Delta_{RB} - 11) + \Delta f} |Y(t, f)|^2, \Delta_{RB} > 0 \end{cases}$$

where

 $T_s$  is a set of  $|T_s|$  SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 $\Delta_{RB}$  is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.  $\Delta_{RB} = 1$  or  $\Delta_{RB} = -1$  for the first adjacent RB),

 $f_{\min}$  (resp.  $f_{\max}$ ) is the lower (resp. upper) edge of the UL system BW,

 $f_l\,\,{\rm and}\,\,f_h\,\,{\rm are}$  the lower and upper edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection (ii)

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{|T_s| \cdot N_{RB}} \sum_{t \in T_s} \sum_{f_l}^{f_l + (12 \cdot N_{RB} - 1)\Delta f} |Y(t, f)|^2}$$

where

 $N_{RB}$  is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to  $\Delta \tilde{t} = \Delta \tilde{c}$ , where sample time offsets  $\Delta \tilde{t}$  and  $\Delta \tilde{c}$  are defined in subclause F.4.

### F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.

The PUSCH data or PRACH signal under test is modified and, in the case of PUSCH data signal, decoded according to::

$$Z'(t,f) = IDFT\left\{\frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}}\right\}$$

where

z(v) is the time domain samples of the signal under test.

The PUCCH or PUSCH demodulation reference signal or PUCCH data signal under test is equalised and, in the case of PUCCH data signal decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi\Delta \tilde{f}v}\right\}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}} e^{j2\pi j\Delta \tilde{t}}$$

where

z(v) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$  is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 $\Delta \tilde{f}$  is the RF frequency offset.

 $\tilde{\varphi}(t, f)$  is the phase response of the TX chain.

 $\tilde{a}(t, f)$  is the amplitude response of the TX chain.

In the following  $\Delta \tilde{c}$  represents the middle sample of the EVM window of length W (defined in the next subsections) or the last sample of the first window half if W is even.

The EVM analyser shall

- > detect the start of each slot and estimate  $\Delta \tilde{t}$  and  $\Delta \tilde{f}$ ,
- > determine  $\Delta \tilde{c}$  so that the EVM window of length W is centred
  - on the time interval determined by the measured cyclic prefix minus 16 samples of the considered OFDM symbol for symbol 0 for normal CP, i.e. the first 16 samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of 30.72MHz was assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
  - on the measured cyclic prefix of the considered OFDM symbol symbol for symbol 1 to 6 for normal CP and for symbol 0 to 5 for extended CP.
  - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to  $\Delta \tilde{c}$  is corrected from the signal under test. The EVM analyser shall then

> correct the RF frequency offset  $\Delta \tilde{f}$  for each time slot, and

> apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The IQ origin offset shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative IQ origin offset power (relative carrier leakage power) also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH, the UL EVM analyzer shall estimate the TX chain equalizer coefficients  $\tilde{a}(t, f)$  and  $\tilde{\varphi}(t, f)$  used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.
- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients  $\tilde{a}(t)$  and  $\tilde{\varphi}(t)$  used for phase and amplitude correction and are seleted so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e.  $\tilde{a}(t, f) = \tilde{a}(t)$  and  $\tilde{\varphi}(t, f) = \tilde{\varphi}(t)$ . The TX chain coefficient are chosen independently for each preamble transmission and for each  $\Delta \tilde{t}$ .

At this stage estimates of  $\Delta \tilde{f}$ ,  $\tilde{a}(t, f)$ ,  $\tilde{\varphi}(t, f)$  and  $\Delta \tilde{c}$  are available.  $\Delta \tilde{t}$  is one of the extremities of the window W, i.e.  $\Delta \tilde{t}$  can be  $\Delta \tilde{c} + \alpha - \left| \frac{W}{2} \right|$  or  $\Delta \tilde{c} + \left| \frac{W}{2} \right|$ , where  $\alpha = 0$  if W is odd and  $\alpha = 1$  if W is even. The EVM

analyser shall then

> calculate EVM<sub>1</sub> with  $\Delta \tilde{t}$  set to  $\Delta \tilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$ ,

> calculate EVM<sub>h</sub> with 
$$\Delta \tilde{t}$$
 set to  $\Delta \tilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$ 

#### F.5 Window length

#### F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of  $\Delta \tilde{t}$ , which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the  $\Delta \tilde{t}$  range within which the error vector is close to its minimum.

#### F.5.2 Window length

The window length W affects the measured EVM, and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can't be removed.

#### F.5.3 Window length for normal CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for normal CP. The nominal window length for 3 MHz is rounded down one sample to allow the window to be centered on the symbol.

| Channel<br>Bandwidth<br>MHz                                                                                                                                                                                                             | Cyclic prefix<br>length <sup>1</sup><br>$N_{cp}$ for<br>symbol 0 | Cyclic prefix length <sup>1</sup><br>$N_{cp}$ for symbols 1 to 6 | Nominal<br>FFT size | Cyclic prefix<br>for symbols 1<br>to 6 in FFT<br>samples | EVM<br>window<br>length <i>W</i><br>in FFT<br>samples | Ratio of <i>W</i><br>to CP for<br>symbols 1<br>to 6 <sup>2</sup> |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|--|
| 1.4                                                                                                                                                                                                                                     |                                                                  |                                                                  | 128                 | 9                                                        | 5                                                     | 55.6                                                             |  |
| 3                                                                                                                                                                                                                                       |                                                                  | Γ                                                                | 256                 | 18                                                       | 12                                                    | 66.7                                                             |  |
| 5                                                                                                                                                                                                                                       | 160                                                              | 144                                                              | 512                 | 36                                                       | 32                                                    | 88.9                                                             |  |
| 10                                                                                                                                                                                                                                      | 160                                                              | 144                                                              | 1024                | 72                                                       | 66                                                    | 91.7                                                             |  |
| 15                                                                                                                                                                                                                                      |                                                                  |                                                                  | 1536                | 108                                                      | 102                                                   | 94.4                                                             |  |
| 20                                                                                                                                                                                                                                      |                                                                  |                                                                  | 2048                | 144                                                      | 136                                                   | 94.4                                                             |  |
| Note 1:       The unit is number of samples, sampling rate of 30.72MHz is assumed.         Note 2:       These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage. |                                                                  |                                                                  |                     |                                                          |                                                       |                                                                  |  |

Table F.5.3-1 EVM window length for normal CP

#### F.5.4 Window length for Extended CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for extended CP. The nominal window lengths for 3 MHz and 15 MHz are rounded down one sample to allow the window to be centered on the symbol.

Table F.5.4-1 EVM window length for extended CP

| Channel<br>Bandwidth<br>MHz                                                                                               | Cyclic prefix length $N_{cp}$ | Nominal<br>FFT size | Cyclic<br>prefix in<br>FFT<br>samples | EVM<br>window<br>length <i>W</i><br>in FFT<br>samples | Ratio of W<br>to CP <sup>2</sup> |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|---------------------------------------|-------------------------------------------------------|----------------------------------|--|
| 1.4                                                                                                                       |                               | 128                 | 32                                    | 28                                                    | 87.5                             |  |
| 3                                                                                                                         |                               | 256                 | 64                                    | 58                                                    | 90.6                             |  |
| 5                                                                                                                         | 512                           | 512                 | 128                                   | 124                                                   | 96.9                             |  |
| 10                                                                                                                        | 512                           | 1024                | 256                                   | 250                                                   | 97.4                             |  |
| 15                                                                                                                        |                               | 1536                | 384                                   | 374                                                   | 97.4                             |  |
| 20                                                                                                                        |                               | 2048                | 512                                   | 504                                                   | 98.4                             |  |
| Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.<br>Note 2: These percentages are informative |                               |                     |                                       |                                                       |                                  |  |

#### F.5.5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats 0-4.

Table F.5.5-1 EVM window length for PRACH

| Preamble<br>format | $\begin{array}{c} \textbf{Cyclic} \\ \textbf{prefix} \\ \textbf{length}^1 \ N_{cp} \end{array}$          | Nominal<br>FFT size <sup>2</sup> | EVM window<br>length <i>W</i> in<br>FFT samples | Ratio of <i>W</i><br>to CP* |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------|-----------------------------|--|--|--|
| 0                  | 3168                                                                                                     | 24576                            | 3072                                            | 96.7%                       |  |  |  |
| 1                  | 21024                                                                                                    | 24576                            | 20928                                           | 99.5%                       |  |  |  |
| 2                  | 2 6240                                                                                                   |                                  | 6144                                            | 98.5%                       |  |  |  |
| 3                  | 21024                                                                                                    | 49152                            | 20928                                           | 99.5%                       |  |  |  |
| 4                  | 448                                                                                                      | 4096                             | 432                                             | 96.4%                       |  |  |  |
|                    | Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed                              |                                  |                                                 |                             |  |  |  |
|                    | The use of other FFT sizes is possible as long as appropriate<br>scaling of the window length is applied |                                  |                                                 |                             |  |  |  |
|                    | hese percentage                                                                                          |                                  |                                                 |                             |  |  |  |

### F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for 20 slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}$$

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus  $\overline{\text{EVM}}_1$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_1$  in the expressions above and  $\overline{\text{EVM}}_h$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_h$ .

Thus we get:

$$EVM = \max(EVM_1, EVM_h)$$

The calculation of the EVM for the demodulation reference signal,  $EVM_{DMRS}$ , follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set  $T_m$  defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic  $EVM_{DMRS}$  measurements are first averaged over 20 slots in the time domain to obtain an intermediate average  $\overline{EVM}_{DMRS}$ .

$$\overline{EVM}_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS,i}^2}$$

In the determination of each  $EVM_{DMRS,i}$ , the timing is set to  $\Delta \tilde{t} = \Delta \tilde{t}_i$  if  $\overline{EVM}_1 > \overline{EVM}_h$ , and it is set to  $\Delta \tilde{t} = \Delta \tilde{t}_i$  otherwise, where  $\overline{EVM}_1$  and  $\overline{EVM}_h$  are the general average EVM values calculated in the same 20 slots over which the intermediate average  $\overline{EVM}_{DMRS}$  is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, EVM DMRS,

$$EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} \overline{EVM}_{DMRS,j}^2}$$

The PRACH EVM,  $EVM_{PRACH}$ , is averaged over two preamble sequence measurements for preamble formats 0, 1, 2, 3, and it is averaged over 10 preamble sequence measurements for preamble format 4.

The EVM requirements shall be tested against the maximum of the RMS average at the window *W* extremities of the EVM measurements:

Thus  $\overline{\text{EVM}}_{\text{PRACH,1}}$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_l$  and  $\overline{\text{EVM}}_{\text{PRACH,h}}$  is calculated using  $\Delta \tilde{t} = \Delta \tilde{t}_h$ .

Thus we get:

 $EVM_{PRACH} = \max(\overline{EVM}_{PRACH,1}, \overline{EVM}_{PRACH,h})$ 

### F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.

### Annex G (informative): Reference sensitivity level in lower SNR

This annex contains information on typical receiver sensitivity when HARQ transmission is enabled allowing operation in lower SNR regions (HARQ is disabled in conformance testing), thus representing the configuration normally used in live network operation under noise-limited conditions.

#### G.1 General

The reference sensitivity power level  $P_{SENS}$  with HARQ retransmission enabled (operation in lower SNR) is the minimum mean power applied to both the UE antenna ports at which the residual BLER after HARQ shall meet or exceed the requirements for the specified reference measurement channel. The residual BLER after HARQ transmission is defined as follows:

$$BLER_{residual} = 1 - \frac{A}{R}$$

A: Number of correctly decoded MAC PDUs

B: Number of transmitted MAC PDUs (Retransmitted MAC PDUs are not counted)

### G.2 Typical receiver sensitivity performance (QPSK)

The residual BLER after HARQ shall be lower than 1% for the reference measurement channels as specified in Annexes G.3 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table G.2-1 and Table G.2-2

| Channel bandwidth |                                                   |                           |                           |                                           |                 |                    |                |  |
|-------------------|---------------------------------------------------|---------------------------|---------------------------|-------------------------------------------|-----------------|--------------------|----------------|--|
| E-UTRA<br>Band    | 1.4 MHz<br>(dBm)                                  | 3 MHz<br>(dBm)            | 5 MHz<br>(dBm)            | 10 MHz<br>(dBm)                           | 15 MHz<br>(dBm) | 20 MHz<br>(dBm)    | Duplex<br>Mode |  |
| 1                 |                                                   |                           |                           | [-102]                                    |                 |                    | FDD            |  |
| 2                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 3                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 4                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 5                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 6                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 7                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 8                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 9                 |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 10                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 11                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 12                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 13                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 14                | 1                                                 |                           |                           | TBD                                       |                 |                    | FDD            |  |
|                   | 1                                                 |                           |                           |                                           |                 |                    |                |  |
| 17                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 18                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 19                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 20                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 21                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 22                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 23                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 26                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 27                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
| 28                |                                                   |                           |                           | TBD                                       |                 |                    | FDD            |  |
|                   |                                                   |                           |                           |                                           |                 |                    |                |  |
| 33                |                                                   |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 34                |                                                   |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 35                | 1                                                 |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 36                |                                                   |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 37                |                                                   |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 38                | 1                                                 |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 39                |                                                   |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 40                |                                                   |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 42                |                                                   |                           |                           | [-102]                                    |                 |                    | TDD            |  |
| 43                |                                                   | 1                         |                           | [-102]                                    |                 |                    | TDD            |  |
| 44                |                                                   | 1                         |                           | [-102]                                    |                 |                    | TDD            |  |
| Note 2: R<br>C    | he transmitter<br>Reference meas<br>DP.1 FDD/TDD  | surement cl<br>as describ | hannel is (<br>ed in Anne | as defined<br>G.3 with on<br>ex A.5.1.1// | e sided dy      | 5.2.5<br>namic OCN |                |  |
| Note 4: F         | he signal powe<br>or the UE whice<br>evel is FFS. | h supports                | both Band                 | d 3 and Bai                               |                 |                    | -              |  |
|                   | or the UE whic                                    | h supports                | both Band                 | d 11 and Ba                               | and 21 the      | reference s        | sensitivity    |  |

| Table G.2-1: Reference | sensitivity QPSK P <sub>SENS</sub> |
|------------------------|------------------------------------|
|------------------------|------------------------------------|

Table G.2-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement in lower SNR must be met.

| E-UTRA Band / Channel bandwidth / NRB / Duplex mode |                                                                                              |                                                                       |                                                                     |                                                            |                                                                      |                                                   |                             |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-----------------------------|--|
| E-UTRA<br>Band                                      | 1.4 MHz                                                                                      | 3 MHz                                                                 | 5 MHz                                                               | 10 MHz                                                     | 15 MHz                                                               | 20 MHz                                            | Duplex<br>Mode              |  |
| 1                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 2                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 3                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 4                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 5                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 6                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 7                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 8                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 9                                                   |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 10                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 11                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 12                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 13                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 14                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
|                                                     |                                                                                              |                                                                       |                                                                     | [•]                                                        |                                                                      |                                                   |                             |  |
| 17                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 18                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 19                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 20                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 22                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 21                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 23                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 26                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 27                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
| 28                                                  |                                                                                              |                                                                       |                                                                     | [6] <sup>1</sup>                                           |                                                                      |                                                   | FDD                         |  |
|                                                     |                                                                                              |                                                                       |                                                                     | [-]                                                        |                                                                      |                                                   |                             |  |
| 33                                                  |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 34                                                  |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 35                                                  |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 36                                                  |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 30                                                  |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 38                                                  |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 38                                                  |                                                                                              |                                                                       |                                                                     | 50<br>50                                                   |                                                                      |                                                   | TDD                         |  |
| <u> </u>                                            |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 40                                                  |                                                                                              |                                                                       |                                                                     | 50<br>50                                                   |                                                                      |                                                   | TDD                         |  |
|                                                     |                                                                                              |                                                                       |                                                                     |                                                            |                                                                      |                                                   |                             |  |
| 43                                                  |                                                                                              |                                                                       |                                                                     | 50                                                         |                                                                      |                                                   | TDD                         |  |
| 44<br>Note 1: -                                     | <br>Fhe UL resc                                                                              |                                                                       | ke chall h                                                          | 50<br>a located a                                          | e close ac                                                           | nossible to                                       | TDD                         |  |
| Note 2: I<br>Note 3: I                              | downlink op<br>configuration<br>For the UE v<br>uplink config<br>For Band 20<br>blocks shall | erating ba<br>n for the c<br>which sup<br>guration fo<br>); in the ca | and but co<br>hannel ba<br>ports both<br>or reference<br>ase of 15N | nfined with<br>Indwidth (T<br>I Band 11 a<br>Re sensitivit | in the trans<br>able 5.6-1<br>and Band 2<br>ty is FFS.<br>el bandwid | smission ba<br>).<br>21 the minir<br>th, the UL r | andwidth<br>num<br>resource |  |

 Table G.2-2: Minimum uplink configuration for reference sensitivity

Unless given by Table G.2-3, the minimum requirements specified in Tables G.2-1 and G.2-2 shall be verified with the network signalling value NS\_01 (Table 6.2.4-1) configured.

| E-UTRA<br>Band | Network<br>Signalling<br>value |
|----------------|--------------------------------|
| 2              | NS_03                          |
| 4              | NS_03                          |
| 10             | NS_03                          |
| 12             | NS_06                          |
| 13             | NS_06                          |
| 14             | NS_06                          |
| 17             | NS_06                          |
| 19             | NS_08                          |
| 21             | NS_09                          |
| 23             | NS_03                          |
| 35             | NS_03                          |
| 36             | NS_03                          |

| Table G.2-3: Network Signalling Value fo | r reference sensitivity |
|------------------------------------------|-------------------------|
|                                          |                         |

# G.3 Reference measurement channel for REFSENSE in lower SNR

Tables G.3-1A and G.3-2 are applicable for Annex G.2 (Reference sensitivity level in lower SNR).

