
APPLICATION NOTE
Interfacing Texas Instruments DSPs

to the GT-64240/60

12-Feb-01
Rev. 1.0

AN-65

HTTP://WWW.GALILEOT.COM

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-01

Communications Systems on Silicon™

1. Introduction
Digital Signal Processors (DSPs) are commonly used in the Telecommunications market for applications such as modems,
voice and data compression, and Echo Cancellation. A DSP is commonly used with a communication controller. An incoming
stream of voice is processed by the DSP, and the data is forwarded to a host CPU (communication controller), which routes the
data stream to another voice channel, LAN, or remote target over the WAN cloud.

This type of application requires a high performance CPU, which has sufficient power for both processing and distribution of
data. The GT-64240/260 is a high performance System Controller, which provides the CPU with DRAM, PCI, Ethernet, WAN
and Device bus ports. Thus it provides an excellent solution for routing data received on the DSP interface to other channels
such as Telecommunications (T1, Frame Relay, etc.), Ethernet 10/100 ports and other communication controllers interfaced
over the PCI of the GT-64240/260.

This Application Note focuses on the interface between the GT-64240/260 System Controller and DSPs. Specifically it focuses
on the interface to Texas Instruments DSPs. For further information, refer to the GT-64240/260 datasheet.

1.1 Basic Configuration
There are many ways to connect DSPs to the GT-64240/260, and there are many possible data flow routes. In this document
we assume a specific hardware configuration and data flow.

Figure 1 shows a basic system with a GT-64240/260 and Texas Instruments DSPs.

Figure 1: Basic System with GT-64240/260 and Texas Instruments DSPs

The Data flow is as follows:

1. Data is received on the TDM channel on the DSP.

2. The DSP processes the data, and interrupts the host CPU (or the CPU polls the DSP).

3. The CPU transfers the data to its local memory (SDRAM), processes the data and makes the routing decisions either to
forward to another port on its own device or to forward to another port on another DSP.

Data can also flow from the local ports on the host CPU to the DSPs. In this case there is no interrupt from the DSP.

Device
bus

TDM
Interface

DSPGT64240/60

Ethernet Ports

WAN ports

DSP
TDM

Interface
Data Path

TDM
Interface

DSP
TDM

Interface

CPU

PCI
dev

SDRAM

PCI
dev

PCI
dev

PCI
dev

DSP

http://www.galileoT.com
http://www.galileoT.com

Interfacing Texas Instruments DSPs to the GT-64240/60

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-012 AN-65

Communications Systems on Silicon™

1.2 Interface Buses

1.2.1 DSP Interface Bus

Two buses can be used to interface with Texas Instrument DSPs—the Expansion bus and the Host Port Interface (HPI) bus.
Some DSPs have an Expansion bus, while others have an HPI bus. The HPI bus can be considered as a derivative of the
Expansion bus. (An HPI bus is an Expansion bus with a lower bit count in Asynchronous mode.) Therefore in this document we
focus on the Expansion bus in Slave mode, assuming that all transactions are initiated by the host. The DSP may interrupt the
host for a service request, but it is the host that initiates transactions on the bus.

1.2.2 GT-64240/260 Interface Bus

The Device bus is a 32 bit multiplexed bus that functions at a speed of up to 100 MHz. The Device bus functions as the Inter-
face bus on the GT-64240/260.

The DSP is mapped on the GT-64240/260 Device bus. The DSP memory is accessed via two registers—an Address register
and a Data register. Both are mapped on the GT-64240/260 Device bus.

To access any register/memory in the DSP address space, perform the following two transactions:

1. Write to the DSP XBISA register. This sets the address to be accessed and the type of access—incremental or hold.
On incremental access, the address field in the DSP XBISA register is incremented for every data transfer.

2. Write to/ Read from the DSP XBD register. This performs the actual data transfer. If the AINC bit on the DSP XBISA reg-
ister is set, the address that is accessed will be incremented every time the DSP XBD register is accessed.

These are considered as separate transactions. Normally the host CPU performs the first Write to the DSP XBISA register,
while the GT-64240/260’s DMAs perform the data transfer to the DSP XBD register.

1.3 Design Considerations

1.3.1 Host CPU Bandwidth Requirements

One of our basic assumptions is that data is transferred by a DMA on the GT-64240/260, otherwise the CPU would have to
spend a large percentage of its bandwidth on data transfer. The host CPU is left mainly with the task of initiating the DMAs and
handling the interrupts for service requests, which are received from the DSP.

