
System Controller for MIPS Processors

GT–64242A

 http://www.marvell.com

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 1
Not Approved by Document Control - For Review Only

FEATURES
Integrated system controller with PCI interface
for high-performance embedded control applica-
tions.

Supports 64-bit bus MIPS CPUs:

• PMC-Sierra RM5260,RM5270, RM7000A and
RM7000C

• IDT RC5000 and RC64575

• NEC Rv5000 and Rv5464

• LSI Viper

• Sandcraft SR71000

CPU interface features:

• Multiplexed 64-bit address/data bus (36-bit
address, 64-bit data).

• Up to 133MHz CPU bus frequency.

• 2.5V or 3.3V CPU bus interface.

• 256 byte write posting buffer that accepts up to six
CPU cache line writes with zero wait-states

• 64 byte CPU read buffer that accepts up to two
cache line CPU reads.

• Supports split read transactions (two outstanding
reads) with out-of-order completion.

• Supports R4000 and pipeline write modes (also
available in multiple GT–64242A configuration).

• Supports R5000/R7000 CPU caches.

CPU address remapping to PCI.

Supports access, write, and caching protection to
configurable address ranges.

Supports up to four multiple GT–64242A devices
on the same CPU bus.

Supports both Little and Big Endian modes.

Synchronization barrier support between the CPU
and the PCI.

SDRAM controller:

• 64-bit wide (+ 8-bit ECC) SDRAM interface.

• Up to 133MHz SDRAM frequency.

• 3.3V SDRAM interface.

• Supports SDRAM and registered SDRAM.

• Four DRAM banks.

• 1MB-1GB bank address space.

• Up to 4GB DRAM address space.

• Supports 2-way & 4-way SDRAM bank interleaving.

• Supports 16/64/128/256/512 Mbit SDRAM.

• Supports up to 16 pages open.

Supports the Unified Memory Architecture Stan-
dard.

• Allows for external masters access to SDRAM
directly.

• Allows glueless multiple GT–64242A devices
share the same SDRAM.

Device controller:

• A dedicated 32-bit multiplexed address/data bus
(separated from SDRAM bus).

• Up to 133MHz bus frequency.

• 3.3V device interface.

• Five chip selects.

• 1MB-512MB bank address space.

• Up to 2.5GB Device address space.

• Programmable timing for each chip select.

• Supports many types of standard memory and
I/O devices.

• Optional external wait-state support.

• 8-,16-,32-bit width device support.

• Support for boot ROMs.

• Supports generating and checking of data parity.

http://www.marvell.com

FEATURES

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

 Page 2 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

GT–64242A

Four channels DMA controller:

• Chaining via linked-lists of records.

• Byte address boundary for source and destination.

• Moves data between the PCI, SDRAM, Devices,
and CPU buses.

• Two 2Kbyte internal FIFOs allowing transfers to
take place concurrently.

• Alignment of source and destination addresses.

• Increment or hold of source and destination
addresses.

• DMAs can be initiated by the CPU, external
DMAReq* signal, or an internal timer/counter.

• Termination of DMA transfer on each channel.

• Descriptor ownership transfer to CPU.

• Supports unlimited burst DMA transfers between
the SDRAM and the PCI.

One high-performance PCI 2.2 compliant inter-
face.

• PCI bus speed of up to 66MHz with zero wait
states.

• Operates either synchronous or asynchronous to
CPU clock, at slower, equal, or faster clock
frequency.

• 32/64-bit PCI master and target operations.

• Supports flexible byte swapping through the PCI
interface.

• 3.3V PCI buffers (configurable 3.3/5V).

• Configurable PCI arbiter for up to six external
masters, plus the internal master.

Master specific features:

• 512 bytes posted write buffer and 512 bytes read
buffer for unlimited DMA bursts between SDRAM
and the PCI.

• Host to PCI bridge - translates CPU cycles to PCI I/
O or Memory cycles.

• Supports 64-bit addressing through Dual Address
cycles.

• Supports configuration, interrupt acknowledge, and
special cycles on the PCI bus.

Target specific features:

• PCI to main memory bridge.
• 512 bytes posted write buffer and 1Kbyte read

prefetch buffer for unlimited bursts between the PCI
and SDRAM.

• Up to eight delayed reads.
• Read prefetch of up to 1Kbyte.
• Supports fast back-to-back transactions.
• Supports memory and I/O transactions to internal

configuration registers.
• Supports 64-bit addressing through dual address

cycles.
• Synchronization barrier support between the PCI

and the CPU.
• PCI address remapping to resources.
• Supports access and write protect to configurable

address ranges.

PCI Hot-Plug and CompactPCI Hot-Swap ready
compliant.

Messaging Unit:

• Efficient messaging interface between the PCI and
the CPU, or between the two PCI interfaces.

• Doorbell and message interrupts between the CPU
and the PCI.

• I2O support.

Plug and Play Support:

• Plug and Play compatible configuration registers.
• PCI configuration registers can be accessed from

the CPU or PCI side.
• Expansion ROM support.
• VPD support.
• PCI Power Management compliant.
• Message signal interrupt support.
• BIST support.

Two baud rate generators with multiple clock
sources.

32 multi purpose pins (MPP) dedicated for periph-
eral functions and general purpose I/Os (GPP).

• Each pin can be configured independently.
• GPP inputs can generate a maskable interrupt.

FEATURES

 Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

 February 19, 2002, Preliminary Document Classification: Proprietary Information Page 3
Not Approved by Document Control - For Review Only

GT–64242A

Data integrity support between the CPU, PCI, and
DRAM interfaces:
• ECC support on SDRAM interface.
• Parity support on the CPU and PCI busses.
• Propagation of parity and ECC errors between the

three interfaces.
• Full error report, including error counter.
• Support corruption of ECC bank for debug.

Interrupt controller:
• Maskable interrupts to CPU and PCI.
• Drive up to seven interrupt pins.

Four 32-bit wide timer/counters initiated by the
CPU or externally through the MPP pin.

I2C interface that supports master and slave oper-
ations.
Serial ROM initialization through I2C interface.
Advanced 0.18 micron process.
665 PBGA package

Document Status
Advance
Information

This document contains design specifications for initial product development. Specifications
may change without notice. Contact Marvell Field Application Engineers for more information.

Preliminary
Information

This document contains preliminary data, and a revision of this document will be published at a
later date. Specifications may change without notice. Contact Marvell Field Application Engi-
neers for more information.

Final
Information

This document contains specifications on a product that is in final release. Specifications may
change without notice. Contact Marvell Field Application Engineers for more information.

Revision Code:

Preliminary Technical Publication:

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 4 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Preliminary Information
This document provides Preliminary information about the products described. All specifications described herein are based on design goals only. Do not use for final
design. Visit Marvell's web site at www.marvell.com or call 1-866-674-7253 for the latest information on Marvell products.

Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any
kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document. Marvell
makes no commitment either to update or to keep current the information contained in this document. Marvell products are not designed for use in life-support equipment or
applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications. The user
should contact Marvell to obtain the latest specifications before finalizing a product design.
Marvell assumes no responsibility, either for use of these products or for any infringements of patents and trademarks, or other rights of third parties resulting from its use.
No license is granted under any patents, patent rights, or trademarks of Marvell.These products may include one or more optional functions. The user has the choice of
implementing any particular optional function. Should the user choose to implement any of these optional functions, it is possible that the use could be subject to third party
intellectual property rights. Marvell recommends that the user investigate whether third party intellectual property rights are relevant to the intended use of these products
and obtain licenses as appropriate under relevant intellectual property rights.
Marvell comprises Marvell Technology Group Ltd. (MTGL) and its subsidiaries, Marvell International Ltd. (MIL), Marvell Semiconductor, Inc. (MSI), Marvell Asia Pte Ltd.
(MAPL), Marvell Japan K.K. (MJKK), Galileo Technology Ltd. (GTL) and Galileo Technology, Inc. (GTI).
Copyright © February 19, 2002 Marvell. All Rights Reserved. Marvell, GalNet, Galileo, Galileo Technology, Fastwriter, Moving Forward Faster, Alaska, the M logo, GalTis,
GalStack, GalRack, NetGX, Prestera, the Max logo, Communications Systems on Silicon, and Max bandwidth trademarks are the property of Marvell. All other trademarks
are the property of their respective owners.
Marvell Semiconductor, Inc.
2350 Zanker Road, San Jose, CA 95131
Phone: (408) 367-1400, Fax: (408) 367-1401
 www.marvell.com

http://www.marvell.com
http://www.marvell.com

Table of Contents

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev.
0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 5
Not Approved by Document Control - For Review Only

Table of Contents

1. Overview ... 15
1.1 CPU Bus Interface.. 15
1.2 SDRAM Interface.. 16
1.3 Device Interface.. 16
1.4 PCI Interface... 16
1.5 DMA Engines.. 17
1.6 Data Integrity .. 18

2. Pin Information... 19

3. Address Space Decoding.. 33
3.1 CPU Address Decoding.. 33
3.2 PCI Address Decoding ... 35
3.3 Disabling Address Decoders .. 36
3.4 IDMA Unit Address Decoding... 36
3.5 Address Space Decoding Errors .. 37
3.6 Default Memory Map .. 37
3.7 Programming Address Decoding Registers ... 40
3.8 Address Remapping ... 41
3.9 IDMA Unit Address Decoding Override .. 44

4. CPU Interface..45
4.1 CPU Address Decoding.. 45
4.2 CPU Access Protection .. 46
4.3 CPU Slave Operation ... 46
4.4 MIPS 64-bit Multiplexed Address/Data Bus Interface... 47
4.5 RM7000 Split Transactions Support... 53
4.6 Burst Support.. 54
4.7 Transactions Flow Control.. 54
4.8 MIPS CPU Cache Support ... 55
4.9 Multi-GT Support .. 57
4.10 Parity Support... 61
4.11 CPU Endian Support .. 61
4.12 CPU Synchronization Barrier.. 61
4.13 Clocks Synchronization .. 62
4.14 Programing the CPU Configuration Register.. 63
4.15 CPU Interface Registers... 63

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev.
0.95

CONFIDENTIAL Copyright © 2002 Marvell

Page 6 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

5. SDRAM Controller ..87
5.1 SDRAM Controller Implementation .. 87
5.2 DRAM Type .. 88
5.3 SDRAM Density.. 89
5.4 SDRAM Timing Parameters ... 91
5.5 SDRAM Burst ... 92
5.6 SDRAM Interleaving ... 93
5.7 SDRAM Open Pages.. 97
5.8 Read Modify Write .. 98
5.9 SDRAM Refresh ... 99
5.10 SDRAM Initialization... 101
5.11 SDRAM Operation Mode Register ... 101
5.12 Heavy Load Interface ... 103
5.13 SDRAM Clocking.. 103
5.14 Unified Memory Architecture Support... 105
5.15 SDRAM Interface Registers ... 108

6. Address and Data Integrity..118
6.1 CPU Parity Support .. 118
6.2 SDRAM ECC .. 118
6.3 Parity Support for Devices.. 123
6.4 PCI Parity Support.. 123
6.5 Parity/ECC Errors Propagation... 124

7. Device Controller..125
7.1 Device Controller Implementation .. 125
7.2 Device Timing Parameters ... 126
7.3 Data Pack/Unpack and Burst Support.. 128
7.4 Ready* Support .. 129
7.5 Parity Support... 131
7.6 Additional Device Interface Signaling ... 132
7.7 Error Report.. 132
7.8 Interfacing With 8/16/32-Bit Devices .. 133
7.9 Device Interface Registers ... 134

8. PCI Interface..142
8.1 PCI Master Operation... 142
8.2 PCI Master Termination.. 144
8.3 PCI Bus Arbitration ... 144
8.4 PCI Master Configuration Cycles ... 145
8.5 PCI Target Address Decoding.. 147
8.6 PCI Access Protection.. 148
8.7 PCI Target Operation .. 149
8.8 PCI Target Termination .. 153
8.9 Initialization Retry ... 154
8.10 Synchronization Barrier .. 154
8.11 Clocks Synchronization .. 155
8.12 Data Endianess .. 155
8.13 64-bit PCI Interface... 157
8.14 64-bit Addressing.. 158

Table of Contents

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev.
0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 7
Not Approved by Document Control - For Review Only

8. PCI Interface (Continued)
8.15 PCI Parity and Error Support.. 159
8.16 Configuration Space ... 159
8.17 PCI Special Features.. 162
8.18 PCI Interface Registers .. 168

9. Messaging Unit... 226
9.1 Message Registers... 226
9.2 Doorbell Registers .. 227
9.3 Circular Queues.. 228
9.4 Messaging Unit Registers... 234

10. IDMA Controller.. 244
10.1 IDMA Operation.. 244
10.2 IDMA Descriptors ... 244
10.3 IDMA Address Decoding .. 246
10.4 IDMA Access Protection... 246
10.5 IDMA Channel Control.. 246
10.6 Arbitration ... 253
10.7 Big and Little Endian Support ... 254
10.8 DMA Interrupts ... 254
10.9 IDMA Registers .. 255

11. Timer/Counters... 275
11.1 Timers/Counters Registers.. 275

12. Baude Rate Generators (BRG).. 280
12.1 BRG Inputs and Outputs .. 280
12.2 BRG Baud Tuning .. 280
12.3 BRG Registers... 281

13. Watchdog Timer ... 283
13.1 Watchdog Registers ... 283
13.2 Watchdog Operation... 284

14. General Purpose Port .. 285
14.1 GPP Control Registers ... 285
14.2 GPP Value Register ... 285
14.3 GPP Interrupts.. 285
14.4 General Purpose Port Registers... 286

15. MPP Multiplexing ... 288
15.1 MPP Multiplexing.. 288
15.2 MPP Interface Registers... 289

16. I2C Interface.. 302
16.1 I2C Bus Operation .. 302
16.2 I2C Registers.. 304
16.3 I2C Master Operation ... 307
16.4 I2C Slave Operation ... 308
16.5 I2C Interface Registers... 309

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev.
0.95

CONFIDENTIAL Copyright © 2002 Marvell

Page 8 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

17. Interrupt Controller...313
17.1 Interrupt Cause and Mask Registers .. 313
17.2 Interrupt Controller Registers ... 314

18. Internal Arbitration Control ...321

19. Reset Pins ...324

20. Reset Configuration ...325
20.1 Pins Sample Configuration ... 325
20.2 Serial ROM Initialization ... 328

21. GT–64242A Clocking..333

22. DC Characteristics ...334
22.1 Absolute and Recommended Operating Conditions .. 334
22.2 DC Electrical Characteristics Over Operating Range... 335
22.3 Thermal Data.. 338
22.4 PLL Power Filter Circuit .. 338

23. AC Timing..342

24. Pinout Table, 665 Pin BGA ..351

25. 665 PBGA Package Mechanical Information ...372

26. GT–64242A Part Numbering..373

27. Revision History ...374

List of Tables

Copyright © February 19, 2002
Marvell

CONFIDENTIAL Doc. No. MV-S100686-00, Rev.
0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 9
Not Approved by Document Control - For Review Only

List of Tables

2. Pin Information...19
Table 1: Pin Assignment Table Conventions.. 19
Table 2: Core Clock Pin Assignments .. 20
Table 3: CPU Interface Pin Assignments ... 20
Table 4: PCI Bus Interface Pin Assignments.. 23
Table 5: SDRAM Interface Pin Assignments.. 27
Table 6: Device Interface Pin Assignments.. 28
Table 7: MPP Interface Pin Assignment... 29
Table 8: I2C Interface Pin Assignments ... 30
Table 9: JTAG Interface Pin Assignments.. 30
Table 10: MPP Pins Functionality ... 31
Table 11: Unused Interface Strapping.. 32

3. Address Space Decoding..33
Table 12: CPU Interface Address Decoder Mappings.. 33
Table 13: PCI Interface Address Decoder Mappings ... 35
Table 14: PCI Interface 64-bit Addressing Address Decoder Mappings 35
Table 15: CPU Default Address Mapping... 37
Table 16: PCI Default Address Mapping .. 38
Table 17: 64-bit Addressing PCI Default Address Mapping ... 39
Table 18: PCI Address Remapping Example ... 43

4. CPU Interface..45
Table 19: CPU Interface Signals .. 47
Table 20: Read/Write Request Command Bits Summary .. 48
Table 21: Null Request Command Bits Summary .. 49
Table 22: Data Identifier Bits Summary.. 49
Table 23: Partial Word Byte Lane... 50
Table 24: 64-bit Bus Sub-block Ordering ... 54
Table 25: Multi-GT ID Encoding ... 59
Table 26: CPU Address Decode Register Map .. 63
Table 27: CPU Control Register Map ... 64
Table 28: CPU Sync Barrier Register Map... 65
Table 29: CPU Access Protection Register Map.. 65
Table 30: CPU Error Report Register Map... 65

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev.
0.95

CONFIDENTIAL Copyright © February 19, 2002
Marvell

Page 10 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

5. SDRAM Controller ... 87
Table 97: Address Control for 16Mbit SDRAM... 95
Table 98: Address Control for 64/128Mbit SDRAM.. 95
Table 99: Address Control for 256/512Mbit SDRAM.. 96
Table 100: SDRAM Configuration Register Map.. 108
Table 101: SDRAM Banks Parameters Register Map.. 108
Table 102: Error Report Register Map.. 109

6. Address and Data Integrity... 118
Table 122: ECC Code Matrix.. 118

7. Device Controller... 125
Table 123: 8-bit Devices ... 133
Table 124: 16-bit Devices ... 133
Table 126: Device Control Register Map.. 134
Table 127: Device Interrupts Register Map .. 134
Table 125: 32-bit Devices ... 134

8. PCI Interface... 142
Table 142: DevNum to IdSel Mapping.. 146
Table 143: Data Swap Control..156
Table 144: 32-bit PCI Byte and Word Swap Settings ... 156
Table 145: 64-bit PCI Byte and Word Swap Settings ... 156
Table 146: PCI Slave Address Decoding Register Map... 168
Table 147: PCI Control Register Map... 169
Table 148: PCI Configuration Access Register Map .. 171
Table 149: PCI Error Report Register Map... 171
Table 150: PCI Configuration, Function 0, Register Map ... 171
Table 151: PCI Configuration, Function 1, Register Map ... 172
Table 152: PCI Configuration, Function 4, Register Map ... 172
Table 153: PCI Configuration, Function 5, Register Map ... 173
Table 154: PCI Configuration, Function 6, Register Map ... 173
Table 155: PCI Configuration, Function 7, Register Map ... 173

9. Messaging Unit .. 226
Table 297: Circular Queue Starting Addresses .. 229
Table 298: I2O Circular Queue Functional Summary... 232
Table 299: Messaging Unit Register Map... 234
Table 311: Outbound Queue Port Virtual Register ... 239

10. IDMA Controller ... 244
Table 322: DMA Descriptor Definitions... 245
Table 323: IDMA Descriptor Register Map... 255
Table 324: IDMA Control Register Map.. 256
Table 325: IDMA Interrupt Register Map.. 256
Table 326: IDMA Debug Register Map... 257

11. Timer/Counters .. 275
Table 381: IDMA Descriptor Register Map... 275

List of Tables

Copyright © February 19, 2002
Marvell

CONFIDENTIAL Doc. No. MV-S100686-00, Rev.
0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 11
Not Approved by Document Control - For Review Only

12. Baude Rate Generators (BRG)..280
Table 389: BRG Registers Map... 281

13. Watchdog Timer ...283
Table 393: Watchdog Configuration Register (WDC), Offset 0xb410 .. 283
Table 394: Watchdog Value Register (WDV), Offset 0xb414... 284

14. General Purpose Port ..285
Table 395: GPP Register Map.. 286

15. MPP Multiplexing ...288
Table 401: MPP Function Summary... 288
Table 402: GPP Interface Register Map... 289

16. I2C Interface..302
Table 407: I2C Control Register Bits .. 304
Table 408: I2C Status Codes ... 305
Table 409: I2C Interface Register Map... 309

17. Interrupt Controller ..313
Table 417: Interrupts Cause Registers... 313
Table 418: Interrupt Controller Register Map ... 314

20. Reset Configuration...325
Table 431: Reset Configuration.. 325
Table 432: Serial ROM Initialization Strapping... 328

22. DC Characteristics ...334
Table 437: Absolute Maximum Ratings.. 334
Table 439: Pin Capacitance ... 335
Table 440: DC Electrical Characteristics Over Operating Range... 335
Table 438: Recommended Operating Conditions .. 335
Table 441: Thermal Data for The GT–64242A in BGA 665.. 338

23. AC Timing ...342
Table 442: 100 MHz AC Timing ... 342
Table 443: 133 MHz AC Timing ... 345
Table 444: 133 MHz CPU Interface Parameters With SysClk and Tclk NOT synchronized 349

24. Pinout Table, 665 Pin BGA ..351
Table 445: GT–64242A Pinout Table ... 351

27. Revision History...374
Table 446: Revision History.. 374

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev.
0.95

CONFIDENTIAL Copyright © February 19, 2002
Marvell

Page 12 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

List of Figures

2. Pin Information .. 19
Figure 1: GT–64242 Interfaces .. 19

3. Address Space Decoding ... 33
Figure 2: CPU Address Decode Example .. 34
Figure 3: Bank Size Register Function Example (16Meg Decode) .. 36
Figure 4: CPU Address Remapping ... 42

4. CPU Interface... 45
Figure 5: SysAD Read Protocol ... 52
Figure 6: SysAD Write Protocol.. 52
Figure 7: R7000 Split Read Transaction Example ... 53
Figure 8: R7000 L3 Read Miss Example.. 56
Figure 9: SR71000 L3 Read Hit Example .. 57
Figure 10: Multi-GT–64242A Hardware Connections to the MIPS CPU Bus........................... 59
Figure 11: CPU Sync Barrier Example... 62

5. SDRAM Controller ... 87
Figure 12: SDRAM Read Example... 88
Figure 13: Registered SDRAM Read Example .. 89
Figure 14: SDRAM Timing Parameters.. 92
Figure 15: Burst Write Termination Example ... 93
Figure 16: Virtual DRAM Banks Interleaving Example... 94
Figure 17: Sequential Accesses to the Same Page ... 98
Figure 18: SDRAM RMW Example .. 99
Figure 19: Non-Staggered Refresh Waveform... 100
Figure 20: Staggered Refresh Waveform.. 100
Figure 21: Heavy Load Example .. 103
Figure 22: UMA Device and GT–64242A Sharing SDRAM ... 105
Figure 23: UMA Device Requests .. 106
Figure 24: Handing the Bus Over... 107

7. Device Controller... 125
Figure 25: Device Read Parameters Example ... 126
Figure 26: Device Write Parameters Example ... 127
Figure 27: Pipeline Sync Burst SRAM Read Example ... 128
Figure 28: Ready* Extending Acc2First ... 130
Figure 29: Ready* Extending Acc2Next ... 130
Figure 30: Ready* Extending WrLow Parameter ... 131
Figure 31: DBurst*/Dlast* Example .. 132

List of Figures

Copyright © February 19, 2002
Marvell

CONFIDENTIAL Doc. No. MV-S100686-00, Rev.
0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 13
Not Approved by Document Control - For Review Only

8. PCI Interface ...142
Figure 32: CPU Sync Barrier Example... 154
Figure 33: PCI Configuration Space Header.. 160
Figure 34: PCI Configuration Space Header.. 161
Figure 35: GT–64242A Capability List ... 163

9. Messaging Unit...226
Figure 36: I2O Circular Queue Operation .. 231

10. IDMA Controller..244
Figure 37: IDMA Descriptors .. 245
Figure 38: Chained Mode IDMA... 248
Figure 39: Configurable Weights Arbiter .. 253

11. Timer/Counters...275

12. Baude Rate Generators (BRG)..280
Figure 40: Baud Rate Generator Block Diagram.. 280

13. Watchdog Timer ...283

14. General Purpose Port ..285

15. MPP Multiplexing ...288

16. I2C Interface..302
Figure 41: I2C Examples.. 303

17. Interrupt Controller ..313

18. Internal Arbitration Control ...321
Figure 42: GT–64242A Inter Units Connect .. 321
Figure 43: SDRAM Interface Arbitration... 322
Figure 44: Configurable Weights Arbiter .. 323

19. Reset Pins...324

20. Reset Configuration...325
Figure 45: Serial ROM Data Structure ... 329
Figure 46: Serial ROM Read Example ... 330

21. GT–64242A Clocking ...333

22. DC Characteristics ...334
Figure 47: PLL Power Filter Circuit With Common On-board 1.8V Supply 339
Figure 48: PLL Layout Guideline for a PCI Add-on Card ... 339
Figure 49: PLL Power Filter Circuit With Dedicated 1.8V Supply... 340
Figure 50: PLL Layout Guideline for Backplane Layout ... 340

23. AC Timing ...342

24. Pinout Table, 665 Pin BGA ..351
Figure 51: GT–64242A Pinout Map (top view, left section)... 360
Figure 52: GT–64242A Pinout Map (top view, right section).. 361

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev.
0.95

CONFIDENTIAL Copyright © February 19, 2002
Marvell

Page 14 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

25. 665 PBGA Package Mechanical Information .. 372

26. GT–64242A Part Numbering... 373
Figure 53: Sample Part Number... 373

27. Revision History .. 374

Overview
CPU Bus Interface

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 15
Not Approved by Document Control - For Review Only

1. OVERVIEW
The GT–64242A provides a single-chip solution for designers building systems for a MIPS64-bit bus CPU. The
GT–64242A architecture supports several system implementations for different applications.

The GT–64242A has a four bus architecture:
• A 64-bit interface to the CPU bus.
• A 64-bit interface to SDRAM.
• A 32-bit interface to Devices.
• One 64-bit PCI interfaces.

The four buses are de-coupled from each other in most accesses, enabling concurrent operation of the CPU bus,
PCI devices, and accesses to memory. For example, the CPU bus can write to the on-chip write bufferor a PCI
device can write into an on-chip FIFO, all simultaneously.

1.1 CPU Bus Interface

The GT–64242A supports MIPS bus protocol. With a maximum frequency of 133MHz, the CPU can transfer in
excess of 1 Gbytes/sec.

NOTE: The PMC-Sierra RM7000C CPU is now supported in TTL mode, only.

The GT–64242A supports up to two pipelined transactions on the CPU bus. For example, if the CPU initiates a
data read from the PCI interface and starts a code read from SDRAM, the two cycles are pipelined. The CPU
interface reads from the PCI interface and from SDRAM in parallel.

By the time read data is returned from the PCI interface, read data from SDRAM is already available – since an
SDRAM access is faster than a PCI access. The GT–64242A drives the data of the SDRAM read immediately
after a PCI read data with zero wait states. In case of a RM7000 CPU, that supports out of order read completion,
the GT–64242A drives the SDRAM read data first and then the PCI read data that arrives later.

The CPU can connect with up to four GT–64242A or any other 60x compatible slave devices. This increases the
flexibility of system design significantly.

NOTE: The increased loading has a small effect on the system’s maximum operating frequency.

The GT–64242A supports CPU address remapping to the PCI interface. It also supports access, write, and cach-
ing protection, per user specified address ranges.

The GT–64242A CPU interface supports both Little and Big Endian modes.

NOTE: For additional information about the CPU bus interface, see Section 4. “CPU Interface” on page 45.
The GT–64242A also supports the SandCraft SR71000 CPU.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 16 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

1.2 SDRAM Interface

The GT–64242A SDRAM controller supports SDRAM and registered SDRAM. It supports 16/64/128/256/512
Mbit SDRAMs.

The GT–64242A works at frequencies up to 133MHz, and can address up to 4GBytes.

Up to four banks of SDRAM may be connected to The GT–64242A.

The controller supports two bank interleaving for 16 Mbit SDRAMs and four bank interleaving for 64/128/256/
512 Mbit SDRAMs.

The GT–64242A also supports page mode, which minimizes SDRAM cycles on multiple transactions to the
same SDRAM page, and can be configured to support up to 16 simultaneously opened pages.

The GT–64242A supports the Unified Memory Architecture (UMA) protocol that enables external masters to
arbitrate for direct access to SDRAM. This feature enhances system performance and gives flexibility when
designing shared memory systems.

NOTE: For additional information about the SDRAM interface, see Section 5. “SDRAM Controller” on page
87.

1.3 Device Interface

The GT–64242A device controller supports different types of memory and I/O devices.

It has the control signals and the timing programmability to support devices such as SynBurst SRAM, Flash,
EPROMs, FIFOs, and I/O controllers. Device widths of 8-, 16-, and 32-bits are supported.

The GT–64242A has a dedicated 32-bit Device bus. It supports bursts of up to 32 bytes to a 32-bit wide device
and can run SDRAM and Device transactions simultaneously, so SDRAM access performance is not affected by
access to slow memory devices.

The device contoller also supports data parity – bit per byte. Data parity generation and checking is done via the
DevDP pins during read and write transactions. This support is enabled/disabled on a per device chip select basis
and even or odd parity is selectable. The controller also supports address parity.

NOTE: For additional information about the Device interface, see Section 7. “Device Controller” on page 125.

1.4 PCI Interface

The GT–64242A interfaces directly with one 64-bit PCI busses, operating at a maximum frequency of 66MHz.
The PCI interface can act as a master initiating a PCI bus transaction or as a target responding to a PCI bus trans-
action.

The GT–64242A becomes the PCI bus master when the CPU, DMA, or Comm port initiates a bus cycle to a PCI
device. It’s internal buffers allow unlimited DMA bursts between PCI and memory. It supports all PCI com-
mands including 64-bit addressing using DAC cycles.

Overview
DMA Engines

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 17
Not Approved by Document Control - For Review Only

The GT–64242A acts as a target when the PCI device initiates a memory access. It responds to all memory read/
write accesses, including DAC, and to all configuration and I/O cycles, in the case of internal registers. It’s inter-
nal buffers allow unlimited burst reads and writes. It supports up to eight pending delayed reads.

There are no restrictions between the PCI and CPU clock ratios. It is possible for the PCI clock speed to be
slower, equal, or faster than the CPU clock. It is also optional to synchronize the PCI clock to the CPU clock.

It is possible to program the PCI slave to retry all PCI transactions targeted to the GT–64242A, during CPU ini-
tialization.

The PCI slave performs PCI address remapping to SDRAM and Devices. It also supports configurable read
prefetch, access and write protect, and byte swapping per user specified address ranges.

The GT–64242A PCI interface is fully PCI rev. 2.2 compliant. It contains all the required PCI configuration reg-
isters. All internal registers, including the PCI configuration registers, are accessible from the CPU bus or the
PCI bus.

The GT–64242A configuration register set is PC Plug and Play compatible. It supports PCI spec rev. 2.2 features
such as VPD, message signal interrupt, and power management.

The GT–64242A also supports PCI Hot-Plug and CompactPCI Hot-Swap ready.

The GT–64242A also includes a messaging unit to support industry standard I2O messaging. This includes:
• Two doorbell registers.
• Two message registers.
• Four messages queues located in SDRAM.

NOTE: For additional information about the PCI interface, see Section 8. “PCI Interface” on page 142.

1.5 DMA Engines

The GT–64242A incorporates four high performance DMA engines. Each DMA engine has the capability to
transfer data between PCI devices, SDRAM, or devices.

The DMA uses two internal 2Kbyte FIFOs for temporary DMA data storage. Two FIFOs allows two DMA chan-
nels to work concurrently since each channel utilizes a FIFO. For example, channel0 transfers data from SDRAM
to PCI using one FIFO, while channel2 transfers data from external system memory to device using the other
FIFO.

Source and destination addresses can be non-aligned on any byte address boundary. The DMA channels are pro-
grammable by the CPU or without CPU bus intervention via a linked list of descriptors. This linked list is loaded
by the DMA controller into the channel’s working set when a DMA transaction ends. The DMA supports incre-
ment/hold on source and destination addresses independently, and alignment of addresses towards source and
destination.

It is possible to initiate a DMA transfer by the software writing to a register, an external request via a DMAReq*
pin, or an internal timer/counter. Four End of Transfer pins act as inputs to the GT–64242A and allow ending a
DMA transfer on a certain channel. In cases of chained mode with the transfer completed, it is possible to transfer
the descriptor to CPU ownership. The CPU can calculate the number of remaining bytes in the buffer associated
with the closed descriptor.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 18 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

NOTE: For additional information about the DMA engines, see Section 10. “IDMA Controller” on page 244.

1.6 Data Integrity

The GT–64242A supports full data integrity on its different interfaces.

The GT–64242A supports ECC on SDRAM. It supports detection and correction of one error, detection of two
errors, and detection of three and four errors, if they are in the same nibble. It supports SDRAM read-modify-
write for partial writes. It has full error report, including ECC error counter. It also supports corruption of ECC
bank for debug.

The GT–64242A supports parity checking and generation on the PCI bus through PAR and PERR* signals. It
also supports configured SERR* assertion for different errors. In cases of error detection, address and data are
latched for debug.

The GT–64242A also supports data parity checking and generation on the CPU bus. In case of error detection, an
interrupt is asserted. As with error detection on the PCI bus, address and data are latched for debug.

Generation and checking of data and parity is also supported on the device controller interface. It also supports
address parity.

ECC and parity errors are optionally propagated between the interfaces. For example, in case of a PCI read from
SDRAM that results in detection of uncorrectable ECC error, the GT–64242A may drive the wrong PAR value
with the read data on the PCI bus.

NOTE: For additional information about data integrity features, see Section 6. “Address and Data Integrity” on
page 118.

Pin Information

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 19
Not Approved by Document Control - For Review Only

2. PIN INFORMATION
Figure 1 shows the GT–64242A interfaces.

Figure 1: GT–64242 Interfaces

Table 1 lists the conventions that apply to I/O or O type pins described in the Pin Assignment tables:

Table 1: Pin Assignment Table Conventions

Abbreviat ion Descript ion

t/s Tri-State pin.

s/t/s Sustained Tri-State pin.
Driven to its inactive value for one cycle before float.
NOTE: A pull-up is required to sustain the inactive value.

PCI

SDRAM

CPU

Device

MPP
(Multi Purpose Pins)

64

6432

64

32

GT–64242

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 20 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

o/d Open Drain pin.
Allows multiple drivers simultaneously (wire-OR connection).
NOTE: A pull-up is required to sustain the inactive value.

Table 2: Core Clock Pin Assignments

Pin Name/
Ball # Type Full Name Description

TClk
F24

I
Internal Clock The GT–64242A units internal clock (up to 133MHz).

Used as input clock to the internal PLL.

AVCC
H25 I

PLL Vcc Quiet power supply to the internal PLL.
NOTE: For information on the PLL, see Section 22.4

“PLL Power Filter Circuit” on page 338.

AGND
G25

I
PLL Vss Quiet ground supply to the internal PLL.

Core Clock Pin Count: 3

Table 3: CPU Interface Pin Assignments

Pin Name/
Ball # Type Full Name Descript ion

SysClk
E25

I

System Clock CPU interface clock (up to 100 MHz).
Can run at any frequency less than or equal to the TClk
frequency asynchronously.
The CPU interface can be configured to run with TClk
instead of SysClk.
NOTE: In this configuration, SysClk is not used and must

be tied to GND.

SysRst*
D25

I

System Reset Main reset signal of the GT–64242A.
Resets all units to their initial state.
NOTE: When in the reset state, all output pins, except for

SDRAM address and control signals, are put into
tristate.

Table 1: Pin Assignment Table Conventions (Continued)

Abbreviation Description

Pin Information

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 21
Not Approved by Document Control - For Review Only

SysAD[63:0]

t/s I/O

System
Address/Data
Bus

64-bit multiplexed CPU address/data bus.
Driven by the CPU during address phase and write data
phase.
Driven by GT–64242A during read response data phase.
NOTE: These pins utilize integrated pullups.

[63:54] AC27, AC28, Y31, U27, AC29, V30, V29, L29, L30, P30
[53:44] AD26, P29, AC30, R30, AD27, AA30, AA31, V31, AA28, U28
[43:34] W27, R31, W28, AD28, W29, AD29, P31, AB27, AB28, AD30
[33:24] W30, T26, M26, R27, N28, N27, T27, L31, U30, M31
[23:14] Y27, M30, P28, Y29, V27, P27, T30, AC26, V26, AA27
[13:0] AC31, T31, V28, Y30, AA29, U31, R29, AB31, Y28, N31, T28, AB29, W31, AD31

SysADC[7:0]
L28, R28, M28,
AB30, M29, N30,
U29, T29

t/s I/O

System
Address/Data
Parity Bus

8-bit parity for the SysAD bus.
Driven by CPU during write data phase.
Driven by GT–64242A during read response data phase.
NOTE: – SysADC is valid on data cycles only.

– These pins utilize integrated pullups.

SysCmd[8:0]
G26, G27, G29, F28,
F29, F30, F31, F26,
E31

t/s I/O

System Com-
mand/Data
Identifier Bus

9-bit multiplexed CPU command/data identifier bus.
System Command driven by the CPU during address
phase.
Data identifier driven by the CPU during write data phase
and by the GT–64242A during read response data phase.

ValidOut*
D31 I

Valid Output The CPU signals that it is driving valid address/data on the
SysAD bus and valid command/data identifier on the
SysCmd bus.

Release*
E27

I
Release The CPU signals that it has released the SysAD and the

SysCmd buses after completion of a read request.

ValidIn*
C31 t/s O

Valid Input The GT–64242A signals that it is driving valid read data on
the SysAD bus and a valid data identifier on the SysCmd
bus.
NOTE: In multi-GT mode, acts as s/t/s pin.

Table 3: CPU Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Description

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 22 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

SysRdyOut*
A29

t/s O

Read/Write
Ready Output

The GT–64242A signals that it can accept a CPU read or
write request.
NOTE: Must be connected to both RdRdy* and WrRdy*

CPU input pins.
In multi-GT–64242A configurations, SysRdyOut*, of the
boot GT–64242A, is connected to the CPU RdRdy* and
WrRdy* inputs. The SysRdyOut* outputs, of the other GT–
64242A devices, are connected to SysRdyIn[2:0] of the
boot GT–64242A device.

SysRdyIn[2:0]*
H27, H30, H31

I

Read/Write
Ready Input

NOTE: Relevant only in multi-GT–64242A configura-
tions. In a single GT configuration, connect to
GND.

SysRdyIn of the boot GT–64242A device is connected to
SysRdyOut of all other GT–64242A devices.

• SysRdyIn[0]* of all the GT–64242A devices,
except for the boot device, are connected to the
boot GT–64242A device’s SysRdyOut* signal,
which is also the CPU RdRdy* and WrRdy* input.

• SysRdyIn[2:1]* of all the GT–64242A devices,
except of the boot device, are not used.

PReq*
A26 I

Processor
Request

CPU requests from the GT–64242A for SysAD bus mas-
tership.
NOTE: If interfacing with a CPU that does not support

Preq*, pull up is required on this pin.

PAck*
C25 t/s O

Processor
Acknowledge

The GT–64242A signals that it releases the SysAD bus in
response to PReq*.
NOTE: In multi-GT mode, acts as s/t/s pin.

RspSwap*
E26 t/s O

Read
Response
Swap

The GT–64242A signals that it is returning read data to the
CPU out of order.
NOTE: In a multi-GT configuration, RspSwap* is NC.

CPUInt*
C27 t/s O

Interrupt Level sensitive interrupt driven by the GT–64242A to the
CPU. There are four more optional CPU interrupt pins
multiplexed on the GPP pins.

TcTCE*
G30 I

Ternary Cache
Tag RAM Chip
Enable

The CPU L3 cache controller signals that it is accessing
L3 cache.
NOTE: If interfacing with a CPU that does not support-

TcTCE*, pull up is required on this pin.

TcDOE*
H26 t/s O

Ternary Cache
Data RAM
Output Enable

In case of a cache hit, the GT–64242A enables L3 data
RAM drive read data on SysAD.
NOTE: In a multi-GT configuration, acts as s/t/s pin.

Table 3: CPU Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Descript ion

Pin Information

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 23
Not Approved by Document Control - For Review Only

TcWord[1:0]
E28, E29 t/s O

Ternary Cache
Word Index

Determines correct L3 double-word index.
Driven by the GT–64242A in case of a CPU block read
miss (driven by CPU L3 cache controller in case of L3 hit).
NOTE: A pull-down is required in multi-GT mode.

TcMatch
C29

I

Ternary Cache
Tag Match

Asserted by tag RAM (or by the CPU in case of the
SR71000) on L3 cache tag match.
NOTE: If there is no L3 cache, or when working in Sim-

pleCache mode, connect the TcMatch input to
GND.

If using the SR71000 CPU, TcMatch is not
asserted by tag RAM. Instead, the SR71000
asserts TcMatch.

CPU Interface Pin Count: 97

Table 4: PCI Bus Interface Pin Assignments

Pin Name/
Ball # Type Full Name Description

Clk
AH16

I
PCI Clock The PCI clock range is between 0 and 66MHz.

PClk0 is completely independent of SysClk and TClk.

Rst*
AJ16 I

PCI Reset Dedicated reset signal for PCI interface.
When in the reset state, all PCI output pins are put into
tristate and all open drain signals are floated.

VREF
AF17

I PCI Voltage
Reference

This pin must be connected directly to the 3.3V or the 5V
power plane depending on which voltage level PCI sup-
ports.

Table 3: CPU Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Description

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 24 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

PAD[63:0]

t/s I/O

PCI Address/
Data

-bit PCI multiplexed address/data bus.
Driven by the transaction master during address phase
and write data phase.
Driven by the target device during read data phase.
NOTE: If configured with a 64-bit PCI, PAD[63:32]

requires a pull-up. When configured as a 32-bit
bus, the GT–64242A drives these pins; a pull-up
is not required.

[63:54] AL27, AK27, AJ27, AH27, AG27, AL28, AK28, AJ28, AH28, AL29
[53:44] AK29, AJ29, AJ30, AJ31, AH31, AH30, AH29, AG31, AG30, AG29
[43:32] AG28, AF31, AF30, AF29, AF28, AF27, AE31, AE30, AE29, AE28, AE27, AE26
[31:24] AL17, AK17, AJ17, AH17, AG17, AL18, AK18, AJ18
[23:14] AL19, AK19, AJ19, AH19, AG19, AL20, AK20, AJ20, AJ22, AH22
[13:0] AG22, AF22, AL23, AK23, AJ23, AH23, AF23, AL24, AK24, AJ24, AH24, AG24, AF24, AL25

CBE[7:0]*
AL26, AK26, AJ26,
AG26, AH18, AH20,
AK22, AG23

t/s I/O

PCI Com-
mand/Byte
Enable

8-bit multiplexed command/byte-enable bus, driven by
transaction master.
Contains command during the address phase and byte-
enable during data phase.
NOTE: If configured with a 64-bit PCI, CBE[7:4] requires

a pull-up. When configured as a 32-bit bus, the
GT–64242A drives these pins; a pull-up is not
required.

PAR
AL22 t/s I/O

PCI Parity
(low)

Even parity calculated for PAD[31:0] and CBE[3:0].
Driven by transaction master for address phase and write
data phase.
Driven by target for read data phase.

FRAME*
AG20 s/t/s

I/O

PCI Frame Asserted by the transaction master to indicate the begin-
ning of a transaction.
The master de-asserts FRAME* to indicate that the next
data phase is the final data phase transaction.

IRDY*
AF20

s/t/s
I/O

PCI Initiator
Ready

Asserted by the transaction master to indicate it is ready to
complete the current data phase of the transaction. A data
phase is completed when TRDY* and IRDY* are asserted.

Table 4: PCI Bus Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Description

Pin Information

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 25
Not Approved by Document Control - For Review Only

DEVSEL*
AK21

s/t/s
I/O

PCI Device
Select

Asserted by the target of the current access.
As a master, the GT–64242A expects the target to assert
DEVSEL* within five bus cycles. If the target does not
assert DEVSEL* within the required bus cycles, the GT–
64242A aborts the cycle.
As a target, the GT–64242A asserts DEVSEL* in a
medium speed; two cycles after the assertion of FRAME*.

TRDY*
AL21

s/t/s
I/O

PCI Target
Ready

Asserted by the target to indicate it is ready to complete
the current data phase of the transaction. A data phase is
completed when when TRDY* and IRDY* are asserted.

STOP*
AJ21

s/t/s
I/O

PCI Stop Asserted by target to indicate transaction termination.
Used by a target device to generate a Retry, Disconnect,
or Target Abort termination signal.

lDSEL
AG18 I

PCI Initializa-
tion Device
Select

Asserted to act as a target device chip select during PCI
configuration transactions.

REQ64*
AJ25 s/t/s

I/O

PCI Request
64-bit Transfer

Asserted by the transaction master to indicate a request of
a 64-bit bus width transaction.
REQ64* timing is the same as FRAME* timing.
NOTE: A 64-bit transaction occurs when REQ64* and

ACK64* are asserted.

ACK64*
AK25 s/t/s

I/O

PCI Acknowl-
edge 64-bit
Transfer

Asserted by the target in response to REQ64* to indicate it
accepts a 64-bit bus width transaction.
ACK64* timing is the same as DEVSEL* timing.
NOTE: A 64-bit transaction occurs when REQ64* and

ACK64* are asserted.

PAR64
AF26

t/s I/O

PCI Parity
(high)

In cases of a 64-bit PCI transaction, even parity is calcu-
lated for PAD[63:32] and CBE[7:4].
Driven by the transaction master for address phase and
write data phase.
Driven by the target for read data phase.
NOTE: A pull-up is required. When configured as a 32-

bit bus, the GT–64242A drives this pin; a pull-up
is not required.

REQ*
AF16 t/s O

PCI Bus
Request

If using an external PCI arbiter, asserted by the GT–
64242A PCI master to indicate it requires PCI bus master-
ship to initiate a new transaction.
If using the internal PCI arbiter, leave unconnected.

Table 4: PCI Bus Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Description

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 26 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

GNT*
AG16

I

PCI Bus Grant If using an external PCI arbiter, asserted to indicates to the
GT–64242A PCI master that bus mastership is granted.
NOTES: – The PCI master drives the bus only when it’s

 GNT* signal is asserted and the bus is in idle
 state.
 – If using the GT–64242A internal PCI arbiter,
 a pull-up is required.

PERR*
AH21 s/t/s

I/O

PCI Parity
Error

Asserted when a data parity error is detected.
Asserted by a target device in response to bad address or
write data parity, or by master device in response to bad
read data parity.

SERR*
AG21

o/d O
PCI System
Error

Asserted when a serious system error (not necessarily a
PCI error) is detected.

INT*
AK16

o/d O
PCI Interrupt
Request

Asserted by the GT–64242A when one of the unmasked
internal interrupt sources is asserted.

ENUM*
AH25 o/d O

Compact PCI
Hot Swap
ENUM* inter-
rupt

If ENUM is enabled, asserted by the GT–64242A during
hot swap insertion or removal.

LED
AG25

t/s O
Compact PCI
Hot Swap LED

Driven by the GT–64242A to turn the LED on/off.

HS
AF25 I

Compact PCI
Hot Swap
Handle Switch

Sampled handle switch status to identify board insertion/
removal.
NOTE: If not using CompactPCI Hot Swap, must be tied

to VCC or GND.

P64EN*
AH26 I

Compact PCI
Hot Swap 64-
bit PCI Enable

The GT–64242A samples the P64EN* pin on reset de-
assertion, rather then REQ640*, to determine whether it is
connected to a 64-bit PCI bus.

PCI Bus 0 Interface Pin Count: 94

Table 4: PCI Bus Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Description

Pin Information

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 27
Not Approved by Document Control - For Review Only

Table 5: SDRAM Interface Pin Assignments

Pin Name/
Ball # Type Full Name Description

SDClkOut/SDClkIn
A15

I/O

SDRAM Clock
Output

Optional output clock to drive the SDRAM.
NOTE: Under certain board topologies and multiple

DRAM loads, the SDRAM clock may need to be
driven from SDClkOut, using a zero delay clock
buffer. If SDClkOut is used, the output control
sinals have an improved output delay. For further
information, see Section 5.13 “SDRAM Clocking”
on page 103.

SDRAM Clock
Input

Optional input clock to sample read data from the SDRAM.
NOTE: Under certain board topologies and multiple

DRAM loads, the read data received from the
SDRAM may need to be sampled with SDClkIn.
For further information, see Section 5.13
“SDRAM Clocking” on page 103.

SRAS*
E13 t/s O

SDRAM Row
Address
Select

Asserted by the GT–64242A to indicate an active ROW
address driven on the DAdr lines.
NOTE: If UMA enabled, acts as s/t/s pin.

SCAS*
A11 t/s O

SDRAM Col-
umn Address
Select

Asserted by the GT–64242A to indicate an active column
address driven on the DAdr lines.
NOTE: If UMA enabled, acts as s/t/s pin.

DWr*
B11

t/s O
SDRAM Write Asserted by the GT–64242A to indicate a write to SDRAM.

NOTE: If UMA enabled, acts as s/t/s pin.

DAdr[12:0] t/s O SDRAM
Address

Driven by the GT–64242A during SRAS* and SCAS*
cycles to generate a 26-bit SDRAM address.

E16, B15, E15, F15, A14, B14, C14, D14, E14, A13, B13, C13, D13

BankSel[1:0]
C15, D15

t/s O
SDRAM Bank
Select

Driven by the GT–64242A during SRAS* and SCAS*
cycles to select one of the DRAM virtual banks.

SCS[3:0]*
C16, D16, A12, B12 t/s O

SDRAM Chip
Selects

Asserted by the GT–64242A to select a specific SDRAM
physical bank.
NOTE: If UMA enabled, acts as s/t/s pin.

SDQM[7:0]*
E17, A16, C12,
E12, F17, B16, D12,
F12

t/s O

SDRAM Data
Mask

Asserted by the GT–64242A to select the specific bytes of
the 64-bit SData bus to be written to the SDRAM.
NOTE: If UMA enabled, acts as s/t/s pin.

SData[63:0]
t/s I/O

SDRAM Data
Bus

Driven by the GT–64242A during write to SDRAM.
Driven by SDRAM during reads.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 28 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

[63:54] A24, B23, D23, F23, B22, D22, A21, C21, E21, B20
[53:44] D20, A19, C19, E19, B18, D18, B10, D10, F10, B09
[43:34] D09, F09, B08, D08, F08, B07, D07, F07, B06, D06
[33:24] F06, B05, A23, C23, E23, A22, C22, E22, B21, D21
[23:14] A20, C20, E20, B19, D19, A18, C18, E18, C10, E10
[13:0] A09, C09, E09, A08, C08, E08, A07, C07, E07, A06, C06, E06, A05, C05

ECC[7:0]
A17, C17, C11, E11,
B17, D17, D11, A10

t/s I/O
SDRAM ECC
byte

Driven by the GT–64242A during write to SDRAM.
Driven by SDRAM during reads.
NOTE: If not using ECC[7:0], a pull-up is required.

SDRAM Interface Pin Count: 103

Table 6: Device Interface Pin Assignments

Pin Name/
Ball # Type Full Name Description

BAdr[2:0]
C03, B03, A03 t/s O

Device Burst
Address

Driven by the GT–64242A during burst read/write transac-
tions to a device.
NOTE: The GT–64242A increments the burst address

with each data transfer.

Wr[3:0]*
D04, C04, B04, A04

t/s O
Device Write
Byte Enables

Asserted by the GT–64242A to select the specific bytes
out of the 32-bit AD bus to be written to the device.

AD[0]/BootCS*
C01 t/s I/O

Boot Chip
Select

Used as boot device chip select during the address
phase.

Data [0] Used as data bit 0 during the data phase.

AD[1]/DevRW*
D03 t/s I/O

Device Read-
Write

Used as device read (‘1’) or write (‘0’) indication during
the address phase.

Data [1] Used as data bit 1 during the data phase.

AD[27:2]
t/s I/O

Device
Address

Used as device address during the address phase.

Data[27:2] Used as device data bus during the data phase.

[27:17] J04, J05, J06, H01, H02, H03, H04, H05, H06, G01, G02
[16:2] G03, G04, G05, G06, F01, F02, F03, F04, F05, E01, E02, E03, E04, D01, D02

AD[31:28]/CS[3:0]*
K05, J01, J02, J03 t/s I/O

Chip Select
[3:0]

Used as device chip select during the address phase.

Data [31:28] Used as data bits [31:28] during the data phase.

Table 5: SDRAM Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Description

Pin Information

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 29
Not Approved by Document Control - For Review Only

CSTiming*
E05

t/s O

Device Chip
Select Timing

Active for the entire device transaction. Used to qualify
DevRW*, CS[3:0]*and BootCS signals.
NOTE: This pin is in High-Z during reset assertion and

for two cycles after reset de-assertion. A pull up
may be added to avoid an erroneous qualifica-
tion of the CS[3:0]* signals.

ALE
C02 t/s O

Device
Address Latch
Enable

Used to latch the Address, BootCS*, CS[3:0]*, and
DevRW* signals from the AD bus.

Ready*
D05

I Device Ready: Used as cycle extender when interfacing a slow device.
When inactive during a device access, access is
extended until Ready* assertion.
NOTE: If not using Ready*, tie to GND.

DevDP[3:0]
P01, P02, P03, P04

I/O
Device Bus
Parity[3:0]

Supports generating and checking of device data parity.

Device Interface Pin Count: 46

Table 7: MPP Interface Pin Assignment

Pin Name/
Ball # Type Full Name Description

MPP[31:0] I/O Multi Purpose
Pins

[31:22] AD01, AD02, AD03, AD04, AD05, AD06, AC01, AC02, AC03, AC04
[21:12] AC05, AC06, AB01, AB02, AB03, AB04, AB05, AB06, AA01, AA02
[11:0] AA03, AA04, AA05, Y01, Y02, Y03, Y04, Y05, W01, W02, W03, W04

Core Clock Pin Count: 32

Table 6: Device Interface Pin Assignments (Continued)

Pin Name/
Ball # Type Full Name Description

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 30 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

 Use Multi Purpose Pins (MPPs) as peripherals interfaces or as general purpose I/Os. The exact routing of MPP
pins is determined via the MPP Control register, see Section 15. “MPP Multiplexing” on page 288 for more
information.

Table 8: I2C Interface Pin Assignments

Pin Name/
Ball # Type Full Name Descript ion

I2CSCK
V01

o/d I/O

I2C Clock I2C serial clock.
Serves as output when the GT–64242A acts as an I2C
master.
Serves as input when the GT–64242A acts as an I2C
slave.

I2CSDA
W05

o/d I/O
I2C Serial Data Address or write data driven by the I2C master or read

response data driven by the I2C slave.

I2C Interface Pin Count: 2

Table 9: JTAG Interface Pin Assignments

Pin Name/
Ball # Type Full Name Descript ion

TCK
E24

I
JTAG Clock Clock input for the GT–64242A JTAG controller.

NOTE: A pull-down is required.

TRST
D24

I
JTAG Reset When asserted, resets the GT–64242A JTAG controller.

NOTE: A pull-down is required.

TMS
C24 I

JTAG Mode
Select

Controls the GT–64242A JTAG controller state.
Sampled with the rising edge of JTCLK.
NOTE: A pull-up is required.

JTDO
F25

O
JTAG Data
Out

JTAG serial data output.
Driven by the GT–64242A on falling edge of JTCLK.

TDI
B24

I
JTAG Data In JTAG serial data input. Sampled with JTCLK rising edge.

NOTE: A pull-down is required.

JTAG Interface Pin Count: 5

Pin Information

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 31
Not Approved by Document Control - For Review Only

Table 10 summarizes the MPP pins functionality.

Table 10: MPP Pins Functionality

Pin Name Type Functional i ty Description
DMAReq[7:0]* I DMA Request [7:0] DMA channel trigger by external device.

DMAAck[7:0]* O DMA Acknowledge
[7:0]

DMA channel acknowledge.
Driven by the GT–64242A in response to DMAReq* when
channel is activated.

EOT[7:0] I End of DMA Trans-
fer [7:0]

External termination of a DMA channel operation.

TCEn[7:0] I Timer/Counter[7:0]
Count Enable

Count enable input.
NOTE: One pin per timer/counter.

Counting starts two TClk cycles after TCEn asser-
tion.

TCTCnt[7:0] O Timer/Counter[7:0]
Terminal Count

Terminal count output.
NOTE: One pin per timer/counter.

Asserted one TClk cycle after the counter reaches
zero.

GPP[31:0] I/O General Purpose
Port [31:0]

General purpose input/output port, see Section 14. “Gen-
eral Purpose Port” on page 285 for more information.

InitAct O Initialization Active Driven to 1 for the entire serial ROM initialization period.

PME* o/d O PCI Power Man-
agement Event

If PME is enabled, asserted by the GT–64242A upon CPU
request.

MREQ* I/O UMA Request SDRAM bus request asserted by a UMA slave device.

MGNT* I/O UMA Grant Asserted by the UMA master in response to MREQ* to indi-
cate bus mastership to the UMA slave device.

PCIReq[5:0]* I PCI Request[5:0] External PCI bus requests when the GT–64242A PCI bus
arbiter is enabled.

PCIGnt[5:0]* O PCI Grant[5:0] Bus grant to external PCI masters when the GT–64242A
PCI bus arbiter is enabled.

DBurst*/
DLast*

O Device Burst/Last Used as device burst indication during the device access
address phase. Indicates access of more than one data.
Latching is done via ALE.
Used as last data indication during the device data phase.
Asserted on last data phase.

Int[3:0]* O CPI Interrupt[3:0] Four CPU interrupt pins.

BClkIn I Baud Rate Genera-
tor Clock In

Optional BRG clock input.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 32 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 11 explains the strapping configuration for systems in which one of the following interfaces is not used.

BClkOut0 O Baud Rate Genera-
tor 0 Clock Out

Optional clock output of baud rate generator 0

WDNMI* o/d O Watch Dog NMI Watch dog non-maskable interrupt.

WDE* o/d O Watch Dog Expired
Interrupt

Typically causes the system to reset.

Debug[31:0] O Debug Port Reserved for Marvell Technology usage.

Table 11: Unused Interface Strapping

Unused Interface Strapping
CPU GND: SysClk, SysRdyOIn[2:0]*

Pull up: SysCmd[8:0], Validout, Release, PReq, TcTCE, TcMatch
Pull down AD[5] and AD[9:6].

I2C Pull up I2CSCK and I2CSDA.

MPP All signals must be configured as outputs.
It is recommended to pull these signals either high or low so the hardware will be
protected from software errors.

SDRAM The following reset pins must be configured as follows:
Set AD[12] and AD[13] to ‘0’ to disable UMA support.
Set AD[23] to ‘0’ to support SDClkOut.

Device Pull down the Ready* pin.

PCI To bypass the need of putting pull ups on the data signals (SysAD[63:0],
CBE[7:0]*, PAR).
Connect the PCI Rst to the Sysrst*.
Pull down the GNT*.
Connect the PCI Clk to a clock (could be a very slow clock, need just several
cycles).

Table 10: MPP Pins Functionality (Continued)

Pin Name Type Functional i ty Descript ion

Address Space Decoding
CPU Address Decoding

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 33
Not Approved by Document Control - For Review Only

3. ADDRESS SPACE DECODING
The GT–64242A has a fully programmable address map.

two address spaces exist:
• The CPU address space.
• The PCI address space.

The GT–64242A supports an advanced address decoding scheme. Every target device has its dedicated Address
Map Registers. Each register can map up to 4GByte of space per device.

The IDMA and the Comm ports SDMAs use CPU address space map. However, they have an override capability
that enables bypassing CPU address decoding and allows for direct transactions to the PCI bus.

NOTE: The GT–64242A address decoding is NOT software compatible with GT-64120/GT-64130 address
decoding scheme. There is no two stage decoding process. Instead of a first level decoding of a device
group followed by a second level decoding of the specific target device, the GT–64242A implements
one level decoding that maps directly to the target device.

3.1 CPU Address Decoding

The CPU interface address decoding map consists of 15 address windows for the different devices, as shown in
Table 12.

Each window can have a minimum of 1Mbytes of address space, and up to 4Gbyte space.

Table 12: CPU Interface Address Decoder Mappings

CPU Decoder Associated Target

SCS[3:0]* SDRAM chip selects.

CS[3:0]*, BootCS* Devices chip selects.

PCI I/O PCI I/O space.

PCI Mem 0/1/2/3 PCI Memory space.

Internal GT–64242A internal registers.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 34 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Each address window is defined by two registers - Low and High. The CPU address is compared with the values
in the various CPU Low and High Decode registers.

 Address decoding works as follows:
1. Bits [35:32] of the CPU address are compared against bits [15:12] in the various CPU Low Decode reg-

isters. These values must match exactly ([35:32] = [15:12]).
2. Bits [31:20] of the CPU address are compared against bits [11:0] in the various CPU Low Decode regis-

ters. The value must be greater than or equal to the Low decode value ([31:20] >= [11:0]). This sets the
lower boundary for the region.

3. Bits [31:20] of the CPU address are compared against the High Decode registers. The value must be less
than or equal to this value ([31:20] <= High Decode register values). This sets the upper bound for the
region.

4. If all of the above are true, the exact target device (e.g SCS[0]*) is selected

Example of the CPU address decode process is shown in Figure 2.

Figure 2: CPU Address Decode Example

NOTE: The CPU address windows are restricted to a size of 2n and the start address must be aligned to the win-
dow size. For example, if using a 16 MB window, the start address bits [23:0] must be 0.

Example: Set up a CPU decode region that starts at 0xA.4000.0000 and is 1Gbytes in length
(0xa.4000.0000 to 0xa.7fff.ffff):

If the CPU address is between the Low and the High decode addresses, then the access is
passed to the target device.

0 1 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20

1 1 1 1 1 1 1

0

1

Low Decode
Register

High Decode
Register

CPU Address
Bits

1 0 1 0

35 34 33 32

0 1 1 1

>= >= >= >= >= >= >= >= >= >= >=

31 30 29 28 27 26 25 24 23 22 21 20

<= <= <= <= <= <= <=

>=

<=

Low Decode
Register

High Decode
Register

CPU Address
Bits

= = = =

35 34 33 32

<= <= <= <=

Address Space Decoding
PCI Address Decoding

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 35
Not Approved by Document Control - For Review Only

3.2 PCI Address Decoding

PCI slave interface address decoding map consists of 11 address windows for the different devices, as shown in
Table 13.

In addition, PCI slave supports 12 more address windows for 64-bit addressing (using PCI Dual Access Cycle
[DAC] transactions), as shown in Table 14.

NOTE: DAC address windows are not necessarily used for 64-bit addressing. They can be used as regular 32-bit
addressing windows, allowing additional flexibility to PCI address mapping. See Section 8.5.4 “64-bit
Addressing BARs” on page 148 for more details.

Each address window has two registers that defines the device address range - BAR (Base Address Register) and
Size registers. Decoding starts with the PCI address being compared with the values in the various BARs. The
size register sets which address bits are significant for the comparison between the active PCI address and the
values in the BAR (see Figure 3).

Table 13: PCI Interface Address Decoder Mappings

PCI_0 Slave Decoder Associated Target

SCS[3:0]* SDRAM chip selects.

CS[3:0]*, BootCS* Devices chip selects.

Internal Mem Memory mapped internal registers.

Internal I/O I/O mapped internal registers.

Table 14: PCI Interface 64-bit Addressing Address Decoder Mappings

PCI_0 Slave Decoder Associated Target

DAC SCS[3:0]* SDRAM chip selects.

DAC CS[3:0]*, DAC BootCS* Devices chip selects.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 36 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 3: Bank Size Register Function Example (16Meg Decode)

Bits [31:N] of the PCI address are compared against bits [31:N] in the various Base Address Registers (BARs).
These values much match exactly. The value of ‘N’ is set by the least significant bit with a ‘0’ in the Bank Size
Registers. For example, ‘N’ would be equal to 24 in the example shown in Figure 3.

The Bank Size register defines the size of the target device. It must be programed as a set of 1’s (staring from
LSB) followed by a set of 0’s. The set of 1’s defines the size. For example, if the size register is set to 0x001fffff,
it defines a size of 2Mbyte (number of 1’s is 21, 221 = 2Mbyte).

As shown in Figure 3, PCI address is decoded starting with bit[12]. This means that each target device can have
a minimum of 4Kbyte of address space.

3.3 Disabling Address Decoders

To disable the CPU address decoding window, set the value of the Low decoder to be higher than the High
decoder.

PCI address decoding can be disabled through a BAR Enable register. If a BAR is disabled (it’s corresponding bit
in BAR Enable register is set to ‘1’), the GT–64242A does not respond (no DEVSEL* asserted) to a PCI transac-
tion that it’s address match the BARs address space, see Table 175 on page 177.

3.4 IDMA Unit Address Decoding

The IDMA Unit uses the address mapping of the CPU interface.

Whenever a DMA is activated, the DMA controller uses the CPU interface address mapping to determine
whether the address is located in one of the SDRAM banks, Device banks, PCI or CPU bus.

NOTE: The DMAs address decoding process is exactly the same as the CPU process. See Section 3.1 “CPU
Address Decoding” on page 33 for details.

Address Space Decoding
Address Space Decoding Errors

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 37
Not Approved by Document Control - For Review Only

3.5 Address Space Decoding Errors

When the CPU tries to access an unmapped address:
• The GT–64242A latches the address into the CPU Error Address registers, see Section 4.15.5 “CPU

Error Report Registers” on page 84.
• The CPU AddrErr bit [0] in the CPU Error Cause register is set, see Table 95 on page 85.
• An interrupt is asserted (if not masked).

This feature is especially useful during software debug, when errant code can cause fetches from unsupported
addresses.

With CPU read from an unmapped address, a bus error indication is driven on SysCmd[5].

A PCI access that misses all of the GT–64242A BARs results in no response at all from the GT–64242A, since
the address is targeted to some other target device on the PCI bus.

When an IDMA accesses an unmapped address:
• The GT–64242A latches the address into the DMA Error Address register, including failing DMA chan-

nel indication.
• The DMA AddrErr bit in the Interrupt Cause register is set, see .
• An interrupt is asserted (if not masked).

NOTE: Address space decoders must never be programmed to overlap. Overlapping address space decoders
results in unpredictable part behavior.

3.6 Default Memory Map

Table 15 shows the default CPU memory map that is valid following RESET.

Table 15: CPU Default Address Mapping

Decoder Address Range

SCS0* 0x0 to 0x007f.ffff
8 Megabytes

SCS1* 0x0080.0000 to 0x00ff.ffff
8 Megabytes

SCS2* 0x0100.0000 to 0x017f.ffff
8 Megabytes

SCS3* 0x0180.0000 to 0x01ff.ffff
8 Megabytes

CS0* 0x1c00.0000 to 0x1c7f.ffff
8 Megabytes

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 38 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 16 shows the default PCI memory map that is valid following RESET.

CS1* 0x1c80.0000 to 0x1cff.ffff
8 Megabytes

CS2* 0x1d00.0000 to 0x1dff.ffff
16 Megabytes

CS3* 0x1f00.0000 to 0x1f7f.ffff
8 Megabyte

BootCS* 0x1f80.0000 to 0x1fff.ffff
8 Megabytes

Internal Registers 0x1400.0000 to 0x1400.ffff
or
0xf100.0000 to 0xf100.ffff
NOTE: Set at reset configuration AD[24].
64 Kbytes

PCI_0 Mem0 0x1200.0000 to 0x13ff.ffff
32 Mbytes

PCI Mem1 0xf200.0000 to 0xf3ff.ffff
32 Megabytes

PCI Mem2 0xf400.0000 to 0xf5ff.ffff
32 Mbyte

PCI Mem3 0xf600.0000 to 0xf7ff.ffff
32 Mbyte

PCI I/O 0x1000.0000 to 0x11ff.ffff
32 Mbytes

Table 16: PCI Default Address Mapping

Decoder Address Range

SCS0* 0x0 to 0x007f.ffff
8 Megabytes

SCS1* 0x0080.0000 to 0x00ff.ffff
8 Megabytes

SCS2* 0x0100.0000 to 0x017f.ffff
8 Megabytes

Table 15: CPU Default Address Mapping (Continued)

Decoder Address Range

Address Space Decoding
Default Memory Map

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 39
Not Approved by Document Control - For Review Only

Table 17 shows the default 64-bit addressing PCI memory map that is valid following RESET.

SCS3* 0x0180.0000 to 0x01ff.ffff
8 Megabytes

CS0* 0x1c00.0000 to 0x1c7f.ffff
8 Megabytes

CS1* 0x1c80.0000 to 0x1cff.ffff
8 Megabytes

CS2* 0x1d00.0000 to 0x1dff.ffff
16 Megabytes

CS3* 0x1f00.0000 to 0x1f7f.ffff
8 Megabyte

BootCS* 0x1f80.0000 to 0x1fff.ffff
8 Megabytes

Internal Mem 0x1400.0000 to 0x1400.ffff
64 Kbytes

Internal I/O 0x1400.0000 to 0x1400.0fff
64 Kbytes

Table 17: 64-bit Addressing PCI Default Address Mapping

Decoder Address Range

DAC SCS0* 0x0 to 0x007f.ffff
8 Megabytes

DAC SCS1* 0x0080.0000 to 0x00ff.ffff
8 Megabytes

DAC SCS2* 0x0100.0000 to 0x017f.ffff
8 Megabytes

DAC SCS3* 0x0180.0000 to 0x01ff.ffff
8 Megabytes

DAC CS0* 0x1c00.0000 to 0x1c7f.ffff
8 Megabytes

DAC CS1* 0x1c80.0000 to 0x1cff.ffff
8 Megabytes

Table 16: PCI Default Address Mapping

Decoder Address Range

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 40 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

3.7 Programming Address Decoding Registers

Since the software can’t tell how long it takes for the programing to be executed within the GT–64242A, pro-
gramming the address decoding registers might be problematic. Also, The software must confirm that the pro-
graming actually happened, before it attempts to access GT–64242A with an address that matches the new
programed decoder.

3.7.1 PCI Programming of Address Decoders
PCI accesses to the GT–64242A PCI registers (including the Base Address register) are never posted.

The PCI slave completes the transaction on the PCI bus (asserts TRDY*) only when data is actually written to
the register. This implementation guarantees that any new PCI accesses to GT–64242A only occurs after the reg-
isters are updated. There is no special software requirement.

3.7.2 CPU Programming of Address Decoders
The CPU setting of the CPU interface address decoders requires special care, especially if changing the mapping
of the GT–64242A internal space. If for example, the CPU changes the Internal Space Decode Address register
and accesses the internal registers based on the new address, the CPU might get an address mismatch, since the
register is not updated yet.

To change Internal Space Decode Address register, perform the following steps:

1. If the required new value overlaps another address decoder, disable this address decoder. See Section
3.3 “Disabling Address Decoders” on page 36 for details.

2. Read the Internal Space Decode Address register. This guarantees that all previous transaction in the
CPU interface pipe are flushed.

3. Only after the CPU interface pipe is flushed, program the register to its new value.
4. Read polling of the register. If the new value is not updated, there is an address mismatch and data of

0xffffffff is returned.
NOTE: The Address mismatch interrupt must be masked, in order to prevent a CPU interrupt.

5. Once a valid data is being read, the software continues to program the GT–64242A registers, based on
the new Internal Space address.

DAC CS2* 0x1d00.0000 to 0x1dff.ffff
16 Megabytes

DAC CS3*
8 Megabyte

DAC BootCS*
8 Megabytes

Table 17: 64-bit Addressing PCI Default Address Mapping

Decoder Address Range

Address Space Decoding
Address Remapping

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 41
Not Approved by Document Control - For Review Only

NOTE: Instead of step #4, it is possible to use a wait loop of 8 SysClk cycles.

3.8 Address Remapping

The GT–64242A supports address remapping from CPU side and from PCI side. Address remapping enables to
relocate an address range defined by address decoding registers, to a new location in the target address space.

3.8.1 CPU Address Remapping to PCI
Each of the CPU to PCI address windows has a Remap Register associated with it.

An address presented on the CPU bus is decoded using the following steps:

1. Address bits [35:20] are checked for a hit in the CPU decoders.
2. Assuming there is a hit in the CPU decoders, part of bits[31:20] are remapped according to the resource

size. Going from the MSB to LSB of the High Decode registers, any bit found matching to its respective
bit in the LOW Decode register causes the corresponding bit in the Remap register to REPLACE the
respective address bit. Upon the first mismatch, all remaining LSBs of address bits[31:20] are
unchanged. Bits 19:0 are left unchanged.

3. The remapped address is transferred to the PCI bus.

See Figure 4 outlining this address remapping procedure.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 42 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 4: CPU Address Remapping

3.8.2 Writing to CPU Decode Registers
When a LOW Decode register is written to, the least significant 12 bits are simultaneously written to the associ-
ated Remap register.

When a Remap register is written to, only its contents are affected. Following RESET, the default value of a
Remap register is equal to its associated LOW Decode register bits [11:0]. Unless a specific write operation to a
Remap register takes place, a 1:1 mapping is maintained.

Also, changing a LOW Decode register’s contents automatically returns its associated space to a 1:1 mapping.
This allows users that do not need this address remapping feature to change the CPU interface address decoding
windows without dealing with the associated remap registers.

When setting RemapWrDis bit in CPU Configuration register to 1, writing to the LOW Decode register does not
result in simultaneous write to the corresponding Remap registers.

. . .

>= >= >= >= >= >= >= >= >= >= >=

31 30 29 28 27 26 25 24 23 22 21 20

<= <= <= <= <= <= <=

>=

<=

= = = =

35 34 33 32

bit
31

bit
30

bit
29

bit
28

bit
27

bit
26

bit
25

bit
24

bit
23

bit
22

bit
21

bit
20

bit
3

bit
2

bit
1

bit
0

bit
19

Bits 19 - 0
are Unchanged

from Hit Address7 6 5 4 3 2 1 011 10 9 8

Start at MSB. With each matching of bits
11:0 of High decode and of LOW decode
registers, the corelated address bits are
replace with bits in Remap. With first

mismatch, address bits are unchanged.