| Parameter                               | Unit             | Value                                               |
|-----------------------------------------|------------------|-----------------------------------------------------|
| Channel bandwidth                       | MHz              | 10                                                  |
| Allocated resource blocks               |                  | 50                                                  |
| Subcarriers per resource block          |                  | 12                                                  |
| Allocated subframes per Radio Frame     |                  | 10                                                  |
| Modulation                              |                  | QPSK                                                |
| Target Coding Rate                      |                  | 1/3                                                 |
| Number of HARQ Processes                | Processes        | 8                                                   |
| Maximum number of HARQ transmissions    |                  | [4]                                                 |
| Information Bit Payload per Sub-Frame   |                  |                                                     |
| For Sub-Frames 1,2,3,4,6,7,8,9          | Bits             | 4392                                                |
| For Sub-Frame 5                         | Bits             | N/A                                                 |
| For Sub-Frame 0                         | Bits             | 4392                                                |
| Transport block CRC                     | Bits             | 24                                                  |
| Number of Code Blocks per Sub-Frame     |                  |                                                     |
| (Note 4)                                |                  |                                                     |
| For Sub-Frames 1,2,3,4,6,7,8,9          | Bits             |                                                     |
| For Sub-Frame 5                         | Bits             | N/A                                                 |
| For Sub-Frame 0                         | Bits             |                                                     |
| Binary Channel Bits Per Sub-Frame       |                  |                                                     |
| For Sub-Frames 1,2,3,4,6,7,8,9          | Bits             | 13800                                               |
| For Sub-Frame 5                         | Bits             | N/A                                                 |
| For Sub-Frame 0                         | Bits             | 12960                                               |
| Max. Throughput averaged over 1 frame   | kbps             | 3952.                                               |
|                                         |                  | 8                                                   |
| UE Category                             |                  | 1-8                                                 |
|                                         |                  | /Hz and 10MHz channel BW. 3 symbols allocated to    |
| PDCCH for 5 MHz and 3 MHz. 4 s          |                  |                                                     |
|                                         |                  | BCH allocated as per TS 36.211 [4]                  |
|                                         |                  | tional CRC sequence of $L = 24$ Bits is attached to |
| each Code Block (otherwise L = 0        |                  |                                                     |
| Note 4: Redundancy version coding seque | ence is {0, 1, 2 | , 3} for QPSK.                                      |

| Parameter                                                                                                        | Unit                                                                                       | V                      | alue           |          |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------|----------------|----------|--|--|--|
| Channel Bandwidth                                                                                                | MHz                                                                                        |                        | 10             |          |  |  |  |
| Allocated resource blocks                                                                                        |                                                                                            |                        | 50             |          |  |  |  |
| Uplink-Downlink Configuration (Note 5)                                                                           |                                                                                            |                        | 1              |          |  |  |  |
| Allocated subframes per Radio Frame                                                                              |                                                                                            |                        | 4+2            |          |  |  |  |
| (D+S)                                                                                                            |                                                                                            |                        |                |          |  |  |  |
| Number of HARQ Processes                                                                                         | Processes                                                                                  |                        | 7              |          |  |  |  |
| Maximum number of HARQ transmission                                                                              |                                                                                            |                        | [4]            |          |  |  |  |
| Modulation                                                                                                       |                                                                                            |                        | QPSK           |          |  |  |  |
| Target coding rate                                                                                               |                                                                                            |                        | 1/3            |          |  |  |  |
| Information Bit Payload per Sub-Frame                                                                            | Bits                                                                                       |                        |                |          |  |  |  |
| For Sub-Frame 4, 9                                                                                               |                                                                                            |                        | 4392           |          |  |  |  |
| For Sub-Frame 1, 6                                                                                               |                                                                                            |                        | 3240           |          |  |  |  |
| For Sub-Frame 5                                                                                                  |                                                                                            |                        | N/A            |          |  |  |  |
| For Sub-Frame 0                                                                                                  |                                                                                            |                        | 4392           |          |  |  |  |
| Transport block CRC                                                                                              | Bits                                                                                       |                        | 24             |          |  |  |  |
| Number of Code Blocks per Sub-Frame                                                                              |                                                                                            |                        |                |          |  |  |  |
| (Note 5)                                                                                                         |                                                                                            |                        |                |          |  |  |  |
| For Sub-Frame 4, 9                                                                                               |                                                                                            |                        | 1              |          |  |  |  |
| For Sub-Frame 1, 6                                                                                               |                                                                                            |                        | 1              |          |  |  |  |
| For Sub-Frame 5                                                                                                  |                                                                                            |                        | N/A            |          |  |  |  |
| For Sub-Frame 0                                                                                                  |                                                                                            |                        | 1              |          |  |  |  |
| Binary Channel Bits Per Sub-Frame                                                                                | Bits                                                                                       |                        |                |          |  |  |  |
| For Sub-Frame 4, 9                                                                                               |                                                                                            |                        | 13800          |          |  |  |  |
| For Sub-Frame 1, 6                                                                                               |                                                                                            |                        | 11256          |          |  |  |  |
| For Sub-Frame 5                                                                                                  |                                                                                            |                        | N/A            |          |  |  |  |
| For Sub-Frame 0                                                                                                  |                                                                                            |                        | 13104          |          |  |  |  |
| Max. Throughput averaged over 1 frame                                                                            | kbps                                                                                       |                        | 1965.          |          |  |  |  |
|                                                                                                                  |                                                                                            |                        | 6              |          |  |  |  |
| UE Category                                                                                                      |                                                                                            |                        | 1-5            |          |  |  |  |
| Note 1: For normal subframes(0,4,5,9), 2<br>channel BW; 3 symbols allocated<br>for 1.4 MHz. For special subframe | to PDCCH for                                                                               | 5 MHz and 3 MHz; 4 sym | bols allocated | to PDCCH |  |  |  |
|                                                                                                                  | 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with |                        |                |          |  |  |  |
|                                                                                                                  | •                                                                                          |                        |                |          |  |  |  |
| Note 4: If more than one Code Block is pl                                                                        |                                                                                            |                        |                |          |  |  |  |
| Note 5: As per Table 4.2-2 in TS 36.211 [                                                                        |                                                                                            |                        |                |          |  |  |  |
| Note 6: Redundancy version coding sequ                                                                           |                                                                                            | 2, 3} for QPSK.        |                |          |  |  |  |

#### Table A.3.2-2A Fixed Reference Channel for Receiver Requirements (TDD)

### Annex H (informative): Change history

#### Table G.1: Change History

| Date               | TSG#           | TSG Doc.               | CR          | Subject                                                                                                      | Old            | New            |
|--------------------|----------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------|----------------|----------------|
| 11-2007            | R4#45          | R4-72206               |             | TS36.101V0.1.0 approved by RAN4                                                                              | -              |                |
| 12-2007            | RP#38          | RP-070979              |             | Approved version at TSG RAN #38                                                                              | 1.0.0          | 8.0.0          |
| 03-2008            | RP#39          | RP-080123              | 3           | TS36.101 - Combined updates of E-UTRA UE requirements                                                        | 8.0.0          | 8.1.0          |
| 05-2008            | RP#40          | RP-080325              | 4           | TS36.101 - Combined updates of E-UTRA UE requirements                                                        | 8.1.0          | 8.2.0          |
| 09-2008            | RP#41          | RP-080638              | 5r1         | Addition of Ref Sens figures for 1.4MHz and 3MHz Channel<br>bandwiidths                                      | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 7r1         | Transmitter intermodulation requirements                                                                     | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 10          | CR for clarification of additional spurious emission requirement                                             | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 15          | Correction of In-band Blocking Requirement                                                                   | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 18r1        | TS36.101: CR for section 6: NS_06                                                                            | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 19r1        | TS36.101: CR for section 6: Tx modulation                                                                    | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 20r1        | TS36.101: CR for UE minimum power                                                                            | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 21r1        | TS36.101: CR for UE OFF power                                                                                | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 24r1        | TS36.101: CR for section 7: Band 13 Rx sensitivity                                                           | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 26          | UE EVM Windowing                                                                                             | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080638              | 29          | Absolute ACLR limit                                                                                          | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 23r2        | TS36.101: CR for section 6: UE to UE co-existence                                                            | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 30          | Removal of [] for UE Ref Sens figures                                                                        | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 31          | Correction of PA, PB definition to align with RAN1 specification                                             | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 37r2        | UE Spurious emission band UE co-existence                                                                    | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 44          | Definition of specified bandwidths                                                                           | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 48r3        | Addition of Band 17                                                                                          | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 50          | Alignment of the UE ACS requirement                                                                          | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 52r1        | Frequency range for Band 12                                                                                  | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 54r1        | Absolute power tolerance for LTE UE power control                                                            | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080731              | 55          | TS36.101 section 6: Tx modulation                                                                            | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080732              | 6r2         | DL FRC definition for UE Receiver tests                                                                      | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080732              | 46          | Additional UE demodulation test cases                                                                        | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080732              | 47          | Updated descriptions of FRC                                                                                  | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080732              | 49          | Definition of UE transmission gap                                                                            | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080732              | 51          | Clarification on High Speed train model in 36.101                                                            | 8.2.0          | 8.3.0          |
| 09-2008            | RP#41          | RP-080732              | 53          | Update of symbol and definitions                                                                             | 8.2.0<br>8.2.0 | 8.3.0          |
| 09-2008            | RP#41          | RP-080743              | 56          | Addition of MIMO (4x2) and (4x4) Correlation Matrices                                                        | 8.3.0          | 8.3.0<br>8.4.0 |
| 12-2008            | RP#42<br>RP#42 | RP-080908              | 94r2        | CR TX RX channel frequency separation                                                                        | 8.3.0          | 8.4.0          |
| 12-2008            |                | RP-080909              | 105r1<br>60 | UE Maximum output power for Band 13<br>UL EVM equalizer definition                                           | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080909              |             |                                                                                                              | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080909              | 63<br>66    | Correction of UE spurious emissions<br>Clarification for UE additional spurious emissions                    | 8.3.0          | 8.4.0          |
| 12-2008<br>12-2008 | RP#42<br>RP#42 | RP-080909<br>RP-080909 | 72          | Introducing ACLR requirement for coexistance with UTRA                                                       | 8.3.0          | 8.4.0          |
|                    |                |                        |             | 1.6MHZ channel from 36.803                                                                                   | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080909              | 75<br>81    | Removal of [] from Section 6 transmitter characteristcs                                                      | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080909              |             | Clarification for PHS band protection<br>Alignement for the measurement interval for transmit signal quality | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080909<br>RP-080909 | 101<br>98r1 | Maximum power                                                                                                | 8.3.0          | 8.4.0          |
| 12-2008<br>12-2008 | RP#42<br>RP#42 | RP-080909<br>RP-080909 | 980<br>57r1 | CR UE spectrum flatness                                                                                      | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080909<br>RP-080909 | 71r1        | UE in-band emission                                                                                          | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080909<br>RP-080909 | 58r1        | CR Number of TX exceptions                                                                                   | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080909<br>RP-080951 | 99r2        | CR UE output power dynamic                                                                                   | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080951<br>RP-080951 | 79r1        | LTE UE transmitter intermodulation                                                                           | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080931              | 91          | Update of Clause 8                                                                                           | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080910              | 106r1       | Structure of Clause 9 including CSI requirements for PUCCH                                                   | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080911              | 59          | mode 1-0<br>CR UE ACS test frequency offset                                                                  | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080911<br>RP-080911 | 59<br>65    | Correction of spurious response parameters                                                                   | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080911<br>RP-080911 | 80          | Removal of LTE UE narrowband intermodulation                                                                 | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42<br>RP#42 | RP-080911<br>RP-080911 | 90r1        | Introduction of Maximum Sensitivity Degradation                                                              | 8.3.0          | 8.4.0          |
| 12-2008            | RF#42          | KE-000911              | 9011        | Introduction of Maximum Sensitivity Degradation                                                              | 0.5.0          | 0.4.0          |

| 12-2008            | RP#42          | RP-080911              | 103          | Removal of [] from Section 7 Receiver characteristic                                                                                               | 8.3.0          | 8.4.0          |
|--------------------|----------------|------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| 12-2008            | RP#42          | RP-080912              | 62           | Alignement of TB size n Ref Meas channel for RX characteristics                                                                                    | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080912              | 78           | TDD Reference Measurement channel for RX characterisctics                                                                                          | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080912              | 73r1         | Addition of 64QAM DL referenbce measurement channel                                                                                                | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080912              | 74r1         | Addition of UL Reference Measurement Channels                                                                                                      | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080912              | 104          | Reference measurement channels for PDSCH performance requirements (TDD)                                                                            | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080913              | 68           | MIMO Correlation Matrix Corrections                                                                                                                | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080915              | 67           | Correction to the figure with the Transmission Bandwidth<br>configuration                                                                          | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080916              | 77           | Modification to EARFCN                                                                                                                             | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080917              | 85r1         | New Clause 5 outline                                                                                                                               | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080919              | 102          | Introduction of Bands 12 and 17 in 36.101                                                                                                          | 8.3.0          | 8.4.0          |
| 12-2008            | RP#42          | RP-080927              | 84r1         | Clarification of HST propagation conditions                                                                                                        | 8.3.0          | 8.4.0          |
| 03-2009            | RP#43          | RP-090170              | 156r2        | A-MPR table for NS_07                                                                                                                              | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 170          | Corrections of references (References to tables and figures)                                                                                       | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 108          | Removal of [] from Transmitter Intermodulation                                                                                                     | 8.4.0<br>8.4.0 | 8.5.0<br>8.5.0 |
| 03-2009            | RP#43          | RP-090170              | 155          | E-UTRA ACLR for below 5 MHz bandwidths                                                                                                             | 8.4.0<br>8.4.0 | 8.5.0<br>8.5.0 |
| 03-2009            | RP#43          | RP-090170              | 116          | Clarification of PHS band including the future plan                                                                                                | 8.4.0<br>8.4.0 |                |
| 03-2009            | RP#43          | RP-090170              | 119          | Spectrum emission mask for 1.4 MHz and 3 MHz bandwidhts<br>Removal of "Out-of-synchronization handling of output power"                            |                | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 120          | heading                                                                                                                                            | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 126          | UE uplink power control                                                                                                                            | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 128          | Transmission BW Configuration                                                                                                                      | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 130          | Spectrum flatness                                                                                                                                  | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 132r2        |                                                                                                                                                    | 8.4.0<br>8.4.0 | 8.5.0          |
| 03-2009            | RP#43          | RP-090170              | 134          | UL DM-RS EVM                                                                                                                                       | 8.4.0<br>8.4.0 | 8.5.0<br>8.5.0 |
| 03-2009            | RP#43          | RP-090170              | 140<br>113   | Removal of ACLR2bis requirements                                                                                                                   | 8.4.0<br>8.4.0 | 8.5.0<br>8.5.0 |
| 03-2009<br>03-2009 | RP#43<br>RP#43 | RP-090171<br>RP-090171 | 113          | In-band blocking                                                                                                                                   | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090171<br>RP-090171 | 127<br>137r1 | In-band blocking and sensitivity requirement for band 17<br>Wide band intermodulation                                                              | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090171<br>RP-090171 | 13711        | Correction of reference sensitivity power level of Band 9                                                                                          | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090171<br>RP-090172 | 109          | AWGN level for UE DL demodulation performance tests                                                                                                | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090172              | 103          | Update of Clause 8: additional test cases                                                                                                          | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090172              | 139r1        | Performance requirement structure for TDD PDSCH                                                                                                    | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090172              | 142r1        | Performance requirements and reference measurement channels<br>for TDD PDSCH demodulation with UE-specific reference<br>symbols                    | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090172              | 145          | Number of information bits in DwPTS                                                                                                                | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090172              | 160r1        | MBSFN-Unicast demodulation test case                                                                                                               | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090172              | 163r1        | MBSFN-Unicast demodulation test case for TDD                                                                                                       | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090173              | 162          | Clarification of EARFCN for 36.101                                                                                                                 | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 110          | Correction to UL Reference Measurement Channel                                                                                                     | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 114          | Addition of MIMO (4x4, medium) Correlation Matrix                                                                                                  | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 121          | Correction of 36.101 DL RMC table notes                                                                                                            | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 125          | Update of Clause 9                                                                                                                                 | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 138r1        | Clarification on OCNG                                                                                                                              | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 161          | CQI reference measurement channels                                                                                                                 | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 164          | PUCCH 1-1 Static Test Case                                                                                                                         | 8.4.0          | 8.5.0          |
| 03-2009            | RP#43          | RP-090369              | 111          | Reference Measurement Channel for TDD                                                                                                              | 8.4.0          | 8.5.0          |
| 03-2009            | RP#44          |                        |              | Editorial correction in Table 6.2.4-1                                                                                                              | 8.5.0          | 8.5.1          |
| 05-2009            | RP#44          | RP-090540              | 167          | Boundary between E-UTRA fOOB and spurious emission domain<br>for 1.4 MHz and 3 MHz bandwiths. (Technically Endorsed CR in<br>R4-50bis - R4-091205) | 8.5.1          | 8.6.0          |
| 05-2009            | RP#44          | RP-090540              | 168          | EARFCN correction for TDD DL bands. (Technically Endorsed CR in R4-50bis - R4-091206)                                                              | 8.5.1          | 8.6.0          |
| 05-2009            | RP#44          | RP-090540              | 169          | Editorial correction to in-band blocking table. (Technically Endorsed CR in R4-50bis - R4-091238)                                                  | 8.5.1          | 8.6.0          |
|                    |                |                        |              | ·                                                                                                                                                  |                |                |

| 05-2009 | RP#44 | RP-090540 | 171   | CR PRACH EVM. (Technically Endorsed CR in R4-50bis - R4-<br>091308)                                                         | 8.5.1 | 8.6.0 |
|---------|-------|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 05-2009 | RP#44 | RP-090540 | 172   | CR EVM correction. (Technically Endorsed CR in R4-50bis - R4-<br>091309)                                                    | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 177   | CR power control accuracy. (Technically Endorsed CR in R4-<br>50bis - R4-091418)                                            | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 179   | Correction of SRS requirements. (Technically Endorsed CR in R4-<br>50bis - R4-091426)                                       | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 186   | Clarification for EVM. (Technically Endorsed CR in R4-50bis - R4-<br>091512)                                                | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 187   | Removal of [] from band 17 Refsens values and ACS offset<br>frequencies                                                     | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 191   | Completion of band17 requirements                                                                                           | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 192   | Removal of 1.4 MHz and 3 MHz bandwidths from bands 13, 14 and 17.                                                           | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 223   | CR: 64 QAM EVM                                                                                                              | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 201   | CR In-band emissions                                                                                                        | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 203   | CR EVM exclusion period                                                                                                     | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 204   | CR In-band emissions timing                                                                                                 | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 206   | CR Minimum Rx exceptions                                                                                                    | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 207   | CR UL DM-RS EVM                                                                                                             | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 218r1 | A-MPR table for NS_07                                                                                                       | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 205r1 | CR In-band emissions in shortened subframes                                                                                 | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 200r1 | CR PUCCH EVM                                                                                                                | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 178r2 | No additional emission mask indication. (Technically Endorsed CR in R4-50bis - R4-091421)                                   | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 220r1 | Spectrum emission requirements for band 13                                                                                  | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 197r2 | CR on aggregate power tolerance                                                                                             | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090540 | 196r2 | CR: Rx IP2 performance                                                                                                      | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090541 | 198r1 | Maximum output power relaxation                                                                                             | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090542 | 166   | Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091180) | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090542 | 175   | Adding AWGN levels for some TDD DL performance<br>requirements. (Technically Endorsed CR in R4-50bis - R4-<br>091406)       | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090542 | 182   | OCNG Patterns for Single Resource Block FRC Requirements.<br>(Technically Endorsed CR in R4-50bis - R4-091504)              | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090542 | 170r1 | Update of Clause 8: PHICH and PMI delay. (Technically Endorsed CR in R4-50bis - R4-091275)                                  | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 183   | Requirements for frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091505)                         | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 199   | CQI requirements under AWGN conditions                                                                                      | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 188r1 | Adaptation of UL-RMC-s for supporting more UE categories                                                                    | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 193r1 | Correction of the LTE UE downlink reference measurement<br>channels                                                         | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 184r1 | Requirements for frequency non-selective fading tests.<br>(Technically Endorsed CR in R4-50bis - R4-091506)                 | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 185r1 | Requirements for PMI reporting. (Technically Endorsed CR in R4-<br>50bis - R4-091510)                                       | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 221r1 | Correction to DL RMC-s for Maximum input level for supporting<br>more UE-Categories                                         | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090543 | 216   | Addition of 15 MHz and 20 MHz bandwidths into band 38                                                                       | 8.5.1 | 8.6.0 |
| 05-2009 | RP#44 | RP-090559 | 180   | Introduction of Extended LTE800 requirements. (Technically<br>Endorsed CR in R4-50bis - R4-091432)                          | 8.6.0 | 9.0.0 |
| 09-2009 | RP#45 | RP-090826 | 239   | A-MPR for Band 19                                                                                                           | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090822 | 225   | LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz<br>BW                                                          | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090822 | 227   | Harmonization of text for LTE Carrier leakage                                                                               | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090822 | 229   | Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths                                                           | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090822 | 236   | Operating band edge relaxation of maximum output power for<br>Band 18 and 19                                                | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090822 | 238   | Addition of 5MHz channel bandwidth for Band 40                                                                              | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090822 | 245   | Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17                                         | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090877 | 261   | Correction of LTE UE ACS test parameter                                                                                     | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090877 | 263R1 | Correction of LTE UE ACLR test parameter                                                                                    | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090877 | 286   | Uplink power and RB allocation for receiver tests                                                                           | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090877 | 320   | CR Sensitivity relaxation for small BW                                                                                      | 9.0.0 | 9.1.0 |
| 09-2009 | RP#45 | RP-090877 | 324   | Correction of Band 3 spurious emission band UE co-existence                                                                 | 9.0.0 | 9.1.0 |

