
 Static Stack Depth Profiler 1

Static Stack Depth Profiler

Functional Specification

General Description

The static stack depth profiler will provide information to the user about the maximum stack depth
requirements of their application based on the static information available to it in the output file
generated by the linker.

The profiler will be implemented as a stand-alone application called sdp470. The profiler will take
a linked output file as input and produce a listing that details the stack usage of all of the functions
defined in the application. If an application contains indirect calls and/or reentrant procedures, then
a configuration file should also be provided as input to the profiler.

The syntax for invoking the static stack depth profiler is as follows:

 sdp470 [–c config] out-file

-c config Identifies a configuration file to be used by the profiler to supply information about
indirectly called functions and reentrant procedures (for more information on this
topic, see Configuration File Specification section below).

out-file Identifies linked output file for an application to be analyzed by the profiler. This
file will contain debug information about all functions included in the final link of an
application.

Stack Depth Statistics Listing

Each segment of the listing will detail the stack usage for a particular function in the application.
Function segments are listed in order beginning with the function that has the highest total stack
need.

The first line in a segment will provide details about a given parent function. The first line in a
function segment will provide information on the stack space needed by the function and what its
total stack usage estimate (function’s stack usage plus the worst stack usage of its callees).

Subsequent lines in a function segment will list the callees of the parent function listed in the first
line of the segment. The callees are listed in order from highest to lowest stack usage.

 Static Stack Depth Profiler 2

For example, given the following call trees for an application:

The function segment listings will look like this:

* Static Stack Depth Analysis Profile

FCN:cint00 stack usage: 0, total stack need : 28

 _main stack usage: 8, subtree stack need: 28

===

FCN:_main stack usage: 8, total stack need : 28

 _A stack usage: 12, subtree stack need: 20

 _C stack usage: 16, subtree stack need: 16

===

FCN:_ISR1 stack usage: 16, total stack need : 28

 _G stack usage: 12, subtree stack need: 12

 _F stack usage: 4, subtree stack need: 4

===

FCN:_A stack usage: 12, total stack need : 20

 _B stack usage: 8, subtree stack need: 8

===

FCN:_C stack usage: 16, total stack need : 16

===

FCN:_G stack usage: 12, total stack need : 12

===

FCN:_B stack usage: 8, total stack need : 8

===

FCN:_F stack usage: 4, total stack need : 4

===

_c_int00:0

_main:8

_A:12

_B:8

_C:16

_G:12 _F:4

_ISR1:16

 Static Stack Depth Profiler 3

A summary of the application’s stack depth requirements will be provided at the end of the listing.
The summary will state an estimate of the stack depth usage from each function in the application
that does not have a parent. The user can derive a worst case estimate of an application’s stack
depth using the information provided in the listing in combination with their knowledge of which
functions are interrupts (and which stack mode those interrupts assume).

For example, a summary of the above example will look like this:

================ROOT FUNCTIONS==============================

_c_int00 total stack need: 28 bytes

_ISR1 total stack need: 28 bytes

 Static Stack Depth Profiler 4

Dependencies and Limitations

The profiler will construct a call tree based on the debug information provided in the linker output
file. The tree will be annotated with the stack usage information that the profiler derives from the
function’s debug information.

There are several significant limitations to the profiler’s ability to complete this information:

• Hand-coded assembly functions and stack usage information for those functions
• Indirectly called functions and their callers
• Reentrant functions and their depth of recursion

The profiler will rely on user input to supply this information in the application source code and in
the configuration file (specified with the –c option). The assembler will process the assembly
source code annotations (.asmfunc/.endasmfunc directives) and encode the information into the
linked output file in a form that the profiler can understand. The user must also provide a
configuration file to identify indirect calls and reentrant procedures to the profiler. The profiler will
use this configuration file to annotate the call graph that it constructed from the linked output file for
the application.

The accuracy of the stack depth estimate is heavily dependent on the accuracy of the information
provided by the user. The user must actively maintain this information throughout the life of a
given application.

 Static Stack Depth Profiler 5

User Input Mechanisms

The assembler will support assembler directives, .asmfunc and .endasmfunc, for identifying the
beginning and end of an assembly function. The .asmfunc directive will support an optional
parameter for specifying the stack space needed for an assembly function.

For example, you could write a function, $foo(), which uses 12 bytes of stack space, as follows:

 .global $foo

 $foo: .asmfunc stack_usage(12)

 PUSH { R4, R5, R6 }

 …

 POP { R4, R5, R6 }

 MOV PC, LR

 .endasmfunc

The .asmfunc and .endasmfunc directives identify the entry and exit points of the function. This
information and the fact that $foo uses 12 bytes of stack space are then encoded into the debug
information. Assembler functions must be annotated with these directives to be considered for
stack depth analysis and profile report.