. . .20 3 2 1 01931 30 29 28 27 26 25 24 23 22 21
Remapped

Address

Remap
Register

CPU Low Decode
Reg

CPU High Decode
Reg

CPU Address Bits

Step 1.

Step 2.

Step 3.

A match in the processor
decoders forwards the

address to remap

<= <= <= <=

Address Space Decoding
Address Remapping

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 43
Not Approved by Document Control - For Review Only

3.8.3 PCI Address Remapping
Each of the PCI interface address windows has a Remap Register associated with it. An address presented on the
PCI AD bus is decoded with the following steps:

1. Address bits [31:12] are checked for a hit in the PCI Base/Size registers.
2. Assuming there is a hit, bits[31:12] are remapped as follows:

•Any address bit that is not masked by the Size register is REPLACED by the corresponding bit of the
remap register.

•Address bits that are masked by the size register are left unchanged.
3. The remapped address is transferred to the target device.

An example of this is summarized in Table 18.

In Table 18, the Size register is programmed to 0x03ff.ffff. This indicates that this BAR requires a hit in the six
MSB (bits 31:26) bits of the PCI address for their to be a hit in the BAR.

Therefore, the PCI address 0x1dxx.xxxx is a hit in a BAR programmed to 0x1fxx.xxxx as bits [31:26] of both of
these addresses is 0b0001.11.

Then according to the Remap register, these same bit locations are remapped to 6’b111111. The rest of the PCI
address bits (i.e. [25:0]) remain unchanged. This means that the final PCI slave address is 0x3d987654.

3.8.4 Writing to PCI Decode Registers
When a BAR register is written to, the associated Remap register is written to, simultaneously.

When a Remap register is written to, only its contents are affected. Following RESET, the default value of a
Remap register is equal to its associated BAR decode register. Unless a specific write operation to a Remap reg-
ister takes place, a 1:1 mapping is maintained.

Also, changing a BAR register’s contents automatically returns its associated space to a 1:1 mapping. This allows
users that do not need this address remapping feature to change the PCI interface address decoding windows
without dealing with the associated remap registers.

In some applications, the operating system might re-program the Base Address registers after the Remap registers
were already programed by the local driver. In such case, the 1:1 mapping due to the BARs re-programing is not
desired.

Table 18: PCI Address Remapping Example

PCI address 0x1d98.7654

SCS[0]* BAR 0x1c00.0000

SCS[0]* Size 0x03ff.ffff

SCS[0]* Remap Register 0x3c00.0000

Remapped PCI Address Presented to SDRAM 0x3d98.7654

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 44 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

If RemapWrDis bit in PCI Address Decode Control register is set to 1, writing to the BARs will NOT result in
simultaneous write to the corresponding Remap registers.

3.8.5 64-bit Remap Registers
The CPU interface PCI memory windows have the capability of remapping to 64-bit addresses. In addition to the
regular remap register, each window has a High Remap register that sets the upper 32-bit address. This enables
access to addresses beyond the 4Gbyte space on the PCI bus using DAC cycles.

If the High Remap register is set to 0x0 (default), the address driven to the PCI master interface is a 32-bit
address and it generates a SAC transaction on the PCI bus.

If the High Remap register is programed to a value other than 0x0, it is used as the upper 32-bit address of the
PCI transaction. The PCI master generates a DAC transaction on the PCI bus.

NOTE: See Section 8. “PCI Interface” on page 142 for more details.

3.9 IDMA Unit Address Decoding Override

In default, the IDMA unit uses the CPU interface address decoding as in Section 3.4 “IDMA Unit Address
Decoding” on page 36. However, the unit can be configured to bypass the address decoding and have direct
access to the PCI bus.

It is possible to configure each of the IDMA channels to drive the source, destination, and descriptors address
directly to the PCI interfaces, without going through the CPU interface address decoders.

For more details see, IDMA, Section 10.3 “IDMA Address Decoding” on page 246.

CPU Interface
CPU Address Decoding

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 45
Not Approved by Document Control - For Review Only

4. CPU INTERFACE
The GT–64242A supports all MIPS 64-bit bus CPUs. These include:

• PMC-Sierra RM5261A, RM7000, RM7000A
• IDT RC5000, RC64575
• NEC Rv5000, Rv5464
• Any 64-bit SysAD compatible CPU
• SandCraft SR71000

NOTE: The GT–64242A supports RM7000C Simplified External Cache mode.

The CPU interface can only work as a slave interface responding to CPU transactions.

4.1 CPU Address Decoding

The CPU interface uses a one stage decoding process, as described in Section 3. “Address Space Decoding” on
page 33. This section summarizes CPU address decoding and emphasizes few details.

NOTE: For an exact list of CPU Address Decoding registers, seeTable 26 on page 63.

The CPU interface supports 15 address windows.
• Four for SDRAM chip selects.
• Five for device chip selects.
• Five for PCI interface (4 memory + one I/O).
• One for the GT–64242A internal registers space.

NOTE: The CPU address windows are restricted to a size of 2n and the start address must be aligned to the win-
dow size. For example, if using a 16 MB window, the start address bits [23:0] must be ‘0’.

Each window is defined by a Low and High register and can decode up to 4Gbyte space.

The CPU interface also supports address remapping to the PCI bus. This is useful when a CPU address range
must be reallocated to a different location on the PCI bus. Also, it enables CPU access to a PCI agent located
above the 4Gbyte space.

The CPU interface contains High PCI Remap registers that defines the upper 32-bit PCI address. If the register is
set to 0, the CPU access to PCI results in a Single Address Cycle (SAC) transaction. If it is set to a value other
than 0, the PCI master issues a DAC transaction with the high 32 address bits set according to the High PCI
Remap register’s value.

The CPU accesses the GT–64242A internal registers space when address matches the Internal Space Low regis-
ter.

NOTE: There is no High register for Internal Space, since it has a fixed size.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 46 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

4.2 CPU Access Protection

The CPU interface supports configurable access protection. This includes up to eight address ranges defined to a
different protection type - whether the address range is cacheable or not, whether it is writable or not, and
whether it is accessible or not.

A Low and High register defines each address window. The minimum address range of each window is 1Mbyte.
An address driven by the CPU, in addition to the address decoding and remapping process, is compared against
the eight Access Protection Low/High registers.

• Bits[35:32] of the address are checked to be equal to bits[23:20] of Low register.
• Bits[31:20] of the address are checked to be between the lower and upper addresses defined by

bits[19:0] of Low and High registers.
If an address matches one of the windows, the GT–64242A checks the transaction type against the protection bits
defined in CPU Access Protection register, to determine if the access is allowed.

Three types of protection are supported:

• Access protection: Any CPU access to this region is forbidden.
• Write protection: Any CPU write access to this region is forbidden.
• Cacheable protection: Any CPU burst access to this region is forbidden.

If there is an access violation, the CPU interface completes the transaction properly against the CPU but ignores
the transaction internally. The transaction address is latched in the CPU Error Address register and the CPU
AddrErr bit in the interrupt cause register is set.

4.3 CPU Slave Operation

The CPU slave interface contains 256 bytes of posted write data buffer and 64 bytes of read data buffer. It can
absorb up to two read or write transactions.

The write buffer accepts up to eight cache lines. CPU writes are posted. They are written into the write buffer and
only then driven to the target. If the target device is busy and cannot accept the transaction, the write buffer can
still accept new CPU write transactions, with zero wait states.

The read buffer accepts up to two cache lines. The CPU interface tries to drive read data to the CPU when data
arrives from the target device. If the bus is occupied by another bus master, data is written first to the read buffer.

The GT–64242A supports split read transactions. The CPU interface pipelines up to six transactions to target
devices. In this case, data may be returned out of order. For example, if the first read transaction is directed to the
PCI and the second is directed to SDRAM, data from SDRAM will return first.

If the CPU supports out of order completion (e.g. RM7000), data from SDRAM is driven first on the CPU bus. If
the CPU doesn’t support out of order completion (e.g. R5000), the data must first be placed in a read buffer and
then wait for the PCI read response to complete.

The CPU transactions are issued to the target device in order. The first transaction appearing on the CPU bus is
the first one to be issued towards the target device. There is no transaction bypassing. The GT–64242A architec-

CPU Interface
MIPS 64-bit Multiplexed Address/Data Bus Interface

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 47
Not Approved by Document Control - For Review Only

ture guarantees the execution of the CPU consecutive transactions to the same target device in the same order
they appeared on the CPU bus.

4.4 MIPS 64-bit Multiplexed Address/Data Bus Interface

The GT–64242A supports 64-bit MIPS CPUs multiplexed address/data bus protocol and partial read/writes from
one byte up to eight bytes, as well as 32-byte block reads/writes.

4.4.1 Signals Description
The CPU interface incorporates the following signals:

Table 19: CPU Interface Signals

Signal Description

SysAD[63:0] Multiplexed address/data bus.
Used as address during the issue cycle and as data during the read/write data phase.

SysCmd[8:0] Multiplexed command/data identifier bus.
Used as command during issue cycle (read/write, size information) and as data identi-
fier during data phase (good/bad data, last data information).

SysADC[7:0] SysAD parity bus: An 8-bit bus containing even parity for the SysAD bus.
Valid only on the data phase.

ValidOut* CPU indication for driving valid address/data and command/data identifier on the SysAD
and SysCmd busses.

Release* CPU indication for releasing the bus. The CPU stops driving SysAD and SysCmd bus-
ses the next cycle after Release* assertion. It is floating the busses for the GT–64242A
completion of a read transaction.

ValidIn* The GT–64242A indication for driving valid read data and data identifier on SysAD and
SysCmd busses.

SysRdyOut* The GT–64242A indication that it is capable of accepting a new read or write transac-
tion.

SysRdyIn[2:0]* SysRdy* input used in a multi-GT–64242A configuration.

PRqst* The CPU request from the GT–64242A for bus mastership so it can issue a new trans-
action.

PAck* The GT–64242A bus acknowledge to CPU. The CPU may issue a new transaction on
the next cycle.

RspSwap* The GT–64242A indication to the CPU that read data is returned out of order.

TcMatch L3 cache Tag RAM hit indication.
NOTE: Not relevant when working in Simplified External Cache mode.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 48 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

4.4.2 SysAD and SysCmd Encoding
SysCmd[8:0] is used to transfer command during the transaction address phase (SysCmd[8] = 0) and data identi-
fier during data phase (SysCmd[8] = 1), as shown in Table 20.

TcDOE* L3 cache data RAM output enable.
Asserted by the GT–64242A on L3 read hit.

TcTCE* L3 cache Tag RAM chip enable.
Sampled by the GT–64242A to identify L3 access.

TcWord[1:0] L3 cache word index.
Driven by the GT–64242A during L3 read miss.

CPUInt* Level sensitive CPU interrupt asserted by the GT–64242A.

Table 20: Read/Write Request Command Bits Summary

SysCmd Bit Function

SysCmd[8] 0 = Command
1 = Data identifier

SysCmd[7:5] 0x0 - Read request
0x1 - Reserved
0x2 - Write request
0x3 - Null request
0x4-0x7 - Reserved

SysCmd[4:3] 0x0,0x1 - Reserved
0x2 - Block read or write
0x3 - Partial read or write

SysCmd[2] - block read/write 0 - Cache line not retained
1 - cache line retained

Table 19: CPU Interface Signals (Continued)

Signal Description

CPU Interface
MIPS 64-bit Multiplexed Address/Data Bus Interface

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 49
Not Approved by Document Control - For Review Only

SysCmd[1:0] - block read/write 0x0 - Reserved
0x1 - 8 words block size
0x2,0x3 - Reserved

SysCmd[2:0] - partial read/write 0x0 - one byte
0x1 - 2 bytes
0x2 - 3 bytes
0x3 - 4 bytes
0x4 - 5 bytes
0x5 - 6 bytes
0x6 - 7 bytes
0x7 - 8 bytes

Table 21: Null Request Command Bits Summary

SysCmd Bit Function

SysCmd[8:5] 0x3

SysCmd[4:3] 0x0 - Bus release
0x1-0x3 - Reserved

SysCmd[2:0] Reserved

Table 22: Data Identifier Bits Summary

SysCmd Bit Function

SysCmd[8] 1

SysCmd[7] 0 - Last data element
1 - Not last data element

SysCmd[6] 0 - Data is read response data
1 - Data is not response data

SysCmd[5] 0 - Data is error free
1 - Data is erroneous

SysCmd[4] 0 - Check data and check bits
1 - Do not check data and check bits
Reserved for no read response data

SysCmd[3] Reserved

Table 20: Read/Write Request Command Bits Summary (Continued)

SysCmd Bit Function

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 50 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

SysCmd[2:0] Cache state

Table 23: Partial Word Byte Lane
NOTE: On partial read/write transactions, the exact partial data being taken depends on address offset.

Byte Count
(SysCmd[2:0])

SysAD
[2:0]

SysAD Byte Lanes (Big Endian)

7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD Byte Lanes (Litt le Endian)

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

1
(000)

0x0 - - - - - - - A

0x1 - - - - - - A -

0x2 - - - - - A - -

0x3 - - - - A - - -

0x4 - - - A - - - -

0x5 - - A - - - - -

0x6 - A - - - - - -

0x7 A - - - - - - -

2
(001)

0x0 - - - - - - A A

0x2 - - - - A A - -

0x4 - - A A - - - -

0x6 A A - - - - - -

3
(010)

0x0 - - - - - A A A

0x1 - - - - A A A -

0x4 - A A A - - - -

0x5 A A A - - - - -

4
(011)

0x0 - - - - A A A A

0x4 A A A A - - - -

5
(100)

0x0 - - - A A A A A

0x3 A A A A A - - -

Table 22: Data Identifier Bits Summary

SysCmd Bit Function

CPU Interface
MIPS 64-bit Multiplexed Address/Data Bus Interface

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 51
Not Approved by Document Control - For Review Only

4.4.3 SysAD Read Protocol
The CPU starts a read transaction with the assertion of ValidOut*. It drives the valid address and command on the
SysAD and SysCmd busses. It also asserts Release* to indicate its release of the bus mastership to the GT–
64242A for completion of the read.

Two cycles after the Release* assertion, the GT–64242A starts driving the bus.

NOTE: There is a one turn-around cycle between the CPU drive and the GT–64242A drive.

As soon as read data is available, the GT–64242A asserts ValidIn* and drives valid data on SysAD, and valid
read response (mnemonic = RD) on SysCmd. On the last data, the GT–64242A drives last data identifier (mne-
monic = REOD) on SysCmd.

On the clock cycle following REOD, the GT–64242A floats SysAD and SysCmd buses, returning ownership to
the CPU.

NOTE: The CPU reads cannot be issued as long as SysRdyOut* is deasserted (HIGH). If SysRdyOut* is high
and a CPU read is attempted, a previous transaction might be corrupted. All MIPs compliant processors
follow this protocol. Only DMA engines on the SysAD bus that need to be concerned with sampling
SysRdyOut* before initiating a read.

An example of two consecutive read transactions is shown in Figure 5.

6
(101)

0x0 - - A A A A A A

0x2 A A A A A A - -

7
(110)

0x0 - A A A A A A A

0x1 A A A A A A A -

8
(111)

0x0 A A A A A A A A

Table 23: Partial Word Byte Lane
NOTE: On partial read/write transactions, the exact partial data being taken depends on address offset.

Byte Count
(SysCmd[2:0])

SysAD
[2:0]

SysAD Byte Lanes (Big Endian)

7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD Byte Lanes (Litt le Endian)

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 52 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 5: SysAD Read Protocol

NOTE: Figure 5 is a demonstration of the SysAD read protocol. This figure does not reflect the actual read
latency of the GT–64242A.

4.4.4 Write Protocol
The CPU starts a write transaction with the assertion of ValidOut*. It drives a valid address and command on the
SysAD and SysCmd busses. The next cycle it starts driving valid data on SysAD bus and a valid write command
(mnemonic = WD) on the SysCmd bus. On the last data, it drives the last data identifier (mnemonic = WEOD) on
the SysCmd bus. ValidOut* remains asserted throughout the write transaction.

NOTE: The CPU writes cannot be issued as long as SysRdyOut* is deasserted (HIGH). If SysRdyOut* is high
and a CPU write is attempted, a previous transaction might be corrupted. All MIPs compliant processors
follow this protocol. Only the DMA engines on the SysAD bus need to be concerned with sampling
SysRdyOut* before initiating a write.

An example of two consecutive back to back CPU write transactions is shown in Figure 6.

Figure 6: SysAD Write Protocol

addr

cmd

D0

REOD

addr

cmd

D0 D1 D2 D3

RD RD RD REOD

SysClk

SysAD[63:0]

SysCmd[8:0]

ValidOut*

Release*

ValidIn*

SysRdyOut*

addr D0

WEOD

D0 D1 D2 D3

WD WD WD WEODcmd

addr

cmd

SysClk

SysAD[63:0]

SysCmd[8:0]

ValidOut*

SysRdyOut*

CPU Interface
RM7000 Split Transactions Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 53
Not Approved by Document Control - For Review Only

4.5 RM7000 Split Transactions Support

The GT–64242A supports the Non-Pendant mode of the RM7000 processor.

This mode allows the CPU to pipe up to two read transactions. Since RM7000 bus is multiplexed address/data
bus, the CPU issues a new read transaction by gaining back bus mastership by asserting the PReq* signal. If the
GT–64242A is able to handle a new read request, it acknowledges the CPU by asserting PAck* signal. The CPU
then issues a new read transaction, and releases the bus (asserts Release*), enabling GT–64242A to complete
both reads.

The RM7000 also supports out-of-order completion of the read transactions.

If the GT–64242A is able to complete the second read transaction before the first one, it asserts RspSwap*. This
indicates to the CPU that the data is returned out-of-order. An example of two split read transaction with out-of-
order completion is shown in Figure 7.

Figure 7: R7000 Split Read Transaction Example

NOTE: Figure 7 is a demonstration of the SysAD split read protocol. This figure does not reflect the actual read
latency of the GT–64242A.

As explained, the pipeline support enables minimum CPU read latency. In the case of out-of-order completion,
latency might be even better. In the above example, if the first read targets a slow device and the second read tar-
gets the SDRAM (which is fast), since data from SDRAM arrives first, it is driven first on the CPU bus with
RspSwap* indication.

NOTE: The RM7000 pipeline is restricted to read transactions. The CPU never pipelines a read into a write
transaction or a write into a read transaction.

addr0

cmd0

addr1

cmd1

D10 D11 D12 D13 D00

SysClk

SysAD[63:0]

SysCmd[8:0]

ValidOut*

Release*

PReq*

PAck*

ValidIn*

SysRdyOut*

PspSwap*

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 54 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

When configured to multi-GT mode, the CPU Configuration register’s RdOOO bit must be set to ’0’,
see Table 69 on page 74. Out-of-order is not supported in multi-GT mode.

4.6 Burst Support

Block (cache line) read or write results in burst read/write transactions on the bus.

The MIPS CPU cache line is 32 bytes long. On a 64-bit wide bus, the CPU block read or write results in burst of
four 64-bit words. Block write address is aligned to cache line (address bits[4:0] are 0). Block read address can
point to any of the four double-words of the cache line. Block read burst order is sub-block ordering, as shown in
Table 24 (DW0 is the least significant dword, DW3 is the most).

4.7 Transactions Flow Control

The MIPS CPUs bus protocol requires that a target accepting a write request completes the transaction with zero
wait states

NOTE: A write transaction cannot be held in the middle.

This implies that for the GT–64242A to accept a new CPU write transaction it must have “room” in both the
transactions queue and in the write data buffer.

The GT–64242A micro architecture guarantees that when there is “room” in the transaction queue there is also
“room” in the read and write data buffers. Since the transaction queue is shared for reads and writes, and since
only the transaction queue affects the GT–64242A’s ability to accept a new transaction, there is a single SysRdy-
Out* signal driven by the GT–64242A rather than separate RdRdy* and WrRdy*. The GT–64242A SysRdyOut*
output must be connected to both RdRdy* and WrRdy* inputs of the CPU.

The GT–64242A supports two write modes:

• The R4000 compatible mode.
• Pipeline mode.

NOTE: For more details, see the CPU User’s Manual.

Table 24: 64-bit Bus Sub-block Ordering

Data
Transfer

Start Address - SysAD[4:3]

00 01 10 11

1st data beat DW0 DW1 DW2 DW3

2nd data beat DW1 DW0 DW3 DW2

3rd data beat DW2 DW3 DW0 DW1

4th data beat DW3 DW2 DW1 DW0

CPU Interface
MIPS CPU Cache Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 55
Not Approved by Document Control - For Review Only

The CPU issues a new write request if its WrRdy* input samples low two cycles before the issue cycle. The GT–
64242A CPU interface deasserts SysRdyOut* according to the write mode it is programed to use and according
to the available room in its transaction queue.

The CPU issues a new read request if its RdRdy* input samples low two cycles before the issue cycle. The GT–
64242A deasserts SysRdyOut* according to the available room in its transaction queue.

The write protocol does not allow data flow control - the write data rate is fixed. The MIPS CPUs support differ-
ent write rates (in order to interface slow target devices). The GT–64242A supports only DDDD write pattern
(64-bit data every clock cycle).

GT–64242A controls read data flow using the ValidIn* signal. If the CPU accesses a slow device, the GT–
64242A keeps ValidIn* deasserted until read data arrives from the target device. In case of burst read from a slow
device, the GT–64242A can deassert ValidIn* to create wait states between data beats.

4.8 MIPS CPU Cache Support

The GT–64242A supports third level (second level) cache placed on the SysAD bus.

NOTE: MIPS L3 cache implementation consists of an external Tag and data RAMs placed on the SysAD bus.
The external RAMs control signaling is shared between the CPU and the GT–64242A. See the PMC-
Sierra application note for more details.

The GT–64242A samples the TcMatch signal. In case of a CPU access that hits the L3 cache line (Tag RAM
asserts TcMatch signal), the GT–64242A ignores the transaction. This enables the CPU to complete the transac-
tion against L3 cache.

NOTE: Due to PMC-Sierra RM7000 errata, the RdOOO bit in the CPU Configuration register, see Table 69 on
page 74, must be set to’0’ when using L3 cache.

The GT–64242A also samples TcTCE* signal driven by the CPU and drives TcDOE*. It also drives TcWord[1:0]
in case of block read miss.

If a CPU initiates a block read transaction with TcTCE* asserted (indicating L3 read request), and TcMatch is
asserted two cycles after issue cycle (indicating L3 hit), the GT–64242A ignores the transaction but keeps
TcDOE* asserted. This enables a L3 data RAM drive read data on the SysAD bus. In this case, the TcDOE[1:0]
word index is driven by the R7000 L3 cache controller.

In case of a cache miss (TcMatch deasserted two cycles after block read issue cycle), the GT–64242A responds to
the transaction. It also deasserts TcDOE* preventing L3 data RAM from driving the bus, and drives TcWord[1:0]
for the L3 data RAM to load the data the GT–64242A returns to the CPU. An example of L3 read miss is shown
in Figure 8.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 56 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 8: R7000 L3 Read Miss Example

NOTE: Figure 8 is a demonstration of the L3 read miss protocol. This figure does not reflect the actual read
latency of the GT–64242A.

The GT–64242A supports PMC-Sierra RM7000C SimpleCache mode. In this mode, there is no longer a need
for special Tag RAM. The external L3 RAM contains both the tags and the data and the tag compare is per-
formed by the processor and the GT–64242A

NOTE: For further information about the RM7000C Simplified External Cache mode, see the RM7000C spec.

If the CPU Configuration register’s SimpleCache bit [24] is set to ‘1’ (see Table 69 on page 74), the GT–64242A
performs tag compare internally. The TcMatch signal is no longer used.

NOTE: The GT–64242A supports Simplified External Cache mode, only when interfacing fast write L3 SRAM.
It does not support late write SRAM (see RM7000C specification for more information).

The RM7000C does not support non-pedant reads (split reads) in Simplified External Cache mode (see
RM7000C specification for more information)

The SandCraft SR71000 processor has an integrated tag RAM. When accessing a cacheable region, the SR71000
first makes a lookup in its tag RAM. In case of a miss, it issues a transaction on the CPU bus. However, to main-
tain compatibility to the traditional L3 implementation, the SR71000 maintains the TcMatch signal.

With the traditional L3 implementation, the GT–64242A must first wait for the TcMatch valid window, before
propagating it to the target interface. In the case of the SR7100, this delay for the TcMatch valid window is not
required. It is gauranteed that whenever the CPU accesses the bus to a cacheable region (TcTCE* is asserted),
TcMatch is deasserted (cache miss).

addr

read

D10 D11 D12 D13

I0 I1 I2 I3 I0 I1 I2 I3

SysClk

SysAD[63:0]

SysCmd[8:0]

ValidOut*

Release*

TcTCE*

TcMatch

ValidIn*

TcDOE*

TcWord[1:0]

CPU Interface
Multi-GT Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 57
Not Approved by Document Control - For Review Only

If the CPU Configuration register’s SR7_L3 bit [21] (Table 69 on page 74) is set to ‘1’, the GT–64242A no
longer samples TcMatch.

The SR71000 support the non-pedant reads, also when interfacing L3 cache. Similar to the RM7000, it can pipe
two read transactions, where one of the two is cache miss and the other is cache hit, as shown in Figure 9.

Figure 9: SR71000 L3 Read Hit Example

Since the second read transaction is a cache hit, it is not converted to a SysAD bus transaction. Instead, the CPU
accesses the data RAM directly and then simply releases the bus back to the GT–64242A (asserts Release*).

4.9 Multi-GT Support

Up to four GT–64242A devices can be connected to the SysAD bus without the need for any glue logic. This
capability enables the CPU to interface with multiple PCI busses and adds significant flexibility for system
design.

Multiple GT–64242A is enabled through the reset configuration. See Section 20.1 “Pins Sample Configuration”
on page 325.

NOTE: A Multi-GT–64242A configuration can also be used for the CPU to interface GT–64242A device(s) and
other slaves on the SysAD bus, as long as these slaves follow the SysAD bus rules.

Operating in multi-GT mode affects the AC Timing. Before implementing multi-GT support, consult
with your local FAE.

addr

read

D00

I11 I12 I13 I00 I01 I02 I03I10

D10 D11 D12 D13 D01 D02 D03

sysclk

SysAD[63:0]

SysCmd[8:0]

ValidOut*

Release*

PReq*

PAck*

TcTCE*

ValidIn*

TcDOE*

TcWord[1:0]

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 58 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Multi-GT mode can be used to connect a slave unit other than the GT-64240A. Before attempting to
connect an alternate slave unit, consult with your local FAE.

4.9.1 Hardware Connections
In multi-GT–64242A configuration, ValidIn*, PAck*, and TcDOE* signals function are sustained tri-state out-
puts requiring 4.7 KOhm pull-up resistors.

All ValidIn* outputs from the GT–64242A devices must be tied together to drive the CPU ValidIn* input.

All PAck* outputs from the GT–64242A devices must be tied together to drive the CPU PAck* input.

All TcDOE* outputs from the GT–64242A devices must be tied together to drive L3 TcDOE* input.

ValidIn* and TcDOE* are only driven by the target GT–64242A. After last the ValidIn* cycle, the GT–64242A
drives it HIGH for another cycle and then tri-states it. This also applies to PAck* and TcDOE*.

NOTE: In multi-GT mode, RspSwap* is NC.

There is a new input signal related to the multi-GT–64242A configuration - SysRdyIn[2:0]*. This signal func-
tions differently in the boot GT–64242A device than the other GT–64242A devices. The CPU RdRdy* and
WrRdy* inputs are connected only to SysRdyOut* of the boot GT–64242A device. SysRdyOut* of the other GT–
64242A devices are connected to SysRdyIn[2:0] of the boot device. They are internally ORed together in the
boot device to generate a combined SysRdyOut* signal to the CPU.

NOTE: In multi-GT mode, SysRdyOut* signal deasserts earlier than in non multi-GT–64242A configurations.
To compensate on the sampling stage this signal passes in the boot GT–64242A device.

SysRdyIn[0]* of all the GT–64242A devices, except for the boot device, are connected to the boot device Sys-
RdyOut* (which is also the CPU RdRdy* and WrRdy*) and are used as a qualifier to the CPU issue cycle.

An example of hardware connection of two GT–64242A devices is shown in Figure 10.

CPU Interface
Multi-GT Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 59
Not Approved by Document Control - For Review Only

Figure 10: Multi-GT–64242A Hardware Connections to the MIPS CPU Bus

In case of a bad CPU read address, that misses all address windows, no device will respond and the system might
hang. By setting the NoMatchCntEn bit in the CPU Configuration Register to ’1’, the boot GT–64242A responds
after a timeout period defined in NoMatchCnt field and completes the transaction, see Table 69 on page 74.

NOTES:In a multi-GT–64242A configuration, the GT–64242A cannot detect an address mismatch of write
transactions. Also, it does not support read address mismatches if the R7000 split reads are enabled and
the L3 cache is present.

In a multi-GT–64242A configuration, the NoMatch counter is applicable only to the boot GT device (the
one with Multi-GT ID of ‘11). If the boot ROM is connected to a slave device other than GT–64242A,
the system might hang in case of address mismatch. To avoid a system hang, the non-GT–64242A slave
device must have some address mismatch protection mechanism.

4.9.2 Multi-GT Mode Enabled
In multi-GT mode, each GT–64242A device has a two bit ID. This ID distinguishes between the devices. Each
device responds to a transaction address that matches it’s ID, as shown in Table 25.

Table 25: Multi-GT ID Encoding

Pin Configuration Function

ID Multi-GT–64242A Address ID

00 GT–64242A responds to SysAD[26:25]=’00’

GT-1
(boot)

GT-2

VDD

MIPS
CPU

GND

ValidIn*

TcDOE*
L3

Cache
ValidIn*

TcDOE*

SysRdyOut*

SysRdyOut*

SysRdyIn[0]*

RdRdy*

WrRdy*

SysRdyIn[2:1]*
= '00

SysRdyIn[0]*

SysRdyIn[2:1]*
= '00

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 60 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

If the GT–64242A is configured to multi-GT mode during reset, the MultiGTDec bit in the CPU Configuration
register is SET, indicating that the CPU Interface address decoding is reduced to:

1. If SysAD[26:25] == ID AND it's a WRITE, the access is directed to the internal space of the CPU Inter-
face registers with bits[11:0] defining the specific register offset.

2. If SysAD[26:25] == ID AND it's a READ AND SysAD[27] == 0, the access is directed to the internal
space of the CPU Interface registers with bits[11:0] defining the specific register offset.

3. If SysAD[26:25] == ID AND it's a READ AND SysAD[27] == 1, the access is directed to BootCS*.
NOTE: Since 0x0.1FC0.0000 implies SysAD[26:25] == 3, the GT–64242A holding the boot device must be

strapped to ID = 3.

4. When the MultiGTDec bit is CLEARED, the CPU Interface resumes normal address decoding.

4.9.3 Initializing a Multi-GT–64242A System
The following procedure is recommended to initialize a system with two GT–64242As attached to the same
CPU.

NOTE: For this example, the two GT–64242As are called GT-1 and GT-2, GT-1 ID is ‘11’ (boot GT–64242A)
and GT-2 ID is ‘00’.

1. Access GT-1's BootROM and reconfigure GT-2's CPU Interface Address Space registers. After reset, the
processor executes from the BootROM on GT-1 because the address on SysAD is 0x0.1FCx.xxxx where
SysAD[27:25] = ‘111’ and it's a read cycle. Registers on GT-1 are accessible via address
SysAD[26:25]=11, [11:0]=offset]. Registers on GT-2 are accessible via address {SysAD[26:25]=00,
[11:0]=offset].

2. Access GT-1's BootROM and reconfigure GT-1's CPU Interface address space registers. Also, reconfig-
ure the Internal Space Address Decode register so that later, once the multi-GT mode is disabled, it is
possible to differ between internal accesses to GT-1 or GT-2.

3. Lower GT-2 BootCS* high decode register BELOW 0x0.1FCx.xxxx (i.e. 0x0.1FBx.xxxx). This causes
GT-2 to ignore accesses to 0x0.1FCx.xxxx once taken out of multi-GT mode. Also, each GT–64242A
address mapping must be unique. There must not be any address decoding range in one device that
overlaps any part of the other device address mapping.

4. Clear GT-2 MultiGTDec bit.
5. Clear GT-1 MultiGTDec bit.

Now both GT–64242As resume NORMAL operation with USUAL address decoding.

01 GT–64242A responds to SysAD[26:25]]=’01’

10 GT–64242A responds to SysAD[26:25]=’10’

11 GT–64242A responds to SysAD[26:25]=’11’
NOTE: The boot GT–64242A ID must be programmed to ‘11’.

Table 25: Multi-GT ID Encoding (Continued)

Pin Configuration Function

CPU Interface
Parity Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 61
Not Approved by Document Control - For Review Only

NOTE: In the presence of multiple GT–64242A devices, each devices’ CPU Configuration register must be pro-
gramed to the same value.

4.10 Parity Support

The GT–64242A supports even data parity driven on the SysADC bus.

It samples data parity on write transactions and drives parity on reads. It also propagates bad parity between the
CPU bus and the other interfaces (SDRAM, PCI). In case of bad parity detection, it also asserts an interrupt.

For full description of parity support, see Section 6. “Address and Data Integrity” on page 118.

NOTE:

NOTE: When running MPX bus mode, the internal arbiter must be used.

4.11 CPU Endian Support

 The CPU bus endianess is determined via the CPU Configuration register’s Endianess bit, see Table 69 on
page 74. The GT–64242A provides the capability to swap the byte order of data that enables endianess conver-
sion between the CPU interface and some other interfaces.

The endianess convention of the local memory attached to the GT–64242A (SDRAM, devices) is assumed to be
the same one as the CPU. This means data transfered to/from the local memory is NEVER swapped.

The internal registers of the GT–64242A are always programmed in Little Endian. On a CPU access to the inter-
nal registers,if the CPU bus is configured to Big Endian because the CPU Configuration register’s Endianess bit
is set to ’0’, data is swapped.

Data swapping on a CPU access to the PCI is controlled via PCISwap bits of each PCI Low Address register.
This configurable setting allows a CPU access to PCI agents using a different endianess convention.

For software compatibility with the GT-64120/130 devices, the GT–64242A maintains MByteSwap and MWord-
Swap bits in the PCI Command register, see Table 196 on page 183. If the PCI Command register’s MSwapEn bit
is set to ‘1’, the GT–64242A PCI master performs data swapping according to PCISwap bits setting. If set to ‘0’
(default), it works according to MByteSwap and MWordSwap bits setting, as in the GT-64120/130 devices.

See Section 8.12 “Data Endianess” on page 155 for more information on data swapping.

4.12 CPU Synchronization Barrier

The GT–64242A supports a sync barrier mechanism. This mechanism is a hardware hook to help software syn-
chronize between the CPU and PCI activities. The GT–64242A supports sync barrier in both directions - CPU to
PCI and PCI to CPU.

Figure 11 shows an example of a CPU sync barrier application.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 62 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 11: CPU Sync Barrier Example

In the example, an ethernet switch sends a packet through the PCI bus to the SDRAM. The ethernet switch then
notifies the CPU that it has a packet waiting in SDRAM to handle by asserting CPU interrupt. Since the packet
might still reside in GT–64242A PCI slave write buffer rather than SDRAM, the CPU interrupt handler must per-
form a sync barrier action to make sure the packet is flushed to SDRAM.

The CPU interface treats PCI I/O reads and configuration reads as “synchronization barrier” cycles. These reads
receive a response once no posted data remains within the PCI slave write buffer.

NOTE: To disable these sync barrier, set ConfSBDis and IOSBDis bits in CPU Configuration register to 1.

The GT–64242A provides the CPU with a simpler way to perform synchronization with the PCI bus. The CPU
issues a read request to the PCI Sync Barrier Virtual register. Once no posted data remains within the addressed
PCI interface, the dummy read is complete.

NOTE: Data from this read must be discarded.

As an option, use the CPU sync barrier to invalidate the PCI slave read buffers. If SBInv bit in PCI Slave Control
register is set to 1 (default), the slave read buffers are invalidated with each CPU sync barrier.

4.13 Clocks Synchronization

The CPU interface can be driven from the core clock (TClk) or by a separate clock input, not synchronized to
TClk. This CPU clocking scheme is determined via reset configuration, see Section 20. “Reset Configuration” on
page 325. If driven by the core clock (TClk), the SysClk input pin is not used. If driven by a separate clock input,
SysClk frequency must not exceed the TClk frequency.

The CPU interface includes synchronization logic that synchronizes between the SysClk and TClk clock
domains. When running the CPU interface with TClk, these synchronizers are bypassed, eliminating the latency
penalty of the synchronizers.

CPU

SDRAMEthernet
Switch GT–64242A

PCI Bus

Interrupt

CPU Interface
Programing the CPU Configuration Register

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 63
Not Approved by Document Control - For Review Only

4.14 Programing the CPU Configuration Register

The CPU setting of the CPU Configuration register requires special care, since it affects the GT–64242A behav-
ior on consecutive CPU accesses.

To change the register, the following steps are recommended:

1. Read the CPU Configuration register. This guarantees that all previous transactions in the CPU interface
pipe are flushed.

2. Only after the CPU interface pipe is flushed, program the register to its new value.
3. Read polling of the register until the new data is being read.

NOTE: CPU Configuration register wakes up with split transactions disabled.It is recommended to change this
default in order gain the maximum CPU interface performance.

Setting the CPU Configuration register must be done once. For example, if the CPU interface is configured to
support Out of Order read completion, changing the register to not support OOO read completion is fatal.

4.15 CPU Interface Registers

Table 26: CPU Address Decode Register Map

Register Offset Page

SCS[0]* Low Decode Address 0x008 page 66

SCS[0]* High Decode Address 0x010 page 66

SCS[1]* Low Decode Address 0x208 page 66

SCS[1]* High Decode Address 0x210 page 66

SCS[2]* Low Decode Address 0x018 page 67

SCS[2]* High Decode Address 0x020 page 67

SCS[3]* Low Decode Address 0x218 page 67

SCS[3]* High Decode Address 0x220 page 67

CS[0]* Low Decode Address 0x028 page 67

CS[0]* High Decode Address 0x030 page 67

CS[1]* Low Decode Address 0x228 page 68

CS[1]* High Decode Address 0x230 page 68

CS[2]* Low Decode Address 0x248 page 68

CS[2]* High Decode Address 0x250 page 68

CS[3]* Low Decode Address 0x038 page 68

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 64 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

CS[3]* High Decode Address 0x040 page 68

Boot CS* Low Decode Address 0x238 page 69

Boot CS* High Decode Address 0x240 page 69

PCI I/O Low Decode Address 0x048 page 69

PCI I/O High Decode Address 0x050 page 69

PCI Memory 0 Low Decode Address 0x058 page 70

PCI Memory 0 High Decode Address 0x060 page 70

PCI Memory 1 Low Decode Address 0x080 page 70

PCI Memory 1 High Decode Address 0x088 page 71

PCI Memory 2 Low Decode Address 0x258 page 71

PCI Memory 2 High Decode Address 0x260 page 71

PCI Memory 3 Low Decode Address 0x280 page 71

PCI Memory 3 High Decode Address 0x288 page 71

Internal Space Decode Address 0x068 page 72

PCI I/O Address Remap 0x0f0 page 72

PCI Memory 0 Remap (Low) 0x0f8 page 73

PCI Memory 0 Remap (High) 0x320 page 73

PCI Memory 1 Remap (Low) 0x100 page 73

PCI Memory 1 Remap (High) 0x328 page 73

PCI Memory 2 Remap (Low) 0x2f8 page 73

PCI Memory 2 Remap (High) 0x330 page 73

PCI Memory 3 Remap (Low) 0x300 page 74

PCI Memory 3 Remap (High) 0x338 page 74

Table 27: CPU Control Register Map

Register Offset Page

CPU Configuration 0x000 page 74

CPU Mode 0x120 page 76

CPU Read Response Crossbar Control (Low) 0x170 page 77

Table 26: CPU Address Decode Register Map (Continued)

Register Offset Page

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 65
Not Approved by Document Control - For Review Only

CPU Read Response Crossbar Control (High) 0x178 page 78

Table 28: CPU Sync Barrier Register Map

Register Offset Page

PCI Sync Barrier Virtual Register 0x0c0 page 78

Table 29: CPU Access Protection Register Map

Register Offset Page

Protect Low Address 0 0x180 page 78

Protect High Address 0 0x188 page 79

Protect Low Address 1 0x190 page 79

Protect High Address 1 0x198 page 79

Protect Low Address 2 0x1a0 page 80

Protect High Address 2 0x1a8 page 80

Protect Low Address 3 0x1b0 page 80

Protect High Address 3 0x1b8 page 81

Protect Low Address 4 0x1c0 page 81

Protect High Address 4 0x1c8 page 81

Protect Low Address 5 0x1d0 page 81

Protect High Address 5 0x1d8 page 82

Protect Low Address 6 0x1e0 page 82

Protect High Address 6 0x1e8 page 83

Protect Low Address 7 0x1f0 page 83

Protect High Address 7 0x1f8 page 83

Table 30: CPU Error Report Register Map

Register Offset Page

CPU Error Address (Low) 0x070 page 84

Table 27: CPU Control Register Map (Continued)

Register Offset Page

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 66 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

4.15.1 CPU Address Decode Registers

CPU Error Address (High) 0x078 page 84

CPU Error Data (Low) 0x128 page 84

CPU Error Data (High) 0x130 page 85

CPU Error Parity 0x138 page 85

CPU Error Cause 0x140 page 85

CPU Error Mask 0x148 page 86

Table 31: SCS[0]* Low Decode Address, Offset: 0x008

Bits Field Name Function Init ial Value

15:0 LowAddr SCS[0] Base Address 0x0

31:16 Reserved Must be 0. 0x0

Table 32: SCS[0]* High Decode Address, Offset: 0x010

Bits Field Name Function Init ial Value

11:0 HighAddr SCS[0] Top Address 0x007

31:12 Reserved Reserved. 0x0

Table 33: SCS[1]* Low Decode Address, Offset: 0x208

Bits Field Name Function Init ial Value

15:0 LowAddr SCS[1] Base Address 0x0008

31:16 Reserved Reserved. 0x0

Table 34: SCS[1]* High Decode Address, Offset: 0x210

Bits Field Name Function Init ial Value

11:0 HighAddr SCS[1] Top Address 0x00f

31:12 Reserved Reserved. 0x0

Table 30: CPU Error Report Register Map (Continued)

Register Offset Page

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 67
Not Approved by Document Control - For Review Only

Table 35: SCS[2]* Low Decode Address, Offset: 0x018

Bits Field Name Function Init ial Value

15:0 LowAddr SCS[2] Base Address 0x0010

31:16 Reserved Reserved. 0x0

Table 36: SCS[2]* High Decode Address, Offset: 0x020

Bits Field Name Function Init ial Value

11:0 HighAddr SCS[2] Top Address 0x017

31:12 Reserved Reserved. 0x0

Table 37: SCS[3]* Low Decode Address, Offset: 0x218

Bits Field Name Function Init ial Value

15:0 LowAddr SCS[3] Base Address 0x0018

31:16 Reserved Reserved. 0x0

Table 38: SCS[3]* High Decode Address, Offset: 0x220

Bits Field Name Function Init ial Value

11:0 HighAddr SCS[3] Top Address 0x01f

31:12 Reserved Reserved. 0x0

Table 39: CS[0]* Low Decode Address, Offset: 0x028

Bits Field Name Function Init ial Value

15:0 LowAddr CS[0] Base Address 0x01c0

31:16 Reserved Reserved. 0x0

Table 40: CS[0]* High Decode Address, Offset: 0x030

Bits Field Name Function Init ial Value

11:0 HighAddr CS[0] Top Address 0x1c7

31:12 Reserved Reserved. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 68 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 41: CS[1]* Low Decode Address, Offset: 0x228

Bits Field Name Function Init ial Value

15:0 LowAddr CS[1] Base Address 0x01c8

31:16 Reserved Reserved. 0x0

Table 42: CS[1]* High Decode Address, Offset: 0x230

Bits Field Name Function Init ial Value

11:0 HighAddr CS[1] Top Address 0x1cf

31:12 Reserved Reserved. 0x0

Table 43: CS[2]* Low Decode Address, Offset: 0x248

Bits Field Name Function Init ial Value

15:0 LowAddr CS[2] Base Address 0x01d0

31:16 Reserved Reserved. 0x0

Table 44: CS[2]* High Decode Address, Offset: 0x250

Bits Field Name Function Init ial Value

11:0 HighAddr CS[2] Top Address 0x1df

31:12 Reserved Reserved. 0x0

Table 45: CS[3]* Low Decode Address, Offset: 0x038

Bits Field Name Function Init ial Value

15:0 LowAddr CS[3] Base Address 0x0f0

31:16 Reserved Reserved. 0x0

Table 46: CS[3]* High Decode Address, Offset: 0x040

Bits Field Name Function Init ial Value

11:0 HighAddr CS[3] Top Address 0xf7

31:12 Reserved Reserved. 0x0

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 69
Not Approved by Document Control - For Review Only

Table 47: BootCS* Low Decode Address, Offset: 0x238

Bits Field Name Function Init ial Value

15:0 LowAddr BootCS Base Address 0x0f8

31:16 Reserved 0x0

Table 48: BootCS* High Decode Address, Offset: 0x240

Bits Field Name Function Init ial Value

11:0 HighAddr BootCS Top Address 0xff

31:12 Reserved Reserved. 0x0

Table 49: PCI I/O Low Decode Address, Offset: 0x048

Bits Field Name Function Init ial Value

15:0 LowAddr PCI_0 I/O Space Base Address 0x0100

23:16 Reserved Reserved. 0x0

26:24 PCISwap PCI Master Data Swap Control
000 - Byte Swap
001 - No swapping
010 - Both byte and word swap
011 - Word swap
1xx - Reserved

0x1

31:27 Reserved Reserved. 0x0

Table 50: PCI I/O High Decode Address, Offset: 0x050

Bits Field Name Function Init ial Value

11:0 HighAddr PCI_0 I/O Space Top Address 0x11f

31:12 Reserved Reserved. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 70 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 51: PCI Memory 0 Low Decode Address, Offset: 0x058

Bits Field Name Function Init ial Value

15:0 LowAddr PCI Memory 0 Base Address 0x0120

23:16 Reserved Reserved. 0x0

26:24 PCISwap PCI master data swap control
000 - Byte Swap
001 - No swapping
010 - Both byte and word swap
011 - Word swap
1xx - Reserved

0x1

27 PCIReq64 PCI master REQ64* policy
0 - Asserts REQ64* only when transaction is longer than

64-bits.
1 - Always assert REQ64*.

0x0

31:28 Reserved Reserved. 0x0

Table 52: PCI Memory 0 High Decode Address, Offset: 0x060

Bits Field Name Function Init ial Value

11:0 HighAddr PCI Memory 0 Top Address 0x13f

31:10 Reserved Reserved. 0x0

Table 53: PCI Memory 1 Low Decode Address, Offset: 0x080

Bits Field Name Function Init ial Value

15:0 LowAddr PCI Memory 1 Base Address 0x0f20

23:16 Reserved Reserved. 0x0

26:24 PCISwap Same as PCI_0 Memory 0 Low Decode Address. 0x1

27 PCIReq64 Same as PCI_0 Memory 0 Low Decode Address. 0x0

31:28 Reserved Reserved. 0x0

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 71
Not Approved by Document Control - For Review Only

Table 54: PCI Memory 1 High Decode Address, Offset: 0x088

Bits Field Name Function Init ial Value

11:0 HighAddr PCI Memory 1 Top Address 0xf3f

31:12 Reserved Reserved. 0x0

Table 55: PCI Memory 2 Low Decode Address, Offset: 0x258

Bits Field Name Function Init ial Value

15:0 LowAddr PCI Memory 2 Base Address 0x0f40

23:16 Reserved Reserved. 0x0

26:24 PCISwap Same as PCI Memory 0 Low Decode Address. 0x1

27 PCIReq64 Same as PCI_0 Memory 0 Low Decode Address. 0x0

31:28 Reserved Reserved. 0x0

Table 56: PCI Memory 2 High Decode Address, Offset: 0x260

Bits Field Name Function Init ial Value

11:0 HighAddr PCI Memory 2 Top Address 0xf5f

31:12 Reserved Reserved. 0x0

Table 57: PCI Memory 3 Low Decode Address, Offset: 0x280

Bits Field Name Function Init ial Value

15:0 LowAddr PCI Memory 3 Base Address 0x0f60

23:16 Reserved Reserved. 0x0

26:24 PCISwap Same as PCI Memory 0 Low Decode Address. 0x1

27 PCIReq64 Same as PCI_0 Memory 0 Low Decode Address. 0x0

31:28 Reserved Reserved. 0x0

Table 58: PCI Memory 3 High Decode Address, Offset: 0x288

Bits Field Name Function Init ial Value

11:0 HighAddr PCI Memory 3 Top Address 0xf7f

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 72 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

31:12 Reserved Reserved. 0x0

Table 59: Internal Space Decode, Offset: 0x068

Bits Field Name Function Init ial Value

15:0 IntDecode GT–64242A Internal Space Base Address
NOTE: The initial value is dependent on the reset

strapping.

0x0140 or
0x01f0
The initial value
is dependent on
the reset strap-
ping.

23:15 Reserved Reserved. 0x0

26:24 PCISwap Same as PCI Memory 0 Low Decode Address.
Relevant only for PCI master configuration transac-
tions on the PCI bus.
NOTE: Reserved for Marvell Technology usage.

0x1

31:27 Reserved Reserved. 0x0

Table 60: PCI I/O Address Remap, Offset: 0x0f0

Bits Field Name Function Init ial Value

11:0 Remap PCI I/O Space Address Remap 0x100

31:12 Reserved Reserved. 0x0

Table 58: PCI Memory 3 High Decode Address, Offset: 0x288

Bits Field Name Function Init ial Value

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 73
Not Approved by Document Control - For Review Only

Table 61: PCI Memory 0 Address Remap (Low), Offset: 0x0f8

Bits Field Name Function Init ial Value

11:0 Remap PCI Memory 0 Address Remap (low 32 bits) 0x120

31:12 Reserved Reserved. 0x0

Table 62: PCI Memory 0 Address Remap (High), Offset: 0x320

Bits Field Name Function Init ial Value

31:0 Remap PCI Memory 0 Address Remap (high 32 bits) 0x0

Table 63: PCI Memory 1 Address Remap (Low), Offset: 0x100

Bits Field Name Function Init ial Value

11:0 Remap PCI Memory 1 Address Remap (low 32 bits) 0xf20

31:12 Reserved Reserved. 0x0

Table 64: PCI Memory 1 Address Remap (High), Offset: 0x328

Bits Field Name Function Init ial Value

31:0 Remap PCI Memory 1 Address Remap (high 32 bits) 0x0

Table 65: PCI Memory 2 Address Remap (Low), Offset: 0x2f8

Bits Field Name Function Init ial Value

11:0 Remap PCI Memory 0 Address Remap (low 32 bits) 0xf40

31:12 Reserved Reserved. 0x0

Table 66: PCI Memory 2 Address Remap (High), Offset: 0x330

Bits Field Name Function Init ial Value

31:0 Remap PCI Memory 2 Address Remap (high 32 bits) 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 74 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

4.15.2 CPU Control Registers

Table 67: PCI Memory 3 Address Remap (Low), Offset: 0x300

Bits Field Name Function Init ial Value

11:0 Remap PCI Memory 1 Address Remap (low 32 bits) 0xf60

31:12 Reserved Reserved. 0x0

Table 68: PCI Memory 3 Address Remap (High), Offset: 0x338

Bits Field Name Function Init ial Value

31:0 Remap PCI Memory 3 Address Remap (high 32 bits) 0x0

Table 69: CPU Configuration, Offset: 0x000

Bits Field Name Function Init ial Value

7:0 NoMatchCnt CPU Address Miss Counter. 0xff

8 NoMatchCntEn CPU Address Miss Counter Enable
NOTE: Relevant only if multi-GT is enabled.
0 - Disabled
1 - Enabled.

0x0

9 NoMatchCntExt CPU Address Miss Counter MSB 0x0

11:10 Reserved Reserved. 0x0

12 Endianess CPU bus byte Orientation
0 - Big Endian
1 - Little Endian

AD[4] sampled
at reset.

13 SplitRd Split Read Transaction Support
0 - Not Supported
NOTE: PReq* input is not sampled, PAck* never

asserted.
1 - Supported

0x0

14 R7KL3 R7000 (R5000) Third (Second) Level Cache Present
0 - R7KL3 not present
NOTE: TcMatch input is not sampled.
1 - R7KL3 present

0x0

15 Reserved Reserved. 0x1

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 75
Not Approved by Document Control - For Review Only

16 RdOOO Read Out of Order Completion
0 - Not Supported.
Data is always returned in order.
NOTE: RspSwap is never asserted.
1 - Supported
NOTE: When configured for multi-GT mode, RdOOO

must be set to ’0’.

0x0

17 Stop Retry NOTE: Relevant only if PCI Retry is enabled.
0 - Keep Retry all PCI transactions targeted to GT–

64242A.
1 - Stop PCI transactions retry.

0x0

18 MultiGTDec Multi-GT Address Decode
0 - Normal address decoding
1 - Multi-GT address decoding

Reset Initializa-
tion.

19 SysADCValid CPU SysADC Connection
0 - Not connected
The CPU write parity is not checked. The GT–64242A
drives SysCmd[4] to 1 during reads. This indicates to
the CPU not to check read parity.
1 - Connected

0x0

20 Reserved Reserved. 0x0

21 SR7_L3 0 - Samples TcMatch
1 - Does not sample TcMatch

0x0

22 PErrProp Parity Error Propagation
0 - The GT–64242A drives good parity on SysADC dur-

ing CPU reads
1 - The GT–64242A drives bad parity on SysADC in

case the read response from the target interface
comes with erroneous data indication (e.g. ECC
error from SDRAM interface).

0x0

23 FastClk The number of pipe stages in the CPU interface.
0 - Two pipe stages
1 - Additional pipe stage
NOTE: If the system clock is higher than 100Mhz and

external Cache (L3) is enabled, must be set to
‘1’. The AC timing for the two pipe stages
mode (‘0’) is TBD.

0x1

24 SimpleCache 0 - Traditional R7000 L3
1 - RM7000C Simplified External Cache mode

0x0

Table 69: CPU Configuration, Offset: 0x000 (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 76 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

26:25 Reserved Reserved. 0x1

27 RemapWrDis Address Remap Registers Write Control
0 - Write to the Low Address decode register.
Results are also in written to the corresponding Remap
register.
1 - Write to Low Address decode register.
This has no affect on the corresponding Remap register

0x0

28 ConfSBDis Configuration Read Sync Barrier Disable
0 - Sync Barrier enabled
1 - Sync Barrier disabled

0x1

29 IOSBDis I/O Read Sync Barrier Disable
0 - Sync Barrier enabled
1 - Sync Barrier disabled

0x1

30 ClkSync Clocks Synchronization
0 - The CPU interface is running with SysClk, which is
asynchronous to TClk.
1 - The CPU interface is running with TClk.

AD[5] sampled
at reset.

31 Reserved Reserved. 0x0

Table 70: CPU Mode, Offset: 0x120

Bits Field Name Function Init ial Value

1:0 MultiGTID Multi-GT ID
Represents the ID to which the GT–64242A responds to
during a multi-GT address decoding period.
Set during reset initialization.
Read only.

AD[11:10] sam-
pled at reset.

2 MultiGT Set during the reset initialization.
Read only.
0 - Single GT configuration
1 - Multi-GT configuration

AD[9] sampled at
reset.

3 RetryEn Set during reset initialization. Read Only.
0 - Don’t Retry PCI transactions
1 - Retry PCI transactions

AD[16] sampled
at reset.

Table 69: CPU Configuration, Offset: 0x000 (Continued)

Bits Field Name Function Init ial Value

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 77
Not Approved by Document Control - For Review Only

7:4 CPUType Read Only (reset and bonding configuration).
0x0 - 64-bit MIPS CPU
0x1 - 0xf - Reserved

AD[7:6] sampled
at reset.

31:8 Reserved Reserved. 0x0

Table 71: CPU Read Response Crossbar Control (Low), Offset: 0x170

Bits Field Name Function Init ial Value

3:0 Arb0 Slice 0 of CPU Slave “pizza” Arbiter
0x0 - SDRAM read data
0x1 - Device read data
0x2 - NULL
0x3 - PCI read data
0x4 - Reserved
0x5 - Comm unit internal registers read data
0x6 - IDMA 0/1/2/3 internal registers read data
0x7 - 0xf - Reserved

0x0

7:4 Arb1 Slice 1 of CPU Slave “pizza” Arbiter 0x1

11:8 Arb2 Slice 2 of CPU Slave “pizza” Arbiter 0x3

15:12 Arb3 Slice 3 of CPU Slave “pizza” Arbiter 0x4

19:16 Arb4 Slice 4 of CPU Slave “pizza” Arbiter 0x5

23:20 Arb5 Slice 5 of CPU Slave “pizza” Arbiter 0x6

27:24 Arb6 Slice 6 of CPU Slave “pizza” Arbiter 0x7

31:28 Arb7 Slice 7 of CPU Slave “pizza” Arbiter 0x2

Table 70: CPU Mode, Offset: 0x120

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 78 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

4.15.3 CPU Sync Barrier Registers

4.15.4 CPU Access Protect Registers

Table 72: CPU Read Response Crossbar Control (High), Offset: 0x178

Bits Field Name Function Init ial Value

3:0 Arb8 Slice 8 of CPU Slave “pizza” Arbiter 0x0

7:4 Arb9 Slice 9 of CPU Slave “pizza” Arbiter 0x1

11:8 Arb10 Slice 10 of CPU Slave “pizza” Arbiter 0x3

15:12 Arb11 Slice 11 of CPU Slave “pizza” Arbiter 0x4

19:16 Arb12 Slice 12 of CPU Slave “pizza” Arbiter 0x5

23:20 Arb13 Slice 13 of CPU Slave “pizza” Arbiter 0x6

27:24 Arb14 Slice 14 of CPU Slave “pizza” Arbiter 0x7

31:28 Arb15 Slice 15 of CPU Slave “pizza” Arbiter 0x2

Table 73: PCI Sync Barrier Virtual Register, Offset: 0x0c0

Bits Field Name Function Init ial Value

31:0 SyncBarrier A CPU read from this register creates a synchronization
barrier cycle.
NOTE: The read data is random and should be

ignored.

0x0

Table 74: CPU Protect Address 0 (Low), Offset: 0x180

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 0 Base Address
Corresponds to address bits[35:20].

0xfff

16 AccProtect CPU Access Protect.
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed.
1 - Write forbidden.

0x0

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 79
Not Approved by Document Control - For Review Only

18 CacheProtect CPU caching protect
0 - Caching (block read) is allowed.
1 - Caching is forbidden.

0x0

31:19 Reserved Reserved. 0x0

Table 75: CPU Protect Address 0 (High), Offset: 0x188

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect Region 0 Top Address
Corresponds to address bits[31:20]

0x0

31:12 Reserved Reserved. 0x0

Table 76: CPU Protect Address 1 (Low), Offset: 0x190

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 1 Base Address
Corresponds to address bits[35:20]

0xfff

16 AccProtect CPU Access Protect.
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed.
1 - Write forbidden.

0x0

18 CacheProtect CPU Caching Protect
0 - Caching (block read) allowed.
1 - Caching forbidden.

0x0

31:19 Reserved Reserved. 0x0

Table 77: CPU Protect Address 1 (High), Offset: 0x198

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect region 1 Top Address
Corresponds to address bits[31:20].

0x0

31:12 Reserved Reserved. 0x0

Table 74: CPU Protect Address 0 (Low), Offset: 0x180 (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 80 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 78: CPU Protect Address 2 (Low), Offset: 0x1a0

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 2 Base Address
Corresponds to address bits[35:20]

0xfff

16 AccProtect CPU Access Protect
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed.
1 - Write forbidden.

0x0

18 CacheProtect CPU Caching Protect
0 - Caching (block read) allowed.
1 - Caching is forbidden.

0x0

31:19 Reserved Reserved. 0x0

Table 79: CPU Protect Address 2 (High), Offset: 0x1a8

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect Region 2 Top Address
Corresponds to address bits[31:20].

0x0

31:12 Reserved Reserved. 0x0

Table 80: CPU Protect Address 3 (Low), Offset: 0x1b0

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 3 Base Address
Corresponds to address bits[35:20].

0xfff

16 AccProtect CPU Access Protect
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed
1 - Write forbidden

0x0

18 CacheProtect CPU Caching Protect
0 - Caching (block read) allowed.
1 - Caching forbidden.

0x0

31:19 Reserved Reserved. 0x0

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 81
Not Approved by Document Control - For Review Only

Table 81: CPU Protect Address 3 (High), Offset: 0x1b8

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect Region 3 Top Address
Corresponds to address bits[31:20].

0x0

31:12 Reserved Reserved. 0x0

Table 82: CPU Protect Address 4 (Low), Offset: 0x1c0

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 4 Base Address
Corresponds to address bits[35:20].

0xfff

16 AccProtect CPU Access Protect
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed.
1 - Write forbidden.

0x0

18 CacheProtect CPU Caching Protect
0 - Caching (block read) allowed.
1 - Caching is forbidden.

0x0

31:19 Reserved Reserved. 0x0

Table 83: CPU Protect Address 4 (High), Offset: 0x1c8

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect Region 4 Top Address
Corresponds to address bits[31:20].

0x0

31:12 Reserved Reserved. 0x0

Table 84: CPU Protect Address 5 (Low), Offset: 0x1d0

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 5 Base Address
Corresponds to address bits[35:20]

0xfff

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 82 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

16 AccProtect CPU Access Protect.
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed.
1 - Write forbidden.

0x0

18 CacheProtect CPU Caching Protect
0 - Caching (block read) allowed.
1 - caching is forbidden.

0x0

31:19 Reserved Reserved. 0x0

Table 85: CPU Protect Address 5 (High), Offset: 0x1d8

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect Region 5 Top Address
Corresponds to address bits[31:20].

0x0

31:12 Reserved Reserved. 0x0

Table 86: CPU Protect Address 6 (Low), Offset: 0x1e0

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 6 Base Address
Corresponds to address bits[35:20].

0xfff

16 AccProtect CPU Access Protect.
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed.
1 - Write forbidden.

0x0

18 CacheProtect CPU Caching Protect
0 - Caching (block read) allowed.
1 - Caching is forbidden.

0x0

31:19 Reserved Reserved. 0x0

Table 84: CPU Protect Address 5 (Low), Offset: 0x1d0 (Continued)

Bits Field Name Function Init ial Value

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 83
Not Approved by Document Control - For Review Only

Table 87: CPU Protect Address 6 (High), Offset: 0x1e8

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect Region 6 Top Address
Corresponds to address bits[31:20]

0x0

31:12 Reserved Reserved. 0x0

Table 88: CPU Protect Address 7 (Low), Offset: 0x1f0

Bits Field Name Function Init ial Value

15:0 LowAddr CPU Protect Region 7 Base Address
Corresponds to address bits[35:20].

0xfff

16 AccProtect CPU Access Protect
0 - Access allowed.
1 - Access forbidden.

0x0

17 WrProtect CPU Write Protect
0 - Write allowed.
1 - Write forbidden.

0x0

18 CacheProtect CPU Caching Protect
0 - Caching (block read) allowed.
1 - Caching forbidden.

0x0

31:19 Reserved Reserved. 0x0

Table 89: CPU Protect Address 7 (High), Offset: 0x1f8

Bits Field Name Function Init ial Value

11:0 HighAddr CPU Protect region 7 Top Address
Corresponds to address bits[31:20].

0x0

31:12 Reserved Reserved. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 84 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

4.15.5 CPU Error Report Registers

Table 90: CPU Error Address (Low), Offset: 0x0701

1. In case of multiple errors, only the first one is latched. New error report latching is enabled only after the CPU
Error Address (Low) register is being read.

Bits Field Name Function Init ial Value

31:0 ErrAddr Latched address bits [31:0] of a CPU transaction in case
of:

• illegal address (failed address decoding)
• access protection violation
• bad data parity

Upon address latch, no new address are registered (due
to additional error condition), until the register is being
read.
Read Only.

0x0

Table 91: CPU Error Address (High), Offset: 0x0781

1. Once data is latched, no new data can be registered (due to additional error condition), until CPU Error Low Address is
being read (which implies, it should be the last being read by the interrupt handler).

Bits Field Name Function Init ial Value

3:0 ErrAddr Latched address bits [35:32] of a CPU transaction in
case of:

• illegal address (failed address decoding)
• access protection violation
• bad data parity.

Read Only.

0x0

31:4 Reserved Read Only 0x0

Table 92: CPU Error Data (Low), Offset: 0x128

Bits Field Name Function Init ial Value

31:0 PErrData Latched data bits [31:0] in case of bad data parity sam-
pled on write transactions.
Read only.

0x0

CPU Interface
CPU Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 85
Not Approved by Document Control - For Review Only

Table 93: CPU Error Data (High), Offset: 0x130

Bits Field Name Function Init ial Value

31:0 PErrData Latched data bits [63:32] in case of bad data parity sam-
pled on write transactions.
Read only.

0x0

Table 94: CPU Error Parity, Offset: 0x138

Bits Field Name Function Init ial Value

7:0 PErrPar Latched data parity bus in case of bad data parity sam-
pled on write transactions.
Read only.

0x0

31:10 Reserved Reserved. 0x0

Table 95: CPU Error Cause, Offset: 0x1401

Bits Field Name Function Init ial Value

0 AddrErr CPU Address Out of Range 0x0

1 Reserved Read only. 0x0

2 TTErr Transfer Type Violation.
The CPU attempts to burst (read or write) to an internal
register.

0x0

3 AccErr Access to a Protected Region 0x0

4 WrErr Write to a Write Protected Region 0x0

5 CacheErr Read from a Caching protected region 0x0

6 WrDataPErr Bad Write Data Parity Detected 0x0

26:7 Reserved Read only. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 86 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

31:27 Sel Specifies the error event currently being reported in
Error Address, Error Data, and Error Parity registers.
0x0 - AddrOut
0x1 - Reserved
0x2 - TTErr
0x3 - AccErr
0x4 - WrErr
0x5 - CacheErr
0x6 - WrDataPErr
0x7 - 0x1f - Reserved
Read Only.

1. Bits[7:0] are clear only. A cause bit is set upon an error condition occurrence. Write a ‘0’ value to clear the bit.
Writing a 1 value has no affect.

Table 96: CPU Error Mask, Offset: 0x148

Bits Field Name Function Init ial Value

0 AddrErr If set to ‘1’, enables AddrOut interrupt. 0x0

1 Reserved Read only. 0x0

2 TTErr If set to ‘1’, enables TTErr interrupt. 0x0

3 AccErr If set to ‘1’, enables AccErr interrupt. 0x0

4 WrErr If set to ‘1’, enables WrErr interrupt. 0x0

5 CacheErr If set to ‘1’, enables CacheErr interrupt. 0x0

6 WrDataPErr If set to ‘1’, enables WrDataPErr interrupt. 0x0

31: Reserved Reserved. 0x0

Table 95: CPU Error Cause, Offset: 0x1401 (Continued)

Bits Field Name Function Init ial Value

SDRAM Controller
SDRAM Controller Implementation

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 87
Not Approved by Document Control - For Review Only

5. SDRAM CONTROLLER
The SDRAM controller supports up to four banks of SDRAMs (four SDRAM chip selects). It has a 15-bit
address bus (DAdr[12:0] and BankSel[1:0]) and a 64-bit data bus (SData[63:0]).

The SDRAM controller supports 16, 64, 128, 256 or 512Mbit SDRAMs. Up to 1 Gbytes can be addressed by
each SCS for a total SDRAM address space of 4 Gbytes by the GT–64242A.

NOTE: Whenever this datasheet refers to 64-bit SDRAM, it means 64-bits of data plus eight additional bits for
ECC.

The memory controller will only MASTER read and write transactions to SDRAM initiated by the CPU, IDMA,
or the PCI. The SDRAM bus may be shared with other masters through the UMA bus arbitration protocol.

The SDRAM controller supports unbuffered and registered SDRAM DIMMS. It runs at up to 133MHz, which
results in bandwidth of up 1Gbyte/sec. This upper limit bandwidth number is easily achieved by taking advantage
of the DRAM controller bank interleave feature.

It is also possible to configure the DRAM controller to keep pages open. This eliminates the need to close a page
(precharge cycle) and re-open it (activate cycle) in case of consecutive accesses to the same page. This is typi-
cally useful when the CPU fetches the code from DRAM to its internal cache, or in case of long DMA bursts to/
from DRAM.

5.1 SDRAM Controller Implementation

The SDRAM controller contains two 512bytes write buffers and two 512 bytes read buffers. It can absorb up to
four read transactions plus four write transactions.

Once a DRAM access is requested, it is pushed into a transaction queue. The SDRAM controller drives the trans-
action to DRAM as soon as it receives the address. It drives part of the address bits on DAdr[12:0] and Bank-
Sel[1:0] during the activate cycle (RAS*) and the remaining bits during the command cycle (CAS*).

In case of a write transaction, write data is placed in the write buffer. The SDRAM controller pops the data from
the write buffer and drives it on the DRAM data bus right after the command (CAS*) cycle.

The DRAM write buffer allows the originating unit to complete a write transaction, even if the DRAM controller
is currently busy in serving a previous transaction. The maximum input bandwidth to the DRAM controller is
2 Gbyte/sec. This bandwidth peak is attainable during simultaneous accesses to DRAM from multiple interfaces
(CPU, PCI, DMAs). In such cases, the write buffers are utilized.

In case of a read transaction, after command cycle (RAS*), the SDRAM controller samples read data driven by
the DRAM (sample window depends on CL parameter), pushes the data into the read buffer, and drives it back to
the originating unit.

In case the read buffer is empty, the DRAM controller bypasses the read buffer and drives read data directly to
the originating unit, in order to gain minimum read latency. However, if there is some data in the read buffer from
a previous transaction, data is written first to the buffer. This typically happens when an originating unit issues
multiple read transactions (split transactions).

For example, if the CPU interface issues a read from the PCI, and latter issues another read from DRAM, by the
time the DRAM controller is able to return read data, the CPU interface unit might not be able to absorb the data

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 88 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

The CPU interface is busy in receiving read data from the PCI. In this case, read data from DRAM is placed in
the read buffer and only pushed to the CPU interface unit later, when it is ready to receive the data.

The two read buffers are also used for decoupling reads to different resources. Via the SDRAM Configuration
register, each requesting interface (CPU, PCI, IDMA, and Comm ports) can be assigned to use one of the two
buffers. For example, if the CPU read latency is important and shouldn’t be delayed due to some PCI read data
waiting in the buffer head, assigning one buffer for the CPU interface and the other buffer to the other interfaces
guarantees the minimum CPU read latency.

5.2 DRAM Type

It is possible to configure the GT–64242A DRAM controller to interface SDRAM or registered SDRAM, accord-
ing to the setting of DType bits in the SDRAM Configuration register, see Table 103 on page 109.

NOTE: All DRAM banks must be of the same type.

The following figures show typical read transactions.

NOTE: DRAM timing parameters (Trcd and CL) in these examples are the same (See Section 5.4 “SDRAM
Timing Parameters” on page 91 Timing Parameters for more details).

Figure 12 shows a SDRAM burst read of 4. It consists of activate cycle (RAS*); followed by command cycle
(CAS*); followed by precharge.

Figure 12: SDRAM Read Example

Figure 13 shows a registered SDRAM read. In registered SDRAM, all address and control signals (DAdr[12:0],
BankSel[1:0], RAS*, CAS*, DWr*, CS* and DQM*) are registered externally. This means the signals arrive to
the SDRAM device one cycle after they are driven by the DRAM controller. It also means that read data arrives
back to the DRAM controller one cycle later (in comparison to non-registered SDRAM configuration).

In case of a write transaction, the DRAM controller drives the data one cycle later.

 Row Col

Active

 Cmd

 Prech

D0 D1 D2 D3

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

SDRAM Controller
SDRAM Density

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 89
Not Approved by Document Control - For Review Only

Figure 13: Registered SDRAM Read Example

NOTE: Implement registered SDRAM by using registered DIMMs or on board registers.

5.3 SDRAM Density

The GT–64242A supports 16, 64, 128, 256 and 512Mbit SDRAM devices. Each SDRAM physical bank
(SCS[3:0]) can be built of different SDRAM devices. The DRAM density is configured via DRAM Bank Param-
eter registers.

The different DRAM devices differ in the usage of DAdr[12:0] and BankSel[1:0] lines, as described in the fol-
lowing sections.

5.3.1 16MBit SDRAM
When interfacing with 16Mbit SDRAMs, DAdr[10:0] and BankSel[0] must be connected to address bits 10-0
and the Bank Select of the DRAM device.

NOTE: DAdr[12:11] and BankSel[1] are NOT used when interfacing 16 Mbit SDRAMs.

Therefore, during a SRAS cycle, a valid row address is placed on the DAdr[10:0] and BankSel[0] lines. During
the SCAS cycle, a valid column address is placed on DAdr[9:0] (10-bit). DAdr[10] is used as the auto-precharge
select bit and is always written “0” during SCAS cycles (no auto precharge). BankSel[0] is held constant from the
SRAS cycle.