Assuming that the DSP mainly handles voice applications, the data rate of any incoming voice channel is 64 Kb per second
(and double that for simultaneous Receive and Transmit). To reduce overhead, data is transferred to and from the host CPU in
cells. For this discussion we assume a cell of 20 µsec (which is equivalent to 160 bytes). We also assume that the data is for-
warded to the host CPU without compression (worst case).

When the DSP has finished processing a cell (160 bytes), the host CPU must transfer the data to its own memory. This can be
done by interrupting the CPU for each cell of data, or the host CPU can poll the DSPs and query them for service requests.

If Interrupts are used, the number of interrupts per second is:

1/cell time * Number of DSPs * Number of Voice Channels per DSP

For example:

Number of DSPs = 16

Number of Voice Channels per DSP = 12

Number of Interrupts: ~10000 interrupts per second.

Software that is running under VxWorks may spend up to 8 µsec overhead on each Interrupt. In the above example the CPU
spends 8% of the CPU bandwidth on overhead.

The above example was simulated for a MIPS R7000 CPU, running at 200 MHz (100 MHz on the CPU bus). The 8 µsec is only
the overhead. It includes the response time of the operating system, and the time needed by the Interrupt handler to verify the
interrupt cause. It does not include the time necessary to activate the DMAs.

If the number of DSPs or the number of channels is doubled, the overhead reaches 16% or even 32% (without any data pro-
cessing).

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-01 3AN-65

Interfacing Texas Instruments DSPs to the GT-64240/60Communications Systems on Silicon™

1.3.2 Data Transfer Rate

The data transfer rate is:

Number of Voice channels per DSP x Number of DSPs x 64Kb x 2 (both ways)

Using the same example as in Section 1.3.1, the data transfer rate is about 3 MB per second. Doubling the number of DSPs or
the number of voice channels per DSP increases the data transfer rate to 6 MB, or even 12 MB per second.

1.3.3 Multiple DSPs on the GT-64240/260 Device Bus

Normally one host CPU should serve multiple DSPs. Common configurations are 8,16, 32 or 64 DSPs per host CPU.

As part of the hardware bus protocol, the electrical problem of driving so many devices on the same Device bus must be
solved.

2. Interface
The Expansion bus may operate in Asynchronous or Synchronous mode. In Asynchronous mode, the interface is simpler to
implement (see Section 2.1) and the transfer rate is high enough to support heavy load configurations. The bandwidth calcula-
tion is described in Section 1.3.1.

2.1 Asynchronous Expansion Bus

2.1.1 Hardware Interface

Figure 2: Hardware Interface

Tclk

ALE

CStiming

WrEn*[3..0]

AD[31..0]

Int

Ready

XCS*

XCNTRL

XBE[3:0]

XR/W

XD[31..0]

XRDY

L

T

PLD

DevRW

Device Clock

A
d

d[25
..21

]

CS[N..0]
CS0

CS1

CS2

Int

da
ta

[7
..0

]

Int0

Int1
Int2

Reset*

TC
CS

GT-64240/60 TI DSP

Interfacing Texas Instruments DSPs to the GT-64240/60

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-014 AN-65

Communications Systems on Silicon™

The GT-64240/260 may initiate by single or burst transactions. In Asynchronous mode the Expansion bus supports only single
transactions, so the PLD has to convert burst transactions into single transactions.

The Int signal on the GT-64240/260 interface comes from the PLD. One of the problems which is discussed in Section 2.1.4 is
the Interrupt mechanism. The PLD is used as an Interrupt Controller. All the interrupts from the DSP go to the PLD, which gen-
erates interrupts to the GT64260/40. Once an interrupt is received on the GT64260/40, the host CPU reads a Cause register on
the PLD, to verify the source of the Interrupt. It then activates the DMA to perform the transfer to/from the right DSP.

Figure 3 illustrates the State Machine which is used to generate the XCS signal. Table 1 describes the signal interface.

Figure 3: State Machine Used to Generate the XCS Signal

The Value N in the Sate Machine shown in Figure 3 defines the delay between the deassertion of the XCS* signal and the next
assertion. According to the GT-64240/260 datasheet, this time should be at least 4 x P, where P is the DSP clock cycle.

Assuming a DSP clock cycle of 4 ns (250 MHz) and a GT-64240/260 device bus cycle of 10 ns (100 MHz). The value N should
be at least 2. In general, N should be configured such that:

N x T > 4 x P

Where:

T is the GT-64240/260 Device Bus Clock cycle

P is the DSP clock cycle

The signal names in Table 1 are taken from Figure 3.

Table 1: Signal Names

Expansion Bus Pin GT-64240/260 Notes

XCS* Combination of:
CS, CStiming, XRDY, Addr[23..21]
(see Figure 3)

See State machine in Figure 3.