| 09-2009            | RP#45          | RP-090877              | 249R1          | CR Pcmax definition (working assumption)                                                                                                          | 9.0.0          | 9.1.0          |
|--------------------|----------------|------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| 09-2009            | RP#45          | RP-090877              | 330            | Spectrum flatness clarification                                                                                                                   | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090877              | 332            | Transmit power: removal of TC and modification of REFSENS note                                                                                    | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090877              | 282R1          | Additional SRS relative power requirement and update of<br>measurement definition                                                                 | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090877              | 284R1          | Power range applicable for relative tolerance                                                                                                     | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090878              | 233            | TDD UL/DL configurations for CQI reporting                                                                                                        | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090878              | 235            | Further clarification on CQI test configurations                                                                                                  | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090878              | 243            | Corrections to UL- and DL-RMC-s                                                                                                                   | 9.0.0<br>9.0.0 | 9.1.0<br>9.1.0 |
| 09-2009<br>09-2009 | RP#45<br>RP#45 | RP-090878<br>RP-090878 | 247<br>290     | Reference measurement channel for multiple PMI requirements<br>CQI reporting test for a scenario with frequency-selective                         | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090878              | 265R2          | interference CQI reference measurement channels                                                                                                   | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090878              | 321R1          | CR RI Test                                                                                                                                        | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090875              | 231            | Correction of parameters for demodulation performance requirement                                                                                 | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090875              | 241R1          | UE categories for performance tests and correction to RMC references                                                                              | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090875              | 333            | Clarification of Ês definition in the demodulation requirement                                                                                    | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090875              | 326            | Editorial corrections and updates to PHICH PBCH test cases.                                                                                       | 9.0.0          | 9.1.0          |
| 09-2009            | RP#45          | RP-090875              | 259R3          | Test case numbering in section 8 Performance tests                                                                                                | 9.0.0          | 9.1.0          |
| 12-2009            | RP-46          | RP-091264              | 335            | Test case numbering in TDD PDSCH performance test<br>(Technically endorsed at RAN 4 52bis in R4-093523)                                           | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091261              | 337            | Adding beamforming model for user-specfic reference signal<br>(Technically endorsed at RAN 4 52bis in R4-093525)                                  | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091263              | 339R1          | Adding redundancy sequences to PMI test (Technically endorsed<br>at RAN 4 52bis in R4-093581)                                                     | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091264              | 341            | Throughput value correction at FRC for Maximum input level<br>(Technically endorsed at RAN 4 52bis in R4-093660)                                  | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091261              | 343            | Correction to the modulated E-UTRA interferer (Technically<br>endorsed at RAN 4 52bis in R4-093662)                                               | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091264              | 345R1          | OCNG: Patterns and present use in tests (Technically endorsed at RAN 4 52bis in R4-093664)                                                        | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091264              | 347            | OCNG: Use in receiver and performance tests (Technically<br>endorsed at RAN 4 52bis in R4-093666)                                                 | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091263              | 349            | Miscellaneous corrections on CSI requirements (Technically<br>endorsed at RAN 4 52bis in R4-093676)                                               | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091261              | 351            | Removal of RLC modes (Technically endorsed at RAN 4 52bis in R4-093677)                                                                           | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091261              | 353            | CR Rx diversity requirement (Technically endorsed at RAN 4<br>52bis in R4-093703)<br>A-MPR notation in NS_07 (Technically endorsed at RAN 4 52bis | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091261              | 355            | in R4-093706)                                                                                                                                     | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091263              | 359            | Single- and multi-PMI requirements (Technically endorsed at RAN 4 52bis in R4-093846)                                                             | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091263              | 363            | CQI reference measurement channel (Technically endorsed at<br>RAN 4 52bis in R4-093970)<br>LTE MBSFN Channel Model (Technically endorsed at RAN 4 | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091292              | 364            | 52bis in R4-094020)                                                                                                                               | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091264              | 367            | Numbering of PDSCH (User-Specific Reference Symbols) Demodulation Tests Numbering of PDSCH/PCEICH_PHICH_PRCH_Perced Tests                         | 9.1.0          | 9.2.0          |
| 12-2009<br>12-2009 | RP-46<br>RP-46 | RP-091264<br>RP-091261 | 369<br>371     | Numbering of PDCCH/PCFICH, PHICH, PBCH Demod Tests<br>Remove [] from Reference Measurement Channels in Annex A                                    | 9.1.0<br>9.1.0 | 9.2.0<br>9.2.0 |
| 12-2009            | RP-46          | RP-091264              | 373R1          | Corrections to RMC-s for Maximum input level test for low UE categories                                                                           | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091261              | 377            | Correction of UE-category for R.30                                                                                                                | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091286              | 378            | Introduction of Extended LTE1500 requirements for TS36.101                                                                                        | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 384            | CR: Removal of 1.4 MHz and 3 MHz channel bandwidths from<br>additional spurious emissions requirements for Band 1 PHS<br>protection               | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 386R3          | Clarification of measurement conditions of spurious emission requirements at the edge of spurious domain                                          | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 390            | Spurious emission table correction for TDD bands 33 and 38.                                                                                       | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 392R2          | 36.101 Symbols and abreviations for Pcmax                                                                                                         | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 394            | UTRAACLR1 requirement definition for 1.4 and 3 MHz BW<br>completed<br>Introduction of the ACK/NACK feedback modes for TDD                         | 9.1.0          | 9.2.0          |
| 12-2009<br>12-2009 | RP-46<br>RP-46 | RP-091263<br>RP-091262 | 396<br>404R3   | requirements<br>CR Power control exception R8                                                                                                     | 9.1.0<br>9.1.0 | 9.2.0<br>9.2.0 |
| 12-2009            | RP-46<br>RP-46 | RP-091262<br>RP-091262 | 404R3<br>416R1 | Relative power tolerance: special case for receiver tests                                                                                         | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091263              | 420R1          | CSI reporting: test configuration for CQI fading requirements                                                                                     | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091284              | 421R1          | Inclusion of Band 20 UE RF parameters                                                                                                             | 9.1.0          | 9.2.0          |

|                    |                | [                      | T              | Editorial corrections and undetes to Clause 0.24 EDD                                                   |                | 1              |
|--------------------|----------------|------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|----------------|
| 12-2009            | RP-46          | RP-091264              | 425            | Editorial corrections and updates to Clause 8.2.1 FDD<br>demodulation test cases                       | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 427            | CR: time mask                                                                                          | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091264              | 430            | Correction of the payload size for PDCCH/PCFICH performance                                            | 9.1.0          | 9.2.0          |
|                    |                |                        |                | requirements                                                                                           |                |                |
| 12-2009            | RP-46          | RP-091263              | 432            | Transport format and test point updates to RI reporting test cases                                     | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091263              | 434            | Transport format and test setup updates to frequency-selective<br>interference CQI tests               | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091263              | 436            | CR RI reporting configuration in PUCCH 1-1 test                                                        | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091261              | 438            | Addition of R.11-1 TDD references                                                                      | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091292              | 439            | Performance requirements for LTE MBMS                                                                  | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 442R1          | In Band Emissions Requirements Correction CR                                                           | 9.1.0          | 9.2.0          |
| 12-2009            | RP-46          | RP-091262              | 444R1          | PCMAX definition                                                                                       | 9.1.0          | 9.2.0          |
| 03-2010            | RP-47          | RP-100246              | 453r1          | Corrections of various errors in the UE RF requirements                                                | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100246              | 462r1          | UTRA ACLR measurement bandwidths for 1.4 and 3 MHz                                                     | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100246              | 493            | Band 8 Coexistence Requirement Table Correction                                                        | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100246              | 489r1          | Rel 9 CR for Band 14                                                                                   | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100246              | 485r1          | CR Band 1- PHS coexistence                                                                             | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100247              | 501            | Fading CQI requirements for FDD mode                                                                   | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100247              | 499            | CR correction to RI test<br>Reporting mode, Reporting Interval and Editorial corrections for           | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100249              | 451            | demodulation                                                                                           | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100249              | 464r1          | Corrections to 1PRB PDSCH performance test in presence of<br>MBSFN.                                    | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100249              | 458r1          | OCNG corrections                                                                                       | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100249              | 467            | Addition of ONCG configuration in DRS performance test                                                 | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100249              | 465r1          | PDSCH performance tests for low UE categories                                                          | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100250              | 460r1          | Use of OCNG in CSI tests                                                                               | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100250              | 491r1          | Corrections to CQI test configurations                                                                 | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100250              | 469r1          | Corrections of some CSI test parameters                                                                | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100251              | 456r1          | TBS correction for RMC UL TDD 16QAM full allocation BW 1.4<br>MHz                                      | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100262              | 449            | Editorial corrections on Band 19 REFSENS                                                               | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100263              | 470r1          | Band 20 UE RF requirements                                                                             | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100264              | 446r1          | A-MPR for Band 21                                                                                      | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100264              | 448            | RF requirements for UE in later releases                                                               | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100268              | 445            | 36.101 CR: Editorial corrections on LTE MBMS reference<br>measurement channels                         | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100268              | 454            | The definition of the Doppler shift for LTE MBSFN Channel Model                                        | 9.2.0          | 9.3.0          |
| 03-2010            | RP-47          | RP-100239              | 478r3          | Modification of the spectral flatness requirement and some editorial corrections                       | 9.2.0          | 9.3.0          |
| 06-2010            | RP-48          | RP-100619              | 559            | Corrections of tables for Additional Spectrum Emission Mask                                            | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100619              | 538            | Correction of transient time definition for EVM requirements                                           | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100619              | 557r2          | CR on UE coexistence requirement                                                                       | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100619              | 547r1          | Correction of antenna configuration and beam-forming model for DRS                                     | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100619              | 536r1          | CR: Corrections on MIMO demodulation performance<br>requirements                                       | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100619              | 528r1          | Corrections on the definition of PCMAX                                                                 | 9.3.0          | 9.4.0          |
| 06-2010            |                |                        |                | Relaxation of the PDSCH demodulation requirements due to                                               | 9.3.0          | 9.4.0          |
|                    | RP-48          | RP-100619              | 568            | control channel errors                                                                                 | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100619              | 566            | Correction of the UE output power definition for RX tests                                              | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100620              | 505r1          | Fading CQI requirements for TDD mode                                                                   | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100620              | 521            | Correction to FRC for CQI index 0                                                                      | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100620              | 516r1          | Correction to CQI test configuration                                                                   | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100620              | 532            | Correction of CQI and PMI delay configuration description for TDD                                      | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100620              | 574            | Correction to FDD and TDD CSI test configurations                                                      | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100620              | 571            | Minimum requirements for Rank indicator reporting                                                      | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100628              | 563            | LTE MBMS performance requirements (FDD)                                                                | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100628              | 564            | LTE MBMS performance requirements (TDD)                                                                | 9.3.0          | 9.4.0          |
| 06-2010<br>06-2010 | RP-48<br>RP-48 | RP-100629<br>RP-100630 | 553r2<br>524r2 | Performance requirements for dual-layer beamforming<br>CR: low Category CSI requirement                | 9.3.0<br>9.3.0 | 9.4.0<br>9.4.0 |
| 06-2010            | RP-48          | RP-100630<br>RP-100630 | 52412          | Correction of FRC reference and test case numbering                                                    | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          |                        |                | Correction of carrier frequency and EARFCN of Band 21 for                                              | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100630              | 526            | TS36.101<br>Addition of PDSCH TDD DRS demodulation tests for Low UE                                    | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100630              | 508r1          | categories<br>Specification of minimum performance requirements for low UE                             | 9.3.0          | 9.4.0          |
| 06-2010            |                | RP-100630              | 539            | category<br>Addition of minimum performance requirements for low UE                                    | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100630              | 569            | category TDD CRS single-antenna port tests<br>Introduction of sustained downlink data-rate performance |                |                |
|                    | RP-48          | RP-100631              | 549r3          | requirements                                                                                           | 9.3.0          | 9.4.0          |
| 06-2010            | RP-48          | RP-100683              | 530r1          | Band 20 Rx requirements                                                                                | 9.3.0          | 9.4.0          |

| 00.0040                       | DD 40          | DD 400000              | 014-0        |                                                                                                                             | 0.4.0            | 0.5.0  |
|-------------------------------|----------------|------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|--------|
| 09-2010                       | RP-49          | RP-100920              | 614r2        | Add OCNG to MBMS requirements                                                                                               | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100916              | 599<br>597r1 | Correction of PDCCH content for PHICH test                                                                                  | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100920              |              | Beamforming model for transmission on antenna port 7/8                                                                      | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100920              | 600r1        | Correction of full correlation in frequency-selective CQI test                                                              | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | DD 400000              | 004          | Correction on single-antenna transmission fixed reference<br>channel                                                        | 0.4.0            | 050    |
|                               | RP-49          | RP-100920              | 601          |                                                                                                                             | 9.4.0            | 9.5.0  |
| 09-2010                       |                | DD 400044              | 005          | Reference sensitivity requirements for the 1.4 and 3 MHz                                                                    | 0.4.0            | 050    |
|                               | RP-49          | RP-100914              | 605          | bandwidths                                                                                                                  | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100920              | 608r1        | CR for DL sustained data rate test                                                                                          | 9.4.0            | 9.5.0  |
| 09-2010                       | DD 40          | DD 400040              | 014          | Correction of references in section 10 (MBMS performance                                                                    | 0.4.0            | 050    |
| 00.0040                       | RP-49          | RP-100919              | 611          | requirements)                                                                                                               | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100914              | 613          | Band 13 and Band 14 spurious emission corrections                                                                           | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100919              | 617r1        | Rx Requirements                                                                                                             | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100926              | 576r1        | Clarification on DL-BF simulation assumptions                                                                               | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100920              | 582r1        | Introduction of additional Rel-9 scenarios                                                                                  | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100925              | 575r1        | Correction to band 20 ue to ue Co-existence table                                                                           | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100916              | 581r1        | Test configuration corrections to CQI reporting in AWGN                                                                     | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100916              | 595          | Corrections to RF OCNG Pattern OP.1 and 2                                                                                   | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100919              | 583          | Editorial corrections of 36.101                                                                                             | 9.4.0            | 9.5.0  |
| 09-2010                       |                |                        |              | Addition of minimum performance requirements for low UE                                                                     |                  |        |
|                               | RP-49          | RP-100920              | 586          | category TDD tests                                                                                                          | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100914              | 590r1        | Downlink power for receiver tests                                                                                           | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100920              | 591          | OCNG use and power in beamforming tests                                                                                     | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100916              | 593          | Throughput for multi-datastreams transmissions                                                                              | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100914              | 588          | Missing note in Additional spurious emission test with NS_07                                                                | 9.4.0            | 9.5.0  |
| 09-2010                       | RP-49          | RP-100927              | 596r2        | CR LTE_TDD_2600_US spectrum band definition additions to TS                                                                 | 9.5.0            | 10.0.0 |
|                               |                |                        |              | 36.101                                                                                                                      |                  |        |
| 12-2010                       | RP-50          | RP-101309              | 680          | Demodulation performance requirements for dual-layer                                                                        | 10.0.0           | 10.1.0 |
|                               |                |                        |              | beamforming                                                                                                                 |                  |        |
| 12-2010                       | RP-50          | RP-101325              | 672          | Correction on the statement of TB size and subband selection in                                                             | 10.0.0           | 10.1.0 |
|                               |                |                        | -            | CSI tests                                                                                                                   |                  |        |
| 12-2010                       | RP-50          | RP-101327              | 652          | Correction to Band 12 frequency range                                                                                       | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101329              | 630          | Removal of [] from TDD Rank Indicator requirements                                                                          | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101329              | 635r1        | Test configuration corrections to CQI TDD reporting in AWGN                                                                 | 10.0.0           | 10.1.0 |
| 12 2010                       | 14 00          | 101020                 | 00011        | (Rel-10)                                                                                                                    | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101330              | 645          | EVM window length for PRACH                                                                                                 | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101330              | 649          | Removal of NS signalling from TDD REFSENS tests                                                                             | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101330              | 642r1        | Correction of Note 4 In Table 7.3.1-1: Reference sensitivity QPSK                                                           | 10.0.0           | 10.1.0 |
| 12 2010                       | 141 00         | 101000                 | 04211        | PREFSENS                                                                                                                    | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101341              | 627          | Add 20 RB UL Ref Meas channel                                                                                               | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101341              | 654r1        | Additional in-band blocking requirement for Band 12                                                                         | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101341              | 678          | Further clarifications for the Sustained Downlink Data Rate Test                                                            | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101341              | 673r1        | Correction on MBMS performance requirements                                                                                 | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101341              | 667r3        | CR Removing brackets of Band 41 reference sensitivity to TS                                                                 | 10.0.0           | 10.1.0 |
| 12-2010                       | KF-30          | KF-101349              | 00/13        | 36.101                                                                                                                      | 10.0.0           | 10.1.0 |
| 12 2010                       | RP-50          | RP-101356              | 666*2        | Band 42 and 43 parameters for UMTS/LTE 3500 (TDD) for TS                                                                    | 10.0.0           | 10.1.0 |
| 12-2010                       | KP-50          | RP-101350              | 666r2        |                                                                                                                             | 10.0.0           | 10.1.0 |
| 40.0040                       |                | DD 404050              | 0.40=4       | 36.101                                                                                                                      | 10.0.0           | 40.4.0 |
| 12-2010                       | RP-50          | RP-101359              | 646r1        | CR for CA, UL-MIMO, eDL-MIMO, CPE                                                                                           | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101361              | 620r1        | Introduction of L-band in TS 36.101                                                                                         | 10.0.0           | 10.1.0 |
| 12-2010                       | RP-50          | RP-101379              | 670r1        | Correction on the PMI reporting in Multi-Laye Spatial Multiplexing                                                          | 10.0.0           | 10.1.0 |
| 40.00.0                       | DD 77          |                        | 070 /        | performance test                                                                                                            | 40.0-            | 46.1   |
| 12-2010                       | RP-50          | RP-101380              | 679r1        | Adding antenna configuration in CQI fading test case                                                                        | 10.0.0           | 10.1.0 |
| 01-2011                       |                |                        |              | Clause numbering correction                                                                                                 | 10.1.0           | 10.1.1 |
| 03-2011                       | RP-51          | RP-110359              | 695          | Removal of E-UTRA ACLR for CA                                                                                               | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110338              | 699          | PDCCH and PHICH performance: OCNG and power settings                                                                        | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110336              | 706r1        | Spurious emissions measurement uncertainty                                                                                  | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110352              | 707r1        | REFSENSE in lower SNR                                                                                                       | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110338              | 710          | PMI performance: Power settings and precoding granularity                                                                   | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110359              | 715r2        | Definition of configured transmitted power for Rel-10                                                                       | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110359              | 717          | Introduction of requirement for adjacent intraband CA image                                                                 | 10.1.1           | 10.2.0 |
|                               |                |                        |              | rejection                                                                                                                   |                  |        |
| 03-2011                       | RP-51          | RP-110343              | 719          | Minimum requirements for the additional Rel-9 scenarios                                                                     | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110343              | 723          | Corrections to power settings for Single layer beamforming with                                                             | 10.1.1           | 10.2.0 |
|                               |                |                        |              | simultaneous transmission                                                                                                   |                  |        |
| 03-2011                       | RP-51          | RP-110343              | 726r1        | Correction to the PUSCH3-0 subband tests for Rel-10                                                                         | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110338              | 730          | Removing the square bracket for TS36.101                                                                                    | 10.1.1           | 10.2.0 |
| 03-2011                       | RP-51          | RP-110349              | 739          | Removal of square brackets for dual-layer beamforming                                                                       | 10.1.1           | 10.2.0 |
|                               |                |                        | -            | demodulation performance requirements                                                                                       |                  |        |
|                               | RP-51          | RP-110359              | 751          | CR: Maximum input level for intra band CA                                                                                   | 10.1.1           | 10.2.0 |
| 03-2011                       |                |                        | 754r2        | UE category coverage for dual-layer beamforming                                                                             | 10.1.1           | 10.2.0 |
| 03-2011<br>03-2011            | RP-51          | RP-110349              | 73412        |                                                                                                                             |                  |        |
| 03-2011                       | RP-51<br>RP-51 | RP-110349<br>RP-110343 |              |                                                                                                                             |                  | 10.2.0 |
| 03-2011<br>03-2011            | RP-51          | RP-110343              | 756r1        | Further clarifications for the Sustained Downlink Data Rate Test                                                            | 10.1.1           | 10.2.0 |
| 03-2011<br>03-2011<br>03-2011 | RP-51<br>RP-51 | RP-110343<br>RP-110343 | 756r1<br>759 | Further clarifications for the Sustained Downlink Data Rate Test<br>Removal of square brackets in sustained data rate tests | 10.1.1<br>10.1.1 | 10.2.0 |
| 03-2011<br>03-2011            | RP-51          | RP-110343              | 756r1        | Further clarifications for the Sustained Downlink Data Rate Test                                                            | 10.1.1           |        |