With 16MBit SDRAMs, the GT–64242A supports a maximum of 4M addresses, 12 address bits for SRAS and 10
address bits for SCAS.

5.3.2 64Mbit SDRAM
When interfacing with 64MBit SDRAMs, DAdr[11:0] and BankSel[1:0] must be connected to address bits 11-0
and the Bank Select of the DRAM device.

 Row Col

Active

 Cmd

 Prech

D0 D1 D2 D3

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 90 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

NOTE: DAdr[12] is NOT used when interfacing 64Mbit SDRAMs.

Therefore, during a SRAS cycle, a valid row address is placed on the DAdr[11:0] and BankSel lines. During the
SCAS cycle, a valid column address is placed on DAdr[9:0] (10-bit). DAdr[10] is used as the auto-precharge
select bit and is always written “0” during SCAS cycles (no auto precharge). BankSel is held constant from the
SRAS cycle.

With 64MBit SDRAMs, the GT–64242A supports a maximum of 16M addresses, 14 address bits for SRAS and
10 address bits for SCAS.

5.3.3 128Mbit SDRAM
When interfacing 128MBit SDRAMs, DAdr[11:0] and BankSel[1:0] must be connected to address bits 11-0 and
the Bank Select of the actual SDRAM.

NOTE: DAdr[12] is NOT used when interfacing 128Mbit SDRAMs.

Therefore, during a SRAS cycle, a valid row address is placed on the DAdr[11:0] and BankSel lines. During the
SCAS cycle, a valid column address is placed on DAdr[11,9:0] (11-bit). DAdr[10] is used as the auto-precharge
select bit and is always written “0” during SCAS cycles (no auto precharge). BankSel is held constant from the
SRAS cycle.

With 128MBit SDRAMs, the GT–64242A supports a maximum of 32M addresses, 14 address bits for SRAS and
11 address bits for SCAS.

5.3.4 256Mbit SDRAMs
When interfacing 256MBit SDRAMs, DAdr[12:0] and BankSel[1:0] must be connected to address bits 12-0 and
the Bank Select of the actual SDRAM.

Therefore, during a SRAS cycle, a valid row address is placed on the DAdr[12:0] and BankSel lines. During the
SCAS cycle, a valid column address is placed on DAdr[11,9:0] (11-bit). DAdr[10] is used as the auto-precharge
select bit and is always written “0” during SCAS cycles (no auto precharge). BankSel is held constant from the
SRAS cycle.

With 256MBit SDRAMs, the GT–64242A supports a maximum of 64M addresses, 15 address bits for SRAS and
11 address bits for SCAS.

5.3.5 512Mbit SDRAMs
When interfacing 512MBit SDRAMs, DAdr[12:0] and BankSel[1:0] must be connected to address bits 12-0 and
the Bank Select of the actual SDRAM.

Therefore, during a SRAS cycle, a valid row address is placed on the DAdr[12:0] and BankSel lines. During the
SCAS cycle, a valid column address is placed on DAdr[12:11,9:0] (11-bit). DAdr[10] is used as the auto-pre-
charge select bit and is always written “0” during SCAS cycles (no auto precharge). BankSel is held constant
from the SRAS cycle.

With 512MBit SDRAMs, the GT–64242A supports a maximum of 128M addresses, 15 address bits for SRAS
and 12 address bits for SCAS.

SDRAM Controller
SDRAM Timing Parameters

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 91
Not Approved by Document Control - For Review Only

5.4 SDRAM Timing Parameters

The SDRAM controller supports a range of SDRAM timing parameters. These parameters can be configured
through the SDRAM Timing Parameters register, see Table 106 on page 111.

NOTE: If using different SDRAM devices in each DRAM bank, the SDRAM Timing Parameters register must
be programed based on the slowest DRAM device being used.

5.4.1 SCAS* Latency (CL)
SCAS* Latency is the number of TClk cycles from the assertion of SCAS* to the sampling of the first read data
(see Figure 14). It is possible to program this parameter for two or three TClks cycles. Selecting this parameter
depends on TClk frequency and the speed grade of the SDRAM.

NOTE: In case of changing SCAS* latency, follow the procedure outlined in Section 5.11.4 “Setting SDRAM
Mode Register (MRS command)” on page 102 to update the SDRAM’s Mode Register.

5.4.2 SRAS* Precharge (Trp)
The SRAS precharge time specifies the number of TClk cycles following a precharge cycle that a new SRAS*
transaction may occur (see Figure 14). It is possible to program this parameter for two or three TClks cycles.

5.4.3 SRAS* to SCAS* (Trcd)
SRAS* to SCAS* specifies the number of TClk cycles that the DRAM controller inserts between the assertion of
SRAS* with a valid row address to the assertion of SCAS* with a valid column address (see Figure 14). It is pos-
sible to program this parameter for two or three TClks cycles.

5.4.4 Row Active Time (Tras)
Specifies the minimum number of TClk cycles between SRAS* of activate cycle to SRAS* of precharge cycle.
The minimum number of cycles guaranteed by design (regardless of this parameter setting) is five TClk cycles
when Trcd is set to two TClk cycles, or six when Trcd is set to three TClk cycles. This behavior meets the
required Tras of PC100 AC spec. However, when running a faster frequency, Tras might need to be set to six or
seven to meet the DIMM AC spec.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 92 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 14: SDRAM Timing Parameters

5.5 SDRAM Burst

An SDRAM device can be configured to different burst lengths and burst ordering.

The GT–64242A DRAM controller always configures the DRAM to a burst length of four and linear burst order.
It drives the DRAM address and control signals at the appropriate time windows to support the different bursts
size and ordering required by the different units.

Access to DRAM does not mean that a full multiple of DRAM bursts is required. When a shorter burst is
required, the DRAM controller terminates the burst by driving an early precharge cycle and deasserting SDQM
signals. An example is shown in Figure 15.

CL = 2

Trp = 3Trp = 3Trcd = 2

 Row Col

 Active

 Read

 Prech

D0 D1 D2 D3

 Active

 Row

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

SDRAM Controller
SDRAM Interleaving

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 93
Not Approved by Document Control - For Review Only

Figure 15: Burst Write Termination Example

The CPU access to DRAM is single data (one byte up to eight bytes), or full cache line (32-bytes). Other inter-
faces may burst longer transfers to DRAM. In case of a burst access to DRAM that crosses the burst length align-
ment, the DRAM controller drives a new SCAS* cycle with new column address.

For a CPU block read, which uses sub-block read ordering, the SCAS* assertion depends on the read start
address. If the read starts at offset 0x0 or 0x10, the sub-block and linear wrap around bursts order are the same.
There is no special treatment required from the DRAM controller. If it starts at offset 0x8 or 0x18, a new column
address (SCAS* assertion) is required for every data of the burst.

5.6 SDRAM Interleaving

The GT–64242A supports both physical banks (SCS[3:0]*) interleaving and virtual banks (BankSel[1:0]) inter-
leaving. It supports two virtual bank interleaving with 16Mbit SDRAM and four virtual bank interleaving with
64, 128, 256 or 512Mbit SDRAMs.

Interleaving provides higher system performance by hiding a new transaction’s activate and command cycles
during a previous transaction’s data cycles. This reduces the number of wait states before data can be read from
or written to SDRAM, which increases bandwidth.

An example of interleaving between two reads to different virtual banks is shown in Figure 16.

 Row Col

 Active

Write

Prech

D0 D1

 Active

 Row

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

SDQM

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 94 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 16: Virtual DRAM Banks Interleaving Example

Since the two accesses are targeted to different virtual banks (BankSel[1:0]), interleaving is enabled. Activate
and command cycles of the second transaction are issued while the first transaction is receiving read data.

NOTE: A precharge is required to each bank at the end of the burst, unless the page is kept open, see Section 5.7
“SDRAM Open Pages” on page 97.

5.6.1 Bank Interleaving Implementation
Interleaving occurs when there are multiple pending accesses to different SDRAM banks.

It occurs in the GT–64242A when a DRAM access requests from different units (PCI, CPU, IDMA, Comm
Ports) or during multiple transactions from the same unit. Since most of the GT–64242A units support split trans-
actions, they issue a new transaction before a previous transaction completes.

The DRAM devices have two or four virtual banks. The GT–64242A DRAM controller supports two bank inter-
leaving for 16Mbit devices and four bank interleaving for 64, 128, 256, and 512Mbit devices. In case of a two
way interleave, it performs transaction interleaving when the two transactions require different BankSel[0] val-
ues. If programed to four way interleave, it executes interleaving if the two transactions require different Bank-
Sel[1:0] values.

When the two transactions are targeted to different physical banks (different SCS*), the DRAM controller also
performs interleaving. In some applications, this type of interleaving is unwanted. The user can disable interleav-
ing between physical banks via SDRAM Configuration register, see Table 103 on page 109.

5.6.2 SDRAM Address Control
The Address Control Register is a four bit register that determines how address bits driven by the CPU, PCI, or
DMA to the SDRAM controller are translated to row and column address bits on DAdr[12:0] and BankSel[1:0].
This flexibility allows the designer to choose the address decode setting which gives the software a better chance
of virtual banks interleaving, thus enhancing overall system performance.

Row Col

Active

Cmd

D00 D01 D02 D03

Active

Row Col

Cmd

0x0 0x0 0x1 0x1 0x0

Prech

D10 D11

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

SDRAM Controller
SDRAM Interleaving

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 95
Not Approved by Document Control - For Review Only

If, for example, the CPU, PCI, and IDMA access the same physical bank (SCS*), and each of them is using a dif-
ferent 16Mbyte slice of the DRAM in a configuration in which address bits[25:24] are mapped to BankSel[1:0],
bank interleaving always takes place between accesses to DRAM from the different units.

The row and column address translation is different for 16Mbit, 64/128Mbit, or 256/512Mbit SDRAMs, as
shown in Table 97 through Table 99.

Table 97: Address Control for 16Mbit SDRAM

Address Control BankSel[0]

Init iator Address
Bits used for Row
Address DAdr[10:0]

Init iator Address
Bits used for
Column Address
DAdr[10:0]

00001

1. Only for SDRAM maximum burst of 4.

5 22-12 ”0”, 24-23, 11-6, 4-3

00012

2. Only for SDRAM maximum burst of 4 or 8.

6 22-12 ”0”, 24-23, 11-7, 5-3

1000 7 22-12 “0”, 24-23, 11-8, 6-3

0010 11 22-12 ”0”, 24-23, 10-3

1001 12 22-13, 11 “0”, 24-23, 10-3

0011 13 22-14, 12-11 ”0”, 24-23, 10-3

0100 21 22, 20-11 “0”, 24-23, 10-3

0101 22 21-11 “0”, 24-23, 10-3

01103

3. Only for x4 or x8 devices.

23 22-12 “0”, 24, 11-3

01114

4. Only for x4 devices.

24 22-12 “0”, 23, 11-3

Table 98: Address Control for 64/128Mbit SDRAM

Address Control BankSel[1:0]

Init iator Address
Bits used for Row
Address DAdr[11:0]

Init iator Address
Bits used for
Column Address
DAdr[11:0]

00001 6-5 24-13 27, “0”, 26-25, 12-7, 4-3

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 96 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

00012 7-6 24-13 27, “0”, 26-25, 12-8, 5-3

1000 8-7 24-13 27, “0”, 26-25, 12-9, 6-3

0010 12-11 24-13 27, “0”, 26-25, 10-3

1001 13-12 24-14,11 27, “0”, 26-25, 10-3

0011 14-13 24-15, 12-11 27, “0”, 26-25, 10-3

0100 22-21 24-23, 20-11 27, “0”, 26-25, 10-3

1010 23-22 24, 21-11 27, “0”, 26-25, 10-3

0101 24-23 22-11 27, “0”, 26-25, 10-3

01103 25-24 22-11 27, “0”, 26, 23, 10-3

01114 26-25 22-11 27, “0”, 24-23, 10-3

10115 27-26 22-11 25, “0”, 24-23, 10-3

1. Only for SDRAM maximum burst of 4.

2. Only for SDRAM maximum burst of 4 or 8.

3. Only for x4 or x8 or 8Mx16 devices.

4. Only for x4 or 16Mx8 devices.

5. Only for 32Mx4 devices.

Table 99: Address Control for 256/512Mbit SDRAM

Address Control BankSel[1:0]

Init iator Address
Bits used for Row
Address DAdr[12:0]

Init iator Address
Bits used for
Column Address
DAdr[12:0]

0000 6-51 25-13 29-28, “0”, 27-26, 12-7, 4-3

0001 7-62 25-13 29-28, “0”, 27-26, 12-8, 5-3

1000 8-7 25-13 29-28, “0”, 27-26, 12-9, 6-3

Table 98: Address Control for 64/128Mbit SDRAM (Continued)

Address Control BankSel[1:0]

Init iator Address
Bits used for Row
Address DAdr[11:0]

Init iator Address
Bits used for
Column Address
DAdr[11:0]

SDRAM Controller
SDRAM Open Pages

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 97
Not Approved by Document Control - For Review Only

5.7 SDRAM Open Pages

It is possible to configure the GT–64242A DRAM controller to keep DRAM pages open. It supports up to 16
pages - one per each virtual bank.

When a page is kept open at the end of a burst (no precharge cycle) and if the next cycle to the same virtual bank
hits the same page (same row address), there is no need for a new activate cycle. An example is shown in Figure
17.

0010 12-11 25-13 29-28, “0”, 27-26, 10-3

1001 13-12 25-14,11 29-28, “0”, 27-26, 10-3

0011 14-13 25-15, 12-11 29-28, “0”, 27-26, 10-3

0100 22-21 25-23, 20-11 29-28, “0”, 27-26, 10-3

0101 24-23 25, 22-11 29-28, “0”, 27-26, 10-3

0110 25-24 23-11 29-28, “0”, 27-26, 10-3

0111 26-253 24, 22-11 29-28, “0”, 24-23, 10-3

1010 27-264 25, 22-11 29-28, “0”, 24-23, 10-3

1011 28-275 25, 22-11 29,26, “0”, 24-23, 10-3

1100 29-286 25, 22-11 27-26, “0”, 24-23, 10-3

1. Only for SDRAM maximum burst of 4.

2. Only for SDRAM maximum burst of 4 or 8.

3. Only for x4 or x8 or x16 or 16Mx32 devices.

4. Only for x4 or x8 or 32Mx16 devices.

5. Only for x4 or 64Mx8 devices.

6. Only for 128Mx4 devices.

Table 99: Address Control for 256/512Mbit SDRAM (Continued)

Address Control BankSel[1:0]

Init iator Address
Bits used for Row
Address DAdr[12:0]

Init iator Address
Bits used for
Column Address
DAdr[12:0]

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 98 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 17: Sequential Accesses to the Same Page

Via the DRAM Bank Parameters registers, each of the 16 virtual banks can be configured separately to keep the
page open at the end of a burst transaction, for fast consecutive accesses to the same page, or close the page, for
faster accesses that follow to a different row of the same bank.

If a virtual bank is configured to keep pages open, a bank row is kept open until one of the following events hap-
pen:

• An access occurs to the same bank but to a different row address. In this case, the DRAM controller pre-
charges, to close the page, and opens a new one, the new row address.

• The access is smaller than the DRAM burst length. The DRAM controller needs to terminate the burst
in the middle using early precharge.

• The Refresh counter expires. The DRAM controller closes all open pages and performs a refresh to all
banks.

5.8 Read Modify Write

The GT–64242A supports Error Checking and Correction (ECC).

ECC is enabled via DRAM Timing Parameters register. ECC checking and generation requires a 72-bit wide
DRAM to store the ECC information, 64 bits for data and eight bits for ECC. In order to generate the ECC on
partial writes (less than 64 bits), Read Modify Write (RMW) access is required to do the following:

1. Read the existing 64-bit data from DRAM.
2. Merge the new incoming data with the 64-bit read data. Calculate new ECC byte based on the data that

is to be written.
3. Write the new data and new ECC byte back to the DRAM bank. On this write, all SDQM lines are deas-

serted (LOW). This means that the byte enabled for the ECC byte can be connected to ANY of the
SDQM[7:0] outputs.

In case of burst write to DRAM, the GT–64242A executes a RMW access only for the required data. A typical
example is shown in Figure 18. The DRAM controller performs a burst write of four, with RMW only to last data
(which is not a full 64-bit data).

 Row Col

 Active

 Cmd

D00 D01 D02 D03

Col

D10 D11

Cmd

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

SDRAM Controller
SDRAM Refresh

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 99
Not Approved by Document Control - For Review Only

Figure 18: SDRAM RMW Example

For more details on DRAM ECC support, see Section 6. “Address and Data Integrity” on page 118.

5.9 SDRAM Refresh

The GT–64242A implements standard SCAS before SRAS refreshing.

The refresh rate for all banks is determined according to the 14-bit RefIntCnt value in SDRAM Configuration
register. For example, the default value of RefIntCnt is 0x200. If the TClk cycle is 133MHz, a refresh sequence
occurs every 3.84us. Every time the refresh counter reaches its terminal count, a refresh request is sent to the
SDRAM Controller to be executed.

Non-staggered or staggered refresh for all banks is determined according to StagRef bit in SDRAM Configura-
tion register. In non-staggered refresh, SCS[3:0]*, SRAS*, and SCAS* simultaneously assert refreshing all banks
at the same time as shown in Figure 19.

 Col

Write

D0 D1 D2

Read Write

D3 D3

Prech

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

SDQM

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 100 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 19: Non-Staggered Refresh Waveform

If the SDRAM Controller is programmed to perform staggered refresh (the default setting), SCS[0]* goes LOW
for one TClk cycle, followed by SCS[1]* on the next TClk cycle, and so on. After the last SCS[3]* has asserted
LOW for one cycle, SCAS* and SRAS* goes HIGH again.

Staggered Refresh is useful for load balancing, see Figure 20.

Figure 20: Staggered Refresh Waveform

NOTE: The DRAM controller will not issue a new access to DRAM (new activate cycle) for the number of Trc
cycles as specified by SDRAM AC spec.

Trc

 Addr

 Refresh Activate

0xF 0x0 0xF

TClk

DAdr[12:0]

 BankSel[1:0]

SRAS*

SCAS*

DWr*

 SCS[3:0]*

Trc

 Addr

Refresh Activate

0xF 0xE 0xD 0xB 0x7 0xF

TClk

DAdr[12:0]

 BankSel[1:0]

SRAS*

SCAS*

DWr*

SCS[3:0]*

SDRAM Controller
SDRAM Initialization

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 101
Not Approved by Document Control - For Review Only

5.10 SDRAM Initialization

The DRAM controller executes the SDRAM initialization sequence as soon as the GT–64242A goes out of reset.

The initialization sequence consists of the following steps:
1. SRAS* and DWr* are asserted with DAdr[10] HIGH and SCS[3:0] = 0000. This indicates a Precharge

to all of the SDRAM Banks.
2. SRAS* and SCAS* are asserted with SCS[3:0] = 0000. This indicates an auto refresh (CBR) to all

SDRAM Banks. This occurs twice in a row.
3. SRAS*, SCAS*, and DWr* are asserted 4 times in a row, once with SCS[3:0] = 1110, once with

SCS[3:0] = 1101, once with SCS[3:0] = 1011, and once with SCS[3:0] = 0111. This command programs
each of the SDRAM Mode registers by individually activating each of the four chip selects (SCS[3:0]).

The DRAM controller performs an MRS cycle based on the default DRAM parameters (CL = 3,burst length =
4,burst order = linear). The software can change CL to ‘2’ if the DRAM device is capable of this CAS latency.
See 5.11 for more information.

NOTES:The DRAM controller postpones any attempt to access SDRAM before the initialization sequence com-
pletes.

If the serial ROM initialization is enabled, the DRAM controller postpones the above DRAM initializa-
tion sequence until the serial ROM initialization completes.

The DRAM controller drives the DRAM address and control signals to their inactive value during reset
assertion, as required by the DRAM spec (100us of idle cycles before DRAM initialization).

5.11 SDRAM Operation Mode Register

The SDRAM Operation Mode register is used to execute commands other than standard memory reads and
writes to the SDRAM. These operations include:

• Normal SDRAM Mode
• NOP Commands
• Precharge All Banks
• Writing to the SDRAM Mode Register
• Force a Refresh Cycle

The register contains three command type bits plus an activate bit. To execute one of the above commands on the
SDRAM, the following procedure must occur:

1. Write to the SDRAM Operation Mode register the required command.
2. Read the SDRAM Operation Mode register. This read guarantees that the following step is executed

after the register value is updated.
3. Write the new configuration data to the SDRAM Timing Parameters register (offset: 0x4b4).
4. Dummy word (32-bit) writes to an SDRAM bank. This eventually causes that the required cycle is

driven to the selected DRAM bank.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 102 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

5. Polling on SDRAM Operation Mode register until activate bit is sampled ‘1’. A ‘1’ indicates that the
MRS cycle is done.

6. Write a value of 0x0 to the SDRAM Operation Mode Register. This value returns the register to Normal
SDRAM Mode.

7. Read the SDRAM Operation Mode register. This read guarantees the execution of the following access
to the DRAM, after the register value is updated.

NOTE: The above sequence is different than the sequence required in the GT-64120/130 devices.

5.11.1 Normal SDRAM Mode
Write 0x0 to the SDRAM Operation Mode register to enable normal reading and writing to the SDRAM.

5.11.2 NOP Commands
Use the NOP command to perform a NOP to an SDRAM selected by the SDRAM Chip Select register
(SCS[3:0]*). This prevents unwanted commands from being registered during idle or wait states.

5.11.3 Precharge All Banks
Use the Precharge All Banks command to close open rows in all four (two) virtual banks.

When a bank has been precharged, it is in the idle state and must be activated prior to any read or write com-
mands being issued to that bank.

5.11.4 Setting SDRAM Mode Register (MRS command)
Each SDRAM has its own Mode register.

Use the Mode register to define the DRAM burst length, burst order, and SCAS latency.

As part of the DRAM initialization sequence, the DRAM controller generates an MRS cycle to each of the four
DRAM banks right after reset. The software can then change CAS latency using the procedure specified in 5.11.
Since the DRAM controller restricts CAS latency to be the same for all four banks (SCS[3:0]*), it must perform
an MRS cycle to all banks. An MRS cycle means a dummy write to each DRAM bank.

NOTES:When using DRAM DIMMs, the DRAM parameters are recorded in the DIMM Serial Presence Detect
(SPD) serial ROM. The CPU reads the SPD via the GT–64242A I2C interface and programs the DRAM
parameters accordingly.

The software code that performs the sequence of changing the DRAM mode register must not be
located in the DRAM. It can be located anywhere else (boot ROM, CPU cache).

5.11.5 Force Refresh
On the particular bank that is accessed, use the Force Refresh Command to execute a refresh cycle.

SDRAM Controller
Heavy Load Interface

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 103
Not Approved by Document Control - For Review Only

5.12 Heavy Load Interface

When interfacing heavy load, unbuffered DIMMs (above 50 pF), the GT–64242A might not meet the DRAM
control lines AC spec at 133MHz. The DRAM controller includes a mechanism to stretch these signals over two
clock cycles, thus guaranteeing proper AC timing. However, when using this method, there is a penalty of latency
cycles per each transaction.

An example is shown in Figure 21.

Figure 21: Heavy Load Example

The minimum penalty is one cycle, since row address need to be prepared one cycle before the actual activate
cycle (SCS* assertion). During a burst access that requires changing column address in the middle, there is a one
cycle penalty per each additional SCAS*.

When interfacing multiple DRAM DIMMS at 133MHz, it is recommended to use registered a SDRAM that has a
small load on the DRAM control signals (since they are registered), rather than the above heavy load method.
There is a one cycle latency penalty per a single transaction in both methods, in comparison to the regular
SDRAM. However, when running many back to back transactions to DRAM, stretching the RAS* and CAS*
cycles delays the issuance of a new DRAM transaction. More over, bank interleaving is less likely to happen.

5.13 SDRAM Clocking

The GT–64242A SDRAM interface is working in TClk domain. All output signals are toggled on the rising edge
of TClk and all inputs are sampled on rising edge of TClk.

The GT–64242A integrates an internal PLL. The PLL guarantees that the clock signal triggering the output sig-
nals is phase locked on the external TClk signal. This implementation minimizes the output delay of the DRAM
interface output signals.

The GT–64242A is designed to interface SDRAM at 133MHz, assuming both the GT–64242A and the SDRAM
are clocked from the same external clock driver (up to 0.35ns clock skew/gitter between the SDRAM clock and

 Row Col

 Active

 Cmd

 Prech

D0 D1 D2 D3

TClk

DAdr[12:0]

BankSel[1:0]

SCS*

SRAS*

SCAS*

DWr*

SData[63:0]

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 104 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

the GT–64242A clock). However, the GT–64242A also has alternative mechanisms that guarantees 100133MHz
DRAM interface in case of problematic board design.

NOTE: Select the appropriate clocking scheme based on board simulation, using GT–64242A and DRAM IBIS
models.

5.13.1 SDRAM Clock Output
If AD[23] pin is sampled low during reset, the GT–64242A SDClkOut/SDClkIn pin is configured as SDClkOut
(see reset configuration section). The GT–64242A SDClkOut pin can be used as the DRAM clock source, instead
of the external TClk source. SDClkOut is the same internal clock used to toggle the DRAM interface output sig-
nals (the end point of DRAM interface clock tree). If using this clock, the DRAM interface signals have
improved output delays (see Table 23 on page 342).

NOTE: It is recommended that the board be designed to support SDRAM clocking from both the TClk clock
generator and SDClkOut signal. For details, see the corresponding evaluation board specification.

5.13.2 Read Data Sample
The read data coming from DRAM is sampled with the internal PLL clock. If driving the SDRAM with SDClk-
Out, the read data path gets shorter and the GT–64242A might not be able to sample the incoming data on time.

To overcome this obstacle, the DRAM interface supports an additional sampling stage of the incoming data trig-
gered by SDClkOut rather than the internal PLL clock. Setting the SDRAM Timing Parameters register’s RdDe-
lay bit to ‘1’ enables this additional sampling stage, see Table 106 on page 111.

NOTES:The routing of SDClkOut back to this additional sampling stage is done inside the device.

With the additional sampling stage, DRAM read latency is increased by one cycle

5.13.3 SDRAM Clock Input
The large DRAM output delay (5.4ns), does not give much margin for the read path. In many cases, for the
DRAM controller deal with such an output delay, it must have 0ns (or even negative) setup time. For these cases,
the GT–64242A also supports separate SDClkIn for the read path.

If AD[23] is sampled High during reset, the GT–64242A SDClkOut/SDClkIn pin is configured as SDClkIn (see
Table 431 on page 325). Under this configuration, the SDRAM Timing Parameters register’s RdDelay [12]
(Table 106 on page 111) must be set to ‘1’. Setting RdDelay enables the additional sampling stage (see section
5.13.2).

With this configuration, the clock that is routed to the DRAM, is also routed back from the DRAM pin, back to
the GT–64242A SDClkIn. This scheme gaurantees, that the long read path is compensated with a similar clock
path, and the read data is sampled properly by the GT–64242A.

NOTE: If the board design also suffers from address and control line timing problem, externally generate two
separate TClk signals - one for the GT–64242A, and a "late" TClk for the DRAM. The exact skew
between the two is board design dependent.

SDRAM Controller
Unified Memory Architecture Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 105
Not Approved by Document Control - For Review Only

5.14 Unified Memory Architecture Support

The GT–64242A supports Unified Memory Architecture (UMA). This feature allows an external master device
to share the same physical SDRAM memory that is controlled by the GT–64242A.

A UMA device refers to any type of controller which needs to share the same physical system memory and have
direct access to it as shown in Figure 22.

Figure 22: UMA Device and GT–64242A Sharing SDRAM

At reset, the GT–64242A can be configured to act as a UMA master or slave. This is particularly required when
the DRAM is shared between multiple GT–64242A devices. With two GT–64242A devices sharing the same
DRAM, the devices can be connected gluelessly. One device acts as a master and the other device acts as a slave.
When more than two devices are sharing the DRAM, an external arbiter is required.

UMA is enabled by setting UMAEn bit in SDRAM UMA Control register to ‘1’. The GT–64242A is configured
to act as a UMA master or slave via UMAMode bit. In addition, two of the MPP pins must be configured as
MREQ* and MGNT* pins, see Section 15.1 “MPP Multiplexing” on page 288.

5.14.1 SDRAM Bus Arbitration
MREQ* is an output of the UMA slave device, indicating to the master that it requests ownership on the DRAM
bus.

MGNT* is an output of the master to the UMA slave device, indicating that it has received DRAM bus owner-
ship.

PCI

UMA DeviceGT–64242A

MREQ*
MGNT*

SData
Address and ControlCPU

SDRAM

TClk

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 106 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

UMA devices may request access to SDRAM with either a low or high priority. Both of these priorities are con-
veyed to the master through the single MREQ* signal, as shown in Figure 23.

Figure 23: UMA Device Requests

The UMA slave device must adhere to the following rules:
• Once MREQ* is asserted by the UMA device for a low priority request, it must be kept asserted until

the UMA device is given access to SDRAM via MGNT*. The only reason to change the status of the
MREQ* pin is to raise a high priority request or raise the priority of an already pending low priority
request.

• Once the UMA device samples MGNT* asserted, it gains and retains access to SDRAM until MREQ*
is de-asserted.

• When the UMA device has ownership of the bus, it has full responsibility to execute refresh cycles on
the SDRAM.

• Before the UMA device hands over the bus, it must perform refresh cycles to all DRAM banks, and wait
Trc cycles before deasserts MREQ*

• Once the UMA device de-asserts MREQ* to transfer ownership back to the GT–64242A, MREQ* must
be de-asserted for at least three TClks before asserting it again to raise a request.

TClk

MREQ*

Low Priority Request

TClk

MREQ*

High Priority Request

TClk

MREQ*

Pending Low Priority converted to a High Priority

SDRAM Controller
Unified Memory Architecture Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 107
Not Approved by Document Control - For Review Only

If a UMA device places a low priority request for access to SDRAM, there is no set time specified by the GT–
64242A to assert MGNT*. Once there are no pending SDRAM access requests, MGNT* is asserted.

If a UMA device places a high priority request for an access to SDRAM, the GT–64242A asserts MGNT* and
release the bus, as soon as it’s done with the current outstanding transaction.

NOTE: When the GT–64242A asserts MGNT*, it keeps MGNT* asserted as long as MREQ* is asserted and
there is no pending internal request. As soon as any of the GT–64242A interfaces request access to
SDRAM or MREQ* is deasserted, the GT–64242A deasserts MGNT* to indicate that it requires bus
ownership.

After reset deassertion, the GT–64242A generates DRAM initialization sequence. It responds to
MREQ* only after initialization completes.

The following rules must be followed by a UMA master device:

• UMA master device must not take bus ownership for three cycles after MREQ* is sampled de-asserted.
• After de-asserting MGNT*, the UMA master device must not assert MGNT* for three cycles.

Once the GT–64242A asserts MGNT* and the UMA slave device gains access to SDRAM, the SCS[3:0]*,
SRAS*, SCAS*, DWr*, SData[63:0], SDQM[7:0], DAdr[12:0], and BankSel[1:0] are held in sustained tri-state
until the GT–64242A regains access to SDRAM. During this period, the UMA device must drive these signals to
access SDRAM.

When the GT–64242A and the UMA device hand the bus over to each other, they must drive all of the above sig-
nals HIGH for one TClk and then float the pins, except the SDRAM address lines. There is no need to drive the
SDRAM address lines before floating the bus. A sample waveform is shown in Figure 24.

Figure 24: Handing the Bus Over

NOTE: The DRAM bus is floated for two cycles during bus hand over.

The above figure is just an example of bus hand over between the GT–64242A and the UMA device. In
reality, the UMA device drives the bus for much longer period.

GT drive UMA device drive GT drive

TClk

Control

Address

MREQ*

MGNT*

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 108 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

5.14.2 UMA Arbitration Control
The DRAM controller uses a round robin arbiter to select between refresh requests, DRAM access request or
high priority UMA request. With low priority requests, the GT–64242A grants the bus to the UMA device when
there is no pending internal request. With high priority requests, the round robin arbiter guarantees, in the worst
case, that the UMA device acquires the bus mastership after a refresh cycle plus one DRAM access.

When configured as a UMA slave device, the GT–64242A asserts MREQ* (low priority request) as soon as it has
a pending SDRAM access request. The DRAM controller contains a UMA High Priority Request Counter that
determines after how many cycles the request must be converted to high priority. Setting the counter to ‘0’ keeps
the requests in a low priority status.

As a UMA slave device, the GT–64242A also contains a UMA Bus Release Counter that determines how many
cycles after gaining bus ownership the GT–64242A must release the bus. Setting this counter to ‘0’ implies it
releases the bus (deassert MREQ*) only when it has no pending SDRAM transactions.

Using these two counters, allows a maximum flexibility of glueless arbitration between two GT–64242A devices
sharing the same DRAM.

NOTE: When the GT–64242A gives bus mastership to the UMA slave device, it first performs a refresh cycle,
to guarantee a sufficient refresh rate.

5.15 SDRAM Interface Registers

Table 100: SDRAM Configuration Register Map

Register Offset Page

SDRAM Configuration 0x448 page 109

SDRAM Operation Mode 0x474 page 110

SDRAM Address Control 0x47c page 111

SDRAM Timing Parameters 0x4b4 page 111

SDRAM UMA Control 0x4a4 page 112

SDRAM Interface Crossbar Control (Low) 0x4a8 page 113

SDRAM Interface Crossbar Control (High) 0x4ac page 113

SDRAM Interface Crossbar Timeout 0x4b0 page 114

Table 101: SDRAM Banks Parameters Register Map

Register Offset Page

SDRAM Bank0 Parameters 0x44c page 114

SDRAM Bank1 Parameters 0x450 page 115

SDRAM Controller
SDRAM Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 109
Not Approved by Document Control - For Review Only

5.15.1 SDRAM Configuration Registers

SDRAM Bank2 Parameters 0x454 page 115

SDRAM Bank3 Parameters 0x458 page 115

Table 102: Error Report Register Map

Register Offset Page

SDRAM Error Data (Low) 0x484 page 115

SDRAM Error Data (High) 0x480 page 116

SDRAM Error Address 0x490 page 116

SDRAM Received ECC 0x488 page 116

SDRAM Calculated ECC 0x48c page 116

SDRAM ECC Control 0x494 page 116

SDRAM ECC Error Counter 0x498 page 117

Table 103: SDRAM Configuration, Offset: 0x448

Bits Field Name Function Init ial Value

13:0 RefIntCnt Refresh Interval Count Value 0x0200

14 VInterEn Enable Virtual banks (within the same SDRAM device)
Interleaving
0 - Interleaving enabled
1 - Interleaving disabled

0x0

15 PhInterEn Enable Physical banks (SCS[3:0]*) Interleaving
0 - Interleaving enabled
1 - Interleaving disabled

0x0

16 StagRef Staggered Refresh
0 - Staggered refresh
1- Non-staggered refresh

0x0

18:17 SDType Select SDRAM Type
00 - SDRAM
01 - Registered SDRAM
1x - Reserved

0x0

Table 101: SDRAM Banks Parameters Register Map (Continued)

Register Offset Page

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 110 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

19 SDLoad SDRAM Load
0 - Normal operation
1 - Heavy load operation
In heavy load operation:

• The DRAM controller drives the row and col-
umn addresses for two cycles.

• All pages must be closed.

0x1

20 Reserved 0x0

23:21 Reserved Must be set to 0x6. 0x6

25:24 Reserved Reserved. 0x0

31:26 RdBuff Read buffer Assignment per Each Interface
If the bit is set to 0, the corresponding unit receives read
data from read buffer 0.
If the bit is set to 1, the corresponding unit receives read
data from the read buffer 1.
Bit[26] - CPU read
Bit[27] - PCI read
Bit[28] - Reserved
Bit[29] - Comm ports read
Bit[30] - IDMA channels 0/1/2/3 read
Bit[31] - Reserved

0x1

Table 104: SDRAM Operation Mode, Offset: 0x474

Bits Field Name Function Init ial Value

2:0 SDRAMOp Special SDRAM Mode Select
000 - Normal SDRAM Mode
001 - NOP Command
010 - All banks precharge command
011 - Mode register command enable
100 - CBR cycle enable
101,110,111 - Reserved

0x0

30:3 Reserved Reserved. 0x0

31 Active Active bit. Set by the DRAM controller after it performs
the required transaction to DRAM bank.

0x0

Table 103: SDRAM Configuration, Offset: 0x448 (Continued)

Bits Field Name Function Init ial Value

SDRAM Controller
SDRAM Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 111
Not Approved by Document Control - For Review Only

Table 105: SDRAM Address Control, Offset: 0x47c

Bits Field Name Function Init ial Value

3:0 AddrSel SDRAM Address Select
Determines what address bits to drive on DAdr[12:0] and
BankSel[1:0] during activate and command phases.
NOTE: See Section 5.6.2 “SDRAM Address Control”

on page 94.

0x2

31:4 Reserved Reserved. 0x0

Table 106: SDRAM Timing Parameters, Offset: 0x4b4

Bits Field Name Function Init ial Value

1:0 CL CAS Latency
0x1 - 2 cycles
0x2 - 3 cycles
0x3,0x0 - Reserved

0x2

3:2 Trp SRAS Precharge Time
0x1 - 2 cycles
0x2 - 3 cycles
0x3,0x0 - Reserved

0x2

5:4 Trcd SRAS to SCAS Delay
0x1 - 2 cycles
0x2 - 3 cycles
0x3,0x0 - Reserved

0x2

7:6 Reserved Reserved. 0x0

11:8 Tras Row Active Time. The minimum number of TClk cycles
between activate and precharge cycles.
0x5-0x7 - Valid Tras values
0x0-0x4, 0x8-0xf - Reserved

0x5

12 RdDelay Additional read data sampling stage.
0 - Disabled
1 - Enabled

0x0

13 ECCEn ECC Support
0 - No ECC support
1 - ECC supported

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 112 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

14 RdSample Number of pipe states in the DRAM read data path.
0 - Two pipe states (this is the default)
1 - One pipe stage.
NOTE: When ECC is enabled, the DRAM controller

has two pipe stages, regardless of this bit’s set-
ting.

0x0

31:13 Reserved Reserved. 0x0

Table 107: SDRAM UMA Control, Offset: 0x4a4

Bits Field Name Function Init ial Value

7:0 L2HCnt When configured as a UMA slave, used as a high priority
request counter that determines after how many cycles,
the request should be converted from low to high priority.
NOTE: If set to 0, the request is never converted to

high priority.

0x0

15:8 GntCnt When configured as a UMA slave, used as a bus release
counter that determines the number of cycles, after gain-
ing bus ownership, that it must release the bus.
Setting this counter to 0 means it releases the bus
(deassert MREQ*) only when there are no pending
SDRAM transactions.

0x1

16 UMAEn UMA Enable
0 - Disable
1 - Enable
NOTE: Two MPP pins must be configured to act as

MREQ* and MGNT* in order to run UMA

Reset initializa-
tion

17 UMAMode UMA Operation Mode
0 - UMA master
1 - UMA slave device

Reset initializa-
tion

31:18 Reserved Reserved. 0x0

Table 106: SDRAM Timing Parameters, Offset: 0x4b4 (Continued)

Bits Field Name Function Init ial Value

SDRAM Controller
SDRAM Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 113
Not Approved by Document Control - For Review Only

Table 108: SDRAM Interface Crossbar Control (Low), Offset: 0x4a8

Bits Field name Function Init ial Value

3:0 Arb0 Slice 0 of device controller “pizza” arbiter.
0x0 - NULL request
0x1 - Reserved
0x2 - CPU access
0x3 - PCI access
0x4 - Reserved
0x5 - Comm unit access
0x6 - IDMA channels 0/1/2/3 access
0x7 - 0xf - Reserved

0x2

7:4 Arb1 Slice 1 of device controller “pizza” arbiter. 0x3

11:8 Arb2 Slice 2 of device controller “pizza” arbiter. 0x4

15:12 Arb3 Slice 3 of device controller “pizza” arbiter. 0x5

19:16 Arb4 Slice 4 of device controller “pizza” arbiter. 0x6

23:20 Arb5 Slice 5 of device controller “pizza” arbiter. 0x7

27:24 Arb6 Slice 6 of device controller “pizza” arbiter. 0x0

31:28 Arb7 Slice 7 of device controller “pizza” arbiter. 0x0

Table 109: SDRAM Interface Crossbar Control (High), Offset: 0x4ac

Bits Field name Function Init ial Value

3:0 Arb8 Slice 8 of device controller “pizza” arbiter. 0x2

7:4 Arb9 Slice 9 of device controller “pizza” arbiter. 0x3

11:8 Arb10 Slice 10 of device controller “pizza” arbiter. 0x4

15:12 Arb11 Slice 11 of device controller “pizza” arbiter. 0x5

19:16 Arb12 Slice 12 of device controller “pizza” arbiter. 0x6

23:20 Arb13 Slice 13 of device controller “pizza” arbiter. 0x7

27:24 Arb14 Slice 14 of device controller “pizza” arbiter. 0x0

31:28 Arb15 Slice 15 of device controller “pizza” arbiter. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 114 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

5.15.2 SDRAM Banks Parameters Registers

Table 110: SDRAM Interface Crossbar Timeout, Offset: 0x4b0
NOTE: Reserved for Marvell Technology usage.

Bits Field name Function Init ial Value

7:0 Timeout Crossbar Arbiter Timeout Preset Value 0xff

15:8 Reserved Reserved. 0x0

16 TimeoutEn Crossbar Arbiter Timer Enable
0 - Enable
1 - Disable

0x1

31:17 Reserved Reserved. 0x0

Table 111: SDRAM Bank0 Parameters, Offset: 0x44c

Bits Field name Function Init ial Value

13:0 Reserved Reserved. 0x0

15:14 SDType SDRAM type
0x1 - 16Mbit
0x2 - 64Mbit or 128Mbit
0x3 - 256Mbit or 512Mbit
0x0 - Reserved

0x3

16 OpenP0 Keeps virtual bank0 pages open.
0 - Page is closed at the end of an access.
1 - Page is kept open at the end of an access.

0x0

17 OpenP1 Keeps virtual bank1 pages open.
0 - Page is closed at the end of an access.
1 - Page is kept open at the end of an access.

0x0

18 OpenP2 Keeps virtual bank2 pages open.
0 - Page is closed at the end of an access.
1 - Page is kept open at the end of an access.
NOTE: When using 16Mbit SDRAM (which means

there are only two DRAM virtual banks), set
OpenP2 to the same value as OpenP0.

0x0

19 OpenP3 Keeps virtual bank3 pages open.
0 - Page is closed at the end of an access.
1 - Page is kept open at the end of an access.
NOTE: When using 16Mbit SDRAM (which means

there are only two DRAM virtual banks), set
OpenP3 to the same value as OpenP1.

0x0

SDRAM Controller
SDRAM Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 115
Not Approved by Document Control - For Review Only

5.15.3 SDRAM Error Report Registers

31:20 Reserved Reserved. 0x0

Table 112: SDRAM Bank1 Parameters, Offset: 0x450

Bits Field Name Function Init ial Value

19:0 Various Same as SDRAM Bank0 Parameters. 0xc000

31:20 Reserved Reserved. 0x0

Table 113: SDRAM Bank2 Parameters, Offset: 0x454

Bits Field Name Function Init ial Value

19:0 Various Same as SDRAM Bank0 Parameters. 0xc000

31:20 Reserved Reserved. 0x0

Table 114: SDRAM Bank3 Parameters, Offset: 0x458

Bits Field Name Function Init ial Value

19:0 Various Same as SDRAM Bank0 Parameters. 0xc000

31:20 Reserved Reserved. 0x0

Table 115: SDRAM Error Data (Low), Offset: 0x4841

1. In case of multiple errors, only the first one is latched. New error report latching is enabled only after SDRAM Error
Address register is being read

Bits Field Name Function Init ial Value

31:0 ECCData Sampled 32 low bits of the last data with ECC error. 0x0

Table 111: SDRAM Bank0 Parameters, Offset: 0x44c (Continued)

Bits Field name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 116 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 116: SDRAM Error Data (High), Offset: 0x480

Bits Field Name Function Init ial Value

31:0 ECCData Sampled 32 high bits of the last data with ECC error. 0x0

Table 117: SDRAM Error Address, Offset: 0x490

Bits Field Name Function Init ial Value

1:0 ErrType1 Error Type
00 - No errors
01 - One error detected and corrected
10 - Two or more errors detected
11 - Reserved

0x0

31:2 ECCAddr Sampled address of the last data with ECC error. 0x0

1. In case of one or two errors detection, an interrupt is generated (if not masked). Write of 0x0 to ErrType, clears the
interrupt.

Table 118: SDRAM Received ECC, Offset: 0x488

Bits Field Name Function Init ial Value

7:0 ECCRec ECC code being read from SDRAM. 0x0

31:8 Reserved Reserved. 0x0

Table 119: SDRAM Calculated ECC, Offset: 0x48c

Bits Field Name Function Init ial Value

7:0 ECCCalc ECC code calculated by the GT–64242A. 0x0

31:8 Reserved Reserved. 0x0

Table 120: SDRAM ECC Control, Offset: 0x494

Bits Field Name Function Init ial Value

7:0 ForceECC User defined ECC byte written to the ECC bank. 0x0

8 ForceECC Force user defined ECC byte on SDRAM writes.
0 - Write calculated ECC byte
1 - Write user defined ECC byte

0x0

SDRAM Controller
SDRAM Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 117
Not Approved by Document Control - For Review Only

9 ErrProp Propagate Parity Errors to ECC Bank
0 - DRAM controller always generate correct ECC on
write access to DRAM
1 - DRAM controller generates an uncorrectable ECC
error (2 bits) on write access to DRAM, in case of parity
error indication from the originating interface

0x0

15:10 Reserved Reserved. 0x0

23:16 ThrEcc Threshold ECC Interrupt
Number of single bit errors that occur before the GT–
64242A generates an interrupt.
NOTE: If set to 0x0, the GT–64242A does not generate

an interrupt in case of a single bit error.

0x0

31:24 Reserved Reserved. 0x0

Table 121: SDRAM ECC Counter, Offset: 0x498

Bits Field Name Function Init ial Value

31:0 Count Number of single bit ECC errors detected.
If the number of errors reaches 232, this register wraps
around to 0x0

0x0

Table 120: SDRAM ECC Control, Offset: 0x494 (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 118 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

6. ADDRESS AND DATA INTEGRITY
The GT–64242A supports address and data integrity on most of its interfaces.

• It supports parity checking and generation on the CPU,PCI, and Device busses.
• It supports ECC checking and generation on the SDRAM bus.
• CRC checking and generation on the Ethernet and Serial ports.

6.1 CPU Parity Support

The CPU interface generates and checks data parity.

On CPU writes, the GT–64242A samples data parity driven by the CPU with each data.

When a parity error occurs, the GT–64242A generates an interrupt and latches the following:
• Bad address in the CPU Error Address register.
• Data in the CPU Error Data register.
• Parity in the CPU Error Parity register.

On CPU reads, the GT–64242A drives parity with each read data it drives on the CPU bus.

NOTE: In case of multiple errors are detected, the address, data, and parity are latched in the corresponding reg-
isters only for the first error. Latching of new data into these registers is only enabled when reading the
CPU Error Address (Low) register. The interrupt handler must read this register last.

6.2 SDRAM ECC

The GT–64242A implements Error Checking and Correction (ECC) on accesses to the SDRAM. It supports
detection and correction of one data bit errors, detection of two errors, and detection of three or four bit errors
within the same nibble.

6.2.1 ECC Calculation
Each of the 64 data bits and eight check bits has a unique 8-bit ECC check code, as shown in Table 122. For
example, data bit 12 has the check value of 01100001, and check bit 5 has the check value of 00100000.

Table 122: ECC Code Matrix

Check Bit Data Bit

ECC Code Bits Number of
1s in
syndrome7 6 5 4 3 2 1 0

63 1 1 0 0 1 0 0 0 3

62 1 1 0 0 0 1 0 0 3

61 1 1 0 0 0 0 1 0 3

Address and Data Integrity
SDRAM ECC

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 119
Not Approved by Document Control - For Review Only

60 1 1 0 0 0 0 0 1 3

59 1 1 1 1 0 1 0 0 5

58 1 0 0 0 1 1 1 1 5

4 0 0 0 1 0 0 0 0 1

3 0 0 0 0 1 0 0 0 1

57 1 1 1 0 0 0 0 0 3

56 1 0 1 1 0 0 0 0 3

55 0 0 0 0 1 1 1 0 3

54 0 0 0 0 1 0 1 1 3

53 1 1 1 1 0 0 1 0 5

52 0 0 0 1 1 1 1 1 5

5 0 0 1 0 0 0 0 0 1

2 0 0 0 0 0 1 0 0 1

51 1 0 0 0 0 1 1 0 1

50 0 1 0 0 0 1 1 0 3

49 0 0 1 0 0 1 1 0 3

48 0 0 0 1 0 1 1 0 3

47 0 0 1 1 1 0 0 0 3

46 0 0 1 1 0 1 0 0 3

45 0 0 1 1 0 0 1 0 3

44 0 0 1 1 0 0 0 1 3

43 1 0 1 0 1 0 0 0 3

42 1 0 1 0 0 1 0 0 3

41 1 0 1 0 0 0 1 0 3

40 1 0 1 0 0 0 0 1 3

39 1 0 0 1 1 0 0 0 3

38 1 0 0 1 0 1 0 0 3

37 1 0 0 1 0 0 1 0 3

Table 122: ECC Code Matrix (Continued)

Check Bit Data Bit

ECC Code Bits Number of
1s in
syndrome7 6 5 4 3 2 1 0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 120 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

36 1 0 0 1 0 0 0 1 3

35 0 1 0 1 1 0 0 0 3

34 0 1 0 1 0 1 0 0 3

33 0 1 0 1 0 0 1 0 3

32 0 1 0 1 0 0 0 1 3

31 1 0 0 0 1 0 1 0 3

30 0 1 0 0 1 0 1 0 3

29 0 0 1 0 1 0 1 0 3

28 0 0 0 1 1 0 1 0 3

27 1 0 0 0 1 0 0 1 3

26 0 1 0 0 1 0 0 1 3

25 0 0 1 0 1 0 0 1 3

24 0 0 0 1 1 0 0 1 3

23 1 0 0 0 0 1 0 1 3

22 0 1 0 0 0 1 0 1 3

21 0 0 1 0 0 1 0 1 3

20 0 0 0 1 0 1 0 1 3

19 1 0 0 0 1 1 0 0 3

18 0 1 0 0 1 1 0 0 3

17 0 0 1 0 1 1 0 0 3

16 0 0 0 1 1 1 0 0 3

15 0 1 1 0 1 0 0 0 3

14 0 1 1 0 0 1 0 0 3

13 0 1 1 0 0 0 1 0 3

12 0 1 1 0 0 0 0 1 3

11 1 1 1 1 1 0 0 0 5

10 0 1 0 0 1 1 1 1 5

7 1 0 0 0 0 0 0 0 1

Table 122: ECC Code Matrix (Continued)

Check Bit Data Bit

ECC Code Bits Number of
1s in
syndrome7 6 5 4 3 2 1 0

Address and Data Integrity
SDRAM ECC

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 121
Not Approved by Document Control - For Review Only

The GT–64242A calculates ECC by taking the EVEN parity of ECC check codes of all data bits that are logic
one. For example, if the 64 bit data is 0x45. The binary equivalent is 01000101. From Table 122, the required
check codes are 00001101 (bit[6]), 01000011 (bit[2]) and 00010011 (bit[0]). Bitwise XOR of this check codes
(even parity) result in ECC value of 01011101.

For error checking, GT–64242A reads 64-bits of data and 8-bits of ECC. It calculates ECC based on the 64-bit
data and then compares it against the received ECC. The result of this comparison (bitwise XOR between
received ECC and calculated ECC) is called the syndrome.

If the syndrome is 00000000, both the received data and ECC are correct.

If the syndrome is any other value, the GT–64242A assumes either the received data or the received ECC are in
error.

If the syndrome contains a single ‘1’, there is a single bit error in the ECC byte. For example, if the received data
is 0x45, the calculated ECC is 01011101, as explained before. If the received ECC is 01010101, the resulting
syndrome is 00001000. Table 122 shows that this syndrome corresponds to check bit 3. The GT–64242A does
not report or correct this type of error.

If the syndrome contains three or five ‘1’s, it indicates that there is at least one data bit error. For example, if the
received data is 0x45, the calculated ECC is 01011101, as explained before. If the received ECC is 00011110, the
resulting syndrome is 01000011. This syndrome includes three ‘1’s and it corresponds to data bit 2 as shown in
Table 122. In this case, the GT–64242A corrects the data by inverting data bit 2 (the corrected data is 0x41).

0 0 0 0 0 0 0 0 1 1

9 0 1 1 1 0 0 0 0 3

8 1 1 0 1 0 0 0 0 3

7 0 0 0 0 0 1 1 1 3

6 0 0 0 0 1 1 0 1 3

5 1 1 1 1 0 0 0 1 5

4 0 0 1 0 1 1 1 1 5

6 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 1

3 1 0 0 0 0 0 1 1 3

2 0 1 0 0 0 0 1 1 3

1 0 0 1 0 0 0 1 1 3

0 0 0 0 1 0 0 1 1 3

Table 122: ECC Code Matrix (Continued)

Check Bit Data Bit

ECC Code Bits Number of
1s in
syndrome7 6 5 4 3 2 1 0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 122 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

If the result syndrome contains two ‘1’s, it indicates that there is a double-bit error.

If the result syndrome contains four ‘1’s, it indicates a 4-bit error located in four consecutive bits of a nibble.

If the result syndrome contains five ‘1’s, and no four of the ‘1’s are contained in check bits [7:4] or check bits
[3:0] (which means it does not correspond to any data bit of the table), it indicates a triple-bit error within a nib-
ble.

NOTE: These types of errors cannot be corrected. The GT–64242A reports an error but will not change the data.

6.2.2 SDRAM Interface Operation
On SDRAM reads, the GT–64242A reads the ECC byte with the data, calculates the ECC byte, and compares it
against the read ECC byte. In case of a single bit error, it corrects the error and drives the correct data to the initi-
ating interface. In case of two errors detection (or 3 or 4 errors that resides in the same nibble), it only reports an
error, see section 6.2.3.

On a write transaction, the GT–64242A calculates the new ECC and writes it to the ECC bank, with the data that
is written to the data bank. Since the ECC calculation is based on a 64-bit data width, if the write transaction is
smaller than 64 bits, the GT–64242A runs a read modify write (RMW) sequence. It reads the full 64-bit data,
merges the incoming data with the read data, and writes the new data back to SDRAM bank with new ECC byte.

NOTE: If identifying a non-correctable error during the read portion of the RMW sequence, the GT–64242A
writes the data back to DRAM with a non-correctable ECC byte (it calculates a new ECC byte and than
flips two bits). This behavior guarantees that the error is still visible if there is a future read from this
DRAM location.

RMW is performed on 64-bit data basis. In case of a burst to DRAM, only data which not all of its byte enables
are active require RMW. For example, a burst write from a 32-bit PCI bus of five 32-bit words to address 0x0 in
DRAM, results in burst write of three 64-bit words to DRAM, in which only the third data has byte enable inac-
tive (be = 0xf0). In this case, only the third data requires RMW.

The GT–64242A also supports forcing bad ECC written to the ECC bank for debug purposes. If this mode is
enabled, rather than calculating the ECC to be written to the ECC bank, it drives a fixed ECC byte configured in
SDRAM ECC Control register, Table 120 on page 116.

SDRAM interface also contains a 32-bit ECC error counter that counts the number of corrected, single bit errors
that are detected. Use software to reset the ECC error counter.

6.2.3 ECC Error Report
In case of ECC error detection, the GT–64242A asserts an interrupt (if not masked), and latches the:

• Address in the ECC Error Address register.
• 64-bit read data in the ECC Error Data register.
• Read ECC byte in the SDRAM ECC register.
• Calculated ECC byte in the Calculated ECC register.

NOTE: For more information about these registers, see Section 5.15.3 “SDRAM Error Report Registers” on
page 115.

The GT–64242A reports an ECC error whenever it detects but cannot correct an error (2, 3, or 4 bits errors).

Address and Data Integrity
Parity Support for Devices

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 123
Not Approved by Document Control - For Review Only

The GT–64242A also reports on single bit errors (correctable errors), based on the setting of the ECC threshold,
bits [23:16], in the ECC Control register, see Table 120 on page 116.

• If the threshold is set to ‘0’, there is no report on single bit errors.
• If set to ‘1’, GT–64242A reports each single bit error.
• If set to ‘n’, GT–64242A reports each ‘n’ single bit error.

NOTE: In case of multiple errors detection, the address, data, and ECC are latched in the corresponding regis-
ters only for the first error. Latching of new data into these registers is enabled only when reading ECC
Error Address register. The interrupt handler must read this register last.

6.3 Parity Support for Devices

Data parity generation and checking is done via the DevDP[3:0] pins during read and write transactions. This
support is enabled/disabled on a per device chip select basis and even or odd parity is selectable. The controller
also supports address parity. For further information see, Section 7.5 “Parity Support” on page 131.

6.4 PCI Parity Support

The GT–64242A implements all parity features required by the PCI spec, including PAR, PAR64*, PERR*, and
SERR* generation and checking.

As an initiator, the GT–64242A generates even parity on PAR signals for write transaction’s address and data
phases. It samples PAR on data phase of read transactions.

NOTE: If the GT–64242A detects bad parity and the Status and Command Configuration register’s PErrEn bit is
set (see Table 252 on page 209), it asserts PERR*.

As a target, the GT–64242A generates even parity on PAR signals for a read transaction’s data phase. It samples
PAR on the address phase and data phase of write transactions.

In all of the parity errors conditions, the GT–64242A generates an interrupt (if not masked) and latches the:
• Address in the PCI Error Address register
• Data in PCI Error Data register
• Command, byte-enable, and parity in the PCI Error Command register

If the PCI Status and Command configuration register’s SErrEn bit is set to ‘1’ and enabled via the SERR Mask
register (see Table 235 on page 201), the GT–64242A may also assert SERR*. If any of the parity errors condi-
tions occurs, SERR* is asserted.

NOTE: In case of multiple errors detection, address, data and parity are latched in the corresponding registers
only for the first error. Latching of new data into these registers is enabled only when reading PCI Error
Address (Low) register. The interrupt handler must read this register last.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 124 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

6.5 Parity/ECC Errors Propagation

Although each interface includes the required logic to detect and report parity/ECC errors, this is sometimes
inadequate, due to the latency of interrupt routines.

For example, bad parity is detected on a PCI write to SDRAM. In the time required for the CPU interrupt handler
to handle the interrupt, the bad data may be read by the CPU.

To guarantee this scenario does not occur, propagate the bad PCI parity to SDRAM as a non-correctable ECC
error. This guarantees that once the CPU reads this data, it recognizes it as erroneous data.

In case of a write access to SDRAM with bad parity indication, the SDRAM interface can force two ECC errors
to the ECC bank. If ErrProp bit in the ECC Control register is set to ‘1’, the GT–64242A calculates the new ECC
byte and flips two bits before writing it to the ECC bank.

In case of a CPU read from SDRAM that results in ECC error detection (but no correction), or a CPU read from
PCI that results in parity error, the GT–64242A generates an interrupt. It also drives Erroneous Data bit
(SysCmd[5]) to the CPU. The CPU interface can be also configured to force bad parity in this case. If PerrProp
bit in the CPU Configuration register is set to ‘1’, the GT–64242A calculates data parity and flips all the bits
when driving it on the CPU bus.

In case of PCI reads from SDRAM that results in ECC error detection (but no correction), or in any case of CPU
or IDMA write to PCI with bad ECC/parity indication, the PCI interface can force bad parity on the bus.
If PErrProp bit in PCI Command register is set to ‘1’, the GT–64242A calculates data parity and flips the value it
drives on PAR.

Device Controller
Device Controller Implementation

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 125
Not Approved by Document Control - For Review Only

7. DEVICE CONTROLLER
The device controller supports up to five banks of devices. Each bank’s supported memory space can be pro-
grammed separately in 1Mbyte quantities up to 512Mbyte of address space, resulting in total device space of
2.5Gbyte.

Each bank has its own parameters register. Bank width can be programmed to 8-, 16-, or 32-bits. Bank timing
parameters can be programmed to support different device types (e.g. Sync Burst SRAM, Flash, ROM, I/O Con-
trollers).
The five individual chip selects are typically separated into four individual device banks and one chip select for a
boot device. The boot device bank is the same as any of the other banks except that it’s default address map
matches the MIPS CPU boot address (0x1fc0.0000) and that it’s default width is sampled at reset.

The device AD bus is a 32-bit multiplexed address/data bus. During the address phase, the device controller puts
an address on the AD bus with a corresponding chip select asserted and DevRW indicated. It deassserts Address
Latch Enable (ALE) to latch the address, the chip select, and read/write signals by an external latch (or register).

CS* must then be qualified with CSTiming* to generate the specific device chip select and DevRW* must be
qualified with CSTiming* to generate a read or write cycle indication. The CSTiming* signal is active for the
entire device access time specified in the device timing parameters register.

During the data phase, the device controller drives data on the AD bus, in case of write cycle, or samples data
driven by the device, in case of read cycle. Use Wr[3:0]* as the byte enable signal during a write transaction.

NOTE: The GT–64242A does not support READ byte enables.

The GT–64242A does not support multiple masters on the AD bus or access to the different GT–64242A
interfaces via the device bus.

All device controller signals, including CSTiming*, are floated for the entire reset assertion period and
an additional five TClk cycles after reset deassertion. Since the device chip select is qualified with
CSTiming*, this signal must be pulled up or driven for the five additional cycles by some external logic,
to prevent undesired accesses to the device.

7.1 Device Controller Implementation

The device interface consists of 128 bytes of write buffer and 128 bytes of read buffer. It can absorb up to four
read plus four write transactions.

On a write transaction to a device, the data is written to the write buffer and then driven to the device bus. As
soon as a device access is requested, the device controller drives an address on the AD bus for two cycles and
deasserts ALE, so it will be used by external logic to latch the address, chip select, and DevRW* indication.

NOTE: The CS* must be qualified by the CSTiming* signal to generate the device’s actual chip select.

On the next cycle after ALE deassertion, the device controller pops data from the write buffer and drives it on the
bus. It drives the valid data based on the device timing parameters, see 7.2.

In case the device controller is still serving a previous transaction on the bus, the whole burst write is posted into
the write buffer and driven to the device bus when all the previous transactions are completed.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 126 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

On a read transaction, the device controller samples the read data from the AD bus. The sample window is deter-
mined according to the device timing parameters, see 7.2. When the whole read data is placed in the read buffer,
it is driven back to the requesting interface.

7.2 Device Timing Parameters

To allow interfacing with very slow devices and fast synchronous SRAMs, each device can be programed to dif-
ferent timing parameters.

7.2.1 TurnOff
The TurnOff parameter defines the number of TClk cycles that the GT–64242A does not drive the AD bus after
the completion of a device read. This prevents contentions on the device bus after a read cycle from a slow
device. The minumum setting is 0x1.

7.2.2 Acc2First
The Acc2First parameter defines the number of TClk cycles from the assertion of ALE to the cycle that the first
read data is sampled by GT–64242A. The minumum setting is 0x3.

NOTE: Extend this parameter by extending the Ready* pin, see 7.4.

7.2.3 Acc2Next
The Acc2Next parameter defines the number of TClk cycles between the cycle that samples the first read data by
GT–64242A to the cycle that samples the next data (in burst accesses). Extend this parameter can be extended by
the Ready* pin, see 7.4. The minumum setting is 0x1.

Figure 25 shows a device read timing parameters example.

Figure 25: Device Read Parameters Example

TurnOff = 2TurnOff =
Acc2Next = 2Acc2Next = 2

Acc2First = 3

Address Data0 Data1 Address

 TClk

ALE

A[31:0]

CSTiming*

BAdr[2:0]

Device Controller
Device Timing Parameters

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 127
Not Approved by Document Control - For Review Only

7.2.4 ALE2Wr
The ALE2Wr parameter defines the number of TClk cycles from ALE deassertion cycle to Wr[3:0]* assertion.
The minumum setting is 0x3.

7.2.5 WrLow
The WrLow parameter defines the number of TClks that Wr[3:0]* is active (low). Extend this parameter by the
Ready* pin, see 7.4. BAdr and Data are kept valid for the whole WrLow period. This parameter defines the setup
time of address and data to Wr rise. The minumum setting is 0x1.

7.2.6 WrHigh
The WrHigh parameter defines the number of TClk cycles that Wr[3:0]* is kept inactive (high) between data
beats of a burst write. BAdr and Data are kept valid (don’t toggle) for WrHigh-1 period, with the exceptions of
WrHigh values of ‘0’ or ‘1’. This parameter defines the hold time of address and data after Wr rise. The minu-
mum setting is 0x0.

NOTE: Programing WrHigh to ‘0’ is only used for zero wait states burst access (e.g. sync burst SRAM access).
It is only allowed when WrLow is set to 1.

Figure 26 shows a device write timing parameters example.

Figure 26: Device Write Parameters Example

7.2.7 BAdrSkew
The GT–64242A also supports early toggle of burst address during read access. The Device Bank Parameters
register’s BAdrSkew bits [29:28] (see Table 128 on page 135) defines the number of TClk cycles from BAdr tog-

WrHigh = 2WrHigh = 2
WrLow = 1WrLow = 1

ALE2Wr = 3

Address Data0 Data1 Address

TClk

ALE

A[31:0]

CSTiming*

BAdr[2:0]

WR*

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 128 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

gle to read data sample. This parameter is usefull for SyncBurst SRAM type of devices, where the address pre-
cedes the read data by one (Flow Through SRAM) or two (Pipelined SRAM) cycles.

Figure 27 shows a BAdrSkew usage example.

Figure 27: Pipeline Sync Burst SRAM Read Example

7.3 Data Pack/Unpack and Burst Support

The device controller supports 8-, 16-, or 32-bit wide devices. Specify the device width in the DevWidth[21:20]
field of each device parameters register.

The device controller supports up to 32 byte burst to a 32-bit wide device, and up to 8 bytes burst to 8- or 16-bit
wide device. The burst address is supported by a dedicated three bit BAdr[2:0] bus. This bus must be connected
directly to the device address bus (not like the latched address on the multiplexed AD bus). The device controller
supports pack/unpack of data between the device (8-, 16-, or 32-bit wide) and the initiator (PCI, CPU, DMA).

An attempt to access a device with a non-supported burst results in an interrupt assertion.

NOTE: Since bursts to 8- and 16-bit devices are limited to eight bytes, never place these devices in a CPU
cacheable region (that requires bursts of 32 bytes). Also, it is only possible to read these devices from a
PCI’s non-prefetchable region.

Since bursts to 32-bit devices are limited to 32 bytes, DMA or PCI accesses to such devices must not
exceed 32 bytes. This means that the PCI Mburst must be set to 32 bytes (see Table 208 on page 193);
the IDMA BurstLimit must not exceed 32 bytes (see Table 359 on page 263); the Ethernet SDMA BSZ
Burst is limited to 4 64bit words (see Table 493 on page 378); and, the MPSC’s SDMA BSZ is limited
to 4 64bit words (Table 556 on page 462.

The device controller does not support non-sequential byte enables to 8 or 16-bit wide devices (e.g.
write of 32-bit word to 8-bit wide device with byte enable 1010).

On burst read access to a 32-bit device, the device controller can return read data to the requester as soon as first
64-bit data is available, or only when the whole burst data is available. If the Device Interface Control register’s
RdTrig bit [16] is set to ‘1’, data is returned to the requester, only when the whole burst data is valid (store and
forward policy). This is useful when interfacing with a device that has long wait states between data beats, to

BAdrSkew = 2
Address D0 D2D1 D3

A0 A1 A2 A3

 TClk

ALE

AD[31:0]

CSTiming*

BAdr[2:0]

Device Controller
Ready* Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 129
Not Approved by Document Control - For Review Only

avoid wasting the GT–64242A cross bar bandwidth. If RdTrig is set to ‘0’, data is returned as soon as packed 64-
bit data is valid.

7.4 Ready* Support

Ready* input is used to extend the programable device timing parameters. This is usefull for two cases:
• Interfacing a very slow device, which has access time greater than the maximum programable values.
• Interfacing a device with a non-deterministic access time (access time depends on other systm events

and activity).

Ready* can extend the following timing parameters:

• Acc2First
• Acc2Next
• WrLow

During a read access, the device controller is first counting TClk cycles based on Acc2First programable param-
eters (see Table 128 on page 135). If at the time Acc2First expires and Ready* input is not asserted, the device
controller keeps waiting until Ready* is sampled asserted, and only then samples first read data. Similarly, if
Acc2Next expires and Ready* is not asserted, the device controller waits until Ready* is sampled asserted, and
only then samples next read data. On a write access, if at the time WrLow is expired, Ready* input is not
asserted, it keeps driving write data until Ready* is sampled asserted Figure 28, Figure 29, and Figure 30 show
examples of the Ready* operation.

NOTE: If Ready* is not used, Ready* pin must be tied low.

If the WrLow or WrHigh timing parameter is set to ’0’, Ready* is not supported during a write access

When interfacing a device with a non-deterministic access time, timing parameters must be set to the
minimum values, and the actual access time is controlled via the Ready* pin

To prevent system hang due to a lack of Ready* assertion, the GT–64242A implements a programable timer that
allows termination of a device access even without Ready* assertion. If during a device access the timeout timer
expires, the device controller completes the transaction as if Ready* was asserted and generates an interrupt. Set-
ting the timer to 0x0 disables it, and the device controller waits for Ready* forever.

NOTE: The timer is used only for preventing system hang due to a lack of Ready* pin assertion. If expired
(which means a system hardware problem), the device controller completes the transaction ignoring
Ready*. This might result in bad data read/write from/to the device. The timer must be programed to a
number that must never be exceeded in normal operation.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 130 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 28: Ready* Extending Acc2First

Figure 29: Ready* Extending Acc2Next

ReadyS = 0
ReadyS = 1

Acc2First = 3

Address Data0

TClk

ALE

A[31:0]

CSTiming*

BAdr[2:0]

Ready*

 Ready*

ReadyS = 0
ReadyS = 1

Acc2Next = 2

Address Data0 Data1

TClk

ALE

A[31:0]

CSTiming*

BAdr[2:0]

Ready*

 Ready*

Device Controller
Parity Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 131
Not Approved by Document Control - For Review Only

Figure 30: Ready* Extending WrLow Parameter

The Device Interface Control register’s ReadyS bit [19] determines the Ready* input sample window, see Table
133 on page 137. If set to ‘1’, the device controller samples read data two cycles after Ready* assertion on a read
access, and de-asserts Wr* two cycles after Ready* assertion on a write access. If set to ‘0’, the device controller
samples read data one cycle after Ready* assertion, and toggles Wr* one cycle after Ready* assertion, as shown
in the above figures.

NOTE: Ready* input setup time, is defined in Section 23. “AC Timing” on page 342, for the case of ReadyS set
to ‘1’. The input setup is 1.5ns greater in the case of ReadyS set to ‘0’.

7.5 Parity Support

The GT–64242A device controller supports generating and checking of data parity via the DevDP[3:0] pins.
To enable or disable parity on a device chip select basis use the Device Bank register’s DPEn bit [30], see
Table 128 on page 135. Even or Odd parity is selectable via Device Interface Control register’s ParSel bit [20],
see Table 133 on page 137 . It also supports address parity.

During the address phase, the GT–64242A drives parity per each of the four address bytes.

NOTE: Since the GT–64242A is never a slave on the device bus, it does not check address parity. It only gener-
ates address parity (to be checked by the target device)

During write access, the GT–64242A drives parity per each byte, with the same timing as the write data. It drives
the parity for the whole 4 bytes (regardless of the device width). If errors propagation is enabled via Device Inter-
face Control register’s PerrProp bit [19], and the data received by the Device controller is marked as erronous
(e.g. CPU interface detects bad data parity on the CPU bus during CPU write to device), the GT–64242A will
force bad parity on all four parity bits.

ReadyS = 0
ReadyS = 1

WrLow = 2

Address Data0

TClk

ALE

A[31:0]

CSTiming*

BAdr[2:0]

WR*

Ready*

 Ready*

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 132 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

During read access, it samples the parity bit(s), at the same timing of the read data. It calculates parity on the
incoming read data and compares to the sampled parity bit(s), for the relevant bytes (based on device width). In
case of mismatch, it sets a parity error indication, and asserts an interrupt, if not masked. The address, data and
parity are latched in Device Error Address, Data, and Parity registers, see Section 7.9 “Device Interface Regis-
ters” on page 134.

NOTE: Whenever the GT–64242A is the driver of the AD bus, it drives parity on the parity bits for the whole
32-bits of the AD bus, regardless, if the bus is in idle state, address phase or write data phase. More
over, it always drives parity for the whole 32-bit, even if not all of them are being used.

7.6 Additional Device Interface Signaling

To make it easy to glue external logic on the device bus, the GT–64242A supports burst and last indication via
MPP lines. DBurst*/DLast* is driven low on the address phase (need to be latched via ALE*) to indicate a burst
access and is driven low on the last data phase to indicate the last data transfer. Figure 31 shows an example.

Figure 31: DBurst*/Dlast* Example

7.7 Error Report

In case of a device access error condition, the Device Interrupt Cause register registers an interrupt. Also, the
address of the device access is registered in the Device Error Address register.