XCNTRL Addr[25] Can Also be any other Addr signal.

XR/W DevRdWr

XD[31..0] Driven by AD[31..0] through bus
transceiver.

The bus transceiver is used to reduce load on
the Device bus, and also to enable configuration
of the DSP during reset.

XBE[3:0] Driven directly from GT-64240/260
WrEn signals

The signals need to be buffered.

XRDY Ready Ready is asserted on XRDY assertion and
deasserted one clock later.

XCS = 1
Cntr[] =

0

XCS = 0
Cntr[] =

0

XCS = 1
Cntr[]

++

f(Add, CS) = 0

sXRDY = 0

Cntr[] > N

f(Add, CS) = 1

XCS = 0
Cntr[] =

0

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-01 5AN-65

Interfacing Texas Instruments DSPs to the GT-64240/60Communications Systems on Silicon™

2.1.2 Implementation for up to Eight DSPs

The GT-64240/260 has eight independent DMAs, which may be used to transfer data from the host CPU local memory to the
DSP. The DMA may be triggered in block mode, by the CPU or by hardware using trigger mode.

The CPU may spend up to 32% of its time handling the overhead on the interrupts from the DSPs (see Section 1.3.1). In order
to prevent this, the Interrupt of the DSP can be connected as a DMA request to the GT-64240/260, so it does not require any
CPU bandwidth. The IDMA of the GT-64240/260 will act according to the DMA request.

2.1.3 Timing Considerations

The frequency on the GT-64240/260 Device bus can reach 100 MHz. The DSP Asynchronous bus runs more slowly, depending
on the CPU clock speed (200/250/300 MHz).

In this section we assume that the GT-64240/260 runs at a frequency of 100 MHz, and we use a DSP running at 250 MHz. If
you work with different frequencies, you should change the calculations in this section accordingly.

Figure 4 shows the waveform for a burst write. The Write parameters of the GT-64240/260 should be configured as follows:

Table 2: GT-64240/260 Device Parameters for a Burst Write

Parameters Value Comments

ALE2Wr 2 Shortest time.

WrLow 1 Shortest time. The actual time depends on the Ready signal

WrHigh 1 Shortest time.

Interfacing Texas Instruments DSPs to the GT-64240/60

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-016 AN-65

Communications Systems on Silicon™

Figure 4: Write Transaction to the DSP

Address Data0 Data1

Address/CS/DevRdWr

5555

666

222

33

1
11

1 44

0ns 50ns 100ns 150ns 200ns

Tclk

ALE

AD[31..0]

Add/CS/DevRdWr

CStiming

XCNTRL/XRDWR

XCS*

XRDY

Ready

XD[31..0]

XBE[3..0]

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-01 7AN-65

Interfacing Texas Instruments DSPs to the GT-64240/60Communications Systems on Silicon™

p = 1/DSP clock frequency. For example, for a 250 MHz CPU clock, p = 4ns.

Figure 5 illustrates a Burst Read initiated from the GT-64240/260. The device parameters are as follows:

Table 3: DSP Write AC Timing

No Parameter Min [ns] Max [ns]

1 XCS* clock delay 2 6

2 Ready clock delay 2 6

3 Delay XCS* high to XRDY high 0 12

4 XCS* high 4p

5 XBE clock delay 1 3.5

6 AD to XD delay 4

Table 4: GT-64240/260 Device Parameters for a Burst Read

Parameter Value Comments

Acc2First 1 Shortest time. The actual time depends on the Ready signal

Acc2Next 2 Shortest time. The actual time depends on the Ready signal

TurnOff 2 Shortest time.

Interfacing Texas Instruments DSPs to the GT-64240/60

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-018 AN-65

Communications Systems on Silicon™

Figure 5: Read Transaction to the DSP

Address data0 data1

Address/CS/DevRdWr

data0 data1
765765

222

33

1
11

1 44

0ns 50ns 100ns 150ns 200ns

Tclk

ALE

AD[31..0]

Add/CS/DevRdWr

CStiming

XCNTRL/XRDWR

XCS*

XRDY

Ready

XD[31..0]

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-01 9AN-65

Interfacing Texas Instruments DSPs to the GT-64240/60Communications Systems on Silicon™

p = 1/DSP clock frequency. For example, for a 250 MHz CPU clock, p = 4ns.

2.1.4 CPU Bandwidth: Interrupt vs Polling

Using the data in Section 1.3.1, there may be 10000, 20000 or even 40000 interrupts per second, depending on the DSP con-
figuration.