| 02 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DD 110242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 765                                                                                                                                                                                                                                                                                                                         | Varification from quark for DUSCU 2.2 and DUCCU 2.4 reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 765                                                                                                                                                                                                                                                                                                                         | Verification framework for PUSCH 2-2 and PUCCH 2-1 reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.1.1 10.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 766                                                                                                                                                                                                                                                                                                                         | Editorial: Spec Title correction, removal of "Draft"<br>Add Expanded 1900MHz Band (Band 25) in 36.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52<br>RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RP-110804<br>RP-110795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 768                                                                                                                                                                                                                                                                                                                         | Fixing Band 24 inclusion in TS 36.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52<br>RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RP-110795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 700                                                                                                                                                                                                                                                                                                                         | CR: Corrections for UE to UE co-existence requirements of Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NF -92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KF-110700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 774                                                                                                                                                                                                                                                                                                                         | Add 2GHz S-Band (Band 23) in 36.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 782                                                                                                                                                                                                                                                                                                                         | CR: Band 19 A-MPR refinement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 787                                                                                                                                                                                                                                                                                                                         | REFSENS in lower SNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 805                                                                                                                                                                                                                                                                                                                         | Clarification for MBMS reference signal levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810                                                                                                                                                                                                                                                                                                                         | FDD MBMS performance requirements for 64QAM mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 814                                                                                                                                                                                                                                                                                                                         | Correction on CQI mapping index of RI test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 824                                                                                                                                                                                                                                                                                                                         | Corrections to in-band blocking table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 826                                                                                                                                                                                                                                                                                                                         | Correction of TDD Category 1 DRS and DMRS RMCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 828                                                                                                                                                                                                                                                                                                                         | TDD MBMS performance requirements for 64QAM mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 829                                                                                                                                                                                                                                                                                                                         | Correction of TDD RMC for Low SNR Demodulation test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 830                                                                                                                                                                                                                                                                                                                         | Informative reference sensitivity requirements for Low SNR for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000                                                                                                                                                                                                                                                                                                                         | TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 778r1                                                                                                                                                                                                                                                                                                                       | Minor corrections to DL-RMC-s for Maximum input level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 832                                                                                                                                                                                                                                                                                                                         | PDCCH and PHICH performance: OCNG and power settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 818r1                                                                                                                                                                                                                                                                                                                       | Correction on 2-X PMI test for R10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 816r1                                                                                                                                                                                                                                                                                                                       | Addition of performance requirements for dual-layer beamforming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110/91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01011                                                                                                                                                                                                                                                                                                                       | category 1 UE test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 834                                                                                                                                                                                                                                                                                                                         | Performance requirements for PUCCH 2-0, PUCCH 2-1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             | PUSCH 2-2 tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-110807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 835r1                                                                                                                                                                                                                                                                                                                       | CR for UL MIMO and CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 862r1                                                                                                                                                                                                                                                                                                                       | Removal of unnecessary channel bandwidths from REFSENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14 111210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00211                                                                                                                                                                                                                                                                                                                       | tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 869r1                                                                                                                                                                                                                                                                                                                       | Clarification on BS precoding information field for RI FDD and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                             | PUCCH 2-1 PMI tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 872r1                                                                                                                                                                                                                                                                                                                       | CR for B14Rx requirement Rrel 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 890r1                                                                                                                                                                                                                                                                                                                       | CR to TS36.101: Correction on the accuracy test of CQI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 893                                                                                                                                                                                                                                                                                                                         | CR to TS36.101: Correction on CQI mapping index of TDD RI test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 904                                                                                                                                                                                                                                                                                                                         | Correction of code block numbers for some RMCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 907                                                                                                                                                                                                                                                                                                                         | Correction to UL RMC for FDD and TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 914r1                                                                                                                                                                                                                                                                                                                       | Adding codebook subset restriction for single layer closed-loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 00 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01411                                                                                                                                                                                                                                                                                                                       | spatial multiplexing test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 883                                                                                                                                                                                                                                                                                                                         | Sustained data rate: Correction of the ACK/NACK feedback mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 929                                                                                                                                                                                                                                                                                                                         | 36.101 CR on MBSFN FDD requirements(R10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 938                                                                                                                                                                                                                                                                                                                         | TDD MBMS performance requirements for 64QAM mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 895                                                                                                                                                                                                                                                                                                                         | Further clarification for the dual-layer beamforming demodulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             | requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 908r1                                                                                                                                                                                                                                                                                                                       | Introduction of Band 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90011                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111255<br>RP-111255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 939                                                                                                                                                                                                                                                                                                                         | Modifications of Band 42 and 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                             | Modifications of Band 42 and 43<br>CR for TS 36.101 Annex B: Static channels for CQI tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RP-111255<br>RP-111260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 939<br>944                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-111255<br>RP-111260<br>RP-111262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 939                                                                                                                                                                                                                                                                                                                         | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.4.0<br>10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                       | RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 939<br>944<br>878r1<br>887                                                                                                                                                                                                                                                                                                  | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.3.0<br>10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.4.0<br>10.4.0<br>10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 939<br>944<br>878r1<br>887<br>926r1                                                                                                                                                                                                                                                                                         | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                                                                                       | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 939<br>944<br>878r1<br>887                                                                                                                                                                                                                                                                                                  | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3.0<br>10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.4.0<br>10.4.0<br>10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                                                      | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1                                                                                                                                                                                                                                                                       | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                                           | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848                                                                                                                                                                                                                                                                | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                                | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863                                                                                                                                                                                                                                                         | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguos CA MPR requirement refinement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0<br>10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                     | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1                                                                                                                                                                                                                                                | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0<br>10.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                     | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935                                                                                                                                                                                                                                         | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0                                                                                                                                                                                                                                                                | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                          | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1                                                                                                                                                                                                                                                | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements for TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0                                                                                                                                                                                                                              | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                                     | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111266<br>RP-111266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1                                                                                                                                                                                                                                | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0                                                                                                                                                                                                                                                                | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011                                                                                                                                                                                                                         | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935                                                                                                                                                                                                                                         | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.3.0\\ 10.4.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011<br>09-2011                                                                                                                                                                                                                                                                                                                                                          | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111266<br>RP-111266<br>RP-111266<br>RP-111684                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947                                                                                                                                                                                                                         | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0                                                                                                                                                                                                                              | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           12-2011           12-2011                                                                                                                                                                                                                                                              | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111266<br>RP-111266<br>RP-111684<br>RP-111684                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>948                                                                                                                                                                                                                  | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0                                                                                                                                                                                            | 10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           10-2011           12-2011           12-2011                                                                                                                                                                                                                                            | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111266<br>RP-111266<br>RP-111266<br>RP-111684                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947                                                                                                                                                                                                                         | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR                                                                                                                                                                                                                                                                                                                                                                                                                | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0                                                                                                                                                                                            | 10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.5.0           10.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           12-2011           12-2011                                                                                                                                                                                                                                                              | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111266<br>RP-111266<br>RP-111684<br>RP-111684<br>RP-111684                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>947<br>948<br>949                                                                                                                                                                                                    | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI                                                                                                                                                                                                                                                                                                                                           | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0                                                                                                                                                                                            | 10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011                                                                                                                                                                                                                         | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111686           RP-111680                                                                                                                                                                                                                                                                                                                                                     | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>947<br>948<br>949                                                                                                                                                                                                    | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10                                                                                                                                                                                                                                                                                                                                                                         | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0                                                                                                                                                                                            | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011           12-2011                                                                                                                                                                                     | RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-54           RP-54           RP-54           RP-54           RP-54           RP-54           RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111684           RP-111684           RP-111686           RP-111680           RP-111734                                                                                                                                                                                                                                                                                         | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>947<br>947<br>948<br>949<br>950<br>953r1                                                                                                                                                                             | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction                                                                                                                                                                                                                                                                                                                          | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0                                                                                                                                                          | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011                                                                                                                                                 | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP-111255<br>RP-111260<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111262<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111265<br>RP-111266<br>RP-111266<br>RP-111684<br>RP-111684<br>RP-111680<br>RP-111734<br>RP-111680                                                                                                                                                                                                                                                                                                                                                                                                                             | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>947<br>947<br>948<br>949<br>950<br>953r1<br>956                                                                                                                                                                      | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction                                                                                                                                                                                                                                                                       | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0                                                                                                                                                                           | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011                                                                                                             | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680           RP-111734           RP-111682                                                                                                                                                                                                                                                                     | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>947<br>947<br>948<br>949<br>950<br>953r1<br>956<br>959                                                                                                                                                               | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test                                                                                                                                                                                           | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0                                                                                                                                         | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\$ |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011                                                                         | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680                                                             | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>947<br>947<br>948<br>949<br>950<br>953r1<br>956<br>959<br>960r1                                                                                                                                                      | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test<br>P-MPR definition                                                                                                                                                                       | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0                                                                                                       | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\$ |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011                                                       | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680           RP-111734           RP-111682                                                                                                                                                                                                                                                                     | 939<br>944<br>878r1<br>887<br>926r1<br>927r1<br>930r1<br>848<br>863<br>866r1<br>935<br>936r1<br>947<br>947<br>947<br>948<br>949<br>950<br>953r1<br>956<br>959                                                                                                                                                               | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test                                                                                                                                                                                           | 10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.3.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0         10.4.0                                                                              | $\begin{array}{c} 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.$                              |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011                                                                         | RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-53<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54<br>RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111680                     | 939           944           878r1           887           926r1           927r1           930r1           848           863           866r1           935           936r1           947           948           949           950           953r1           956           959           960r1           962                 | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test<br>P-MPR definition<br>Pcmax,c Computation Assumptions                                                                                                                                    | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0                                                                                                       | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\$ |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           10-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011                                                        | RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680           RP-111683           RP-111683           RP-111683           RP-111683           RP-111693           RP-111733 | 939           944           878r1           887           926r1           927r1           930r1           848           863           866r1           935           936r1           947           948           949           950           953r1           956           959           960r1           962           963r1 | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test<br>P-MPR definition<br>Pcmax,c Computation Assumptions<br>Correction of frequency range for spurious emission requirements                                                                | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0                                   | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\$ |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           10-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011  | RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-54           RP-54 </td <td>RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680           RP-111680</td> <td>939         944         878r1         887         926r1         927r1         930r1         848         863         866r1         935         936r1         947         948         949         950         953r1         956         959         960r1         962         963r1         966</td> <td>CR for TS 36.101 Annex B: Static channels for CQI tests<br/>Correction of CSI reference channel subframe description<br/>Correction to UL MIMO<br/>Power control accuracy for intra-band carrier aggregation<br/>In-band emissions requirements for intra-band carrier aggregation<br/>Adding the operating band for UL-MIMO<br/>Corrections to intra-band contiguous CA RX requirements<br/>Intra-band contiguous CA MPR requirement refinement<br/>Intra-band contiguous CA EVM<br/>Introduction of the downlink CA demodulation requirements<br/>Introduction of CA UE demodulation requirements for TDD<br/>Corrections of UE categories of Rel-10 reference channels for RF<br/>requirements<br/>Alternative way to define channel bandwidths per operating band<br/>for<br/>CR for TS36.101: Adding note to the function of MPR<br/>Clarification on applying CSI reports during rank switching in RI<br/>FDD test - Rel-10<br/>Corrections for Band 42 and 43 introduction<br/>UE spurious emissions<br/>Add scrambling identity n_SCID for MU-MIMO test<br/>P-MPR definition<br/>Pcmax,c Computation Assumptions<br/>Correction of frequency range for spurious emission requirements<br/>General review of the reference measurement channels</td> <td>10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0</td> <td><math display="block">\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\</math></td>        | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680                                         | 939         944         878r1         887         926r1         927r1         930r1         848         863         866r1         935         936r1         947         948         949         950         953r1         956         959         960r1         962         963r1         966                               | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test<br>P-MPR definition<br>Pcmax,c Computation Assumptions<br>Correction of frequency range for spurious emission requirements<br>General review of the reference measurement channels        | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0 | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\$ |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           10-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011                                                        | RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680           RP-111683           RP-111683           RP-111683           RP-111683           RP-111693           RP-111733 | 939           944           878r1           887           926r1           927r1           930r1           848           863           866r1           935           936r1           947           948           949           950           953r1           956           959           960r1           962           963r1 | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test<br>P-MPR definition<br>Pcmax,c Computation Assumptions<br>Correction of frequency range for spurious emission requirements<br>Corrections of Rel-10 demodulation performance requirements | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0                                   | $\begin{array}{c} 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.4.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.0 \\ 10.5.$                              |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           109-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011 | RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-54           RP-54 </td <td>RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680           RP-111680</td> <td>939         944         878r1         887         926r1         927r1         930r1         848         863         866r1         935         936r1         947         948         949         950         953r1         956         959         960r1         962         963r1         966</td> <td>CR for TS 36.101 Annex B: Static channels for CQI tests<br/>Correction of CSI reference channel subframe description<br/>Correction to UL MIMO<br/>Power control accuracy for intra-band carrier aggregation<br/>In-band emissions requirements for intra-band carrier aggregation<br/>Adding the operating band for UL-MIMO<br/>Corrections to intra-band contiguous CA RX requirements<br/>Intra-band contiguous CA MPR requirement refinement<br/>Intra-band contiguous CA EVM<br/>Introduction of the downlink CA demodulation requirements<br/>Introduction of CA UE demodulation requirements for TDD<br/>Corrections of UE categories of Rel-10 reference channels for RF<br/>requirements<br/>Alternative way to define channel bandwidths per operating band<br/>for<br/>CR for TS36.101: Adding note to the function of MPR<br/>Clarification on applying CSI reports during rank switching in RI<br/>FDD test - Rel-10<br/>Corrections for Band 42 and 43 introduction<br/>UE spurious emissions<br/>Add scrambling identity n_SCID for MU-MIMO test<br/>P-MPR definition<br/>Pcmax,c Computation Assumptions<br/>Corrections of Rel-10 demodulation performance requirements<br/>This CR is only partially implemented due to confliction with CR</td> <td>10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0</td> <td><math display="block">\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\</math></td> | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680                                         | 939         944         878r1         887         926r1         927r1         930r1         848         863         866r1         935         936r1         947         948         949         950         953r1         956         959         960r1         962         963r1         966                               | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test<br>P-MPR definition<br>Pcmax,c Computation Assumptions<br>Corrections of Rel-10 demodulation performance requirements<br>This CR is only partially implemented due to confliction with CR | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0 | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\$ |
| 09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           09-2011           10-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011           12-2011  | RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-53           RP-54           RP-54 </td <td>RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680           RP-111680</td> <td>939         944         878r1         887         926r1         927r1         930r1         848         863         866r1         935         936r1         947         948         949         950         953r1         956         959         960r1         962         963r1         966</td> <td>CR for TS 36.101 Annex B: Static channels for CQI tests<br/>Correction of CSI reference channel subframe description<br/>Correction to UL MIMO<br/>Power control accuracy for intra-band carrier aggregation<br/>In-band emissions requirements for intra-band carrier aggregation<br/>Adding the operating band for UL-MIMO<br/>Corrections to intra-band contiguous CA RX requirements<br/>Intra-band contiguous CA MPR requirement refinement<br/>Intra-band contiguous CA EVM<br/>Introduction of the downlink CA demodulation requirements<br/>Introduction of CA UE demodulation requirements for TDD<br/>Corrections of UE categories of Rel-10 reference channels for RF<br/>requirements<br/>Alternative way to define channel bandwidths per operating band<br/>for<br/>CR for TS36.101: Adding note to the function of MPR<br/>Clarification on applying CSI reports during rank switching in RI<br/>FDD test - Rel-10<br/>Corrections for Band 42 and 43 introduction<br/>UE spurious emissions<br/>Add scrambling identity n_SCID for MU-MIMO test<br/>P-MPR definition<br/>Pcmax,c Computation Assumptions<br/>Correction of frequency range for spurious emission requirements<br/>Corrections of Rel-10 demodulation performance requirements</td> <td>10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0</td> <td><math display="block">\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\</math></td> | RP-111255           RP-111260           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111262           RP-111265           RP-111265           RP-111265           RP-111265           RP-111266           RP-111266           RP-111684           RP-111684           RP-111684           RP-111680                                         | 939         944         878r1         887         926r1         927r1         930r1         848         863         866r1         935         936r1         947         948         949         950         953r1         956         959         960r1         962         963r1         966                               | CR for TS 36.101 Annex B: Static channels for CQI tests<br>Correction of CSI reference channel subframe description<br>Correction to UL MIMO<br>Power control accuracy for intra-band carrier aggregation<br>In-band emissions requirements for intra-band carrier aggregation<br>Adding the operating band for UL-MIMO<br>Corrections to intra-band contiguous CA RX requirements<br>Intra-band contiguous CA MPR requirement refinement<br>Intra-band contiguous CA EVM<br>Introduction of the downlink CA demodulation requirements<br>Introduction of CA UE demodulation requirements for TDD<br>Corrections of UE categories of Rel-10 reference channels for RF<br>requirements<br>Alternative way to define channel bandwidths per operating band<br>for<br>CR for TS36.101: Adding note to the function of MPR<br>Clarification on applying CSI reports during rank switching in RI<br>FDD test - Rel-10<br>Corrections for Band 42 and 43 introduction<br>UE spurious emissions<br>Add scrambling identity n_SCID for MU-MIMO test<br>P-MPR definition<br>Pcmax,c Computation Assumptions<br>Correction of frequency range for spurious emission requirements<br>Corrections of Rel-10 demodulation performance requirements | 10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.3.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0           10.4.0 | $\begin{array}{c} 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.4.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\ 10.5.0\\$ |