Address Data0 Data1 Address

Burst Last data Single

TClk

ALE

A[31:0]

CSTiming*

BAdr[2:0]

DBurst*/Dlast*

Device Controller
Interfacing With 8/16/32-Bit Devices

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 133
Not Approved by Document Control - For Review Only

7.8 Interfacing With 8/16/32-Bit Devices

To connect the devices correctly, follow the pin connection information listed in the following tables.

Table 123: 8-bit Devices

Connection Connect. . . To.. .

Device Address BAdr[2:0]
AD[27:2]
ALE
Latch Outputs

Device Address Bits [2:0]
Address Latch Inputs
Address LE
Device Address Bits [28:3]

Device Data AD[7:0] Device Data Bits [7:0]

Device Control Pins ALE
AD[1]
AD[0]
AD[31:28]

Control latch LE
Becomes DevRW*
Becomes BootCS*
Becomes CS[3:0]*

Write Strobes Wr[0]* Device Data Bits[7:0] Write Strobe

Table 124: 16-bit Devices

Connection Connect. . . To.. .

Device Address BAdr[2:0]
AD[27:3]
ALE
Latch Outputs

Device Address Bits[2:0]
Address Latch Inputs
Address LE
Device Address Bits [27:3]

Device Data AD[15:0] Device Data Bits [15:0]

Device Control Pins ALE
AD[1]
AD[0]
AD[31:28]

Control latch LE
Becomes DevRW*
Becomes BootCS*
Becomes CS[3:0]*

Write Strobes Wr[0]*
Wr[1]*

Device Data Bits[7:0] Write Strobe
Device Data Bits[15:8] Write Strobe

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 134 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

7.9 Device Interface Registers

Table 125: 32-bit Devices

Connection Connect. . . To.. .

Device Address BAdr[2:0]
AD[27:4]
ALE
Latch Outputs

Device Address Bits [2:0]
Address Latch Inputs
Address LE
Device Address Bits [26:3]

Device Data AD[31:0] Device Data Bits [31:0]

Device Control Pins ALE
AD[1]
AD[0]
AD[31:28]

Control latch LE
Becomes DevRW*
Becomes BootCS*
Becomes CS[3:0]*

Write Strobes Wr[0]*
Wr[1]*
Wr[2]*
Wr[3]*

Device Data Bits[7:0] Write Strobe
Device Data Bits[15:8] Write Strobe
Device Data Bits[23:16] Write Strobe
Device Data Bits[31:24] Write Strobe

Table 126: Device Control Register Map

Register Offset Page

Device Bank0 Parameters 0x45c page 135

Device Bank1 Parameters 0x460 page 136

Device Bank2 Parameters 0x464 page 136

Device Bank3 Parameters 0x468 page 137

Boot Device Parameters 0x46c page 137

Device Interface Control 0x4c0 page 137

Device Interface Crossbar Control (Low) 0x4c8 page 138

Device Interface Crossbar Control (High) 0x4cc page 138

Device Interface Crossbar Timeout 0x4c4 page 139

Table 127: Device Interrupts Register Map

Register Offset Page

Device Interrupt Cause 0x4d0 page 139

Device Controller
Device Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 135
Not Approved by Document Control - For Review Only

7.9.1 Device Control Registers

Device Interrupt Mask 0x4d4 page 140

Device Error Address 0x4d8 page 140

Table 128: Device Bank0 Parameters, Offset: 0x45c

Bits Field Name Function Init ial Value

2:0 TurnOff The number of cycles in a read access between the
deassertion of CSTiming* to a new device bus cycle.
NOTE: Can be extended through TurnOffExt.

0x7

6:3 Acc2First The number of cycles in a read access between the
assertion of ALE to the cycle that the first data is sam-
pled by the GT–64242A.
NOTE: Can be extended through Acc2FirstExt.

0xf

10:7 Acc2Next The number of cycles in a burst read access between
the cycle that the first data is sampled by the GT–
64242A to the cycle that the next data is sampled.
NOTE: Can be extended through Acc2NextExt.

0xf

13:11 ALE2Wr The number of cycles in a write access from the ALE
deassertion to the assertion of Wr*.
NOTE: Can be extended through ALE2WrExt.

0x7

16:14 WrLow The number of cycles in a write access that the Wr* sig-
nal is kept active.
NOTE: If WrLow is set to ’0’, Ready* is not supported.

Can be extended through WrLowExt.

0x7

19:17 WrHigh The number of cycles in a burst write access that the
Wr* signal is kept deasserted.
NOTE: If WrHighis set to ’0’, Ready* is not supported.

Can be extended through WrHighExt.

0x7

21:20 DevWidth Device Width
00 - 8 bits
01 - 16 bits
10 - 32 bits
11 - Reserved

0x2
For the boot
device width,
these bits are
sampled by
AD[15:14] at
reset.

Table 127: Device Interrupts Register Map

Register Offset Page

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 136 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

22 TurnOffExt TurnOff Extention
The MSB of the TurnOff parameter.

0x1

23 Acc2FirstExt Acc2First Extention
The MSB of the Acc2First parameter.

0x1

24 Acc2NextExt Acc2Next Extention
The MSB of the Acc2Next parameter.

0x1

25 ALE2WrExt ALE2Wr Extention
The MSB of the ALE2Wr parameter.

0x1

26 WrLowExt WrLow Extention
The MSB of the WrLow parameter.

0x1

27 WrHighExt WrHigh Extention
The MSB of the WrHigh parameter.

0x1

29:28 BAdrSkew Cycles gap between BAdr toggle to read data sample.
Useful when interfacing Sync Burst SRAM
0x0 - No gap (default setting)
0x1 - One cycle gap
0x2 - Two cycle gaps
0x3 - Reserved

0x0

30 DPEn Data Parity enable
0 - Disabled.
Parity is not checked
1 - Enabled.
Device controller checks data parity on DevDP lines.

0x0

31 Reserved Reserved. 0x2

Table 129: Device Bank1 Parameters, Offset: 0x460

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0. 0xffefffff

Table 130: Device Bank2 Parameters, Offset: 0x464

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0. 0xffefffff

Table 128: Device Bank0 Parameters, Offset: 0x45c (Continued)

Bits Field Name Function Init ial Value

Device Controller
Device Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 137
Not Approved by Document Control - For Review Only

Table 131: Device Bank3 Parameters, Offset: 0x468

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0. 0xffefffff

Table 132: Boot Device Bank Parameters, Offset: 0x46c

Bits Field Name Function Init ial Value

31:0 Various Fields function as in Device Bank0. 0xff?fffff1

1. The boot device width (bits[21:20]) are sampled by AD[15:14] at reset.

Table 133: Device Interface Control, Offset: 0x4c0

Bits Field Name Function Init ial Value

15:0 Timeout Timeout Timer Preset Value.
If the device access is not completed within this preset
value’s period (due to a lack of Ready* assertion), the
device controller completes the transaction as if Ready*
was asserted and asserts an interrupt.
NOTE: If set to 0x0, the device controller waits for

Ready* assertions forever.

0xffff

16 RdTrig Read Trigger Control
0 - Drives the read data to the requesting unit only after

the last data arrives from the device.
1 - Drives the read data to the requesting unit as soon

as the first 64-bit data arrives from the device.

0x1

17 Reserved Must be 1 0x1

18 ReadyS Ready* input sampling window
0 - Read data is sampled one cycle after Ready* is
asserted. Wr* is deasserted one cycle after Ready* is
asserted.
1 - Read data is sampled two cycles after Ready* is
asserted. Wr* is deasserted two cycles after Ready* is
asserted.

0x1

19 PerrProp Parity error propagation enable
0 - Disabled. Always generate correct parity
1 - Enabled. Device controller generates bad data parity
in case of erroneous data indication received from the
originator unit

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 138 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

20 ParSel Even or Odd parity select
0 - Even
1 - Odd

0x0

31:21 Reserved Reserved. 0x0

Table 134: Device Interface Crossbar Control (Low), Offset: 0x4c8

Bits Field Name Function Init ial Value

3:0 Arb0 Slice 0 of the device controller “pizza” arbiter.
0x0 - Reserved
0x1 - NULL request
0x2 - CPU access
0x3 - PCI access
0x4 - Reserved
0x5 - Comm unit access
0x6 - IDMA channels 0/1/2/3 access
0x7 - 0xf - Reserved

0x2

7:4 Arb1 Slice 1 of the device controller “pizza” arbiter. 0x3

11:8 Arb2 Slice 2 of the device controller “pizza” arbiter. 0x4

15:12 Arb3 Slice 3 of the device controller “pizza” arbiter. 0x5

19:16 Arb4 Slice 4 of the device controller “pizza” arbiter. 0x6

23:20 Arb5 Slice 5 of the device controller “pizza” arbiter. 0x7

27:24 Arb6 Slice 6 of the device controller “pizza” arbiter. 0x1

31:28 Arb7 Slice 7 of the device controller “pizza” arbiter. 0x1

Table 135: Device Interface Crossbar Control (High), Offset: 0x4cc

Bits Field Name Function Init ial Value

3:0 Arb8 Slice 8 of the device controller “pizza” arbiter. 0x2

7:4 Arb9 Slice 9 of the device controller “pizza” arbiter. 0x3

11:8 Arb10 Slice 10 of the device controller “pizza” arbiter. 0x4

15:12 Arb11 Slice 11 of the device controller “pizza” arbiter. 0x5

19:16 Arb12 Slice 12 of the device controller “pizza” arbiter. 0x6

Table 133: Device Interface Control, Offset: 0x4c0

Bits Field Name Function Init ial Value

Device Controller
Device Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 139
Not Approved by Document Control - For Review Only

7.9.2 Device Interrupts

23:20 Arb13 Slice 13 of the device controller “pizza” arbiter. 0x7

27:24 Arb14 Slice 14 of the device controller “pizza” arbiter. 0x1

31:28 Arb15 Slice 15 of the device controller “pizza” arbiter. 0x1

Table 136: Device Interface Crossbar Timeout, Offset: 0x4c4
NOTE: Reserved for Marvell Technology usage.

Bits Field Name Function Init ial Value

7:0 Timeout CrossBar Arbiter Timeout Preset Value 0xff

15:8 Reserved Reserved. 0x0

16 TimeoutEn CrossBar Arbiter Timer Enable
0 - Enable
1 - Disable

0x1

31:17 Reserved Reserved. 0x0

Table 137: Device Interrupt Cause, Offset: 0x4d01

Bits Field name Function Init ial Value

0 DBurstErr Burst violation
An attempt to burst more data than device controller is
capable of handling.

0x0

1 DRdyErr Ready Timer Expired. 0x0

2 PErr0 Parity error detected on AD[7:0] during device read
access.

0x0

3 PErr1 Parity error detected on AD[15:8] during device read
access.

0x0

4 PErr2 Parity error detected on AD[23:16] during device read
access.

0x0

5 PErr3 Parity error detected on AD[31:24] during device read
access.

0x0

26:6 Reserved Reserved. 0x0

Table 135: Device Interface Crossbar Control (High), Offset: 0x4cc (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 140 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

31:27 Sel Specifies the error event currently being reported in the
Error Address register.
0x0 - DBurstErr
0x1 - DRdyErr
0x2 - PErr0, PErr1, PErr2 or PErr3
0x3 - 0x1f - reserved
Read Only.

0x0

1. All cause bits are clear only. They are set upon error condition cleared upon a value write of ‘0’. Writing a value
of ‘1’ has no affect.

Table 138: Device Interrupt Mask, Offset: 0x4d4

Bits Field name Function Init ial Value

0 DBurstErr If set to ‘1’, enables DBurstErr interrupt. 0x0

1 DRdyErr If set to ‘1’, enables DRdyErr interrupt. 0x0

2 PErr0 If set to 1, enables PErr0 interrupt. 0x0

3 PErr1 If set to 1, enables PErr1 interrupt. 0x0

4 PErr2 If set to 1, enables PErr2 interrupt. 0x0

5 PErr3 If set to 1, enables PErr3 interrupt. 0x0

31:6 Reserved Reserved. 0x0

Table 139: Device Error Address, Offset: 0x4d8

Bits Field name Function Init ial Value

31:0 Addr Latched Address Upon Device Error Condition
After the address is latched, no new address is latched
(due to additional error condition) until the register is
being read.

0x0

Table 140: Device Error Data, Offset: 0x4dc1

Bits Field name Function Init ial Value

31:0 Data Latched Data Upon parity error detection. 0x0

Table 137: Device Interrupt Cause, Offset: 0x4d01 (Continued)

Bits Field name Function Init ial Value

Device Controller
Device Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 141
Not Approved by Document Control - For Review Only

1. No new data is latched (due to additional error condition) until the Device Error Address register is being read

Table 141: Device Error Parity, Offset: 0x4e01

Bits Field name Function Init ial Value

3:0 Par Latched parity upon parity error detection. 0x0

31:4 Reserved 0x0

1. No new data is latched (due to additional error condition) until the Device Error Address register is being read

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 142 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8. PCI INTERFACE
The GT–64242A supports one 64-bit PCI interfaces, compliant to PCI specification rev. 2.2.

NOTE: When configured as a 32-bit bus, the GT–64242A drives PAD[63:32], CPE[7:4], PAR64 pins; a pull-up
is not required.

8.1 PCI Master Operation

When the CPUor IDMA units initiates a bus cycle to the PCI, the PCI master translates the cycle into the appro-
priate PCI bus transaction. The transaction address is the same as the initiator cycle address, unless address
remapping is used.
The GT–64242A PCI master supports the following transactions:

• Memory Read
• Memory Write
• Memory Read Line
• Memory Read Multiple
• Memory Write & Invalidate
• I/O Read
• I/O Write
• Configuration Read
• Configuration Write
• Interrupt Acknowledge
• Special Cycle
• Dual Address Cycles

The GT–64242A PCI master generates a Memory Write and Invalidate transaction if:
• The transaction accessing the PCI memory space requests a data transfer size equal to multiples of the

PCI cache line size.
• The start address is cache line aligned.
• the PCI Status and Command register’s MemWrInv bit is set, see Table 252 on page 209

The GT–64242A PCI master generates a Memory Read Line transaction if:
• The transaction accessing the PCI memory space requests a data transfer size equal to multiples of the

PCI cache line size.
• The start address is cache line aligned.

A Memory Read Multiple transaction is carried out when the transaction accessing the PCI memory space
requests a data transfer that crosses the PCI cache line size boundary.

NOTE: The GT–64242A supports only cache line size of eight (8 32-bit words). Setting the PCI cache line reg-
ister to any other value is treated as if cache line size is set to ‘0’.

PCI Interface
PCI Master Operation

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 143
Not Approved by Document Control - For Review Only

Dual Address Cycles (DAC) transaction is carried out if the requested address is beyond 4Gbyte (address
bits[63:32] are not ‘0’).

The master consists of 512 bytes of posted write data buffer and 512 bytes of read buffer. It can absorb up to four
write transactions plus four read transactions. The PCI master posted write buffer in the GT–64242A permits the
CPU to complete CPU-to-PCI memory writes even if the PCI bus is busy. The posted data is written to the target
PCI device when the PCI bus becomes available. The read buffer absorbs the incoming data from PCI. Read and
Write buffers implementation guarantees that there are no wait states inserted by the master

NOTE: IRDY* is never deasserted in the middle of a transaction.

8.1.1 PCI Master Write Operation
On a write transaction, data from the initiator unit is first written to the master write buffer and then driven on the
PCI bus. The master does not need to wait for the write buffer to be full. It starts driving data on the bus when the
first data is written into the write buffer or only when the whole burst is placed in the buffer. This depends on the
MWrTrig bit setting in the PCI Command register, see Table 196 on page 183.

On consecutive write transactions, the transactions are placed into the queue. When the first transaction is done,
the master initiates the transaction for the next transaction in the queue.

The master supports combining memory writes. This is especially useful for long DMA transfers, where a long
burst write is required. If combining is enabled through the MWrCom bit in PCI Command register, the master
combines consecutive write transactions, if possible. For combining memory writes to occur, the following con-
ditions must exist:

• Combining is enabled through the PCI Command register’s MWrCom bit, see Table 196 on page 183.
• The start address of the second transaction matches the address of data n+1 of the first transaction.
• While the first transaction is still in progress, the request for the new transaction occurs.

The master supports fast back-to-back transactions. If there is a pending new transaction in the middle of a trans-
action in progress, the master starts the new transaction after the first transaction ends, without inserting dead
cycle. For the master to issue a fast back-to-back transaction, the following conditions must exist:

• Fast back-to-back is enabled (bit[9] of Status and Command register is set to 1), see Table 252 on
page 209.

• The first transaction is a write.
• While the first transaction is still in progress, the new transaction request occurs.

8.1.2 PCI Master Read Operation
On a read transaction, when the initiator requests a PCI read access, the PCI master drives the transaction on the
bus (after gaining bus mastership). The returned data is written into read buffer. The PCI master drives the read
data to the initiating unit as soon as the data arrives from the PCI bus or when the whole burst read is placed in
the read buffer. This action depends on the setting of the MRdTrig bit in PCI Command register, see Table 196 on
page 183.

NOTE: In case of a CPU burst read cache line read, regardless of RdTrig bit setting, the master absorbs the full
burst into the read buffer and only then drives it to the CPU interface unit in sub-lock order.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 144 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

The master also supports combining read transactions. This is especially useful for long DMA transfers, where a
long burst read is required, and the PCI target drives long burst data without inserting wait states. If combining is
enabled through MRdCom bit in PCI Command register, the master combines consecutive read transactions. For
combining read transactions to occur, the following conditions must exist:

• Combining is enabled.
• The start address of the second transaction matches the address of data n+1 of the first transaction.
• While the first transaction is still in progress, the request for the new transaction occurs.

8.2 PCI Master Termination

If there is no target response to the initiated transaction within four clock cycles (five clocks in case of DAC
transaction), the master issues a Master Abort event. The master deasserts FRAME* and on the next cycle deas-
sert IRDY*. Also, the Interrupt Cause register’s MMAbort bit is set and an interrupt is generated, if not masked.

The master supports several types of target termination:
• Retry
• Disconnect
• Target Abort

If a target terminated a transaction with Retry, the GT–64242A master re-issues the transaction. In default, the
master retries a transaction until it is being served. When the master reaches this count value, it stops the retries
and a bit is set in the Interrupt Cause register.

If a target terminates a transaction with Disconnect, the master re-issues the transaction from the point it was dis-
connected. For example, if the master attempts to burst eight 32-bit dwords starting at address 0x18, and the tar-
get Disconnects the transaction after the fifth data transfer, the master re-issues the transaction with address 0x2C
to burst the left three dwords.

NOTE: To limit the number of retry attempts for transactions using Retry or Disconnect, set the RetryCtr in the
PCI Timeout and Retry register to a desired count value, see Table 198 on page 188

If a target abnormally terminates a transaction with a Target Abort, the master does not attempt to re-issue the
transaction. A bit in the Interrupt Cause register is set and an is interrupt generated, if not masked.

8.3 PCI Bus Arbitration

The GT–64242A supports both external arbiter or internal arbiter configuration through the PCI Arbiter Control
register’s EN bit [31], see Table 201 on page 189. If the bit is set to ‘1’, the GT–64242A internal PCI bus arbiter
is enabled.

NOTE: The internal PCI arbiter REQ*/GNT* signals are multiplexed on the MPP pins. For the internal arbiter
to work, the MPP pins must first be configured to their appropriate functionality, see Section 15.1 “MPP
Multiplexing” on page 288. Additionally, since the MPP default configuration is general purpose input,
pull-ups must be set on all GNT* signals.

PCI Interface
PCI Master Configuration Cycles

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 145
Not Approved by Document Control - For Review Only

Since the internal PCI arbiter is disabled by default (the MPP pins function as general purpose inputs),
changing the configuration can only be done by the CPU or through serial ROM initialization. The con-
figuration cannot be done by an external PCI master (since an external master will not gain PCI bus
arbitration).

8.3.1 PCI Master Bus Arbitration
Whenever there is a pending request for a PCI access, the PCI master requests bus ownership through the REQ*
pin. As soon as the PCI master gains bus ownership (GNT* asserted), it issues the transaction. If no additional
pending transactions exist, it deasserts REQ* the same cycle it asserts FRAME*. If parked on the bus, the master
does not request the bus at all.

The GT–64242A implements the Latency Timer Configuration register as defined in PCI spec. The timer defines
number of clock cycles starting from FRAME* assertion that the master is allowed to keep bus ownership, if not
granted any more. If the Latency Timer is expired, and the master is not granted (GNT* not asserted), the master
terminates the transaction properly on the next data transfer (TRDY* assertion). It re-issues the transaction from
the point it was stopped, similar to the case of disconnect.

One exception is Memory Write and Invalidate command. In this case, the master quits the bus only after next
cache line boundary, as defined in PCI spec.

8.3.2 Internal PCI Arbiter
The GT–64242A integrates one PCI arbiter.

The PCI arbiters implements a Round Robin (RR) arbitration mechanism.

The PCI arbiter performs a default parking on the last agent granted.

To overcome problems that happen with some PCI devices that do not handle parking properly, use the PCI Arbi-
ter Control register’s PD bits [20:14] as an option to disable parking on a per PCI master basis, see Table 201 on
page 189.

NOTE: In addition to disabling parking to avoid issues with some problematic devices, it is required to disable
parking on any unused request/grant pair. This is to avoid possible parking on non existent PCI masters.

8.4 PCI Master Configuration Cycles

The GT–64242A translates CPU read and write cycles into configuration cycles using the PCI configuration
mechanism #1 (per the PCI spec). Mechanism #1 defines:

• A way to translate the CPU cycles into configuration cycles on the PCI bus
• A way to access the GT–64242A’s internal configuration registers.

The GT–64242A contains two registers to support configuration accesses: PCI Configuration Address (Table 232
on page 200) and PCI Configuration Data (Table 233 on page 200). The mechanism for accessing configuration
space is to write a value into the PCI Configuration Address register that specifies the:

• PCI bus number

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 146 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

• Device number on the bus
• Function number within the device
• Configuration register within the device/function being accessed

A subsequent read or write to the PCI Configuration Data register causes the GT–64242A to translate that Con-
figuration Address value to the requested cycle on the PCI bus or internal configuration space.

The GT–64242A performs address stepping for the PCI configuration cycles. Address stepping allows for the use
of the high-order PCI AD signals as IdSel signals through resistive coupling.1

Table 142 shows DevNum to IdSel mapping (type 0 configuration access).

A special cycle is generated if all of the following apply:
• The DevNum field is 0x1f.
• The function number is 0x7.
• The register offset is 0x0.

 The GT–64242A configuration registers are accessed from the PCI bus when the GT–64242A is a target
responding to PCI configuration read and write cycles.

NOTES: The ConfigEn bit in the Configuration Address register must be set before the Configuration Data reg-
ister is read or written. An attempt by the CPU to access a configuration register without this bit set
results in PCI master behaving as if it performed a master abort - no PCI transaction is driven on the
bus, nothing is returned for write transactions, and the internal register value is returned for write
transactions.

1. “Resistive Coupling” also means “hook a resistor from ADx to IdSel” on a given device.

Table 142: DevNum to IdSel Mapping

DevNum[15:11] AD[31:11]

00001 0000.0000.0000.0000.0000.1

00010 0000.0000.0000.0000.0001.0

00011 0000.0000.0000.0000.0010.0

00100 0000.0000.0000.0000.0100.0

 --
 --
 --

 --
 --
 --

10101 1000.0000.0000.0000.0000.0

00000,
10110 - 11111 0000.0000.0000.0000.0000.0

PCI Interface
PCI Target Address Decoding

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 147
Not Approved by Document Control - For Review Only

8.5 PCI Target Address Decoding

The PCI target interface uses a one stage decoding process as described in Section 3.2 “PCI Address Decoding”
on page 35. For an exact list of base address registers and size registers, see Section 8.18.1 “PCI Slave Address
Decoding Registers” on page 174.

PCI interface supports 14 regular address windows plus 11 64-bit addressing windows. Each window is defined
by the base and size registers. Each window can decode up to 4Gbyte space.

The PCI target interface also supports address remapping to any of the resources. This is especially useful when
one needs to reallocate some PCI address range to a different location on memory.

8.5.1 SDRAM and Device BARs
The GT–64242A contains four BARs for PCI access to SDRAM and five BARs for access to Devices. An
address match in any of these BARs results in an access to the target chip select. There is no further sub decod-
ing, as used to be in the GT-64120/GT-64130.

NOTE: Unlike the GT-64120/GT-64130, there are no Swap BARs in GT–64242A. Byte swapping is controlled
via the Access Control registers. For more details, see Section 8.6 “PCI Access Protection” on page 148.

8.5.2 Internal Space Address Decoding
PCI accesses the GT–64242A internal registers using memory or I/O transactions.

There is a dedicated BAR for PCI. No size registers exist for the internal space BARs. This means each BAR has
a fixed internal space of 64Kbyte. This implies that on address decode of an internal BAR, all address bits[31:16]
must match the BAR’s bits.

NOTE: The PCI specification defines that an I/O mapped BAR may not consume more than 256bytes I/O space.
This implies that GT–64242A I/O Mapped Internal BAR is not PCI compliant. By default, this BAR is
disabled. Enable this BAR through the BAR Enable register, see Section 8.5.5.

8.5.3 Expansion ROM Address Decoding
Expansion ROM is enabled through reset configuration. For the PCI slave to respond to a PCI address hit in the
expansion ROM space, the system software must first set the Configuration Command register’s Target Memory
Enable bit [1] to ‘1’ and bit[0] of expansion ROM BAR to ‘1’, as defined in PCI specification.

With the Expansion ROM enabled through the reset configuration of AD [17:16], the GT–64242A configuration
space includes an expansion ROM BAR at offset 0x30 of function0 configuration space as specified in the PCI
specification. Like the other BARs, there are expansion ROM size and remap registers. Address decoding is done
the same way as for the other devices. A hit in the expansion ROM BAR results in an access to CS[3] or BootCS,
depending on the setting of the PCI Address Decode Control register’s ExpRomDev bit, seeTable 195 on
page 183.

With the Expansion ROM disabled, the GT–64242A does not support expansion ROM BAR, offset 0x30 in the
configuration space is reserved.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 148 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.5.4 64-bit Addressing BARs
The GT–64242A supports 64-bit addressing through Dual Access Cycle (DAC) transactions. It contains 11 64-bit
BARs. There are:

• Four SDRAM DAC BARs
• Five Device DAC BARs

If the upper 32-bits of the BAR are not 0x0 (meaning the BAR maps an address space located above 4Gbyte),
only addresses of PCI DAC transactions are compared against the 64-bit BAR. If the upper 32-bits of the BAR
are 0, it acts as a regular 32-bit BAR, and only addresses of PCI SAC transactions are checked against it.

Each 64-bit BARs have their own size registers. However, their size registers can map up to 4Gbyte per each
BAR.

NOTE: The GT–64242A does not support larger address windows than 4Gbyte per each BAR. It does support
the location of the address window in offsets that are higher than the 4Gbyte space.

8.5.5 Base Address Registers Enable
Only if bit[0] of the Configuration Command register (Target I/O Enable) is set to ‘1’ does the PCI slave
responds to an address hit in the I/O BARs. It responds to an address hit in any of the other BARs only if bit[1] of
Configuration Command register (Target Memory Enable) is set to ‘1’.

To disable a specific BAR space, the GT–64242A includes a 27-bit BAR Enable register - bit per BAR. Setting a
bit to ‘1’ disables the corresponding BAR. A disabled BAR is treated as a reserved register (read only 0). PCI
access match to a disabled BAR is ignored and no DEVSEL* asserted.

8.5.6 Loop Back Access
By default, the PCI slave does not respond to any PCI transaction initiated by the PCI master. However, if the
PCI Command register’s LPEn bit is set to ‘1’, the slave responds to the PCI master transactions, if targeted to
the slave address space.

NOTE: This loop back feature is only used for system debug. Do not use in normal operation.

8.6 PCI Access Protection

The PCI slave interface supports configurable access control. It is possible to define up to eight address ranges to
different configurations. Each region can be configured to:

• Write protection
• Access protection
• Byte swapping
• Read prefetch

Three registers define each address window - Base (low and high) and Top. The minimum address range of each
window is 1Mbyte. An address received from the PCI, in addition to the address decoding and remapping pro-
cess, is compared against the eight Access Control base/top registers. Bits[63:32] of DAC cycle address are

PCI Interface
PCI Target Operation

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 149
Not Approved by Document Control - For Review Only

checked to be equal to the Base high register. Bits[31:20] of the address are checked to be between the lower and
upper addresses defined by bits[11:0] of Base and Top registers. If an address matches one of the windows, GT–
64242A handles the transaction according to transaction type and the attributes programed in the Access Control
register.

Each region contains two protection bits:

• Access protection
Any PCI access to this region is forbidden.

• Write protection
Any PCI write access to this region is forbidden.

If an access violation occurs:
• The PCI slave interface terminates the transaction with Target Abort.
• The transaction address is latched in PCI Slave Error Address register.
• The PCI AddrErr bit in the interrupt cause register is set.

NOTE: The GT–64242A internal registers space is not protected, even if the access protection windows contain
this space.

The other attributes of the Access Control registers are discussed in Section 8.7 and Section 8.12.

8.7 PCI Target Operation

The GT–64242A responds to the following PCI cycles as a target device:
• Memory Read
• Memory Write
• Memory Read Line
• Memory Read Multiple
• Memory Write and Invalidate
• I/O Read
• I/O Write
• Configuration Read
• Configuration Write
• DAC Cycles

The GT–64242A does not act as a target for Interrupt Acknowledge and Special cycles (these cycles are ignored).
The GT–64242A does not support Exclusive Accesses. It treats Locked transactions as regular transactions (it
does not support LOCK* pin).

The slave consists of 512 bytes of posted write data buffer that can absorb up to 4 write transactions, and 8 read
prefetch buffers, 128 bytes each, to support up to 8 delayed reads.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 150 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.7.1 PCI Write Operation
All PCI writes are posted. Data is first written into the posted write buffer and later written to the target device.

The slave supports unlimited burst writes. The write logic separates the long PCI bursts to fixed length bursts
towards the target device. Program the internal burst length to four, eight, or 16 64-bit words through the PCI
Access Control registers’s MBurst bits [21:20], see Table 208 on page 193. Whenever this burst limit is reached,
the slave generates a write transaction toward the target device, while continuing to absorb incoming data from
the PCI. The PCI burst writes have no wait states (TRDY* is never deasserted). In case the slave transaction
queue is full, a new write transaction is retried. This depends on target device capability to absorb the write data
(target device bandwidth and arbitration scheme).

The slave posting writes logic also aligns bursts that do not start on a 32/64/128-byte boundary, depending on the
MBurst setting, for more efficient processing by the target units. For example, if MBurst is set to maximum
bursts of eight 64-bit words, and a PCI long burst write transaction starts at address 0x18, the slave issues a write
transaction of five 64-bit words to the target unit and continues with a new transaction to address 0x40.

NOTE: If the PCI address does not match any of the PCI Access Control registers address windows, the default
burst write size is four 64-bit words.

The PCI slave treats Memory Write and Memory Write and Invalidate commands the same way.

If the region is marked as cache coherent, MBurst must be set to four 64-bit words.

8.7.2 PCI Read Operation
All PCI reads can be configured to be handled as non prefetched, prefetched or aggressive prefetched, and also to
be handled as delayed transactions or not. Also, it is possible to program the amount of prefetched data. These
read attributes are programable per transaction type (read/read-line/read-multiple) and per address range, as
defined by the PCI Access Control registers (see Table 208 on page 193).

If an address range is marked as non-prefetchable (PrefetchDis bit in the PCI Access Control register), a PCI read
to this region results in a single word read from the target device. An attempt to burst from a non-prefetchable
region results in a disconnect after the first data. It is recommended to mark a region as non-prefetchable, only if
prefetch reads from this area are destructive (e.g. target device is a FIFO).

In case of a prefetchable region, the size of the burst read requested from the target device can be programed to
four, eight, or 16 64-bit words, through PCI Access Control register’s MBurst bits. If the typical PCI read trans-
action is long, it is recommended to set this bit to long bursts. However, setting this bit to long bursts implies that
the target unit (SDRAM interface unit for example) is busy for many cycles and not able to serve requests from
other interfaces (CPU for example).

NOTE: If the region is marked as cache coherent, MBurst must be set to four 64-bit words.

The PCI slave interface supports two prefetch modes, selected via the RdPrefetch, RdLinePrefetch, and RdMul-
Prefetch bits in the PCI Access Control register - regular prefetch and aggressive prefetch.

In regular prefetch mode, the target device is requested for a single burst transaction (burst size depends on the
setting in the MBurst field). If by the time all of the burst data was driven on the PCI bus and the PCI read trans-
action is still alive (implying a longer burst is required), the slave terminates the transaction with disconnect and

PCI Interface
PCI Target Operation

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 151
Not Approved by Document Control - For Review Only

the initiating master must re-issue the remaining transaction. If the typical PCI reads behave this way (requiring
more than a single target device burst), it is recommended to use the aggressive prefetch mode.

In the aggressive prefetch mode, the target is requested for two bursts in advance (similar to aggressive prefetch
in GT-64120 and GT-64130 devices). If the read transaction on the PCI is still active by the time the first burst is
driven on the PCI bus, the slave prefetches an additional burst (a third one) while driving the second burst on the
PCI bus.

NOTE: The PCI slave treats Memory Read, Memory Read Line, and Memory Read Multiple commands the
same, unless using different RdPrefetch, RdLinePrefetch, RdMulPrefetch settings. These settings enable
“smart” PCI masters that generate different PCI read commands to have regular prefetch for one type of
command, and aggressive prefetch for another type.

If not using delayed reads, the slave drives read data on the PCI bus (TRDY* asserted) as soon as data arrives
from the target unit. The slave does not wait for the read buffer to be full. In case of a burst read from a slow tar-
get device, the slave might need to insert wait states (TRDY* deasserted) between the data phases, according to
the data rate from the target.

As mentioned above, the PCI slave prefetch read data, based on the setting of the MBurst parameter. However,
there is one exception. If the initiating PCI master, asserts FRAME* for a single clock cycle (which implies it
request a single data), the PCI slave will read a single data from the target interface, regardless of MBurst setting

NOTE: If the PCI address does not match any of PCI Access Control registers address windows, the default
burst read size is four 64-bit words, and is treated as a non-delayed read. Also, read prefetching is deter-
mined according to the value of the corresponding Base Address Register prefetch bit.

With a PCI burst access that uses a start address outside the range of all the Access Control address win-
dows, the PCI slave cannot recognize when the burst is crossing one of the Access Control windows. So,
if using the Access Control registers, it is recommended that they cover the whole PCI slave address
space. Conversely, if a PCI burst start address is within an access region and then crosses the region
boundary, the PCI slave disconnects.

8.7.3 PCI Delayed Reads
Delayed reads are configurable through the PCI Access Control register’s DReadEn bit [13]. Delayed reads are
typically useful in multi-PCI masters environments. In these environments, PCI bus efficiency is critical and
there is a need to minimize wait states on the bus. When using delayed reads, there are no wait states (not to first
data nor to consecutive data). The bus is released quickly, allowing other PCI masters gain bus arbitration.

The slave supports up to eight pending delayed reads. When a read transaction is marked as a delayed read, the
slave issues a STOP* immediately (retry termination), but internally continues the transaction towards the target
device. When the data is received from the target, it is written to one of the eight read buffers. Any attempt to
retry the original transaction before the read buffer is full (the whole burst is written into the buffer) results in
STOP*. When the read buffer is full, a retry of the original transaction results in data driven immediately on the
bus.

If by the time all burst data is driven on the PCI bus and the PCI read transaction is still alive (implying that a
longer burst is required), the slave terminates the transaction with disconnect and the initiating master must re-
issue the remaining transaction. If the typical PCI reads behave this way (requiring more than a single target
device burst), it is recommended to use the aggressive prefetch mode.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 152 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

NOTE: If a region is marked as non-prefetchable, a read access to this region is treated as a single data delayed
read, even if the region is not marked to be used with delayed reads.

If a region is marked to be used with aggressive prefetch, a read access to this region is treated as a
delayed read (prefetch of two read buffers), even if region is not marked to be used with delayed reads.

8.7.4 PCI Slave Read Buffers
The slave handles a queue of available read buffers.

For every incoming read transaction, the slave allocates a new read buffer. The read buffer is where the returned
data from the target is stored. When the buffer data is flushed to the PCI bus (completion of the read transaction),
the buffer is invalidated and is free to be re-used.

If all eight read buffers are full and a new read buffer is required (a new read transaction), the incoming read
transaction is retried.

To prevent dead locks due to “stuck” buffers (valid buffers that are never being accessed), the GT–64242A sup-
ports a Discard Timer register, see Table 199 on page 188. Each read buffer has its timer initiated to the Discard
Timer value. When the address is isuued on the PCI, the buffer timer starts counting down. If the buffer timer
reaches ‘0’ before being accessed, the buffer is invalidated. Setting the Discard Timer register to ‘0’ prevents the
slave from invalidating the read buffers.

8.7.5 PCI Access to Internal Registers
PCI writes to internal registers are posted as any other PCI write to memory, with the exception of writes to the
PCI interface unit’s internal registers. These writes are non-posted – the slave asserts TRDY* only when data is
actually written to the internal register. This implementation guarantees that there is never a race condition
between the PCI transaction changing address mapping (Base Address registers) and the following transactions.

Burst writes to internal registers are not supported. An attempted burst to internal registers results in a disconnect
after 1st TRDY*.

PCI reads from internal registers are treated as reads from a non-prefetchable region (single 32-bit word read),
regardless of PCI Access Control registers settings. An attempt of burst read from internal registers results in a
disconnect after the first data.

8.7.6 PCI I/O Access
The GT–64242A PCI slave only supports I/O read and write accesses to its internal registers, and to the other PCI
interface (P2P bridging) if there are multiple PCI interfaces. Both cases are treated the same. An I/O write is
treated as a single 32-bit word write. An I/O read is treated as a single 32-bit non-prefetchable read.

8.7.7 PCI Configuration Access
The GT–64242A PCI slave supports configuration read and write access to the GT–64242A configuration space,
and to the other PCI interface (P2P bridging) if there are multiple PCI interfaces. Both cases are treated the same.
A configuration write is treated as a 32-bit word non posted write. A configuration read is treated as 32-bit word
non prefetchable read.

PCI Interface
PCI Target Termination

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 153
Not Approved by Document Control - For Review Only

8.8 PCI Target Termination

The GT–64242A PCI slave supports the three types of target termination events specified in PCI specification –
Target Abort, Retry and Disconnect.

Target Abort is activated in the following cases:

• I/O transaction with address bits [1:0] not consistent with byte enables.
• Address parity error.
• Violation of PCI access protection setting.

In any of these cases, the PCI slave latches the address in the PCI Slave Error Address register and sets an inter-
rupt bit in the Interrupt Cause register.

If the PCI slave cannot complete a transaction in a “reasonable time”, it might terminate a transaction with Retry
or Disconnect. All conditions of Retry and Disconnect are described bellow.

8.8.1 Timeout Termination
The GT–64242A includes two 8-bit timeout registers (see Table 198 on page 188) – timeout0 for Retry termina-
tion and timeout1 for Disconnect termination (same as in GT-64120 and GT-64130 devices). Timeout0 defines
the maximum allowed wait-states between FRAME* assertion and first TRDY* assertion. Timeout1 defines the
maximum wait-states between consecutive TRDYs (in case of a burst). By default, these registers are initialized
to 0xf and 0x7, as required by PCI spec. However, it is possible to program these registers to longer numbers to
support access to slow devices.

Retry or Disconnect termination due to timeout expired might happen if:

• Timeout0 expired before first read data received from the target device. Relevant only for non-delayed
reads.

• Timeout1 expired before next read data of a burst read received from the target device. Relevant only for
non-delayed reads.

• Timeout0 expired before non-posted write completes.

NOTE: Timeout0 must be greater than ‘5’.

8.8.2 Non-Timeout Termination Conditions
There are more conditions of immediate Retry termination (without waiting for timeout):

• Delayed reads.
• Slave transaction queue is full.
• A new read transaction, and there is no available read buffer.
• A new synch barrier transaction while there is a pending unresolved previous sync barrier.

Also, there are some additional disconnect cases:

• A burst access with start address bits[1:0] different than ‘00.
• A burst access that reaches BAR boundary or Access Control window boundary.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 154 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

• A delayed read completion that requires more than one buffer.

8.9 Initialization Retry

Some applications require programing of the PCI configuration registers in advance of other bus masters access-
ing them. In a PC add-in card application, for example, the Device ID, BAR size requirements, etc., must be set
before the BIOS attempts to configure the card. The GT–64242A provides a mechanism that directs the PCI tar-
get interface to Retry all of the transactions until this configuration is complete. This prevents race conditions
between the local processor and the BIOS.

If Initialization Retry is enabled at reset, the PCI slave Retries any transaction targeted to the GT–64242A’s
space. The GT–64242A remains in this retry mode until the CPU configuration register’s StopRetry bit is set.
This mode is useful in all of the applications in which the local CPU programs the PCI configuration registers.

If serial ROM initialization is enabled, any PCI access to the GT–64242A is terminated with Retry. This lasts
until the end of the initialization. See Section 20. “Reset Configuration” on page 325 for more details.

8.10 Synchronization Barrier

The GT–64242A supports a sync barrier mechanism. This mechanism is a hardware hook to help software syn-
chronize between the CPU and PCI activities. The GT–64242A supports sync barrier in both directions - CPU-to-
PCI and PCI-to-CPU.

Figure 32 shows an example of the PCI sync barrier application.

Figure 32: CPU Sync Barrier Example

Assume the CPU sends a packet to some PCI device and then notifies this device (via one of the GPP pins) that it
has a packet waiting to handle. Since the packet may still reside in the GT–64242A CPU interface write buffer or

CPU

GT–64242A PCI Device Memory
GPP

PCI Bus

PCI Interface
Clocks Synchronization

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 155
Not Approved by Document Control - For Review Only

in the PCI master write buffer, the PCI device must first perform a sync barrier action, to make sure the packet is
no longer in the GT–64242A buffers.

The PCI slave “synchronization barrier” cycles are Configuration Reads. If there is no posted data within the
CPU interface write buffer and PCI master write buffer, the cycle ends normally. If after a timeout0 period there
is still posted data in the buffers, the cycle is terminated with Retry. Until the original cycle ends, any new “syn-
chronization barrier” cycles are terminated with Retry. The PCI slave only handles a single pending sync barrier
transaction at a time.

NOTE: The PCI device that initiated the sync barrier transaction, must keep retrying the transaction until it com-
pletes. If the transaction is terminated, and never retried, any new sync barrier attempt results in a retry
termination (since the PCI slave can support only a single outstanding sync barrier transaction at a time).
In order to prevent dead locks due to missing sync barrier completion, the sync barrier mechanism is
protected by the discard timer, similar to the delayed read bluffers, see Section 8.7.4.

An alternative method for generating the PCI slave sync barrier is reading from the PCI Sync Barrier Virtual reg-
ister, see Table 207 on page 193. When reading this register from PCI, the PCI slave checks if the write buffers to
be empty, and only when there is no posted write data in the buffers, completes the transaction on the PCI bus.
The returned data is indeterministic.

Setting the PCI Control register’s SBD bit to ‘1’ disables sync barrier action on configuration reads. This allows
the user to perform configuration reads to the GT–64242A without suffering from sync barrier latency.

8.11 Clocks Synchronization

The PCI interface clock (Clk) is designed to run asynchronously with respect to the memory clock (TClk) and
CPU clock (SysClk). Also, the two PCI interfaces can run asynchronously to each other.

The PCI interface includes synchronization logic that synchronizes between the Clk and TClk clock domains,
enabling these two clocks to run asynchronously.

NOTE: Unlike the GT-64120 and GT-64130, the GT–64242A has no special synch modes, for different fre-
quency ranges. The only restriction is that the TClk frequency must be greater than the Clk frequency.

8.12 Data Endianess

The GT–64242A supports interfacing with both Little and Big Endian orientation CPUs. Although the PCI spec-
ification defines the PCI bus only as a Little Endian bus, the GT–64242A supports also interfacing Big Endian
PCI devices.

Endianess conversion is supported in both directions - access to PCI via the PCI master interface and access from
PCI via the PCI slave interface.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 156 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Both PCI master and slave supports byte and word swapping. The swapping is refered to a 64-bit words (as this
is the GT–64242A internal data path width). Table 143 shows an example of the data 0x0011223344556677.

The right swapping setting depends on the PCI bus width (32/64) and endian orientation (Big/Little), as well as
the CPU bus endianess orientation.

8.12.1 PCI Slave Data Swapping
For maximum endianess flexibility, it is possible to configure each of the eight address ranges defined by the PCI
Access Control registers to different data swapping. This feature enables different PCI masters with different
endianess conventions to interface with the GT–64242A.

The GT–64242A still preserves the GT-64120/130 devices data swapping mechanism for software compatibility.
If the PCI Command register’s SwapEn bit is cleared (default), the PCI slave handles data according to the set-
ting of the PCI Command register’s SByteSwap [16] and SWordSwap bit [11] (see Table 196 on page 183), as in
the GT-64120/130 devices.

The GT–64242A internal registers always maintain Little Endian data. By default, it is assumed that data driven
on the PCI bus is in Little Endian convention, and there is no data swapping on PCI access to the internal regis-
ters. However, the GT–64242A supports data swapping also on the PCI access to internal registers via the PCI
Command register’s SIntSwap bits [26:24].

Table 143: Data Swap Control

Swap
Control Swapping Granularity Swapped Data

00 Byte 77 66 55 44 33 22 11 00

01 Non 00 11 22 33 44 55 66 77

10 Byte and Word 33 22 11 00 77 66 55 44

11 Word 44 55 66 77 00 11 22 33

Table 144: 32-bit PCI Byte and Word Swap Settings

Litt le Endian PCI agent Big Endian PCI agent

Big endian CPU bus Byte swapping Word swapping

Table 145: 64-bit PCI Byte and Word Swap Settings

Litt le Endian PCI agent Big Endian PCI agent

Big endian CPU bus Byte swapping No swapping

PCI Interface
64-bit PCI Interface

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 157
Not Approved by Document Control - For Review Only

8.12.2 PCI Master Data Swapping
Very similar to the slave data swapping mechanism, the PCI master also supports data swapping on any access to
the PCI bus.

It also supports flexible swapping control, determined by the initiator, on an address window basis. This feature
enables the CPUand IDMAs units to interface different PCI targets with different endianess conventions.

The GT–64242A still preserves the GT-64120/130 devices fixed data swapping for software compatibility. If the
PCI Command register’s SwapEn bit is cleared (default), the PCI master handles data according to the setting of
the PCI Command register’s MByteSwap and MWordSwap bits, see Table 196 on page 183.

See the following sections for further details about transaction initiator endianess configuration:
• For CPU details: Section 4.11 “CPU Endian Support” on page 61.
• For IDMA details: Section 10.7 “Big and Little Endian Support” on page 254.

8.13 64-bit PCI Interface

The GT–64242A supports a 64-bit PCI interface. To operate as a 64-bit device, the REQ64* pin must be sampled
LOW on RST* rise as required by PCI spec (Hold time of REQ64* in respect to RST* rise is ‘0’).

When the GT–64242A is configured to 64-bit PCI, both master and target interfaces are configured to execute 64-
bit transactions, whenever it is possible.

NOTE: Since PCI interface supports CompactPCI Hot Swap Ready, P64EN* pin is used to detect a 64-bit PCI
bus rather than REQ64*. If not using CompactPCI, connect PCI REQ64* to P64EN* pin.

8.13.1 PCI Master 64-bit Interface
The PCI master interface always attempts to generate 64-bit transactions (asserts REQ64*), except for I/O or
configuration transaction or when the required data is no greater than 64-bits. If the transaction target does not
respond with ACK64*, the master completes the transaction as a 32-bit transaction.

The PCI master also avoids from generating a 64-bit transaction, if the requested address is not 64-bit aligned,
and the PCI Command register’s M64Allign bit [18] is set cleared, see Table 196 on page 183. For example the
requested address is 0x4, the master issues a 64-bit transaction (assert REQ64*) with byte enables 0x0f. If the tar-
get does not respond with ACK64*, the transaction becomes a 32-bit transaction, with the first data phase driven
with byte enable 0xf. Although it is fully compliant with the PCI specification, some target devices do not toler-
ate this behavior. Use the M64Allign bit to prevent this problem.

When a PCI burst running in 64-bit mode is disconnected, and the amount of data the master needs to drive is not
greater than 64-bit, it completes the disconnected transaction as a 32-bit master (does not assert REQ64*). This
behavior has a small penalty in case the target device is capable of accepting the transaction as a 64-bit transac-
tion. More over, it might be problematic when the target is a 64-bit Big Endian target. As mentioned before, the
byte swapping setting depends not only on the endianess nature of both initiator and target but also on bus width.
Changing bus width in the middle of a transaction targeted to a Big Endian device results in an incorrect data
transfer.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 158 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

NOTE: See the Galileo Technology Technical Bulletin TB-51 for more information on 64-bit Big Endian PCI
bus.

If the targeted device on the PCI bus is a 64-bit device that ALWAYS responds with ACK64* to 64-bit transac-
tion, the PCI master can be configured to always assert REQ64*, even if the amount of data needs to be trans-
ferred is less than or equal to 64-bit. Each initiating interface (CPUor IDMA units) has programable bits, that
forces the PCI master to issue 64-bit transactions. When running in this mode, correct endianess is guaranteed,
even when interfacing a 64-bit Big Endian device on the PCI bus.

NOTES:Forcing REQ64* is allowed only when the target PCI device responds with ACK64* to a 64-bit trans-
actions. If the target device is not of that type and REQ64* is forced, a PCI violation occurs and the sys-
tem might hang.

The PCI bus is defined as a Little Endian bus. Placing Big Endian devices on the bus is not compliant
with the PCI specification. This feature of forcing REQ64* is implemented to support 64-bit Big Endian
devices on the PCI bus. The hook of forcing REQ64* is not fully compliant with the PCI specification,
and must be used carefully.

8.13.2 PCI Slave 64-bit interface
The PCI target interface always responds with ACK64* to a 64-bit transaction, except for accesses to configura-
tion space, internal registers, I2O space, or I/O transaction.

8.14 64-bit Addressing

Both PCI master and slave support 64-bit addressing cycles.

Both CPU and DMAs support 64-bit remapping registers towards the PCI interface. If the CPU or one of the
DMAs initiate a PCI transaction with an address higher than 4Gbyte (which means that the upper 32-bit address
is not 0), the master initiates a DAC transaction. This means the transaction address phase takes two clock cycles.

On the first cycle, the master drives a ‘1101’ value on C/BE[3:0]* and the lower 32-bit address on AD[31:0]. On
the next cycle it drives the required command on C/BE[3:0]* and the upper 32-bit address on AD[31:0].

If the PCI interface is configured to 64-bit bus, the master drives on the first cycle the required command on C/
BE[7:4]* and the upper 32-bit address on AD[63:32]. This is useful when the target is also a 64-bit addressing
capable device. In this case, the target starts address decoding on the first cycle, without waiting for the second
address cycle.

On a DAC transaction, target address decode time is one cycle longer than in SAC transaction. Thus, the master
issues a master abort on a DAC transaction only after five clock cycles, rather than four clocks in the case of
SAC.

As a target, GT–64242A responds to DAC transactions if the address matches one of it’s 64-bit BARs. In this
case, the slave starts address decoding only after 2nd cycle (when the whole 64-bit address is available). This
implies that DEVSEL* asserts three clock cycles after FRAME* rather than two clocks in the case of SAC trans-
action.

The PCI slave 64-bit BARs are not necessarily used only for DAC transactions. If the upper 32-bit of the BAR
are set to ‘0’, it acts as a 32-bit BAR responds to SAC transactions.

PCI Interface
PCI Parity and Error Support

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 159
Not Approved by Document Control - For Review Only

NOTE: The PCI specification restricts the PCI masters from issuing DAC transactions if the address is bellow
4Gbyte space.

8.15 PCI Parity and Error Support

The GT–64242A implements all parity features required by the PCI specification. This includes PAR, PERR*,
and SERR* generation and checking, also PAR64 in case of 64-bit PCI configuration.

It also supports propagation of errors between the different interfaces. For example, a PCI read from SDRAM
with ECC error detection may be configured to be driven on the PCI bus with bad PAR indication.

The PCI interface also supports other error conditions indications, such as access violation and illegal PCI bus
behavior, see Section 8.6 “PCI Access Protection” on page 148 and Section 8.8 “PCI Target Termination” on
page 153 for more details.

The PCI parity support is detailed in Section 6. “Address and Data Integrity” on page 118.

8.16 Configuration Space

The PCI slave supports Type 00 configuration space header as defined in PCI specification. The GT–64242A is a
multi-function device and the header is implemented in all eight functions as shown in Figure 33 and Figure 34.
The configuration space is accessible from the CPU or PCI buses.

If IDSEL* is active and it is a type 0 configuration transaction, the slave responds to configuration read/write.
Many of functions 1-7 registers are aliased to function 0 registers. For example, access to Vendor ID register in
function 1 actually accesses Vendor ID register of function 0.

The GT–64242A acts as multi function device regardless of multi-function bit setting (bit[7] in Header Type) - it
responds to configuration access to any of the eight functions.

8.16.1 Plug and Play Base Address registers Sizing
Systems adhering to the plug and play configuration standard determine the size of a base address register’s
decode range by first writing 0xFFFF.FFFF to the BAR, then reading back the value contained in the BAR. Any
bits that were unchanged (i.e. read back a zero) indicate that they cannot be set and are not part of the address
comparison. With this information the size of the decode region can be determined.

The GT–64242A responds to BAR sizing requests based on the values programmed into the Bank Size Registers
(see Table 255 on page 212). Whenever a BAR is being read, the returned data is the BAR’s value masked by it’s
corresponding size register. For example, if SCS[0] BAR is programed to 0x3FF0.0000 and SCS[0] Size register
is programed to 0x03FF.FFFF, the PCI read of SCS[0] BAR will result in data of 0x3C00.0000.

The Size registers can be loaded automatically after RESET as part of the GT–64242A serial ROM initialization,
see Section 20. “Reset Configuration” on page 325 for more details.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 160 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 33: PCI Configuration Space Header

Device ID Vendor ID

Rev ID
Status Command

Class Code
Header Line SizeLatencyBIST

SCS[0] BAR
SCS[1] BAR
SCS[2] BAR
SCS[3] BAR

Mem Mapped Internal BAR
IO Mapped Internal BAR

Reserved
Subsystem ID Subsystem Vendor ID

Expansion ROM BAR
Cap. PtrReserved

Reserved
Min_Gnt

Int.
LineInt. PinMax_Lat

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Function 0 Header

CS[0] BAR
CS[1] BAR
CS[2] BAR
CS[3] BAR

BootCS BAR
Reserved
Reserved

Reserved
ReservedReserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Function 1 Header

Function 2 Header Function 3 Header

Reserved Read Only 0

Aliased to function 0
register

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved
ReservedReserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Reserved
Reserved
Reserved
CPU BAR
Reserved
Reserved
Reserved

Reserved
ReservedReserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

PCI Interface
Configuration Space

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 161
Not Approved by Document Control - For Review Only

Figure 34: PCI Configuration Space Header1

1. Function 7 CPU 64-bit BAR is a Reserved register

CS[0] 64-bit BAR

CS[1] 64-bit BAR

Reserved

Reserved
ReservedReserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Function 6 Header Function 7 Header

Reserved Read Only 0
Aliased to function 0

register

CS[2] 64-bit BAR

CS[3] 64-bit BAR

Reserved

Reserved
ReservedReserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

BootCS 64-bit
BAR

SCS[0] 64-bit
BAR

SCS[1] 64-bit BAR

Reserved

Reserved
ReservedReserved

Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Function 4 Header Function 5 Header

Reserved

SCS[2] 64-bit BAR

SCS[3] 64-bit BAR

Reserved
Reserved

ReservedReserved
Reserved

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Reserved

CPU 64-bit BAR

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 162 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.17 PCI Special Features

The GT–64242A supports the following special PCI features:
• Built In Self Test (BIST)
• Vital Product Data (VPD)
• Message Signaled Interrupt (MSI)
• Power Management
• Compact PCI Hot Swap

The VPD, MSI, PMG, and HotSwap features are configured through Capability List, as shown in Figure 35.

PCI Interface
PCI Special Features

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 163
Not Approved by Document Control - For Review Only

Figure 35: GT–64242A Capability List

8.17.1 Power Management
The GT–64242A implements the required configuration registers defined by the PCI specification for supporting
system Power Management as well as PME* pin.

NOTE: For full details on system Power Management implementation, see the PCI specification.

The Power Management capability structure consists of the following fields:
• Capability structure ID. The ID of PMG capability is 0x1.

Device ID Vendor ID

Rev ID
Status Command

Class Code
Header Line SizeLatencyBIST

SCS[0] BAR
SCS[1] BAR
SCS[2] BAR
SCS[3] BAR

Mem Mapped Internal BAR
IO Mapped Internal BAR

Reserved
Subsystem ID Subsystem Vendor ID

Expansion ROM BAR
Cap. PtrReserved

Reserved
Min_Gnt Int. LineInt. PinMax_Lat

00h
04h
08h
0Ch
10h
14h
18h
1Ch
20h
24h
28h
2Ch
30h
34h
38h
3Ch

Function 0 Header

Message Address
Message Upper Address

Message Data

Cap. IDNext Ptr.Message Control

VPD Data
Cap. IDNext Ptr.VPD AddressF

Cap. IDNext Ptr.PMC
PMCSRBSRData

Cap. IDNull Ptr.HSCSRReserved

MSI Capability

VPD Capability

Power Management
Capability

CompactPCI Hot-
Swap Capability

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 164 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

• Pointer to next capability structure.
• Power Management Capability.
• Power Management Status and Control.

The Power Management registers are accessible from the CPU or PCI. Whenever PCI updates the PCI Power
Management Control and Status register’s Power State bits [1:0] (see Table 266 on page 216), the PCI Interrupt
Cause register’s PM interrupt bit is set and an interrupt to the CPU or PCI is generated, if not masked by interrupt
mask registers.

PME* is an open drain output. When the CPU sets PME_Status bit to ‘1’ in the PMCSR register, the GT–64242A
asserts PME*. It keeps asserting PME* as long as the bit is set, and the PME_En bit is set to ‘1’ in the PMCSR
register. The PCI clears the PME_Status by writing ‘1’, causing the deassertion of PME*.

The PME pin are multiplexed on the GT–64242A MPP pins. If PME* support is required, first program the MPP
pins to the appropriate configuration. See Section 15. “MPP Multiplexing” on page 288 for details.

NOTE: The GT–64242A does not support it’s own power down. It only supports a software capability to power
down the CPU or other on board devices.

8.17.2 Vital Product Data (VPD)
VPD is information that uniquely identifies hardware elements of a system. VPD provides the system with infor-
mation such as part number, serial number or any other information.

The PCI specification defines a method of accessing VPD. The GT–64242A VPD implementation is fully com-
pliant with the spec. For full details on the VPD’s structure, see the PCI specification.

The VPD’s capability structure consists of the following fields:

• Capability structure ID. The ID of VPD capability is 0x3.
• Pointer to next capability structure.
• VPD Address. The 15-bit address of the accessed VPD structure.
• Flag. Used to indicate data transfer between VPD Data register and memory.
• VPD Data. The 32-bit VPD data written to memory or read from memory.

The GT–64242A supports a VPD located in CS[3]* or BootCS* Device. PCI access to this VPD results in access
to CS[3] or BootCS*, depending on the PCI Address Decode Control register’s VPDDev bit setting (see
Table 195 on page 183). Although the PCI specification defines the address to be accessed, as the VPD Address
field in the VPD capability list item (15-bit address), the GT–64242A supports remapping of the 17 high bits by
setting the PCI Address Decode Control register’s VPDHighAddr field to the required address.

For PCI VPD write, the PCI write VPD data first, then writes the VPD address with Flag bit set to ‘1’. As a
response, the slave writes the VPD data to the VPD device (CS[3] or BootCS) to the required address and clears
the Flag bit as soon as the write is done.

For a PCI VPD read, the PCI writes VPD address with the Flag bit set to ‘0’. As response, the slave reads the
VPD device from the required address, places the data in the VPD data field, and sets the Flag bit to ‘1’. The
VPD read is treated as a non-prefetched nor delayed read transaction.

PCI Interface
PCI Special Features

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 165
Not Approved by Document Control - For Review Only

8.17.3 Message Signaled Interrupt (MSI)
The MSI feature enables a device to request an interrupt service without using interrupts. The device requests a
service by writing a system specified message to a system specified address. The system software initializes the
message destination and message during device configuration. The GT–64242A MSI implementation is fully
compliant with the PCI specification. It supports a single interrupt message.

The MSI capability structure consists of the following fields:

• Capability structure ID. The ID of MSI capability is 0x5.
• Pointer to next capability structure.
• Message Control.
• Message Address. 32-bit message low address.
• Message Upper Address. 32-bit message high address (in case 64-bit addressing is supported)
• Message data. 15-bit of message data.

Message Control word consists of the following fields:

• bit[0] - MSI Enable. If set to 1, MSI is enabled, and the GT–64242A drives interrupt messages rather
than asserting the PCI INT* pin

• bits[3:1] - Multiple Message Capable. Defines the number of DIFFERENT MSI messages the GT–
64242A can drive.

• bits[6:4] - Multiple Message Enable. Defines the number of DIFFERENT MSI messages the system
allocates for the GT–64242A.

• bit[7] - 64-bit address capable. Enables 64-bit addressing messages.

As soon as PCI enables MSI (set MSI enable bit), GT–64242A will no longer assert interrupts on the PCI bus.
Instead, the PCI master will drive a memory write transaction on the PCI bus, with address as specified in Mes-
sage Address field and data as specified in the Message Data field.

If the Message Upper Address field is set to ‘0’, the master drives a DWORD write, else it drives a DAC
DWORD write.

Unlike the PCI INT*, a level sensitive interrupt that is active as long as there are active non-masked interrupts
bits set, MSI is an edge like interrupt. However, to prevent the PCI interrupt handler from missing any new inter-
rupt events, the GT–64242A continues to drive new MSI messages while pending, non-masked interrupts exist.

The MSI Timeout register defines the time gap (TClk cycles) between sequential MSI requests. A timer starts
counting with each new MSI request. If it reaches ‘0’ and there is still a pending non-masked interrupt, a new
MSI request is triggered. If the PCI interrupt handler clears one of the Interrupt Cause register bits and there is
still a pending interrupt, the GT–64242A immediately issues a new MSI without waiting for the timeout to
expire.

Setting the MSI Timeout register to ‘0’ disables the timer functionality (as if it was programed to infinity). In this
case, the PCI interrupt handler must confirm that there are no interrupt event is missed.

NOTE: When programing the MSI Timeout register to a small value, the PCI master transaction queue is repeat-
edly filled with MSI requests. This prevents CPU or DMA access to the PCI until the PCI interrupt han-
dler clears the interrupt cause bit(s).

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 166 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.17.4 Hot Swap
The GT–64242A is CompactPCI Hot-Swap ready compliant. It implements the required configuration registers
defined by CompactPCI Hot-Swap specification as well as three required pins.

The ComactPCI Hot Swap capability structure consists of the following fields:

• Capability structure ID. The ID of HS capability is 0x6.
• Pointer to next capability structure.
• Hot Swap Status and Control.

Hot Swap Status and Control register (HS_CSR) is accessible from both CPU and PCI. This register bits give
status of board insertion/extraction as defined in the spec. HS_CSR bits are:

• EIM - ENUM* Interrupt Mask. If set to ‘1’, the GT–64242A won’t assert ENUM* interrupt.
• LOO - LED On/Off. If set to ‘1’ LED is on.
• REM - Removal. Indicates board is about to be extracted.
• INS - Insertion. Indicates board has been inserted.

The GT–64242A supports four Hot-Swap ready required pins:

• HS - Handle Switch input pin. Indicates insertion or extraction of board. A ‘0’ value indicates the han-
dle is open.

• LED - LED control output pin. A ‘1’ value turns the on board LED on.
• ENUM* - open drain output. Asserted upon board insertion or extraction (if not masked by EIM bit).
• P64EN* - PCI 64-bit enable input. Replaces the REQ64* sample on reset deassertion.

NOTE: If not using the GT–64242A in a hot-swap board, the REQ64* pin must be connected to P64EN*.

Board extraction consists of the following steps:

1. The operator opens board ejector handle. As a result, HS goes LOW, indicating board is about to be
extracted.

2. As a result, the REM bit is set and the ENUM* pin is asserted, if not masked by EIM bit.
3. The System Hot Swap software detects ENUM* assertion. Checks the REM bits in all Hot-Swappable

boards. Identifies the board about to be extracted and clears the REM bit (by writing a ‘1’ value).
4. The GT–64242A acknowledges the system software by stop asserting the ENUM* pin.
5. The Hot Swap software might re-configure the rest of the boards, and when ready, it sets the LOO bit,

indicating board is allowed to be removed.
6. As a result, GT–64242A drive LED pin to ‘1’, the on board LED is turned on indicating that the opera-

tor may remove the board.
Board insertion consists of the following steps:

1. Board is inserted. It is powered from Early Power and it’s reset is asserted from Local PCI Rst*. The on
board LED is turned on by hardware (not as a result of LOO bit state).

2. Local PCI Rst* is deasserted, causing LED to turn off, indicating that the operator may lock the ejector
handle.

3. The operator locks the handle. As a result, HS goes HIGH, indicating board is inserted and locked.
4. As a result, INS bit is set and ENUM* is asserted, notifying Hot-Swap software that a board has been

PCI Interface
PCI Special Features

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 167
Not Approved by Document Control - For Review Only

inserted.
5. System Hot Swap software detects ENUM* assertion, checks INS bits in all Hot-Swappable boards,

identifies the inserted board and clears INS bit (by writing a value of 1).
6. GT–64242A acknowledges system software by stop asserting ENUM* pin. Now software may re-con-

figure all the boards.
NOTE: For full details on Hot-Swap process and board requirements, see the CompactPCI Hot-Swap specifica-

tion.

To support HotSwap Ready requirements, the GT–64242A implements a P64EN* input pin. When hot inserting a
board, REQ64* cannot be sampled with local reset deassertion in order to identify 64-bit PCI bus, since REQ64*
is an active signal on the bus. For this reason, the P64EN* signal is provided. The GT–64242A samples this pin
rather than the REQ64* on reset deassertion (local reset) to determine whether it works in a 64-bit PCI environ-
ment.

In addition, the GT–64242A supports the following hot swap device requirements:

• All PCI outputs floats when RST* is asserted.
• All GT–64242A PCI state machines are kept in their idle state while RST* is asserted.
• The GT–64242A PCI interface maintains it’s idle state until PCI bus is in an IDLE state. If reset is deas-

serted in the middle of a PCI transaction, the PCI interface stays in it’s idle state until the PCI bus is
back in idle.

• The GT–64242A has no assumptions on clock behavior prior to it’s setup to the rising edge of RST#.
• The GT–64242A is tolerant of the 1V precharge voltage during insertion.
• The GT–64242A can be powered from Early Vcc.

8.17.5 BIST (Built In Self Test)
The GT–64242A supports BIST functionality as defined by the PCI specification. It does not run its own self test.
Instead, it enables the PCI to trigger CPU software self test.

The BIST Configuration register is located at offset 0xf of function 0 configuration header. It consists of the fol-
lowing fields:

• BIST Capable bit (bit[7]). If BIST is enabled through reset initialization, it is set to ‘1’. This bit is read
only from the PCI.

• Start BIST bit (bit[6]). Set to ‘1’ by the PCI to trigger CPU software self test. Cleared by the CPU upon
test finish.

• Bits[5:4] - Reserved.
• Completion Code (bits[3:0]). Written by the self test software upon test finish. Any value other than ‘0’

stands for test fail.

Upon PCI triggering of BIST (writing ‘1’ to bit[6]), the CPU interrupt is asserted (if not masked) and the CPU
interrupt handler must run the system self test. When the test is completed, the CPU software must clear bit[6]
and write the completion code.

The PCI specification requires that BIST is completed in two seconds. It is the BIST software responsibility to
meet this requirement. If bit[6] is not cleared by two seconds, the PCI BIOS may treat it as BIST failure.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 168 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

NOTE: The GT–64242A does not runs its own self test. The BIST register implementation is just a software
hook for the CPU to run a system self test.

8.18 PCI Interface Registers

All PCI CONFIGURATION registers are located at their standard offset in the configuration header, as defined
in the PCI spec, when accessed from their corresponding PCI bus. For example, if a master on PCI performs a
PCI configuration cycle on PCI’s Status and Command Register, the register is located at 0x004.

NOTE:

Table 146: PCI Slave Address Decoding Register Map

Register Offset Page

PCI SCS[0]* BAR Size 0xc08 page 174

PCI SCS[1]* BAR Size 0xd08 page 174

PCI SCS[2]* BAR Size 0xc0c page 174

PCI SCS[3]* BAR Size 0xd0c page 174

PCI CS[0]* BAR Size 0xc10 page 174

PCI CS[1]* BAR Size 0xd10 page 175

PCI CS[2]* BAR Size 0xd18 page 175

PCI CS[3]* BAR Size 0xc14 page 175

PCI Boot CS* BAR Size 0xd14 page 175

PCI DAC SCS[0]* BAR Size 0xe00 page 175

PCI DAC SCS[1]* BAR Size 0xe04 page 175

PCI DAC SCS[2]* BAR Size 0xe08 page 176

PCI DAC SCS[3]* BAR Size 0xe0c page 176

PCI DAC CS[0]* BAR Size 0xe10 page 176

PCI DAC CS[1]* BAR Size 0xe14 page 176

PCI DAC CS[2]* BAR Size 0xe18 page 176

PCI DAC CS[3]* BAR Size 0xe1c page 177

PCI DAC Boot CS* BAR Size 0xe20 page 177

PCI Expansion ROM BAR Size 0xd2c page 177

PCI Base Address Registers’ Enable 0xc3c page 177

PCI SCS[0]* Base Address Remap 0xc48 page 179

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 169
Not Approved by Document Control - For Review Only

PCI SCS[1]* Base Address Remap 0xd48 page 180

PCI SCS[2]* Base Address Remap 0xc4c page 180

PCI SCS[3]* Base Address Remap 0xd4c page 180

PCI CS[0]* Base Address Remap 0xc50 page 180

PCI CS[1]* Base Address Remap 0xd50 page 180

PCI CS[2]* Base Address Remap 0xd58 page 180

PCI CS[3]* Address Remap 0xc54 page 181

PCI Boot CS* Address Remap 0xd54 page 181

PCI DAC SCS[0]* Base Address Remap 0xf00 page 181

PCI DAC SCS[1]* Base Address Remap 0xf04 page 181

PCI DAC SCS[2]* Base Address Remap 0xf08 page 181

PCI DAC SCS[3]* Base Address Remap 0xf0C page 181

PCI DAC CS[0]* Base Address Remap 0xf10 page 182

PCI DAC CS[1]* Base Address Remap 0xf14 page 182

PCI DAC CS[2]* Base Address Remap 0xf18 page 182

PCI DAC CS[3]* Base Address Remap 0xf1c page 182

PCI DAC BootCS* Base Address Remap 0xf20 page 182

PCI Expansion ROM Base Address Remap 0xf38 page 182

PCI Address Decode Control 0xd3c page 183

Table 147: PCI Control Register Map

Register Offset Page

PCI Command 0xc00 page 183

PCI Mode 0xd00 page 187

PCI Timeout & Retry 0xc04 page 188

PCI Read Buffer Discard Timer 0xd04 page 188

PCI MSI Trigger Timer 0xc38 page 188

PCI Arbiter Control 0x1d00 page 189

PCI Interface Crossbar Control (Low) 0x1d08 page 190

Table 146: PCI Slave Address Decoding Register Map (Continued)

Register Offset Page

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 170 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

PCI Interface Crossbar Control (High) 0x1d0c page 190

PCI Interface Crossbar Timeout
NOTE: Reserved for Galileo Technology usage.