 Static Stack Depth Profiler 6

Configuration File Specification

The stack depth profiler enables users to specify indirect calls and re-entrant procedures using a
configuration file. The configuration file is input to the profiler, along with the executable to be
analyzed. The profiler applies the configuration information to the stack depth information extracted
from the executable and reports the total stack usage.

The configuration file is composed of a series of sections delimited by the section type. Each
section contains information for a specific section type. For example, the section specifying
indirectly called functions is delimited by <INDIRECT> and </INDIRECT>, and contains information
on the set of procedures called indirectly.

Specifying Indirect Calls

<INDIRECT>

func1: callee1[(mode)], callee2[(mode)],…,calleeN[(mode)]

func2: callee1[(mode)],…,calleeN[(mode)]

…

funcm: callee1[(mode)],…,calleeN[(mode)]

</INDIRECT>

The keywords <INDIRECT> and </INDIRECT> delimit an indirect callee section. Each line

in the section begins with the name of a calling procedure, func, followed by a colon (:), which is

then followed by a list of functions that are called indirectly from func. Each entry in the indirect
callee list consists of the callee name, and an optional mode (in parentheses) in which the callee
was compiled. The profiler recognizes the specification of one of three modes: ARM, THUMB, and
DUAL (default). If a mode is not specified, the profiler will assume DUAL mode. For DUAL mode
callee functions, the profiler automatically adds the names of the callees (in ARM and THUMB
modes) to the callee list for func. In the following example, function bar is specified as a callee

in DUAL mode, and both _bar and $bar are added to the callee list for main.

<INDIRECT>
main:foo(ARM),bar
</INDIRECT>

The user may also specify each indirect call on a separate line within an indirect call section:

<INDIRECT>
main:foo(ARM)
main: bar
</INDIRECT>

The profiler performs no semantic checks on the information input via the configuration file. That is,
it does not check to determine if the procedures listed in the callee list or the caller list exists or if
they exist in the mode specified. The profiler will check, however, for available debug information
for a function and generate a warning if none is found.

 Static Stack Depth Profiler 7

The profiler declares the following types of loads of PC (in ARM) mode as indirect call points

 LDR{B,H} PC,[reg,#imm]

Where #imm is an immediate value. However, loads of PC with register offsets are not identified as
call points since such loads are used generally for switch table jumps.

Specifying Re-entrant Procedures

Reentrant functions present a difficult problem to the profiler’s ability to accurately estimate the
worst-case space requirement of an application. One difficulty with reentrant functions is that the
depth of recursion is often data-dependent. It may be impossible for a user to accurately inform
the profiler about the depth of recursion without knowing in advance all of the input data sets that
will be used in the application. Another difficulty is the presence of multiple recursive functions in a
call-graph, which would make it hard to determine the recursive behavior of each function in the
call-graph.

In light of these difficulties, we do not perform any automated analysis to determine the presence of
reentrant functions or their nature. Instead, we rely on the user to input the maximum recursive
depth of a function. The profiler assumes that the user input is correct and reliable, and warns the
user if there is no apparent recursion in the call graph for a function and the user has specified a
recursion depth. Beyond the required analysis to issue such a warning, the profiler does not
perform any analysis on reentrant calls.

The configuration file enables the user to specify the list of reentrant procedures in the application.
The format is as follows:

<REENTRANT>

func1(depth)

func2(depth)

</REENTRANT>

The re-entrant section is delimited by the <REENTRANT> and </REENTRANT> keywords as
shown above. Each line in the section consists of a function name followed by the recursion
depth (in parentheses) to be assumed for the function. The depth value should be a valid,

non-negative integer. The profiler multiplies the stack size of the function by its specified depth
to obtain the final stack usage requirement for the function. For example,

<REENTRANT>
foo(5)
</REENTRANT>

If the profiler determines that the static stack usage requirement of foo is 100, the maximum

dynamic requirement of foo would be 100*5 = 500. The depth of a function defaults to 1 in the

absence of a depth field

 Static Stack Depth Profiler 8

The profiler does not make any effort to determine if the procedure specified in the re-entrant
section is indeed recursive. It assumes that the user input is correct and reliable.

 Static Stack Depth Profiler 9

Specifying Interrupt service routines

Interrupt service routines (ISRs), as the name indicates, are used to handle interrupts. An interrupt
service routine is a special root function that is usually not directly called from the application. In
ARM, an interrupt request can be service by an ISR in any of the six modes. Each mode typically
uses a different stack area for the interrupt handler. The SDA can output the stack requirements of
an ISR if the user can identify ISRs and their modes of operations. The syntax for specifying an
ISR and its mode is given below

<INTERRUPT>
routine_name(mode)
</INTERRUPT>

Where routine_name is the name of the ISR and mode can be one of

1. irq (general purpose interrupt),
2. fiq (data transfer or channel process)
3. svc (operating system protected mode)
4. abt (data or instruction prefetch abort)
5. sys (privileged user mode for the operating system)
6. und (undefined instruction).