|                                                                |                                           |                                                               |                                              | This CR is only partially implemented due to confliction with CR 966                                                                                                                                           |                                      |                                      |
|----------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|
| 12-2011                                                        | RP-54                                     | RP-111691                                                     | 982r2                                        | Introduction of SDR TDD test scenario for CA UE demodulation<br>This CR is only partially implemented due to confliction with CR<br>966                                                                        | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111693                                                     | 971r1                                        | CR on Colliding CRS for non-MBSFN ABS                                                                                                                                                                          | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111693                                                     | 972r1                                        | Introduction of eICIC demodulation performance requirements for FDD and TDD                                                                                                                                    | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111686                                                     | 985                                          | Adding missing UL configuration specification in some UE receiver requirements for case of 1 CC UL capable UE                                                                                                  | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111684                                                     | 998                                          | Correction and maintenance on CQI and PMI requirements (Rel-<br>10)                                                                                                                                            | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111735                                                     | 1004                                         | MPR for CA Multi-cluster                                                                                                                                                                                       | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111691                                                     | 1004                                         | CA demodulation performance requirements for LTE FDD                                                                                                                                                           | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | 111-111031                                                    | 1005                                         | CQI reporting accuracy test on frequency non-selective                                                                                                                                                         | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111692                                                     | 1006                                         | scheduling on eDL MIMO<br>CQI reporting accuracy test on frequency-selective scheduling on                                                                                                                     | 10.4.0                               | 10.5.0                               |
|                                                                |                                           | RP-111692                                                     | 1007                                         | eDL MIMO                                                                                                                                                                                                       |                                      |                                      |
| 12-2011                                                        | RP-54                                     | RP-111692                                                     | 1008                                         | PMI reporting accuracy test for TDD on eDL MIMO                                                                                                                                                                | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111692                                                     | 1009r1                                       | CR for TS 36.101: RI performance requirements                                                                                                                                                                  | 10.4.0                               | 10.5.0                               |
| 12-2011                                                        | RP-54                                     | RP-111692                                                     | 1010r1                                       | CR for TS 36.101: Introduction of static CQI tests (ReI-10)                                                                                                                                                    | 10.4.0                               | 10.5.0                               |
| 03-2012                                                        | RP-55                                     | RP-120291                                                     | 1014                                         | RF: Updates and corrections to the RMC-s related annexes (Rel-<br>10)                                                                                                                                          | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120300                                                     | 1015r1                                       | On elCIC ABS pattern                                                                                                                                                                                           | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120300                                                     | 1016r1                                       | On eICIC interference models                                                                                                                                                                                   | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120299                                                     | 1017r1                                       | TS36.101 CR: on eDL-MIMO channel model using cross-<br>polarized antennas                                                                                                                                      | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1020r1                                       | TS36.101 CR: Correction to MBMS Performance Test Parameters                                                                                                                                                    | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120303                                                     | 1021                                         | Harmonic exceptions in LTE UE to UE co-ex tests                                                                                                                                                                | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1023                                         | Unified titles for Rel-10 CSI tests                                                                                                                                                                            | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120300                                                     | 1033r1                                       | Introduction of reference channel for eICIC demodulation                                                                                                                                                       | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1040r1                                       | Correction of Actual code rate for CSI RMCs                                                                                                                                                                    | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1041r1                                       | Definition of synchronized operation                                                                                                                                                                           | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120296                                                     | 1048r1                                       | Intra band contiguos CA Ue to Ue Co-ex                                                                                                                                                                         | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120296                                                     | 1049r1                                       | REL-10 CA specification editorial consistency                                                                                                                                                                  | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120299                                                     | 1053                                         | Beamforming model for TM9                                                                                                                                                                                      | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120296                                                     | 1054                                         | Requirement for CA demodulation with power imbalance                                                                                                                                                           | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120298                                                     | 1057                                         | Updating Band 23 duplex specifications                                                                                                                                                                         | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120298                                                     | 1058r1                                       | Correcting UE Coexistence Requirements for Band 23                                                                                                                                                             | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1059r1                                       | CA demodulation performance requirements for LTE TDD                                                                                                                                                           | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1061                                         | Requirement for CA SDR FDD test scenario                                                                                                                                                                       | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120293                                                     | 1064r1                                       | TS36.101 RF editorial corrections Rel 10                                                                                                                                                                       | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120299                                                     | 1067r1                                       | Introduction of TM9 demodulation performance requirements                                                                                                                                                      | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1071r1                                       | Introduction of a CA demodulation test for UE soft buffer<br>management testing                                                                                                                                | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120296                                                     | 1072                                         | MPR formula correction For intra-band contiguous CA Bandwidth<br>Class C                                                                                                                                       | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120303                                                     | 1077r1                                       | CR for 36.101: B41 REFSENS and MOP changes to<br>accommodate single filter architecture                                                                                                                        | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120300                                                     | 1082                                         | TM3 tests for eICIC                                                                                                                                                                                            | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120300                                                     | 1083r1                                       | Introduction of requirements of CQI reporting definition for ecICIC                                                                                                                                            | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120304                                                     | 1084                                         | eDL MIMO CSI requirements                                                                                                                                                                                      | 10.5.0                               | 10.6.0                               |
| 03-2012                                                        | RP-55                                     | RP-120306                                                     | 1070r1                                       | Introduction of Band 26/XXVI to TS 36.101                                                                                                                                                                      | 10.6.0                               | 11.0.0                               |
| 03-2012                                                        | RP-55                                     | RP-120310                                                     | 1074                                         | Band 41 CA CR for TS36.101, section 5                                                                                                                                                                          | 10.6.0                               | 11.0.0                               |
| 03-2012                                                        | RP-55                                     | RP-120310                                                     | 1075r1<br>1076                               | Band 41 CA CR for TS36.101, section 6                                                                                                                                                                          | 10.6.0                               | 11.0.0                               |
| 03-2012<br>06-2012                                             | RP-55<br>RP-56                            | RP-120310<br>RP-120795                                        | 1076<br>1085r2                               | Band 41 CA CR for TS36.101, section 7<br>Modulator specification tightening                                                                                                                                    | 11.0.0                               | 11.0.0<br>11.1.0                     |
| 06-2012                                                        | RP-56<br>RP-56                            | RP-120795<br>RP-120777                                        | 1085r2<br>1087r1                             | Carrier aggregation Relative power tolerance, removal of TBD.                                                                                                                                                  | 11.0.0                               | 11.1.0                               |
| 06-2012                                                        | RP-56                                     | RP-120777                                                     | 108711                                       | UE spurious emissions for Band 7 and Band 38 coexistence                                                                                                                                                       | 11.0.0                               | 11.1.0                               |
| 06-2012                                                        | RP-56                                     | RP-120780                                                     | 1009                                         | Deleting square brackets in Reference Measurement Channels                                                                                                                                                     | 11.0.0                               | 11.1.0                               |
| 06-2012                                                        | RP-56                                     | RP-120780                                                     | 1092                                         | CR to TS36.101: Correction on parameters for the eDL-MIMO<br>CQI and PMI tests                                                                                                                                 | 11.0.0                               | 11.1.0                               |
| 00-2012                                                        | 11-30                                     | 111-120/19                                                    | 1091                                         | CR to TS36.101: Fixed reference channel for PDSCH                                                                                                                                                              | 11.0.0                               | 11.1.0                               |
| 06 2012                                                        |                                           | DD 100700                                                     | 1000-1                                       | demodulation performance requirements on eDL-MIMO – NOT                                                                                                                                                        | 11.0.0                               | 11 1 0                               |
|                                                                | RP-56                                     | RP-120780<br>RP-120774                                        | 1098r1<br>1107                               | implemented as it is based on a wrong version of the spec<br>RMC correction on eDL-MIMO RI test                                                                                                                | 11.0.0                               | 11.1.0<br>11.1.0                     |
| 06-2012                                                        |                                           | - DE-1/11//4                                                  | 1 1 1 07                                     |                                                                                                                                                                                                                |                                      |                                      |
| 06-2012                                                        | RP-56                                     |                                                               |                                              | ERC correction on frequency selective COL and DML test (Pol. 11)                                                                                                                                               | 1100                                 |                                      |
| 06-2012<br>06-2012                                             | RP-56                                     | RP-120774                                                     | 1108r1                                       | FRC correction on frequency selective CQI and PMI test (Rel-11)                                                                                                                                                | 11.0.0                               | 11.1.0                               |
| 06-2012<br>06-2012<br>06-2012                                  | RP-56<br>RP-56                            | RP-120774<br>RP-120774                                        | 1108r1<br>1111                               | Correction on test point for PMI test (Rel-11)                                                                                                                                                                 | 11.0.0                               | 11.1.0                               |
| 06-2012<br>06-2012<br>06-2012<br>06-2012                       | RP-56<br>RP-56<br>RP-56                   | RP-120774<br>RP-120774<br>RP-120784                           | 1108r1<br>1111<br>1114r1                     | Correction on test point for PMI test (Rel-11)<br>Corrections and clarifications on eICIC demodulation test                                                                                                    | 11.0.0<br>11.0.0                     | 11.1.0<br>11.1.0                     |
| 06-2012<br>06-2012<br>06-2012<br>06-2012<br>06-2012            | RP-56<br>RP-56<br>RP-56<br>RP-56          | RP-120774<br>RP-120774<br>RP-120784<br>RP-120784              | 1108r1<br>1111<br>1114r1<br>1117r1           | Correction on test point for PMI test (Rel-11)<br>Corrections and clarifications on elCIC demodulation test<br>Corrections and clarifications on elCIC CSI tests                                               | 11.0.0<br>11.0.0<br>11.0.0           | 11.1.0<br>11.1.0<br>11.1.0           |
| 06-2012<br>06-2012<br>06-2012<br>06-2012<br>06-2012<br>06-2012 | RP-56<br>RP-56<br>RP-56<br>RP-56<br>RP-56 | RP-120774<br>RP-120774<br>RP-120784<br>RP-120784<br>RP-120783 | 1108r1<br>1111<br>1114r1<br>1117r1<br>1119r1 | Correction on test point for PMI test (Rel-11)<br>Corrections and clarifications on elCIC demodulation test<br>Corrections and clarifications on elCIC CSI tests<br>Corrections on UE performance requirements | 11.0.0<br>11.0.0<br>11.0.0<br>11.0.0 | 11.1.0<br>11.1.0<br>11.1.0<br>11.1.0 |
| 06-2012<br>06-2012<br>06-2012<br>06-2012<br>06-2012            | RP-56<br>RP-56<br>RP-56<br>RP-56          | RP-120774<br>RP-120774<br>RP-120784<br>RP-120784              | 1108r1<br>1111<br>1114r1<br>1117r1           | Correction on test point for PMI test (Rel-11)<br>Corrections and clarifications on elCIC demodulation test<br>Corrections and clarifications on elCIC CSI tests                                               | 11.0.0<br>11.0.0<br>11.0.0           | 11.1.0<br>11.1.0<br>11.1.0           |

| 06-2012            | RP-56          | RP-120773              | 1140             | Addition of Maximum Throughput for R.30-1 TDD RMC                                                           | 11.0.0 | 11.1.0 |
|--------------------|----------------|------------------------|------------------|-------------------------------------------------------------------------------------------------------------|--------|--------|
| 06-2012            | RP-56          | RP-120779              | 1141             | CR for 36.101: The clarification of MPR and A-MPR for CA                                                    | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120784              | 1142             | Corrections for eICIC demod test case with MBSN ABS                                                         | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120785              | 1144             | Removing brackets of contiguous allocation A-MPR for CA_NS_04                                               | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120784              | 1149r1           | Introduction of PDCCH test with colliding RS on MBSFN-ABS                                                   | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120784              | 1153r1           | Some clarifications and OCNG pattern for eICIC demodulation requirements                                    | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120773              | 1155             | Introduction of TDD CA Soft Buffer Limitation                                                               | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120795              | 1156             | B26 and other editorial corrections                                                                         | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120779              | 1161             | Corrections on CQI and PMI test                                                                             | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120780              | 1163             | FRC for TDD PMI test                                                                                        | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120778              | 1165r1           | Clean-up of UL-MIMO for TS36.101                                                                            | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120782              | 1171             | Removal of unnecessary references to single carrier requirements<br>from Interband CA subclauses            | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120781              | 1174             | PDCCH wrong detection in receiver spurious emissions test                                                   | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120776              | 1184             | Corrections to 3500 MHz                                                                                     | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120793              | 1189r2           | Introduction of Band 44                                                                                     | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120784              | 1193r1           | Target SNR setting for eICIC demodulation requirement                                                       | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120780              | 1196             | Editorial simplification to CA REFSENS UL allocation table                                                  | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120778              | 1199             | Correction of wrong table refernces in CA receiver tests                                                    | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120791              | 1200r1           | Introduction of e850_LB (Band 27) to TS 36.101                                                              | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120764              | 1212             | Correction of PHS protection requirements for TS 36.101                                                     | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120793              | 1213r1           | Introduction of Band 28 into TS36.101                                                                       | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120781              | 1215r1           | Proposed revision of subclause 4.3A for TS36.101                                                            | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120781              | 1217r1           | Proposed revision on subclause 6.3.4A for TS36.101                                                          | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120795              | 1219r1           | Aligning requirements between Band 18 and Band 26 in TS36.101                                               | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120782              | 1221             | SNR definition                                                                                              | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120778              | 1223             | Correction of CSI configuraiton for CA TM4 tests R11                                                        | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120773              | 1225             | CR on CA UE receiver timing window R11                                                                      | 11.0.0 | 11.1.0 |
| 06-2012            | RP-56          | RP-120784              | 1226             | Extension of static eICIC CQI test                                                                          | 11.0.0 | 11.1.0 |
| 09-2012            | RP-57          | RP-121294              | 1230             | Correct Transport Block size in 9RB 16QAM Uplink Reference<br>Measurement Channel                           | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121313              | 1233r1           | RF: Corrections to power allocation parameters for transmission<br>mode 8 (Rel-11)                          | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121304              | 1235             | RF-CA: non-CA notation and applicability of test points in scenarios without and with CA operation (Rel-11) | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121305              | 1237             | ACK/NACK feedback modes for FDD and TDD TM4 CA demodulation requirements (Rel-11)                           | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121305              | 1239             | Correction of feedback mode for CA TDD demodulation requirements (resubmission of R4-63AH-0194 for Rel-11)  | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121302              | 1241             | ABS pattern setup for MBSFN ABS test (resubmission of R4-<br>63AH-0204 for Rel-11)                          | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121302              | 1243             | CR on eICIC CQI definition test (resubmission of R4-63AH-0205 for Rel-11)                                   | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121302              | 1245             | Transmission of CQI feedback and other corrections (Rel-11)                                                 | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121302              | 1247             | Target SNR setting for eICIC MBSFN-ABS demodulation requirements (Rel-11)                                   | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121335              | 1248             | Introduction of CA_1_21 RF requirements into TS36.101                                                       | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121300              | 1251             | Corrections of spurious emission band UE co-existence applicable                                            | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121306              | 1253             | in Japan<br>Correction on RMC for frequency non-selective CQI test                                          | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121306<br>RP-121306 | 1255             | Requirements for the eDL-MIMO CQI test                                                                      | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121306<br>RP-121302 | 1255             | Clarification on PDSCH test setup under MBSFN ABS                                                           | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121302              | 1257             | Update of Band 28 requirements                                                                              | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121313              | 1262             | Applicability of statement allowing RBW < Meas BW for spurious                                              | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121313<br>RP-121298 | 1265             | Clarification of RB allocation for DRS demodulation tests                                                   | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121296<br>RP-121304 | 1265             | Removal of brackets for CA Tx                                                                               | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121304<br>RP-121337 | 1267<br>1268r1   | TS 36.101 CR for CA_38                                                                                      | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121337<br>RP-121327 | 1269             | Introduction of CA_B7_B20 in 36.101                                                                         | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121327<br>RP-121313 | 1269             | Corrections of FRC subframe allocations and other minor                                                     | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57          | RP-121305              | 1274             | problems<br>Introduction of requirements for TDD CA Soft Buffer Limitation                                  | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121305<br>RP-121307 | 1274             | Correction of eDL-MIMIO CSI RMC tables and references                                                       | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121307<br>RP-121307 | 1276             | Correction of MIMO channel model for polarized antennas                                                     | 11.1.0 | 11.2.0 |
| 09-2012            | RP-57<br>RP-57 | RP-121307<br>RP-121303 | 1278             | Addition of 15 and 20MHz Bandwidths for Band 23 to TS 36.101                                                | 11.1.0 | 11.2.0 |
|                    | RP-57          | RP-121334              | 1283r1           | (Rel-11)<br>Add requirements for inter-band CA of B_1-18 and B_11-18 in                                     | 11.1.0 | 11.2.0 |
| 09-2012            |                |                        | 4005-4           | TS36.101<br>CR for MPR mask for multi-clustered simultaneous transmission                                   | 11.1.0 | 11.2.0 |
| 09-2012<br>09-2012 | RP-57          | RP-121304              | 1285r1           |                                                                                                             | 11.1.0 | _      |
|                    | RP-57<br>RP-57 | RP-121304<br>RP-121447 | 1285r1<br>1288r2 | in single CC in Rel-11<br>Introduction of Japanese Regulatory Requirements to LTE Band<br>8(R11)            | 11.1.0 | 11.2.0 |

| 09-2012            | RP-57          | RP-121315              | 1290             | CR for Band 27 A-MPR                                                                                                            | 11.1.0           | 11.2.0           |
|--------------------|----------------|------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 09-2012            | RP-57          | RP-121316              | 1291             | CR to replace protected frequency range with new band number 27                                                                 | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121215              | 1292r1           | Introduction of CA band combination Band3 + Band5 to TS<br>36.101                                                               | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121306              | 1300r1           | Requirements for eDL-MIMO RI test                                                                                               | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121306              | 1304             | Corrections to TM9 demodulation tests                                                                                           | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121313              | 1306             | Correction to PCFICH power parameter setting                                                                                    | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121306              | 1310r1           | Correction on frequency non-selective CQI test                                                                                  | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121306              | 1313r1           | eDL-MIMO CQI/PMI test                                                                                                           | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121313              | 1316             | Correction of the definition of unsynchronized operation                                                                        | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121304              | 1320r1           | Correction to Transmit Modulation Quality Tests for Intra-Band CA                                                               | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121338              | 1324r2           | 36.101 CR for LTE_CA_B7                                                                                                         | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121331              | 1325             | Introduction of CA_3_20 RF requirements into TS36.101                                                                           | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121316              | 1326             | A-MPR table correction for NS_18                                                                                                | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121304              | 1332r1           | Bandwidth combination sets for intra-band and inter-band carrier aggregation                                                    | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121325              | 1339             | Introduction of LTE Advanced Carrier Aggregation of Band 4 and Band 13                                                          | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121326              | 1340r1           | Introduction of CA configurations CA-12A-4A and CA-17A-4A                                                                       | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121324              | 1341             | Introduction of CA_B3_B7 in 36.101                                                                                              | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121328              | 1343             | Introduction of Band 2 + Band 17 inter-band CA configuration into 36.101                                                        | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121306              | 1351             | FRC for TM9 FDD                                                                                                                 | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121295              | 1352             | Random precoding granularity in PMI tests                                                                                       | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121302              | 1358             | Introduction of RI test for eICIC                                                                                               | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121304              | 1360             | Notes for deltaTib and deltaRib tables                                                                                          | 11.1.0           | 11.2.0           |
| 09-2012            | RP-57          | RP-121304              | 1361             | CR for A-MPR masks for NS_CA_1C                                                                                                 | 11.1.0           | 11.2.0           |
| 12-2012            | RP-58          | RP-121884              | 1362             | Introduction of CA_3_8 RF requirements to TS 36.101                                                                             | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121870              | 1363             | Removal of square brackets for Band 27 in Table 5.6.1-1                                                                         | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121861              | 1366             | Some changes related to CA tests and overview table of DL measurement channels                                                  | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121860              | 1368             | Correction of elCIC CQI tests                                                                                                   | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121860              | 1370             | Correction of eICIC demodulation tests                                                                                          | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1374             | Correction on CSI-RS subframe offset parameter                                                                                  | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1376             | Correction on FRC table in CSI test                                                                                             | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1382             | Correction of reference channel table for TDD eDL-MIMIO RI test                                                                 | 11.2.0           | 11.3.0           |
| 12-2012<br>12-2012 | RP-58          | RP-121850              | 1386             | OCNG patterns for Sustained Data rate testing                                                                                   | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58<br>RP-58 | RP-121867<br>RP-121894 | 1388r1<br>1396   | Introduction of one periodic CQI test for CA deployments<br>Introduction of CA_B5_B12 in 36.101                                 | 11.2.0<br>11.2.0 | 11.3.0<br>11.3.0 |
| 12-2012            | RP-58          | RP-121850              | 1401             | Introduction of CA_B5_B12 in 36.101<br>Introducing the additional frequency bands of 5 MHz x 2 in 1.7<br>GHz in Japan to Band 3 | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121887              | 1406r1           | Reference sensitivity for the small bandwidth of CA_4-12                                                                        | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121860              | 1407             | CR on elCIC RI test                                                                                                             | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1409             | Cleaning of 36.101 Performance sections Rel-11                                                                                  | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121861              | 1416             | Out-of-band blocking requirements for inter-band carrier aggregation                                                            | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121861              | 1418             | Adding missed SNR reference values for CA soft buffer tests                                                                     | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121890              | 1422             | Introduction of CA_4A-5A into 36.101                                                                                            | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121867              | 1431             | Clean up of specification R11                                                                                                   | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121867              | 1436             | Band 1 to Band 33 and Band 39 UE coexistence requirements                                                                       | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121871              | 1437r1           | Editorial corrections for Band 26                                                                                               | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121896              | 1438             | Introduction of Band 5 + Band 17 inter-band CA configuration into 36.101                                                        | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1442             | Correction of eDL-MIMO RI test and RMC table for the CSI test                                                                   | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121861              | 1444             | Minor correction to ceiling function example - rel11                                                                            | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1449             | Correction of SNR definition                                                                                                    | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121860              | 1450             | Brackets clean up for eICIC CSI/demodulation                                                                                    | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121860              | 1455             | CR on elCIC RI testing (Rel-11)                                                                                                 | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1459             | Correction on FRC table                                                                                                         | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121879              | 1461r1           | CR for LTE B14 HPUE (Power Class 1)                                                                                             | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121862              | 1464             | Adding references to the appropriate beamforming model (Rel-11)                                                                 | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121898              | 1465r1           | Introduction of CA_8_20 RF requirements into TS36.101                                                                           | 11.2.0           | 11.3.0           |
| 12-2012<br>12-2012 | RP-58<br>RP-58 | RP-121882<br>RP-121903 | 1468r1<br>1472r1 | Introduction of inter-band CA_11-18 into TS36.101<br>Introduction of advanced receivers demodulation performance                | 11.2.0<br>11.2.0 | 11.3.0<br>11.3.0 |
| 12-2012            | RP-58          | RP-121903              | 1473r1           | (FDD)<br>Introduction of performance requirements for verifying the receiver<br>type for advanced receivers (FDD/TDD)           | 11.2.0           | 11.3.0           |
| 12-2012            | PD. 59         | RP-121886              | 1474             | CR to remove the square bracket of A-MPR in TS36.101                                                                            | 11.2.0           | 11 2 0           |
| 12-2012<br>12-2012 | RP-58<br>RP-58 | RP-121886<br>RP-121861 | 1474             | Correction of some errors in reference sensitivity for CA in TS                                                                 | 11.2.0           | 11.3.0<br>11.3.0 |
| 12-2012            | RP-58          | RP-121903              | 1480r1           | 36.101 (R11)<br>Introduction of Advanced Receivers Test Cases for TDD                                                           | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121903<br>RP-121901 | 148011<br>1490r1 | Introduction of Band 29                                                                                                         | 11.2.0           | 11.3.0           |
| 12-2012            | RP-58          | RP-121901<br>RP-121849 | 149011           | Low-channel Band 1 coexistence with PHS                                                                                         | 11.2.0           | 11.3.0           |
| 12 2012            | 111-00         | 11 12 1043             | 1707             |                                                                                                                                 | 11.2.0           | 11.0.0           |