0x1d04
page 191

PCI Read Response Crossbar Control (Low) 0x1d18 page 192

PCI Read Response Crossbar Control (High) 0x1d1c page 193

PCI Sync Barrier Virtual Register 0x1d10 page 193

PCI Access Control Base 0 (Low) 0x1e00 page 193

PCI Access Control Base 0 (High) 0x1e04 page 195

PCI Access Control Top 0 0x1f08 page 195

PCI Access Control Base 1 (Low) 0x1e10 page 195

PCI Access Control Base 1 (High) 0x1e14 page 196

PCI Access Control Top 1 0x1e18 page 196

PCI Access Control Base 2 (Low) 0x1e20 page 196

PCI Access Control Base 2 (High) 0x1e24 page 196

PCI Access Control Top 2 0x1e28 page 196

PCI Access Control Base 3 (Low) 0x1e30 page 197

PCI Access Control Base 3 (High) 0x1e34 page 197

PCI Access Control Top 3 0x1e38 page 197

PCI Access Control Base 4 (Low) 0x1e40 page 197

PCI Access Control Base 4 (High) 0x1e44 page 197

PCI Access Control Top 4 0x1e48 page 198

PCI Access Control Base 5 (Low) 0x1e50 page 198

PCI Access Control Base 5 (High) 0x1e54 page 198

PCI Access Control Top 5 0x1e58 page 198

PCI Access Control Base 6 (Low) 0x1e60 page 198

PCI Access Control Base 6 (High) 0x1e64 page 199

PCI Access Control Top 6 0x1e68 page 199

PCI Access Control Base 7 (Low) 0x1e70 page 199

PCI Access Control Base 7 (High) 0x1e74 page 199

PCI Access Control Top 7 0x1e78 page 199

Table 147: PCI Control Register Map (Continued)

Register Offset Page

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 171
Not Approved by Document Control - For Review Only

Table 148: PCI Configuration Access Register Map

Register Offset Page

PCI Configuration Address 0xcf8 page 200

PCI Configuration Data Virtual Register 0xcfc page 200

PCI Interrupt Acknowledge Virtual Register 0xc34 page 200

Table 149: PCI Error Report Register Map

Register Offset Page

PCI SErr Mask 0xc28 page 201

PCI Error Address (Low) 0x1d40 page 202

PCI Error Address (High) 0x1d44 page 202

PCI Error Data (Low) 0x1d48 page 202

PCI Error Data (High) 0x1d4C page 203

PCI Error Command 0x1d50 page 203

PCI Error Cause 0x1d58 page 203

PCI Error Mask 0x1d5c page 206

Table 150: PCI Configuration, Function 0, Register Map

Register
Offset from
CPU or PCI Page

PCI Device and Vendor ID 0x00 page 208

PCI Status and Command 0x04 page 209

PCI Class Code and Revision ID 0x08 page 211

PCI BIST, Header Type, Latency Timer, and Cache Line 0x0c page 211

PCI SCS[0]* Base Address 0x10 page 212

PCI SCS[1]* Base Address 0x14 page 212

PCI SCS[2]* Base Address 0x18 page 212

PCI SCS[3]* Base Address 0x1c page 213

PCI Internal Registers Memory Mapped Base Address 0x20 page 213

PCI Internal Registers I/O Mapped Base Address 0x24 page 213

PCI Subsystem ID and Subsystem Vendor ID 0x2c page 214

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 172 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

PCI Expansion ROM Base Address 0x30 page 214

PCI Capability List Pointer 0x34 page 214

PCI Interrupt Pin and Line 0x3c page 214

PCI Power Management Capability 0x40 page 215

PCI Power Management Status and Control 0x44 page 216

PCI VPD Address 0x48 page 216

PCI VPD Data 0x4c page 217

PCI MSI Message Control 0x50 page 217

PCI MSI Message Address 0x54 page 218

PCI MSI Message Upper Address 0x58 page 218

PCI Message Data 0x5c page 219

PCI CompactPCI Hot Swap Capability 0x60 page 219

Table 151: PCI Configuration, Function 1, Register Map

Register
Offset from
CPU or PCI Page

PCI CS[0]* Base Address 0x10 page 220

PCI CS[1]* Base Address 0x14 page 220

PCI CS[2]* Base Address 0x18 page 220

PCI CS[3]* Base Address 0x1c page 220

PCI Boot CS* Base Address 0x20 page 220

Table 152: PCI Configuration, Function 4, Register Map

Register
Offset from
CPU or PCI Page

PCI DAC SCS[0]* Base Address (Low) 0x10 page 221

PCI DAC SCS[0]* Base Address (High) 0x14 page 221

PCI DAC SCS[1]* Base Address (Low) 0x18 page 221

PCI DAC SCS[1]* Base Address (High) 0x1c page 221

Table 150: PCI Configuration, Function 0, Register Map (Continued)

Register
Offset from
CPU or PCI Page

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 173
Not Approved by Document Control - For Review Only

Table 153: PCI Configuration, Function 5, Register Map

Register
Offset from
CPU or PCI Page

PCI DAC SCS[2]* Base Address (Low) 0x10 page 222

PCI DAC SCS[2]* Base Address (High) 0x14 page 222

PCI DAC SCS[3]* Base Address (Low) 0x18 page 222

PCI DAC SCS[3]* Base Address (High) 0x1c page 222

Table 154: PCI Configuration, Function 6, Register Map

Register
Offset from

CPU or PCI_0 Page

PCI DAC CS[0]* Base Address (Low) 0x10 page 223

PCI DAC CS[0]* Base Address (High) 0x14 page 223

PCI DAC CS[1]* Base Address (Low) 0x18 page 223

PCI DAC CS[1]* Base Address (High) 0x1c page 223

PCI DAC CS[2]* Base Address (Low) 0x20 page 223

PCI DAC CS[2]* Base Address (High) 0x24 page 224

Table 155: PCI Configuration, Function 7, Register Map

Register
Offset from
CPU or PCI Page

PCI DAC CS[3]* Base Address (Low) 0x10 page 224

PCI DAC CS[3]* Base Address (High) 0x14 page 224

PCI DAC Boot CS* Base Address (Low) 0x18 page 224

PCI DAC Boot CS* Base Address (High) 0x1c page 224

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 174 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.18.1 PCI Slave Address Decoding Registers

Table 156: PCI SCS[0] BAR Size
• PCI Offset: 0xc08

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 BARSize SCS[0]* BAR Address Bank Size
Must be programed from LSB to MSB as sequence of
‘1s’ followed by sequence of ‘0s’. BAR size is in 4Kbyte
resolution. For example, a 0x00FF.F000 size register
value represents a BAR size of 16Mbyte.

0x007ff

Table 157: PCI SCS[1]* BAR Size
• PCI Offset: 0xd08

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 158: PCI SCS[2]* BAR Size
• PCI Offset: 0xc0c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 159: PCI SCS[3]* BAR Size
• PCI Offset: 0xd0c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 160: PCI CS[0]* BAR Size
• PCI Offset: 0xc10

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 175
Not Approved by Document Control - For Review Only

Table 161: PCI CS[1]* BAR Size
• PCI Offset: 0xd10

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 162: PCI CS[2]* BAR Size
• PCI Offset: 0xd18

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x00fff000

Table 163: PCI CS[3]* BAR Size
• PCI Offset: 0xc14

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 164: PCI Boot CS* BAR Size
• PCI Offset: 0xd14

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 165: PCI DAC SCS[0] BAR Size
• PCI Offset: 0xe00

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 166: PCI DAC SCS[1] BAR Size
• PCI Offset: 0xe04

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 176 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 167: PCI DAC SCS[2] BAR Size
• PCI Offset: 0xe08

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 168: PCI DAC SCS[3] BAR Size
• PCI Offset: 0xe0c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 169: PCI DAC CS[0]* BAR Size
• PCI Offset: 0xe10

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 170: PCI DAC CS[1]* BAR Size
• PCI Offset: 0xe14

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 171: PCI DAC CS[2]* BAR Size
• PCI Offset: 0xe18

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x00fff000

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 177
Not Approved by Document Control - For Review Only

Table 172: PCI DAC CS[3]* BAR Size
• PCI Offset: 0xe1c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 173: PCI DAC BootCS* BAR Size
• PCI Offset: 0xe20

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 174: PCI Expansion ROM BAR Size
• PCI Offset: 0xd2c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Bank Size. 0x007ff000

Table 175: PCI Base Address Registers Enable
• PCI Offset: 0xc3c

Bits Field Name Function Init ial Value

0 SCS0En SCS[0]* BAR Enable
0 - Enable
1 - Disable

0x0

1 SCS1En SCS[1]* BAR Enable
0 - Enable
1 - Disable

0x0

2 SCS2En SCS[2]* BAR Enable
0 - Enable
1 - Disable

0x0

3 SCS3En SCS[3]* BAR Enable
0 - Enable
1 - Disable

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 178 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

4 CS0En CS[0]* BAR Enable
0 - Enable
1 - Disable

0x0

5 CS1En CS[1]* BAR Enable
0 - Enable
1 - Disable

0x0

6 CS2En CS[2]* BAR Enable
0 - Enable
1 - Disable

0x0

7 CS3En CS[3]* BAR Enable
0 - Enable
1 - Disable

0x0

8 BootCSEn BootCS* BAR Enable
0 - Enable
1 - Disable

0x0

9 IntMemEn1 Memory Mapped Internal Registers BAR Enable
0 - Enable
1 - Disable

0x0

10 IntIOEn I/O Mapped Internal Registers BAR Enable
0 - Enable
1 - Disable

0x1

13:11 Reserved Reserved. 0x0

14 Reserved Must be 1. 0x1

15 DSCS0En DAC SCS[0]* BAR Enable
0 - Enable
1 - Disable

0x1

16 DSCS1En DAC SCS[1]* BAR Enable
0 - Enable
1 - Disable

0x1

17 DSCS2En DAC SCS[2]* BAR Enable
0 - Enable
1 - Disable

0x1

18 DSCS3En DAC SCS[3]* BAR Enable
0 - Enable
1 - Disable

0x1

Table 175: PCI Base Address Registers Enable (Continued)
• PCI Offset: 0xc3c

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 179
Not Approved by Document Control - For Review Only

19 DCS0En DAC CS[0]* BAR Enable
0 - Enable
1 - Disable

0x1

20 DCS1En DAC CS[1]* BAR Enable
0 - Enable
1 - Disable

0x1

21 DCS2En DAC CS[2]* BAR Enable
0 - Enable
1 - Disable

0x1

22 DCS3En DAC CS[3]* BAR Enable
0 - Enable
1 - Disable

0x1

23 DBootCSEn DAC BootCS* BAR Enable
0 - Enable
1 - Disable

0x1

25:24 Reserved Reserved. 0x0

26 Reserved Must be 1. 0x1

31:27 Reserved Reserved. 0x1f

1. The GT–64242A prevents disabling both memory mapped and I/O mapped BARs (bits 9 and 10 cannot
simultaneously be set to 1).

Table 176: PCI SCS[0]* Base Address Remap
• PCI Offset: 0xc48

Bits Field Name Function Init ial Value

11:0 Reserved Read only. 0x0

31:12 SCS0Remap SCS[0]* BAR Remap Address 0x0

Table 175: PCI Base Address Registers Enable (Continued)
• PCI Offset: 0xc3c

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 180 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 177: PCI SCS[1]* Base Address Remap
• PCI Offset: 0xd48

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x00800000

Table 178: PCI SCS[2]* Base Address Remap
• PCI Offset: 0xc4c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x01000000

Table 179: PCI SCS[3]* Base Address Remap
• PCI Offset: 0xd4c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x01800000

Table 180: PCI CS[0]* Base Address Remap
• PCI Offset: 0xc50

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1c000000

Table 181: PCI CS[1]* Base Address Remap
• PCI Offset: 0xd50

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1c800000

Table 182: PCI CS[2]* Base Address Remap
• PCI Offset: 0xd58

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1d000000

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 181
Not Approved by Document Control - For Review Only

Table 183: PCI CS[3]* Base Address Remap
• PCI Offset: 0xc54

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1f00000

Table 184: PCI BootCS* Base Address Remap
• PCI Offset: 0xd54

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1f800000

Table 185: PCI DAC SCS[0]* Base Address Remap
• PCI Offset: 0xf00

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x0

Table 186: PCI DAC SCS[1]* Base Address Remap
• PCI Offset: 0xf04

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x00800000

Table 187: PCI DAC SCS[2]* Base Address Remap
• PCI Offset: 0xf08

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x01000000

Table 188: PCI DAC SCS[3]* Base Address Remap
• PCI Offset: 0xf0c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x01800000

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 182 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 189: PCI DAC CS[0]* Base Address Remap
• PCI Offset: 0xf10

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1c000000

Table 190: PCI DAC CS[1]* Base Address Remap
• PCI Offset: 0xf14

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1c800000

Table 191: PCI DAC CS[2]* Base Address Remap
• PCI Offset: 0xf18

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1d000000

Table 192: PCI DAC CS[3]* Base Address Remap
• PCI Offset: 0xf1c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1f000000

Table 193: PCI DAC BootCS* Base Address Remap
• PCI Offset: 0xf20

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1f800000

Table 194: PCI Expansion ROM Base Address Remap
• PCI Offset: 0xf38

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address Remap. 0x1f000000

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 183
Not Approved by Document Control - For Review Only

8.18.2 PCI Control Registers

Table 195: PCI Address Decode Control
• PCI Offset: 0xd3c

Bits Field Name Function Init ial Value

0 RemapWrDis Address Remap Registers Write Disable
0 - Writes to a BAR result in updating the corresponding

remap register with the BAR’s new value.
1 - Writes to a BAR have no affect on the corresponding

Remap register value.

0x0

1 ExpRomDev Expansion ROM Device
0 - CS[3]*
1 - BootCS*

0x0

2 VPDDev VPD Device
0 - CS[3]*
1 - BootCS*

0x0

3 MsgAcc Messaging registers access
0 - Messaging unit registers are accessible on lowest

4Kbyte of SCS[0] BAR space.
1 - Messaging unit registers are only accessible as part

of the GT–64242A internal space.
NOTE: If using I20 queues, must be set to ‘0’.

0x1

7:4 Reserved Reserved. 0x0

24:8 VPDHighAddr VPD High Address bits
[31:15] of VPD the address.

0x0

31:25 Reserved Reserved. 0x0

Table 196: PCI Command
• PCI Offset: 0xc00

Bits Field Name Function Init ial Value

0 MByteSwap PCI Master Byte Swap
When set to ‘0’, the GT–64242A PCI master swaps the
bytes of the incoming and outgoing PCI data (swap the
8 bytes of a long-word).
NOTE: GT-64120 and GT-64130 compatible.

AD[4] sampled at
reset.

1 Reserved Read Only. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 184 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

2 Reserved Must be 0. 0x0

3 Reserved Read Only. 0x0

4 MWrCom PCI Master Write Combine Enable
When set to ‘1’, write combining is enabled.

0x1

5 MRdCom PCI Master Read Combine Enable
When set to ‘1’, read combining is enabled.

0x1

6 MWrTrig PCI Master Write Trigger
0 - Accesses the PCI bus only when the whole burst is

written into the master write buffer.
1 - Accesses the PCI bus when the first data is written

into the master write buffer.

0x1

7 MRdTrig PCI Master Read Trigger
0 - Returns read data to the initiating unit only when the

whole burst is written into master read buffer.
1 - Returns read data to the initiating unit when the first

read data is written into master read buffer.

0x0

8 MRdLine PCI Master Memory Read Line Enable
0 - Disable
1 - Enable

0x1

9 MRdMul PCI Master Memory Read Multiple Enable
0 - Disable
1 - Enable

0x1

10 MWordSwap PCI Master Word Swap
When set to ‘1’, the GT–64242A PCI master swaps the
32-bit words of the incoming and outgoing PCI data.
NOTE: GT-64120 and GT-64130 compatible.

0x0

11 SWordSwap PCI Slave Word Swap
When set to ‘1’, the GT–64242A PCI slave swaps the
32-bit words of the incoming and outgoing PCI data.
NOTE: GT-64120 and GT-64130 compatible.

0x0

12 Reserved Reserved. 0x1

13 SBDis PCI Slave Sync Barrier Disable
When set to ‘1’, the PCI configuration read transaction
will stop act as sync barrier transaction.

0x0

14 Reserved Must be 0 0x0

Table 196: PCI Command (Continued)
• PCI Offset: 0xc00

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 185
Not Approved by Document Control - For Review Only

15 MReq64 PCI Master REQ64* Enable
0 - Disable
1 - Enable

0x1

16 SByteSwap PCI Slave Byte Swap
When set to ‘0’, the GT–64242A PCI slave swaps the
bytes of the incoming and outgoing PCI data (swap the
8 bytes of a long-word).
NOTE: GT-64120 and GT-64130 compatible.

Sampled at reset
on AD[4]

17 MDACEn PCI Master DAC Enable
0 - Disable
The PCI master never drives the DAC cycle.
1 - Enable
In case the upper 32-bit address is not ‘0’, the PCI mas-
ter drives the DAC cycle.

0x1

18 M64Allign PCI Master REQ64* assertion on non-aligned
0 - Disable
The master asserts REQ64* only if the address is 64-bit
aligned.
1 - Enable
The master asserts REQ64* even if the address is not
64-bit aligned.

0x1

19 PErrProp Parity/ECC Errors Propagation Enable
0 - Disable
The PCI interface always drives correct parity on the
PAR signal.
1 - Enable
In case of slave read bad ECC from SDRAM, or master
write with bad parity/ECC indication from the initiator,
the PCI interface drives bad parity on the PAR signal.

0x0

20 SSwapEn PCI Slave Swap Enable
0 - PCI slave data swapping is determined via SBy-

teSwap and SWordSwap bits (bits 16 and 11), as in
the GT-64120/130.

1 - PCI slave data swapping is determined via PCISwap
bits [25:24] in the PCI Access Control registers.

NOTE: Even if the SSwapEn bit is set to ‘1’and the
PCI address does not match any of the Access
Control registers, slave data swapping works
according to SByteSwap and SWordSwap bits.

0x0

Table 196: PCI Command (Continued)
• PCI Offset: 0xc00

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 186 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

21 MSwapEn PCI Master Swap Enable
0 - PCI master data swapping is determined via

MByteSwap and MWordSwap bits (bits 0 and 10), as
in the GT-64120/130.

1 - PCI master data swapping is determined via
PCISwap bits in CPU to PCI Address Decoding reg-
isters.

0x0

22 MIntSwapEn PCI Master Configuration Transactions Data Swap
Enable
0 - Disable
The PCI master configuration transaction to the PCI bus
is always in Little Endian convention.
1 - Enable
The PCI master configuration transaction to the PCI bus
is determined according to the setting of MSwapEn bit.
NOTE: Reserved for Marvell Technology usage.

0x0

23 LBEn PCI “Loop Back” Enable
0 - Disable
The PCI slave does not respond to transactions initiated
by the PCI master.
1 - Enable
The PCI slave does respond to transactions initiated by
the PCI master, if targeted to the slave (address match).
NOTE: Reserved for Marvell Technology usage.

0x0

26:24 SIntSwap PCI Slave data swap control on PCI accesses to the
GT–64242A internal and configuration registers.
Bits encoding are the same as bits[26:24] in PCI Access
Control registers.

Bits[26:25]: 0x0
Bit[24]: sampled at
reset on AD[4]

27 0x0

31:28 Reserved Read only. 0x0

Table 196: PCI Command (Continued)
• PCI Offset: 0xc00

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 187
Not Approved by Document Control - For Review Only

Table 197: PCI Mode
• PCI Offset: 0xd00

Bits Field Name Function Init ial Value

0 PciID PCI Interface ID
Read Only 0.

PCI: 0x0

1 Reserved Reserved. 0x0

2 Pci64 64-bit PCI Interface
When set to ‘1’, the PCI interface is configured to a 64-
bit interface.
Read Only.

Sampled at reset.

7:3 Reserved Reserved. 0x0

8 ExpRom Expansion ROM Enable
When set to ‘1’, the expansion ROM BAR is enabled.
Read Only from PCI.

Sampled at reset.
PCI: AD[17]

9 VPD VPD Enable
When set to ‘1’, VPD is supported.
Read Only from PCI.

0x1

10 MSI MSI Enable
When set to ‘1’, MSI is supported.
Read Only from PCI.

0x1

11 PMG Power Management Enable
When set to ‘1’, PMG is supported.
Read Only from PCI.

0x1

12 HotSwap CompactPCI Hot Swap Enable
When set to ‘1’, HotSwap is supported.
Read Only from PCI.

0x1

13 BIST BIST Enable
If set to ‘1’, BIST is enabled.
Read only from PCI.

0x1

30:14 Reserved Reserved. 0x0

31 PRst PCI Interface Reset Indication
Set to ‘0’ as long as the RST* pin is asserted.
Read Only.

Reset initialization.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 188 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 198: PCI Timeout and Retry
• PCI Offset: 0xc04

Bits Field Name Function Init ial Value

7:0 Timeout0 Specifies the number of PClk cycles the GT–64242A
slave holds the PCI bus before terminating a transaction
with RETRY.

0x0f

15:8 Timeout1 Specifies the number of PClk cycles the GT–64242A
slave holds the PCI bus before terminating a transaction
with DISCONNECT.

0x07

23:16 RetryCtr Retry Counter
Specifies the number of retries of the GT–64242A Mas-
ter. The GT–64242A generates an interrupt when this
timer expires.
A 0x00 value means a “retry forever”.

0x0

31:24 Reserved Reserved. 0x0

Table 199: PCI Read Buffer Discard Timer
• PCI Offset: 0xd04

Bits Field Name Function Init ial Value

15:0 Timer Specifies the number of PClk cycles the GT–64242A
slave keeps an non-accessed read buffers (non com-
pleted delayed read) before invalidating the buffer.

0xffff

23:16 RdBufEn Slave Read Buffers Enable
Each bit corresponds to one of the eight read buffers.
If set to ‘1’, buffer is enabled.

0xff

31:24 Reserved Reserved. 0x0

Table 200: PCI MSI Trigger Timer
• PCI Offset: 0xc38

Bits Field Name Function Init ial Value

15:0 Timer Specifies the number of TClk cycles between consecu-
tive MSI requests.

0xffff

31:16 Reserved Reserved. 0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 189
Not Approved by Document Control - For Review Only

Table 201: PCI Arbiter Control
• PCI Offset: 0x1d00

Bits Field Name Function Init ial Value

0 Reserved Must be ‘0’. 0x0

1 BDEn Broken Detection Enable
If set to ‘1’, broken master detection is enabled. A mas-
ter is said to be broken if it fails to respond to grant
assertion within a window specified in BV (bits [6:3]).

0x0

2 Reserved Reserved. 0x0

6:3 BV Broken Value
This value sets the maximum number of cycles that the
arbiter waits for a PCI master to respond to its grant
assertion. If a PCI master fails to assert FRAME* within
this time, the PCI arbiter aborts the transaction and per-
forms a new arbitration cycle and a maskable interrupt
is generated. Must be greater than 0.
NOTE: The PCI arbiter waits for the current transac-

tion to end before starting to count the wait-for-
broken cycles.

Must be greater than ‘1’ for masters that per-
forms address stepping (such as the GT–
64242A PCI master), since they require GNT*
assertion for two cycles.

0x0

13:7 Reserved Reserved. 0x0

20:14 PD[6:0] Parking Disable
Use these bits to disable parking on any of the PCI mas-
ters.
When a PD bit is set to ‘1’, parking on the associated
PCI master is disabled.

• PD0 corresponds to the internal master.
• PD1 corresponds to GNT0.
• PD2 corresponds to GNT1, and so on

NOTE: The arbiter parks on the last master granted
unless disabled through the PD bit. Also, if PD
bits are all ‘1’, the PCI arbiter parks on the
internal PCI master.

0x0

30:21 Reserved Reserved. 0x0

31 EN Enable
Setting this bit to ‘1’ enables operation of the arbiter.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 190 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 202: PCI Interface Crossbar Control (Low)
• PCI Offset: 0x1d08

Bits Field Name Function Init ial Value

3:0 Arb0 Slice 0 of the PCI master “pizza” arbiter.
0x0,0x1 - Reserved
0x2 - CPU access
0x3 - PCI: NULL request
 0x4 - Reserved
0x5 - Comm unit access
0x6 - IDMA channels 0/1/2/3 access
0x7 - 0xf - Reserved

0x2

7:4 Arb1 Slice 1 of PCI master “pizza” arbiter. 0x4

11:8 Arb2 Slice 2 of PCI master “pizza” arbiter. 0x5

15:12 Arb3 Slice 3 of PCI master “pizza” arbiter. 0x6

19:16 Arb4 Slice 4 of PCI master “pizza” arbiter. 0x7

23:20 Arb5 Slice 5 of PCI master “pizza” arbiter. 0x3

27:24 Arb6 Slice 6 of PCI master “pizza” arbiter. 0x3

31:28 Arb7 Slice 7 of PCI master “pizza” arbiter. 0x3

Table 203: PCI Interface Crossbar Control (High)
• PCI Offset: 0x1d0c

Bits Field Name Function Init ial Value

3:0 Arb8 Slice 8 of PCI master “pizza” arbiter. 0x2

7:4 Arb9 Slice 9 of PCI master “pizza” arbiter. 0x4

11:8 Arb10 Slice 10 of PCI master “pizza” arbiter. 0x5

15:12 Arb11 Slice 11 of PCI master “pizza” arbiter. 0x6

19:16 Arb12 Slice 12 of PCI master “pizza” arbiter. 0x7

23:20 Arb13 Slice 13 of PCI master “pizza” arbiter. 0x3

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 191
Not Approved by Document Control - For Review Only

27:24 Arb14 Slice 14 of PCI master “pizza” arbiter. 0x3

31:28 Arb15 Slice 15 of PCI master “pizza” arbiter. 0x3

Table 204: PCI Interface Crossbar Timeout
• PCI Offset: 0x1d04

NOTE: Reserved for Marvell Technology usage.

Bits Field Name Function Init ial Value

7:0 Timeout Crossbar Arbiter Timeout Preset Value 0xff

15:8 Reserved Reserved 0x0

16 TimeoutEn Crossbar Arbiter Timer Enable
0 - Enable
1 - Disable

0x1

31:17 Reserved Reserved. 0x0

Table 203: PCI Interface Crossbar Control (High) (Continued)
• PCI Offset: 0x1d0c

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 192 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 205: PCI Read Response Crossbar Control (Low)
• PCI Offset: 0x1d18

Bits Field Name Function Init ial Value

3:0 Arb0 Slice 0 of PCI slave “pizza” arbiter.
0x0 - SDRAM read data
0x1 - Device read data
0x2 - Reserved
0x3 - PCI: NULL
 0x4 - Reserved
 0x5 - Comm unit internal registers read data
0x6 - IDMA 0/1/2/3 internal registers read data
0x7 - 0xf - Reserved

0x0

7:4 Arb1 Slice 1 of PCI slave “pizza” arbiter. 0x1

11:8 Arb2 Slice 2 of PCI slave “pizza” arbiter. 0x2

15:12 Arb3 Slice 3 of PCI slave “pizza” arbiter. 0x4

19:16 Arb4 Slice 4 of PCI slave “pizza” arbiter. 0x5

23:20 Arb5 Slice 5 of PCI slave “pizza” arbiter. 0x6

27:24 Arb6 Slice 6 of PCI slave “pizza” arbiter. 0x7

31:28 Arb7 Slice 7 of PCI slave “pizza” arbiter. 0x3

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 193
Not Approved by Document Control - For Review Only

Table 206: PCI Read Response Crossbar Control (High)
• PCI Offset: 0x1d1c

Bits Field Name Function Init ial Value

3:0 Arb8 Slice 8 of PCI slave “pizza” arbiter. 0x0

7:4 Arb9 Slice 9 of PCI slave “pizza” arbiter. 0x1

11:8 Arb10 Slice 10 of PCI slave “pizza” arbiter. 0x2

15:12 Arb11 Slice 11 of PCI slave “pizza” arbiter. 0x4

19:16 Arb12 Slice 12 of PCI slave “pizza” arbiter. 0x5

23:20 Arb13 Slice 13 of PCI slave “pizza” arbiter. 0x6

27:24 Arb14 Slice 14 of PCI slave “pizza” arbiter. 0x7

31:28 Arb15 Slice 15 of PCI slave “pizza” arbiter. 0x3

Table 207: PCI Sync Barrier Virtual Register
• PCI Offset: 0x1d10

Bits Field Name Function Init ial Value

31:0 SyncReg Sync Barrier Virtual Register
PCI read from this register results in PCI slave sync bar-
rier action.
The returned data is un-deterministic.
Read Only.

0x0

Table 208: PCI Access Control Base 0 (Low)
• PCI Offset: 0x1e00

Bits Field Name Function Init ial Value

11:0 Addr Base Address
Corresponds to address bits[31:20].

0xfff

12 PrefetchEn Read Prefetch Enable
0 - Prefetch disabled.
The PCI slave reads a single word.
1 - Prefetch enabled.

0x1

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 194 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

13 DReadEn Delayed Reads Enable
0 - Disable
1 - Enable

0x0

14 Reserved Must be 0 0x0

15 Reserved Reserved. 0x0

16 RdPrefetch PCI Read Aggressive Prefetch Enable
0 - Disable
1 - Enable
The PCI slave prefetches two bursts in advance

0x0

17 RdLinePrefetch PCI Read Line Aggressive Prefetch Enable
0 - Disable
1 - Enable
PCI slave prefetch two bursts in advance.

0x0

18 RdMulPrefetch PCI Read Multiple Aggressive Prefetch Enable
0 - Disable
1 - Enable
PCI slave prefetch two bursts in advance.

0x0

19 Reserved Reserved. 0x0

21:20 MBurst PCI Max Burst
Specifies the maximum burst size for a single transac-
tion between a PCI slave and the other interfaces
00 - 4 64-bit words
01 - 8 64-bit words
10 - 16 64-bit words
11 - Reserved

0x0

23:22 Reserved Reserved. 0x0

25:24 PCISwap Data Swap Control
00 - Byte Swap
01 - No swapping
10 - Both byte and word swap
11 - Word swap

0x1

26 Reserved Must be 0. 0x0

27 Reserved Reserved. 0x0

Table 208: PCI Access Control Base 0 (Low) (Continued)
• PCI Offset: 0x1e00

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 195
Not Approved by Document Control - For Review Only

28 AccProt Access Protect
0 - PCI access is allowed.
1 - Region is not accessible from PCI.

0x0

29 WrProt Write Protect
0 - PCI write is allowed.
1 - Region is not writeable from PCI

0x0

31:30 Reserved Reserved. 0x0

Table 209: PCI Access Control Base 0 (High)
• PCI Offset: 0x1e04

Bits Field Name Function Init ial Value

31:0 Addr Base Address High
Corresponds to address bits[63:32].

0x0

Table 210: PCI Access Control Top 0
• PCI Offset: 0x1e08

Bits Field Name Function Init ial Value

11:0 Addr Top Address
Corresponds to address bits[31:20].

0x0

31:12 Reserved Reserved. 0x0

Table 211: PCI Access Control Base 1 (Low)
• PCI Offset: 0x1e10

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (Low). See
Table 208 on page 193

0x1001fff

Table 208: PCI Access Control Base 0 (Low) (Continued)
• PCI Offset: 0x1e00

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 196 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 212: PCI Access Control Base 1 (High)
• PCI Offset: 0x1e14

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (High). See
Table 209 on page 195.

0x0

Table 213: PCI Access Control Top 1
• PCI Offset: 0x1e18

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base Top 0. See Table 210
on page 195.

0x0

Table 214: PCI Access Control Base 2 (Low)
• PCI Offset: 0x1e20

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (Low). See
Table 208 on page 193.

0x1001fff

Table 215: PCI Access Control Base 2 (High)
• PCI Offset: 0x1e24
•

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (High). See
Table 209 on page 195.

0x0

Table 216: PCI Access Control Top 2
• PCI Offset: 0x1e28

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0. See Table 210 on
page 195.

0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 197
Not Approved by Document Control - For Review Only

Table 217: PCI Access Control Base 3 (Low)
• PCI Offset: 0x1e30

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (Low). See
Table 208 on page 193.

0x1001fff

Table 218: PCI Access Control Base 3 (High)
• PCI Offset: 0x1e34

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (High). See
Table 209 on page 195.

0x0

Table 219: PCI Access Control Top 3
• PCI Offset: 0x1e38

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0. See Table 210 on
page 195.

0x0

Table 220: PCI Access Control Base 4 (Low)
• PCI Offset: 0x1e40

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (Low). See
Table 208 on page 193.

0x1001fff

Table 221: PCI Access Control Base 4 (High)
• PCI Offset: 0x1e44

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (High). See
Table 209 on page 195.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 198 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 222: PCI Access Control Top 4
• PCI Offset: 0x1e48

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0. See Table 210 on
page 195.

0x0

Table 223: PCI Access Control Base 5 (Low)
• PCI Offset: 0x1e50

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (Low). See
Table 208 on page 193.

0x1001fff

Table 224: PCI Access Control Base 5 (High)
• PCI Offset: 0x1e54

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (High). See
Table 209 on page 195.

0x0

Table 225: PCI Access Control Top 5
• PCI Offset: 0x1e58

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0. See Table 210 on
page 195.

0x0

Table 226: PCI Access Control Base 6 (Low)
• PCI Offset: 0x1e60

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (Low). See
Table 208 on page 193.

0x1001fff

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 199
Not Approved by Document Control - For Review Only

Table 227: PCI Access Control Base 6 (High)
• PCI Offset: 0x1e64

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (High). See
Table 209 on page 195.

0x0

Table 228: PCI Access Control Top 6
• PCI Offset: 0x1e68

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0. See Table 210 on
page 195.

0x0

Table 229: PCI Access Control Base 7 (Low)
• PCI Offset: 0x1e70

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0 (Low). See
Table 208 on page 193.

0x1001fff

Table 230: PCI Access Control Base 7 (High)
• PCI Offset: 0x1e74

Bits Field Name Function Initial Value

31:0 Various Same as in Access Control Base 0 (High). See
Table 209 on page 195.

0x0

Table 231: PCI Access Control Top 7
• PCI Offset: 0x1e78

Bits Field Name Function Init ial Value

31:0 Various Same as in Access Control Base 0. See Table 210 on
page 195.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 200 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.18.3 PCI Configuration Access Registers

Table 232: PCI Configuration Address
• PCI Offset: 0xcf8

Bits Field Name Function Init ial Value

1:0 Reserved Read Only. 0x0

7:2 RegNum Register number. 0x00

10:8 FunctNum Function number. 0x0

15:11 DevNum Device number. 0x00

23:16 BusNum Bus number. 0x00

30:24 Reserved Read Only. 0x0

31 ConfigEn When set, an access to the Configuration Data register
is translated into a Configuration or Special cycle on the
PCI bus.

0x0

Table 233: PCI Configuration Data
• PCI Offset: 0xcfc

Bits Field Name Function Init ial Value

31:0 ConfigData The data is transferred to/from the PCI bus when the
CPU accesses this register and the ConfigEn bit in the
Configuration Address register is set.
A CPU access to this register causes the GT–64242A to
perform a Configuration or Special cycle on the PCI bus.

0x000

Table 234: PCI Interrupt Acknowledge
• PCI Offset: 0xc34

Bits Field Name Function Init ial Value

31:0 IntAck A CPU read access to this register forces an interrupt
acknowledge cycle on the PCI bus.
This register is READ ONLY.

0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 201
Not Approved by Document Control - For Review Only

8.18.4 PCI Error Report Registers

Table 235: PCI SERR* Mask
• PCI Offset: 0xc28

NOTE: The GT–64242A asserts SERR* only if SERR* is enabled via the PCI Status and Command register, see
Table 252 on page 209.

Bits Field Name Function Init ial Value

0 SAPerr If set to ‘1’, asserts SERR* upon PCI slave detection of
bad address parity.

0x0

1 SWrPerr If set to ‘1’, asserts SERR* upon PCI slave detection of
bad write data parity.

0x0

2 SRdPerr If set to ‘1’, asserts SERR* upon a PERR* response to
read data driven by the PCI slave.

0x0

3 Reserved Reserved. 0x0

4 MAPerr If set to ‘1’, asserts SERR* upon a PERR* response to
an address driven by the PCI master.

0x0

5 MWrPerr If set to ‘1’, asserts SERR* upon a PERR* response to
write data driven by the PCI master.

0x0

6 MRdPerr If set to ‘1’, asserts SERR* upon bad data parity detec-
tion during a PCI master read transaction.

0x0

7 Reserved Reserved. 0x0

8 MMabort If set to ‘1’, asserts SERR* upon a PCI master genera-
tion of master abort.

0x0

9 MTabort If set to ‘1’, asserts SERR* upon a PCI master detection
of target abort.

0x0

10 Reserved Reserved. 0x0

11 MRetry If set to ‘1’, asserts SERR* upon a PCI master reaching
retry counter limit.

0x0

15:12 Reserved Reserved. 0x0

16 SMabort If set to ‘1’, asserts SERR* upon a PCI slave detection
of master abort.

0x0

17 STabort If set to ‘1’, asserts SERR* upon a PCI slave termination
of a transaction with Target Abort.

0x0

18 SAccProt If set to ‘1’, asserts SERR* upon a PCI slave access
protect violation.

0x0

19 SWrProt If set to ‘1’, asserts SERR* upon a PCI slave write pro-
tect violation.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 202 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

20 SRdBuf If set to ‘1’, asserts SERR* if the PCI slave’s read buffer,
discard timer expires

0x0

21 Arb If set to ‘1’, asserts SERR* upon the internal PCI arbiter
detection of a “broken” PCI master.

0x0

31:22 Reserved Reserved. 0x0

Table 236: PCI Error Address (Low)
• PCI Offset: 0x1d40

Bits Field Name Function Init ial Value

31:0 ErrAddr PCI address bits [31:0] are latched upon an error condi-
tion.
Upon address latch, no new addresses can be regis-
tered (due to additional error condition) until the register
is being read.
Read Only.

0x0

Table 237: PCI Error Address (High)
• PCI Offset: 0x1d44

NOTE: Upon data sample, no new data is latched until the PCI Error Low Address register is read. This means
that PCI Error Low Address register must be the last register read by the interrupt handler.

Bits Field Name Function Init ial Value

31:0 ErrAddr PCI address bits [63:32] are latched upon error condi-
tion.
Applicable only when running DAC cycles.

0x0

Table 238: PCI Error Data (Low)
• PCI Offset: 0x1d48

Bits Field Name Function Init ial Value

31:0 ErrData PCI data bits [31:0] are latched upon error condition. 0x0

Table 235: PCI SERR* Mask (Continued)
• PCI Offset: 0xc28

NOTE: The GT–64242A asserts SERR* only if SERR* is enabled via the PCI Status and Command register, see
Table 252 on page 209.

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 203
Not Approved by Document Control - For Review Only

Table 239: PCI Error Data (High)
• PCI Offset: 0x1d4c

Bits Field Name Function Init ial Value

31:0 ErrData PCI data bits [63:32] are latched upon error condition.
 Applicable only when running 64-bit cycles.

0x0

Table 240: PCI Error Command
• PCI Offset: 0x1d50

NOTE: Upon data sample, no new data is latched until the PCI Error Low Address register is read. This means
that PCI Error Low Address register must be the last register read by the interrupt handler.

Bits Field Name Function Init ial Value

3:0 ErrCmd PCI command is latched upon error condition. 0x0

7:4 Reserved Reserved. 0x0

15:8 ErrBE PCI byte enable is latched upon error condition. 0x0

16 ErrPAR PCI PAR is latched upon error condition. 0x0

17 ErrPAR64 PCI PAR64 is latched upon error condition.
Applicable only when running 64-bit cycles.

0x0

31:18 Reserved Reserved. 0x0

Table 241: PCI Interrupt Cause 1,2

• PCI Offset: 0x1d58

Bits Field Name Function Init ial Value

0 SAPerr The PCI slave detected bad address parity. 0x0

1 SWrPerr The PCI slave detected bad write data parity. 0x0

2 SRdPerr PERR* response to read data driven by PCI slave. 0x0

3 Reserved Reserved. 0x0

4 MAPerr PERR* response to address driven by the PCI master. 0x0

5 MWrPerr PERR* response to write data driven by the PCI mas-
ter.

0x0

6 MRdPerr Bad data parity detected during the PCI master read
transaction.

0x0

7 Reserved Reserved. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 204 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8 MMabort The PCI master generated master abort. 0x0

9 MTabort The PCI master detected target abort. 0x0

10 MMasterEn An attempt to generate a PCI transaction while master
is not enabled.

0x0

11 MRetry The PCI master reached retry counter limit. 0x0

15:12 Reserved Reserved. 0x0

16 SMabort The PCI slave detects an illegal master termination. 0x0

17 STabort The PCI slave terminates a transaction with Target
Abort.

0x0

18 SAccProt A PCI slave access protect violation. 0x0

19 SWrProt A PCI slave write protect violation. 0x0

20 SRdBuf A PCI slave read buffer discard timer expired. 0x0

21 Arb Internal PCI arbiter detection of a “broken” master. 0x0

23:22 Reserved Reserved. 0x0

24 BIST PCI BIST Interrupt 0x0

25 PMG PCI Power Management Interrupt 0x0

26 PRST PCI Reset Assert 0x0

Table 241: PCI Interrupt Cause (Continued)1,2

• PCI Offset: 0x1d58

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 205
Not Approved by Document Control - For Review Only

31:27 Sel Specifies the error event currently being reported in the
Error Address, Error Data, and Error Command regis-
ters.
0x0 - SAPerr
0x1 - SWrPerr
0x2 - SRdPerr
0x3 - Reserved
0x4 - MAPerr
0x5 - MWrPerr
0x6 - MRdPerr
0x7 - Reserved
0x8 - MMabort
0x9 - MTabort
0xa - MMasterEn
0xb - MRetry
0xc - 0xf - Reserved
0x10 - SMabort
0x11 - STabort
0x12 - SAccProt
0x13 - SWrProt
0x14 - SRdBuf
0x15 - Arb
0x16 - 0x17 - Reserved
0x18 - BIST
0x19 - PMG
0x1a - PRST
0x1b - 0x1f - Reserved
Read Only

1. All bits are Clear Only. A cause bit set upon error event occurrence. A write of 0 clears the bit. A write of 1 has
no affect.

2. PCI Interrupt bits are organized in four groups: bits[7:0] for address and data parity errors, bits[15:8] for PCI
master transaction failure (possible external target problem), bits[23:16] for slave response failure (possible
external master problem), and bit[26:24] for external PCI events that require CPU handle.

Table 241: PCI Interrupt Cause (Continued)1,2

• PCI Offset: 0x1d58

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 206 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 242: PCI Error Mask
• PCI Offset: 0x1d5c

Bits Field Name Function Init ial Value

0 SAPerr If set to ‘1’, SAPerr interrupt is enabled. 0x0

1 SWrPerr If set to ‘1’, SWrPerr interrupt is enabled. 0x0

2 SRdPerr If set to ‘1’, SRdPerr interrupt is enabled. 0x0

3 Reserved Reserved. 0x0

4 MAPerr If set to ‘1’, MAPerr interrupt is enabled. 0x0

5 MWrPerr If set to ‘1’, MWrPerr interrupt is enabled. 0x0

6 MRdPerr If set to ‘1’, MRdPerr interrupt is enabled. 0x0

7 Reserved Reserved 0x0

8 MMabort If set to ‘1’, MMabort interrupt is enabled. 0x0

9 MTabort If set to ‘1’, MTabort interrupt is enabled. 0x0

10 MMasterEn If set to ‘1’, MMasterEn interrupt is enabled. 0x0

11 MRetry If set to ‘1’, MRetry interrupt is enabled. 0x0

15:12 Reserved Reserved. 0x0

16 SMabort If set to ‘1’, SMabort interrupt is enabled. 0x0

17 STabort If set to ‘1’, STabort interrupt is enabled. 0x0

18 SAccProt If set to ‘1’, SAccProt interrupt is enabled. 0x0

19 SWrProt If set to ‘1’, SWrProt interrupt is enabled. 0x0

20 SRdBuf If set to ‘1’, SRdBuf interrupt is enabled. 0x0

21 Arb If set to ‘1’, Arb interrupt is enabled. 0x0

23:22 Reserved Reserved. 0x0

24 BIST If set to ‘1’, BIST interrupt is enabled. 0x0

25 PMG If set to ‘1’, PMG interrupt is enabled. 0x0

26 PRST If set to ‘1’, PRST interrupt is enabled. 0x0

31:27 Reserved Reserved. 0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 207
Not Approved by Document Control - For Review Only

8.18.5 PCI Slave Debug Registers
NOTE: Reserved for Marvell Technology usage.

Table 243: X0 Address
• PCI Offset: 0x1d20

Bits Field Name Function Init ial Value

31:0 Addr l2x0_ad[31:0] registered on (l2x0_req & x02l_ack) 0x0

Table 244: X0 Command and ID
• PCI Offset: 0x1d24

Bits Field Name Function Init ial Value

19:0 Cmd l2x0_cbe[19:0] registered on (l2x0_req & x02l_ack) 0x0

31:20 ID l2x0_id[11:0] registered on (l2x0_req & x02l_ack) 0x0

Table 245: Write Data (Low)
• PCI Offset: 0x1d30

Bits Field Name Function Init ial Value

31:0 Data l2x0_ad[31:0] registered on l2x0_valid 0x0

Table 246: Write Data (High)
• PCI Offset: 0x1d34

Bits Field Name Function Init ial Value

31:0 Data l2x0_ad[63:32] registered on l2x0_valid 0x0

Table 247: Write Byte Enables
• PCI Offset: 0x1d60

Bits Field Name Function Init ial Value

7:0 BE l2x0_cbe registered on l2x0_valid 0x0

31:8 Reserved Reserved. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 208 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.18.6 Function 0 Configuration Registers

Table 248: Read Data (Low), Offset: 0x1d38
• PCI Offset: 0x1d38

Bits Field Name Function Init ial Value

31:0 Data x02l_ad[31:0] registered on x02l_rd_valid 0x0

Table 249: Read Data (High), Offset: 0x1d3c
• PCI Offset: 0x1d3c

Bits Field Name Function Init ial Value

31:0 Data x02l_ad[63:32] registered on x02l_rd_valid 0x0

Table 250: Read ID, Offset: 0x1d64
• PCI Offset: 0x1d64

Bits Field Name Function Init ial Value

11:0 ID x02l_id[11:0] registered on x02l_rd_valid 0x0

31:12 Reserved Reserved. 0x0

Table 251: PCI Device and Vendor ID
• PCI Offset from CPU or PCI: 0x00

Bits Field Name Function Init ial Value

15:0 VenID Marvell’s Vendor ID.
Read only from PCI.

0x11ab

31:16 DevID GT–64242A Device ID.
Read only from PCI.

0x6430

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 209
Not Approved by Document Control - For Review Only

Table 252: PCI Status and Command
• PCI Offset from CPU or PCI: 0x04

Bits Field Name Function Init ial Value

0 IOEn Controls the GT–64242A’s ability to response to PCI I/O
accesses.
0 - Disable
1 - Enable

0x0

1 MEMEn Controls the GT–64242A’s ability to response to PCI
Memory accesses.
0 - Disable
1 - Enable

0x0

2 MasEn Controls the GT–64242A’s ability to act as a master on
the PCI bus.
0 - Disable
1 - Enable

0x0

3 SpecialEn Controls the GT–64242A’s ability to respond to PCI spe-
cial cycles.
Read only 0 (GT–64242A PCI slave does not support
special cycles).

0x0

4 MemWrInv Controls the GT–64242A’s ability to generate memory
write and invalidate commands on the PCI bus.
0 - Disable
1 - Enable

0x0

5 VGA VGA Palette Snoops
Not supported.
Read only 0.

0x0

6 PErrEn Controls the GT–64242A’s ability to respond to parity
errors on the PCI by asserting the PErr* pin.
0 - Disable
1 - Enable

0x0

7 AddrStep Address Stepping Enable
The GT–64242A PCI master performs address stepping
only on configuration accesses.
Read only from the PCI.

0x0

8 SErrEn Controls the GT–64242A’s ability to assert the SErr* pin.
0 - Disable
1 - Enable

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 210 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

9 FastBTBEn Controls the GT–64242A’s ability to generate fast back-
to-back transactions.
0 - Disable
1 - Enable

0x0

19:10 Reserved Read only. 0x0

20 CapList Capability List Support
Indicates that the GT–64242A configuration header
includes capability list.
Read only from the PCI.

0x1

21 66MHzEn 66MHz Capable
The GT–64242A PCI interface is capable of running at
66MHz regardless of this bit value.
Read only from PCI.

0x1

22 Reserved Read only. 0x0

23 TarFastBB Indicates that the GT–64242A is capable of accepting
fast back-to-back transactions on the PCI bus.
Read only from the PCI.

0x1

24 DataPerr Set by the GT–64242A when it detects a parity error
(detects or asserts PERR*) as a master and the PErrEn
bit is set.
Clear only by writing ‘1’.

0x0

26:25 DevSelTim Indicates the GT–64242A‘s DevSel timing (medium).
Read only from the PCI.

0x1

27 SlaveTabort Set when the GT–64242A’s slave terminates a transac-
tion with Target Abort.
Clear only by writing 1.

0x0

28 MasterTabort Set when the GT–64242A’s master detects a Target
Abort termination.
Clear only by writing 1.

0x0

29 MAbort Set when the GT–64242A’s master generates a Master
Abort (except of special cycle).
Clear only by writing 1.

0x0

30 SysErr Set when the GT–64242A asserts SERR*.
Clear only by writing 1.

0x0

Table 252: PCI Status and Command (Continued)
• PCI Offset from CPU or PCI: 0x04

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 211
Not Approved by Document Control - For Review Only

31 DetParErr Set upon the GT–64242A detection of Parity error (both
as master and slave).
Clear only by writing 1.

0x0

Table 253: PCI Class Code and Revision ID
• PCI Offset from CPU or PCI: 0x08

Bits Field Name Function Init ial Value

7:0 RevID Indicates the GT–64242A Revision number.
Read only from PCI.

0x10

15:8 Reserved Read only. 0x0

23:16 SubClass Indicates the GT–64242A Subclass.
Read only from PCI.

0x80

31:24 BaseClass Indicates the GT–64242A Base Class.
Read only from PCI.

0x05

Table 254: PCI BIST, Header Type, Latency Timer, and Cache Line
• PCI Offset from CPU or PCI: 0x0c

Bits Field Name Function Init ial Value

7:0 CacheLine Specifies the GT–64242A’s cache line size. 0x00

15:8 LatTimer Specifies in units of PCI bus clocks the latency timer
value of the GT–64242A.

0x00

23:16 HeadType Specifies Configuration Header Type
Read only from PCI.

0x80

27:24 BISTComp BIST Completion Code
Written by the CPU upon BIST completion.
Read only from PCI.

0x0

29:28 Reserved Reserved. 0x0

30 BISTAct BIST Activate bit
Set to ‘1’ by PCI to activate BIST.
Cleared by CPU upon BIST completion.

0x0

Table 252: PCI Status and Command (Continued)
• PCI Offset from CPU or PCI: 0x04

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 212 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

31 BISTCap BIST Capable Bit
Read Only from PCI.

0x1

Table 255: PCI SCS[0]* Base Address
• PCI Offset from CPU or PCI: 0x10

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only from PCI.

0x0

2:1 Type BAR Type
Read only from PCI.

0x0

3 Prefetch Prefetch Enable
Read only from PCI.

0x1

11:4 Reserved Read only. 0x0

31:12 Base Base address. 0x00000

Table 256: PCI SCS[1]* Base Address
• PCI Offset from CPU or PCI: 0x14

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x00800008

Table 257: PCI SCS[2]* Base Address
• PCI Offset from CPU or PCI: 0x18

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x01000008

Table 254: PCI BIST, Header Type, Latency Timer, and Cache Line (Continued)
• PCI Offset from CPU or PCI: 0x0c

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 213
Not Approved by Document Control - For Review Only

Table 258: PCI SCS[3]* Base Address
• PCI Offset from CPU or PCI: 0x1c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x01800008

Table 259: PCI Internal Registers Memory Mapped Base Address
• PCI Offset from CPU or PCI: 0x20

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only from PCI.

0x0

2:1 Type BAR Type
Read only from PCI.

0x0

3 Prefetch Prefetch Enable
Read only from PCI.

0x0

15:4 Reserved Read only. 0x0

31:16 Base Base Address 0x1400

Table 260: PCI Internal Registers I/O Mapped Base Address
• PCI Offset from CPU or PCI: 0x24

Bits Field Name Function Init ial Value

0 IOSpace I/O Space Indicator
Read only from PCI.

0x1

2:1 Type BAR Type
Read only from PCI.

0x0

3 Prefetch Prefetch Enable
Read only from PCI.

0x0

15:4 Reserved Read only. 0x0

31:16 Base Base Address 0x1400

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 214 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 261: PCI Subsystem Device and Vendor ID
• PCI Offset from CPU or PCI: 0x2c

Bits Field Name Function Init ial Value

15:0 VenID Subsystem Manufacturer ID Number 0x0

31:16 DevID Subsystem Device ID Number 0x0

Table 262: PCI Expansion ROM Base Address Register
• PCI Offset from CPU or PCI: 0x30

Bits Field Name Function Init ial Value

0 ExpROMEn Expansion ROM Enable
0 - Disable
1 - Enable

0x0

11:1 Reserved Reserved. 0x0

31:12 ExpROMBase Expansion ROM Base Address 0x1f000

Table 263: PCI Capability List Pointer Register
• PCI Offset from CPU or PCI: 0x34

Bits Field Name Function Init ial Value

7:0 CapPtr Capability List Pointer
Read only.

0x40

31:8 Reserved Reserved. 0x0

Table 264: PCI Interrupt Pin and Line
• PCI Offset from CPU or PCI: 0x3c

Bits Field Name Function Init ial Value

7:0 IntLine Provides interrupt line routing information. 0x0

15:8 IntPin Indicates which interrupt pin is used by the GT–64242A.
Read only from PCI.

0x1

31:16 Reserved Read only. 0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 215
Not Approved by Document Control - For Review Only

Table 265: PCI Power Management Capability
• PCI Offset from CPU or PCI: 0x40

Bits Field Name Function Init ial Value

7:0 CapID Capability ID
Read only from PCI.

0x1

15:8 NextPtr Next Item Pointer
Read only from PCI.

0x48

18:16 Ver PCI Power Management Spec Revision
Read only from PCI.

0x1

19 PMEClk PME Clock
Indicates that the PCI clock is required for the GT–
64242A to assert PME*
Read only from PCI.

0x1

20 Reserved Read only from PCI. 0x0

21 DSI Device Specific Initialization
Read only from PCI.

0x0

24:22 AuxCur Auxiliary Current Requirements
Read only from PCI.

0x0

25 D1Sup D1 Power Management State Support
Read only from PCI.
0 - Not supported
1 - Supported

0x1

26 D2Sup D2 Power Management State Support
Read only from PCI.
0 - Not supported
1 - Supported

0x1

31:27 PMESup PME* Signal Support
Indicates in which power states the GT–64242A sup-
ports the PME* pin. Each bit corresponds to different
state (bit[0] - D0, bit[1] - D1, bit[2] - D2, bit[3] - D3-hot,
bit[4] - D3-cold). For example, ‘b01001 stands for sup-
porting PME* only on D0 and D3-hot states.
Read only from PCI.

0x0f

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 216 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 266: PCI Power Management Control and Status Register
• PCI Offset from CPU or PCI: 0x44

Bits Field Name Function Init ial Value

1:0 PState Power State
00 - D0
01 - D1
10 - D2
11 - D3-hot

0x0

7:2 Reserved Read only from PCI. 0x0

8 PME_EN PME* Pin Assertion Enable 0x0

12:9 DSel Data Select 0x0

14:13 DScale Data Scale
Read only from PCI.

0x0

15 PME_Stat PME* Pin Status
CPU set only by writing ‘1’.
PCI clear only by writing ‘1’.
When set to ‘1’, the GT–64242A asserts PME* pin.

0x0

23:16 Reserved Reserved. 0x0

31:24 Data State Data
Read only from PCI.

0x0

Table 267: PCI VPD Address
• PCI Offset from CPU or PCI: 0x48

Bits Field Name Function Init ial Value

7:0 CapID Capability ID
Read only from PCI

0x3

15:8 NextPtr Next Item Pointer
Read only from PCI

0x50

30:16 Addr VPD Address
Points to the location of the VPD structure in memory.
NOTE: The GT–64242A also implements remapping

of the high address bits through the PCI
Address Decoding Control register.

0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 217
Not Approved by Document Control - For Review Only

31 Flag Flag Flipped by System or GT–64242A during VPD
Access
On VPD writes, system sets the flag to ‘1’ indicating
VPD write is required. The GT–64242A clears the flag to
indicate that the VPD write is done (data from the VPD
Data register was written to memory).
On VPD reads, the system sets the flag to ‘0’, indicating
VPD read is required. The GT–64242A sets the flag to
‘1’ when the read is done (data has been read from
memory and put in VPD Data register).

0x0

Table 268: PCI VPD Data
• PCI Offset from CPU or PCI: 0x4c

Bits Field Name Function Init ial Value

31:0 Data VPD Data 0x0

Table 269: PCI MSI Message Control
• PCI Offset from CPU or PCI: 0x50
•

Bits Field Name Function Init ial Value

7:0 CapID Capability ID
Read only from PCI.

0x5

15:8 NextPtr Next Item Pointer
Read only from PCI.

0x60

16 MSIEn MSI Enable
0 - Disable
The GT–64242A generates a PCI interrupt.
1 - Enabled
The GT–64242A generates MSI messages instead of
interrupts.

0x0

Table 267: PCI VPD Address (Continued)
• PCI Offset from CPU or PCI: 0x48

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 218 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

19:17 MultiCap Multiple Messages Capable
The GT–64242A is capable of driving a single message.
Read only from PCI.

0x0

22:20 MultiEn Multiple Messages Enable
The number of messages the system allocates to the
GT–64242A (must be smaller or equal to MultiCap).

0x0

23 Addr64 64-bit Addressing Capable
Indicates whether the GT–64242A is capable of gener-
ating 64-bit message address.
Read only from PCI.
0 - Not capable
1 - Capable

0x1

31:24 Reserved Read only 0. 0x0

Table 270: PCI MSI Message Address
• PCI Offset from CPU or PCI: 0x54

Bits Field Name Function Init ial Value

31:0 Addr Message Address 0x0

Table 271: PCI MSI Message Upper Address
• PCI Offset from CPU or PCI: 0x58

Bits Field Name Function Init ial Value

31:0 Addr Message Upper Address
32 upper address bits.
If set to a value other than ‘0’, the GT–64242A issues
MSI message as DAC cycle.

0x0

Table 269: PCI MSI Message Control (Continued)
• PCI Offset from CPU or PCI: 0x50
•

Bits Field Name Function Init ial Value

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 219
Not Approved by Document Control - For Review Only

Table 272: PCI MSI Data Control
• PCI Offset from CPU or PCI: 0x5c

Bits Field Name Function Init ial Value

15:0 Data Message Data 0x0

31:16 Reserved Read only 0. 0x0

Table 273: PCI CompactPCI HotSwap Capability
• PCI Offset from CPU or PCI: 0x60

NOTE: CompactPCI Hot Swap is only supported on the PCI interface.

Bits Field Name Function Init ial Value

7:0 CapID Capability ID
Read only from PCI.

0x6

15:8 NextPtr Next Item Pointer
Read only from PCI.

0x0

16 Reserved Read only 0. 0x0

17 EIM ENUM* Interrupt Mask
0 - Enable signal
1 - Mask signal

0x0

18 Reserved Read only 0. 0x0

19 LOO LED On/Off
0 - LED off
1 - LED on

0x0

21:20 Reserved Read only 0. 0x0

22 Ext Extraction
Indicates that the board is about to be extracted (set to
1).

0x0

23 Ins Insertion
Indicates that the board has just been inserted (set to
1).

0x0

31:24 Reserved Read only 0. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 220 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.18.7 Function 1 Configuration Registers

Table 274: PCI CS[0]* Base Address
• PCI Offset from CPU or PCI: 0x10

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x1c000000

Table 275: PCI CS[1]* Base Address
• PCI Offset from CPU or PCI: 0x14

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x1c800000

Table 276: PCI CS[2]* Base Address
• PCI Offset from CPU or PCI: 0x18

Bits Field Name Function Init ial Value

31:12 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x1d000000

Table 277: PCI CS[3]* Base Address
• PCI Offset from CPU or PCI: 0x1c

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x1f000000

Table 278: PCI Boot CS* Base Address
• PCI Offset from CPU or PCI: 0x20
•

Bits Field Name Function Init ial Value

31:0 Various Same as SCS[0]* Base Address. See Table 255 on
page 212.

0x1f800000

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 221
Not Approved by Document Control - For Review Only

8.18.8 Function 2 Configuration Registers

8.18.9 Function 4 Configuration Registers

Table 279: PCI DAC SCS[0]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x10

Bits Field Name Function Init ial Value

0 MemSpace Memory Space Indicator
Read only from PCI.

0x0

2:1 Type BAR Type
Read only from PCI.

0x2

3 Prefetch Prefetch Enable
Read only from PCI.

0x1

11:4 Reserved Read only. 0x0

31:12 BaseLow Base Low Address 0x0

Table 280: PCI DAC SCS[0]* Base Address (High)
• PCI Offset from CPU or PCI: 0x14

Bits Field Name Function Init ial Value

31:0 BaseHigh Base High Address 0x0

Table 281: PCI DAC SCS[1]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x18

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0080000c

Table 282: PCI DAC SCS[1]* Base Address (High)
• PCI Offset from CPU or PCI: 0x1c

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 222 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.18.10 Function 5 Configuration Registers

Table 283: PCI DAC SCS[2]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x10

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0100000c

Table 284: PCI DAC SCS[2]* Base Address (High)
• PCI Offset from CPU or PCI: 0x14

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0

Table 285: PCI DAC SCS[3]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x18

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0180000c

Table 286: PCI DAC SCS[3]* Base Address (High)
• PCI Offset from CPU or PCI: 0x1c

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 223
Not Approved by Document Control - For Review Only

8.18.11 Function 6 Configuration Registers

Table 287: PCI DAC CS[0]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x10

Bits Field Name Function Init ial Value

31:12 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x1c000004

Table 288: PCI DAC CS[0]* Base Address (High)
• PCI Offset from CPU or PCI: 0x14

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0

Table 289: PCI DAC CS[1]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x18

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x1c800004

Table 290: PCI DAC CS[1]* Base Address (High)
• PCI Offset from CPU or PCI: 0x1c

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0

Table 291: PCI DAC CS[2]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x20

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x1d000004

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 224 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8.18.12 Function 7 Configuration Registers

Table 292: PCI DAC CS[2]* Base Address (High)
• PCI Offset from CPU or PCI: 0x24

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0

Table 293: PCI DAC CS[3]* Base Address (Low)
• PCI Offset from CPU or PCI: 0x10

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x1f000004

Table 294: PCI DAC CS[3]* Base Address (High)
• PCI Offset from CPU or PCI: 0x14

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185 on
page 181.

0x0

Table 295: PCI DAC BootCS* Base Address (Low)
• PCI Offset from CPU or PCI: 0x18

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x1f800004

Table 296: PCI DAC BootCS* Base Address (High)
• PCI Offset from CPU or PCI: 0x1c

Bits Field Name Function Init ial Value

31:0 Various Same as DAC SCS[0]* Base Address. See Table 185
on page 181.

0x0

PCI Interface
PCI Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 225
Not Approved by Document Control - For Review Only

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 226 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

9. MESSAGING UNIT
The GT–64242A messaging unit includes hardware hooks for message transfers between PCI devices and the
CPU. This includes all of the registers required for implementing the I2O messaging, as defined in the Intelligent
I/O (I2O) Standard specification. This Messaging Unit is compatible with that found GT-64120 and GT-64130
devices.

The I2O hardware support found in the GT–64242A also provides designers of non-I2O embedded systems with
important benefits. For example, the circular queue support in the Messaging Unit provides a simple, yet power-
ful, mechanism for passing queued messages between intelligent agents on a PCI bus. Even the simple message
and doorbell registers can improve the efficiency of communication between agents on the PCI.

The I2O specification defines a standard mechanism for passing messages between a host processor (a Pentium,
for example) and intelligent I/O processors (a networking card based on the GT–64242A and a MIPS processor,
for example.) This same message passing mechanism may be used to pass messages between peers in a system.

The GT–64242A Messaging Unit is implemented in both PCI interfaces. It allows for messaging between the
CPU and PCI and inter-PCI interfaces messaging.

The GT–64242A Messaging Unit registers are accessible from the PCI through the GT–64242A internal space, as
any other internal register. Setting the PCI Address Control register’s MsgACC bit to ‘0’ enables access to these
registers through the lower 4Kbyte of SCS[0] BAR space.

NOTE: If accessing the Messaging Unit registers through SCS[0] BAR space, the PCI Access Control registers
must not contain the lowest 4Kbyte of SCS[0] BAR space, see Section 8.7 “PCI Target Operation” on
page 149.

The polarity of the messaging unit doorbells, interrupt cause, and interrupt mask registers bits are deter-
mined via the Queue Control register’s Polarity bit, see Table 312 on page 240. If set to ’0’, interrupts
are masked by a mask bit set to ’0’, cause bits are cleared by writing ’0’, and doorbell bits toggle by
writing ’0’. If set to ’1’, interrupts are masked by a mask bit set to ’1’, cause bits are cleared by writing
’1’, and doorbell bits toggle by writing ’1’.

9.1 Message Registers

The GT–64242A uses the message registers to send and receive short messages over the PCI bus, without trans-
ferring data into local memory. When written to, the message registers may cause an interrupt to be generated
either to the CPU or to the PCI bus. There are two types of message registers:

• Outbound messages sent by the GT–64242A’s local CPU and received by an external PCI agent.
• Inbound messages sent by an external PCI bus agent and received by the GT–64242A’s local CPU.

The interrupt status for outbound messages is recorded in the Outbound Interrupt Cause Register.

Interrupt status for inbound messages is recorded in the Inbound Interrupt Cause Register.

Messaging Unit
Doorbell Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 227
Not Approved by Document Control - For Review Only

9.1.1 Outbound Messages
There are two Outbound Message Registers (OMRs).

When an OMR is written from the CPU side, a maskable interrupt request is generated in the Outbound Interrupt
Status Register (OISR). If this request is unmasked, an interrupt request is issued on the PCI bus. The interrupt is
cleared when an external PCI agent writes a value of ‘1’ to the Outbound Message Interrupt bit in the OISR. The
interrupt may be masked through the mask bits in the Outbound Interrupt Mask Register.

NOTE: An OMR can be written by the CPU or by the other PCI interface. It allows passing messages between
CPU and PCI and between the two PCI interfaces.

9.1.2 Inbound Messages
There are two Inbound Message Registers (IMRs).

When an IMR is written from the PCI side, a maskable interrupt request is generated in the Inbound Interrupt Sta-
tus Register (IISR). If this request is unmasked, an interrupt is issued to the CPU. The interrupt is cleared when
the CPU writes a value of ‘1’ to the Inbound Message Interrupt bit in the IISR. The interrupt may be masked
through the mask bits in the Inbound Interrupt Mask Register.

9.2 Doorbell Registers

The GT–64242A uses the doorbell registers to request interrupts on both the PCI and CPU buses. There are two
types of doorbell registers:

• Outbound doorbells are set by the GT–64242A’s local CPU to request an interrupt service on the PCI
bus.

• Inbound doorbells are set by an external PCI agent to request interrupt service from the local CPU.

9.2.1 Outbound Doorbells
The local processor can generate an interrupt request to the PCI bus by setting bits in the Outbound Doorbell
Register (ODR). The interrupt may be masked in the OIMR register. However, masking the interrupt does not
prevent the corresponding bit from being set in the ODR.

External PCI agents clear the interrupt by setting bits in the ODR (writing a ‘1’).

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 228 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

9.2.2 Inbound Doorbells
The PCI bus can generate an interrupt request to the local processor by setting bits in the Inbound Doorbell Reg-
ister (IDR). The interrupt may be masked in the IIMR register. However, masking the interrupt does not prevent
the corresponding bit from being set in the IDR.

The CPU clears the interrupt by setting bits in the IDR (writing a ‘1’).

9.3 Circular Queues

NOTE: Circular queues are only supported with I2O ports being accessed in the first 4K of SCS[0] BAR.

The circular queues form the heart of the I2O message passing mechanism and are the most powerful part of the
messaging unit built into the GT–64242A. There are two inbound and two outbound circular queues in the Mes-
saging Unit (MU).

9.3.1 Inbound Message Queues
The two inbound message queues are:

• Inbound Post
Messages from other PCI agents that the CPU must process.

• Inbound Free
Messages from the CPU to other PCI agent in response to an incoming message.

The two inbound message queues allow external PCI agents to post inbound messages to the local CPU in one
queue and receive free messages (no longer in use) returning from the local CPU. The process is as follows:

1. An external PCI agent posts an inbound message.
2. The CPU receives and processes the message.
3. When the processing is complete, the CPU places the message back into the inbound free queue so that

it may be reused.

9.3.2 Outbound Message Queues
The two outbound message queues are:

• Outbound Post
Messages from the CPU to other PCI agents to process.

• Outbound Free
Messages from other PCI agents to the CPU in response to an outgoing message.

Messaging Unit
Circular Queues

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 229
Not Approved by Document Control - For Review Only

The two outbound queues allow the CPU to post outbound messages for external PCI agents in one queue and
receive free messages (no longer in use) returning from other external PCI agents. The process is as follows:

1. The CPU posts an outbound message.
2. The external PCI agent receives and processes the message.
3. When the processing is complete, the external PCI agent places the message back into the outbound free

queue so that it may be reused.

9.3.3 Circular Queues Data Storage
Data storage for the circular queues must be allocated in local memory. It can be placed in any of SCS[3:0] BARs
address ranges, depending on the setting of CirQDev bits in Queue Control register. The base address for the
queues is set in the Queue Base Address Register (QBAR). Each queue entry is a 32-bit data value. The circular
queue sizes range from 4K entries (16Kbytes) to 64K entries (256Kbytes) yielding a total local memory allot-
ment of 64Kbytes to 1Mbyte. All four queues must be the same size and be contiguous in the memory space.
Queue size is set in the Queue Control Register.

The starting address of each queue is based on the QBAR address and the size of the queues as shown inTable
297.

Each queue has a head pointer and a tail pointer which are kept in the GT–64242A internal registers. These point-
ers are offsets from the QBAR. Writes to a queue occur at the head of the queue.Reads occur from the tail. The
head and tail pointers are incremented by either the CPU software or messaging unit hardware. The pointers wrap
around to the first address of a queue when they reach the queue size.

NOTE: PCI read/write from a queue is always a single 32-bit word. An attempt to burst from an I2O queue
results in disconnect after the first data transfer.

9.3.4 Inbound/Outbound Queue Port Function
Circular queues are accessed by external PCI agents through the Inbound and Outbound Queue Port virtual regis-
ters.

NOTE: With circular queues, you are not reading/writing a physical register within the GT–64242A. Instead,
you are reading and writing pointers into the circular queues (located in SDRAM or Device) controlled
by the GT–64242A. Refer to Figure 36 as you read the following sections.

Table 297: Circular Queue Starting Addresses

Queue Start ing Address

Inbound Free QBAR

Inbound Post QBAR + Queue Size

Outbound Post QBAR + 2*Queue Size

Outbound Free QBAR + 3*Queue Size

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 230 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

When an Inbound Queue Port (IQP) is written from the PCI, the written data is placed on the Inbound Post
Queue; it is posting the message to the local CPU.

When the Inbound Post Queue is written to alert the CPU that a message needs processing, an interrupt is gener-
ated to the CPU.

When this register is read from the PCI side, it is returning a free message from the tail of Inbound Free Queue.

The Outbound Queue Port (OQP) returns data from the tail of the Outbound Post Queue when read from the PCI
side; it is returning the next message requiring service by the external PCI agent. When this register is written
from the PCI, the data for the write is placed on the Outbound Free Queue; thus returning a free message for
reuse by the local CPU.

Messaging Unit
Circular Queues

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 231
Not Approved by Document Control - For Review Only

Figure 36: I2O Circular Queue Operation

PCI I/F
Outbound

Queue
Port to PCI

Outbound
Free

Queue

PCI Write Outbound Free Head
Pointer (0x1c70)

Outbound Free Tail
Pointer (0x1c74)

CPU fetches a free outbound queue
message here, then
increments the tail pointer.

Incremented by
GT–64242A

Incremented by
local S/W

Outbound
Post

Queue

Outbound Post Head
Pointer (0x1c78)

Outbound Free Tail
Pointer (0x1c7c)

CPU posts an outbound message
here, then increments the head
pointer.

Incremented by
local S/W

Incremented by
GT–64242A

PCI I/F
Inbound
Queue

Port to PCI

Inbound
Post

Queue

PCI Write Inbound Post Head
Pointer (0x1c68)

Inbound Post Tail
Pointer (0x1c6c)

CPU fetches a free inbound
 message here, then increments the
tail pointer.

Incremented by
GT–64242A

Incremented by
local S/W

Inbound
Free

Queue

Inbound Free Head
Pointer (0x1c60)

Inbound Free Tail
Pointer (0x1c64)

CPU writes free inbound message
here, then increments the head
pointer.

Incremented by
local S/W

Incremented by
GT–64242A

PCI Read

PCI Read

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 232 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

9.3.5 Inbound Post Queue
The Inbound Post Queue holds posted messages from external PCI agents to the CPU.

The CPU fetches the next message process from the queue tail; external agents post new messages to the queue
head. The tail pointer is maintained by the CPU. The head pointer is maintained automatically by the GT–
64242A upon posting of a new inbound message.

PCI writes to the Inbound Queue Port are passed to a local memory location at QBAR + Inbound Post Head
Pointer. After this write completes, the GT–64242A increments the Inbound Post Head Pointer by 4 bytes (1
word); it now points to the next available slot for a new inbound message. An interrupt is also sent to the CPU to
indicate the presence of a new message pointer.

From the time the PCI write ends till the data is actually written to SDRAM or Device, any new write to the
Inbound port results in RETRY. If the queue is full, a new PCI write to the queue results in RETRY.

Inbound messages are fetched by the CPU by reading the contents of the address pointed to by the Inbound Post
Tail Pointer. It is the CPUs responsibility to increment the tail pointer to point to the next unread message.

9.3.6 Inbound Free Queue
The Inbound Free Queue holds available inbound free messages for external PCI agents to use.

The CPU places free message at the queue head; external agents fetch free messages from the queue tail. The
head pointer is maintained in software by the CPU. The tail pointer is maintained automatically by the GT–
64242A upon a PCI agent fetching a new inbound free message.

Table 298: I2O Circular Queue Functional Summary

Queue
Name

PCI
Port

Generate
PCI
Interrupt?

Generate
CPU
Interrupt?

Head
Pointer
maintained
by.. .

Tai l
Pointer
maintained
by. . .

Inbound
Post

Inbound
Queue

Port

No Yes, when queue
is written

GT–64242A CPU

Inbound
Free

Yes, when queue
is full.

