
 AN-84
Preliminary

,

 http://www.marvell.com

Copyright © 2001 Marvell CONFIDENTIAL Doc. No. MV-S300105-00 Rev. A

January 14, 2002, Preliminary Document Classification: Proprietary Information Page 1

APPLICATION NOTE
PCI Ordering Implementation

Introduction
This application note offer some suggestions for proper device interfacing to PCI "protocol chips", despite certain limitations in
Marvell devices.

This application note applies to the following families of devices:

• GT6426x/6xA

• MV64360

• MV9823x

For the purposes of this document, these devices are collectively referred to as "Marvell devices" or simply "the device(s)".

Background
In many applications for these devices, the local PowerPC processor interfaces with a "protocol chip" over the PCI bus. This
"protocol chip" PCI device can be a user specific FPGA, connected to user proprietary fabric, or an off the shelf PCI Application
Specific Integrated Circuit (ASIC), such as an Ethernet NIC or Fiber Channel (FC) adapter.

Figure 1 shows a typical "protocol chip" interface.

Figure 1: Typical "Protocol Chip" Interface

Typically, the handshake between the local CPU and the PCI device is based on some producer-consumer model, in which
buffers and descriptors are placed in the local DRAM and change ownership.

CPU

Marvell
Device

Gigabit
 Ethernet

NIC

PCI Bus

Interrupt

DRAM

GPP

CPUInt

To the
Network

http://www.marvell.com

PCI Ordering Implementation

Doc. No. MV-S300105-00 Rev. A CONFIDENTIAL Copyright © 2001 Marvell

Page 2 Document Classification: Proprietary Information January 14, 2002, Preliminary

An example of such handshake is:

• The CPU prepares a chain of Rx descriptors in DRAM, to be used by the NIC, and sets a pointer to the first descriptor in the
NIC.

• When the NIC receives a new Rx packet, it fetches a descriptor from DRAM. Then, it writes the received packet to the
DRAM location pointed by the descriptor.

• After storing the packet in DRAM, the NIC writes back the descriptor to DRAM (with some status indication). Then it inter-
rupts the CPU (via one of the device’s GPP inputs). This interrupt signals the CPU that there is a pending Rx packet in
DRAM.

• The CPU interrupt handler, after reading the system controller Interrupt Cause register and identifying the source of the
interrupt, reads the NIC status register. Then, the CPU reads from the DRAM the descriptor and the received packet.

• After processing the packet, the CPU changes the descriptor status, so it can be re-used by the NIC.

Note

In many cases, both descriptors and buffers are cacheable. For the producer-consumer model to work properly, cache
coherency must be maintained, whether by software means (for example, the CPU performs a cache flush after
preparing descriptors to be used by the NIC) or by hardware means.

This CPU-to-PCI device handshake is based on the assumption that when the interrupt handler reads the descriptors/buffers,
they are already stored in the DRAM. For this assumption to be correct, the following conditions must apply:

• The NIC only asserts an interrupt after the descriptors/packet data write over the PCI is completed. All standard PCI
devices meet this requirement.

• After the interrupt handler reads NIC status, it is guaranteed that the data is stored in DRAM. In other words, the CPU read
over the PCI (read of the NIC status register) must initiate the flushing of all posted write data in the system controller buff-
ers towards the DRAM.

The Marvell® device implementation does not meet the second condition. This application note offers some suggestions for
proper device interfacing to PCI "protocol chips", despite this limitation.

Note

For GT6426x/6xA users, a further description of this limitation is available in the GT-6426x FEr-MISC-5 erratum.

This app note is relevant to GT6426x rev0 and revA devices. The issue described above will be fixed in GT6426x revB.

PCI Ordering Implementation

Copyright © 2001 Marvell CONFIDENTIAL Doc. No. MV-S300105-00 Rev. A

January 14, 2002, Preliminary Document Classification: Proprietary Information Page 3

Device Buffering Implementation
Figure 2 shows the internal buffering scheme for the Marvell devices.

Figure 2: GT-6426x Internal Buffers

Note

Figure 2 only details the buffering implementation that is relevant to this application note. The figure does not detail the
whole buffering and queuing implementation.

When the NIC writes data (descriptors or packet) to DRAM, the data is first posted to the device’s PCI slave write buffer. If the
device’s cache coherency is used, the transaction goes through the snoop queue and, only after snoop is resolved, goes to
DRAM (red).

When the CPU reads the NIC status over the PCI (green), the read data is stored in the device’s PCI master read buffer and
then goes to the CPU.

With this implementation, the CPU might receive the read data while the write data from the NIC is still "stuck" in the PCI slave
write buffer or in the snoop queue. And once the CPU reads from DRAM (blue), the relevant data might still not be there.