| 12-2012RP-58RP-1218611498r1Completion of the tables of bandwidth combinations specified for<br>CA12-2012RP-58RP-1218611499r1Exceptions to REFSENS requirements for class A2 CA<br>combinations12-2012RP-58RP-1218921500Introduction of carrier aggregation configuration CA_4-712-2012RP-58RP-1218701504Editorial corrections to Band 27 specifications   | or 11.2.0<br>11.2.0     | 11.3.0           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|
| 12-2012RP-58RP-1218611499r1Exceptions to REFSENS requirements for class A2 CA<br>combinations12-2012RP-58RP-1218921500Introduction of carrier aggregation configuration CA_4-712-2012RP-58RP-1218701504Editorial corrections to Band 27 specifications                                                                                                    | 11.2.0                  |                  |
| 12-2012RP-58RP-1218921500Introduction of carrier aggregation configuration CA_4-712-2012RP-58RP-1218701504Editorial corrections to Band 27 specifications                                                                                                                                                                                                 |                         | 11.3.0           |
| 12-2012 RP-58 RP-121870 1504 Editorial corrections to Band 27 specifications                                                                                                                                                                                                                                                                              | 11.2.0                  | 11.3.0           |
|                                                                                                                                                                                                                                                                                                                                                           | 11.2.0                  | 11.3.0           |
| 12-2012 RP-58 RP-121878 1505 Band 28 AMPR for DTV protection                                                                                                                                                                                                                                                                                              | 11.2.0                  | 11.3.0           |
| 12-2012 RP-58 RP-121852 1509r1 UE-UE coexistence between bands with small frequency separation                                                                                                                                                                                                                                                            | 11.2.0                  | 11.3.0           |
| 12-2012 RP-58 RP-121911 1510 Adding UE-UE Coexistence Requirement for Band 3 and Band 3                                                                                                                                                                                                                                                                   |                         | 11.3.0           |
| 12-2012 RP-58 RP-121866 1513 Maintenance of Band 23 UE Coexistence                                                                                                                                                                                                                                                                                        | 11.2.0                  | 11.3.0           |
| 12-2012         RP-58         RP-121851         1515         Corrections to TM4 rank indicator Test 3           12-2012         RP-58         RP-121861         1517         Correction of test configurations and FRC for CA demodulation                                                                                                                | 11.2.0                  | 11.3.0           |
| 12-2012         RP-58         RP-121861         1517         Correction of test configurations and FRC for CA demodulation with power imbalance           12-2012         RP-58         RP-121860         1518         Applicable OFDM symbols of Noc_2 for PDCCH/PCFICH ABS-                                                                             | 11.2.0                  | 11.3.0           |
| MBSFN test cases                                                                                                                                                                                                                                                                                                                                          | 11.2.0                  | 11.0.0           |
| 03-2013 RP-59 RP-130279 1519 OCNG patterns for Enhanced Performance Requirements Type                                                                                                                                                                                                                                                                     |                         | 11.4.0           |
| 03-2013 RP-59 RP-130277 1520 Corrections on in-band blocking for Band 29 for carrier aggregation                                                                                                                                                                                                                                                          | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130268 1523 Brackets removal in Rel-11 TM4 rank indicator Test 3                                                                                                                                                                                                                                                                         | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130279 1524r1 Cleanup of Advanced Receivers requirement scenarios for demodulation and CSI (FDD/TDD)                                                                                                                                                                                                                                     | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130258 1528 Corrections to CQI reporting                                                                                                                                                                                                                                                                                                 | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130262 1536 Corrections for eICIC performance requirements (rel-11)                                                                                                                                                                                                                                                                      | 11.3.0                  | 11.4.0           |
| 03-2013RP-59RP-1302641539Correction of CA power imbalance performance requirements03-2013RP-59RP-1302871543Correction of a symbol for MPR in single carrier for TS26 104 (R14)                                                                                                                                                                            | 11.3.0<br>11.3.0        | 11.4.0<br>11.4.0 |
| 36.101(R11)           03-2013         RP-59         RP-130287         1544r1         Correction of some inter-band CA requiements for TS 36.101<br>(R11)                                                                                                                                                                                                  | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130276 1546 Correction of contigous allocation A-MPR for CA_NS_05                                                                                                                                                                                                                                                                        | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130263 1547r1 Clarification of spurious emission domain for CA in TS 36.101 (R11)                                                                                                                                                                                                                                                        | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130264 1548 CR for CA performance requirements                                                                                                                                                                                                                                                                                           | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130284 1553r1 Introduction of downlink non-contiguous CA into REL -11 TS 36.101                                                                                                                                                                                                                                                          | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130263 1557 CA_1C: CA_NS_02 and CA_NS_03 A-MPR REL-11                                                                                                                                                                                                                                                                                    | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130287 1560 Editorial corrections to subclause 5                                                                                                                                                                                                                                                                                         | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130267 1562 Addition of UE Regional Requirements to Band 23 Based on Ne<br>Regulatory Order in the US                                                                                                                                                                                                                                    |                         | 11.4.0           |
| 03-2013 RP-59 RP-130272 1567 Band 26: modification of A-MPR for 'NS_15'                                                                                                                                                                                                                                                                                   | 11.3.0                  | 11.4.0           |
| 03-2013         RP-59         RP-130287         1571r1         Band 41 requirements for operation in China and Japan           03-2013         RP-59         RP-130260         1574         Remove [] from CSI test case parameters                                                                                                                       | <u>11.3.0</u><br>11.3.0 | 11.4.0           |
| 03-2013 RP-59 RP-130287 1575 Corrections to UE co-existence                                                                                                                                                                                                                                                                                               | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130287 1579 UE-UE co-existence between Band 1 and Band 33/39                                                                                                                                                                                                                                                                             | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130287 1580 Correction on reference to note for Band 7 and 38 co-existence                                                                                                                                                                                                                                                               | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130263 1584r1 Cleanup for CA UE RF requirements                                                                                                                                                                                                                                                                                          | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130263 1586 Corrections on UL configuration for CA UE receiver requirement                                                                                                                                                                                                                                                               |                         | 11.4.0           |
| 03-2013 RP-59 RP-130263 1588 Correction of Transmit modulation quality requirements for CA                                                                                                                                                                                                                                                                | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130268 1590 Revision of Common Test Parameters for User-specific Demodulation Tests                                                                                                                                                                                                                                                      | 11.3.0                  | 11.4.0           |
| 03-2013         RP-59         RP-130278         1595         Correction for a Band 27 A-MPR table           03-2013         RP-59         RP-130264         1597         Correction of CA CQI test setup                                                                                                                                                  | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130287 1600r1 Correction of B12 DL Specification in Table 5.5A-2                                                                                                                                                                                                                                                                         | 11.3.0                  | 11.4.0           |
| 03-2013 RP-59 RP-130263 1602 Correction of table reference                                                                                                                                                                                                                                                                                                | 11.3.0                  | 11.4.0           |
| 06-2013 RP-60 RP-130765 1604r1 Complementary description for definition of MIMO Correlation<br>Matrices using cross polarized antennas                                                                                                                                                                                                                    | 11.4.0                  | 11.5.0           |
| 06-2013 RP-60 RP-130763 1607 Correction of transport format parameters for CQI index 10 (15 RBs) - Rel 11                                                                                                                                                                                                                                                 | 11.4.0                  | 11.5.0           |
| 06-2013 RP-60 RP-130765 1610 Maintenance of Band 23 A-MPR (NS_11) in TS 36.101 (Rel-11)                                                                                                                                                                                                                                                                   | 11.4.0                  | 11.5.0           |
| 06-2013         RP-60         RP-130770         1613         CR for 36.101 : Adding the definition of CA_NS_05 and<br>CA_NS_06 for additional spurious emissions for CA           00-2010         RP-60         RP-130770         1613         CR for 36.101 : Adding the definition of CA_NS_05 and<br>CA_NS_06 for additional spurious emissions for CA | 11.4.0                  | 11.5.0           |
| 06-2013         RP-60         RP-130770         1619         CR for introducing UE TM3 demodulation performance<br>requirements under high speed           06-2012         RP-60         RP-130776         1622         Cerrection of test perspectors for alCIC performance for alCIC performance                                                        | 11.4.0                  | 11.5.0           |
| 06-2013         RP-60         RP-130765         1623         Correction of test parameters for elCIC performance requirement           06-2013         RP-60         RP-130765         1625         Correction of test parameters for elCIC CSI requirements                                                                                              | nts 11.4.0<br>11.4.0    | 11.5.0<br>11.5.0 |
| 06-2013         RP-60         RP-130765         1625         Correction of test parameters for elCiC CS1 requirements           06-2013         RP-60         RP-130765         1627         Correction of resource allocation for the multiple PMI Cat 1 UE test                                                                                         | 11.4.0                  | 11.5.0           |
| 06-2013 RP-60 RP-130766 1629 Removal of note 2 from band 28                                                                                                                                                                                                                                                                                               | 11.4.0                  | 11.5.0           |
| 06-2013 RP-60 RP-130770 1641 Correction of the CSI-RS parameter configuration                                                                                                                                                                                                                                                                             | 11.4.0                  | 11.5.0           |
| 06-2013 RP-60 RP-130770 1650r1 Addition of Band 41 for intra-band non-contiguous CA for 36.10                                                                                                                                                                                                                                                             | 1 11.4.0                | 11.5.0           |
| 06-2013 RP-60 RP-130770 1654r1 MPR for intra-band non-contiguous CA                                                                                                                                                                                                                                                                                       | 11.4.0                  | 11.5.0           |
| 06-2013 RP-60 RP-130765 1656 Modification of configured output power to account for larger tolerance                                                                                                                                                                                                                                                      | 11.4.0                  | 11.5.0           |
| 06-2013 RP-60 RP-130769 1658r1 Missing symbols in the NS_15 table                                                                                                                                                                                                                                                                                         | 11.4.0                  | 11.5.0           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1673                                                                                                                                                                                                                                                                                                                                                                                                                  | Corrections to Rx requirements for inter-band CA configurations<br>with REFSENS exceptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1681r1                                                                                                                                                                                                                                                                                                                                                                                                                | Correction for TS 36.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1684                                                                                                                                                                                                                                                                                                                                                                                                                  | RF: Corrections to RMC-s for sustained data rate test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1685                                                                                                                                                                                                                                                                                                                                                                                                                  | Non-contiguous intraband CA channel spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1689                                                                                                                                                                                                                                                                                                                                                                                                                  | Carrier aggregation in multi RAT and multiple band combination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                       | terminals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1691                                                                                                                                                                                                                                                                                                                                                                                                                  | Completion of out-of-band blocking requirements for inter-band CA with one UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1695r1                                                                                                                                                                                                                                                                                                                                                                                                                | CR on the bandwidth coverage issue of CA demodulation performance (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1697                                                                                                                                                                                                                                                                                                                                                                                                                  | Correction on UE maximum output power for intra-band CA (R11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1698r1                                                                                                                                                                                                                                                                                                                                                                                                                | CR for introduction of FeICIC demodulation performance requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1701                                                                                                                                                                                                                                                                                                                                                                                                                  | Removing bracket from CA_11A-18A requirments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1703                                                                                                                                                                                                                                                                                                                                                                                                                  | CR on the bandwidth coverage issue of CA CQI performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 00.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DD 400700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4705                                                                                                                                                                                                                                                                                                                                                                                                                  | (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1705                                                                                                                                                                                                                                                                                                                                                                                                                  | Corrections to ACLR for Rel-11 CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1716                                                                                                                                                                                                                                                                                                                                                                                                                  | Corrections to NS_11 A-MPR Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 06-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-130769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1717                                                                                                                                                                                                                                                                                                                                                                                                                  | Corrections to NS_12 A-MPR Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1731r1                                                                                                                                                                                                                                                                                                                                                                                                                | CR on performance requirements of CA soft buffer managemen (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1735                                                                                                                                                                                                                                                                                                                                                                                                                  | CR on applicability of CA sustained data rate tests (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1738r1                                                                                                                                                                                                                                                                                                                                                                                                                | Performance requirement for UE under EVA200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1742r1                                                                                                                                                                                                                                                                                                                                                                                                                | CR for introduction of FeICIC PBCH performance requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1744r1                                                                                                                                                                                                                                                                                                                                                                                                                | CR for introduction of FeICIC RI reporting requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1746                                                                                                                                                                                                                                                                                                                                                                                                                  | Beamforming model for EPDCCH test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1753r1                                                                                                                                                                                                                                                                                                                                                                                                                | Introduction of performance requirements for verifying the receiver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP-131285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                       | type for CSI-RS based advanced receivers (FDD/TDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1754r1                                                                                                                                                                                                                                                                                                                                                                                                                | CR for 36.101 : Add the definition of 5+20MHz for spectrum<br>emission mask for CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1766                                                                                                                                                                                                                                                                                                                                                                                                                  | UE REFSENS when supporting intra-band CA and inter-band CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1771                                                                                                                                                                                                                                                                                                                                                                                                                  | Correlation matrix for high speed train demodulation scenarios (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1775                                                                                                                                                                                                                                                                                                                                                                                                                  | Corrections to sustained data rate test (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1785r1                                                                                                                                                                                                                                                                                                                                                                                                                | CR for introduction of FeICIC CQI requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1793                                                                                                                                                                                                                                                                                                                                                                                                                  | Clarification of multi-cluster transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1799r1                                                                                                                                                                                                                                                                                                                                                                                                                | CA UE Coexistence Table update (Release 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1801                                                                                                                                                                                                                                                                                                                                                                                                                  | Coexistence between Band 27 and Band 38 (Release 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013<br>09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RP-61<br>RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP-131302<br>RP-131281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1801<br>1806                                                                                                                                                                                                                                                                                                                                                                                                          | Incorrect REFSENS UL allocation for CA_1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0<br>11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1801                                                                                                                                                                                                                                                                                                                                                                                                                  | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013<br>09-2013<br>09-2013<br>09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP-61<br>RP-61<br>RP-61<br>RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RP-131302<br>RP-131281<br>RP-131281<br>RP-131293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1801<br>1806<br>1810<br>1812r1                                                                                                                                                                                                                                                                                                                                                                                        | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RP-131302<br>RP-131281<br>RP-131281<br>RP-131293<br>RP-131281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1801<br>1806<br>1810<br>1812r1<br>1816                                                                                                                                                                                                                                                                                                                                                                                | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP-131302<br>RP-131281<br>RP-131281<br>RP-131293<br>RP-131281<br>RP-131281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820                                                                                                                                                                                                                                                                                                                                                                        | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP-131302<br>RP-131281<br>RP-131281<br>RP-131293<br>RP-131281<br>RP-131281<br>RP-131285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830                                                                                                                                                                                                                                                                                                                                                                | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-131302<br>RP-131281<br>RP-131281<br>RP-131293<br>RP-131281<br>RP-131281<br>RP-131285<br>RP-131928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1                                                                                                                                                                                                                                                                                                                                                      | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>12-2013<br>12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RP-131302           RP-131281           RP-131281           RP-131293           RP-131281           RP-131281           RP-131285           RP-131928           RP-131924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1<br>1851                                                                                                                                                                                                                                                                                                                                              | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>09-2013<br>12-2013<br>12-2013<br>12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-131302           RP-131281           RP-131281           RP-131293           RP-131281           RP-131281           RP-131285           RP-131928           RP-131928           RP-131924           RP-131937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1<br>1851<br>1853r2                                                                                                                                                                                                                                                                                                                                    | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.6.0           11.6.0           11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.7.0<br>11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP-131302           RP-131281           RP-131281           RP-131293           RP-131281           RP-131281           RP-131285           RP-131928           RP-131927           RP-131931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1<br>1851<br>1853r2<br>1866                                                                                                                                                                                                                                                                                                                            | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.5.0           11.6.0           11.6.0           11.6.0           11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.6.0           11.7.0           11.7.0           11.7.0           11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131928           RP-131924           RP-131931           RP-131939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1830<br>1846r1<br>1851<br>1853r2<br>1866<br>1868                                                                                                                                                                                                                                                                                                            | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           10-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131928           RP-131924           RP-131931           RP-131939           RP-131928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1<br>1851<br>1853r2<br>1866<br>1868<br>1876r2                                                                                                                                                                                                                                                                                                          | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131928           RP-131924           RP-131931           RP-131939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1830<br>1846r1<br>1851<br>1853r2<br>1866<br>1868                                                                                                                                                                                                                                                                                                            | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           10-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131928           RP-131924           RP-131931           RP-131939           RP-131928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1<br>1851<br>1853r2<br>1866<br>1868<br>1876r2                                                                                                                                                                                                                                                                                                          | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0<br>11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131924           RP-131931           RP-131932           RP-131931           RP-131939           RP-131937           RP-131937           RP-131937           RP-131937                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1801           1806           1810           1812r1           1816           1820           1830           1846r1           1853r2           1866           1879           1886                                                                                                                                                                                                                                       | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131924           RP-131931           RP-131932           RP-131931           RP-131939           RP-131939           RP-131939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1851         1853r2         1866         1876r2         1879         1886         1888                                                                                                                                                                                                     | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.5.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0<br>11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939                                                                                                                                                                                                                                                                                                                                                                                             | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1<br>1851<br>1853r2<br>1866<br>1868<br>1876r2<br>1879<br>1886<br>1888<br>1888                                                                                                                                                                                                                                                                          | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1851         1853r2         1866         1879         1886         1888         1892r1         1894r3                                                                                                                                                                                      | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                                                                                                                                                                         |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           10-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131928           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1851         1853r2         1866         1879         1886         1892r1         1894r3         1896r3                                                                                                                                                                                    | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on RI reporting requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                                                                                                                                                                         |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           109-2013           109-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801           1806           1810           1812r1           1812r1           1820           1830           1846r1           1853r2           1866           1879           1886           1899r1           18988                                                                                                                                                                                                    | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on FeICIC PBCH performance requirement<br>CR on RI reporting requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                                                                                                                            |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013 <td< td=""><td>RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62           RP-62</td><td>RP-131302           RP-131281           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938</td><td>1801<br/>1806<br/>1810<br/>1812r1<br/>1816<br/>1820<br/>1830<br/>1846r1<br/>1853r2<br/>1866<br/>1868<br/>1879<br/>1886<br/>1879<br/>1886<br/>1888<br/>1892r1<br/>1894r3<br/>1896r3<br/>1898<br/>1900</td><td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Downlink physical setup for EPDCCH test</td><td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td><td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302           RP-131281           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938                                                                                                                                                                                                                                                                                                                                                                                             | 1801<br>1806<br>1810<br>1812r1<br>1816<br>1820<br>1830<br>1846r1<br>1853r2<br>1866<br>1868<br>1879<br>1886<br>1879<br>1886<br>1888<br>1892r1<br>1894r3<br>1896r3<br>1898<br>1900                                                                                                                                                                                                                                      | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                       |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           10-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938                                                                                                                                                                                                                                                                                                                                                                                                                 | 1801           1806           1810           1812r1           1812r1           1820           1830           1846r1           1853r2           1866           1879           1886           1899r1           18988                                                                                                                                                                                                    | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH test<br>Car for receiver type verification test of CSI-RS based advanced                                                                                                                                                                                                                                                                                                                                                          | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                                                                                                                            |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013 <td< td=""><td>RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62           RP-62<!--</td--><td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938           RP-131938           RP-131931</td><td>1801           1806           1810           1812r1           1816           1820           1830           1846r1           1853r2           1866           1868           1879           1888           1892r1           1898           1900           1903</td><td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of definition on Fraction of Maximum Throughput<br/>for CA<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Downlink physical setup for EPDCCH test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)</td><td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td><td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62           RP-62 </td <td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938           RP-131938           RP-131931</td> <td>1801           1806           1810           1812r1           1816           1820           1830           1846r1           1853r2           1866           1868           1879           1888           1892r1           1898           1900           1903</td> <td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of definition on Fraction of Maximum Throughput<br/>for CA<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Downlink physical setup for EPDCCH test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)</td> <td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td> <td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938           RP-131938           RP-131931                                                                                                                                                                                                                                                                                                                                 | 1801           1806           1810           1812r1           1816           1820           1830           1846r1           1853r2           1866           1868           1879           1888           1892r1           1898           1900           1903                                                                                                                                                          | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)                                                                                                                                                                                                                                                                                                                                     | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                   |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131938           RP-131938           RP-131938           RP-131939                                                                                                                                                                                                                                                                                                                                 | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1851         1857         1866         1868         1879         1888         1892r1         1894r3         1898         1900         1903         1905         1915r2                                                                                                                     | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on FeICIC PBCH performance requirement<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)<br>Allowed power reductions for multiple transmissions in a subframe                                                                                                                                                                                                                                                                                                 | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                       |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013 <td< td=""><td>RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62           RP-62<!--</td--><td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938           RP-131938           RP-131931</td><td>1801           1806           1810           1812r1           1816           1820           1830           1846r1           1853r2           1866           1868           1879           1888           1892r1           1898           1900           1903</td><td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of definition on Fraction of Maximum Throughput<br/>for CA<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Downlink physical setup for EPDCCH test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)</td><td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td><td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62           RP-62 </td <td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938           RP-131938           RP-131931</td> <td>1801           1806           1810           1812r1           1816           1820           1830           1846r1           1853r2           1866           1868           1879           1888           1892r1           1898           1900           1903</td> <td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of definition on Fraction of Maximum Throughput<br/>for CA<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Downlink physical setup for EPDCCH test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)</td> <td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td> <td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131938           RP-131938           RP-131938           RP-131931                                                                                                                                                                                                                                                                                                                                 | 1801           1806           1810           1812r1           1816           1820           1830           1846r1           1853r2           1866           1868           1879           1888           1892r1           1898           1900           1903                                                                                                                                                          | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)                                                                                                                                                                                                                                                                                                                                     | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                                                                                   |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131938           RP-131938           RP-131938           RP-131939                                                                                                                                                                                                                                                                                                                                 | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1851         1857         1866         1868         1879         1888         1892r1         1894r3         1898         1900         1903         1905         1915r2                                                                                                                     | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on FeICIC PBCH performance requirement<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)<br>Allowed power reductions for multiple transmissions in a subframe                                                                                                                                                                                                                                                                                                 | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                                                                       |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RP-61           RP-61           RP-61           RP-61           RP-61           RP-61           RP-62           RP-62 </td <td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131938           RP-131938           RP-131938           RP-131938           RP-131938           RP-131936           RP-131937</td> <td>1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1851         1853r2         1866         1868         1879         1888         1892r1         1894r3         1896r3         1900         1905         1915r2         1925r2</td> <td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Downlink physical setup for EPDCCH test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)<br/>Allowed power reductions for multiple transmissions in a subframe<br/>Introduce high SNR TM3 test for FeICIC PDSCH<br/>CR on correction of FRC of power imbalance test</td> <td><math display="block">\begin{array}{c} 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\</math></td> <td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td> | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131285           RP-131928           RP-131924           RP-131937           RP-131938           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131938           RP-131938           RP-131938           RP-131938           RP-131938           RP-131936           RP-131937                                                                                                                                                                                                                                                                     | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1851         1853r2         1866         1868         1879         1888         1892r1         1894r3         1896r3         1900         1905         1915r2         1925r2                                                                                                               | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)<br>Allowed power reductions for multiple transmissions in a subframe<br>Introduce high SNR TM3 test for FeICIC PDSCH<br>CR on correction of FRC of power imbalance test                                                                                                                                                                                                                                           | $\begin{array}{c} 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.5.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\ 11.6.0\\$ | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                                                          |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013 <td< td=""><td>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62</td><td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937</td><td>1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1853r2         1866         1868         1879         1888         1892r1         1894r3         1896r3         1903         1905         1915r2         1933r1         1936</td><td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on FeICIC PBCH performance requirement<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Correction on the UE category for eICIC CQI test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)<br/>Allowed power reductions for multiple transmissions in a subframe<br/>Introduce high SNR TM3 test for FeICIC PDSCH<br/>CR on correction of FRC of power imbalance test<br/>UE-UE coexistence for Band 40</td><td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td><td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937 | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1853r2         1866         1868         1879         1888         1892r1         1894r3         1896r3         1903         1905         1915r2         1933r1         1936                                                                                                               | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on FeICIC PBCH performance requirement<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Correction on the UE category for eICIC CQI test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)<br>Allowed power reductions for multiple transmissions in a subframe<br>Introduce high SNR TM3 test for FeICIC PDSCH<br>CR on correction of FRC of power imbalance test<br>UE-UE coexistence for Band 40                                                                                                                                                    | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                             |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013 <td< td=""><td>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62</td><td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131936           RP-131936           RP-131937           RP-131938           RP-131936           RP-131937           RP-131938           RP-131937           RP-131937</td><td>1801           1806           1810           1812r1           1812r1           1812r1           1812r1           1812r1           1820           1830           1846r1           1853r2           1866           1868           1879           1886           1892r1           1894r3           1896r3           1900           1903           1905           1915r2           1925r2           1933r1           1936</td><td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of definition on Fraction of Maximum Throughput<br/>for CA<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on FeICIC PBCH performance requirement<br/>Beamforming model for EPDCCH localized test<br/>Downlink physical setup for EPDCCH localized test<br/>Correction on the UE category for eICIC CQI test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)<br/>Allowed power reductions for multiple transmissions in a subframe<br/>Introduce high SNR TM3 test for FeICIC PDSCH<br/>CR on correction of FRC of power imbalance test<br/>UE-UE coexistence for Band 40<br/>CR to Introduce fading CQI test for CoMP (FDD)</td><td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td><td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td></td<> | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131936           RP-131936           RP-131937           RP-131938           RP-131936           RP-131937           RP-131938           RP-131937           RP-131937                                                                                                                         | 1801           1806           1810           1812r1           1812r1           1812r1           1812r1           1812r1           1820           1830           1846r1           1853r2           1866           1868           1879           1886           1892r1           1894r3           1896r3           1900           1903           1905           1915r2           1925r2           1933r1           1936 | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of definition on Fraction of Maximum Throughput<br>for CA<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on FeICIC PBCH performance requirement<br>Beamforming model for EPDCCH localized test<br>Downlink physical setup for EPDCCH localized test<br>Correction on the UE category for eICIC CQI test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)<br>Allowed power reductions for multiple transmissions in a subframe<br>Introduce high SNR TM3 test for FeICIC PDSCH<br>CR on correction of FRC of power imbalance test<br>UE-UE coexistence for Band 40<br>CR to Introduce fading CQI test for CoMP (FDD) | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0 |
| 09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           09-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013           12-2013 <td< td=""><td>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-61<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62<br/>RP-62</td><td>RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937</td><td>1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1853r2         1866         1868         1879         1888         1892r1         1894r3         1896r3         1903         1905         1915r2         1933r1         1936</td><td>Incorrect REFSENS UL allocation for CA_1C<br/>Contiguous intraband CA REFSENS with one UL<br/>Remianed Transmitter requirements for intra-band non-contiguous<br/>CA<br/>Correction to Rel-11 A-MPR for CA_NS_04<br/>The Pcmax clauses restructured<br/>MPR for intra-band non-contiguous CA<br/>Corrections to the notes in the band UE co-existence<br/>requirements table (Rel-11)<br/>Clean-up of uplink reference measurement channels (Rel-11)<br/>Introduction of test 1-A for CoMP<br/>CA_NS_05 Emissions<br/>NS signaling for CA refsens<br/>Intraband CA channel bandwidth combination table restructuring<br/>CR Minimum requirement with Same Cell ID (with multiple NZP<br/>CSI-RS resources)<br/>CR on correction of test configurations of CA soft buffer tests<br/>CR for FeICIC demodulation performance requirements<br/>CR on FeICIC PBCH performance requirement<br/>CR on RI reporting requirement<br/>Beamforming model for EPDCCH localized test<br/>Correction on the UE category for eICIC CQI test<br/>CR for receiver type verification test of CSI-RS based advanced<br/>receivers (Rel-11)<br/>Allowed power reductions for multiple transmissions in a subframe<br/>Introduce high SNR TM3 test for FeICIC PDSCH<br/>CR on correction of FRC of power imbalance test<br/>UE-UE coexistence for Band 40</td><td>11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0</td><td>11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-61<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62<br>RP-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RP-131302           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131281           RP-131928           RP-131924           RP-131937           RP-131939           RP-131939           RP-131939           RP-131939           RP-131936           RP-131936           RP-131938           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131936           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937           RP-131938           RP-131937 | 1801         1806         1810         1812r1         1812r1         1816         1820         1830         1846r1         1853r2         1866         1868         1879         1888         1892r1         1894r3         1896r3         1903         1905         1915r2         1933r1         1936                                                                                                               | Incorrect REFSENS UL allocation for CA_1C<br>Contiguous intraband CA REFSENS with one UL<br>Remianed Transmitter requirements for intra-band non-contiguous<br>CA<br>Correction to Rel-11 A-MPR for CA_NS_04<br>The Pcmax clauses restructured<br>MPR for intra-band non-contiguous CA<br>Corrections to the notes in the band UE co-existence<br>requirements table (Rel-11)<br>Clean-up of uplink reference measurement channels (Rel-11)<br>Introduction of test 1-A for CoMP<br>CA_NS_05 Emissions<br>NS signaling for CA refsens<br>Intraband CA channel bandwidth combination table restructuring<br>CR Minimum requirement with Same Cell ID (with multiple NZP<br>CSI-RS resources)<br>CR on correction of test configurations of CA soft buffer tests<br>CR for FeICIC demodulation performance requirements<br>CR on FeICIC PBCH performance requirement<br>CR on RI reporting requirement<br>Beamforming model for EPDCCH localized test<br>Correction on the UE category for eICIC CQI test<br>CR for receiver type verification test of CSI-RS based advanced<br>receivers (Rel-11)<br>Allowed power reductions for multiple transmissions in a subframe<br>Introduce high SNR TM3 test for FeICIC PDSCH<br>CR on correction of FRC of power imbalance test<br>UE-UE coexistence for Band 40                                                                                                                                                    | 11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.5.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.6.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0         11.7.0                                                                            |