No CPU GT–64242A

Out-
bound
Post

Out-
bound
Queue

Port

Yes, when queue
is not empty.

No CPU GT–64242A

Out-
bound
Free

No Yes, when queue
is full

GT–64242A CPU

Messaging Unit
Circular Queues

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 233
Not Approved by Document Control - For Review Only

PCI reads from the Inbound Queue Port return the data in the local memory location at QBAR + Inbound Free
Tail Pointer. The following conditions apply:

• If the Inbound Free Queue is not empty (as indicated by Head Pointer not equal to Tail Pointer), the data
pointed to by QBAR + Inbound Free Tail Pointer is returned.

• If the queue is empty (Head Pointer equals Tail Pointer), the value 0xFFFF.FFFF is returned. Indicating
that there are no Inbound Message slots available. This is an error condition.

The processor places free message buffers in the Inbound Free Queue by writing the message to the location
pointed to by the head pointer. It is the processor’s responsibility to then increment the head pointer.

NOTE: It is the CPU’s responsibility to make sure that the PCI agent keeps up the pace of the free messages and
avoid pushing a new free message to the queue if it is full. There is no overflow indication when the
Inbound Free Queue is full.

9.3.7 Outbound Post Queue
The Outbound Post Queue holds outbound posted messages from the CPU to external PCI agents.

The CPU places outbound messages at the queue head; external agents fetch the posted messages from the queue
tail. The Outbound Post Tail Pointer is automatically incremented by the GT–64242A; the head pointer must be
incremented by the local CPU.

PCI reads from the Outbound Queue Port return the data pointed to by QBAR + Outbound Post Tail Pointer (the
next posted message in the Outbound Queue.) The following conditions apply:

• If the Outbound Post Queue is not empty (the head and tail pointers are not equal), the data is returned as
usual and the GT–64242A increments the Outbound Post Tail Pointer.

• If the Outbound Post Queue is empty (the head and tail pointers are equal), the value 0xFFFF.FFFF is
returned.

As long as the Outbound Post Head and Tail pointers are not equal, a PCI interrupt is requested. This is done to
indicate the need to have the external PCI agent read the Outbound Post Queue. When the head and tail pointers
are equal, no PCI interrupt is generated since no service is required on the part of the external PCI agent (or PCI
system host in the case of a PC server.) In either case, the interrupt can be masked in the OIMR register.

The CPU places outbound messages in the Outbound Post Queue by writing to the local memory location pointed
to by the Outbound Post Head Pointer. After writing this pointer, it is the CPU’s responsibility to increment the
head pointer.

9.3.8 Outbound Free Queue
The Outbound Free Queue holds available outbound message buffers for the local processor to use.

External PCI agents place free messages at the queue head; the CPU fetches free message pointers from the
queue tail. The tail pointer in maintained in software by the CPU. The head pointer is maintained automatically
by the GT–64242A upon a PCI agent posting a new (“returned”) outbound free message.

PCI writes to the Outbound Queue Port result in the data being written to the local memory location at QBAR +
Outbound Free Head Pointer. After the write completes, the GT–64242A increments the head pointer.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 234 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

From the time the PCI write ends till the data is actually written to SDRAM or Device, any new write to Out-
bound port will result in RETRY. If the head pointer and tail pointer become equal (an indication that the queue is
full), an interrupt is sent to the CPU. If queue is full, a new PCI write to the queue will result in RETRY.

The processor obtains free outbound message buffers from the Outbound Free Queue by reading data from the
location pointed to by the tail pointer. It is the processor’s responsibility to increment the tail pointer.

9.3.9 Queue Data Endianess
Circular Queues access is not controlled by PCI Access Control registers. The endianess convention of data
placed in the circular queues is determined by SByteSwap and SWordSwap bits of PCI Command register. For
more details, see Section 8.12 “Data Endianess” on page 155.

9.4 Messaging Unit Registers

NOTE: The offsets listed below relate to a CPU or PCI access to the Messaging Unit registers through the GT–
64242A internal registers space.

If the register is accessed from PCI through the SCS[0] BAR space, remove the offset’s 0x1c prefix. For
example, in the SCS[0] BAR space, the PCI Outbound Interrupt Cause register is located at offset 0x30.

Table 299: Messaging Unit Register Map

Register Offset Page

Inbound Message Register 0 0x1c10 page 235

Inbound Message Register 1 0x1c14 page 235

Outbound Message Register 0 0x1c18 page 236

Outbound Message Register 1 0x1c1c page 236

Inbound Doorbell Register 0x1c20 page 236

Inbound Interrupt Cause Register 0x1c24 page 236

Inbound Interrupt Mask Register 0x1c28 page 237

Outbound Doorbell Register 0x1c2c page 238

Outbound Interrupt Cause Register 0x1c30 page 238

Outbound Interrupt Mask Register 0x1c34 page 239

Inbound Queue Port Virtual Register 0x1c40 page 239

Outbound Queue Port Virtual Register 0x1c44 page 239

Queue Control Register 0x1c50 page 240

Queue Base Address Register 0x1c54 page 240

Messaging Unit
Messaging Unit Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 235
Not Approved by Document Control - For Review Only

Inbound Free Head Pointer Register 0x1c60 page 241

Inbound Free Tail Pointer Register 0x1c64 page 241

Inbound Post Head Pointer Register 0x1c68 page 241

Inbound Post Tail Pointer Register 0x1c6c page 242

Outbound Free Head Pointer Register 0x1c70 page 242

Outbound Free Tail Pointer Register 0x1c74 page 242

Outbound Post Head Pointer Register 0x1cf8 page 243

Outbound Post Tail Pointer Register 0x1cfc page 243

Table 300: Inbound Message0
• PCI Offset: 0x1c10

Bits Field Name Function Init ial Value

31:0 InMsg0 Inbound Message Register
Read only from the CPU, or other PCI interface.
When written, sets a bit in the Inbound Interrupt Cause
Register and an interrupt is generated to the CPU, or
other PCI interface.

0x0

Table 301: Inbound Message1
• PCI Offset: 0x1c14

Bits Field Name Function Init ial Value

31:0 InMsg1 Same as Inbound Message0. 0x0

Table 299: Messaging Unit Register Map (Continued)

Register Offset Page

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 236 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 302: Outbound Message0
• PCI Offset: 0x1c18

Bits Field Name Function Init ial Value

31:0 OutMsg0 Outbound Message Register
Read only from the PCI.
When written, sets bit in the Outbound Interrupt Cause
Register and an interrupt is generated to the PCI.

0x0

Table 303: Outbound Message1
• PCI Offset: 0x1c1

Bits Field Name Function Init ial Value

31:0 OutMsg1 Same as Outbound Message0. 0x0

Table 304: Inbound Doorbell
• PCI Offset: 0x1c20

Bits Field Name Function Init ial Value

31:0 InDoor Inbound Doorbell Register
The PCI setting a bit in this register to ‘1’ causes a CPU
(or other PCI interface) interrupt.
Writing ‘1’ to the bit by the CPU (or other PCI interface)
clears the bit, and deasserts the interrupt).

0x0

Table 305: Inbound Interrupt Cause
• PCI Offset: 0x1c24

Bits Field Name Function Init ial Value

0 InMsg0 Inbound Message0 Interrupt
Set when the Inbound Message0 register is written.
The CPU writes a ‘1’ to clear it.

0x0

1 InDoorL Inbound Doorbell Interrupt bits [15:0]
Set when at least one bit [15:0] of the Inbound Doorbell
register is set.
Read Only.

0x0

3:2 Reserved Reserved. 0x0

Messaging Unit
Messaging Unit Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 237
Not Approved by Document Control - For Review Only

4 InPQ Inbound Post Queue Interrupt
Set when Inbound Post Queue gets written.
The CPU writes it with a ‘1’ to clear it.

0x0

5 OutFQOvr Outbound Free Queue Overflow Interrupt
Set when Outbound Free Queue is full.
The CPU writes it with a ‘1’ to clear it.

0x0

15:6 Reserved Reserved. 0x0

16 InMsg1 Inbound Message1 Interrupt
Set when Inbound Message1 register is written.
The CPU writes it with a ‘1’ to clear it.

0x0

17 InDoorH Inbound Doorbell Interrupt bits [31:16]
Set when at least one bit[31:16] of Inbound Doorbell
register is set.
Read Only.

0x0

31:18 Reserved Reserved. 0x0

Table 306: Inbound Interrupt Mask
• PCI Offset: 0x1c28

Bits Field Name Function Init ial Value

0 InMsg0 If set to ‘1’, the Inbound Message0 interrupt is enabled. 0x1

1 InDoorL If set to ‘1’, the Inbound Doorbell [15:0] interrupt is
enabled.

0x1

3:2 Reserved Reserved. 0x3

4 InPQ If set to ‘1’, the Inbound Post Queue interrupt is
enabled.

0x1

5 OutFQOvr If set to ‘1’, the Outbound Free Queue Overflow inter-
rupt is enabled.

0x1

15:6 Reserved Reserved. 0x3ff

16 InMsg1 If set to ‘1’, the Inbound Message1 interrupt is enabled. 0x1

17 InDoorH If set to ‘1’, the Inbound Doorbell [31:16] interrupt is
enabled.

0x1

31:24 Reserved Reserved. 0x0

Table 305: Inbound Interrupt Cause (Continued)
• PCI Offset: 0x1c24

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 238 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 307: Outbound Doorbell
• PCI Offset: 0x1c2c

Bits Field Name Function Init ial Value

31:0 OutDoor Outbound Doorbell Register
Setting a bit in this register to ‘1’ by the CPU causes a
PCI interrupt.
Writing ‘1’ to this bit by the PCI clears the bit, and deas-
sert the interrupt.

0x0

Table 308: Outbound Interrupt Cause
• PCI Offset: 0x1c30

NOTE: If set to the same value as the Queue Control register’s Polarity bit [8], the interrupt is enabled.

Bits Field Name Function Init ial Value

0 OutMsg0 Outbound Message0 Interrupt
Set when the Outbound Message0 register is written.
The PCI writes it with ‘1’ to clear it.
For the CPU, it is Read Only.

0x0

1 OutDoorL Outbound Doorbell Interrupt bits[15:0]
Set when at least one bit[15:0] of Outbound Doorbell
register is set.
Read Only.

0x0

2 Reserved Reserved. 0x0

3 OutPQ Outbound Post Queue Interrupt
Set as long as Outbound Post Queue is not empty.
This bit is read only.

0x0

15:4 Reserved Reserved 0x0

16 OutMsg1 Outbound Message1 Interrupt
Set when the Outbound Message1 Register is writ-
ten.
The PCI writes it with ‘1’ to clear it.
For the CPU, it is read only.

0x0

17 OutDoorH Outbound Doorbell Interrupt bits[31:16]
Set when at least one bit[31:16] of Outbound Doorbell
register is set.
Read Only.

0x0

31:18 Reserved Reserved. 0x0

Messaging Unit
Messaging Unit Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 239
Not Approved by Document Control - For Review Only

Table 309: Outbound Interrupt Mask Register
• PCI Offset: 0x1c34

NOTE: If set to the same value as the Queue Control register’s Polarity bit [8], the interrupt is enabled.

Bits Field Name Function Init ial Value

0 OutMsg0 If set to ‘1’, Outbound Message0 interrupt is enabled. 0x1

1 OutDoorL If set to ‘1’, Outbound Doorbell [15:0] interrupt is
enabled.

0x1

2 Reserved Reserved. 0x1

3 OutPQ If set to ‘1’, Outbound Post Queue interrupt is enabled. 0x1

15:4 Reserved Reserved. 0xfff

16 OutMsg1 If set to ‘1’, Outbound Message 1 interrupt is enabled. 0x1

17 OutDoorH If set to ‘1’, Outbound Doorbell 31:16] interrupt is
enabled.

0x1

31:18 Reserved Reserved. 0x0

Table 310: Inbound Queue Port Virtual Register
• PCI Offset: 0x1c40

Bits Field Name Function Init ial Value

31:0 InQPVReg Inbound Queue Port Virtual Register
A PCI write to this port results in a write to the Inbound
Post Queue.
A read from this port results in a read from the Inbound
Free Queue.
Reserved from the CPU side.

0x0

Table 311: Outbound Queue Port Virtual Register
• PCI Offset: 0x1c44

Bits Field Name Function Init ial Value

31:0 OutQPVReg Outbound Queue Port Virtual Register
A PCI write to this port results in a write to the Out-
bound Free Queue.
A read from this port results in a read from the Out-
bound Post Queue.
Reserved from CPU side.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 240 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 312: Queue Control
• PCI Offset: 0x1c50

Bits Field Name Function Init ial Value

0 CirQEn Circular Queue Enable
If ‘0’, any PCI write to the queue is ignored.
Upon a PCI read from the queue, 0xffffffff is returned.
Read Only from PCI side.

0x0

5:1 CirQSize Circular Queue Size
00001 - 16 Kbytes
00010 - 32 Kbytes
00100 - 64 Kbytes
01000 - 128 Kbytes
10000 - 256 Kbytes
Read Only from the PCI side.

0x1

7:6 CirQDev Circular Queue Location
00 - SCS[0]* space
01 - SCS[1]* space
10 - SCS[2]* space
11 - SCS[3]* space
Read Only from the PCI side.

0x0

8 Polarity Polarity Select
0 - Inbound and Outbound Mask register bits are active

high (1 means that interrupt is masked), Inbound
and Outbound Doorbell registers bits toggle when
writing 1, Inbound and Outbound Interrupt Cause
registers bits are cleared by writing ’1’.

1 - Inbound and Outbound Mask register bits are active
low (0 means that interrupt is masked), Inbound and
Outbound Doorbell registers bits toggle when writ-
ing 0, Inbound and Outbound Interrupt Cause regis-
ters bits are cleared by writing ’0’.

0x0

31:9 Reserved 0x0

Table 313: Queue Base Address Register
• PCI Offset: 0x1c54

Bits Field Name Function Init ial Value

19:0 Reserved Reserved. 0x0

31:20 QBAR Queue Base Address Register
Read Only from the PCI side.

0x0

Messaging Unit
Messaging Unit Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 241
Not Approved by Document Control - For Review Only

Table 314: Inbound Free Head Pointer Register
• PCI Offset: 0x1c60

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0x0

19:2 InFHPtr Inbound Free Head Pointer
Read only from the PCI side.
NOTE: This register is maintained by the CPU soft-

ware.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 315: Inbound Free Tail Pointer Register
• PCI Offset: 0x1c64

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0x0

19:2 InFTPtr Inbound Free Tail Pointer
Read only from the PCI side.
NOTE: This register is incremented by the GT–

64242A after the PCI read from the Inbound
port.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 316: Inbound Post Head Pointer Register
• PCI Offset: 0x1c68

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0x0

19:2 InPHPtr Inbound Post Head Pointer
Read only from PCI side.
NOTE: This register is incremented by the GT–

64242A after the PCI write to the Inbound port.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 242 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 317: Inbound Post Tail Pointer Register
• PCI Offset: 0x1c6c

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0x0

19:2 InPTPtr Inbound Post Tail Pointer
Read only from the PCI side.
NOTE: This register is maintained by the CPU soft-

ware.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 318: Outbound Free Head Pointer Register
• PCI Offset: 0x1c70

Bits Field Name Function Initial Value

1:0 Reserved Reserved. 0x0

19:2 OutFHPtr Outbound Free Head Pointer
Read only from the PCI side.
NOTE: This register is incremented by the GT–64242A

after the PCI write to the Outbound port.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 319: Outbound Free Tail Pointer Register
• PCI Offset: 0x1c74

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0x0

19:2 OutFTPtr Outbound Free Tail Pointer
Read Only from PCI side.
NOTE: This register is maintained by the CPU soft-

ware.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Messaging Unit
Messaging Unit Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 243
Not Approved by Document Control - For Review Only

Table 320: Outbound Post Head Pointer Register
• PCI Offset: 0x1c78

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0x0

19:2 OutPHPtr Outbound Post Head Pointer
Read only from the PCI side.
NOTE: This register is maintained by the CPU soft-

ware.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

Table 321: Outbound Post Tail Pointer Register
• PCI Offset: 0x1c7c

Bits Field Name Function Init ial Value

1:0 Reserved Reserved. 0x0

19:2 OutPTPtr Outbound Post Tail Pointer
Read only from the PCI side.
NOTE: This register is incremented by the GT–

64242A after the PCI read from the Outbound
port.

0x0

31:20 QBAR Queue Base Address Register
Read only.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 244 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

10. IDMA CONTROLLER
The GT–64242A has four independent IDMA engines.

The IDMA engines optimize system performance by moving large amounts of data without significant CPU
intervention. Instead of the CPU reading data from a source and writing it to destination, an IDMA engine can be
programmed to automatically transfer data independent of the CPU. This allows the CPU to continue executing
other instructions, simultaneous to the movement of data.

Each IDMA engine can move data between any source and any destination, such as the SDRAM, Device, or PCI.
The IDMA controller can be programmed to move up to 16Mbyte of data per transaction. The burst length of
each transfer of IDMA can be set from 1 to 128 bytes. Accesses can be non-aligned both in the source and the
destination.

The IDMA channels support chained mode of operation. The chain descriptors may be placed anywhere. For
example, IDMA can transfer data from SDRAM to the PCI using chain mode, while fetching new descriptors
from a Device. The IDMA engine moves the data until a null descriptor pointer is reached.

The IDMA can be triggered by the CPU writing a register, an external request via a DMAReq* pin, or from a
timer/counter. In cases where the transfer needs to be externally terminated, an End of Transfer pin can be
asserted for the corresponding IDMA channel.

10.1 IDMA Operation

The IDMA unit contains a 2Kbyte buffer. The buffer is coupled to four IDMA channels - channels 0-3. Each
channels has a dedicated 512 bytes slice of the buffer.

When a channel is activated, data is read from the source into the channels buffer and then written to the destina-
tion. While writing the data to the destination, the channel reads the next burst into the buffer. This read/write
behavior results in a minimal gap between consecutive IDMA transactions on the source and the destination
interfaces. In cases of a PCI access, this read/write behavior enables generating a very long burst with zero wait
states (using the PCI master interface combining feature).

This buffer structure enables concurrency of transactions between channels. For example, if channel 0 is moving
data from the PCI to Device and channel 4 is moving data from SDRAM to Device, the two channels work inde-
pendently. They don’t share resources and run concurrently.

Since each buffer’s four channels share the same resources, arbitration of resources is required. Each four chan-
nels has a configurable round-robin arbiter that allows different bandwidth allocation to each channel within the
group, see Section 10.6 “Arbitration” on page 253.

10.2 IDMA Descriptors

Each IDMA Channel Descriptor consists of four 32-bit registers that can be written to by the CPU, PCI, or
IDMA controller in the process of fetching a new descriptor from memory (in case of chain mode). Each channel
can be configured to work in a compatibility mode, in which the descriptor structure is the same as in GT-64120
and GT-64130 devices, or work with new descriptor structure, as shown in Figure 37.

IDMA Controller
IDMA Descriptors

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 245
Not Approved by Document Control - For Review Only

Figure 37: IDMA Descriptors

The upper bits of the byte count register are explained in Section 10.5.8 “Descriptor Ownership” on page 252.

NOTE: Source, destination and next descriptor addresses are 36-bit wide. The upper four bits of the address are
not part of the dynamic 32 byte descriptor. These bits are fixed for the whole IDMA chain. An IDMA
transfer is restricted to not cross 4Gbyte (32-bit address) boundary.

Figure 38 on page 248shows the basic IDMA operation.

Table 322: DMA Descriptor Definitions

DMA Descriptor Definit ion

Byte Count Number of bytes of data to transfer.
The maximum number of bytes which the IDMA controller can be configured to
transfer is 64Kbyte-1 (16-bit register) in compatibility mode or 16Mbyte-1 (24-bit
register) in the new descriptor structure.
This register decrements at the end of every burst of transmitted data from the
source to the destination. When the byte count register is 0, or the End of Transfer
pin is asserted, the IDMA transaction is finished or terminated.

Source Address Bits[31:0] of the IDMA source address.
According to the setting of the Channel Control register, this register either incre-
ments or holds the same value.
NOTE: For more information on the Channel Control register, see Section 10.9.2

“IDMA Channel Control Registers” on page 263.

Destination Address Bits[31:0] of the IDMA destination address.
According to the setting of the Channel Control register, this register either incre-
ments or holds the same value.

Pointer to the Next
Descriptor

Bits[31:0] of the IDMA Next Descriptor address for chained operation.
The descriptor must be 16 sequential bytes located at 16-bytes aligned address
(bits[3:0] are 0).
NOTE: Only used when the channel is configured to Chained Mode.

Next Descriptor Pointer

Source Address

Destination Address

Source Address

Destination Address

Remaind BC Byte Count Byte Count

Next Descriptor Pointer

New DescriptorCompatibility Mode

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 246 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

10.3 IDMA Address Decoding

With each IDMA transaction, IDMA engine first compares the address (source, destination, or descriptor)
against the CPU interface address decoding registers. This comparison is done to select the correct target inter-
face (SDRAM, Device, or PCI). The address decoding process is the same as CPU address decoding, see Section
3.1 “CPU Address Decoding” on page 33.

If the address does not match any of the address windows, an interrupt is generated and the IDMA engine is
stopped.

There might be cases where an IDMA access to the PCI is required to address space that is out of CPU-to-PCI
address windows. In this case, the IDMA to PCI override feature can be used. The source, destination, and next
descriptor address for each channel can be marked as PCI override, meaning the IDMA engine accesses the PCI
interface directly without executing any address decoding.

The PCI interface supports 64-bit addressing. Each IDMA channel generates a 64-bit address to the PCI interface
via source, destination, and next descriptor PCI High Address register. If the PCI High Address register value is
‘0’, the PCI master issues a SAC transaction. If it is not 0 (which means address is beyond 4Gbyte space), the
PCI master generates a DAC transaction.

NOTES:There is no IDMA address remapping to the PCI. Due to the PCI override feature, it is not required.

IDMA always uses its own PCI High Address registers, even if not using PCI override.

10.4 IDMA Access Protection

Each IDMA transaction address is also checked against the CPU interface’s Access Protect registers. If the
address matches one of those regions, and the transaction violates the region protection, the IDMA halts and an
interrupt is asserted. For full details, see Section 4.15.4 “CPU Access Protect Registers” on page 78.

NOTE: IDMA access protection includes write protect and access protect. Unlike the CPU, there is no caching
protection. Caching protection is meaningless in the case of IDMA.

10.5 IDMA Channel Control

Each IDMA Channel has its own unique control register where certain IDMA modes are programmed. Follow-
ing are the bit descriptions for each field in the control registers. For detailed registers description, see Section
10.9.2 “IDMA Channel Control Registers” on page 263.

10.5.1 Address Increment/Hold
The IDMA engine supports both increment and hold modes.

If the SrcHold, bit [3], is set to ‘0’, the IDMA automatically increments the source address with each transfer.

If the SrcHold bit is set to ‘1’, the source address remains constant throughout the IDMA burst.

Similarly, If the DestHold, bit [5], is set to ‘0’, the IDMA automatically increments the destination address.

IDMA Controller
IDMA Channel Control

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 247
Not Approved by Document Control - For Review Only

If the DestHold bit is set to ‘1’, the destination address remains constant throughout the IDMA burst.

Setting the SrcHold or DestHold bits is useful when the source/destination device is accessible through a constant
address. For example, if the source/destination device is a FIFO, it is accessed with a single address, while data is
being popped/pushed with each IDMA burst.

NOTE: When using Hold mode, the address is restricted to be aligned to the Burst Limit setting, see the Channel
Control (Low) register’s BurstLimit bits [8:6] on Table 359 on page 263.

10.5.2 Burst Limit
The whole IDMA byte count is chopped into small bursts.

The burst limit can vary from 8 to 128 bytes in modulo-2 steps (i.e. 8, 16..., 128). It determines the burst length of
IDMA transaction against the source and destination. For example, setting the burst limit to 64 bytes means that
the IDMA reads 64 bytes from the source and then writes the data to the destination. The IDMA continues this
read/write loop until transfer of the whole byte count is complete.

The burst limit setting is affected by the source and destination characteristics, as well as system bandwidth allo-
cation considerations.

NOTE: Regardless of the burst limit setting, the fetch of a new descriptor is always a 16 bytes burst. This
implies that descriptors cannot be located in devices that don’t support such bursts. Particularly, they can
not be located in 8 or 16-bit devices on the GT–64242A device bus (see Section 7.3 “Data Pack/Unpack
and Burst Support” on page 128).

If an IDMA accesses a chache coherent DRAM regions, the burst limit must not exceed 32 bytes.

If the Channel Control (High) register’s BLMode bit [31] (see Table 360 on page 266) is set to ‘1’, the DMA
engine usese a seperate burst limit for the souce and distination. The source burst limit is controlled by the DMA
Control (Low) register’s BurstLimit bits [8:6] (see Table 359 on page 263). The destination’s burst limit is con-
trolled by the same register’s DstBurstLimit bits [2:0].

Seperately controlling the source and destination burst limit size is useful when one direction can use a large
burst limit when the other direction has a restricted burst limit.

10.5.3 Chain Mode
When the ChainMode bit [9] is set to ‘0’, chained mode is enabled.

In chain mode, at the completion of an IDMA transaction, the Pointer to Next Descriptor register provides the
address of a new IDMA descriptor. If this register contains a value of ‘0’ (NULL), this indicates that this is the
last descriptor in the chain.

Figure 38 shows an example of an IDMA descriptors chain.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 248 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 38: Chained Mode IDMA

Fetch next descriptor can be forced via the FetchND bit [13] in the Channel Control register.

Setting this bit to ‘1’ forces a fetch of the next descriptor based on the value in the Pointer to Next Descriptor reg-
ister.

This bit can be set even if the current IDMA has not yet completed. In this case, the IDMA engine completes the
current burst read and write and then fetches the next descriptor. This bit is reset back to ‘0’ after the fetch of the
new descriptor is complete. Setting FetchND is not allowed if the descriptor equals Null.

NOTE: If using the FetchND bit while the current DMA is in progress, the DMA Control (Low) register’s Abr
bit [20] must be set. See Table 359 on page 263.

The first descriptor of a chain can be set directly by programing the channels registers, or can be fetched from
memory, using the FetchND bit. If fetched from memory, the next descriptor address must be first written to the
Next Descriptor Pointer register of the channel. The channel then must be enabled by setting the Channel Control
(Low) register’s ChanEn bit [12] to ‘1’ (see Section 10.5.4 “Channel Activation” on page 249) and setting
FetchND to ‘1’.

0x10
0x14
0x18
0x1c

0x100
0x104
0x108
0x10c

0x200
0x204
0x208
0x20c

Byte Count

Source Address

Destination Address

Next Descriptor Pointer (0x10)

Byte Count

Source Address

Destination Address

Next Descriptor Pointer (0x100)

Byte Count

Source Address

Destination Address

Next Descriptor Pointer (0x200)

Byte Count

Source Address

Destination Address

Null Pointer (0x0)

IDMA Controller
IDMA Channel Control

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 249
Not Approved by Document Control - For Review Only

When the IDMA transfer is done, an IDMA completion interrupt is set. When running in chain mode, the Int-
Mode, bit [10] of the Channel Control register, controls whether to assert an interrupt on the completion of every
byte count transfer or only with last descriptor byte count completion. If set to ‘0’, the Comp bit is set every time
the IDMA byte count reaches ‘0’. If set to ‘1’, the IDMAComp Interrupt bit is asserted when both the Pointer to
Next Descriptor Register has a NULL value and byte count is 0.

If ChainMod is set to ‘1’, chained mode is disabled and the Pointer to Next Descriptor register is not loaded at the
completion of the IDMA transaction.

NOTE: In non-chained mode the Byte Count, Source, and Destination registers must be initialized prior to
enabling the channel.

If reading a new descriptor results in parity/ECC error indicated by the unit from which the descriptor is
being read, the channel halts. This is done in order to prevent destructive reads/writes, due to bad
source/destination pointers.

10.5.4 Channel Activation
Software channel activation is done via the Channel Control (Low) register’s ChanEn bit [12] (see Table 359 on
page 263).

When set to ‘0’, the channel is disabled. When set to ‘1’, the IDMA is initiated based on the current setting
loaded in the channel descriptor (i.e. byte count, source address, and destination address). An active channel can
be temporarily stopped by clearing ChanEn bit and then continued later from the point it was stopped by setting
ChanEn bit back to 1.

Clearing the ChanEn bit during IDMA operation does not guarantee an immediate channel pause. The IDMA
engine must complete transferring the last burst it was working on. Software can monitor the channel status by
reading ChanAct bit.

In order to restart a suspended channel in non-chained mode, the ChanEn bit must be set to ‘1’. In Chained mode,
the software must find out if the first fetch took place. If the fetch did take place, only ChanEn bit is set to ‘1’. If
the fetch did not take place, the FetchND bit must also be set to ‘1’.

The ChanAct bit [14] is read only. If set to ‘0’, the channel is not active. If set to ‘1’, the channel is active. In non-
chain mode, this bit is deasserted when the byte count reaches zero. In chain-mode, this bit is deasserted when
pointer to next descriptor is NULL and byte count reaches zero.

If ChanEn bit is set to ‘0’ during IDMA transfer, ChanAct bit toggles to ‘0’ as soon as the IDMA engine finishes
the last burst it is working on.

In order to abort an IDMA transfer in the middle, software needs to set Abr bit [20] to ‘1’. Setting this bit has a
similar affect to clearing ChanEn bit. However, it guarantees a smooth transfer of the IDMA engine to idle state.
As soon as the IDMA is back in idle state, the Abr bit gets cleared, allowing the software to re-program the chan-
nel.

NOTES:If the byte count is smaller that the burst limit setting, the source and destination addresses must be
aligned.

If the close descriptor feature is used, only set the Abr bit after first clearing the ChanEn bit and then the
ChanAct bit.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 250 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Any write to the Channel Control register with ChanEn bit set to ‘1’ activates the channel. To program
the channel control register,without activating the channel, the ChanEn bit must be set to ‘0’.

10.5.5 Source and Destination Addresses Alignment
The IDMA implementation maintains aligned accesses to both source and destination.

If source and destination addresses have different alignments, the IDMA performs multiple reads from the source
to execute a write of full BurstLimit to the destination. For example, if the source address is 0x4, the destination
address is 0x100, and BurstLimit is set to 8 bytes, the IDMA perform two reads from the source. First 4 bytes
from address 0x4 then 8 bytes from address 0x8, and only then performs a write of 8 bytes to address 0x100.

This implementation guarantees that all reads from the source and all writes to the destination have all byte
enables asserted (except for the IDMA block edges, in case they are not aligned). This is especially important
when the source device does not tolerate read of extra data (destructive reads) or when the destination device
does not support write byte enables.

NOTE: This implementation differs from the GT-64120 and GT-64130 devices. No SDA bit is required since the
GT–64242A implementation keeps accesses to both source and destination aligned.

10.5.6 Demand Mode
The IDMA channel can be triggered by software via ChanEn bit (block mode) or by external assertion of
DMAReq* pin (demand mode). Setting the DemandMode bit to ‘0’, sets the channel to operate in demand mode.

Each channel is coupled to the DMAReq* and DMAAck* pins when working in demand mode. DMAReq* is
the external trigger to activate the channel. DMAAck* is the channel response, notifying the external device that
its request is being served.

Both DMAReq* and DMAAck* are multiplexed on MPP pins. If setting a channel to demand mode, the
DMAReq* pin is mandatory. Setting a channel to demand mode without configuring an MPP pin to act as the
channels DMAReq* causes the channel to hang. See Section 15.1 “MPP Multiplexing” on page 288 section for
more information.

NOTE: Program the number of TClk cycles that DMAAck* is asserted through the DMAAck_Width bit [4], see
Figure 359 on page 263.

DMAAck* cannot be targeted to both the source and destination devices. See the Channel x Control
register’s DMAAckDir bits [30:29] (Table 359 on page 263).

When running in demand mode, the IDMA moves a new BurstLimit of data upon demand, rather than continuos
bursts from source to destination. This mode is required when the source device does not have the whole byte
count in advance. It triggers a new burst limit transfer when it has a burst count available data to transfer. It can
also be used in the compliment case, where the destination device cannot absorb the whole byte count, but only
burst limit at a time.

The IDMA engine distinguishes between the DMAReq* generated by the source device, and DMAReq* gener-
ated by the target device, via DMAReqDir bit in the Channel Control register. If DMAReq* is generated by the
source (DMAReqDir is set to ‘0’), the IDMA reads a new BurstLim of data from source with each new DMAReq
assertion. However, it writes to the destination device whenever it can transfer a full BurstLim. In the alignment

IDMA Controller
IDMA Channel Control

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 251
Not Approved by Document Control - For Review Only

example in Section 10.5.5 Source and Destination Addresses Alignment, the first write to the destination occurs
after two assertions of DMAReq* by the source. If DMAReq* is asserted by the destination (DMAReqDir is set
to ‘1’), the DMA writes a new BurstLim of data to the destination device with each new DMAReq assertion. In
this case, a read from the source occurs regardless of DMAReq* assertion.

NOTE: This implementation is different than the one in the GT-64120 and GT-64130. In these devices, each
DMAReq* assertion results in a single read from source and write to the destination.

DMAReq* can be treated as level or edge triggered input, depending on the setting of DMAReqMode bit. When
the device DMAReq* assertion is tightly coupled to the DMAAck* signal, an edge trigger DMAReq* might be
needed, to prevent a redundant DMAReq* assertion due to late DMAReq* deassertion.

NOTE: The edge triggered DMAReq* is a new feature not supported by the GT-64120 and GT-64130. In these
devices, the problematic DMAReq* deassertion timing is solved via the MDREQ bit. This bit is no
longer supported.

The DMAAck* output pin indicates to the requesting device that the IDMA engine has finished transferring the
current burst. DMAAck* can be configured to assert with the read from the source, with the write to destination,
or with both read and write, via DMAAckDir bits. Setting DMAAck* to ‘1’ results in DMAAck assertion with
write access to the destination device.

Since the Device interface unit has a queue of transactions, actual IDMA transaction to the device bus might take
place many cycles after the IDMA access to the Device interface unit completed. There are devices that expect to
see the DMAAck* signal asserted along with the actual transaction on the device bus, rather than with the IDMA
access to the Device interface unit completion. When setting DMAAckMode bit to ‘1’, DMAAck is asserted with
the actual transaction on the device bus. In this case, DMAAck* signal has the same timing characteristics as
CSTiming* signal (see Section 7.2 “Device Timing Parameters” on page 126). When setting the DMAAckMode
bit to ‘0’, DMAAck is asserted for one or two TClk cycle, as soon as the IDMA engine issues the transaction to
the target unit. The number of TClk cycles that DMAAck is asserted is dependent on the Channel Control (Low)
register’s DMAAck_Width bit [4] setting, see Table 359 on page 263.

NOTE: The DMAAckMode is only available for IDMA access to the device bus. Setting this bit to ‘1’ while
accessing other interface than the device bus results in no DMAAck* assertion at all.

When using demand mode, the trigger of the channel can be configured to come from the timer rather than from
DMAReq* pin. Each of the eight IDMA channels is coupled to one of the eight GT–64242A timers (channel0 to
timer0, channel1 to timer1, and so on). Setting TimerReq bit to ‘1’ when channel is configured to demand mode,
results in timer trigger rather than DMAReq* trigger. In this case, when the timer/counter reaches the terminal
count, an internal IDMA request is set and a new IDMA transfer is initiated.

This mode is useful to generate an IDMA transfer for every ‘n’ cycle. Set the timer to ‘n’ cycles, activate it, and
then activate the IDMA channel in demand mode with TimerReq bit set. The IDMA engine generates a new burst
every ‘n’ cycles.

NOTE: When running in demand mode and using chain IDMA, when reaching byte count ‘0’, the GT–64242A
fetches a new descriptor regardless of the DMAReq*. The DMAReq* affects only IDMA access to data,
not to descriptors. This means that chain descriptors must always be ready for fetch.

When running in demand mode, the GT–64242A does not issue a new burst read request from the
source before completing the write transaction to the destination.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 252 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

10.5.7 End Of Transfer
The GT–64242A supports IDMA termination in the middle not only by software, but also by external hardware
via EOT pins. Each channel has its own EOT input pin (EOT[0] for channel0, EOT[1] for channel1...). EOT[7:0]
pins are multiplexed on MPP pins. To use this feature, the MPP lines must be programmed to act as EOT pins
(see Section 15.1 “MPP Multiplexing” on page 288). EOT pins are edge trigger pins.

Setting the EOTEn bit [18] to ‘1’ enables this feature. The affect of EOT assertion can be configured via the
EOTMode bit [19].

If the EOTMode bit is set to ‘0’, EOT assertion, when working in chain mode, causes fetching of a new descrip-
tor from memory (if pointer to next descriptor is not equal to NULL) and executing the next IDMA. This is
equivalent to executing fetch next descriptor in software.

If the EOTMode bit is set to ‘1’, EOT assertion causes the channel to halt. This is equivalent to setting the Abr bit
to ‘1’ via the software.

If the IDMA channel is in non-chain mode, the EOTMode bit is not relevant. EOT assertion causes the current
IDMA transfer to be stopped without further action.

A DMA completion interrupt is asserted (if not masked) upon IDMA termination with EOT.

NOTE: The IDMA engine stops only after finishing the current burst. For example, if it is programed to a burst
limit of 64 bytes and EOT is sampled active in the middle of the 64 bytes read, the IDMA engine com-
pletes the read, performs the 64 byte write, and then halts. When using EOT, the source and destination
must be 64-bit aligned.

10.5.8 Descriptor Ownership
A typical application of chain mode IDMA involves the CPU preparing a chain of descriptors in memory and
then preparing buffers to move from source to destination. Buffers may be dynamically prepared, this means
once a buffer was transferred the CPU can prepare a new buffer in the same location to be sent. This application
requires some handshake between the IDMA engine and the CPU.

When working with the new descriptors structure, Bit[31] of the Byte Count register acts as an ownership bit. If
set to ‘1’, the descriptor is owned by the GT–64242A IDMA. If set to ‘0’, it is owned by the CPU. Once the CPU
prepares a buffer to be transferred, it clears the ownership bit, indicating that the buffer is owned by the IDMA.
Once the IDMA completes transferring the buffer, it closes the descriptor by writing back the upper byte of Byte
Count register (bits[31:24]), with MSB set to ‘1’, indicating to the CPU the buffer was transferred. When the
CPU recognizes that it owns the buffer, it is allowed to place a new buffer to be transferred. An attempt by the
IDMA to fetch a descriptor that is owned by CPU (which means CPU did not prepare a new buffer yet), results in
an interrupt assertion and an IDMA channel halt.

NOTE: This feature is not supported in compatibility mode.

The Descriptor is closed when the byte count reaches ‘0’ or when transfer is terminated in the middle via EOT or
the fetch next descriptor command. In this case, the transfer may end with some data remaining in the buffer
pointed by the current descriptor.

When working in compatibility mode, when closing the descriptor, the IDMA engine writes the left byte count to
the upper 16-bit of the byte count field of the descriptor. This is useful if an IDMA is terminated in the middle

IDMA Controller
Arbitration

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 253
Not Approved by Document Control - For Review Only

and a CPU might want to re-transmit the left byte count. In case the IDMA ended properly (all byte count was
transferred), a ‘0’ value is written back to the descriptor.

When working with the new descriptor structure, there is an alternative way to signal to the CPU that the descrip-
tor was not completely transferred. In this case, the IDMA engine rather than writing back the remaining byte
count, it writes back to only bits[31:24] of the descriptor’s ByteCount field, with bit[30] indicating whether the
whole byte count was transferred (0) or terminated before transfer completion (1). Bits[29:24] are meaningless.

Each IDMA channel has a Current Descriptor Pointer register (CDPTR) associated with it. This register is used
for closing the current descriptor before fetching the next descriptor. The register is a read/write register but the
CPU must not write to it. When the NPTR (Next pointer) is first programed, the CDPTR reloads itself with the
same value written to NPTR. After processing a descriptor, the IDMA channel updates the current descriptor
using CDPTR, saves NPTR into the CDPTR, and fetches a new descriptor.

10.6 Arbitration

The IDMA controller has two programmable round-robin arbiters per the two channels groups. Each channel can
be configured to have different bandwidth allocation. Figure 39 shows an example of channels 0-3 arbiter.

Figure 39: Configurable Weights Arbiter

Ch0
Ch1

Ch0

CH2

Ch0

Ch1

Ch0

Ch3

Ch3

Ch0

Ch1

Ch0

Ch0

Ch2

Ch0

Ch1

Arbitration
Cycle

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 254 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

The user can define each of the 16 slices of this “pizza arbiter”. In Figure 39, channel0 gets 50% of the band-
width, channel1 25%, channel2 and channel3 12.5% each. At each clock cycle, the arbiter samples all channels
requests and gives the bus to the next agent according to the “pizza”.

10.7 Big and Little Endian Support

The GT–64242A supports both Little and Big Endian convention.

The device endianess is determined by the CPU Configuration register’s Endianess bit, see Table 69 on page 74.

The internal registers of the device are always set in Little Endian mode.If the device is configured to Big
Endian, descriptors fetched from memory must be converted to Little Endian before being placed in the device
registers. The IDMA controller performs this data swapping.

The GT–64242A also supports access to Big and Little Endian devices on the PCI bus. When the IDMA engine is
using the CPU address decoding registers, it also uses the CPU interface PCISwap control to determine data
swapping on the PCI master interface, see Section 4.11 “CPU Endian Support” on page 61.

When the GT–64242A uses the PCI override feature, it uses the IDMA Control (High) register’s SrcPCISwap,
DestPCISwap, and NextPCISwap bits to control the PCI master interface data swapping, see Table 360 on
page 266.

10.8 DMA Interrupts

The IDMA interrupts are registered in the IDMA Interrupt Cause registers. There are two registers - one per each
four channels. Upon an interrupt event, the corresponding cause bit is set to ‘1’. It is cleared upon a software
write of ‘0’.

The IDMA Mask registers controls whether an interrupt event causes an interrupt assertion. The setting of the
mask register only affects the interrupt assertion, it has no affect on the cause register bits setting.

The following interrupt events are supported per each channel:
• DMA completion
• DMA address out of range
• DMA access protect violation
• DMA write protect violation
• DMA descriptor ownership violation

In case of an error condition (address out of range, access protect violation, write protect violation, descriptor
ownership violation), the IDMA transaction address is latched in the Address Error register. Once an address is
latched, no new address (due to additional errors) can be latched, until the current address being read.

NOTE: In any of the error conditions, the DMA completion interrupt bit is set.

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 255
Not Approved by Document Control - For Review Only

10.9 IDMA Registers

Table 323: IDMA Descriptor Register Map

Register Offset Page

Channel 0 DMA Byte Count 0x800 page 257

Channel 1 DMA Byte Count 0x804 page 258

Channel 2 DMA Byte Count 0x808 page 258

Channel 3 DMA Byte Count 0x80c page 258

Channel 0 DMA Source Address 0x810 page 258

Channel 1 DMA Source Address 0x814 page 258

Channel 2 DMA Source Address 0x818 page 258

Channel 3 DMA Source Address 0x81c page 258

Channel 0 DMA Destination Address 0x820 page 259

Channel 1 DMA Destination Address 0x824 page 259

Channel 2 DMA Destination Address 0x828 page 259

Channel 3 DMA Destination Address 0x82c page 259

Channel 0 Next Descriptor Pointer 0x830 page 259

Channel 1 Next Descriptor Pointer 0x834 page 259

Channel 2 Next Descriptor Pointer 0x838 page 260

Channel 3 Next Descriptor Pointer 0x83c page 260

Channel 0 Current Descriptor Pointer 0x870 page 260

Channel 1 Current Descriptor Pointer 0x874 page 260

Channel 2 Current Descriptor Pointer 0x878 page 260

Channel 3 Current Descriptor Pointer 0x87c page 260

Channel 0 Source High PCI Address 0x890 page 261

Channel 1 Source High PCI Address 0x894 page 261

Channel 2 Source High PCI Address 0x898 page 261

Channel 3 Source High PCI Address 0x89c page 262

Channel 0 Destination High PCI Address 0x8a0 page 262

Channel 1 Destination High PCI Address 0x8a4 page 262

Channel 2 Destination High PCI Address 0x8a8 page 262

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 256 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Channel 3 Destination High PCI Address 0x8ac page 262

Channel 0 Next Descriptor High PCI Address 0x8b0 page 262

Channel 1 Next Descriptor High PCI Address 0x8b4 page 262

Channel 2 Next Descriptor High PCI Address 0x8b8 page 263

Channel 3 Next Descriptor High PCI Address 0x8bc page 263

Table 324: IDMA Control Register Map

Register Offset Page

Channel 0 Control (Low) 0x840 page 263

Channel 0 Control (High) 0x880 page 266

Channel 1 Control (Low) 0x844 page 268

Channel 1 Control (High) 0x884 page 268

Channel 2 Control (Low) 0x848 page 268

Channel 2 Control (High) 0x888 page 269

Channel 3 Control (Low) 0x84c page 269

Channel 3 Control (High) 0x88c page 269

Channels 0-3 Arbiter Control 0x860 page 269

Channels 0-3 Crossbar Timeout 0x8d0 page 270

Table 325: IDMA Interrupt Register Map

Register Offset Page

Channels 0-3 Interrupt Cause 0x8c0 page 270

Channels 0-3 Interrupt Mask 0x8c4 page 271

Channels 0-3 Error Address 0x8c8 page 271

Channels 0-3 Error Select 0x8cc page 272

Table 323: IDMA Descriptor Register Map (Continued)

Register Offset Page

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 257
Not Approved by Document Control - For Review Only

10.9.1 IDMA Descriptor Registers

Table 326: IDMA Debug Register Map
NOTE: Reserved for Marvell Technology usage.

Register Offset Page

X0 Address 0x8e0 page 272

X0 Command and ID 0x8e4 page 273

X0 Write Data (Low) 0x8e8 page 273

X0 Write Data (High) 0x8ec page 273

X0 Write Byte Enables 0x8f8 page 273

X0 Read Data (Low) 0x8f0 page 273

X0 Read Data (High) 0x8f4 page 273

X0 Read ID 0x8fc page 274

Table 327: Channel 0 DMA Byte Count, Offset: 0x8001

1. When running in compatibility mode and when closing the descriptor, the IDMA writes to bits[31:16] the left
byte count to be transferred.

Bits Field Name Function Init ial Value

23:0 ByteCnt Number of bytes left for the IDMA to transfer.
When running in compatibility mode, the byte count is
16-bit only (bits[15:0]).

0x0

29:24 Reserved Reserved. 0x0

30 BCLeft Left Byte Count
When running in non-compatibility mode and when clos-
ing a descriptor, indicates whether the whole byte count
was completely transferred.
0 - The whole byte count transferred.
1 - Transfer terminated before the whole byte count was

transferred.

0x0

31 Own Ownership Bit
When running in non-compatibility mode, this bit indi-
cates whether the descriptor is owned by the IDMA
engine (1) or the CPU (0).

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 258 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 328: Channel 1 DMA Byte Count, Offset: 0x804

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Byte Count. 0x0

Table 329: Channel 2 DMA Byte Count, Offset: 0x808

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Byte Count. 0x0

Table 330: Channel 3 DMA Byte Count, Offset: 0x80c

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Byte Count. 0x0

Table 331: Channel 0 DMA Source Address, Offset: 0x810

Bits Field Name Function Init ial Value

31:0 SrcAdd Bits[31:0] of the IDMA source address. 0x0

Table 332: Channel 1 DMA Source Address, Offset: 0x814

Bits Field Name Function Init ial Value

31:0 SrcAdd Bits[31:0] of the IDMA source address. 0x0

Table 333: Channel 2 DMA Source Address, Offset: 0x818

Bits Field Name Function Init ial Value

31:0 SrcAdd Bits[31:0] of the IDMA source address. 0x0

Table 334: Channel 3 DMA Source Address, Offset: 0x81c

Bits Field Name Function Init ial Value

31:0 SrcAdd Bits[31:0] of the IDMA source address. 0x0

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 259
Not Approved by Document Control - For Review Only

Table 335: Channel 0 DMA Destination Address, Offset: 0x820

Bits Field Name Function Init ial Value

31:0 DestAdd Bits[31:0] of the IDMA destination address. 0x0

Table 336: Channel 1 DMA Destination Address, Offset: 0x824

Bits Field Name Function Init ial Value

31:0 DestAdd Bits[31:0] of the IDMA destination address. 0x0

Table 337: Channel 2 DMA Destination Address, Offset: 0x828

Bits Field Name Function Init ial Value

31:0 DestAdd Bits[31:0] of the IDMA destination address. 0x0

Table 338: Channel 3 DMA Destination Address, Offset: 0x82c

Bits Field Name Function Init ial Value

31:0 DestAdd Bits[31:0] of the IDMA destination address. 0x0

Table 339: Channel 0 Next Descriptor Pointer, Offset: 0x830

Bits Field Name Function Init ial Value

31:0 NextDescPtr Bits[31:0] of the DMA next descriptor address.
The address must be 32-byte aligned (bits[3:0] must be
0x0).

0x0

Table 340: Channel 1 Next Descriptor Pointer Offset: 0x834

Bits Field Name Function Init ial Value

31:0 Various Same as the channel 0 next descriptor pointer. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 260 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 341: Channel 2 Next Descriptor Pointer, Offset: 0x838

Bits Field Name Function Init ial Value

31:0 Various Same as the channel 0 next descriptor pointer. 0x0

Table 342: Channel 3 Next Descriptor Pointer, Offset: 0x83c

Bits Field Name Function Init ial Value

31:0 Various Same as the channel 0 next descriptor pointer. 0x0

Table 343: Channel 0 Current Descriptor Pointer, Offset: 0x870

Bits Field Name Function Init ial Value

31:0 CDPTR0 Bits[31:0] of the address from which the current descrip-
tor was fetched.

0x0

Table 344: Channel 1 Current Descriptor Pointer, Offset: 0x874

Bits Field Name Function Init ial Value

31:0 CDPTR1 Bits[31:0] of the address from which the current descrip-
tor was fetched.

0x0

Table 345: Channel 2 Current Descriptor Pointer, Offset: 0x878

Bits Field Name Function Init ial Value

31:0 CDPTR2 Bits[31:0] of the address from which the current descrip-
tor was fetched.

0x0

Table 346: Channel 3 Current Descriptor Pointer, Offset: 0x87c

Bits Field Name Function Init ial Value

31:0 CDPTR3 Bits[31:0] of the address from which the current descrip-
tor was fetched.

0x0

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 261
Not Approved by Document Control - For Review Only

Table 347: Channel 0 Source PCI High Address, Offset: 0x890

Bits Field Name Function Init ial Value

31:0 SrcHAddr Bits[63:32] of the PCI source address. 0x0

Table 348: Channel 1 Source PCI High Address, Offset: 0x894

Bits Field Name Function Init ial Value

31:0 SrcHAddr Bits[63:32] of the PCI source address. 0x0

Table 349: Channel 2 Source PCI High Address, Offset: 0x898

Bits Field Name Function Init ial Value

31:0 SrcHAddr Bits[63:32] of the PCI source address. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 262 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 350: Channel 3 Source PCI High Address, Offset: 0x89c

Bits Field Name Function Init ial Value

31:0 SrcHAddr Bits[63:32] of the PCI source address. 0x0

Table 351: Channel 0 Destination PCI High Address, Offset: 0x8a0

Bits Field Name Function Init ial Value

31:0 DestHAddr Bits[63:32] of the PCI destination address. 0x0

Table 352: Channel 1 Destination PCI High Address, Offset: 0x8a4

Bits Field Name Function Init ial Value

31:0 DestHAddr Bits[63:32] of the PCI destination address. 0x0

Table 353: Channel 2 Destination PCI High Address, Offset: 0x8a8

Bits Field Name Function Init ial Value

31:0 DestHAddr Bits[63:32] of the PCI destination address. 0x0

Table 354: Channel 3 Destination PCI High Address, Offset: 0x8ac

Bits Field Name Function Init ial Value

31:0 DestHAddr Bits[63:32] of the PCI destination address. 0x0

Table 355: Channel 0 Next Descriptor PCI High Address, Offset: 0x8b0

Bits Field Name Function Init ial Value

31:0 NextHAddr Bits[63:32] of the PCI destination address. 0x0

Table 356: Channel 1 Next Descriptor PCI High Address, Offset: 0x8b4

Bits Field Name Function Init ial Value

31:0 NextHAddr Bits[63:32] of the PCI destination address. 0x0

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 263
Not Approved by Document Control - For Review Only

10.9.2 IDMA Channel Control Registers

Table 357: Channel 2 Next Descriptor PCI High Address, Offset: 0x8b8

Bits Field Name Function Init ial Value

31:0 NextHAddr Bits[63:32] of the PCI destination address. 0x0

Table 358: Channel 3 Next Descriptor PCI High Address, Offset: 0x8bc

Bits Field Name Function Init ial Value

31:0 NextHAddr Bits[63:32] of the PCI next descriptor address. 0x0

Table 359: Channel 0 Control (Low), Offset: 0x840

Bits Field name Function Init ial Value

2:0 DstBurstLimit 101 - Reserved
110 - Reserved
010 - Reserved
000 - 8 Bytes
001 - 16 Bytes
011 - 32 Bytes
111 - 64 Bytes
100 - 128 Bytes

0x0

3 SrcHold Source Hold
0 - Increment source address.
1 - Hold in the same value.

0x0

4 DMAAck_Width 0 - Asserted for one TClk cycle (default setting)
1 - Asserted for two TClk cycles

0x0

5 DestHold Destination Hold
0 - Increment destination address.
1 - Hold in the same value.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 264 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

8:6 BurstLimit Burst Limit in Each IDMA Access
101 - Reserved
110 - Reserved
010 - Reserved
000 - 8 Bytes
001 - 16 Bytes
011 - 32 Bytes
111 - 64 Bytes
100 - 128 Bytes
NOTE: If BLMode is set to ‘1’, BurstLimit acts as the

source burst limit.

0x0

9 ChainMode Chained Mode
0 - Chained mode
1 - Non-Chained mode

0x0

10 IntMode Interrupt Mode
0 - Interrupt asserted every time the IDMA byte count

reaches ‘0’.
1 - Interrupt asserted when the Next Descriptor pointer

is NULL and the IDMA byte count reaches ‘0’.
NOTE: IntMode is only relevant in chain mode.

0x0

11 DemandMode Demand Mode Enable
0 - Demand mode
1 - Block mode

0x0

12 ChanEn Channel Enable
When the software sets this bit to ‘1’, it activates the
channel.
Setting this bit to ‘0’ causes the channel to suspend.
Re-setting the bit to ‘1’, allows the channel to continue
the IDMA transfer.

0x0

13 FetchND Fetch Next Descriptor
If set to ‘1’, forces a fetch of the next descriptor.
Cleared after the fetch is completed.
NOTE: FetchND is only relevant in chain mode

0x0

14 ChanAct DMA Channel Active
Read only.
0 - Channel is not active.
1 - Channel is active.

0x0

Table 359: Channel 0 Control (Low), Offset: 0x840 (Continued)

Bits Field name Function Init ial Value

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 265
Not Approved by Document Control - For Review Only

15 DMAReqDir DMAReq Direction
0 - DMAReq* generated by the source.
1 - DMAReq* generated by the destination.

0x0

16 DMAReqMode DMAReq* Mode
0 - DMAReq* is level input.
1 - DMAReq* is edge triggered input.

0x0

17 CDEn Close Descriptor Enable
If enabled, the IDMA writes the upper byte(s) of the byte
count field back to memory. In compatibility mode, it
writes the remainder byte count into bits[31:16] of the
byte count field. In non-compatibility mode, it writes the
ownership and status bits into bits[31:24] of byte count
field.
0 - Disable
1 - Enable

0x0

18 EOTEn End Of Transfer Enable
If enabled, an IDMA transfer can be stopped in the mid-
dle of the transfer using EOT signal.
0 - Disable
1 - Enable

0x0

19 EOTMode End of Transfer Affect
0 - Fetch next descriptor
1 - Channel halt

0x0

20 Abr Channel Abort
When the software sets this bit to ‘1’, the IDMA aborts in
the middle.
The bit is cleared by the IDMA hardware.

0x0

22:21 SAddrOvr Override Source Address
00 - No override.
01 - Source address is in PCI memory space
10–11 - Reserved

0x0

24:23 DAddrOvr Override Destination Address
00 - No override.
01 - Destination address is in PCI memory space
10–11 - Reserved

0x0

Table 359: Channel 0 Control (Low), Offset: 0x840 (Continued)

Bits Field name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 266 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

26:25 NAddrOvr Override Next Descriptor Address
00 - No override
01 - Descriptor address is in PCI memory space
10–11 - Reserved

0x0

27 DMAAckMode DMA Acknowledge Mode
0 - Asserted for one TClk when the IDMA engine issues

the transaction.
1 - Asserted only with the actual transaction driven on

the device bus (same timing as CSTiming signal).

0x0

28 TimerReq Timer IDMA Request Enable
0 - IDMA requests taken from the DMAReq* pin.
1 - IDMA requests taken from the timer/counter.

0x0

30:29 DMAAckDir DMA Acknowledge Direction
00 - Reserved
01 - Asserted with accesses to destination.
10 - Asserted with accesses to source.
11 - Reserved.

0x0

31 DescMode Descriptor Mode
0 - Compatibility mode
1 - New descriptor structure

0x0

Table 360: Channel 0 Control (High), Offset: 0x880
NOTE: Program the High Control register prior to channel activation.

Bits Field Name Function Init ial Value

3:0 SrcHAddr Bits[35:32] of the source address. 0x0

5:4 SrcPCISwap PCI Master Data Swap Control
00 - Byte Swap
01 - No swapping
10 - Both byte and word swap
11 - Word swap
SrcPCISwap is applicable only when using SAddrOvr.
Otherwise, the PCI master data swapping is controlled
via the PCI Memory Low Decode register’s PCISwap
field, see Table 51 on page 70.

0x1

6 Reserved Reserved 0x0

Table 359: Channel 0 Control (Low), Offset: 0x840 (Continued)

Bits Field name Function Init ial Value

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 267
Not Approved by Document Control - For Review Only

7 SrcPCIReq64 PCI Master REQ64* Policy
0 - Only Asserts REQ64* when a read from the source

is longer than 64-bits.
1 - Always assert REQ64*.
SrcPCIReq64 is only applicable when using SAddrOvr.
Otherwise, the PCI master REQ64* policy is controlled
via the PCI Memory Low Decode register’s PCIReq64
bit, see Table 51 on page 70.

0x0

11:8 DestHAddr Bits[35:32] of Destination Address 0x0

13:12 DestPCISwap PCI Master Data Swap Control
00 - Byte Swap
01 - No swapping
10 - Both byte and word swap
11 - Word swap
DestPCISwap is only applicable when using DAddrOvr.
Otherwise, the PCI master data swapping is controlled
via the PCI Memory Low Decode register’s PCISwap
field, see Table 51 on page 70.

0x1

14 Reserved Reserved 0x0

15 DestPCIReq64 PCI Master REQ64* Policy
0 - Only asserts REQ64* when the write to a destination

is longer than 64-bits.
1 - Always assert REQ64*.
DestPCIReq64 is only applicable when using DAd-
drOvr. Otherwise, the PCI master REQ64* policy is con-
trolled via the PCI Memory Low Decode register’s
PCIReq64 bit, see Table 51 on page 70.

0x0

19:16 NextHAddr Bits[35:32] of the next descriptor address. 0x0

21:20 NextPCISwap PCI Master Data Swap Control
00 - Byte Swap
01 - No swapping
10 - Both byte and word swap
11 - Word swap
NextPCISwap is only applicable when using NAddrOvr.
Otherwise, the PCI master data swapping is controlled
via the PCI Memory Low Decode register’s PCISwap
field, see Table 51 on page 70.

0x1

Table 360: Channel 0 Control (High), Offset: 0x880 (Continued)
NOTE: Program the High Control register prior to channel activation.

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 268 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

22 Reserved Reserved 0x0

23 NextPCIReq64 PCI Master REQ64* Policy
0 - Only asserts REQ64* when the read of the next

descriptor is longer than 64-bits.
1 - Always assert REQ64*
NextPCIReq64 is only applicable when using NAd-
drOvr. Otherwise, the PCI master REQ64* policy is con-
trolled via PCI Memory Low Decode register’s
PCIReq64 bit, see Table 51 on page 70.

0x0

24 SrcHWSwap PCI Master Half-Word Swap Enable 0x0

25 DestHWSwap PCI Master Half-Word Swap Enable 0x0

26 NextHWSwap PCI Master Half-Word Swap Enable 0x0

30:24 Reserved Must be 0. 0x0

31 BLMode Burst Limit Mode
0 - Same burst limit for source and destination.
1 - Different burst limit for source and destination

0x0

Table 361: Channel 1 Control (Low), Offset: 0x844

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Control (Low). 0x0

Table 362: Channel 1 Control (High), Offset: 0x884

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Control (High). 0x101010

Table 363: Channel 2 Control (Low), Offset: 0x848

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Control (Low). 0x0

Table 360: Channel 0 Control (High), Offset: 0x880 (Continued)
NOTE: Program the High Control register prior to channel activation.

Bits Field Name Function Init ial Value

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 269
Not Approved by Document Control - For Review Only

Table 364: Channel 2 Control (High), Offset: 0x888

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Control (High). 0x101010

Table 365: Channel 3 Control (Low), Offset: 0x84c

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Control (Low). 0x0

Table 366: Channel 3 Control (High), Offset: 0x88c

Bits Field Name Function Init ial Value

31:0 Various Same as Channel 0 Control (High). 0x101010

Table 367: Channels 0-3 Arbiter Control, Offset: 0x860

Bits Field name Function Init ial Value

1:0 Arb0 Slice 0 of “pizza arbiter”.
00 - Channel0
01 - Channel1
10 - Channel2
11 - Channel3

0x0

3:2 Arb1 Slice 1 of “pizza arbiter”. 0x1

5:4 Arb2 Slice 2 of “pizza arbiter”. 0x2

7:6 Arb3 Slice 3 of “pizza arbiter”. 0x3

9:8 Arb4 Slice 4 of “pizza arbiter”. 0x0

11:10 Arb5 Slice 5 of “pizza arbiter”. 0x1

13:12 Arb6 Slice 6 of “pizza arbiter”. 0x2

15:14 Arb7 Slice 7 of “pizza arbiter”. 0x3

17:16 Arb8 Slice 8 of “pizza arbiter”. 0x0

19:18 Arb9 Slice 9 of “pizza arbiter”. 0x1

21:20 Arb10 Slice 10 of “pizza arbiter”. 0x2

23:22 Arb11 Slice 11 of “pizza arbiter”. 0x3

25:24 Arb12 Slice 12 of “pizza arbiter”. 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 270 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

10.9.3 IDMA Interrupt Registers

27:26 Arb13 Slice 13 of “pizza arbiter”. 0x1

29:28 Arb14 Slice 14 of “pizza arbiter”. 0x2

31:30 Arb15 Slice 15 of “pizza arbiter”. 0x3

Table 368: Channels 0-3 Crossbar Timeout, Offset: 0x8d0
NOTE: Reserved for Marvell Technology usage.

Bits Field Name Function Init ial Value

7:0 Timeout CrossBar Arbiter Timeout Preset Value 0xff

15:8 Reserved Reserved. 0x0

16 TimeoutEn CrossBar Arbiter Timer Enable
0 - Enable
1 - Disable

0x1

31:17 Reserved Reserved. 0x0

Table 369: Channels 0-3 Interrupt Cause, Offset: 0x8c0
NOTE: All cause bits are clear only. They are set to ‘1’ upon an interrupt event and cleared when the software

writes a value of ‘0’. Writing ‘1’ has no affect.

Bits Field name Function Init ial Value

0 Comp Channel0 IDMA Completion. 0x0

1 AddrMiss Channel0 Address Miss
Failed address decoding.

0x0

2 AccProt Channel0 Access Protect Violation 0x0

3 WrProt Channel0 Write Protect 0x0

4 Own Channel0 Descriptor Ownership Violation
Attempt to access the descriptor owned by the CPU.

0x0

7:5 Reserved Reserved. 0x0

12:8 Various Same as channel0 cause bits. 0x0

15:13 Reserved Reserved 0x0

22:16 Various Same as channel0 cause bits. 0x0

Table 367: Channels 0-3 Arbiter Control, Offset: 0x860 (Continued)

Bits Field name Function Init ial Value

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 271
Not Approved by Document Control - For Review Only

23:21 Reserved Reserved. 0x0

28:24 Various Same as channel0 cause bits. 0x0

31:29 Reserved Reserved. 0x0

Table 370: Channels 0-3 Interrupt Mask, Offset: 0x8c4

Bits Field Name Function Init ial Value

0 Comp If set to ‘1’, Comp interrupt is enabled. 0x0

1 AddrMiss If set to ‘1’, AddrMiss interrupt is enabled. 0x0

2 AccProt If set to ‘1’, AccProt interrupt is enabled. 0x0

3 WrProt If set to ‘1’, WrProt interrupt is enabled. 0x0

4 Own If set to ‘1’, Own interrupt is enabled. 0x0

5 EOT If set to ‘1’, EOT interrupt is enabled. 0x0

7:6 Reserved Reserved. 0x0

13:8 Various Same as channel0 mask bits. 0x0

15:14 Reserved Reserved. 0x0

21:16 Various Same as channel0 mask bits. 0x0

23:22 Reserved Reserved. 0x0

29:24 Various Same as channel0 mask bits. 0x0

31:30 Reserved Reserved. 0x0

Table 371: Channels 0-3 Error Address, Offset: 0x8c8

Bits Field Name Function Init ial Value

31:0 ErrAddr Bits[31:0] of Error Address
Latched upon any of the error events interrupts
(address miss, access protection, write protection, own-
ership violation).
Once the address is latched, no new address is latched
until the register is read.

0x0

Table 369: Channels 0-3 Interrupt Cause, Offset: 0x8c0 (Continued)
NOTE: All cause bits are clear only. They are set to ‘1’ upon an interrupt event and cleared when the software

writes a value of ‘0’. Writing ‘1’ has no affect.

Bits Field name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 272 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

10.9.4 IDMA Debug Registers
NOTE: Reserved for Marvell Technology usage.

Table 372: Channels 0-3 Error Select, Offset: 0x8cc

Bits Field Name Function Init ial Value

4:0 Sel Specifies the error event currently reported in the Error
Address register.
0x0 - Comp Channel 0
0x1 - AddrMiss Channel 0
0x2 - AccProt Channel 0
0x3 - WrProt Channel 0
0x4 - Own Channel 0
0x5 - 0x7 - Reserved
0x8 - Comp Channel 1
0x9 - AddrMiss Channel 1
0xa - AccProt Channel 1
0xb - WrProt Channel 1
0xc - Own Channel 1
0xd - EOT Channel 1
0xe - 0xf - Reserved
0x10 - Comp Channel 2
0x11 - AddrMiss Channel 2
0x12 - AccProt Channel 2
0x13 - WrProt Channel 2
0x14 - Own Channel 2
0x16 - 0x17 - Reserved
0x18 - Comp Channel 3
0x19 - AddrMiss Channel 3
0x1a - AccProt Channel 3
0x1b - WrProt Channel 3
0x1c - Own Channel 3
0x1d - 0x1f - Reserved
Read Only.

0x0

31:5 Reserved Reserved. 0x0

Table 373: X0 Address, Offset: 0x8e0

Bits Field Name Function Init ial Value

31:0 Addr a2x0_ad[31:0] registered on (a2x0_req & x02a_ack) 0x0

IDMA Controller
IDMA Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 273
Not Approved by Document Control - For Review Only

Table 374: X0 Command and ID, Offset: 0x8e4

Bits Field Name Function Init ial Value

19:0 Cmd a2x0_cbe[19:0] registered on (a2x0_req & x02a_ack) 0x0

31:20 ID a2x0_id[11:0] registered on (a2x0_req & x02a_ack) 0x0

Table 375: X0 Write Data (Low), Offset: 0x8e8

Bits Field Name Function Init ial Value

31:0 Data a2x0_ad[31:0] registered on a2x0_valid 0x0

Table 376: X0 Write Data (High), Offset: 0x8ec

Bits Field Name Function Init ial Value

31:0 Data a2x0_ad[63:32] registered on a2x0_valid 0x0

Table 377: X0 Write Byte Enables, Offset: 0x8f8

Bits Field Name Function Init ial Value

7:0 BE a2x0_cbe registered on a2x0_valid 0x0

31:8 Reserved Reserved. 0x0

Table 378: X0 Read Data (Low), Offset: 0x8f0

Bits Field Name Function Init ial Value

31:0 Data x02a_ad[31:0] registered on x02a_rd_valid 0x0

Table 379: X0 Read Data (High), Offset: 0x8f4

Bits Field Name Function Init ial Value

31:0 Data x02a_ad[63:32] registered on x02a_rd_valid 0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 274 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 380: X0 Read ID, Offset: 0x8fc

Bits Field Name Function Init ial Value

11:0 ID x02a_id[11:0] registered on x02a_rd_valid 0x0

31:12 Reserved Reserved. 0x0

Timer/Counters
Timers/Counters Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 275
Not Approved by Document Control - For Review Only

11. TIMER/COUNTERS
There are four 32-bit wide timer/counters on the GT–64242A. Each timer/counter can be selected to operate as a
timer or as a counter.

Each timer/counter decrements with every Tclk rising edge.

In Counter mode, the counter counts down to terminal count, stops, and issues an interrupt.

In Timer mode, the timer counts down, issues an interrupt on terminal count, reloads itself to the programmed
value, and continues to count.

Reads from the counter or timer are done from the counter itself, while writes are to its register. This means that
read results are in the counter’s real time value.

Each timer/counter can be configured to have an external count enable input, through one of the MPP pins. In this
configuration, the counter counts down as long as the count enable pin is active low.

Each timer/counter has a TCTcnt output pin. This pin is asserted when the counter reaches zero. It is also muxed
on the MPP pins. The Timer/Counter 0-3 Control register’s TCnt_Width bits (see Table 386 on page 276) deter-
mine if TcTcnt is asserted for one or two Tclk cycles.

If a wider timer is required, cascade two timers to generate a 64-bit timer. Cascade the timers by connecting the
first timer’s TCTcnt output to the second timer’s TCEn input. With this configuration, each time the first counter
reaches terminal count the second counter decrements by one.

NOTE: If using an external count enable input, it is necessary to configure the appropriate MPP pin prior to
counter activation.

TCTcnt is asserted one TClk cycle after the counter reaches zero.

MPP pins can also be configured to act as timer/counter terminal count output pins. In this configuration, the cor-
responding MPP pin is asserted low whenever the timer/counter reaches terminal count.

11.1 Timers/Counters Registers

Table 381: IDMA Descriptor Register Map

Register Offset Page

Timer/Counter 0 0x850 page 276

Timer/Counter 1 0x854 page 276

Timer/Counter 2 0x858 page 276

Timer/Counter 3 0x85c page 276

Timer/Counter 0-3 Control 0x864 page 276

Timer/Counter 0-3 Interrupt Cause 0x868 page 279

Timer/Counter 0-3 Interrupt Mask 0x86c page 279

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 276 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 382: Timer/Counter 0, Offset: 0x850

Bits Field Name Function Init ial Value

31:0 TC0 Timer/Counter 0 Value 0x0

Table 383: Timer/Counter 1, Offset: 0x854

Bits Field Name Function Init ial Value

31:0 TC1 Timer/Counter 1 value. 0x0

Table 384: Timer/Counter 2, Offset: 0x858

Bits Field Name Function Init ial Value

31:0 TC2 Timer/Counter 2 value. 0x0

Table 385: Timer/Counter 3, Offset: 0x85c

Bits Field Name Function Init ial Value

31:0 TC3 Timer/Counter 3 value. 0x0

Table 386: Timer/Counter 0-3 Control, Offset: 0x864

Bits Field name Function Init ial Value

0 TC0En Timer/Counter Enable
0 - Disable
1 - Enable
NOTE: When configured to counter, new count starts

only with new write of ‘1’ to the TcEn bit. In
timer mode, the count continues as long as
TcEn is set to ‘1’.

Counting starts two cycles after TCEn asser-
tion.

0x0

1 TC0Mode Timer/Counter Mode
0 - Counter
1 - Timer

0x0

Timer/Counters
Timers/Counters Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 277
Not Approved by Document Control - For Review Only

2 TC0Trig Timer/Counter Trigger
0 - No external trigger
Starts counting as soon as TC0En is set to ‘1’.
1 - External trigger.
Starts counting as soon as TC0En is set to ‘1’ AND the
external TC0En input is asserted.

0x0

3 TCnt0_Width 0 - TCTcnt asserted for one Tclk cycle.
1 - TCTcnt asserted for two Tclk cycles.

0x0

7:4 Reserved Reserved. 0x0

8 TC1En Timer/Counter Enable
0 - Disable
1 - Enable
NOTE: When configured to counter, new count starts

only with new write of ‘1’ to the TcEn bit. In
timer mode, the count continues as long as
TcEn is set to ‘1’.

Counting starts two cycles after TCEn asser-
tion.

0x0

9 TC1Mode Timer/Counter Mode
0 - Counter
1 - Timer

0x0

10 TC1Trig Timer/Counter Trigger
0 - No external trigger
Starts counting as soon as TC1En is set to ‘1’.
1 - External trigger
Starts counting as soon as TC1En is set to ‘1’ AND the
external TC1En input is asserted.