Note

The "race" between the read data and the write data might never happen in real life applications. Typically, it takes many
cycles from the interrupt assertion until the interrupt handler code starts executing. By the time the interrupt handler
reads the NIC status register, all posted write data is flushed to DRAM.

Traffic, generated by an
external device, passing
through the snoop queue, to
cache coherent SDRAM.

to SDRAM

PCI Slave Write Buffer

Snoop
Queue

PCI Master Read Buffer

to PCI

to CPU

The NIC status data being
read by the CPU.

Read data moving from
the SDRAM to the

CPU.

PCI Ordering Implementation

Doc. No. MV-S300105-00 Rev. A CONFIDENTIAL Copyright © 2001 Marvell

Page 4 Document Classification: Proprietary Information January 14, 2002, Preliminary

Sync Barrier
The Marvell devices support a sync barrier mechanism. This feature can be used by software, to flush PCI slave posted write
buffers, before going to read the data from DRAM.

Note

Sync barrier is not supported when using the Marvell device’s cache coherency (see GT-6426x Res #CPU-2). When
using the cache coherency feature, use one of the methods described in the following sections.

If using the Marvell devices without the cache coherency capabilities, before reading from DRAM, the interrupt handler must
activate the sync barrier mechanism by reading CPU Sync Barrier Virtual register. When the read is completed, it is guaranteed
that the data stored in the PCI slave write buffer is flushed to DRAM and that the CPU can safely read from DRAM.

Interfacing User Specific FPGAs
When the user has control on the PCI device behavior (whether it is a user specific FPGA/ASIC or an off the shelf device), it is
easy to flush the Marvell device buffers.

To flush the buffers, the PCI device:

1. Generates a dummy read transaction to a cache coherent DRAM region.
2. Receives the read response data.
3. Asserts the interrupt after receiving the read response data from the dummy read transaction.

Note

Since the Marvell device’s PCI slave queue and snoop queue work in order, it is guaranteed that this dummy read will
flush all write data that was posted.

Interfacing Off the Shelf ASICs
This solution depends on the exact CPU-to-PCI device handshake model being used. For example, the descriptor pointers are
maintained in DRAM with each descriptor containing an ownership bit. The ownership bit indicates whether the descriptor is
owned by the CPU (a new Rx packet that has not yet been processed) or by the NIC.

When the NIC receives a new packet, it writes the packet to DRAM. Then, it write backs the descriptor with the ownership bit set
to the CPU. Only then, the interrupt is asserted. If, by the time the interrupt handler reads the descriptor, the descriptor is still
"stuck" in the device’s write buffer, the CPU reads an old descriptor from DRAM (or from its internal cache) that is marked as
owned by the NIC. In that case, the CPU realizes that this is a "false" interrupt and returns to the main program.

Eventually, the new descriptor arrives to DRAM but the CPU is not aware of it. If packets are constantly received, and if the sys-
tem is not sensitive to packets processing latency, this is not a problem. The packet is simply processed with the next interrupt
assertion – the next packet to come.

In case there is some latency limit, it is possible to activate one of the device timers. This will generate a periodic interrupt. With
each timer interrupt assertion, the CPU will access DRAM to determine if there is no pending descriptor waiting for processing.

An alternative solution is to use a mechanism that guarantees that posted write data is flushed to DRAM, before the CPU read
from DRAM.

The basic problem with this solution is that the interrupt handler cannot determine when the posted write data is flushed to
DRAM. It is possible to use a counter that, upon expiration, guarantees the posted write data is flushed to DRAM. This solution’s
problem is that it’s very hard to calculate a precise counter preset value – a value guaranteeing that all posted write data is
flushed.

PCI Ordering Implementation

Copyright © 2001 Marvell CONFIDENTIAL Doc. No. MV-S300105-00 Rev. A

January 14, 2002, Preliminary Document Classification: Proprietary Information Page 5

So, instead of a counter, a better solution is to use one of the Marvell device’s IDMAs to compete with the PCI slave on access
to the DRAM controller. Since the DRAM controller arbitration logic guarantees fair arbitration, it is assured that once the IDMA
transfer is completed all PCI posted write data is flushed to DRAM.

Figure 3 shows the DRAM controller arbitration.

Figure 3: DRAM Controller Arbitration

In the worst case, there are four write transactions "stuck" in the PCI slave write buffer (the transaction size limit is 32 bytes
when using the device’s cache coherency). If giving the PCI slave four more time slots than the IDMA (one IDMA access to the
DRAM controller for every four PCI accesses), it is guaranteed that after one IDMA transaction the whole PCI slave write buffer
is flushed.

However, PCI transactions might still be stuck in the snoop queue. So, the IDMA transfer must also target a cache coherent
region. This targeting guarantees that it also goes through the snoop queue. When the IDMA transfer completes, it is guaran-
teed that both the PCI slave write buffer and snoop queue are flushed and it is safe for CPU to access the DRAM.