| 40.0040                                                                                                    |                                                                                        | DD 404004                                                                                                                                                                                     | 4000                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.0.0                                                                                                                                                                                                                                               | 44 7 0                                                                                 |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131931                                                                                                                                                                                     | 1960                                                                                         | CA performance requirements for TDD intra-band NC CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131936                                                                                                                                                                                     | 1961r1                                                                                       | Introduction of reference SNR-s for FeICIC demodulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131938                                                                                                                                                                                     | 1963                                                                                         | performance requirements<br>OCNG pattern for EPDCCH test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62<br>RP-62                                                                         | RP-131938<br>RP-131939                                                                                                                                                                        | 1963<br>1967r1                                                                               | Introduction of UE TM3 demodulation performance requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131939                                                                                                                                                                                     | 196711                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 40.0040                                                                                                    |                                                                                        | RP-131937                                                                                                                                                                                     | 4000=4                                                                                       | under ETU300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.0.0                                                                                                                                                                                                                                               | 44 7 0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  |                                                                                                                                                                                               | 1969r1                                                                                       | Introduction of test 1-A for CoMP TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131939                                                                                                                                                                                     | 1971                                                                                         | Modification of TM9 test to verify correct SNR estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131928                                                                                                                                                                                     | 1983r1                                                                                       | Correction to blocking requirements and use of $\Delta R_{IB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131939                                                                                                                                                                                     | 1987r1                                                                                       | CR on test point clarification for CA demodulation test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131937                                                                                                                                                                                     | 1993r1                                                                                       | CR to Introduce fading CQI test for CoMP (TDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131937                                                                                                                                                                                     | 1995                                                                                         | CR to Introduce channel model for CoMP fading CQI tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131937                                                                                                                                                                                     | 1997r1                                                                                       | CR to Introduce RI test for CoMP (FDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131924                                                                                                                                                                                     | 1999r1                                                                                       | Simplification of Band 12/17 in-band blocking test cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131938                                                                                                                                                                                     | 2000r1                                                                                       | Distributed EPDCCH Demodulation Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131938                                                                                                                                                                                     | 2002r1                                                                                       | Localized EPDCCH Demodulation Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131938                                                                                                                                                                                     | 2004r1                                                                                       | Reference Measurement Channels for EPDCCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131937                                                                                                                                                                                     | 2006r1                                                                                       | Introduction of DL CoMP FDD static CQI test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131937                                                                                                                                                                                     | 2008r1                                                                                       | Introduction of DL CoMP TDD static CQI test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131924                                                                                                                                                                                     | 2013                                                                                         | P-max for Band 38 to Band 7 coexistence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131937                                                                                                                                                                                     | 2023r2                                                                                       | Minimum requirement with Same Cell ID (with multiple NZP CSI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
|                                                                                                            |                                                                                        |                                                                                                                                                                                               |                                                                                              | RS resources) TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                        |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131937                                                                                                                                                                                     | 2025r2                                                                                       | CR Minimum requirement with Different Cell ID and Colliding CRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 0.0                                                                                                        | 52                                                                                     | 101001                                                                                                                                                                                        |                                                                                              | (with single NZP CSI-RS resource) TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                        |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131936                                                                                                                                                                                     | 2027                                                                                         | Editoral change on FeICIC PBCH Noc setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131930                                                                                                                                                                                     | 2027<br>2034r1                                                                               | Correction of nominal guard bands for bandwidth classes A and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131931                                                                                                                                                                                     | 203411<br>2041r1                                                                             | CR to Introduce RI test for CoMP (TDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62<br>RP-62                                                                         | RP-131937<br>RP-131931                                                                                                                                                                        | 204111                                                                                       | Correction of TDD PCFICH/PDCCH test parameter table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
|                                                                                                            |                                                                                        |                                                                                                                                                                                               | -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |                                                                                        |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131939                                                                                                                                                                                     | 2046                                                                                         | Add EVA200 to table of channel model parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131926                                                                                                                                                                                     | 2058                                                                                         | CA_1C: Correction on CA_NS_02 A-MPR table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131938                                                                                                                                                                                     | 2065                                                                                         | Introduction of EPDCCH TM10 localized test R-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 12-2013                                                                                                    | RP-62                                                                                  | RP-131938                                                                                                                                                                                     | 2067                                                                                         | Introduction of SDR test for PDSCH with EPDCCH scheduling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.6.0                                                                                                                                                                                                                                               | 11.7.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140368                                                                                                                                                                                     | 2091r1                                                                                       | CR for maintanence of CA soft buffer tests in Rel-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140374                                                                                                                                                                                     | 2096r1                                                                                       | CR on TM9 localized ePDCCH test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140374                                                                                                                                                                                     | 2100r1                                                                                       | CR on reference measurement channel for ePDCCH test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 2105                                                                                         | Cleanup of the specification for FeICIC (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 2107r1                                                                                       | UL-DL configuration and other parameters for FeICIC TDD CQI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
|                                                                                                            |                                                                                        |                                                                                                                                                                                               |                                                                                              | fading test (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                        |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140375                                                                                                                                                                                     | 2088                                                                                         | CR for introduction of 15MHz based SDR tests in Rel-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 2109r1                                                                                       | CR for TS36.101 COMP demodulation requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 2111r1                                                                                       | CR for Combinations of channel model parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140374                                                                                                                                                                                     | 2112                                                                                         | CR for EPDCCH power allocation (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 2085                                                                                         | CR on reference measurement channel for TM10 PDSCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
|                                                                                                            |                                                                                        |                                                                                                                                                                                               |                                                                                              | demodulation test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                        |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140374                                                                                                                                                                                     | 2073r1                                                                                       | CR of EPDCCH localzied test with TM10 QCL Type-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
|                                                                                                            |                                                                                        | -                                                                                                                                                                                             |                                                                                              | configuration (Rel-11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                    | -                                                                                      |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140368                                                                                                                                                                                     | 2146                                                                                         | Correction of coding rate for 18RBs in UL RMC table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 2130r1                                                                                       | CR to finalize RI test for CoMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140374                                                                                                                                                                                     | 2162r1                                                                                       | Distributed EPDCCH Demodulation Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 2128r1                                                                                       | CR to finalize fading CQI test for CoMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140371                                                                                                                                                                                     | 212011<br>2159r1                                                                             | Correction of table notes for NS_12-NS_15 spurious emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 00-2014                                                                                                    | 111-00                                                                                 | 11-1403/0                                                                                                                                                                                     | 210011                                                                                       | requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.7.0                                                                                                                                                                                                                                               | 11.0.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140368                                                                                                                                                                                     | 2136                                                                                         | Configured transmitted power for CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140308                                                                                                                                                                                     | 2130<br>2143r1                                                                               | Channel spacing for non-contiguous intra-band carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 05-2014                                                                                                    | 11-00                                                                                  | 11 - 1403/1                                                                                                                                                                                   | 214011                                                                                       | aggregation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.7.0                                                                                                                                                                                                                                               | 11.0.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | PD_1/0271                                                                                                                                                                                     | 2141                                                                                         | Clarification of contiguous and non-contiguous intra-band UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 7 0                                                                                                                                                                                                                                               | 11 0 0                                                                                 |
| 03-2014                                                                                                    | 50-77                                                                                  | RP-140371                                                                                                                                                                                     | 2141                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 02 2044                                                                                                    | RP-63                                                                                  | RP-140368                                                                                                                                                                                     | 2150                                                                                         | capabilities in the same band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11 7 0                                                                                                                                                                                                                                               | 11.0.0                                                                                 |
| 03-2014                                                                                                    |                                                                                        |                                                                                                                                                                                               | 2158                                                                                         | Correction of a table note for Pcmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
|                                                                                                            |                                                                                        |                                                                                                                                                                                               | 0404                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 7 0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014                                                                                                    | RP-63                                                                                  | RP-140368                                                                                                                                                                                     | 2121                                                                                         | CR for 36.101. Editorial correction on OCNG pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7.0                                                                                                                                                                                                                                               | 44 0 0                                                                                 |
| 03-2014                                                                                                    | RP-63<br>RP-63                                                                         | RP-140368<br>RP-140374                                                                                                                                                                        | 2124r1                                                                                       | CR on correction of downlink SDR tests with EPDCCH scheduling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.7.0                                                                                                                                                                                                                                               | 11.8.0                                                                                 |
| 03-2014<br>03-2014                                                                                         | RP-63<br>RP-63<br>RP-63                                                                | RP-140368<br>RP-140374<br>RP-140375                                                                                                                                                           | 2124r1<br>2118                                                                               | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.7.0<br>11.7.0                                                                                                                                                                                                                                     | 11.8.0                                                                                 |
| 03-2014<br>03-2014<br>03-2014                                                                              | RP-63<br>RP-63<br>RP-63<br>RP-63                                                       | RP-140368<br>RP-140374<br>RP-140375<br>RP-140371                                                                                                                                              | 2124r1<br>2118<br>2126r2                                                                     | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.7.0<br>11.7.0<br>11.7.0                                                                                                                                                                                                                           | 11.8.0<br>11.8.0                                                                       |
| 03-2014<br>03-2014                                                                                         | RP-63<br>RP-63<br>RP-63                                                                | RP-140368<br>RP-140374<br>RP-140375                                                                                                                                                           | 2124r1<br>2118                                                                               | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS                                                                                                                                                                                                                                                                                                                                                                             | 11.7.0<br>11.7.0                                                                                                                                                                                                                                     | 11.8.0                                                                                 |
| 03-2014<br>03-2014<br>03-2014<br>06-2014                                                                   | RP-63<br>RP-63<br>RP-63<br>RP-63<br>RP-64                                              | RP-140368<br>RP-140374<br>RP-140375<br>RP-140371<br>RP-140909                                                                                                                                 | 2124r1<br>2118<br>2126r2<br>2176r2                                                           | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)                                                                                                                                                                                                                                                                                                                                            | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0                                                                                                                                                                                                                 | 11.8.0<br>11.8.0<br>11.9.0                                                             |
| 03-2014<br>03-2014<br>03-2014<br>06-2014<br>06-2014                                                        | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64                                              | RP-140368<br>RP-140374<br>RP-140375<br>RP-140371<br>RP-140909<br>RP-140914                                                                                                                    | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1                                                 | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test                                                                                                                                                                                                                                                                                                    | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0<br>11.8.0                                                                                                                                                                                                       | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0                                                   |
| 03-2014<br>03-2014<br>03-2014<br>06-2014                                                                   | RP-63<br>RP-63<br>RP-63<br>RP-63<br>RP-64                                              | RP-140368<br>RP-140374<br>RP-140375<br>RP-140371<br>RP-140909                                                                                                                                 | 2124r1<br>2118<br>2126r2<br>2176r2                                                           | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B                                                                                                                                                                                                                                                | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0                                                                                                                                                                                                                 | 11.8.0<br>11.8.0<br>11.9.0                                                             |
| 03-2014<br>03-2014<br>06-2014<br>06-2014<br>06-2014                                                        | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64<br>RP-64                                     | RP-140368<br>RP-140374<br>RP-140375<br>RP-140371<br>RP-140909<br>RP-140914<br>RP-140917                                                                                                       | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1<br>2206r1                                       | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B<br>configuration (Rel-11): correction of CSI-RS configurations                                                                                                                                                                                 | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0<br>11.8.0<br>11.8.0                                                                                                                                                                                             | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0<br>11.9.0                                         |
| 03-2014<br>03-2014<br>03-2014<br>06-2014<br>06-2014                                                        | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64<br>RP-64<br>RP-64                            | RP-140368<br>RP-140374<br>RP-140375<br>RP-140371<br>RP-140909<br>RP-140914                                                                                                                    | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1                                                 | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B                                                                                                                                                                                                                                                | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0<br>11.8.0                                                                                                                                                                                                       | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0                                                   |
| 03-2014<br>03-2014<br>06-2014<br>06-2014<br>06-2014                                                        | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64<br>RP-64                                     | RP-140368<br>RP-140374<br>RP-140375<br>RP-140371<br>RP-140909<br>RP-140914<br>RP-140917                                                                                                       | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1<br>2206r1                                       | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B<br>configuration (Rel-11): correction of CSI-RS configurations                                                                                                                                                                                 | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0<br>11.8.0<br>11.8.0                                                                                                                                                                                             | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0<br>11.9.0                                         |
| 03-2014<br>03-2014<br>03-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014                                  | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64<br>RP-64<br>RP-64                            | RP-140368           RP-140374           RP-140375           RP-140371           RP-140909           RP-140914           RP-140917           RP-140918                                         | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1<br>2206r1<br>2208                               | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B<br>configuration (Rel-11): correction of CSI-RS configurations<br>Clean up of TM9 SNR tests                                                                                                                                                    | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0<br>11.8.0<br>11.8.0<br>11.8.0                                                                                                                                                                                   | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0                     |
| 03-2014<br>03-2014<br>03-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014            | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64<br>RP-64<br>RP-64<br>RP-64<br>RP-64          | RP-140368           RP-140374           RP-140375           RP-140371           RP-140909           RP-140914           RP-140917           RP-140918           RP-140917                     | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1<br>2206r1<br>2208<br>2214r1<br>2215r1           | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B<br>configuration (Rel-11): correction of CSI-RS configurations<br>Clean up of TM9 SNR tests<br>Correction of UE TM3 demodulation performance requirements<br>CR for EPDCCH test (Rel-11)                                                       | 11.7.0           11.7.0           11.7.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0                                                                                                                        | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0           |
| 03-2014<br>03-2014<br>03-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014 | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64<br>RP-64<br>RP-64<br>RP-64<br>RP-64<br>RP-64 | RP-140368           RP-140374           RP-140375           RP-140371           RP-140909           RP-140914           RP-140917           RP-140918           RP-140917           RP-140917 | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1<br>2206r1<br>2208<br>2214r1<br>2215r1<br>2217r1 | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B<br>configuration (Rel-11): correction of CSI-RS configurations<br>Clean up of TM9 SNR tests<br>Correction of UE TM3 demodulation performance requirements<br>CR for EPDCCH test (Rel-11)<br>CR of modification on FeICIC rank testing (Rel-11) | 11.7.0           11.7.0           11.7.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0           11.8.0 | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0 |
| 03-2014<br>03-2014<br>03-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014<br>06-2014            | RP-63<br>RP-63<br>RP-63<br>RP-64<br>RP-64<br>RP-64<br>RP-64<br>RP-64<br>RP-64          | RP-140368           RP-140374           RP-140375           RP-140371           RP-140909           RP-140914           RP-140917           RP-140918           RP-140917                     | 2124r1<br>2118<br>2126r2<br>2176r2<br>2197r1<br>2206r1<br>2208<br>2214r1<br>2215r1           | CR on correction of downlink SDR tests with EPDCCH scheduling<br>Introduction of requirements for SNR test for TM9<br>Correction on DL CoMP static CQI tests (Rel 11)<br>RF: Corrections to spurious emission requirements with NS<br>different than NS_01 (Rel-11)<br>CR on correction on TDD IRC CQI test<br>CR of EPDCCH localzied test with TM10 QCL Type-B<br>configuration (Rel-11): correction of CSI-RS configurations<br>Clean up of TM9 SNR tests<br>Correction of UE TM3 demodulation performance requirements<br>CR for EPDCCH test (Rel-11)                                                       | 11.7.0<br>11.7.0<br>11.7.0<br>11.8.0<br>11.8.0<br>11.8.0<br>11.8.0<br>11.8.0<br>11.8.0                                                                                                                                                               | 11.8.0<br>11.8.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0<br>11.9.0           |