To minimize the overhead on Interrupts, we can implement a polling mechanism. The Interrupts from the DSP are sent to the
PLD, which includes a register with one bit per DSP. This register is mapped on the Device bus of the GT-64240/260. The CPU
may poll the register and serve the Interrupt in Polling mode. The restriction here is that the CPU should be able to visit each
DSP every 20 µsec for Read and Write.

The actual data transfer is performed by the GT-64240/260 IDMA engines. In its local memory, the CPU prepares descriptors
which direct the IDMAs to perform the data transfer.

As soon as the CPU realizes the source of the DSP, it activates one of the DMAs to perform the transfer. The CPU does not
perform the data transfer itself.

2.1.5 Data Transfer Rate

Using the example in Section 1.3.1:

Number of DSPs = 16

Number of Voice Channels per DSP = 12

Thus a transfer rate of 3 MB per second. is needed. This may increase up to 6 or 12 MB per second, if we double the number
of DSPs and the number of channels per DSP.

Looking at the waveforms in Section 2.1.3, we see that the transfer rate is ~50 MB per second.

This transfer rate is well above any potential bandwidth requirements. Thus the Asynchronous interface is good enough, and it
does not require the use of Synchronous mode.

2.1.6 Multiple DSPs on a Single Device Bus

As mentioned in previous sections, the basic topology is multiple DSPs on a single Device bus. Figure 6 shows the interface
between the DSP and the GT-64240/260. In this section we focus on the electrical problems which are expected due to the
extreme load on the Device bus.

The AC timing of the GT-64240/260 and the DSP assumes a total load of 30pf.

The loading of each pin on both buses is about 10pf.

Table 5: DSP Read AC Timing

No Parameter Min [ns] Max [ns]

1 XCS* clock delay 2 6

2 Ready clock delay 2 6

3 Delay XCS* high to XRDY high 0 12

4 XCS* high 4p

5 XCS* low to XD low impedence 0

6 XRDY* low to data valid -4 1

7 XCS* high to XD invalid 0 12

Interfacing Texas Instruments DSPs to the GT-64240/60

GALILEO TECHNOLOGY CONFIDENTIAL INFORMATION 12-FEB-0110 AN-65

Communications Systems on Silicon™

When an IBIS simulation is run, with 16 DSPs hanging on the Device bus, it shows that there is an extra delay of 12 nsec on the
nominal timing numbers. Adding the extra delay still does not violate the timing, but it creates a very slow slew rate, which may
lead to high current consumption in the chip.

To be on the safe side, we recommend dividing the DSPs into four groups. On the Data bus each group is driven by a trans-
ceiver, and on the Control bus each group is driven by a buffer.

The Control (Dir, OE) on the transceiver is generated by the PLD. Figure 6 shows the recommended load balancing for multiple
DSP configuration.

Figure 6: Recommended Load Balancing for the Multiple DSP Configuration

ALE

CStiming

WrEn*[3..0]

AD[31..0]

Int
Ready

L

T

PLD

DevRW

A
dd[25..21]

CS[N..0]
CS0

CS1

CS2

data[7..0]

TC[3..0]
CS

GT64240/60

TXRDY3
TXRDY2
TXRDY1
TXRDY0

CS15

XCNTRL
TXCNTRL0

TXCNTRL1

TXCNTRL2

TXCNTRL3

int0

int1

int2

int15

Each signal is
routed to a
separate DSP

Each signal drives
4 DSPs

Each signal comes
from 4 DSPs

Each signal comes
from a seperate DSP

Each bus drives
4 DSPs

B
Each signal drives
4 DSPs

B
Each bus drives
4 DSPs

XCS*
XCNTRL

XBE[3:0]

XR/W

XD[31..0]

XRDY
Int

DSP0

XCS*
XCNTRL

XBE[3:0]

XR/W

XD[31..0]

XRDY
Int

DSP1

XCS*
XCNTRL

XBE[3:0]

XR/W

XD[31..0]

XRDY
Int

DSP15

	1. Introduction
	1.1 Basic Configuration
	1.2 Interface Buses
	1.2.1 DSP Interface Bus
	1.2.2 GT-64240/260 Interface Bus

	1.3 Design Considerations
	1.3.1 Host CPU Bandwidth Requirements
	1.3.2 Data Transfer Rate
	1.3.3 Multiple DSPs on the GT-64240/260 Device Bus

	2. Interface
	2.1 Asynchronous Expansion Bus
	2.1.1 Hardware Interface
	2.1.2 Implementation for up to Eight DSPs
	2.1.3 Timing Considerations
	2.1.4 CPU Bandwidth: Interrupt vs Polling
	2.1.5 Data Transfer Rate
	2.1.6 Multiple DSPs on a Single Device Bus