The following is a detailed algorithm to activate the IDMA to assure that the PCI slave write buffer is completely flushed. It
includes an initialization step (performed once) and a synchronization routine (performed by the interrupt handler, whenever
synchronization is required).

Note

For the GT6426x Rev0 device, see the note following this initialization and synchronization procedure.

Initialization:

1. Allocate aligned 64 bytes in cacheable DRAM space (32 bytes IDMA source region, 32 bytes IDMA destina-
tion region).

2. Set the Snoop Control registers to enable cache coherency during IDMA access to DRAM.
3. Modify the DRAM controller pizza arbiter to enable one IDMA slice for every four PCI slices.

Synchronization:

1. Set the IDMA source to point to the source region.
2. Set the IDMA destination to point to the destination region.
3. Set the IDMA byte count to 16 bytes.
4. Activate the IDMA channel with a BurstLimit of 8 bytes.
5. Wait until the DMA transfer ends (read polling on IDMA channel active bit).

To DRAM
ControllerFrom

PCI Slave

From IDMA

Pizza Arbiter

Doc. No. MV-S300105-00 Rev. A CONFIDENTIAL Copyright © 2001 Marvell

Page 6 Document Classification: Proprietary Information January 14, 2002, Preliminary

Preliminary Information
This document provides preliminary information about the products described. All specifications described herein are based on design goals only. Do not use for final design. Visit Marvell's
web site at www.marvell.com or call 1-866-674-7253 for the latest information on Marvell products.

Disclaimer
No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express
written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard
to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the
accuracy or completeness of the information, text, graphics, or other items contained within this document. Marvell makes no commitment either to update or to keep current the information
contained in this document. Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not
use Marvell products in these types of equipment or applications. The user should contact Marvell to obtain the latest specifications before finalizing a product design.
Marvell assumes no responsibility, either for use of these products or for any infringements of patents and trademarks, or other rights of third parties resulting from its use. No license is granted
under any patents, patent rights, or trademarks of Marvell.These products may include one or more optional functions. The user has the choice of implementing any particular optional function.
Should the user choose to implement any of these optional functions, it is possible that the use could be subject to third party intellectual property rights. Marvell recommends that the user
investigate whether third party intellectual property rights are relevant to the intended use of these products and obtain licenses as appropriate under relevant intellectual property rights.
Marvell comprises Marvell Technology Group Ltd. (MTGL) and its subsidiaries, Marvell International Ltd. (MIL), Marvell Semiconductor, Inc. (MSI), Marvell Asia Pte Ltd. (MAPL), Marvell Japan
K.K. (MJKK), Galileo Technology Ltd. (GTL) and Galileo Technology, Inc. (GTI).
Copyright © 2001 Marvell. All Rights Reserved. Marvell, GalNet, Galileo, Galileo Technology, Fastwriter, Moving Forward Faster, Alaska, the M logo, GalTis, GalStack, GalRack, NetGX, Prest-
era, the Max logo, Communications Systems on Silicon, and Max bandwidth trademarks are the property of Marvell. All other trademarks are the property of their respective owners.
Marvell Semiconductor, Inc.
2350 Zanker Road, San Jose, CA 95131
Phone: (408) 367-1400, Fax: (408) 367-1401

PCI Ordering Implementation

If using the Marvell device’s PCI_0 and PCI_1 interfaces, set the DRAM controller pizza arbiter to enable one IDMA slice for
every four PCI_0 slices + four PCI_1 slices. Also, PCI_0 and PCI_1 slices must be interleaved (meaning, one slice per PCI0,
one per PCI1 and so on).

Note

In the GT6426x Rev0 device, the pizza arbiter cannot guarantee four PCI transactions for every single IDMA transaction
(see GT6426x rev0 errata FEr #50). For this device, the algorithm should be slightly modified:

Initialization:

1. Allocate aligned 256 bytes in cacheable DRAM space (128 bytes IDMA source region, 128 bytes IDMA desti-
nation region).

2. Set the Snoop Control registers to enable cache coherency during IDMA access to DRAM.
3. Modify the DRAM controller pizza arbiter to enable one IDMA slice per every four PCI slices.

Synchronization:

1. Set the IDMA source to point to the source region.
2. Set the IDMA destination to point to the destination region.
3. Set the IDMA byte count to 128 bytes.
4. Activate the IDMA channel with BurstLimit of 32 bytes.
5. Wait until the DMA transfer ends (read polling on IDMA channel active bit).

Summary
Where the local PowerPC processor interfaces with a "protocol chip" over the PCI, it is important to be aware of the potential
ordering issues described in this application note.

In most cases, the race between the read data and the write data might never occur.

Yet, in applications where it is possible, it is advisable to use one of the methods described in this application note to avoid this
limitation.

http://www.marvell.com