| 06-2014         RP-64         RP-140911         2227r1         Correction for CA sustained data rate test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2232         Clarification of Intra-band configuous CA class C Narrow band         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2232         Clarification of Intra-band configuous CA class C Narrow band         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2238         Correction for CA soft buffer test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         22461         Remove [] from elCC TDD R requirements for carrier aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140918         226171         Applicability of exceptions to reference sensitivity requirements for R11         11.8.0         11.9.0           06-2014         RP-64         RP-140918         226171         Editorial corrections for UE performance requirments for R11         11.8.0         11.9.0           06-2014         RP-64         RP-140918         22671         CR for TS36.101 FRC tables for COMP demodulation         11.8.0         11.9.0           06-2014         RP-64         RP-140911         22871         CR                                           |         |       |           |        | categories                                                       |        |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----------|--------|------------------------------------------------------------------|--------|--------|
| 06-2014         RP-44         RP-140918         2230r1         CR on OCNG and propagation conditions for valual ayer TM9 test         11.8.0         119.0           06-2014         RP-64         RP-140911         2232         Clarification of Intra-band contiguous CA class C Narrow band         11.8.0         119.0           06-2014         RP-64         RP-140911         2246r1         Remove [] from effCtr DDR I requirement         11.8.0         119.0           06-2014         RP-64         RP-140911         2246r1         Remove [] from effCtr DDR I requirement         11.8.0         119.0           06-2014         RP-64         RP-140914         2257         Applicability of exceptions to reference sensitivity requirements for C11         11.8.0         119.0           06-2014         RP-64         RP-140918         2261r1         Editorial corrections for UE performance requirments for R11         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2272         CR for finalizing DL COMP demodulation test cases         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2285         CR for finalizing DL COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         22877         CR for finalizing DL COMP CSI R                                           | 06-2014 | PD-64 | PP-1/0011 | 2227r1 |                                                                  | 11.8.0 | 11 0 0 |
| 06-2014         RP-64         RP-140911         2232         Clarification of Intra-band contiguous CA class C Narrow band         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2238         Correction for CA soft buffer test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2246r1         Remove [] from eICIC TDD RI requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2255         Verification of exceptions of REFSENS requirements for carrier aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2257         Applicability of exceptions to reference sensitivity requirements for R11         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2272         CR for TS36.101 FRC tables for COMP demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2281r1         Finalization of CoMP demodulation test cases         11.8.0         11.9.0           06-2014         RP-64         RP-140914         22877         CR for finalizing DL COMP CSI Reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         228771         CR for danigp L                                            |         | -     |           |        |                                                                  |        |        |
| 06-2014         RP-64         RP-140911         2238         Correction for CA soft buffer test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2246r1         Remove [] from eICI C TDD RI requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2255         Verification of exceptions of REFSENS requirements for carrier aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2261r1         Editorial corrections for UE performance requirements for R11         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2268         In-band blocking case nubering re-establisment         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2272         CR for TS38.101 FRC tables for COMP demodulation rest cases         11.8.0         11.9.0           06-2014         RP-64         RP-140914         22871         CR for rading DL COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         22871         CR for rading DL COMP CSI RNC tables (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43                                                      |         |       |           |        | Clarification of Intra-band contiguous CA class C Narrow band    |        |        |
| 06-2014         RP-64         RP-140911         2246r1         Remove [] from elCiC TDD RI requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2255         Verification of exceptions of REFSENS requirements for carrier aggregation         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2257         Applicability of exceptions to reference sensitivity requirements for CAR         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0                                                                                  |         |       |           |        |                                                                  |        |        |
| 06-2014         RP-64         RP-140914         2255         Verification of exceptions of REFSENS requirements for carrier aggregation         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                              |         |       |           |        |                                                                  |        |        |
| aggregation         aggregation           06-2014         RP-64         RP-140914         2257         Applicability of exceptions to reference sensitivity requirements for 11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140918         22611         Editorial corrections for UE performance requirments for R11         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2272         CR for TS36.101 FRC tables for COMP demodulation         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2281r1         Finalization of CoMP demodulation test cases         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2281r1         CR for finalizing DL COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2324r1         CR of modification on FeICIC rank testing (ReI-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2324                                                                     |         |       |           |        |                                                                  |        |        |
| CA         CA           06-2014         RP-64         RP-140918         2261r1         Editorial corrections for UE performance requirments for R11         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2272         CR for TS36.101 FRC tables for COMP demodulation         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2281r1         Finalization of COMP demodulation test cases         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2281r1         Finalization of COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2287r1         CR for finalizing DL COMP CSI Reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf. Corrections to CA (Class C) performance with power         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2322r1         CR for modification on FeICIC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2324                                                                              | 06-2014 | RP-64 | RP-140914 |        | aggregation                                                      | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140909         2268         In-band blocking case nubering re-establisment         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2272         CR for TS36.101 FRC tables for COMP demodulation         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0         11.8.0                                                                                                                 | 06-2014 | RP-64 | RP-140914 | 2257   |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140918         2272         CR for TS36.101 FRC tables for COMP demodulation<br>requirements         11.8.0         11.8.0         11.8.0           06-2014         RP-64         RP-140911         2281r1         Finalization of CoMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2285         CR for finalizing DL COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf: Corrections to CA (Class C) performance with power         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2320r1         CR of modification on FelCIC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2324r1         CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elCIC demodulation requirements (Rel-11)         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throu                                                          | 06-2014 | RP-64 | RP-140918 | 2261r1 | Editorial corrections for UE performance requirments for R11     | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140918         2272         CR for TS36.101 FRC tables for COMP demodulation<br>requirements         11.8.0         11.8.0         11.8.0           06-2014         RP-64         RP-140911         2281r1         Finalization of CoMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2285         CR for finalizing DL COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf: Corrections to CA (Class C) performance with power         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2320r1         CR of modification on FelCIC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2324r1         CR of modification requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elCIC demodulation require                                                 |         |       | RP-140909 |        |                                                                  |        |        |
| 06-2014         RP-64         RP-140911         2281r1         Finalization of CoMP demodulation test cases         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2285         CR for finalizing DL COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2287r1         CR for adding DL COMP CSI RMC tables (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf: Corrections to CA (Class C) performance with power inbalance (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2322r1         CR of introducing FeICIC TM9 testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2324r1         CR for EPDCCH SDR test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2327         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2334r1         Introduction of Band 28 requirements (Rel-11)         11.8.0                                                                | 06-2014 | RP-64 | RP-140918 | 2272   |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140914         2285         CR for finalizing DL COMP CSI reporting requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2287r1         CR for adding DL COMP CSI RMC tables (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf: Corrections to CA (Class C) performance with power<br>imbalance (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2320r1         CR of introducing FeICIC TMs testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2322r1         CR of introducing FeICIC TMs testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2327         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to eICIC TDD RI         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to eICIC                                            |         |       |           |        | requirements                                                     |        |        |
| 06-2014         RP-64         RP-140914         2287r1         CR for adding DL CoMP CSI RMC tables (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf: Corrections to CA (Class C) performance with power imbalance (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2320r1         CR of modification on FeICIC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2322r1         CR of introducing FeICIC TM9 testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2322r1         CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for eICIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2334r1         Introduction of Band 28 requirements for flexible operation in Japan         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2343         CR on separating                                                     | 06-2014 | RP-64 | RP-140911 | 2281r1 |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf: Corrections to CA (Class C) performance with power imbalance (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2320r1         CR of modification on FelCIC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2324r1         CR of introducing FelCIC TM9 testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2322r1         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elCIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2334r1         Introduction of Band 28 requirements for flexible operation in Japan         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx require                                           | 06-2014 |       | RP-140914 | 2285   | CR for finalizing DL COMP CSI reporting requirements             | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2313         UE to UE co-existence between B42/B43         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2317         Perf: Corrections to CA (Class C) performance with power imbalance (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2320r1         CR of modification on FelCIC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2324r1         CR of introducing FelCIC TM9 testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2322r1         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elCIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2334r1         Introduction of Band 28 requirements for flexible operation in Japan         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx require                                           | 06-2014 | RP-64 | RP-140914 | 2287r1 | CR for adding DL CoMP CSI RMC tables (Rel-11)                    | 11.8.0 | 11.9.0 |
| Impalance (Rel-11)         Impalance (Rel-11)         Impalance (Rel-11)           06-2014         RP-64         RP-140914         2320r1         CR of modification on FelCIC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2322r1         CR of introducing FelCIC TM9 testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         232r         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elCIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elCIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to elCIC TDD RI         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier tequirement         11.8.0         11.9.0           0                                                   | 06-2014 | RP-64 | RP-140911 | 2313   |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140914         2320r1         CR of modification on FelClC rank testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2322r1         CR of introducing FelClC TM9 testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2324r1         CR for EPDCCH SDR test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elClC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2334r1         Introduction of Band 28 requirements for flexible operation in J1.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to elClC TDD RI requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2360         Test config                                           | 06-2014 | RP-64 | RP-140911 | 2317   |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140914         2322r1         CR of introducing FeICIC TM9 testing (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2324r1         CR for EPDCCH SDR test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         232         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elCIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2334r1         Introduction of Band 28 requirements for flexible operation in<br>Japan         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to elCIC TDD RI<br>requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier<br>tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test co                                  | 06-2014 | RP-64 | RP-140914 | 2320r1 |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140917         2324r1         CR for EPDCCH SDR test (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2327         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for elClC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2334r1         Introduction of Band 28 requirements for flexible operation in<br>Japan         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to elClC TDD RI<br>requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier<br>tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation<br>power control         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2364                               |         |       |           |        |                                                                  |        |        |
| 06-2014         RP-64         RP-140911         2327         Clean-up CR for demodulation requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2332         Throughput calculation for eICIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2334r1         Introduction of Band 28 requirements for flexible operation in<br>Japan         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to eICIC TDD RI<br>requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier<br>tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation<br>power control         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous<br>aggregation         11.8.0         11.9.0           06-2014              | 06-2014 | RP-64 | RP-140917 | 2324r1 |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2332         Throughput calculation for eICIC demodulation requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2334r1         Introduction of Band 28 requirements for flexible operation in<br>Japan         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to eICIC TDD RI<br>requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier<br>tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation<br>power control         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous<br>aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2364         Clarification on CA bandwidth classes         11.8.0         11.9.0           06-2014         RP-64         RP-140911          | 06-2014 |       | RP-140911 |        |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140914         2334r1         Introduction of Band 28 requirements for flexible operation in<br>Japan         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to eICIC TDD RI<br>requirement         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier<br>tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation<br>power control         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous<br>aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-6 | 06-2014 | RP-64 | RP-140911 | 2332   |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2336r1         Add missing Uplink downlink configuration to elCIC TDD RI         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation power control         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous carrier aggregation aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140911         236         Clarification on CA bandwidth classes         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1                                           | 06-2014 | RP-64 | RP-140914 | 2334r1 | Introduction of Band 28 requirements for flexible operation in   | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2340         Cleanup of terminology for Rx requirements         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation power control         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous carrier aggregation aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         <                     | 06-2014 | RP-64 | RP-140911 | 2336r1 | Add missing Uplink downlink configuration to eICIC TDD RI        | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140918         2343         CR on separating CA UE demodulation tests from single carrier tests in Rel-11         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation power control         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous carrier aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2364         Clarification on CA bandwidth classes         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2376         Corrections of cA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corr                                           | 06-2014 | RP-64 | RP-140911 | 2340   | Cleanup of terminology for Rx requirements                       | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2350         Test configuration for intra-band contiguous carrier aggregation<br>power control         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous<br>aggregation         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2364         Clarification on CA bandwidth classes         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2393         CR for TS36.101 CSI RMC table         11.8.0         11.9.0                                                                                                                                            | 06-2014 | RP-64 | RP-140918 | 2343   | CR on separating CA UE demodulation tests from single carrier    | 11.8.0 |        |
| 06-2014         RP-64         RP-140914         2361r1         Correction of test configurations for intra-band non-contiguous aggregation         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2364         Clarification on CA bandwidth classes         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2393         CR for TS36.101 CSI RMC table         11.8.0         11.9.0                                                                                                                                                                                                                                                                                                                                                                                   | 06-2014 | RP-64 | RP-140911 | 2350   | Test configuration for intra-band contiguous carrier aggregation | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2364         Clarification on CA bandwidth classes         11.8.0         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140917         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2393         CR for TS36.101 CSI RMC table         11.8.0         11.9.0                                                                                                                                                                                                                                                                                                                                                                                                                      | 06-2014 | RP-64 | RP-140914 | 2361r1 | Correction of test configurations for intra-band non-contiguous  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140917         2373         CR on correction of downlink SDR tests with EPDCCH scheduling         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2393         CR for TS36.101 CSI RMC table         11.8.0         11.9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06-2014 | RP-64 | RP-140911 | 2364   |                                                                  | 11.8.0 | 11.9.0 |
| 06-2014         RP-64         RP-140911         2376         Corrections on CA CQI tests         11.8.0         11.9.0           06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2393         CR for TS36.101 CSI RMC table         11.8.0         11.9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |           |        |                                                                  |        |        |
| 06-2014         RP-64         RP-140911         2386r1         CR on PDSCH transmission for eICIC CSI requirements (Rel-11)         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2393         CR for TS36.101 CSI RMC table         11.8.0         11.9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |       |           | 2376   |                                                                  |        |        |
| 06-2014         RP-64         RP-140914         2390         CA_7C A-MPR Corrections         11.8.0         11.9.0           06-2014         RP-64         RP-140918         2393         CR for TS36.101 CSI RMC table         11.8.0         11.9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |           |        |                                                                  |        |        |
| 06-2014 RP-64 RP-140918 2393 CR for TS36.101 CSI RMC table 11.8.0 11.9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |       |           |        |                                                                  |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |           |        |                                                                  |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 06-2014 | RP-64 | RP-140914 | 2424   | CR on correction for TM10 CSI reporting requirements             | 11.8.0 | 11.9.0 |

### History

| Document history |               |             |  |  |  |
|------------------|---------------|-------------|--|--|--|
| V11.2.0          | November 2012 | Publication |  |  |  |
| V11.3.0          | February 2013 | Publication |  |  |  |
| V11.4.0          | April 2013    | Publication |  |  |  |
| V11.5.0          | July 2013     | Publication |  |  |  |
| V11.6.0          | October 2013  | Publication |  |  |  |
| V11.7.0          | March 2014    | Publication |  |  |  |
| V11.8.0          | April 2014    | Publication |  |  |  |
| V11.9.0          | August 2014   | Publication |  |  |  |