0x0

11 TCnt1_Width 0 - TCTcnt asserted for one TClk cycle.
1 - TCTcnt asserted for two TClk cycles.

0x0

15:12 Reserved Reserved. 0x0

Table 386: Timer/Counter 0-3 Control, Offset: 0x864 (Continued)

Bits Field name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 278 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

16 TC2En Timer/Counter Enable
0 - Disable
1 - Enable
NOTE: When configured to counter, new count starts

only with new write of ‘1’ to the TcEn bit. In
timer mode, the count continues as long as
TcEn is set to ‘1’.

Counting starts two cycles after TCEn asser-
tion.

0x0

17 TC2Mode Timer/Counter Mode
0 - Counter
1 - Timer

0x0

18 TC2Trig Timer/Counter Trigger
0 - No external trigger.
Starts counting as soon as TC2En is set to ‘1’.
1 - External trigger.
Starts counting as soon as TC2En is set to ‘1’ AND the
external TC2En input is asserted.

0x0

19 TCnt2_Width 0 - TCTcnt asserted for one Tclk cycle.
1 - TCTcnt asserted for two Tclk cycles.

0x0

23:20 Reserved Reserved. 0x0

24 TC3En Timer/Counter Enable
0 - Disable
1 - Enable
NOTE: When configured to counter, new count starts

only with new write of ‘1’ to the TcEn bit. In
timer mode, the count continues as long as
TcEn is set to ‘1’.

Counting starts two cycles after TCEn asser-
tion.

0x0

25 TC3Mode Timer/Counter Mode
0 - Counter
1 - Timer

0x0

Table 386: Timer/Counter 0-3 Control, Offset: 0x864 (Continued)

Bits Field name Function Init ial Value

Timer/Counters
Timers/Counters Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 279
Not Approved by Document Control - For Review Only

26 TC3Trig Timer/Counter Trigger
0 - No external trigger
Starts counting as soon as TC3En is set to ‘1’.
1 - External trigger
Starts counting as soon as TC3En is set to ‘1’ AND
external TC3En input is asserted.

0x0

27 TCnt3_Width 0 - TCTcnt asserted for one Tclk cycle.
1 - TCTcnt asserted for two Tclk cycles.

0x0

31:28 Reserved Reserved 0x0

Table 387: Timer/Counter 0-3 Interrupt Cause, Offset: 0x868
NOTE: All cause bits are clear only. They are set to ‘1’ upon timer terminal count. They are cleared by writing a

value of ‘0’. Writing a value of ‘1’ has no affect.

Bits Field Name Function Init ial Value

0 TC0 Timer/Counter 0 terminal count. 0x0

1 TC1 Timer/Counter 1 terminal count. 0x0

2 TC2 Timer/Counter 2 terminal count. 0x0

3 TC3 Timer/Counter 3 terminal count. 0x0

30:4 Reserved Reserved. 0x0

31 Sum Summary of all cause bits.
Read Only

0x0

Table 388: Timer/Counter 0-3 Interrupt Mask, Offset: 0x86c

Bits Field Name Function Init ial Value

0 TC0 If set to ‘1’, TC0 interrupt is enabled. 0x0

1 TC1 If set to ‘1’, TC1 interrupt is enabled. 0x0

2 TC2 If set to ‘1’, TC2 interrupt is enabled. 0x0

3 TC3 If set to ‘1’, TC3 interrupt is enabled. 0x0

31:4 Reserved Reserved. 0x0

Table 386: Timer/Counter 0-3 Control, Offset: 0x864 (Continued)

Bits Field name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 280 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

12. BAUDE RATE GENERATORS (BRG)
There are two baud rate generators (BRGs) in the GT–64242A. Figure 40 shows a BRG block diagram.

Figure 40: Baud Rate Generator Block Diagram

12.1 BRG Inputs and Outputs

There are 5 clock inputs to the baud rate generators (BRGs). One MPP pin can be programmed to function as
clock input to the BRGs. Additionally, each of the serial input clocks can be used as a BRG clock. Finally, TClk
is also an option.

When a BRG is enabled, it loads the Count Down Value (CDV), from the BRG configuration register, into its
count down counter. When the counter expires (i.e. reaches zero), the BRG clock output, BCLK, is toggled and
the counter reloads.

12.2 BRG Baud Tuning

A baud tuning mechanism can be used to adjust the generated clock rate to the receive clock rate.

When baud tuning is enabled, the baud tuning mechanism monitors for a start bit, i.e. High-to-Low transition.
When a start bit is found, the baud tuning machine measures the bit length by counting up until the next Low-to-
High transition. The count-up value of the BRG is then loaded into the Count Up Value (CUV) register and a
maskable interrupt is generated signaling the CPU that the bit length value is available. The CPU reads the value
from the CUV and adjusts the CDV to the requested value.

The CUV can be used to adjust the CDV, in the BRG configuration register, to the requested value.

TClk

SCLK[1:0]
MUX

16bit Count Down

1/2

zero_count

BCLK

RxD Baud Tuning

load

(16 bit count up)

COUNT

sel_1/1

MUX
CLKSel

TSCLK[1:0]

BClk In

Baude Rate Generators (BRG)
BRG Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 281
Not Approved by Document Control - For Review Only

12.3 BRG Registers

Table 389: BRG Registers Map

Register Name Offset Page

BRG0

BRG0 Configuration Register (BCR0) 0xb200 page 281

BRG0 Baud Tuning Register (BTR0) 0xb204 page 282

BRG1

BRG1 Configuration Register (BCR1) 0xb208 page 281

BRG1 Baud Tuning Register (BTR1) 0xb20c page 282

BRG Interrupts

BRG Cause Register 0xb834 page 282

BRG Mask Register 0xb8b4

Table 390: BRGx Configuration Register (BCR)

Bits Field Name Function Init ial Value

15:0 CDV Count Down Value
The user programs the CDV field to define the baud rate
that the BRG generates. CDV is loaded into the BRG
counter every time it reaches 0. The actual baud rate is:

When CDV is 0x0000, the generated baud rate is equal
to the input clock rate.

0x0

16 En Enable BRG
0 - Disabled (Output clock is clamped to 0.)
1 - Enabled.

0x0

17 RST Reset BRG
0 - No Op.
1 - Reset BRG counter to 0.

0x0

BaudRate InputClockRate
CDV+1() 2×

--------------------------------------=

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 282 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

NOTE: When a mask bit is set to ‘1’, the corresponding cause bit is also enabled.

22:18 CLKS Clock Source (input clock to the BRG)
0x0 - BclkIn (from MPP)
0x1 - Reserved
0x2 - SCLK0 (from S0 port)
0x3 - TSCLK0 (from S0 port)
0x4,0x5 - Reserved
0x6 - SCLK1 (from S1 port)
0x7 - TSCLK1 (from S1 port)
0x8 - TClk
0x9 - 0x1f - Reserved

0x10010

31:23 Reserved Reserved. 0x0

Table 391: BRGx Baud Tuning register (BTR)
NOTE: If the BRG is written for a clock source that is inactive, this register cannot be accessed, see Table 390

bits [22:18].

Bits Field Name Function Init ial Value

15:0 CUV Count Up Value
NOTE: These bits are read only.

0x0

31:16 Reserved. 0x0

Table 392: BRG Cause and Mask Register
• Cause Offset: 0xb834
• Mask Offset: 0xb8b4

Bits Field Name Function Init ial Value

0 BTR0 Baud Tuning 0 interrupt 0x0

1 BTR1 Baud Tuning 1 interrupt 0x0

31:2 Reserved. 0x0

Table 390: BRGx Configuration Register (BCR) (Continued)

Bits Field Name Function Init ial Value

Watchdog Timer
Watchdog Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 283
Not Approved by Document Control - For Review Only

13. WATCHDOG TIMER
The GT–64242A internal watchdog timer is a 32-bit count down counter that can be used to generate a non-
maskable interrupt or reset the system in the event of unpredictable software behavior.

After the watchdog is enabled, it is a free running counter that needs to be serviced periodically in order to pre-
vent its expiration.

NOTE: WDE and WDNMI watchdog output pins are multiplexed on the MPP pins (see Section 15. “MPP Mul-
tiplexing” on page 288). The watchdog timer can be activated only after configuring two MPP pins to
act as WDE and WDNMI.

13.1 Watchdog Registers

Table 393: Watchdog Configuration Register (WDC), Offset 0xb410

Bits Field Name Function Init ial Value

23:0 Preset_VAL This field holds the 24 most significant bits which the
watchdog counter loads each time it is enabled or ser-
viced. After reset, this field is set to 0xFF.FFFF. The pre-
set value is equal to {0xPreset_VAL,FF}.

0xFF.FFFF

24:25 CTL1 A write sequence of ‘01’ followed by ‘10’ into CTL1 dis-
ables/enables the watchdog.

00

27:26 CTL2 A write sequence of ‘01’ followed by ‘10’ to CTL2 ser-
vices the watchdog timer.

00

28 Reserved Reserved. 0

29 NMI Non-Maskable Interrupt
When the watchdog counter reaches a value equal to
NMI_VAL, this bit is asserted. This pin can be used to
drive the processor’s NMI* pin.
This bit is read only.

1

30 WDE Watchdog Expiration
When the watchdog counter expires, this bit is asserted.
The WDE* pin can be used to reset the entire system.
This bit is read only.

1

31 EN Enable
0 - Watchdog is disabled, counter is loaded with
Preset_VAL. NMI and WDE are set to ‘1’.
1 - Watchdog is enabled.
This bit is read only.

0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 284 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

13.2 Watchdog Operation

After reset, the watchdog is disabled.

The watchdog must be serviced periodically in order to avoid NMI or reset (WDE*). Watchdog service is per-
formed by writing ‘01’ to CTL2, followed by writing ‘10’ to CTL2. Upon watchdog service, the GT–64242A
clears the NMI and WDE bits (if set) and reloads the Preset_VAL into the watchdog counter.

A write sequence of ‘01’ followed by ‘10’ into CTL1 disables/enables the watchdog. The watchdog’s current sta-
tus can be read in bit 31 of WDC. When disabled, the GT–64242A sets the NMI and WDE bits (if clear) and
reloads the Preset_VAL into the watchdog counter.

Preset_VAL and NMI_VAL can be changed while the watchdog is enabled. However, Preset_VAL will affect the
watchdog only after it is loaded into the watchdog counter (e.g. after watchdog service).

If the watchdog is not serviced before the counter reaches NMI_VAL, a non-maskable interrupt event occurs. a
watchdog expiration event occurs. The NMI bit is reset, asserting low the NMI* pin.

In order to deassert the NMI* and/or WDE* pins, the watchdog must be serviced, disabled or the GT–64242A
must be reset. The GT–64242A holds WDE* asserted for the duration of 16 system cycles after reset assertion.

Table 394: Watchdog Value Register (WDV), Offset 0xb414

Bits Field Name Function Init ial Value

23:0 NMI_VAL NMI_VAL are the 24 least significant bits of a 32-bit
value. The upper 8 bits are always ‘00’.
When the Watchdog counter reaches a value equal to
the NMI value NMI* pin is asserted. The actual NMI
value is a 32-bit number equal to {0x00,NMI_VAL}.

0x000.0000

31:24 Reserved Reserved. 0

General Purpose Port
GPP Control Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 285
Not Approved by Document Control - For Review Only

14. GENERAL PURPOSE PORT
GT–64242A contains a 32-bit General Purpose Port (GPP).

Each of the GPP pins can be assigned to act as a general purpose input or output pin and can be used to register
external interrupts (when assigned as input pin). The GPP is multiplexed on the GT–64242A MPP pins (see Sec-
tion 15.1 “MPP Multiplexing” on page 288 section for more information).

14.1 GPP Control Registers

The GT–64242A includes GPP I/O Control and GPP Level Control registers.

The I/O Control register determines the direction for each GPP pin. Setting a bit to ‘1’ configures the associated
GPP pin to act as output pin. Setting a bit to ‘0’ configures the GPP pin as input pin.

The Level Control register determines the polarity for each GPP pin. Setting a bit to ‘1’ configures the associated
GPP pin to be active low. Setting a bit to ‘0’ configures the GPP pin to be active high. The GT–64242A negates
an active low input pin before latching it inside. It inverts an active low output pin before driving it outside.

14.2 GPP Value Register

The GT–64242A includes a 32-bit GPP Value register. Each GPP pin has an associated bit.

For pins configured as input pins, the associated bits are read only, and contains the value of the pins. When an
input GPP pin is configured as asserted low, the value latched in GPP Value register is the negated value of the
pin.

For pins configured as output pins, the associated bits are read/write. The value written to the GPP Value register
bits is driven on the associated GPP output pins (inverted in case of active low pin).

14.3 GPP Interrupts

The GPP input pins can be used to register external interrupts. The GT–64242A supports both edge sensitive and
level sensitive interrupts.

If the Comm Unit Arbiter Control register’s GPP_INT bit is set to ‘0’ (see Table 461 on page 328), the external
interrupts are treated as edge trigger interrupts. An assertion of a GPP input pin (toggle from ‘0’ to ‘1’ in case of
active high pin, from ’1’ to ’0’ in case of active low pin), results in setting the corresponding bit in GPP Interrupt
Cause register.

NOTE: The GPP pin must be kept active for at least one TClk cycle to guarantee that the interrupt is registered.

If not masked by the GPP Interrupt Mask register, the GPP interrupt may cause a CPU or PCI interrupt. If a mask
bit is set to ‘1’, interrupt is enabled. A mask register setting has no affect on registering GPP interrupts into the
GPP Interrupt Cause register.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 286 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Interrupt is deasserted as soon as software clears the corresponding bit in the GPP Interrupt cause register (write
‘0’).

If Comm Unit Atbiter Control register’s GPP_INT bit is set to ‘1’, the external interrupts are treated as level
interrupts. In this mode, an interrupt is always generated when one of the GPP Value register bits is asserted and
it is not masked by the GPP Interrupt Mask register (GPP Interrupt Cause register is not used for the interrupt
generation).

NOTE: In this mode, the interrupt handler clears the interrupt directly on the originating device.

14.4 General Purpose Port Registers

Table 395: GPP Register Map

Register Offset Page

GPP I/O Control 0xf100 page 286

GPP Level Control 0xf110 page 286

GPP Value 0xf104 page 287

GPP Interrupt Cause 0xf108 page 287

GPP Interrupt Mask 0xf10c page 287

Table 396: GPP I/O Control, Offset: 0xf100

Bits Field Name Function Init ial Value

31:0 GPP I/O GPP Input/Output Select
0 - Input
1 - Output

0x0

Table 397: GPP Level Control, Offset: 0xf110

Bits Field Name Function Init ial Value

31:0 GPP Level GPP Input Level Select
0 - Active high
1 - Active low

0x0

General Purpose Port
General Purpose Port Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 287
Not Approved by Document Control - For Review Only

Table 398: GPP Value, Offset: 0xf104

Bits Field Name Function Init ial Value

31:0 GPP Value GPP Pins Values
If the GPP pin is programed as an input pin, it’s associ-
ated bit is a Read Only bit containing the GPP pin value
(or negated value in case of an asserted low pin).
If programed as an output pin, it is a read/write bit. It’s
programed value is driven on the GPP pin.

0x0

Table 399: GPP Interrupt Cause, Offset: 0xf108

Bits Field Name Function Init ial Value

31:0 Cause GPP Interrupt Cause Bits
Set to ‘1’ upon GPP input pin assertion.
Only cleared by the CPU or PCI writing ‘0’.

0x0

Table 400: GPP Interrupt Mask, Offset: 0xf10c

Bits Field Name Function Init ial Value

31:0 Mask GPP Interrupts Mask
If a bit is set to ‘1’, it’s associated GPP interrupt is
enabled.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 288 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

15. MPP MULTIPLEXING
The GT–64242A has 32 MPP pins.

15.1 MPP Multiplexing

The GT–64242A contains 32 Multi Purpose Pins. Each one can be assigned to a different functionality through
MPP Control register. The MPP pins can be used as hardware control signals to the GT–64242A different inter-
faces (UMA control, DMA control, PCI arbiter signals), or as General Purpose Ports.

Table 401 shows each MPP pins’ functionality as determined by the MPP Multiplex register.

Table 401: MPP Function Summary

MPP[0] MPP[1] MPP[2] MPP[3] MPP[4] MPP[5] MPP[6] MPP[7]

GPP[0] GPP[1] GPP[2] GPP[3] GPP[4] GPP[5] GPP[6] GPP[7]

DMAReq[0]* DMAAck[0]* DMAReq[1]* DMAAck[1]* DMAReq[2]* DMAAck[2]* DMAReq[3]* DMAAck[3]*

MGNT* MREQ* PME* Reserved Reserved PME* MGNT* MREQ*

EOT[7] EOT[7] EOT[6] EOT[6] EOT[5] EOT[5] EOT[4] EOT[4]

TCEn[3] TCTcnt[3]* TCEn[2] TCTcnt[2] TCEn[1] TCTcnt[1] TCEn[0] TCTcnt[0]

DBurst* InitAct InitAct DBurst* InitAct DBurst* DBurst* InitAct

Int[0]* Int[1]* Int[2]* Int[3]* Int[0]* Int[1]* Int[2]* Int[3]*

GNT[0]* REQ[0]* GNT[1]* REQ[1]* GNT[2]* REQ[2]* GNT[3]* REQ[3]*

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

WDNMI* WDE* WDNMI* WDE* BClkIn BClkIn BClkOut0 BClkOut0

MPP[8] MPP[9] MPP[10] MPP[11] MPP[12] MPP[13] MPP[14] MPP[15]

GPP[8] GPP[9] GPP[10] GPP[11] GPP[12] GPP[13] GPP[14] GPP[15]

DMAReq[4]* DMAAck[4]* DMAReq[5]* DMAAck[5]* DMAReq[6]* DMAAck[6]* DMAReq[7]* DMAAck[7]*

MGNT* MREQ* Reserved PME* PME* Reserved MGNT* MREQ*

EOT[3] EOT[3] EOT[2] EOT[2] EOT[1] EOT[1] EOT[0] EOT[0]

TCEn[7] TCTcnt[7] TCEn[6] TCTcnt[6] TCEn[5] TCTcnt[5] TCEn[4] TCTcnt[4]

DBurst* InitAct InitAct DBurst* InitAct DBurst* DBurst* InitAct

Int[0]* Int[1]* Int[2]* Int[3]* Int[0]* Int[1]* Int[2]* Int[3]*

GNT[4]* REQ[4]* GNT[5]* REQ[5]* GNT[4]* REQ[4]* GNT[3]* REQ[3]*

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

WDNMI* WDE* WDNMI* WDE* BClkOut0 BClkOut0 BClkIn BClkIn

MPP[16] MPP[17] MPP[18] MPP[19] MPP[20] MPP[21] MPP[22] MPP[23]

GPP[16] GPP[17] GPP[18] GPP[19] GPP[20] GPP[21] GPP[22] GPP[23]

MPP Multiplexing
MPP Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 289
Not Approved by Document Control - For Review Only

NOTE: Since each pin might act as output or input pin, depending on its configured functionality, all MPP pins
wake up after reset as GPP input pins.

15.2 MPP Interface Registers

DMAReq[0]* DMAAck[0]* DMAReq[1]* DMAAck[1]* DMAReq[2]* DMAAck[2]* DMAReq[3]* DMAAck[3]*

MGNT* MREQ* PME* Reserved Reserved PME* MGNT* MREQ*

EOT[7] EOT[7] EOT[6] EOT[6] EOT[5] EOT[5] EOT[4] EOT[4]

TCEn[3] TCTcnt[3] TCEn[2] TCTcnt[2] TCEn[1] TCTcnt[1] TCEn[0] TCTcnt[0]

DBurst* InitAct InitAct DBurst* InitAct DBurst* DBurst* InitAct

Int[0]* Int[1]* Int[2]* Int[3]* Int[0]* Int[1]* Int[2]* Int[3]*

GNT[0]* REQ[0]* GNT[1]* REQ[1]* GNT[2]* REQ[2]* GNT[3]* REQ[3]*

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

WDNMI* WDE* WDNMI* WDE* BClkIn BClkIn BClkOut0 BClkOut0

MPP[24] MPP[25] MPP[26] MPP[27] MPP[28] MPP[29] MPP[30] MPP[31]

GPP[24] GPP[25] GPP[26] GPP[27] GPP[28] GPP[29] GPP[30] GPP[31]

DMAReq[4]* DMAAck[4]* DMAReq[5]* DMAAck[5]* DMAReq[6]* DMAAck[6]* DMAReq[7]* DMAAck[7]*

MGNT* MREQ* Reserved PME* PME* Reserved MGNT* MREQ*

MGNT* MREQ* Reserved PME* PME* Reserved MGNT* MREQ*

EOT[3] EOT[3] EOT[2] EOT[2] EOT[1] EOT[1] EOT[0] EOT[0]

TCEn[7] TCTcnt[7] TCEn[6] TCTcnt[6] TCEn[5] TCTcnt[5] TCEn[4] TCTcnt[4]

DBurst* InitAct InitAct DBurst* InitAct DBurst* DBurst* InitAct

Int[0]* Int[1]* Int[2]* Int[3]* Int[0]* Int[1]* Int[2]* Int[3]*

GNT[4]* REQ[4]* GNT[5]* REQ[1]* GNT[4]* REQ[4]* GNT[3]* REQ[3]*

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

WDNMI* WDE* WDNMI* WDE* BClkOut0 BClkOut0 BClkIn BClkIn

Table 402: GPP Interface Register Map

Register Offset Page

MPP Control0 0xf000 page 290

MPP Control1 0xf004 page 293

MPP Control2 0xf008 page 296

Table 401: MPP Function Summary (Continued)

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 290 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

MPP Control3 0xf00c page 299

Table 403: MPP Control0, Offset: 0xf000

Bits Field Name Function Init ial Value

3:0 MPPSel0 MPP0 Select
0x0 - GPP[0]
0x1 - DMAReq[0]*
0x2 - MGNT*
0x3 - EOT[7]
0x4 - TCEn[3]
0x5 - DBurst*
0x6 - Int[0]*
0x7 - GNT[0]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[0]

0x0

7:4 MPPSel1 MPP1 Select
0x0 - GPP[1]
0x1 - DMAAck[0]*
0x2 - MREQ*
0x3 - EOT[7]
0x4 - TCTcnt[3]
0x5 - InitAct
0x6 - Int[1]*
0x7 - REQ[0]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[1]

0x0

Table 402: GPP Interface Register Map (Continued)

Register Offset Page

MPP Multiplexing
MPP Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 291
Not Approved by Document Control - For Review Only

11:8 MPPSel2 MPP2 Select
0x0 - GPP[2]
0x1 - DMAReq[1]*
0x2 - PME*
0x3 - EOT[6]
0x4 - TCEn[2]
0x5 - InitAct
0x6 - Int[2]*
0x7 - GNT[1]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[2]

0x0

15:12 MPPSel3 MPP3 Select
0x0 - GPP[3]
0x1 - DMAAck[1]*
0x2 - Reserved
0x3 - EOT[6]
0x4 - TCTcnt[2]
0x5 - DBurst*
0x6 - Int[3]*
0x7 - REQ[1]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[3]

0x0

19:16 MPPSel4 MPP4 Select
0x0 - GPP[4]
0x1 - DMAReq[2]*
0x2 - Reserved
0x3 - EOT[5]
0x4 - TCEn[1]
0x5 - InitAct
0x6 - Int[0]*
0x7 - GNT[2]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[4]

0x0

Table 403: MPP Control0, Offset: 0xf000 (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 292 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

23:20 MPPSel5 MPP5 Select
0x0 - GPP[5]
0x1 - DMAAck[2]*
0x2 - PME*
0x3 - EOT[5]
0x4 - TCTcnt[1]
0x5 - DBurst*
0x6 - Int[1]*
0x7 - REQ[2]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[5]

0x0

27:24 MPPSel6 MPP6 Select
0x0 - GPP[6]
0x1 - DMAReq[3]*
0x2 - MGNT*
0x3 - EOT[4]
0x4 - TCEn[0]
0x5 - DBurst*
0x6 - Int[2]*
0x7 - GNT[3]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[6]

0x0

31:28 MPPSel7 MPP7 Select
0x0 - GPP[7]
0x1 - DMAAck[3]*
0x2 - MREQ*
0x3 - EOT[4]
0x4 - TCTcnt[0]
0x5 - InitAct
0x6 - Int[3]*
0x7 - REQ[3]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[7]

0x0

Table 403: MPP Control0, Offset: 0xf000 (Continued)

Bits Field Name Function Init ial Value

MPP Multiplexing
MPP Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 293
Not Approved by Document Control - For Review Only

Table 404: MPP Control1, Offset: 0xf004

Bits Field Name Function Init ial Value

3:0 MPPSel8 MPP8 Select
0x0 - GPP[8]
0x1 - DMAReq[4]*
0x2 - MGNT*
0x3 - EOT[3]
0x4 - TCEn[7]
0x5 - DBurst*
0x6 - Int[0]*
0x7 - GNT[4]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[8]

0x0

7:4 MPPSel9 MPP9 Select
0x0 - GPP[9]
0x1 - DMAAck[4]*
0x2 - MREQ*
0x3 - EOT[3]
0x4 - TCTcnt[7]
0x5 - InitAct
0x6 - Int[1]*
0x7 - REQ[4]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[9]

0x0

11:8 MPPSel10 MPP10 Select
0x0 - GPP[10]
0x1 - DMAReq[5]*
0x2 - Reserved
0x3 - EOT[2]
0x4 - TCEn[6]
0x5 - InitAct
0x6 - Int[2]*
0x7 - GNT[5]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[10]

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 294 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

15:12 MPPSel11 MPP11 Select
0x0 - GPP[11]
0x1 - DMAAck[5]*
0x2 - PME*
0x3 - EOT[2]
0x4 - TCTcnt[6]
0x5 - DBurst*
0x6 - Int[3]*
0x7 - REQ[5]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[11]

0x0

19:16 MPPSel12 MPP12 Select
0x0 - GPP[12]
0x1 - DMAReq[6]*
0x2 - PME*
0x3 - EOT[1]
0x4 - TCEn[5]
0x5 - InitAct
0x6 - Int[0]*
0x7 - GNT[4]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[12]

0x0

23:20 MPPSel13 MPP13 Select
0x0 - GPP[13]
0x1 - DMAAck[6]*
0x2 - Reserved
0x3 - EOT[1]
0x4 - TCTcnt[5]
0x5 - DBurst*
0x6 - Int[1]*
0x7 - REQ[4]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[13]

0x0

Table 404: MPP Control1, Offset: 0xf004 (Continued)

Bits Field Name Function Init ial Value

MPP Multiplexing
MPP Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 295
Not Approved by Document Control - For Review Only

27:24 MPPSel14 MPP14 Select
0x0 - GPP[14]
0x1 - DMAReq[7]*
0x2 - MGNT*
0x3 - EOT[0]
0x4 - TCEn[4]
0x5 - DBurst*
0x6 - Int[2]*
0x7 - GNT[3]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[14]

0x0

31:28 MPPSel15 MPP15 Select
0x0 - GPP[15]
0x1 - DMAAck[7]*
0x2 - MREQ*
0x3 - EOT[0]
0x4 - TCTcnt[4]
0x5 - InitAct
0x6 - Int[3]*
0x7 - REQ[3]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[15]

0x0

Table 404: MPP Control1, Offset: 0xf004 (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 296 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 405: MPP Control2, Offset: 0xf008

Bits Field Name Function Initial Value

3:0 MPPSel16 MPP16 Select
0x0 - GPP[16]
0x1 - DMAReq[0]*
0x2 - MGNT*
0x3 - EOT[7]
0x4 - TCEn[3]
0x5 - DBurst*
0x6 - Int[0]*
0x7 - GNT[0]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[16]

0x0

7:4 MPPSel17 MPP1 Select
0x0 - GPP[17]
0x1 - DMAAck[0]*
0x2 - MREQ*
0x3 - EOT[7]
0x4 - TCTcnt[3]
0x5 - InitAct
0x6 - Int[1]*
0x7 - REQ[0]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[17]

0x0

11:8 MPPSel18 MPP18 Select
0x0 - GPP[18]
0x1 - DMAReq[1]*
0x2 - PME*
0x3 - EOT[6]
0x4 - TCEn[2]
0x5 - InitAct
0x6 - Int[2]*
0x7 - GNT[1]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[18]

0x0

MPP Multiplexing
MPP Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 297
Not Approved by Document Control - For Review Only

15:12 MPPSel19 MPP19 Select
0x0 - GPP[19]
0x1 - DMAAck[1]*
0x2 - Reserved
0x3 - EOT[6]
0x4 - TCTcnt[2]
0x5 - DBurst*
0x6 - Int[3]*
0x7 - REQ[1]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[19]

0x0

19:16 MPPSel20 MPP20 Select
0x0 - GPP[20]
0x1 - DMAReq[2]*
0x2 - Reserved
0x3 - EOT[5]
0x4 - TCEn[1]
0x5 - InitAct
0x6 - Int[0]*
0x7 - GNT[2]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[20]

0x0

23:20 MPPSel21 MPP21 Select
0x0 - GPP[21]
0x1 - DMAAck[2]*
0x2 - PME*
0x3 - EOT[5]
0x4 - TCTcnt[1]
0x5 - DBurst*
0x6 - Int[1]*
0x7 - REQ[2]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[21]

0x0

Table 405: MPP Control2, Offset: 0xf008 (Continued)

Bits Field Name Function Initial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 298 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

27:24 MPPSel22 MPP22 Select
0x0 - GPP[22]
0x1 - DMAReq[3]*
0x2 - MGNT*
0x3 - EOT[4]
0x4 - TCEn[0]
0x5 - DBurst*
0x6 - Int[2]*
0x7 - GNT[3]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[22]

0x0

31:28 MPPSel23 MPP23 Select
0x0 - GPP[23]
0x1 - DMAAck[3]*
0x2 - MREQ*
0x3 - EOT[4]
0x4 - TCTcnt[0]
0x5 - InitAct
0x6 - Int[3]*
0x7 - REQ[3]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[23]

0x0

Table 405: MPP Control2, Offset: 0xf008 (Continued)

Bits Field Name Function Initial Value

MPP Multiplexing
MPP Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 299
Not Approved by Document Control - For Review Only

Table 406: MPP Control3, Offset: 0xf00c

Bits Field Name Function Init ial Value

3:0 MPPSel24 MPP24 Select
0x0 - GPP[24]
0x1 - DMAReq[4]*
0x2 - MGNT*
0x3 - EOT[3]
0x4 - TCEn[7]
0x5 - DBurst*
0x6 - Int[0]*
0x7 - GNT[4]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[24]

0x0

7:4 MPPSel25 MPP25 Select
0x0 - GPP[25]
0x1 - DMAAck[4]*
0x2 - MREQ*
0x3 - EOT[3]
0x4 - TCTcnt[7]
0x5 - InitAct
0x6 - Int[1]*
0x7 - REQ[4]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[25]

0x0

11:8 MPPSel26 MPP26 Select
0x0 - GPP[26]
0x1 - DMAReq[5]*
0x2 - Reserved
0x3 - EOT[2]
0x4 - TCEn[6]
0x5 - InitAct
0x6 - Int[2]*
0x7 - GNT[5]*
0x8 - Reserved
0x9 - WDNMI*
0xa to 0xe - Reserved
0xf - Debug[26]

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 300 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

15:12 MPPSel27 MPP27 Select
0x0 - GPP[27]
0x1 - DMAAck[5]*
0x2 - PME*
0x3 - EOT[2]
0x4 - TCTcnt[6]
0x5 - DBurst*
0x6 - Int[3]*
0x7 - REQ[5]*
0x8 - Reserved
0x9 - WDE*
0xa to 0xe - Reserved
0xf - Debug[27]

0x0

19:16 MPPSel28 MPP28 Select
0x0 - GPP[28]
0x1 - DMAReq[6]*
0x2 - PME*
0x3 - EOT[1]
0x4 - TCEn[5]
0x5 - InitAct
0x6 - Int[0]*
0x7 - GNT[4]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[28]

0x0

23:20 MPPSel29 MPP29 Select
0x0 - GPP[29]
0x1 - DMAAck[6]*
0x2 - Reserved
0x3 - EOT[1]
0x4 - TCTcnt[5]
0x5 - DBurst*
0x6 - Int[1]*
0x7 - REQ[4]*
0x8 - Reserved
0x9 - BClkOut0
0xa to 0xe - Reserved
0xf - Debug[29]

0x0

Table 406: MPP Control3, Offset: 0xf00c (Continued)

Bits Field Name Function Init ial Value

MPP Multiplexing
MPP Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 301
Not Approved by Document Control - For Review Only

27:24 MPPSel30 MPP30 Select
0x0 - GPP[30]
0x1 - DMAReq[7]*
0x2 - MGNT*
0x3 - EOT[0]
0x4 - TCEn[4]
0x5 - DBurst*
0x6 - Int[2]*
0x7 - GNT[3]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[30]

0x0

31:28 MPPSel31 MPP31 Select
0x0 - GPP[31]
0x1 - DMAAck[7]*
0x2 - MREQ*
0x3 - EOT[0]
0x4 - TCTcnt[4]
0x5 - InitAct
0x6 - Int[3]*
0x7 - REQ[3]*
0x8 - Reserved
0x9 - BClkIn
0xa to 0xe - Reserved
0xf - Debug[31]

0x0

Table 406: MPP Control3, Offset: 0xf00c (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 302 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

16. I2C INTERFACE
The GT–64242A has full I2C support. It can act as master generating read/write requests and as a slave respond-
ing to read/write requests. It fully supports multiple I2C masters environment (clock synchronization, bus arbitra-
tion).

The I2C interface can be used for various applications. It can be used to control other I2C on board devices, to
read DIMM SPD ROM and is also used for serial ROM initialization. For more details, see Section 20. “Reset
Configuration” on page 325.

16.1 I2C Bus Operation

The I2C port consists of two open drain signals:
• SCL (Serial Clock)
• SDA (Serial address/data)

The I2C master starts a transaction by driving a start condition followed by a 7- or 10-bit slave address and a
read/write bit indication. The target I2C slave responds with acknowledge.

In case of write access (R/W bit is ‘0’), following the acknowledge, the master drives 8-bit data and the slave
responds with acknowledge. This write access (8-bit data followed by acknowledge) continues until the I2C mas-
ter ends the transaction with stop condition.

In case of read access, following the slave address acknowledge, the I2C slave drives 8-bit data and the master
responds with acknowledge. This read access (8-bit data followed by acknowledge) continues until the I2C mas-
ter ends the transaction by responding with no acknowledge to the last 8-bit data, followed by a stop condition.

A target slave that cannot drive valid read data right after it received the address, can insert “wait states” by forc-
ing SCL low until it has valid data to drive on the SDA line.

A master is allowed to combine two transactions. After the last data transfer, it can drive a new start condition
followed by new slave address, rather than drive stop condition. Combining transactions guarantees that the mas-
ter does not loose arbitration to some other I2C master.

I2C examples are shown in Figure 41. For full I2C protocol description look in Philips Semiconductor I2C spec.

I2C Interface
I2C Bus Operation

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 303
Not Approved by Document Control - For Review Only

Figure 41: I2C Examples

SCL

SDA

Start
Condition

Valid
Data

Data
may

Change

Stop
Condition

Data Transfer Sequence

x x0 x0 1s 1 1 p

First Data Last Data

a
c
k

a
c
k

n
o

a
c
k

s
t
a
r
t r/w

Address

s
t
o
p

Sequential Read

x x0 x0 1s 1 0 p

Last Data

a
c
k

a
c
k

n
o

a
c
k

s
t
a
r
t r/w

Address

s
t
o
p

Combined Access

x x0 x0 1s 1 1

a
c
k

a
c
k

s
t
a
r
t r/w

Address

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 304 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

16.2 I2C Registers

The I2C interface master and slave activities are handled by simple CPU (or PCI) access to internal registers, plus
interrupt interface. The following sections describe each of these registers.

16.2.1 I2C Slave Address registers
The I2C slave interface supports both 7-bit and 10-bit addressing. The slave address is programmed by the Slave
Address register and Extended Slave Address register (see Table 410 and Table 411 on page 310).

When the I2C receives a 7-bit address after a start condition, it compares it against the value programed in the
Slave Address register, and if it matches, it responds with acknowledge.

If the received 7 address bits are ‘11110xx’, meaning that it is an 10-bit slave address, the I2C compares the
received 10-bit address with the 10-bit value programed in the Slave Address and Extended Slave Address regis-
ters, and if it matches, it responds with acknowledge.

The I2C interface also support slave response to general call transactions. If GCE bit in the Slave Address regis-
ter is set to ‘1’, the I2C also responds to general call address (0x0).

16.2.2 I2C Data Register
The 8-bit Data register is used both in master and slave modes.

In master mode, the CPU must place the slave address or write data to be transmitted. In case of read access, it
contains received data (need to be read by CPU).

In slave mode, the Data register contains data received from master on write access, or data to be transmitted
(written by CPU) on read access.

NOTE: Data register MSB contains the first bit to be transmitted or being received.

16.2.3 I2C Control Register
This 8-bit register contains the following bits:

Table 407: I2C Control Register Bits

Bit Function Description

1:0 Reserved Read only ‘0’.

2 Acknowledge Bit When set to ‘1’, the I2C drives an acknowledge bit on the bus in response to a
received address (slave mode), or in response to a data received (read data in
master mod, write data in slave mode).
For a master to signal an I2C target a read of last data, the CPU must clear this
bit (generating no acknowledge bit on the bus).
For the slave to respond, this bit must always be set back to 1.

I2C Interface
I2C Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 305
Not Approved by Document Control - For Review Only

16.2.4 I2C Status Register
This 8-bit register contains the current status of the I2C interface. Bits[7:3] are the status code, bits[2:0] are
Reserved (read only 0). Table 408 summarizes all possible status codes.

3 Interrupt Flag If any of the interrupt events occur, set to ‘1’ by I2C hardware, see Section
16.2.4 “I2C Status Register” on page 305.
If set to ‘1’ and I2C interrupts are enabled through bit[7], an interrupt is
asserted.

4 Stop Bit When set to ‘1’, the I2C master initiates a stop condition on the bus.
The bit is set only. It is cleared by I2C hardware after a stop condition is driven
on the bus.

5 Start Bit When set to ‘1’, the I2C master initiates a start condition on the bus, when the
bus is free, or a repeated start condition, if the master already drives the bus.
The bit is set only. It is cleared by I2C hardware after a start condition is driven
on the bus.

6 I2C Enable If set to ‘1’, the I2C slave responds to calls to its slave address, and to general
calls if enabled.
If set to ‘0’, SDA and SCL inputs are ignored. The I2C slave does not respond
to any address on the bus.

7 Interrupt Enable If set to ‘1’, I2C interrupts are enabled.
NOTE: It is highly recommended to use I2C interrupt to interface the I2C mod-

ule, rather than using register polling method.

Table 408: I2C Status Codes

Code Status

0x00 Bus error.

0x08 Start condition transmitted.

0x10 Repeated start condition transmitted.

0x18 Address + write bit transmitted, acknowledge received.

0x20 Address + write bit transmitted, acknowledge not received.

0x28 Master transmitted data byte, acknowledge received.

0x30 Master transmitted data byte, acknowledge not received.

0x38 Master lost arbitration during address or data transfer.

0x40 Address + read bit transmitted, acknowledge received.

Table 407: I2C Control Register Bits (Continued)

Bit Function Description

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 306 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

0x48 Address + read bit transmitted, acknowledge not received.

0x50 Master received read data, acknowledge transmitted.

0x58 Master received read data, acknowledge not transmitted.

0x60 Slave received slave address, acknowledge transmitted.

0x68 Master lost arbitration during address transmit, address is targeted to the slave (write access),
acknowledge transmitted.

0x70 General call received, acknowledge transmitted.

0x78 Master lost arbitration during address transmit, general call address received, acknowledge trans-
mitted.

0x80 Slave received write data after receiving slave address, acknowledge transmitted.

0x88 Slave received write data after receiving slave address, acknowledge not transmitted.

0x90 Slave received write data after receiving general call, acknowledge transmitted.

0x98 Slave received write data after receiving general call, acknowledge not transmitted.

0xA0 Slave received stop or repeated start condition.

0xA8 Slave received address + read bit, acknowledge transmitted.

0xB0 Master lost arbitration during address transmit, address is targeted to the slave (read access),
acknowledge transmitted.

0xB8 Slave transmitted read data, acknowledge received.

0xC0 Slave transmitted read data, acknowledge not received.

0xC8 Slave transmitted last read byte, acknowledge received.

0xD0 Second address + write bit transmitted, acknowledge received.

0xD8 Second address + write bit transmitted, acknowledge not received.

0xE0 Second address + read bit transmitted, acknowledge received.

0xE8 Second address + read bit transmitted, acknowledge not received.

0xF8 No relevant status. Interrupt flag is kept 0.

Table 408: I2C Status Codes (Continued)

Code Status

I2C Interface
I2C Master Operation

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 307
Not Approved by Document Control - For Review Only

16.2.5 Baude Rate Register
I2C spec defines SCL frequency of 100KHz (400KHz in fast mode). The I2C module contains a clock divider
that separates TClk to generate the SCL clock. Setting bits[6:0] of Baude Rate register defines SCL frequency as
follows:

NOTE: Where M is the value represented by bits[6:3] and N the value represented by bits[2:0]. If for example
M=N=4 (which are the default values), running TClk at 10MHz results in SCL frequency of 62.5KHz.

16.3 I2C Master Operation

The CPU can initiate I2C master read and write transactions via I2C registers, as described in the following sec-
tions.

16.3.1 Master Write Access
Master write access consists of the following steps:

1. The CPU sets the I2C Control register’s Start bit [5] to ‘1’, see Table 413 on page 310. The I2C master
then generates a start condition as soon as the bus is free, then sets an Interrupt flag, and then sets the
Status register to 0x8.

2. The CPU writes 7-bit address plus write bit to the Data register, and then clears Interrupt flag for the I2C
master interface to drive slave address on the bus. The target slave responds with acknowledge, causing
Interrupt flag to be set, and status code of 0x18 be registered in the Status register. If the target I2C
device has an 10-bit address, the CPU needs to write the remainder 8-bit address bits to the Data regis-
ter, and then clears Interrupt flag for the master to drive this address on the bus. The target device
responds with acknowledge, causing an Interrupt flag to be set, and status code of 0xD0 be registered in
the Status register.

3. The CPU writes data byte to the Data register, and then clears Interrupt flag for the I2C master interface
to drive the data on the bus. The target slave responds with acknowledge, causing Interrupt flag to be
set, and status code of 0x28 be registered in the Status register. The CPU continues this loop of writing
new data to the Data register and clear Interrupt flag, as long as it needs to transmit write data to the tar-
get.

4. After last data transmit, the CPU may terminate the transaction or restart a new transaction. To terminate
the transaction, the CPU sets the Control register’s Stop bit and then clears the Interrupt flag, causing
I2C master to generate a stop condition on the bus, and go back to idle state. To restart a new transaction,
the CPU sets the I2C Control register’s Start bit and clears the Interrupt flag, causing I2C master to gen-
erate a new start condition.

FSCL
FTClk

10 M 1+() 2 N 1+()⋅ ⋅
---=

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 308 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

NOTE: This sequence describes a normal operation. There are also abnormal cases, such as a slave not respond-
ing with acknowledge, or arbitration loss. Each of these cases is reported in the Status register and needs
to be handled by CPU.

16.3.2 Master Read Access
1. Generating start condition, exactly the same as in the case of write access, see Section 16.3.1 “Master

Write Access” on page 307).
2. Drive 7- or 10-bit slave address, exactly the same as in the case of write access, with the exception that

the status code after 1st address byte transmit is 0x40, and after 2nd address byte transmit (in case of 10-
bit address) is 0xE0.

3. Read data being received from target device is placed in the data register and acknowledge is driven on
the bus. Also interrupt flag is set, and status code of 0x50 is registered in the Status register. The CPU
reads data from Data register and clears the Interrupt flag to continue receiving next read data byte. This
look is continued as long as the CPU wishes to read data from the target device.

4. To terminate, the read access needs to respond with no acknowledge to the last data. It then generates a
stop condition or generates a new start condition to restart a new transaction. With last data, the CPU
clears the I2C Control register’s Acknowledge bit (when clearing the Interrupt bit), causing the I2C mas-
ter interface to respond with no acknowledge to last received read data. In this case, the Interrupt flag is
set with status code of 0x58. Now, the CPU can issue a stop condition or a new start condition.

NOTE: The above sequence describes a normal operation. There are also abnormal cases, such as the slave not
responding with acknowledge, or arbitration loss. Each of these cases is reported in the Status register
and needs to be handled by CPU.

16.4 I2C Slave Operation

The I2C slave interface can respond to a read access, driving read data back to the master that initiated the trans-
action, or respond to write access, receiving write data from the master.

The two cases are described in the following sections.

16.4.1 Slave Read Access
Upon detecting a new address driven on the bus with read bit indication, the I2C slave interface compares the
address against the address programmed in the Slave Address register. If it matches, the slave responds with
acknowledge. It also sets the Interrupt flag, and sets status code to 0xA8.

NOTE: If the I2C slave address is 10-bit, the Interrupt flag is set and status code changes only after receiving
and identify address match also on the 2nd address byte).

The CPU now needs to write new read data to the Data register and clears the Interrupt flag, causing I2C slave
interface to drive the data on the bus. The master responds with acknowledge causing an Interrupt flag to be set,
and status code of 0xB8 to be registered in the Status register.

I2C Interface
I2C Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 309
Not Approved by Document Control - For Review Only

If the master does not respond with acknowledge, the Interrupt flag is set, status code 0f 0xC0 is registered, and
I2C slave interface returns back to idle state.

If the master generates a stop condition after driving an acknowledge bit, the I2C slave interface returns back to
idle state.

16.4.2 Slave Write Access
Upon detecting a new address driven on the bus with read bit indication, the I2C slave interface compares the
address against the address programed in the Slave Address register and, if it matches, responds with acknowl-
edge. It also sets an Interrupt flag, and sets status code to 0x60 (0x70 in case of general call address, if general
call is enabled).

Following each write byte received, the I2C slave interface responds with acknowledge, sets an Interrupt flag,
and sets status code to 0x80 (0x90 in case of general call access). The CPU then reads the received data from
Data register and clears Interrupt flag, to allow transfer to continue.

If a stop condition or a start condition of a new access is detected after driving the acknowledge bit, an Interrupt
flag is set and a status code of 0xA0 is registered.

16.5 I2C Interface Registers

Table 409: I2C Interface Register Map

Register Offset Page

I2C Slave Address 0xc000 page 309

I2C Extended Slave address 0xc010 page 310

I2C Data 0xc004 page 310

I2C Control 0xc008 page 310

I2C Status/Baude Rate 0xc00c page 312

I2C Soft Reset 0xc01c page 312

Table 410: I2C Slave Address, Offset: 0xc000

Bits Field Name Function Init ial Value

0 GCE General Call Enable
If set to ‘1’, the I2C slave interface responds to general
call accesses.

0x0

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 310 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

7:1 SAddr Slave address
For a 7-bit slave address, bits[7:1] are the slave
address.
For a 10-bit address, SAddr[7:3] must be set to ‘11110’
and SAddr[2:1] stands for the two MSB (bits[9:8]) of the
10-bit address.

0x0

31:8 Reserved Reserved. 0x0

Table 411: I2C Extended Slave Address, Offset: 0xc010

Bits Field Name Function Init ial Value

7:0 SAddr Bits[7:0] of the 10-bit slave address. 0x0

31:8 Reserved Reserved. 0x0

Table 412: I2C Data, Offset: 0xc004

Bits Field Name Function Init ial Value

7:0 Data Data/Address byte to be transmitted by the I2C master
or slave, or data byte received.

0x0

31:8 Reserved Reserved. 0x0

Table 413: I2C Control, Offset: 0xc008

Bits Field Name Function Init ial Value

1:0 Reserved Read only. 0x0

2 ACK Acknowledge
When set to ‘1’, the I2C master drives the acknowledge
bit in response to received read data and to the I2C
slave in response to received address or write data.

0x0

3 IFlg Interrupt Flag
If any of the status codes other than 0xf8 are set, the
I2C hardware sets the bit to ‘1’.
The bit is cleared by a CPU write of ‘0’.

0x0

Table 410: I2C Slave Address, Offset: 0xc000

Bits Field Name Function Init ial Value

I2C Interface
I2C Interface Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 311
Not Approved by Document Control - For Review Only

4 Stop Stop
When set to ‘1’, the GT–64242A drives a stop condition
on the bus. It is cleared by the I2C hardware.

0x0

5 Start Start
When set to ‘1’, the GT–64242A drives a start condition
as soon as the bus is free. It is cleared by the I2C hard-
ware.

0x0

6 I2CEn If set to ‘0’, the SDA and SCL inputs are not sampled
and the I2C slave interface does not respond to any
address on the bus.

0x0

7 IntEn Interrupt Enable
When set to ‘1’, the interrupt is generated each time the
interrupt flag is set.

0x0

31:8 Reserved Reserved. 0x0

Table 413: I2C Control, Offset: 0xc008

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 312 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 414: I2C Status, Offset: 0xc00c1

Bits Field Name Function Init ial Value

2:0 Reserved Read only 0x0

7:3 Stat I2C Status
See exact status code in the I2C section.
Read only.

0x1f

31:8 Reserved Reserved. 0x0

1. Status and Baude Rate registers share the same offset. When being read, this register functions as Status register.
When written, it acts as Baude Rate register.

Table 415: I2C Baude Rate, Offset: 0xc00c1

Bits Field Name Function Init ial Value

2:0 N See exact frequency calculation in the I2C section.
Write only.

0x4

6:3 M See exact frequency calculation in the I2C section.
Write only.

0x4

31:7 Reserved Reserved. 0x0

1. Status and Baude Rate registers share the same offset. When being read, this register functions as Status register.
When written, it acts as Baude Rate register.

Table 416: I2C Soft Reset, Offset: 0xc01c

Bits Field Name Function Init ial Value

31:0 Rst Write Only
Write to this register resets the I2C logic and sets all I2C
registers to their reset values.

0x0

Interrupt Controller
Interrupt Cause and Mask Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 313
Not Approved by Document Control - For Review Only

17. INTERRUPT CONTROLLER
The GT–64242A includes an interrupt controller that routes internal interrupt requests (and optionally external
interrupt requests) to both the CPU and the PCI bus.

The GT–64242A can drive up to seven interrupt pins. There are two open-drain interrupt pins dedicated for the
two PCI interfaces, one dedicated CPU interrupt, and up to four additional CPU interrupts multiplexed on MPP
pins.

NOTE: The four CPU interrupts multiplexed can be used to drive R5000/R7000 multiple interrupt inputs.

All seven interrupts driven by the GT–64242A are level sensitive. The interrupt is kept active as long there is at
least one non-masked cause bit set in the Interrupt Cause register.

17.1 Interrupt Cause and Mask Registers

The GT–64242A handles interrupts in two stages. It includes a main cause register that summarizes the interrupts
generated by each unit, and specific unit cause registers, that distinguish between each specific interrupt event.

17.1.1 Interrupts Cause Registers
The GT–64242A units cause registers are:

Each unit has its own cause and mask registers. Once an interrupt event occurs, its corresponding bit in the cause
register is set to ‘1’. If the interrupt is not masked, it is also marked in the main interrupt cause register.

NOTE: The unit local mask register has no effect on the setting of interrupt bits in the Local Cause register. It
only effects the setting of the interrupt bit in the Main Interrupt Cause register.

For example, if the CPU attempts to write to a write protected region, the WrProt bit in the CPU Cause register is
set to ‘1’. If the interrupt is not masked by CPU Mask register, the CPU bit in the Main Interrupt Cause register is
also set. The interrupt handler first reads the Main Cause register and identifies that some CPU error event
occurred. Then, it reads the CPU Cause register and identifies the exact cause for the interrupt.

NOTE: The Main Interrupt Cause register bits are Read Only. To clear an interrupt cause, the software needs to
clear (write 0) the active bit(s) in the local cause register.

Table 417: Interrupts Cause Registers

• CPU Cause register • PCI Inbound Cause register • BRG Cause register

• SDRAM Error Address
register

• PCI Outbound Cause register • GPP Cause register

• Device Interface Cause
register

• IDMAs 0-3 Cause register • I2C Cause register

• PCI Cause register • Timers 0-3 Cause register

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 314 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

17.1.2 Interrupts Mask Registers
There are seven mask registers corresponding to the seven interrupt pins. Setting these registers allows reporting
different interrupt events on different interrupt pins. If a bit in the mask register is set to ‘1’, the corresponding
interrupt event is enabled. The setting of the mask bits has no affect on the value registered in the Interrupt Cause
register, it only affects the assertion of the interrupt pin.

The Main Interrupt Cause register is built of two 32-bit registers - Low and High. The main two interrupts - PCI
interrupt and CPU interrupt - also have two 32-bit mask registers, each. However, the additional four optional
interrupt pins have a single 32-bit mask register, each. The user can select whether the interrupt is triggered by
Low or High Interrupt Cause register bits, depending on the setting of bit[31] of the mask register.

NOTE: The Main Cause and Mask registers are physically placed in different units than the Local Cause and
Mask registers. This means that one cannot guarantee write ordering between Main Mask registers and
Local Cause registers. If such ordering is required (for example, clear cause bit in the local cause regis-
ter, and then cancel mask in the main mask register), the first write must be followed with a read (that
guarantees that the register programing is done) and only then programs the second register.

17.1.3 Selected Cause Registers
If any of the three main interrupt pins are asserted, for the interrupt handler to identify the exact interrupt, it must
read both the Low and High Interrupt Cause registers. To minimize this procedure to a single read, the GT–
64242A contains three Selected Cause registers. The interrupt handler can read these registers rather than the
cause registers.

A Select Cause register is a shadow register of the Low or High Cause register, depending whether the active
interrupt bit is in the Low or High Cause register. Bit[30] of the Select Cause register, indicates which of Low or
High Cause registers are currently represented by the Select Cause register.

17.1.4 Error Report Registers
The GT–64242A also implements on each of its interfaces, Error Report registers that latch the address (and
sometimes data, command, byte enables) upon interrupt assertion caused by an error condition (such as parity
error or address miss match). These registers can be helpful for the interrupt handler to locate the exact failure.

NOTE: For full details, see the registers section of each interface.

17.2 Interrupt Controller Registers

Table 418: Interrupt Controller Register Map

Register Offset Page

Main Interrupt Cause (Low) 0xc18 page 315

Main Interrupt Cause (High) 0xc68 page 316

CPU Interrupt Mask (Low) 0xc1c page 317

Interrupt Controller
Interrupt Controller Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 315
Not Approved by Document Control - For Review Only

CPU Interrupt Mask (High) 0xc6c page 319

CPU Select Cause 0xc70 page 318

PCI Interrupt Mask (Low) 0xc24 page 319

PCI Interrupt Mask (High) 0xc64 page 319

PCI Select Cause 0xc74 page 319

CPU Int[0]* Mask 0xe60 page 319

CPU Int[1]* Mask 0xe64 page 319

CPU Int[2]* Mask 0xe68 page 320

CPU Int[3]* Mask 0xe6c page 320

Table 419: Main Interrupt Cause (Low), Offset: 0xc181

Bits Field Name Function Init ial Value

0 Sum Logical OR of Low and High Cause registers bits 0x0

1 Dev Device Interface Interrupt 0x0

2 DMA2 DMA Interrupt (error condition) 0x0

3 CPU CPU Interface Interrupt 0x0

4 IDMA0_1 DMA completion of IDMA Channels 0-1 Interrupt. 0x0

5 IDMA2_3 DMA completion of IDMA Channels 2-3 Interrupt. 0x0

7:6 Reserved Reserved. 0x0

8 Timer0_1 Timers 0-1 Interrupt 0x0

9 Timer2_3 Timers 2-3 Interrupt 0x0

11:10 Reserved Reserved. 0x0

12 PCI PCI Interrupt
NOTE: Summary of the PCI Cause register’s bits[7:0].

0x0

13 PCI PCI Interrupt
NOTE: Summary of the PCI Cause register’s

bits[15:8].

0x0

14 PCI PCI Interrupt
NOTE: Summary of the PCI Cause register’s

bits[23:16].

0x0

Table 418: Interrupt Controller Register Map (Continued)

Register Offset Page

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 316 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

15 PCI PCI Interrupt
NOTE: Summary of the PCI Cause register’s

bits[31:24].

0x0

16 Reserved NOTE: Reserved. 0x0

17 ECC ECC Error Interrupt 0x0

20:18 Reserved Reserved. 0x0

21 PCIOutL PCI Outbound Interrupt Summary
NOTE: Summary of the PCI Outbound Cause regis-

ter’s bits[15:0].

0x0

22 PCIOutH PCI Outbound Interrupt Summary
NOTE: Summary of the PCI Outbound Cause regis-

ter’s bits[31:16].

0x0

25:23 Reserved Reserved. 0x0

26 PCIInL PCI Inbound Interrupt
NOTE: Summary of the PCI Inbound Cause register’s

bits[15:0].

0x0

27 PCIInH PCI_0 Inbound Interrupt
NOTE: Summary of the PCI Inbound Cause register’s

bits[31:16].

0x0

31:28 Reserved Reserved. 0x0

1. All bits are read only. To clear an interrupt, the software must access the Local Interrupt Cause registers.

2. Set upon any DMA channel address decoding failure, access protection violation, or descriptor ownership violation.

Table 420: Main Interrupt Cause (High), Offset: 0xc68

Bits Field Name Function Init ial Value

4:0 Reserved Reserved. 0x0

5 I2C I2C Interrupt 0x0

6 Reserved Reserved. 0x0

7 BRG Baude Rate Generator Interrupt 0x0

10:7 Reserved Reserved. 0x0

11 Comm Comm Unit Interrupt 0x0

Table 419: Main Interrupt Cause (Low), Offset: 0xc181 (Continued)

Bits Field Name Function Init ial Value

Interrupt Controller
Interrupt Controller Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 317
Not Approved by Document Control - For Review Only

23:12 Reserved Reserved. 0x0

24 GPP7_0 GPP[7:0] Interrupt 0x0

25 GPP15_8 GPP[15:8] Interrupt 0x0

26 GPP23_16 GPP[23:16] Interrupt 0x0

27 GPP31_24 GPP[31:24] Interrupt 0x0

31:28 Reserved Reserved. 0x0

Table 421: CPU Interrupt Mask (Low), Offset: 0xc1c

Bits Field Name Function Init ial Value

0 Reserved Reserved. 0x0

1 Dev If set to ‘1’, Dev interrupt is enabled. 0x0

2 DMA If set to ‘1’, DMA interrupt is enabled. 0x0

3 CPU If set to ‘1’, CPI interrupt is enabled. 0x0

4 IDMA0_1 If set to ‘1’, IDMA0_1 interrupt is enabled. 0x0

5 IDMA2_3 If set to ‘1’, IDMA2_3 interrupt is enabled. 0x0

8 Timer0_1 If set to ‘1’, Timer0_1 interrupt is enabled. 0x0

9 Timer2_3 If set to ‘1’, Timer2_3 interrupt is enabled. 0x0

12 PCI0 If set to ‘1’, PCI_0 interrupt is enabled. 0x0

13 PCI1 If set to ‘1’, PCI1 interrupt is enabled. 0x0

14 PCI2 If set to ‘1’, PCI2 interrupt is enabled. 0x0

15 PCI3 If set to ‘1’, PCI3 interrupt is enabled. 0x0

16 Reserved Reserved. 0x0

17 ECC If set to ‘1’, ECC interrupt is enabled. 0x0

20:18 Reserved Reserved. 0x0

21 PCIOutL If set to ‘1’, PCIOutL interrupt is enabled. 0x0

22 PCIOutH If set to ‘1’, PCIOutH interrupt is enabled. 0x0

25:23 Reserved Reserved. 0x0

26 PCIInL If set to ‘1’, PCIInL interrupt is enabled. 0x0

27 PCIInH If set to ‘1’, PCIInH interrupt is enabled. 0x0

Table 420: Main Interrupt Cause (High), Offset: 0xc68 (Continued)

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 318 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

31:28 Reserved Reserved. 0x0

Table 422: CPU Interrupt Mask (High), Offset: 0xc6c

Bits Field Name Function Init ial Value

4:0 Reserved Reserved. 0x0

5 I2C If set to ‘1’, I2C interrupt is enabled. 0x0

6 0x0

7 BRG If set to ‘1’, BRG interrupt is enabled. 0x0

10:7 Reserved Reserved. 0x0

11 Comm If set to ‘1’, Comm interrupt is enabled. 0x0

23:12 Reserved Reserved. 0x0

24 GPP7_0 If set to ‘1’, GPP7_0 interrupt is enabled. 0x0

25 GPP15_8 If set to ‘1’, GPP15_8 interrupt is enabled. 0x0

26 GPP23_16 If set to ’1’, GPP23_16 interrupt is enabled. 0x0

27 GPP31_24 If set to ‘1’, GPP31_24 interrupt is enabled. 0x0

31:28 Reserved Reserved. 0x0

Table 423: CPU Select Cause, Offset: 0xc701

Bits Field Name Function Init ial Value

29:0 Cause A shadow register of the Low or High Interrupt Cause
registers.
If any of the High Interrupt Cause register non-masked
interrupts are set, and no non-masked interrupt bit of
the Low Interrupt Cause register is set, this register con-
tains a copy of the High Interrupt Cause register.
In any other case, it contains a copy of the Low Interrupt
Cause register.

0x0

30 Sel Select
0 - Bits[29:0] are a copy of the Low Interrupt Cause reg-

ister
1 - Bits[29:0] are a copy of the High Interrupt Cause reg-

ister

0x0

Table 421: CPU Interrupt Mask (Low), Offset: 0xc1c (Continued)

Bits Field Name Function Init ial Value

Interrupt Controller
Interrupt Controller Registers

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 319
Not Approved by Document Control - For Review Only

31 Stat Status
0 - There are no active non-masked interrupts in both

Low and High Interrupt Cause registers.
1 - There are active non-masked interrupts in both Low

and High Interrupt Cause registers.

0x0

1. Read Only register.

Table 424: PCI Interrupt Mask (Low), Offset: 0xc24

Bits Field Name Function Init ial Value

31:0 Various Same as CPU Interrupt Mask (Low). 0x0

Table 425: PCI Interrupt Mask (High), Offset: 0xc64

Bits Field Name Function Init ial Value

31:0 Various Same as CPU Interrupt Mask (High). 0x0

Table 426: PCI Select Cause, Offset: 0xc74

Bits Field Name Function Init ial Value

31:0 Various Same as CPU Select Cause. 0x0

Table 427: CPU Int[0]* Mask, Offset: 0xe60

Bits Field Name Function Init ial Value

30:0 Various Same as Low or High CPU Interrupt Mask. 0x0

31 Sel Mask Select
0 - Mask Low Interrupt Cause register bits.
1 - Mask high Interrupt Cause register bits.

0x0

Table 428: CPU Int[1]* Mask, Offset: 0xe64

Bits Field Name Function Init ial Value

31:0 Various Same as CPU Int[0]* Mask. 0x0

Table 423: CPU Select Cause, Offset: 0xc701

Bits Field Name Function Init ial Value

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 320 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 429: CPU Int[2]* Mask, Offset: 0xe68

Bits Field Name Function Init ial Value

31:0 Various Same as CPU Int[1]* Mask. 0x0

Table 430: CPU Int[3]* Mask, Offset: 0xe6c

Bits Field Name Function Init ial Value

31:0 Various Same as CPU Int[2]* Mask. 0x0

Internal Arbitration Control

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 321
Not Approved by Document Control - For Review Only

18. INTERNAL ARBITRATION CONTROL
The GT–64242A internal architecture is based on a 64-bit data path connecting between the different interfaces.
This internal architecture allows concurrent data transfers between different interfaces (for example, CPU read
from SDRAM, and PCI read from device at the same time), as well as transaction pipelining (issue multiple
transactions in parallel between the same source and destination).

Figure 42 shows how the data path routing is controlled via a central routing unit (also called Crossbar).

Figure 42: GT–64242A Inter Units Connect

Sometimes conflicts may occur over resources. For example, if the CPU, PCI, and IDMA request access to
SDRAM simultaneously, these requests cannot be served at the same time. The central routing unit contains pro-
grammable arbitration mechanisms to optimize device performance, according to the system requirements, as
shown in Figure 43.

CPU Interface

SDRAM
Interface

Device
Interface

PCI_0 Interface

IDMA
Routing

Unit

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 322 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 43: SDRAM Interface Arbitration

Each arbiter is a user defined round-robin arbiter (called a “pizza arbiter”). Figure 44 shows an example of the
Device interface arbiter.

SDRAM
Interface

Unit

Programable
Arbiter

CPU

IDMA0

IDMA1

PCI

Internal Arbitration Control

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 323
Not Approved by Document Control - For Review Only

Figure 44: Configurable Weights Arbiter

The user can define each of the 16 slices of this “pizza arbiter”. The arbiter is working on a transaction basis.
Each transaction can vary from one up to 16 64-bit word transfers. In the above example, the transactions tar-
geted to the specific unit are split up as follows:

• 50% for CPU transactions.
• 50%for PCItransactions.

This “pizza” configuration also allows the user to guarantee minimum latency. Even if the CPU does not require
50% allocation, the above configuration guarantees that in the worst case, the CPU request needs to wait for one
transaction of another unit before being served.

At each clock cycle, the Crossbar arbiter samples all requests and gives the bus to the next agent according to the
“pizza”. It is parked on the last access.

The exact registers settings can be found in the CPU, PCI, SDRAM, Device, IDMA and Comm units registers
sections.

An arbiter slice can also be marked as NULL. If marked as NULL, the arbiter works as if the NULL slice does
not exist. For example, if only two requests are used, and they need to get the same bandwidth, the user can spec-
ify first slice per one request, second slice per the other request, and all the rest slices as NULL. This is equiva-
lent to specifying half of the slices for one request and the other half for the other request.

NOTE: Once a unit is removed from an interface’s “pizza” Arbiter Control register, this unit has no access to
this interface. If for example, the comm unit is removed from the DRAM interface “pizza” arbiter, the
comm unit no longer accesses the DRAM. If it attempts to access the DRAM, the unit will get stuck.

CPU
PCI

CPU

CPU

PCI

CPU

CPU

PCI

CPU

CPU

CPU

PCI

Arbitration
Cycle

PCI

PCI

PCI

PCI

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 324 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

19. RESET PINS
The GT–64242A supports two reset pins:

• SysRst* which is the main reset pin.
• RST* which is the PCI interface reset pin.

Separating SysRst* from the PCI reset pin is typically required in Hot Swap configurations, where you want the
CPU to boot and start to initialize the board before the PCI slot reset signal is deasserted.

SysRst* is the main GT–64242A reset pin. When asserted, all GT–64242A logics are in reset state and all outputs
are floated, except for DRAM address and control outputs (see Section 5.10 “SDRAM Initialization” on page
101).

NOTE: All resets pins are asynchronous inputs and synchronized internally. The internal synchronized reset is
delayed by three clock cycles in respect to the external reset pin, causing the GT–64242A output pins to
remain floated for three cycles after reset deassertion.

The PCI reset pin is independent. The PCI interface is kept in its reset state as long as its reset pin is asserted. On
reset deassertion, all PCI configuration registers are set to their initial values as specified in the PCI spec.

NOTE: The PCI reset pin may be de-asserted at or after SysRst de-assertion..

 SysRst* MUST be asserted AT or AFTER PCI reset assertion.

Since the GT–64242A supports SysRst* deassertion prior to the PCI reset pin deassertion, the CPU software
might need a hook to recognize when the PCI bus is alive. Use the PCI Mode register’s PRst bit [31] for this pur-
pose, see Table 197 on page 187. Upon PCI reset deassertion, the bit is set to ‘1’.

Reset Configuration
Pins Sample Configuration

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 325
Not Approved by Document Control - For Review Only

20. RESET CONFIGURATION
The GT–64242A must acquire some knowledge about the system before it is configured by the software. Special
modes of operation are sampled on RESET to enable the GT–64242A to function as required.

The GT–64242A supports two methods of reset configuration:
• Pins sampled on SysRst* deassertion (requires pins pulled up/down to Vcc/GND).
• Serial ROM initialization.

20.1 Pins Sample Configuration

If not using serial ROM initialization, the following configuration pins are sampled during Rst* assertion. These
signals must be kept pulled up or down until Rst* deassertion (zero hold time in respect to Rst* deassertion).

NOTE: After reset de-assertion there must be a period of at least ten (10) TClk cycles before the first access
from the CPU can take place.

Table 431: Reset Configuration

Pin Configuration Function

AD[0] Serial ROM initialization

0-
1-

Not supported
Supported
NOTE: If Serial ROM initialization is enabled, the additional required strapping

options are AD[1] Serial ROM Byte Offset Width, AD[3:2] Serial ROM
Address, AD[4] CPU endianess, AD[28:30] PLL Settings, and AD[31] CPU
Interface Voltage. See Section 20.2 “Serial ROM Initialization” on page 328.

AD[1] Serial ROM Byte Offset Width

0-
1-

Up to 8-bit address
Address wider than 8-bit

AD[3:2] Serial ROM Address[1:0]

00-
01-
10-
11-

Rom address is 1010000
Rom address is 1010001
Rom address is 1010010
Rom address is 1010011

AD[4] CPU Data Endianess

0-
1-

Big endian
Little endian

AD[5] CPU Interface Clock

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 326 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

0-
1-

CPU interface is running with SysClk, asynchronously to TClk
CPU interface is running with TClk

AD[7:6] CPU Bus Configuration

Must be strapped to 10.

AD[8] Reserved

NOTE: Must pull down.

AD[9] Multiple GT–64242A Support

0-
1-

Not supported
Supported

AD[11:10] Multi-GT–64242A Address ID

00-
01-
10-
11-

GT responds to CPU address bits[26,25]=’00’
GT responds to CPU address bits[26,25]=’01’
GT responds to CPU address bits[26,25]=’10’
GT responds to CPU address bits[26,25]=’11’

AD[12] SDRAM UMA

0-
1-

Not supported
Supported

AD[13] UMA Device Type

0-
1-

UMA Master
UMA Slave
NOTE: Must be set to ‘0’. Even if AD[12] is set to not support (’0’) the SDRAM UMA,

AD[13] must be set to ‘0’. Otherwise, the SDRAM interface is inactive and
the external signals are not driven.

Only systems using the UMA function may set this bit to ‘1’.

AD[15:14] BootCS* Device Width

00-
01-
10-
11-

8 bits
16 bits
32 bits
Reserved

AD[16] PCI Retry

Table 431: Reset Configuration (Continued)

Pin Configuration Function

Reset Configuration
Pins Sample Configuration

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 327
Not Approved by Document Control - For Review Only

In addition to the above strapping, the GT–64242A samples PCI P64EN* pin PCI REQ64* pin during PCI reset
deassertion, to recognize whether the PCI interface is connected to a 64-bit backplane. The PCI spec requires a

0-
1-

Disable
Enable
NOTE: If PCI Retry is enabled and the CPU software configures the PCI interface,

all PCI strapping options (expansion ROM, Power Management, VPD, MSI,
Hot Swap, BIST) are not required. The CPU enables/disables each of these
features, prior to a PCI access to the device.

AD[17] PCI Expansion ROM Support

0-
1-

Not supported
Supported

AD[18] Reserved

AD
[22:19]

Must pull pull down.

AD [23] SDClkOut/SDClkIn Select

0
1

SDClkOut
SDClkIn

24 Internal Space Default Address

0-
1-

default address 0x1400.0000
default address 0xf100.0000

27:25 Must pull low.

AD[28] PLL Tune

Pull down

AD[29] PLL Divide

Pull down

AD[30] Bypass PLL

0-
1-

PLL Enabled (pull down)
PLL Disabled (pull up)

AD[31] CPU Interface Voltage

0-
1-

2.5V
3.3V

Table 431: Reset Configuration (Continued)

Pin Configuration Function

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 328 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

device to sample the REQ64* pin. However, CompactPCI HotSwap ready devices must sample P64EN*,
instead. Since the GT–64242A PCI interface is HotSwap ready compliant, it samples the P64EN* rather than the
REQ64* pin.

NOTE: If used in non-HotSwap board, the P64EN* pin must be shorted to REQ64* pin.

20.2 Serial ROM Initialization

The GT–64242A supports initialization of ALL it’s internal and configuration registers and other system compo-
nents through the I2C master interface. If serial ROM initialization is enabled (AD[0] pin sampled High on
SysRst* deassertion), the GT–64242A I2C master starts reading initialization data from serial ROM and writes it
to the appropriate registers (or to any of GT–64242A interfaces, according to address decoding).

All of the following pins must be configured to the intended value during Serial ROM initialization.

20.2.1 Serial ROM Data Structure
Serial ROM data structure consists of a sequence of 32-bit address and 32-bit data pairs, as shown in Figure 45.

Table 432: Serial ROM Initialization Strapping

Pin Description

AD[1] Serial ROM Byte Offset Width

AD[3:2] Serial ROM Address

AD[4] CPU Data Endianess

AD[7:6] CPU Bus Configuration.

AD[9] Multiple GT–64242A Support.

AD[11:10] Multi-GT–64242A Address ID

AD[12] SDRAM UMA.

AD[13] UMA Device Type.

AD[16] PCI Retry.

AD[23] SDClk select.

AD[28:30] PLL Settings

AD[31] CPU Interface Voltage.

Reset Configuration
Serial ROM Initialization

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 329
Not Approved by Document Control - For Review Only

Figure 45: Serial ROM Data Structure

The GT–64242A reads eight bytes at a time. It compares the first four bytes to the CPU interface address decod-
ing registers and, based on address decoding result, writes the next four bytes to the required target. This scheme
enables not only to program the GT–64242A internal registers, but also to initialize other system components.
The only limitation is that it supports only single 32-bit writes (no byte enables nor bursts are supported). For
example, it is possible to:

• Program the GT–64242A internal registers by setting addresses that match the CPU internal space
(default address is 0x14000XXX).