The stack space requirement for ISRs are output after the stack space requirements for routines
directly called by the application.

Other Features

The configuration file supports all pre-processing directives supported by cl470. The configuration
file should be processed using cl470 pre-processor before being input to the profiler. For example,
if file “config1” contains:

<INDIRECT>
main:foo
</INDIRECT>
#include “config2”

and file “config2” contains:

<REENTRANT>
foo(5)
</REENTRANT>

the cl470 pre-processor can be used to combine the 2 config files. For example:

cl470 –ppo config1

The pre-processor will add or replace the file suffix with .pp. In the above example, the combined
config files will be found in the file “config1.pp”.

 Static Stack Depth Profiler 10

The profiler supports C++ style comments. All characters following the // symbol to the end of the
line (new line character) are ignored. The // can appear anywhere in a configuration file. For
example

<INDIRECT>
// This is a comment
main:foo
// End of indirect callee list
</INDIRECT>

The configuration file does not permit nesting of sections. For example, the following specification
is illegal

<INDIRECT>
foo:bar
<REENTRANT>
foo(5)
</REENTRANT>
</INDIRECT>

It is worth re-iterating that the profiler performs no semantic checks on the information specified in
the configuration file and assumes that the information provided is correct and valid. It is the user’s
responsibility to ensure the validity of information specified in the configuration file.

Tail Calls

The SDA handles tail calls (branching to a routine foo() at the end of routine bar() so that control
returns directly to bar’s caller at the end of foo()) by identifying tail call points as both call point and
return points. The pseudo assembly instruction CRET is used for representing tail calls.

 Static Stack Depth Profiler 11

Profiler Generated Warnings

The static stack depth profiler will detect the following situations and issue a warning in each case:

• If a function contains an indirect branch (branch to the contents of a register) and there are no
<INDIRECT> entries for the function in the configuration file, the profiler will issue a warning
that a potential indirect call has been observed and the user has not specified this caller/callee
pair in the configuration file. Not all indirect branches are function calls; e.g., in 32-BIS mode,
long branches are achieved through indirect branches.

• If the user specifies a set of indirect callees for a function and the profiler observes no indirect
branches in the function, it issues a warning to the user indicating the absence of indirect calls.

• If a function’s call graph has a link back to the function indicating potential recursion and the
user has specified no recursion depth, the profiler issues a warning to the user indicating that
the function is reentrant. The reason for issuing a warning and not an error is that a function
could have an apparent recursion and not a real one.

• Similarly, if the profiler discovers no links back to the function in a call-graph and the user has
specified a recursion depth, it issues a warning to the user.

• If no stack usage information for a function is found.
• If no debug information for a function is found.
• The profiler will generate potential indirect callee warning for each routine compiled in dual

mode. This is because, in dual mode, each call to an external routine is performed by jumping
to the RTS routine IND_CALL or IND$CALL (depending on the mode of the caller)

• The profiler will generate potential indirect callee warnings for routines in the RTS library.

Run-time Support for Stack Depth Profiling

The latest version of the ARM compiler provides a debug option to enable the user to determine
the maximum stack usage of an application. If the application is compiled with –debug:sdp
command line option, the compiler places a call to a stack depth bookkeeping routine (C_SDPBK
for 32-BIS and C$SDPBK for 16-BIS), immediately after the frame has been allocated for a
function. This bookkeeping routine tracks the maximum stack usage for each function. We have
also made available a profiled version of the run-time support that can be linked when –debug:sdp
is turned on. This would enable the user to determine the complete stack usage of an application
that contains run-time support utilities (such as I/O utilities).

There is an overhead associated with the –debug:sdp option. The link register (LR) is always
saved when this option is turned on, since all functions in the application call the bookkeeping
routine.

 Static Stack Depth Profiler 12

 Static Stack Depth Profiler 13

5. Does stack depth analysis work on Win98, Win2000, and WinNT?

The source code for the profiler will be ported to all of the host operating systems that are
currently supported.

6. Does stack depth analyzer work with stack manipulations in the application code?

The profiler will make not detect changes in stack mode during a function. Stack usage
statistics will be reported on a function by function basis, for every function that is included in
the final link of the user’s application.

7. Are there any restrictions on C-compiler or linker optionsallowed?

The application cannot be compiled with STABS type debug enabled (-gt option). The profiler
relies on DWARF type debug information to be produced by the compiler and assembler.

8. How are indirect function calls and recursive functions handled?

Please see above section describing the Configuration File Specification.

9. How are entry points identified?

The entry point, or root function, is identified in the linked output file. The profiler uses the
same policy to determine the entry point as the linker:

1. A global symbol identified with –e linker command option
2. The value of the _c_int00 symbol (if present)
3. The value of the _main or $main symbol (if present)
4. Address 0x0 (the default