• Program the GT–64242A PCI configuration registers using the PCI Configuration Address and PCI
Configuration Data registers (offsets 0xcf8 and 0xcfc).

• Initialize other devices residing on the PCI bus by initiating PCI write transactions.

To support access to the PCI devices that are mapped beyond the 4Gbyte address space, there is also Serial Init
PCI High Address register. If initialized to a value other than ‘0’, serial ROM initialization to PCI devices results
in DAC cycle on the PCI bus.

The Serial Init Last Data register contains the expected value of last serial data item (default value is 0xffffffff).
When the GT–64242A reaches last data, it stops the initialization sequence.

NOTE: The 32-bit address must always be in Little Endian convention.

When using the ROM for initializing the GT–64242A’s internal registers, the ROM’s data must be in
Little Endian convention. This also applies when interfacing with a CPU set to Big Endian.

Start address0[31:24]
address0[23:16]
address0[15:8]
address0[7:0]
data0[31:24]
data0[23:16]
data0[15:8]
data0[7:0]

address1[31:24]
address1[23:16]
address1[15:8]
address1[7:0]
data1[31:24]
data1[23:16]
data1[15:8]
data1[7:0]

MSB LSB

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 330 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

20.2.2 Serial ROM Initialization Operation
On SysRst* deassertion, the GT–64242A starts the initialization process. It first performs a dummy write access
to the serial ROM, with data byte(s) of 0x0, in order to set the ROM byte offset to 0x0. Then, it performs the
sequence of reads, until reaches last data item, as shown in Figure 46.

Figure 46: Serial ROM Read Example

For a detailed description of I2C implementation, see Section 16. “I2C Interface” on page 302.

NOTE: Initialization data must be programmed in the serial ROM starting at offset 0x0

The GT–64242A assumes 7-bit serial ROM address of ‘b10100XX. The value of XX is sampled at reset
(see section 20.2.3).

To set the ROM byte offset to ‘0’, the GT–64242A performs a dummy write of one or two bytes,
depending on Serial ROM Byte Address strapping.

After receiving the last data identifier (default value is 0xffff.ffff), the GT–64242A receives an addi-
tional byte of dummy data. It responds with no-ack and then asserts the stop bit.

20.2.3 Serial ROM Initialization in Multi-GT Configuration
In multi-GT configuration, each GT–64242A device must have its own serial ROM initialization code.

The Serial ROM address bits[1:0] are sampled at reset. Each GT–64242A device must be strapped to a different
value, thus having different serial ROM slave addresses.

Each serial ROMs treats slave address bits[1:0] differently. Some serial ROMs use these bits as device chip
select. In this case, each slave address corresponds to a different serial ROM. This means that every GT–64242A
device has its own ROM on the I2C bus. Other serial ROMs use these bits as an internal page select. In this case,
one serial ROM is shared between all GT–64242A devices.

0 00 00 1s 1 0 0 00 00 00 0

x xx xx xx x p

Byte Offset

Last Data
from ROM

a
c
k

a
c
k

n
a
c
k

s
t
a
r
t

ROM
Address

s
t
o
p

w
r
i
t
e

0 00 00 1s 1 1

s
t
a
r
t

ROM
Address

r
e
a
d

A AA AA AA A

a
c
k

a
c
k

A AA A

Data from
ROM

1 11 11 11 1

a
c
k

1 11 11 11 1

a
c
k

1 11 11 11 1

a
c
k

1 11 11 11 1

a
c
k

Reset Configuration
Serial ROM Initialization

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 331
Not Approved by Document Control - For Review Only

On SysRst* deassertion, all devices attempt to read from the serial ROM(s). However, since each one of them has
a different initialization start address (address bits[1:0] differ), only one master device gains bus ownership. The
rest looses arbitration and needs to wait until the first one finish its initialization. This way, each device eventu-
ally gains bus mastership and is able to read its ROM and perform initialization.

20.2.4 Restarting Initialization
Initialization can be restarted, either by CPU or even by the serial ROM code itself.

When serial initialization starts, Initialization Control register’s InitEn bit is cleared. If when reaching last data,
the bit is set to ‘1’ (indicating it was set back to 1 by the initialization code), the initialization process starts again,
with ROM address and byte offset taken from the Initialization Control register. This feature effectively allows
locating the initialization code in a different location within the ROM or even in several ROMs.

In a similar way, the CPU can later reactivate the initialization sequence. This might be useful, if serial ROM ini-
tialization code is changed during system operation.

20.2.5 Other Interfaces During Initialization
During initialization, any PCI attempt to access the GT–64242A results in retry termination. This allows the ini-
tialization sequence to program all PCI related registers, prior to an OS access to the GT–64242A.

Also, the DRAM initialization sequence is postponed until serial initialization completes, see Section 5.10
“SDRAM Initialization” on page 101. This guarantees that the SDRAM Timing Parameters register is updated to
the right CAS latency prior to DRAM initialization.

NOTE: Do not use serial ROM initialization to initialize the SDRAM.

The CPU access might also need to be postponed until initialization is done. This is achieved by using external
hardware to keep the CPU under reset for the entire initialization period. To identify when initialization is done,
one of the MPP pins can be configured via the initialization code to act as initialization active output (see Section
15.1 “MPP Multiplexing” on page 288).

20.2.6 Serial ROM Initialization Registers

Table 433: Serial Init PCI High Address, Offset: 0xf320

Bits Field Name Function Init ial Value

31:0 PCIHAddr Bits[63:32] of the PCI address. 0x0

Table 434: Serial Init Last Data, Offset: 0xf324

Bits Field Name Function Init ial Value

31:0 DLast Last Serial Data
The GT–64242A finishes with serial ROM initialization
when it reaches data that equals this register.

0xffffffff

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 332 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Table 435: Serial Init Control, Offset: 0xf328

Bits Field Name Function Init ial Value

0 Reserved Reserved. 0x0

7:1 ROMAddr Serial ROM Address Bits [1:0]: AD[3:2]
sampled at reset.
Bits [3:2]: 0x0

15:8 OffsetL Bits[7:0] of the first byte offset. 0x0

23:16 OffsetH Bits[15:8] of the first byte offset. 0x0

24 OffsetHEn Enable 16-bit Byte Offset
0 - 8-bit offset
1 - 16-bit offset

AD[1] sampled at
reset.

25 InitEn Serial Initialization Enable
When initialization begins, cleared by the serial ROM
initialization logic.
Setting this field to ‘1’ restarts initialization.

AD[0] sampled at
reset.

27:26 Reserved Reserved. 0x0

31:28 HAddr Bits[35:32] of target address (concatenated to address
bits[31:0] received from serial ROM).

0x0

Table 436: Serial Init Status, Offset: 0xf32c

Bits Field Name Function Init ial Value

4:0 Stat Serial Initialization Status
If the initialization ends successfully, stat uses offset
0x1f. Any other status implies an initialization failure.
Stat bits decoding is the same as I2C Status register
bits[7:3].
Read only.

0x1f

31:5 Reserved Reserved. 0x0

GT–64242A Clocking

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 333
Not Approved by Document Control - For Review Only

21. GT–64242A CLOCKING
The GT–64242A supports up to three clock domains:

• TClk (core and DRAM clock)
• SysClk (CPU bus clock)
• PClk

NOTE: In addition, each serial port has a different clock.

TClk is the fastest clock domain. It can run up to 133MHz and drives an internal PLL, that generates the GT–
64242A core clock.

TClk is also used as the DRAM interface clock. The same clock source must drive the GT–64242A TClk input
and the SDRAM clock (up to 0.5ns clocks skew). The GT–64242A also drives SDClkOut clock. This clock can
be used as the SDRAM clock source (after buffered with zero delay clock buffer) instead of TClk, see Section
5.13.1 “SDRAM Clock Output” on page 104.

The CPU interface can run with a dedicated SysClk asynchronous to TClk, or with the core clock (TClk). The
CPU interface clock source is determined via AD[5] sampled at reset. SysClk can run up to TClk frequency.
When running the CPU interface with the core clock, the SysClk input is not used.

The PCI interfaces clocks can run up to 66MHz, asynchronous to TClk. The two PCI interfaces can run at differ-
ent asynchronous clocks. There are no limitations on the two interfaces clocks ratio. However, PCI clock fre-
quency must not exceed TClk frequency.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 334 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

22. DC CHARACTERISTICS
NOTE: See AN-67: Powering Up and Powering Down Galileo Technology Integrated Circuits for information

on the power up and power down requirements for a system’s power supply.

22.1 Absolute and Recommended Operating Conditions

NOTE: The CPU interface I/O voltage is configured to be 2.5V or 3.3V through reset sample, see Table 431 on
page 325.

NOTE: Operation at or beyond the maximum ratings is not recommended or guaranteed. Extended exposure at
the maximum rating for extended periods of time may adversely affect device reliability.

Table 437: Absolute Maximum Ratings

Symbol Parameter Min. Max. Unit

VCC core Core Supply Voltage -0.3 2.1 V

VCC 2.5V I/O Supply Voltage -0.3 4 V

VCC 3.3V I/O Supply Voltage -0.3 4 V

Vi Input Voltage (for 3.3 Volt Tolerant, 2.5) -0.3 4 V

Input Voltage (for 5 Volt Tolerant) -0.3 6.0 V

Iik Input Protect Diode Current +-20 mA

Iok Output Protect Diode Current +-20 mA

Tc Operating Case Temperature 0 120 C

Tstg Storage Temperature - 40 125 C

DC Characteristics
DC Electrical Characteristics Over Operating Range

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 335
Not Approved by Document Control - For Review Only

NOTE: It is strongly recommended that before designing a system, read AN-63: Thermal Management for Galileo Technol-
ogy Products. This application note describes basic understanding of thermal management of integrated circuits
(ICs) and guidelines to ensure optimal operating conditions for MarvellTechnologys products.

22.2 DC Electrical Characteristics Over Operating Range

Table 438: Recommended Operating Conditions

Symbol Parameter Min. Typ. Max. Unit

Vcc core Core Supply Voltage 1.7 1.8 1.9 V

Vcc 2.5 I/O Supply Voltage (@ 2.5V CPU) 2.375 2.5 2.625 V

I/O Supply Voltage (@ 3.3V CPU) 3.15 3.3 3.45 V

Vcc 3.3 I/O Supply Voltage 3.15 3.3 3.45 V

Vi Input Voltage (@ 3.3 V CPU) 0 3.45 V

Input Voltage (@ 2.5 V CPU) 0 2.625 V

Input Voltage (for 5VT) 0 5.5 V

Vo Output Voltage 0 3.45 V

Tc Operating Case Temperature 0 110 C

Table 439: Pin Capacitance

Symbol Parameter Min. Typ. Max. Unit

C Pin Capacitance 5.2 8.7 9 pF

Table 440: DC Electrical Characteristics Over Operating Range

Symbol Parameter
Test
Condit ion I/F Min. Max. Unit

Vih Input HIGH level Guaranteed logic
HIGH level

2.5V
3.3V

1.5
2

V

Vil Input LOW level Guaranteed logic
LOW level

2.5V
3.3V

0.8
0.8

V

Voh Output HIGH Voltage
JTDO, I2CSCK, I2CSDA

IoH = 4 mA 3.3V 2.4 V

Voh Output HIGH Voltage:
 MPP[31:0],

IoH = 8 mA 3.3V 2.4 V

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 336 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Voh Output HIGH Voltage:
RspSwap*, SysAD[63:0],
SysADC[7:0], SysCmd[8:0],
SysRdyOut*, TcDOE*, TcWord[1:0],
ValidIn*, SDClkOut

IoH = 8 mA 2.5V
3.3V

1.9
2.4

Voh Output HIGH Voltage:
AD[31:0], ECC[7:0], SData[63:0],
SDQM[7:0]*

IoH = 12 mA 3.3V 2.4 V

Voh Output HIGH Voltage:
BankSel[0], BankSel[1], DAdr[12:0],
DWr* , SCAS*, SCS*[3:0], SRAS*

IoH = 24 mA 3.3V 2.4 V

Vol Output LOW Voltage:
JTDO, I2CSCK, I2CSDA

IoL = 4 mA 3.3V 0.4 V

Vol Output LOW Voltage:
MPP[31:0],

IoL = 8 mA 3.3V 0.4 V

Vol Output LOW Voltage:
RspSwap*, SysAD[63:0],
SysADC[7:0], SysCmd[8:0],
SysRdyOut*, TcDOE*, TcWord[1:0],
ValidIn*, SDClkOut

IoL = 8 mA 2.5V
3.3V

0.4
0.4

Vol Output LOW Voltage:
AD[31:0], ECC[7:0], SDATA[31:0],
SDQM[7:0]*

IoL = 12 mA 3.3V 0.4 V

Vol Output LOW Voltage:
BankSel[0], BankSel[1], DAdr[12:0],
DWr*, SCAS*, SCS*[3:0], SRAS*

IoL = 24 mA 3.3V 0.4 V

Iih Input HIGH Current 10 uA

Iil Input LOW Current 10 uA

Iozh High Impedance Output Current 10 uA

Iozl High Impedance Output Current 10 uA

NOTE: Does not apply to SysAD[63:0] and SysADC[7:0].

Iozl High Impedance Output Current for
SysAD[63:0] and SysADC[7:0].

2.5V
3.3V

50
70

uA

Table 440: DC Electrical Characteristics Over Operating Range (Continued)

Symbol Parameter
Test
Condit ion I/F Min. Max. Unit

DC Characteristics
DC Electrical Characteristics Over Operating Range

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 337
Not Approved by Document Control - For Review Only

Icc Operating Current I/O
VCC3.3 = 3.45 V
VCC2.5 =3.45 V
f = 133 MHz
TClk/66 Mhz
PClk

500 mA

Core
VCC1.8 = 1.9 V
f = 133 MHz
TClk/66 Mhz
PClk

950 mA

ACK64*, CBE*[7:0], CLK,
DEVSEL*, ENUM*,
FRAME*,
GNT*, HS, IDSEL, INT, IRDY*,
LED, P64EN*, PAD[63:0], PAR,
PAR64, PERR*, REQ*,
REQ64*, Rst*, SERR*, STOP*,
TRDY*, VREF

See PCI Specification Rev. 2.2

Table 440: DC Electrical Characteristics Over Operating Range (Continued)

Symbol Parameter
Test
Condit ion I/F Min. Max. Unit

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 338 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

22.3 Thermal Data

Table 441 shows the package thermal data for the GT–64242A.

NOTE: For further information, see AN-63: Thermal Management for Galileo Technology Products. This application note
describes basic understanding of thermal management of integrated circuits (ICs) and guidelines to ensure optimal
operating conditions for MarvellTechnologys products.

22.4 PLL Power Filter Circuit

The GT–64242A has an on-chip PLL to improve its AC timing. To garauntee the stability of the PLL operation,
it is critical to insulate the PLL power supply from external signal noise.

22.4.1 PLL Power Supply
The GT–64242A uses two dedicated power supply pins for the PLL:

• H25 - AVCC - Supplies the 1.8V DC for the Analog part of the PLL.
• G25 - AGND - Supplies the GND for the Analog part of the PLL.

The GT–64242A DC specification requires that the PLL GND and the PLL VCC must be supplied with a nomi-
nal value of 1.8V DC, with a tolerance of up to 5%. The recommended filtering circuit ensures that the PLL DC
specifications are met.

The following sections outline two circuits depending on if the1.8V supply source is available or un-available on
board.

22.4.2 PLL Power Filter With a 1.8V Power Supply Available On Board
Figure 47 shows a recommended circuit for the GT–64242A PLL filter.

The circuit’s purpose is to prevent the interference of the differential and common modes, usually present in
PCBs containing several devices, reaching the PLL power supply traces and, subsequently, disturbing its normal
operation.

Table 441: Thermal Data for The GT–64242A in BGA 665

Airf low Definit ion

Value

0 m/s 1 m/s 2 m/s

Thermal resistance: junction to ambi-
ent. 13.3 C/W 12.1 C/W 10.8 C/W

Thermal characterization parameter:
junction to case center. 0.28 C/W 0.31 C/W 0.38 C/W

Thermal resistance: junction to case
(not air-flow dependent) 4.7 C/W

Θja

Ψ jt

Θjc

DC Characteristics
PLL Power Filter Circuit

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 339
Not Approved by Document Control - For Review Only

It is assumed that the 1.8V DC source, necessary to bias the PLL, is available on board.

The user must:
• Use dedicated traces to supply the AGND and the 1.8V AVCC directly from the systems power supply

to the filtering circuit.
• Confirm that the PLL supply balls (H25, G25) are isolated from other VCC and GND pins of the GT–

64242A.

Figure 47: PLL Power Filter Circuit With Common On-board 1.8V Supply

Figure 48: PLL Layout Guideline for a PCI Add-on Card

NOTE: In Figure 48, Traces A and B must be parallel and the same length. Also, Marvell Technology recom-
mends to route the traces on the component side, or print side, and, if possible, leave the area clean in
layers.

22.4.3 PLL Power Filter With No 1.8V Power Supply Available On-board
(Backplane Layout)

Figure 49 shows a recommended circuit for the GT–64242A PLL filter when a 1.8V power supply is not readily
available on board.

For example, for a 5V DC board supply, the industry standard LM317/LP2951 in an SMT packaging can be used
to produce the 1.8V DC for the PLL, with the 240 Ohm resistors connected to the output pin and an adjust pin as
indicated.

20 Ohm

270 nH

270 nH

1uF 1 nF 100 pF

PLL AVCC

PLL AGND

1.8V

GND

20 Ohm

Balls: H25

Balls: G25

22uF 1uF 0.1uF

Voltage Regulator Output

1.8V

GND

R=20 ohm

12 Mil

At least 30 Mil

Trace A
L= 270 nh

PCB foot print: 0805
AVCC

1 uf 1 nf 100 pf

R=20 ohm L= 270 nh AVSS
Trace BMinimum distance

22 uf 1 uf 0.1 uf

Minimum length

At least 30 Mil

Minimum length

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 340 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

The user must:
• Use dedicated traces to supply the AGND and the 1.8V AVCC directly from the systems power supply

to the filtering circuit.
• Confirm that the PLL supply balls (H25, G25) are isolated from other VCC and GND pins of the GT–

64242A.

Figure 49: PLL Power Filter Circuit With Dedicated 1.8V Supply

Figure 50: PLL Layout Guideline for Backplane Layout

22.4.4 PLL Power Filter Layout Considerations
For the two dedicated traces going from the supply source to the filtering circuit, the following must be garaun-
teed:

• Provide each trace with a minimum width of 20 mil.
• Route the traces in parallel, with minimal spacing.
• Give each trace an equal and minimal length.
• Route the traces in noise-free areas and as far as possible from high current traces.
• Make the filtering components SMT, 0603 size.

270 nH

1nF 100pF0.1uF

PLL AVCC

PLL VGND

5V

AGND

20 OhmLM317

IN OUT
ADJ

0.1uF110 Ohm
240 Ohm

Balls: H25

Balls:G25

This part same as previous Figure 47.

22uF1uF 0.1uF 1uF

270 nH20 Ohm

Main Board's power supply

12V

GND

12 Mil

At least 30 Mil

Trace A
AVCC

1 uf 1 nf 100 pf

AVSS
Trace BMinimum distance

22 uf 1 uf 0.1 uf

Minimum length
At least 30 Mil

Minimum length

The resistors and inductors may
not be required (depending on
the noise levels of the board)
and a 0 Ohm may be used
instead.

PCB foot print: 0805

Vout = 1.25(1+R2/R1) + ladjR2
For Vout = 1.8V R2 =105ohm

0.1 uf 1 uf

LM317
Voltage regulator

Vin Vout

R1

240 ohm
ladj

R2
R=20 ohm L= 270 nh

R=20 ohm L= 270 nh

DC Characteristics
PLL Power Filter Circuit

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 341
Not Approved by Document Control - For Review Only

• Place the 0.1nF capacitor as close as possible to the PLL DC supply pins.
• Place the capacitors in the shown order, with the smallest capacitor closest to the PLL’s DC Supply Pins.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 342 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

23. AC TIMING
NOTE: The following targets are subject to change.

A measurements are made from the mid-point of the clock, to the mid-point of the output signal
(50% -> 50%).

Table 442: 100 MHz AC Timing

Signals Descript ion

100MHz

Units LoadingMin. Max.

Clock

TClk/SysClk Frequency 66 100 MHz

TClk/SysClk Cycle Time 10 15 ns

TClk/SysClk Clock High 4.5 5.5 ns

TClk/SysClk Clock Low 4.5 5.5 ns

TClk/SysClk Rise Time 2 ns

TClk/SysClk Fall Time 2 ns

 CPU Interface
NOTE: All CPU interface Output Delays, Setup, and Hold times are referred to TClk rising edge.

SysADC[7:0], SysAD[63:0],
Release*, PReq*, TcTce*

Setup 3 ns

SysCmd[8:0], ValidOut*,
SysRdyIn[2:0]

Setup 3.5 ns

TcMatch Setup 4.5 ns

SysADC[7:0], SysAD[63:0],
SysCmd[8:0], ValidOut*,
Release*, PReq*, SysRdyIn[2:0],
TcMatch, TcTCE*

Hold 0.5 ns

TcDOE*, TcWord[1:0] Output Delay 1 5 ns

SysADC[7:0], SysCmd[8:0],
ValidIn*, SysRdyOut*,
RspSwap*, RdWrRdy*

Output Delay 1 5.5 ns 20pF

SysAD[63:0], PAck* Output Delay 1 6 ns

SysRst* Active 1 ms

PCI Interface
NOTE: All PCI interface Output Delays, Setup, and Hold times are referred to PClk rising edge.

PClk Frequency 66 MHz

AC Timing

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 343
Not Approved by Document Control - For Review Only

PClk Clock Period 15 ns

Rst* Active 1 ms

FRAME*, IRDY*,
TRDY*, STOP*,
IDSEL, DEVSEL*
REQ64*, ACK64*, PAR64,
PERR*, PAD[63:0], CBE[7:0]*,
PAR, GNT0*

Setup 3 ns

FRAME*, IRDY*,
PAD[63:0], TRDY*,
STOP*, IDSEL, PAR64,
DEVSEL* GNT*,
REQ64*, ACK64*,PAR,
PERR*, CBE[7:0]*

Hold 0 ns

FRAME*, TRDY*,
IRDY* DEVSEL*,
PAD[63:0], STOP*,
CBE[7:0]*, REQ64*, ACK64*,
REQ*, PAR
PERR*, SERR*, PAR64
NOTE: Output delays are mea-

sured as specified in
PCI spec rev. 2.2 sec-
tion 7.6.4.3

Output Delay 2 6 ns 10pF

SDRAM Interface (TClk)
NOTE: All SDRAM interface Output Delays, Setup, and Hold times are referred to the TClk’s rising edge.

ECC[7:0], SData[63:0] Setup 1.8 ns

SData[63:0], ECC[7:0] Hold 0.5 ns

SData[63:0], BankSel[1:0],
DAdr[12:0], SRAS*, SCAS*,
SCS[3:0]*, SDQM*[7:0], DWr*,
SData[63:0]

Output Delay 1 4.5 ns 30pF

ECC[7:0] Output Delay 1 4.8 ns 30pF

sdclckout Output Delay 1.5 3.5 ns 50pF

Table 442: 100 MHz AC Timing (Continued)

Signals Description

100MHz

Units LoadingMin. Max.

∞

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 344 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Device Interface
NOTE: All Device interface Output Delays, Setup, and Hold times are referred to TClk rising edge.

AD[31:0], Ready* Setup 2.5 ns

AD[31:0], Ready* Hold 0 ns

NOTE: The Ready* setup and hold parameters are determined with the Device Interface Control register’s
ReadyS bit [18] set to ’1’. For further details, see Section 7.4 “Ready* Support” on page 129.

 Wr[3:0]*, ALE, AD[31:0] Output Delay 1 4 ns 25pF

CSTiming*, BAdr[2:0] Output Delay 1 4.5 ns 30pF

MPP Interface
NOTE: All MPP pins Output Delays, Setup, and Hold times are referred to TClk rising edge, unless stated oth-

erwise.

The following MPP maximum output delay parameters vary according to the multipurpose pin being
used.

MREQ*, MGNT*, EOT[7:0],
DMAReq[7:0]*, TCEn[7:0],
GPP[31:0]

Setup 3 ns 20pF

PCIReq[5:0]* Setup 5 ns 20pF

MREQ*, MGNT*, EOT[7:0],
DMAReq[7:0]*, TCEn[7:0],

Hold 0 ns 20pF

PCIReq[5:0]* Hold 0 ns 20pF

GPP[31:0] Hold TBD ns 20pF

DBurst*/Dlast* Output Delay 1.5 6 ns 20pf

MREQ*,MGNT*, TCTCnt[7:0],
GPP[31:0], InitAct

Output Delay 1.5 5.5 ns 20pf

PCIGnt[5:0]* Output Delay 3 8 ns 20pf

DMAAck[7:0]*, Output Delay 1.5 6 ns 20pF

PME, INT[4:0], WDE*, WDNMI* are asyncronus signals.

I2C Interface

I2C Clock Frequency 4 Mhz

I2C Data Clock Period 250 ns

I2C Data Setup 10 ns

Table 442: 100 MHz AC Timing (Continued)

Signals Descript ion

100MHz

Units LoadingMin. Max.

AC Timing

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 345
Not Approved by Document Control - For Review Only

I2C Data Hold 3 ns

I2C Data Output Delay 1 15 ns 20pF

Table 443: 133 MHz AC Timing

Signals Description

133MHz

Units LoadingMin. Max.

Clock

TClk/SysClk Frequency 66 133 MHz

TClk/SysClk Cycle Time 7.5 15 ns

TClk/SysClk Clock High 3.3 4.2 ns

TClk/SysClk Clock Low 3.3 4.2 ns

TClk/SysClk Rise Time 2 ns

TClk/SysClk Fall Time 2 ns

 CPU Interface
NOTE: All CPU interface Output Delays, Setup, and Hold times are referred to TClk rising edge.

SysAD[63:0 Setup 2.6 ns

SysCmd[8:0], ValidOut* Setup 2.4 ns

SysADC[7:0], TcMatch Setup 2.3 ns

SysRdyIn[2:0], PReq* Setup 2.0 ns

Release*, TcTce* Setup 1.9 ns

SysADC[7:0], SysAD[63:0],
SysCmd[8:0], ValidOut*,
Release*, PReq*, SysRdyIn[2:0],
TcMatch, TcTce*

Hold 0 ns

SysADC[7:0], SysAD[63:0] Output Delay 1 4.2 ns 25pf

ValidIn*, TcDOE* Output Delay 1.4 3.5 ns 25pf

RspSwap*, SysRdyOut*, PAck*, Output Delay 1.4 3.7 ns 25pf

SysCmd[8:0], TcWord[1:0] Output Delay 1.4 4.0 ns 25pf

SysRst* Active 1 ms

Table 442: 100 MHz AC Timing (Continued)

Signals Description

100MHz

Units LoadingMin. Max.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 346 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

PCI Interface
NOTE: All PCI interface Output Delays, Setup, and Hold times are referred to PClk rising edge.

PClk Frequency 66 MHz

PClk Clock Period 15 ns

Rst* Active 1 ms

FRAME*, IRDY*,
TRDY*, STOP*,
IDSEL, DEVSEL*
REQ64*,ACK64*, PAR64,
PERR*, PAD[63:0], CBE[7:0]*,
PAR, GNT0/1*

Setup 3 ns

FRAME*, IRDY*,
PAD[63:0], TRDY*,
STOP*, IDSEL, PAR64,
DEVSEL* GNT*,
REQ64*, ACK64*,PAR,
PERR*, CBE[7:0]*

Hold 0 ns

FRAME*, TRDY*,
IRDY* DEVSEL*,
PAD[63:0], STOP*,
CBE[7:0]*, REQ64*,ACK64*,
REQ*, PAR
PERR*, SERR*, PAR64
NOTE: Output delays are mea-

sured as specified in
PCI spec rev. 2.2 sec-
tion 7.6.4.3

Output Delay 2 6 ns 10pF

SDRAM Interface (TClk)
NOTE: All SDRAM interface Output Delays, Setup, and Hold times are referred to the TClk’s rising edge.

ECC[7:0] Setup 0.8 ns

SData[63:0] Setup 1.3 ns

SData[63:0], ECC[7:0] Hold 0.4 ns

 SCAS*, BankSel[1:0] Output Delay 1.1 3.1 ns 50pF

DAdr[12:0] Output Delay 1.1 3.6 ns 50pF

SDQM*[7:0] Output Delay 1.1 3.7 ns 30pF

SDQM*[7:0], DWr*, SRAS* Output Delay 1.1 3.7 ns 50pF

Table 443: 133 MHz AC Timing (Continued)

Signals Descript ion

133MHz

Units LoadingMin. Max.

∞

AC Timing

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 347
Not Approved by Document Control - For Review Only

SCS[3:0]* Output Delay 1.2 3.8 ns 50pF

SData[63:0], SCS[3:0]* Output Delay 1.2 3.8 ns 30pF

ECC[7:0] Output Delay 1.3 4.1 ns 30pF

SDRAM Interface (SDClkOut)
NOTE: All SDRAM interface Output Delays are referred to the SDClkOut rising edge.

BankSel[1:0], DAdr[12:0],
SRAS*, SCAS*, DWr*

Output Delay 0.5 1.4 ns 50pF

SDQM*[7:0] Output Delay 0.5 1.4 ns 30pF

SDClkOut (rising edge relative to
TClk)

Output Delay 0.6 1.7 ns 10pF

SData[63:0] Output Delay 0.6 2.1 ns 30pF

ECC[7:0] Output Delay 0.8 2.4 ns 30pF

SDRAM Interface (SDClkIn)
NOTE: The SData[63:0] and ECC[7:0] setup and hold parameters are determined with the SDRAM Timing

Parameter register’s RdDelay bit [12] set to ’1’. For further details, see Section 5.13 “SDRAM Clock-
ing” on page 103.

All SDRAM interface Setup, and Hold times are referred to the SDClkInrising edge.

These parameters also apply when using the SDClkOut as the DRAM clock. In this mode, SDClkIn is
not generated externally. SDClkIn is directly connected within the chip from the SDClkOut pad.

SDClkIn (rising edge relative to
TClk)

Setup 3.8 ns

SDClkIn (rising edge relative to
TClk)

Hold 0 ns

ECC[7:0], SData[63:0] Setup 0.15 ns

ECC[7:0], SData[63:0] Hold 0.7 ns

Device Interface
NOTE: All Device interface Output Delays, Setup, and Hold times are referred to TClk rising edge.

AD[31:0] Setup 1.6 ns

Ready* Setup 1.8 ns

AD[31:0], Ready* Hold 0 ns

NOTE: The Ready* setup and hold parameters are determined with the Device Interface Control register’s
ReadyS bit [18] set to ’1’. For further details, see Section 7.4 “Ready* Support” on page 129.

Table 443: 133 MHz AC Timing (Continued)

Signals Description

133MHz

Units LoadingMin. Max.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 348 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

AD[31:0] Output Delay 1 3.2 ns 25pF

Wr[3:0]*, ALE Output Delay 1 2.8 ns 25pF

CSTiming* Output Delay 1 3.8 ns 25pF

BAdr[2:0] Output Delay 1 3.5 ns 25pF

MPP Interface
NOTE: All MPP pins Output Delays, Setup, and Hold times are referred to TClk rising edge, unless stated oth-

erwise.

The following MPP maximum output delay parameters vary according to the multipurpose pin being
used.

MREQ*, MGNT*, EOT[7:0],
DMAReq[7:0]*, TCEn[7:0],
GPP[31:0]

Setup 2.3 ns

NOTE: PCIReq[5:0]*Referred
to the PClk0/1 rising
edge.

Setup 4 ns

MREQ*, EOT[7:0],
DMAReq[7:0]*, TCEn[7:0]

Hold 0 ns

NOTE: PCIReq[5:0]*Referred
to the PClk0/1 rising
edge.

Hold 0 ns

GPP[31:0] Hold TBD ns

DBurst*/DLast* Output Delay 2.0 5.1-5.6 ns 20pf

MREQ*, GPP[31:0], MGNT*,
TCTCnt[7:0], InitAct

Output Delay 1.6 4.5-5.0 ns 20pf

NOTE: PCIGnt[5:0]*Referred to
the PClk0/1 rising edge.

Output Delay 3 6.6-7.5 ns 20pf

DMAAck[7:0]*, Output Delay 1.7 4.6-5.4 ns 20pF

PME0/1, INT[4:0], WDE*, WDNMI* are asyncronus signals.

I2C Interface

I2C Clock Frequency 4 Mhz

I2C Data Clock Period 250 ns

I2C Data Setup 10 ns

I2C Data Hold 3 ns

Table 443: 133 MHz AC Timing (Continued)

Signals Descript ion

133MHz

Units LoadingMin. Max.

AC Timing

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 349
Not Approved by Document Control - For Review Only

Note

The following AC timing numbers are an addition to the CPU interface numbers in the current data sheet.
These additions apply to cases when the device is working in the mode that SysClk and Tclk are NOT
synchronized (AD[5] is sampled low at reset). In this case, the internal PLL is not used for the CPU
interface. This results in improved setup timing and larger hold and clock-to-out numbers.

I2C Data Output Delay 1 15 ns 20pF

Table 444: 133 MHz CPU Interface Parameters With SysClk and Tclk NOT synchronized

Signals Description

133MHz

Units LoadingMin. Max.

Clock
SysClk Frequency 20 125 MHz

SysClk Cycle Time 8 50 ns

SysClk Clock High 3.6 4.4 ns

SysClk Clock Low 3.6 4.4 ns

SysClk Rise Time 2 ns

SysClk Fall Time 2 ns

 CPU Interface
NOTE: All CPU interface Output Delays, Setup, and Hold times are referred to SysClk rising edge.

Skewing of the SysClk coming into the GT–64242A, in reference to the clock going to the CPU, may
be needed and can help achieve higher frequencies.

SysAD[63:0] Setup -0.8 ns

SysCmd[8:0], ValidOut* Setup -1.0 ns

SysADC[7:0], TcMatch Setup -1.1 ns

SysRdyIn[2:0] Setup -0.6 ns

PReq* Setup -1.4 ns

Release*, TcTce* Setup -1.5 ns

Table 443: 133 MHz AC Timing (Continued)

Signals Description

133MHz

Units LoadingMin. Max.

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 350 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

SysADC[7:0], SysAD[63:0],
SysCmd[8:0], ValidOut*,
Release*, PReq*, SysRdyIn[2:0],
TcMatch, TcTce*

Hold 1.1 ns

SysADC[7:0], SysAD[63:0] Output Delay 3.45 7.8 ns 25pf

ValidIn*, TcDOE* Output Delay 3.2 7.35 ns 25pf

RspSwap*, SysRdyOut*, PAck* Output Delay 3.3 7.43 ns 25pf

SysCmd[8:0], TcWord[1:0] Output Delay 3.25 7.45 ns 25pf

Table 444: 133 MHz CPU Interface Parameters With SysClk and Tclk NOT synchronized

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 351
Not Approved by Document Control - For Review Only

24. PINOUT TABLE, 665 PIN BGA
NOTE: The following table is sorted by ball number.

Table 445: GT–64242A Pinout Table

Ball # Signal Name Ball # Signal Name Ball # Signal Name

A03–A25 A26–A29 B23–B30

A03 BAdr[0] A26 PReq* B23 SData[62]

A04 Wr[0] A27 NC B24 TDI

A05 SData[1] A28 NC B25 NC

A06 SData[4] A29 SysRdyOut* B26 NC

A07 SData[7] B02–B22 B27 NC

A08 SData[10] B02 VCC 3.3 B28 NC

A09 SData[13] B03 BAdr[1] B29 NC

A10 ECC[0] B04 Wr[1] B30 VCC 2.5

A11 SCAS* B05 SData[32] C01–C17

A12 SCS[1]* B06 SData[35] C01 AD[0]

A13 DAdr[3] B07 SData[38] C02 ALE

A14 DAdr[8] B08 SData[41] C03 BAdr[2]

A15 SDClkOut B09 SData[44] C04 Wr[2]

A16 SDQM[6]* B10 SData[47] C05 SData[0]

A17 ECC[7] B11 DWr* C06 SData[3]

A18 SData[18] B12 SCS[0]* C07 SData[6]

A19 SData[52] B13 DAdr[2] C08 SData[9]

A20 SData[23] B14 DAdr[7] C09 SData[12]

A21 SData[57] B15 DAdr[11] C10 SData[15]

A22 SData[28] B16 SDQM[2]* C11 ECC[5]

A23 SData[31] B17 ECC[3] C12 SDQM[5]*

A24 SData[63] B18 SData[49] C13 DAdr[1]

A25 NC B19 SData[20] C14 DAdr[6]

B20 SData[54] C15 BankSel[1]

B21 SData[25] C16 SCS[3]*

B22 SData[59] C17 ECC[6]

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 352 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

C18–C31 D14–D31 E10–E31

C18 SData[17] D14 DAdr[5] E10 SData[14]

C19 SData[51] D15 BankSel[0] E11 ECC[4]

C20 SData[22] D16 SCS[2]* E12 SDQM[4]*

C21 SData[56] D17 ECC[2] E13 SRAS*

C22 SData[27] D18 SData[48] E14 DAdr[4]

C23 SData[30] D19 SData[19] E15 DAdr[10]

C24 TMS D20 SData[53] E16 DAdr[12]

C25 PAck* D21 SData[24] E17 SDQM[7]*

C26 NC D22 SData[58] E18 SData[16]

C27 CPUInt* D23 SData[61] E19 SData[50]

C28 NC D24 TRST E20 SData[21]

C29 TcMatch D25 SysRst* E21 SData[55]

C30 NC D26 NC E22 SData[26]

C31 ValidIn* D27 NC E23 SData[29]

D01–D13 D28 NC E24 TCK

D01 AD[3] D29 NC E25 SysClk

D02 AD[2] D30 NC E26 RspSwap*

D03 AD[1] D31 ValidOut* E27 Release*

D04 Wr[3] E01–E09 E28 TcWord[1]

D05 Ready* E01 AD[7] E29 TcWord[0]

D06 SData[34] E02 AD[6] E30 NC

D07 SData[37] E03 AD[5] E31 SysCmd[0]

D08 SData[40] E04 AD[4]

D09 SData[43] E05 CSTiming*

D10 SData[46] E06 SData[2]

D11 ECC[1] E07 SData[5]

D12 SDQM[1]* E08 SData[8]

D13 DAdr[0] E09 SData[11]

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 353
Not Approved by Document Control - For Review Only

F01–F29 F30–F31 H06–H07, H25–H31

F01 AD[12] F30 SysCmd[3] H06 AD[19]

F02 AD[11] F31 SysCmd[2] H07 VCC 3.3

F03 AD[10] G01–G10, G22–G31 H25 AVCC

F04 AD[9] G01 AD[18] H26 TcDOE*

F05 AD[8] G02 AD[17] H27 SysRdyIn[2]*

F06 SData[33] G03 Ad[16] H28 NC

F07 SData[36] G04 AD[15] H29 NC

F08 SData[39] G05 AD[14] H30 SysRdyIn[1]*

F09 SData[42] G06 AD[13] H31 SysRdyIn[0]*

F10 SData[45] G07 GND J01–J07, J25–J31

F11 VCC 3.3 G08 VCC 3.3 J01 AD[30]

F12 SDQM[0]* G09 GND J02 AD[29]

F13 VCC 3.3 G10 VCC 3.3 J03 AD[28]

F14 VCC Core G22 VCC 3.3 J04 AD[27]

F15 DAdr[9] G23 GND J05 AD[26]

F16 VCC Core G24 VCC 3.3 J06 AD[25]

F17 SDQM[3]* G25 AGND J07 VCC 3.3

F18 GND G26 SysCmd[8] J25 VCC 2.5

F19 VCC 3.3 G27 SysCmd[7] J26 NC

F20 VCC 3.3 G28 NC J27 NC

F21 VCC 3.3 G29 SysCmd[6] J28 NC

F22 VCC 3.3 G30 TcTCE* J29 NC

F23 SData[60] G31 NC J30 NC

F24 TClk H01–H05 J31 NC

F25 JTDO H01 AD[24]

F26 SysCmd[1] H02 AD[23]

F27 NC H03 AD[22]

F28 SysCmd[5] H04 AD[21]

F29 SysCmd[4] H05 AD[20]

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 354 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

K01–K07, K25–K31 M01–M06, M26–M31 N26–N31

K01 GND M01 GND N26 VCC Core

K02 GND M02 GND N27 SysAD[28]

K03 GND M03 GND N28 SysAD[29]

K04 GND M04 GND N29 NC

K05 AD[31] M05 GND N30 SysADC[2]

K06 VCC 3.3 M06 VCC 3.3 N31 SysAD[4]

K07 VCC 3.3 M26 SysAD[31] P01–P06, P13–19, P26–P31

K25 VCC 2.5 M27 NC P01 DevDP[3]

K26 NC M28 SysADC[5] P02 DevDP[2]

K27 NC M29 SysADC[3] P03 DevDP[1]

K28 NC M30 SysAD[22] P04 DevDP[0]

K29 NC M31 SysAD[24] P05 NC

K30 NC N01–N06, N13–N19 P06 NC

K31 NC N01 GND P13 GND

L01–L06, L26–L31 N02 NC P14 GND

L01 GND N03 NC P15 GND

L02 GND N04 NC P16 GND

L03 GND N05 GND P17 GND

L04 GND N06 VCC 3.3 P18 GND

L05 GND N13 GND P19 GND

L06 VCC 3.3 N14 GND P26 VCC Core

L26 VCC 2.5 N15 GND P27 SysAD[18]

L27 NC N16 GND P28 SysAD[21]

L28 SysADC[7] N17 GND P29 SysAD[52]

L29 SysAD[56] N18 GND P30 SysAD[54]

L30 SysAD[55] N19 GND P31 SysAD[37]

L31 SysAD[26]

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 355
Not Approved by Document Control - For Review Only

R01–R06, R13–R19,
R26–R31

T13–T31 U26–U31

R01 GND T13 GND U26 VCC 2.5

R02 GND T14 GND U27 SysAD[60]

R03 GND T15 GND U28 SysAD[44]

R04 GND T16 GND U29 SysADC[1]

R05 GND T17 GND U30 SysAD[25]

R06 GND T18 GND U31 SysAD[8]

R13 GND T19 GND V01–V06, V13–19, V26–V31

R14 GND T26 SysAD[32] V01 I2CSCK

R15 GND T27 SysAD[27] V02 GND

R16 GND T28 SysAD[3] V03 GND

R17 GND T29 SysADC[0] V04 GND

R18 GND T30 SYSAD[17] V05 GND

R19 GND T31 SysAD[12] V06 NC

R26 VCC 2.5 U01–U06, U13–U19 V13 GND

R27 SysAD[30] U01 GND V14 GND

R28 SysADC[6] U02 NC V15 GND

R29 SysAD[7] U03 GND V16 GND

R30 SysAD[50] U04 GND V17 GND

R31 SysAD[42] U05 GND V18 GND

T01–T06 U06 VCC Core V19 GND

T01 GND U13 GND V26 SysAD[15]

T02 GND U14 GND V27 SysAD[19]

T03 GND U15 GND V28 SysAD[11]

T04 GND U16 GND V29 SysAD[57]

T05 GND U17 GND V30 SysAD[58]

T06 GND U18 GND V31 SysAD[46]

U19 GND

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 356 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

W01–W06, W13–W19,
W26–W31

Y26–Y31 AB25–AB31

W01 MPP[3] Y26 VCC Core AB25 VCC 2.5

W02 MPP[2] Y27 SysAD[23] AB26 VCC 2.5

W03 MPP[1] Y28 SysAD[5] AB27 SysAD[36]

W04 MPP[0] Y29 SysAD[20] AB28 SysAD[35]

W05 I2CSDA Y30 SysAD[10] AB29 SysAD[2]

W06 VCC Core Y31 SysAD[61] AB30 SysADC[4]

W13 GND AA01–AA06, AA26–AA31 AB31 SysAD[6]

W14 GND AA01 MPP[13] AC01–AC07, AC25–AC31

W15 GND AA02 MPP[12] AC01 MPP[25]

W16 GND AA03 MPP[11] AC02 MPP[24]

W17 GND AA04 MPP[10] AC03 MPP[23]

W18 GND AA05 MPP[9] AC04 MPP[22]

W19 GND AA06 VCC 3.3 AC05 MPP[21]

W26 GND AA26 VCC 2.5 AC06 MPP[20]

W27 SysAD[43] AA27 SysAD[14] AC07 VCC 3.3

W28 SysAD[41] AA28 SysAD[45] AC25 VCC 2.5

W29 SysAD[39] AA29 SysAD[9] AC26 SysAD[16]

W30 SysAD[33] AA30 SysAD[48] AC27 SysAD[63]

W31 SysAD[1] AA31 SysAD[47] AC28 SysAD[62]

Y01–Y06 AB01–AB07 AC29 SysAD[59]

Y01 MPP[8] AB01 MPP[19] AC30 SysAD[51]

Y02 MPP[7] AB02 MPP[18] AC31 SysAD[13]

Y03 MPP[6] AB03 MPP[17] AD01–AD04

Y04 MPP[5] AB04 MPP[16] AD01 MPP[31]

Y05 MPP[4] AB05 MPP[15] AD02 MPP[30]

Y06 VCC 3.3 AB06 MPP[14] AD03 MPP[29]

AB07 VCC 3.3 AD04 MPP[28]

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 357
Not Approved by Document Control - For Review Only

AD05–AD07, AD25–AD31 AE30–AE31 AF27–AF31

AD05 MPP[27] AE30 PAD[36] AF27 PAD[38]

AD06 MPP[26] AE31 PAD[37] AF28 PAD[39]

AD07 VCC 3.3 AF01–AF26 AF29 PAD[40]

AD25 VCC Core AF01 NC AF30 PAD[41]

AD26 SysAD[53] AF02 NC AF31 PAD[42]

AD27 SysAD[49] AF03 NC AG01–AG23

AD28 SysAD[40] AF04 NC AG01 NC

AD29 SysAD[38] AF05 NC AG02 NC

AD30 SysAD[34] AF06 NC AG03 GND

AD31 SysAD[0] AF07 NC AG04 NC

AE01–AE10, AE22–AE29 AF08 NC AG05 NC

AE01 NC AF09 NC AG06 NC

AE02 NC AF10 NC AG07 NC

AE03 GND AF11 VCC 3.3 AG08 NC

AE04 CLK AF12 GND AG09 NC

AE05 Rst* AF13 VCC 3.3 AG10 NC

AE06 NC AF14 NC AG11 NC

AE07 GND AF15 VCC 3.3 AG12 NC

AE08 VREF AF16 REQ* AG13 NC

AE09 VCC Core AF17 VREF AG14 NC

AE10 VCC Core AF18 VCC 3.3 AG15 NC

AE22 VCC 3.3 AF19 GND AG16 GNT*

AE23 VCC 3.3 AF20 IRDY* AG17 PAD[27]

AE24 VCC Core AF21 VCC 3.3 AG18 IDSEL

AE25 VCC 3.3 AF22 PAD[12] AG19 PAD[19]

AE26 PAD[32] AF23 PAD[7] AG20 Frame*

AE27 PAD[33] AF24 PAD[1] AG21 SERR*

AE28 PAD[34] AF25 HS AG22 PAD[13]

AE29 PAD[35] AF26 PAR64 AG23 CBE[0]*

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 358 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

AG24–AG31 AH21–AH31 AJ18–AJ31

AG24 PAD[2] AH21 PERR* AJ18 PAD[24]

AG25 LED AH22 PAD[14] AJ19 PAD[21]

AG26 CBE[4]* AH23 PAD[8] AJ20 PAD[16]

AG27 PAD[59] AH24 PAD[3] AJ21 STOP*

AG28 PAD[43] AH25 ENUM* AJ22 PAD[15]

AG29 PAD[44] AH26 P64EN* AJ23 PAD[9]

AG30 PAD[45] AH27 PAD[60] AJ24 PAD[4]

AG31 PAD[46] AH28 PAD[55] AJ25 REQ64*

AH01–AH20 AH29 PAD[47] AJ26 CBE[5]*

AH01 NC AH30 PAD[48] AJ27 PAD[61]

AH02 NC AH31 PAD[49] AJ28 PAD[56]

AH03 NC AJ01–AJ17 AJ29 PAD[52]

AH04 NC AJ01 NC AJ30 PAD[51]

AH05 NC AJ02 NC AJ31 PAD[50]

AH06 NC AJ03 NC AK02–AK15

AH07 NC AJ04 VCC 3.3 AK02 VCC 3.3

AH08 NC AJ05 NC AK03 Pull-up

AH09 NC AJ06 NC AK04 VCC 3.3

AH10 NC AJ07 NC AK05 NC

AH11 NC AJ08 NC AK06 NC

AH12 NC AJ09 NC AK07 NC

AH13 NC AJ10 NC AK08 NC

AH14 NC AJ11 NC AK09 Pull-up

AH15 NC AJ12 NC AK10 NC

AH16 CLK AJ13 NC AK11 NC

AH17 PAD[28] AJ14 NC AK12 NC

AH18 CBE[3]* AJ15 NC AK13 NC

AH19 PAD[20] AJ16 Rst* AK14 NC

AH20 CBE[2]* AJ17 PAD[29] AK15 NC

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 359
Not Approved by Document Control - For Review Only

AK16–AK30 AL03–AL17 AL18–AL29

AK16 INT* AL03 Pull-up AL18 PAD[26]

AK17 PAD[30] AL04 VCC 3.3 AL19 PAD[23]

AK18 PAD[25] AL05 VCC 3.3 AL20 PAD[18]

AK19 PAD[22] AL06 NC AL21 TRDY*

AK20 PAD[17] AL07 NC AL22 PAR

AK21 DEVSEL* AL08 NC AL23 PAD[11]

AK22 CBE[1]* AL09 VCC 3.3 AL24 PAD[6]

AK23 PAD[10] AL10 NC AL25 PAD[0]

AK24 PAD[5] AL11 NC AL26 CBE[7]*

AK25 ACK64* AL12 NC AL27 PAD[63]

AK26 CBE[6]* AL13 NC AL28 PAD[58]

AK27 PAD[62] AL14 NC AL29 PAD[54]

AK28 PAD[57] AL15 NC

AK29 PAD[53] AL16 NC

AK30 VCC 3.3 AL17 PAD[31]

Table 445: GT–64242A Pinout Table (Continued)

Ball # Signal Name Ball # Signal Name Ball # Signal Name

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 360 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Figure 51: GT–64242A Pinout Map (top view, left section)

NOTE: VCC=VDD, GND=VSS, NC=Not Connected

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A BAdr[0] Wr[0] SData[1] SData[4] SData[7] SData[10] SData[13] ECC[0] SCAS* SCS[1]* DAdr[3] DAdr[8] SDClkOut A

B VCC 3.3 BAdr[1] Wr[1] SData[32] SData[35] SData[38] SData[41] SData[44] SData[47] DWr* SCS[0]* DAdr[2] DAdr[7] DAdr[11] B

C AD[0] ALE BAdr[2] Wr[2] SData[0] SData[3] SData[6] SData[9] SData[12] SData[15] ECC[5] SDQM *[5] DAdr[1] DAdr[6] BankSel[1] C

D AD[3] AD[2] AD[1] Wr[3] Ready* SData[34] SData[37] SData[40] SData[43] SData[46] ECC[1] SDQM [1]* DAdr[0] DAdr[5] BankSel[0] D

E AD[7] AD[6] AD[5] AD[4] CSTiming* SData[2] SData[5] SData[8] SData[11] SData[14] ECC[4] SDQM *[4] SRAS* DAdr[4] DAdr[10] E

F AD[12] AD[11] AD[10] AD[9] AD[8] SData[33] SData[36] SData[39] SData[42] SData[45] VCC 3.3 SDQM [0]* VCC 3.3 VCC Core DAdr[9] F

G AD[18] AD[17] AD[16] AD[15] AD[14] AD[13] GND VCC 3.3 GND VCC 3.3 G

H AD[24] AD[23] AD[22] AD[21] AD[20] AD[19] VCC 3.3 H

J AD[30] AD[29] AD[28] AD[27] AD[26] AD[25] VCC 3.3 J

K GND GND GND GND AD[31] VCC 3.3 VCC 3.3 K

L GND GND GND GND GND VCC 3.3 L

M GND GND GND GND GND VCC 3.3 M

N GND NC NC NC GND VCC 3.3 GND GND GND N

P DevDP[3] DevDP[2] DevDP[1] DevDP[0] NC NC GND GND GND P

R GND GND GND GND GND GND GND GND GND R

T GND GND GND GND GND GND GND GND GND T

U GND NC GND GND GND VCC Core GND GND GND U

V I2CSCK GND GND GND GND NC GND GND GND V

W M PP[3] M PP[2] M PP[1] M PP[0] I2CSDA VCC Core GND GND GND W

Y M PP[8] M PP[7] M PP[6] M PP[5] M PP[4] VCC 3.3 Y

A A M PP[13] M PP[12] M PP[11] M PP[10] M PP[9] VCC 3.3 A A

A B M PP[19] M PP[18] M PP[17] M PP[16] M PP[15] M PP[14] VCC 3.3 A B

A C M PP[25] M PP[24] M PP[23] M PP[22] M PP[21] M PP[20] VCC 3.3 A D

A D M PP[31] M PP[30] M PP[29] M PP[28] M PP[27] M PP[26] VCC 3.3 A D

A E NC NC GND CLK Rst* NC GND VREF VCC Core VCC Core A E

A F NC NC NC NC NC NC NC NC NC NC VCC 3.3 GND VCC 3.3 NC VCC 3.3 A F

A G NC NC GND NC NC NC NC NC NC NC NC NC NC NC NC A G

A H NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC A H

A J NC NC NC VCC 3.3 NC NC NC NC NC NC NC NC NC NC NC A J

A K VCC 3.3 Pull-up VCC 3.3 NC NC NC NC Pull-up NC NC NC NC NC NC A K

A L Pull-up VC C 3.3 VCC 3.3 NC NC NC VCC 3.3 NC NC NC NC NC NC A L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 361
Not Approved by Document Control - For Review Only

Figure 52: GT–64242A Pinout Map (top view, right section)

NOTE: VCC=VDD, GND=VSS, NC=Not Connected

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A SDQM [6]* ECC[7] SData[18] SData[52] SData[23] SData[57] SData[28] SData[31] SData[63] NC PReq* NC NC SysRdyOut* A

B SDQM [2]* ECC[3] SData[49] SData[20] SData[54] SData[25] SData[59] SData[62] TDI NC NC NC NC NC VCC 2.5 B

C SCS*[3] ECC[6] SData[17] SData[51] SData[22] SData[56] SData[27] SData[30] TM S PAck* NC CPUInt* NC TcM atch NC ValidIn* C

D SCS[2]* ECC[2] SData[48] SData[19] SData[53] SData[24] SData[58] SData[61] TRST SysRst* NC NC NC NC NC ValidOut* D

E DAdr[12] SDQM *[7] SData[16] SData[50] SData[21] SData[55] SData[26] SData[29] TCK SysClk RspSwap* Release* TcWord[1] TcWord[0] NC SysCmd[0] E

F VCC Core SDQM *[3] GND VCC 3.3 VCC 3.3 VCC 3.3 VCC 3.3 SData[60] TClk JTDO SysCmd[1] NC SysCmd[5] SysCmd[4] SysCmd[3] SysCmd[2] F

G VCC 3.3 GND VCC 3.3 AGND SysCmd[8] SysCmd[7] NC SysCmd[6] TcTCE* NC G

H AVCC TcDOE* SysRdyIn[2]* NC NC SysRdyIn[1]* SysRdyIn[0]* H

J VCC 2.5 NC NC NC NC NC NC J

K VCC 2.5 NC NC NC NC NC NC K

L VCC 2.5 NC SysADC[7] SysAD[56] SysAD[55] SysAD[26] L

M SysAD[31] NC SysADC[5] SysADC[3] SysAD[22] SysAD[24] M

N GND GND GND GND VCC Core SysAD[28] SysAD[29] NC SysADC[2] SysAD[4] N

P GND GND GND GND VCC Core SysAD[18] SysAD[21] SysAD[52] SysAD[54] SysAD[37] P

R GND GND GND GND VCC 2.5 SysAD[30] SysADC[6] SysAD[7] SysAD[50] SysAD[42] R

T GND GND GND GND SysAD[32] SysAD[27] SysAD[3] SysADC[0] SysAD[17] SysAD[12] T

U GND GND GND GND VCC 2.5 SysAD[60] SysAD[44] SysADC[1] SysAD[25] SysAD[8] U

V GND GND GND GND SysAD[15] SysAD[19] SysAD[11] SysAD[57] SysAD[58] SysAD[46] V

W GND GND GND GND GND SysAD[43] SysAD[41] SysAD[39] SysAD[33] SysAD[1] W

Y VCC Core SysAD[23] SysAD[5] SysAD[20] SysAD[10] SysAD[61] Y

A A VCC 2.5 SysAD[14] SysAD[45] SysAD[9] SysAD[48] SysAD[47] A A

A B VCC 2.5 VCC 2.5 SysAD[36] SysAD[35] SysAD[2] SysADC[4] SysAD[6] A B

A D VCC 2.5 SysAD[16] SysAD[63] SysAD[62] SysAD[59] SysAD[51] SysAD[13] A C

A D VCC Core SysAD[53] SysAD[49] SysAD[40] SysAD[38] SysAD[34] SysAD[0] A D

A E VCC 3.3 VCC 3.3 VCC Core VCC 3.3 PAD[32] PAD[33] PAD[34] PAD[35] PAD[36] PAD[37] A E

A F REQ* VREF VCC 3.3 GND IRDY* VCC 3.3 PAD0[12] PAD[7] PAD[1] HS PAR64 PAD[38] PAD[39] PAD[40] PAD[41] PAD[42] A F

A G GNT* PAD[27] IDSEL PAD[19] Frame* SERR* PAD[13] CBE[0]* PAD[2] LED CBE[4]* PAD[59] PAD[43] PAD[44] PAD[45] PAD[46] A G

A H CLK PAD[28] CBE[3]* PAD[20] CBE[2]* PERR* PAD[14] PAD[8] PAD[3] ENUM * P64EN PAD[60] PAD[55] PAD[47] PAD[48] PAD[49] A H

A J Rst* PAD[29] PAD[24] PAD[21] PAD[16] STOP* PAD[15] PAD[9] PAD[4] REQ64* CBE[5]* PAD[61] PAD[56] PAD[52] PAD[51] PAD[50] A J

A K INT* PAD[30] PAD[25] PAD[22] PAD[17] DEVSEL* CBE[1]* PAD[10] PAD[5] ACK64* CBE[6]* PAD[62] PAD[57] PAD[53] VCC 3.3 A K

A L NC PAD[31] PAD[26] PAD[23] PAD[18] TRDY* PAR PAD[11] PAD[6] PAD[0] CBE[7]* PAD[63] PAD[58] PAD[54] A L

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 362 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 363
Not Approved by Document Control - For Review Only

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 364 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 365
Not Approved by Document Control - For Review Only

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 366 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 367
Not Approved by Document Control - For Review Only

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 368 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 369
Not Approved by Document Control - For Review Only

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 370 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

Pinout Table, 665 Pin BGA

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 371
Not Approved by Document Control - For Review Only

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 372 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

25. 665 PBGA PACKAGE MECHANICAL INFORMATION

0.
56

 R
EF

.

30° TYP.

34
.5

0
RE

F.
0.

50
~

0.
70

1.
27

38
.1

0

40
.0

0±
0.

20

1.27

38.10

40.00±0.20

-B-

-A-

0.20(4X)

Ø0.60~Ø0.90(665X)

Ø0.30 S C A S B S

Ø0.10 S C

2.
33

±
0.

13

0.
20

Ø1.00(3X) REF.
PIN #1 CORNER

4.60*45°(4X)

1.
17

 R
EF

.

-A- SEATING PLANE

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31

A
B

C
D

E
F

G
H

J
K

L
M

N
P

R
T

U
V

W
Y

AA
AB

AC
AD

AE
AF

AG
AH

AJ
AK

AL
AK

AH

D

AF

AD

AB

Y

V

T

P

M

K

H

F

B

AG

AL

AJ

AA

AE

AC

W

U

R

N

L

G

J

E

A

C

3
2

1
18 46810

579
121416

11131517
26 202224

19212325
2830

272931

34.50 REF.

0.
15

 C

0.
15

 C

Ball Diameter : Mold Thickness :
0.75

Package Code :
BS

1.17

1.27
Ball Pitch : Substrate Thickness :

0.56

C

GT–64242A Part Numbering

Copyright © 2002 Marvell CONFIDENTIAL Doc. No. MV-S100686-00, Rev. 0.95

February 19, 2002, Preliminary Document Classification: Proprietary Information Page 373
Not Approved by Document Control - For Review Only

26. GT–64242A PART NUMBERING
Figure 53: Sample Part Number

The part numbers for the GT–64242A is GT–64242A-B-x-C100 or GT–64242A-B-x-C133.

These part numbers indicates that this is the commercial temperature grade, 100MHz or 133MHz version.

 These are the only valid part numbers that can be used when ordering the GT–64242A.

GT–64242A–B–x–C1xx

Device Prefix
GT

Part Number
64242A

Package Type
B = 665BGA

Revision/Stepping Number
0 = Initial Silicon
1 = 1st Revision/Stepping
2 = 2nd Revision/Stepping
etc.

Speed
100 = 100Mhz
133 = 133Mhz

System Controller for MIPS Processors

Doc. No. MV-S100686-00, Rev. 0.95 CONFIDENTIAL Copyright © 2002 Marvell

Page 374 Document Classification: Proprietary Information February 19, 2002, Preliminary
Not Approved by Document Control - For Review Only

27. REVISION HISTORY

Table 446: Revision History

Document Type Revision Date

Preliminary Datasheet 0.95 February 19, 2002

Preliminary Datasheet.

	Features
	Table of Contents
	List of Tables
	List of Figures
	1. Overview
	1.1 CPU Bus Interface
	1.2 SDRAM Interface
	1.3 Device Interface
	1.4 PCI Interface
	1.5 DMA Engines
	1.6 Data Integrity

	2. Pin Information
	3. Address Space Decoding
	3.1 CPU Address Decoding
	3.2 PCI Address Decoding
	3.3 Disabling Address Decoders
	3.4 IDMA Unit Address Decoding
	3.5 Address Space Decoding Errors
	3.6 Default Memory Map
	3.7 Programming Address Decoding Registers
	3.7.1 PCI Programming of Address Decoders
	3.7.2 CPU Programming of Address Decoders

	3.8 Address Remapping
	3.8.1 CPU Address Remapping to PCI
	3.8.2 Writing to CPU Decode Registers
	3.8.3 PCI Address Remapping
	3.8.4 Writing to PCI Decode Registers
	3.8.5 64-bit Remap Registers

	3.9 IDMA Unit Address Decoding Override

	4. CPU Interface
	4.1 CPU Address Decoding
	4.2 CPU Access Protection
	4.3 CPU Slave Operation
	4.4 MIPS 64-bit Multiplexed Address/Data Bus Interface
	4.4.1 Signals Description
	4.4.2 SysAD and SysCmd Encoding
	4.4.3 SysAD Read Protocol
	4.4.4 Write Protocol

	4.5 RM7000 Split Transactions Support
	4.6 Burst Support
	4.7 Transactions Flow Control
	4.8 MIPS CPU Cache Support
	4.9 Multi-GT Support
	4.9.1 Hardware Connections
	4.9.2 Multi-GT Mode Enabled
	4.9.3 Initializing a Multi-GT–64242A System

	4.10 Parity Support
	4.11 CPU Endian Support
	4.12 CPU Synchronization Barrier
	4.13 Clocks Synchronization
	4.14 Programing the CPU Configuration Register
	4.15 CPU Interface Registers
	4.15.1 CPU Address Decode Registers
	4.15.2 CPU Control Registers
	4.15.3 CPU Sync Barrier Registers
	4.15.4 CPU Access Protect Registers
	4.15.5 CPU Error Report Registers

	5. SDRAM Controller
	5.1 SDRAM Controller Implementation
	5.2 DRAM Type
	5.3 SDRAM Density
	5.3.1 16MBit SDRAM
	5.3.2 64Mbit SDRAM
	5.3.3 128Mbit SDRAM
	5.3.4 256Mbit SDRAMs
	5.3.5 512Mbit SDRAMs

	5.4 SDRAM Timing Parameters
	5.4.1 SCAS* Latency (CL)
	5.4.2 SRAS* Precharge (Trp)
	5.4.3 SRAS* to SCAS* (Trcd)
	5.4.4 Row Active Time (Tras)

	5.5 SDRAM Burst
	5.6 SDRAM Interleaving
	5.6.1 Bank Interleaving Implementation
	5.6.2 SDRAM Address Control

	5.7 SDRAM Open Pages
	5.8 Read Modify Write
	5.9 SDRAM Refresh
	5.10 SDRAM Initialization
	5.11 SDRAM Operation Mode Register
	5.11.1 Normal SDRAM Mode
	5.11.2 NOP Commands
	5.11.3 Precharge All Banks
	5.11.4 Setting SDRAM Mode Register (MRS command)
	5.11.5 Force Refresh

	5.12 Heavy Load Interface
	5.13 SDRAM Clocking
	5.13.1 SDRAM Clock Output
	5.13.2 Read Data Sample
	5.13.3 SDRAM Clock Input

	5.14 Unified Memory Architecture Support
	5.14.1 SDRAM Bus Arbitration
	5.14.2 UMA Arbitration Control

	5.15 SDRAM Interface Registers
	5.15.1 SDRAM Configuration Registers
	5.15.2 SDRAM Banks Parameters Registers
	5.15.3 SDRAM Error Report Registers

	6. Address and Data Integrity
	6.1 CPU Parity Support
	6.2 SDRAM ECC
	6.2.1 ECC Calculation
	6.2.2 SDRAM Interface Operation
	6.2.3 ECC Error Report

	6.3 Parity Support for Devices
	6.4 PCI Parity Support
	6.5 Parity/ECC Errors Propagation

	7. Device Controller
	7.1 Device Controller Implementation
	7.2 Device Timing Parameters
	7.2.1 TurnOff
	7.2.2 Acc2First
	7.2.3 Acc2Next
	7.2.4 ALE2Wr
	7.2.5 WrLow
	7.2.6 WrHigh
	7.2.7 BAdrSkew

	7.3 Data Pack/Unpack and Burst Support
	7.4 Ready* Support
	7.5 Parity Support
	7.6 Additional Device Interface Signaling
	7.7 Error Report
	7.8 Interfacing With 8/16/32-Bit Devices
	7.9 Device Interface Registers
	7.9.1 Device Control Registers
	7.9.2 Device Interrupts

	8. PCI Interface
	8.1 PCI Master Operation
	8.1.1 PCI Master Write Operation
	8.1.2 PCI Master Read Operation

	8.2 PCI Master Termination
	8.3 PCI Bus Arbitration
	8.3.1 PCI Master Bus Arbitration
	8.3.2 Internal PCI Arbiter

	8.4 PCI Master Configuration Cycles
	8.5 PCI Target Address Decoding
	8.5.1 SDRAM and Device BARs
	8.5.2 Internal Space Address Decoding
	8.5.3 Expansion ROM Address Decoding
	8.5.4 64-bit Addressing BARs
	8.5.5 Base Address Registers Enable
	8.5.6 Loop Back Access

	8.6 PCI Access Protection
	8.7 PCI Target Operation
	8.7.1 PCI Write Operation
	8.7.2 PCI Read Operation
	8.7.3 PCI Delayed Reads
	8.7.4 PCI Slave Read Buffers
	8.7.5 PCI Access to Internal Registers
	8.7.6 PCI I/O Access
	8.7.7 PCI Configuration Access

	8.8 PCI Target Termination
	8.8.1 Timeout Termination
	8.8.2 Non-Timeout Termination Conditions

	8.9 Initialization Retry
	8.10 Synchronization Barrier
	8.11 Clocks Synchronization
	8.12 Data Endianess
	8.12.1 PCI Slave Data Swapping
	8.12.2 PCI Master Data Swapping

	8.13 64-bit PCI Interface
	8.13.1 PCI Master 64-bit Interface
	8.13.2 PCI Slave 64-bit interface

	8.14 64-bit Addressing
	8.15 PCI Parity and Error Support
	8.16 Configuration Space
	8.16.1 Plug and Play Base Address registers Sizing

	8.17 PCI Special Features
	8.17.1 Power Management
	8.17.2 Vital Product Data (VPD)
	8.17.3 Message Signaled Interrupt (MSI)
	8.17.4 Hot Swap
	8.17.5 BIST (Built In Self Test)

	8.18 PCI Interface Registers
	8.18.1 PCI Slave Address Decoding Registers
	8.18.2 PCI Control Registers
	8.18.3 PCI Configuration Access Registers
	8.18.4 PCI Error Report Registers
	8.18.5 PCI Slave Debug Registers
	8.18.6 Function 0 Configuration Registers
	8.18.7 Function 1 Configuration Registers
	8.18.8 Function 2 Configuration Registers
	8.18.9 Function 4 Configuration Registers
	8.18.10 Function 5 Configuration Registers
	8.18.11 Function 6 Configuration Registers
	8.18.12 Function 7 Configuration Registers

	9. Messaging Unit
	9.1 Message Registers
	9.1.1 Outbound Messages
	9.1.2 Inbound Messages

	9.2 Doorbell Registers
	9.2.1 Outbound Doorbells
	9.2.2 Inbound Doorbells

	9.3 Circular Queues
	9.3.1 Inbound Message Queues
	9.3.2 Outbound Message Queues
	9.3.3 Circular Queues Data Storage
	9.3.4 Inbound/Outbound Queue Port Function
	9.3.5 Inbound Post Queue
	9.3.6 Inbound Free Queue
	9.3.7 Outbound Post Queue
	9.3.8 Outbound Free Queue
	9.3.9 Queue Data Endianess

	9.4 Messaging Unit Registers

	10. IDMA Controller
	10.1 IDMA Operation
	10.2 IDMA Descriptors
	10.3 IDMA Address Decoding
	10.4 IDMA Access Protection
	10.5 IDMA Channel Control
	10.5.1 Address Increment/Hold
	10.5.2 Burst Limit
	10.5.3 Chain Mode
	10.5.4 Channel Activation
	10.5.5 Source and Destination Addresses Alignment
	10.5.6 Demand Mode
	10.5.7 End Of Transfer
	10.5.8 Descriptor Ownership

	10.6 Arbitration
	10.7 Big and Little Endian Support
	10.8 DMA Interrupts
	10.9 IDMA Registers
	10.9.1 IDMA Descriptor Registers
	10.9.2 IDMA Channel Control Registers
	10.9.3 IDMA Interrupt Registers
	10.9.4 IDMA Debug Registers

	11. Timer/Counters
	11.1 Timers/Counters Registers

	12. Baude Rate Generators (BRG)
	12.1 BRG Inputs and Outputs
	12.2 BRG Baud Tuning
	12.3 BRG Registers

	13. Watchdog Timer
	13.1 Watchdog Registers
	13.2 Watchdog Operation

	14. General Purpose Port
	14.1 GPP Control Registers
	14.2 GPP Value Register
	14.3 GPP Interrupts
	14.4 General Purpose Port Registers

	15. MPP Multiplexing
	15.1 MPP Multiplexing
	15.2 MPP Interface Registers

	16. I2C Interface
	16.1 I2C Bus Operation
	16.2 I2C Registers
	16.2.1 I2C Slave Address registers
	16.2.2 I2C Data Register
	16.2.3 I2C Control Register
	16.2.4 I2C Status Register
	16.2.5 Baude Rate Register

	16.3 I2C Master Operation
	16.3.1 Master Write Access
	16.3.2 Master Read Access

	16.4 I2C Slave Operation
	16.4.1 Slave Read Access
	16.4.2 Slave Write Access

	16.5 I2C Interface Registers

	17. Interrupt Controller
	17.1 Interrupt Cause and Mask Registers
	17.1.1 Interrupts Cause Registers
	17.1.2 Interrupts Mask Registers
	17.1.3 Selected Cause Registers
	17.1.4 Error Report Registers

	17.2 Interrupt Controller Registers

	18. Internal Arbitration Control
	19. Reset Pins
	20. Reset Configuration
	20.1 Pins Sample Configuration
	20.2 Serial ROM Initialization
	20.2.1 Serial ROM Data Structure
	20.2.2 Serial ROM Initialization Operation
	20.2.3 Serial ROM Initialization in Multi-GT Configuration
	20.2.4 Restarting Initialization
	20.2.5 Other Interfaces During Initialization
	20.2.6 Serial ROM Initialization Registers

	21. GT–64242A Clocking
	22. DC Characteristics
	22.1 Absolute and Recommended Operating Conditions
	22.2 DC Electrical Characteristics Over Operating Range
	22.3 Thermal Data
	22.4 PLL Power Filter Circuit
	22.4.1 PLL Power Supply
	22.4.2 PLL Power Filter With a 1.8V Power Supply Available On Board
	22.4.3 PLL Power Filter With No 1.8V Power Supply Available On-board (Backplane Layout)
	22.4.4 PLL Power Filter Layout Considerations

	23. AC Timing
	24. Pinout Table, 665 Pin BGA
	25. 665 PBGA Package Mechanical Information
	26. GT–64242A Part Numbering
	27. Revision History

